

Copyright

by

Shipeng Fu

2008

The Dissertation Committee for Shipeng Fu Certifies that this is the approved

version of the following dissertation:

A Time-Centered Split for Implicit Discretization of Unsteady

Advection Problems

Committee:

Ben R. Hodges, Supervisor

Graham F. Carey

Randall J. Charbeneau

Spyros A. Kinnas

Daene C. McKinney

 A Time-Centered Split for Implicit Discretization of Unsteady

Advection Problems

by

Shipeng Fu, B.S.; M.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May 2008

Dedication

To my parents: Zhaojun Wang and Xuede Fu

献给我的父母: 王朝君和傅学德

 v

Acknowledgements

I would like to begin by expressing my gratitude to my advisor Dr. Ben Hodges. I

am thankful for his guidance and support, and I appreciate the freedom he has given me

to explore and pursue my own research interests. I would also like to thank Dr. Graham

Carey, Dr. Randall Charbeneau, Dr. Spyros Kinnas and Dr. Daene Mckinney for serving

on my committee.

The faculty members, facilities, and the world class program of EWRE have made

my research possible. I am grateful to Dr. Kinnas and Dr. Carey for their input in the

development of the numerical methods in this dissertation. I have gone to Dr. Liljestrand,

Dr. Lawler and Dr. Kinnas many times for help and advice, and they have always been

happy to help. I want to thank them for their encouragement and advice. I would like to

thank Dr. Charbeneau for giving me the opportunity to work with lab experiments (so I

could finally play with the real water!). I would like to thank Sharon Bernard, Marcy

Betak, and Susan Swanson-Cartwright at the CRWR Office for helping with all my

administrative paperwork and questions.

During my Ph.D study at UT, my friends in Austin have been extremely helpful

and supportive. I could not finish this without their friendship. I want to particularly

thank Paula Kulis, Li-Jung Chen and their wonderful husbands for feeding me meals and

listening to my whines. I also want to thank Paula for many discussions in fluid

 vi

mechanics and beyond. I want to thank Yihsiang Yu and Vimal Vinayan for their

insightful discussions on numerical methods and wave mechanics. I want to thank Becky

Teasley and John Allen, Rebekah and Nate Johnson, and Jeremy Seibert for graciously

reading and providing valuable feedbacks on my dissertation. I want to thank all my

friends in EWRE and CRWR. Our lunch topic at CRWR is always intellectually

stimulating, and sometimes wild. I also want to thank all the members in the BUSTED

(Best Underpaid Students Turning into Environmental Doctors) club. I really benefited

from the support from everyone. I will miss you girls. I want to thank my running buddy,

Susan De Long, for many interesting discussions about Yoga and philosophy.

I am thankful to my parents. I thank them for teaching me good values, and

encouraging me to think independently since I was very young. My diligent father and

curious mother have always been my role models and inspiration.

My deepest thanks go to my best friend and husband, Yunzhi Yang. I am really

fortunate to have such a wonderful life partner accompanying me for this journey. I want

to thank him for truly understanding me, encouraging me to strive for excellence, and

bringing life into perspective.

 vii

A Time-Centered Split for Implicit Discretization of Unsteady

Advection Problems

Publication No._____________

Shipeng Fu, Ph.D.

The University of Texas at Austin, 2008

Supervisor: Ben R. Hodges

Environmental flows (e.g. river and atmospheric flows) governed by the shallow

water equations (SWE) are usually dominated by the advective mechanism over multiple

time-scales. The combination of time dependency and nonlinear advection creates

difficulties in the numerical solution of the SWE. A fully-implicit scheme is desirable

because a relatively large time step may be used in a simulation. However, nonlinearity in

a fully implicit method results in a system of nonlinear equations to be solved at each

time step. To address this difficulty, a new method for implicit solution of unsteady

nonlinear advection equations is developed in this research. This Time-Centered Split

(TCS) method uses a nested application of the midpoint rule to computationally decouple

advection terms in a temporally second-order accurate time-marching discretization. The

method requires solution of only two sets of linear equations without an outer iteration,

and is theoretically applicable to quadratically-nonlinear coupled equations for any

number of variables.

 viii

To explore its characteristics, the TCS algorithm is first applied to one-

dimensional problems and compared to the conventional nonlinear solution methods.

The temporal accuracy and practical stability of the method is confirmed using these 1D

examples. It is shown that TCS can computationally linearize unsteady nonlinear

advection problems without either 1) outer iteration or 2) calculation of the Jacobian. A

family of the TCS method is created in one general form by introducing weighting factors

to different terms. We prove both analytically and by examples that the value of the

weighting factors does not affect the order of accuracy of the scheme. In addition, the

TCS method can not only computationally linearize but also decouple an equation system

of coupled variables using special combinations of weighting factors. Hence, the TCS

method provides flexibilities and efficiency in applications.

 ix

Table of Contents

List of Tables ... xi

List of Figures ... xii

Chapter 1 Introduction ...1

1.1 Background ...2

1.2 Challenge and Motivation of the Numerical model..................................4

1.3 Objective ...6

1.4 Approach...6

1.5 Broad Application...7

Chapter 2 Review of Finite Difference Schemes for Solving the Unsteady Nonlinear
Advection in the Shallow Water Equations ..8

2.1 Explicit Method ..9

2.2 Semi-Implicit Method...10

2.3 Implicit Method ..11

2.4 Summary ...16

Chapter 3 Theoretical Development of the Time-Centered Split (TCS) Method..18

3.1 The Theory of Time-Centered Splitting ...19

3.2 Derivation of the TCS method in a 1D Advection-Diffusion Equation .23

3.3 TCS for Coupled Momentum and Scalar Transport28

3.4 Summary ...30

Chapter 4 Implementation of the TCS Method in 1D Problems31

4.1 Application of the TCS Method to the 1D Conservative Burgers’ Equation
..31

4.2 Applications of the TCS Method to the 1D Non-conservative Burgers’
Equation ...55

4.3 Application of the TCS Method to a 1D Nonlinear Ordinary Differential
Equation ...76

4.4 Summary ...81

 x

Chapter 5 The TCS Family Method...83

5.1 Derivation of the TCS Family Method ...83

5.2 Application of the TCS Family Method to the 1D Non-conservative
Burgers’ Equation ..87

5.3 Results and Discussion ...89

5.4 Computational Decoupling ...99

5.5 Summary ...104

Chapter 6 Application of the TCS Method to a 2D Depth Averaged Shallow Water
Equations (SWE) ..106

6.1. The 2D Depth Averaged SWE...106

6.2 The TCS Discretized SWE ...107

6.3 Decoupling the SWE...112

6.4 Characteristics of the TCS Decoupled Equation System......................114

6.5 Numerical Tests ..117

6.6 Summary ...138

Chapter 7 Conclusions and Recommendations..139

7.1 Summary of Discussion ..139

7.2 Conclusions...143

7.3 Recommendations for Future Work..144

Appendix A Test of a Progressive Wave in an Open Boundary System.............146

A.1 Initial and Inlet Boundary Condition ...146

A.2 Outlet Boundary Condition..147

A.3 Results and Discussion...151

References..157

Vita 168

 xi

List of Tables

Table 5.1 The mathematical meaning of the value of 1θ and 2θ 90

Table 5.2 Weighting factors for computational decoupling the 2D Burgers’ equation.. 102

Table 6.1 Weighting factors and the solution orders for decoupled Equations (6.11)

through (6.16). .. 114

Table 6.2 Solution procedures of the three TCS discretizations..................................... 117

Table 6.3 Parameters of simulations of a 1D standing wave.. 120

Table 6.4 Parameters of simulations of the 2D standing wave....................................... 125

 xii

List of Figures

Figure 1.1 Sulphur River (Texas) large woody debris at low-flow conditions 3

Figure 4.1 Solution of 1D Burgers’ equation evolving in time for t∈{0, 0.1, 0.2, 0.3, 0.6,

1, 2, 3} using 0.05ν = along with the initial and boundary conditions of Equations

(4.43) through (4.45)... 46

Figure 4.2 Absolute error time evolution for numerical solutions of 1D conservative

Burgers’ equation for TCSF and TCSF-D using { t∆ =0.01, x∆ =1/50, ν=0.05},

where

50

abs model i analytical i

i 1

1
(t) u (x , t) u (x , t)

50
=

ε = −∑ and analyticalu (x, t) is numerically

calculated from Equation (4.46) with K=30. ... 47

Figure 4.3 RMSε vs. CFL number of various methods for solution of 1D conservative

Burgers’ equation with three different x∆ , where 0.05ν = and t 0.3/∆ = Γ with

Γ∈{50, 30, 25, 20, 10, 8, 5, 4, 2}. ... 49

Figure 4.4 2L norm vs. CFL number of various methods for solution of 1D conservative

Burgers’ equation with three different x∆ , where 0.05ν = and t 0.3/∆ = Γ with

Γ∈{50, 30, 25, 20, 10, 8, 5, 4, 2}. ... 50

Figure 4.5 L∞ norm vs. CFL number of various methods for solution of 1D conservative

Burgers’ equation with three different x∆ , where 0.05ν = and t 0.3/∆ = Γ with

Γ∈{50, 30, 25, 20, 10, 8, 5, 4, 2}. ... 51

Figure 4.6 RMSε vs. CFL number of TCSF, RK2 and RK4 methods for solution of 1D

conservative Burgers’ equation, where 0.05ν = x∆ =1/50, and t 0.3/∆ = Γ with

Γ∈{500, 200, 100, 80, 50, 30, 25, 20, 10, 8, 5}. ... 53

Figure 4.7 Ideal operations per grid point for one time step using various nonlinear

solution methods for 1D conservative Burgers’ equation. R is the number of outer

iterations taken by Newton method. It is assumed that the Picard method

convergences in R
2
 outer iterations. .. 55

Figure 4.8 Absolute error time evolution for numerical solutions of 1D non-conservative

Burgers’ equation for the TCSF and TCSG methods using

{ }t 0.01, x 1/ 50, 0.05∆ = ∆ = ν = where

50

abs model i analytical i

i 1

1
(t) u (x , t) u (x , t)

50
=

ε = −∑

and analyticalu (x, t) is numerically calculated from Equation (4.46) with K=30. 70

 xiii

Figure 4.9 RMSε vs. CFL numbers of various methods for solution of 1D non-

conservative Burgers’ equation at different CFL numbers, where ν=0.05, x∆ =1/50

and t∆ =0.6/Γ with Γ ∈{50, 30, 25, 20, 10, 8, 5}.. 71

Figure 4.10 2L norm vs. CFL numbers of various methods for solution of 1D non-

conservative Burgers’ equation at different CFL numbers, where ν=0.05, x∆ =1/50

and t∆ =0.6/Γ with Γ ∈{50, 30, 25, 20, 10, 8, 5}.. 72

Figure 4.11 L∞ norm vs. CFL numbers of various methods for solution of 1D non-

conservative Burgers’ equation at different CFL numbers, where ν=0.05, x∆ =1/50

and t∆ =0.6/Γ with Γ ∈{50, 30, 25, 20, 10, 8, 5}.. 73

Figure 4.12 Temporal accuracy of the TCS and RK methods for solution of 1D non-

conservative Burgers’ equation at different CFL numbers, where ν=0.05, x∆ =1/50

and t∆ =0.6/Γ with Γ ∈{500, 200, 100, 80, 50, 30, 25, 20, 10, 8, 5}.................... 74

Figure 4.13 Ideal operations per grid point for one time step using various nonlinear

solution methods for 1D Non-conservative Burgers equation. R is the number of

outer iterations taken by Newton method. It is assumed that the Picard method

convergences in 2R outer iterations.. 75

Figure 4.14 Time evolution of absolute errors for TCS methods applied to the ODE,

Equation (4.101), for t∆ =0.1, where abs model analytical(t) y (t) y (t)ε = − 79

Figure 4.15 RMS error from Equation (4.117) for discrete solutions of the ODE,

Equation (4.101), computed using a range of Γ time steps. 81

Figure 5.1 Temporal accuracy of various combinations of 1θ and 2θ for solution of the

Burgers’ equation at t=0.6, where x 1 50/∆ = , 0 05.ν = and t 0 6. /∆ = Γ

({ }5, 8, 10, 20, 25, 30, 50Γ∈).. 92

Figure 5.2 Temporal accuracy of various combinations of 2θ and 1θ for solution of the

Burgers’ equation at t=0.6, where x 1 50/∆ = , 0 05.ν = and t 0 6. /∆ = Γ

({ }5, 8, 10, 20, 25, 30, 50Γ∈).. 93

Figure 5.3 Temporal accuracy of various combinations of 2θ and 1θ for solution of the

Burgers’ equation at t=0.3, where x 1 50/∆ = , 0 05.ν = and t 0 3∆ = Γ. /

({ }5, 8, 10, 20, 25, 30, 50Γ∈).. 96

Figure 5.4 Temporal accuracy of various combinations of 2θ and 1θ for solution of the

Burgers’ equation at t=1, where x 1 50∆ = / , 0 05ν = . and t 1∆ = Γ/

({ }5, 8, 10, 20, 25, 30, 50Γ∈).. 97

 xiv

Figure 5.5 Temporal accuracy of various combinations of 2θ and 1θ for solution of the

Burgers’ equation at t=2, where x 1 50/∆ = , 0 05.ν = and t 2∆ = Γ/

({ }5, 8, 10, 20, 25, 30, 50Γ∈).. 98

Figure 6.1 Illustration of Arakawa C grid... 109

Figure 6.2 A standing wave in a rectangular basin... 118

Figure 6.3 Simulations in the inviscid flow with different wave steepness.................... 121

Figure 6.4 Viscous damping effects in the shallow water model 122

Figure 6.5 The initial 2D standing wave and its decomposed x and y direction 1D wave

... 124

Figure 6.6 Computational domain (not to scale) .. 125

Figure 6.7 Normalized surface elevation contours in the computational domain at time

4T. ... 129

Figure 6.8 Normalized surface elevation contours in the computational domain at time

15T. ... 130

Figure 6.9 Normalized U-velocity contours in the computational domain at time 4T. .. 131

Figure 6.10 Normalized U-velocity contours in the computational domain at time 15T.

... 132

Figure 6.11 Normalized V-velocity contours in the computational domain at time 4T. 133

Figure 6.12 Normalized V-velocity contours in the computational domain at time 15T.

... 134

Figure 6.13 Surface displacement at points (0.5, 0) and (0, 0.5) simulated using three

TCS solutions.. 135

Figure 6.14 Snapshot of the standing wave at 0.5 T. The surface displacements at the two

monitored points (0.5, 0) and (0, 0.5) are circled. .. 136

Figure 6.15 Snapshot of the standing wave at 15 T. The surface displacements at the two

monitored points (0.5, 0) and (0, 0.5) are circled. .. 137

Figure A.1 Initial water level, H (x, 0), in the rectangular open channel 147

Figure A.2 Inlet boundary condition H (0, t) .. 147

Figure A.3 Shape function of viscosity... 149

Figure A.4 An open boundary rectangular channel with a sponge layer........................ 149

Figure A.5 Schematic illustrations of grids .. 150

 xv

Figure A.6 Water level at point A with/without the sponge layer 150

Figure A.7 Water level evolutions inside the test section and sponge layer................... 151

Figure A.8 Comparison of wave shape at time 7T and 14T for TCS solution1 and TCS

solution 2 respectively .. 153

Figure A.9 Comparison of wave shape simulated from TCS solution 1 and 2 at time 7T

and 14T respectively ... 154

Figure A.10 Time evolution of a progressive wave at different wave periods from TCS

solution 1... 155

Figure A.11 Time evolution of a progressive wave at different wave periods from TCS

solution 2... 156

 1

Chapter 1 Introduction

Models of river flow using mathematic tools have been developed since last half

century (Cao and Carling 2002). Various numerical river models have been created to

study flood control (Dutta et al. 2007; Liao et al. 2007), water allocation (Fleckenstein et

al. 2006; Luo 2007), sediment and morphological evolution (Giri and Shimizu 2006; Le

et al. 2006) and so on. The river flow is usually modeled at a coarse-grid scale due to the

limitations of the computational power (Dedong et al. 2007; Shaw et al. 2005; Thouvenin

et al. 2007). However, there exist some particular river systems such as a river with many

large woody debris (LWD), as shown in Figure 1.1. The flow information around LWD

is at subgrid-scale, which can’t satisfactorily be modeled at the conventional coarse-grid.

In addition, the river flow is often simulated using two-dimensional (2D) depth

averaged shallow water equations (SWE) as the governing equations (Chen and Peng

2006; Nguyen et al. 2006; Weerakoon et al. 2003). However, the unsteadiness and the

dominant advective mechanism of a river flow create difficulties in SWE based

numerical simulation because of the combination of the “stiffness” (i.e. the unsteady

term) and “nonlinearity” (i.e. the nonlinear advection term) in the momentum equations.

Therefore, in this research, we develop a new numerical algorithm to address the

difficulties in simulating the unsteady nonlinear advection. This numerical scheme can

also serve as a platform to perform the new conceptual model which can integrate the

subgrid-scale physics into a coarse-grid scale model. The detailed development of the

conceptual model can be found in Fu and Hodges (2005). First, let us start with the

background information of the LWD.

 2

1.1 BACKGROUND

Large woody debris (LWD) refers to woody material such as fallen tree trunks or

root balls that become lodged in stream channels. Figure 1.1 gives an example of a river

laden with large woody debris (LWD). The conventional size of LWD is diameters

larger than 0.1 m and lengths greater than 1.0 m (Keller and Swanson 1979; Andrus et al.

1988). LWD accumulations have been historically called “snags”, a pejorative term

reflecting a perception of LWD as a nuisance to river navigation and efficient water use.

River “improvement” schemes typically involve removing LWD (Shields & Nunnaly

1984; Gippel 1995), to improve water conveyance, rejuvenate channels, lessen the risk of

damage to bridges, improve recreational amenity, and remove barriers to fish migration

(Harmon et al. 1986). However, from an ecological perspective, LWD provides a stable

substratum for microorganisms, algae and invertebrates (Minshall 1984; Brown & May

2000; Statzner & Higler 1986). This, in turn, creates grater local productivity for higher

trophic levels such as invertebrates and fish (Price & Lovett 2002). Furthermore, LWD

enhances hydraulic diversity (i.e. a wide range of flow conditions), which in turn

enhances diversity in fish habitat, e.g. providing low-velocity refuges sought by many

fish species (Benke et al. 1985; Matthews & Hill 1980), and also providing cover from

predators (Angermeier & Karr 1984, Everett & Ruiz, 1993), foraging habitat, and

spawning substratum - all of which vary dynamically with flow rate (Bao & Mathews

1991; Mathews & Tallent 1997; Marzolf 1978). In short, LWD creates greater habitat

complexity (O’Conner 1991), which should produce greater biodiversity (Gerhard &

Reich 2000).

 3

Figure 1.1 Sulphur River (Texas) large woody debris at low-flow conditions

(Photo courtesy of Texas Water Development Board)

Over the past two decades, a wide variety of studies demonstrate how woody

debris may be a dominant player in aquatic habitat. Angermeier & Karr (1984)

selectively modified a stream by inducing and removing woody debris, subsequently

showing a greater abundance of fish and benthic invertebrates correlated with the

introduced debris. Benke et al. (1985) examined a low-gradient stream, showing that only

4% of habitat surface was in LWD and yet this supported 60% of the invertebrate

biomass and 16% of overall production. Similar results are noted in Benke et al. 1984 and

Jacobi & Benke1991. Effects of flooding on fish movements and distribution (Hill &

Grossman 1987; Harvey et al. 1999) have confirmed the importance of habitat

complexity (including LWD) for population persistence. More subtle and indirect effects

on habitat have been attributed to LWD’s modification of the flow field and water level

(Triska & Cromack 1980; Sedell et al. 1982; Wallace & Benke 1984). Near LWD,

reduced velocities allow retention of organic matter, building up ecologically-important

debris dams, while water lever effects at high flow rates can influence the seed dispersal

from riparian vegetation (Merritt & Wohl 2002). Studies drawing similar conclusions

 4

have been conducted over a variety of locales and river types, ranging from salmon

spawning streams in Alaska (Dolloff 1986), low-gradient rivers in West Virginia (Lobb

& Orth 1991) to an ephemeral river in Africa (Jacobson et al. 1999). The common theme

is that LWD plays a varied and critical role in aquatic habitat for rivers and streams – a

role determined by the flow field near LWD. Moreover, water management agencies are

interested in including the effects of LWD in aquatic habitat assessments used for water

resource allocations.

The flow structure around LWD is very complicated and varied, which has been

revealed by several previous field studies (e.g. Mutz 2000; Beebe 2001; Daniels &

Rhoads 2003). Moreover, there is a large difference in scales between hydraulic

processes and the critical ecological processes. Because of this scale difference, the

small-scale flow heterogeneity (important to biota) is poorly represented in the channel-

scale numerical models currently used for aquatic habitat analysis (e.g. Waddle 2001). To

address this problem, a new conceptual model is proposed to integrate the subgrid-scale

physics into a coarse-grid scale model (Fu and Hodges, 2005).

1.2 CHALLENGE AND MOTIVATION OF THE NUMERICAL MODEL

In addition to the scale difference, another challenge for solving the river flow

with LWD is to build a numerical model to simulate the unsteady river flow. River flow

is usually characterized as shallow-water flow. As shown in Figure 1.1, the flow around

LWD is indeed shallow as most of the LWD are exposed out of the water surface. This

kind of river system is usually modeled by 2D depth averaged shallow water equations

(SWE) (Arega et al. 2008; Burguete et al. 2006; Gejadze and Monnier 2007). 2D depth

averaged SWE can be obtained by integrating the Navier-Stokes equation over the water

depth with the underlying hydrostatic assumption. One of the difficulties in solving SWE

 5

numerically is the combination of the “stiffness” (i.e. the unsteady term) and

“nonlinearity” (i.e. the nonlinear advection term) in the momentum equations. Numerous

finite-difference numerical models for solving SWE have been developed over the past

several decades. Among these developed numerical models, explicit and semi-implicit

schemes are the most widely used. For example, in the atmospheric or weather research

community, explicit methods such as Leapfrog and Lax-Wendroff-type are the most

popular ones (Mendez-Nunez and Carroll 1993). Casulli (Casulli 1990) proposed a semi-

implicit scheme, on which a number of variations are based. A common property for

both the explicit and semi-implicit methods is that they explicitly discretize the advection

term. Hence, the nonlinearity does not arise in an explicit or a semi-implicit sachem.

However, their stability is restricted by the Courant-Friedrichs-Lewy (CFL) condition

because of the explicitness. A fully implicit scheme is desirable because we can use a

relative large time step in the simulation. A fully implicit solution for an unsteady

nonlinear advection problem involves solving a system of nonlinear equation at each

step. The conventional techniques for solving a system of nonlinear equations require

either 1) iterations of root-finding procedure or/and 2) calculations of the Jacobian. These

two processes make a fully implicit solution more complex and computationally

expensive. These motivate this research to develop a new implicit scheme to solve

unsteady nonlinear advection problems.

 6

1.3 OBJECTIVE

The primary objective of this research is:

Develop a new implicit solution for unsteady nonlinear advection problems. The

new numerical algorithm should have the advantage in both stability and efficiency while

keeping the 2
nd

-order temporal accuracy as in most existing SWE models. In addition, this

new method would provide a novel approach in decoupling a coupled equation system.

1.4 APPROACH

To achieve the objective of this research, several steps need to be taken to guide

this study. The major steps are as follows:

Literature review

• Review current finite-difference models for the 2D depth averaged SWE.

• Examine how the nonlinear advection term is treated in different temporal

discretizations.

• Review the merits and limitations of the existing models.

This part of the dissertation work is presented in Chapter 2.

Analytical development of the new numerical algorithm

Illustrate the theoretical principle and concept of the new algorithm. This part of

the dissertation work is presented in Chapter 3.

Verify the new method using 1D test case

• Test the new algorithm using a 1D PDE with time dependent nonlinear

advection term.

• Test the new algorithm using 1D ordinary differential equation (ODE).

 7

• Explore the characteristics of the method in accuracy, stability and

efficiency.

This part of the dissertation work can be found in Chapter 4.

Verify the new method using a multi-variable and multi-dimensional problem

• Theoretically develop the new algorithm in multi-variable and multi-

dimensional problems.

• Demonstrate and analyze the decoupling process of the new method.

• Conduct initial test cases of the numerical algorithm in 2D depth averaged

SWE.

This work can be found in Chapter 5 and Chapter 6.

1.5 BROAD APPLICATION

The initial motivation and application for this research is simulating a river flow

with LWD. The newly developed numerical algorithm for solving unsteady nonlinear

advection problems is not limited only in simulating river flows. In most of the

environmental flows such as atmospheric flow, ocean circulation, storm surge and etc.,

advection is the dominant mechanism and we are often interested in simulating these

flows with a range of different time scales. Therefore, the difficulties arising from the

combination of the unsteadiness and nonlinear advection exist in modeling many types of

environmental flows. This new numerical method provides a new approach to address

this difficulty in these and many other research areas.

 8

Chapter 2 Review of Finite Difference Schemes for Solving the

Unsteady Nonlinear Advection in the Shallow Water Equations

Environmental flows (e.g. river and atmospheric flows) governed by the SWE are

usually dominated by the advective mechanism over multiple time-scales (Vreugdenhil

1994). The combination of time dependency and nonlinear advection creates difficulties

in the numerical solution of the shallow water equations (SWE) (Bourchtein and

Bourchtein 2006). To address this difficulty, numerous numerical schemes have been

developed over the past several decades. Iskandarani et al (2005) reviewed the finite

element/finite volume methods in solving advection equations. More reviews about finite

element methods can be found in the article by Thomee (2001). The research herein

focuses on developing a finite difference algorithm for solving unsteady nonlinear

advection problems. To review the existing finite difference techniques, we first classify

time-marching algorithms into three categories: explicit, semi-implicit and implicit

methods. In the explicit and semi-implicit methods, the nonlinear advection terms are

treated explicitly. Hence, the issue of solving a nonlinear matrix inversion does not arise

in these two temporal discretizations. However, to solve a fully-implicit system, different

computational linearization methods are required treat the nonlinearity, so that the

inversion of a nonlinear matrix can be obtained. Therefore, we briefly review the explicit

and semi-implicit models for solving the SWE and examine different linearization

approaches in the implicit system. Comparisons among different existing methods are

summarized in the last section of this chapter.

 9

2.1 EXPLICIT METHOD

Fully explicit methods are popular in atmospheric or weather research

community. The most widely used explicit methods in atmospheric research are Leapfrog

and Lax-wendroff-type schemes (Mendez-Nunez and Carroll 1993). The Leapfrog

method is a one-step method, requiring two time levels of known values to compute an

unknown level. Modifications of the Leapfrog methods are used in simulating ocean

circulation (Cho and Yoon 1998; Fujima and Shigemura 2000). The Lax-Wendroff-type

method is a two-step Predictor-Corrector method. One of the popular variations of the

Lax-wendroff scheme is developed by MacCormack (1969). The MacCormack scheme is

extended to many research areas such as aerospace engineering (Hirose et al. 1991;

Kurbatskii and Mankbadi 2004) and hydrological science in simulating free surface flow

(Fennema and Chaudhry 1990; Garcia and Kahawita 1986; Kazezyılmaz-Alhana et al.

2005; Keshari and Koo 2007; Li and Jackson 2007), groundwater flow (Keshari and Koo

2007) and dam-break shock wave (Li and Jackson 2007). Another commonly used

explicit Predictor-Corrector method is the Runge-Kutta method (Delis and Katsaounis

2005; Zhou et al. 2007). The Leapfrog and the two-step Predictor-Corrector methods can

maintain 2
nd
-order temporal accuracy. Although simpler explicit schemes such as

forward-time scheme is also used in solving SWE (Murillo et al. 2008), it can only

maintain 1
st
-order temporal accuracy.

Explicit schemes are straightforward and easy to implement. Nonlinear advective

terms in partial differential equations (PDE) are readily-computed from known time-

levels using fully-explicit time-marching methods. However, the implementations of

explicit methods are restricted by stability requirements. Runge-Kutta and MacCormack

methods typically require an excessively small time step to satisfy the Courant-

Friedrichs-Lewy (CFL) condition(Mendez-Nunez and Carroll 1993); the Leapfrog

 10

approach must be applied with appropriate numerical strategies such as alternate time

levels of the solution (Agoshkov et al. 1994; Peyret and Taylor 1983; Zhou 2002) or

sophisticated mode-splitting (e.g.Blumberg and Mellor 1987).

2.2 SEMI-IMPLICIT METHOD

Semi-implicit methods have been developed and widely used in temporal

discretized SWE. In most semi-implicit methods, the nonlinear advection terms are

discretized explicitly (Bonaventura and Rosatti 2002; Bourchtein and Bourchtein 2007;

Casulli 1990; Casulli and Cattani 1994; Casulli and Cheng 1992; Kar 2006; Spitaleri and

Corinaldesi 1997) so that the issue of solving a nonlinear matrix inversion does not arise.

For instance, Environmental Fluid Dynamics Computer code (EFDC) uses a three-level

semi-implicit method, in which advection terms are explicitly discretized using upwind

scheme. As a result, the stability is constrained by the explicit advection terms (Hamrick

1992). Some other models (Kar 2006) use the explicit Runge-Kutta method to calculate

the advection term. It is obvious that the stability of this treatment is constrained by the

CFL number.

To overcome the stability constraint, different numerical treatments are

introduced to calculate the linearized advection term. One of the most widely used

techniques is the semi-Lagrangian method (Cullen 2001; Rosatti et al. 2005). Casulli

(Casulli 1990; Casulli and Cattani 1994; Casulli and Cheng 1992) used this method in

UnTRIM and the earlier version, TRIM. Some latest models including ELCIRC (Zhang

et al. 2004) and ELCOM(Hodges 2000) followed this idea. Although Casulli’s approach

has been successful and stable, its accuracy is relatively poor (Hodges, 2004).

The main advantage of the semi-Lagrangian method is that the stability is not

constrained by the CFL condition (Barros and Garcia 2007). However, a set of trajectory

 11

equations need to be solved at each time step and the maximum allowable time step is

restricted by the convergence criteria of the iteration of the trajectory equations

(Bourchtein and Bourchtein 2007).

2.3 IMPLICIT METHOD

An obvious advantage of a fully-implicit method is that the time step is not

restricted by the CFL number. Various fully-implicit finite difference schemes have been

developed. Steppeler (2006) solved a fully implicit, SWE based meteorological model

using the Fourier transformation method at each grid point and each time step. Some

researchers derived a fully-implicit scheme based on Alternating Direction Implicit (ADI)

method (Szymkiewicz 1992; Wilders et al. 1988). Yuan and Wu solved implicit Navier-

Stokes equations using a staggered finite difference Crank-Nicolson scheme (Yuan and

Wu 2004). Burguete and Garcia-Navarro (Burguete and Garcia-Navarro 2004)

implemented a first order upwind implicit scheme to simulate river hydraulics problem.

Although the fully-implicit methods are more accurate and robust, they are less

common, possibly due to computational complexity and expense (Turek 1996).

Nonlinearity in a fully-implicit method results in a system of nonlinear algebraic

equations to be solved at each time step. Existing strategies for solving implicit nonlinear

equations include iterative and non-iterative methods (Moin 2001). In the following, we

will review the conventional techniques for implicit nonlinear solutions.

The Newton method and Picard method (Ferziger and Peric 1999; Lehmann and

Ackerer 1998; Paniconi et al. 1991) are the most widely used two-level iterative

techniques for implicit time-marching of nonlinear equations. For steady-state nonlinear

problems, Newton and Picard iterative algorithms have proven quite successful (Paniconi

and Putti 1994). These methods may be thought of as successive linear solutions of

 12

=Ax b% , where A% is an approximation of A that is iteratively refined to solve the

nonlinear problem. However, for time-evolving CFD problems, each time-marching step

using the Newton or Picard method requires an outer iteration applied over an inner

solution of a linear equation set. When the inner problem also requires an iterative

solution (as is common in CFD), the time march for this doubly-iterative approach is

computationally expensive. The principal differences between the Picard and Newton

methods are that the former is easier to implement and requires fewer computations per

outer iteration but has only 1st-order convergence, whereas the latter is more difficult to

implement but provides 2nd-order convergence. Thus, which method is appropriate

depends upon the difficulty in implementing the Newton method compared to the slower

convergence of the Picard method. A further implicit technique, local linearization, has

not been widely used in CFD but does provide time-marching with 2nd-order accuracy

(Lomax et al. 1999) without an outer iteration. By providing a single linear

approximation of the nonlinear problem, local linearization side-steps the convergence

issue of the outer iteration for Newton/Picard techniques. However, local linearization

requires discretization of the Jacobian, which is often difficult to derive and implement

for typical CFD applications.

To better illustrate these existing implicit linearization methods, we use a simple

scalar ODE with a quadratic nonlinearity as an example. The nonlinear ODE is written as

d

f (, t)
dt

ψ
= ψ (2.1)

Using a finite-difference Crank-Nicolson discretization (the simplest 2
nd
-order implicit

method), the above can be approximated as

 () (){ } ()n 1 n n 1 n 3t
f f t

2

+ +∆
ψ = ψ + ψ + ψ + ∆O (2.2)

 13

where superscripts indicate the discrete time step and ()n 1f +ψ implies a quadratic

nonlinear relationship in n 1+ψ (e.g. n 1+ψ n 1+ψ or n 1

x

+ψ n 1+ψ). Equation (2.2) is our example

of an implicit nonlinear equation. In the following, we will demonstrate the principles of

existing techniques to linearize Equation (2.2) computationally.

2.3.1 Newton methods

The Newton method is one kind of root-finding algorithm. It starts with an initial

guess and iteratively estimates the root of the function. The Newton method can be

derived from a Taylor series expansion or a geometric proof (Amat et al. 2003). One of

the advantages of the Newton method is that it can be applied to equation systems with

complex nonlinearities and keeps the quadratic convergence rate. In petroleum

engineering and other research areas concerning flow through porous media, the Newton

method is a standard approach because of the complex nonlinearities (Cao and Sun 2005;

Dettmer and Peric 2007; Kwok and Tchelepi 2007). Using the Newton method, the

linearized equation system of Equation (2.2) can be written as

 () ()
()

k
n 1

k 1 k
n 1 n 1

k

n 1

g

g

+
++ +

+

 ψ ψ = ψ −
 ∂
 ∂ψ 

 (2.3)

where the outer superscript indicates the iteration number and

 () () (){ }n 1 n 1 n n n 1t
g f f

2

+ + +∆
ψ = ψ −ψ − ψ + ψ (2.4)

In general, we can use the value at the previous time step as the value at the first iteration,

which means

 ()1n 1 n+ψ = ψ (2.5)

 14

Equation (2.3) is solved repeatedly until the difference between two successive iterations

satisfies the pre-defined convergence criteria. In Equation (2.3), a first order derivative

()n 1g / +∂ ∂ψ must be calculated and updated at each iteration. If ψ is a vector and

discretized in space, the resulting ()n 1g / +∂ ∂ψ is a matrix and called the Jacobian of the

linearized equation system. However, the Jacobian matrix may be computationally

expensive and difficult to calculate analytically (Ferziger and Peric 1999; Niet et al.

2007).

A number of approaches have been proposed to modify Newton method. For

example, it can be modified with a Chebyshev approximation to accelerate the

convergence (Bagatur 2007). To simplify the Newton method, much research has been

carried out to simplify the calculation of the Jacobian matrix. Niet et al. (2007) evaluated

the Jacobian matrix using a partial-analytical and partial-numerical technique in an

ocean-climate model. Li (1993) attempted to reduce the effort to compute the derivatives.

A Jacobian-free Newton-Krylov (JFNK) method has been developed recently to solve

nonlinear equation systems (Brown and Saad 1990; Chan and Jackson 1984; Knoll and

Keyes 2004; Mousseau et al. 2002; Reisner et al. 2005; Wubs et al. 2006). The key to

JFNK solver is approximating the Jacobian-vector product iteratively instead of

evaluating each element of the Jacobian matrix. Although all these modifications reduce

the computation effort of Jacobian, inconvenient iteration still remains in the Newton

method.

2.3.2 Picard Iteration

The Picard iteration is more straightforward than the Newton method. In the

Picard iteration, the previous outer iteration value, ()k
n 1+ψ , is substituted for n 1+ψ on the

RHS of Equation (2.2), resulting in

 15

 () () (){ }k 1 k
n 1 n n n 1t

f f
2

++ +∆  ψ = ψ + ψ + ψ  
 (2.6)

As in the Newton iteration, Equation (2.6) is solved repeatedly until the difference

between two successive iterations satisfies pre-defined convergence criteria. The same

initial condition, Equation (2.5) is used to start the solution. Due to the simplicity, Picard

iteration has been widely used in fully implicit nonlinear solver in Computational Fluid

Dynamics (CFD)(Clement et al. 1994; Kwag 2000; Webster 2007). Different

modifications of the Picard method have been reported in the literature. For example,

Celia et al.(1987) proposed a modified Picard iteration that is a combination of Picard

iteration and Newton iteration. However, this and other modified Picard methods remain

linearly convergent (Lehmann and Ackerer 1998). A detailed comparison of the Picard

and Newton methods is provided by Paniconi and Putti (1994). In general, Newton

methods require more computations per iteration, but converge more rapidly (quadratic)

than Picard methods (linear). However, for advection equations, the overall

computational cost of Newton methods is typically greater than Picard methods because

of the computational cost of the Jacobian (Ferziger and Peric 1999).

2.3.2 Local linearization

In contrast to the above-mentioned Newton and Picard methods, local

linearization is a non-iterative method. Let’s first review the derivation of the local

linearization techniques, which are based on a Taylor-series expansion for n 1f + about nt in

Equation (2.2). The following derivation is based on Lomax et al.(1999),

 ()
n n

n 1 n 2f f
f f t t

t

+  ∂ ∂ = + ∆ψ + ∆ + ∆  ∂ψ ∂  
O (2.7)

 16

where
n 1 n+∆ψ = ψ −ψ . For advection equations, f is generally not an explicit function

of t, so ()n
t f / t∆ ∂ ∂ in Equation (2.7) is zero. Substituting Equation (2.7) into Equation

(2.2) provides

 ()
n

n 1 n n n 3t f
f f t

2
O

+
  ∆ ∂ 

ψ = ψ + + ∆ψ + + ∆  ∂ψ   
 (2.8)

which is equivalent to

n

nt f
1 tf

2

  ∆ ∂
− ∆ψ = ∆  ∂ψ   

 (2.9)

Equation (2.9) is a linear second-order discrete form of the original nonlinear ODE and

can be solved by any number of standard techniques once ()n
f /∂ ∂ψ is explicitly

computed. However, as in the Newton method, the evaluation of the Jacobian ()n
f /∂ ∂ψ

complicates the overall computation.

2.4 SUMMARY

SWE is widely used in simulating environmental flows. Mathematically, the

stiffness and nonlinear advection increases the difficulty in the numerical solutions of

SWE. Explicit methods can easily solve the nonlinearity but are restricted by the CFL

stability criteria. Semi-implicit methods treat the advection term explicitly but need

additional numerical treatment such as the semi-Lagrangian method to calculate

advection terms for a higher CFL number. A fully implicit method is desirable but

requires further computational linearization to solve a nonlinear system of equations.

Existing implicit linearization techniques (including Newton, Picard and local

linearization methods) require either 1) additional explicit derivative evaluations to

provide an approximate linear problem, or 2) an outer iteration that converges an inner

 17

approximate linear problem. These two characteristics make implicit systems complex

and expensive to solve. To address the nonlinearity in a fully implicit system, in the next

chapter we propose a new computational linearization method that can linearize the

nonlinear advection term without either 1) the outer iteration or 2) computation of the

Jacobian.

 18

Chapter 3 Theoretical Development of the Time-Centered Split (TCS)

Method

In Chapter 2 we reviewed the current implicit linearization methods that require

either an outer iteration or a computation of the Jacobian. In this chapter, we develop a

new method that is similar to local linearization in that it allows non-iterative

discretization of a temporally 2
nd
-order approximation of the nonlinear equation set.

Instead of requiring the Jacobian, the new method splits the time-marching nonlinear

problem into two sets of linear problems that are solved in succession. The new method

has both the computational efficiency of a non-iterative local linearization method and

the implementation simplicity of a Picard iterative method. We call this the Time-

Centered-Split (TCS) method.

The theory of the TCS method is first derived using a generic single variable

nonlinear equation in this chapter. The TCS method can generate different discrete forms

by introducing the time-centered split to different terms. This advantage is demonstrated

by applying the TCS method to a 1D advection-diffusion equation (Burgers’ equation).

Four different TCS formats such as TCSF (split the flux term), TCSG (split the gradient

term), TCSF-D (split the flux and diffusion terms) and TCSG-D (split the gradient and

the diffusion terms) are derived and presented for the 1D Burgers’ equation. One of the

key advantages of the TCS method is that it provides non-iterative coupling between

multiple variables. A 1D coupled advection diffusion equation and scalar transport

equation are used as an example to illustrate this advantage. A summary of the principles

of the TCS method and its advantages are provided in the last section.

 19

3.1 THE THEORY OF TIME-CENTERED SPLITTING

3.1.1 Computational Splitting of the Nonlinear Term

The TCS method is based on a nested application of the midpoint rule (i.e. a

centered-time approximation). Midpoint rule discretizations are often used for time-

marching to obtain second-order temporal accuracy (Ferziger and Peric 1999). A

common approach for nonlinear time-marching in meteorology and oceanography is

application of the midpoint rule in an explicit formulation known as the 3-level Leapfrog

method (Dubois et al. 2005; Fujima and Shigemura 2000). The explicit Leapfrog method

can be written as

 ()n 1 n 1 n n n 3f 2 t t+ −φ = φ + φ φ φ ∆ + ∆, O() (3.1)

where superscripts represent time levels and t∆ is the model time step. Equation (3.1)

can be seen as a generic form of a nonlinear equation. The function f is a linear operator

of φφ and φ . Inside the function f, the product term φφ represents a generic quadratic

nonlinear term. This quadratic nonlinear term in a flow and transport problem is of the

interest in this research. To develop the TCS method, we note that in the same vein as

Equation (3.1), the midpoint rule can be written across only two time levels as

 ()n 1 n n 1 2 n 1 2 n 1 2 3f t t+ + + +φ = φ + φ φ φ ∆ + ∆/ / /, O() (3.2)

Equation (3.2) has the desirable property that the time n+1/2 information is retained only

within the computation of the n to n+1 time step so that the advance is not leapfrogging

over alternating data. By introducing a time-centered linear approximation of

 () ()n 1/ 2 n n 1 2/ 2 tO+ +φ = φ + φ + ∆ (3.3)

 in one part of the nonlinear product n 1/ 2 n 1/ 2+ +φ φ in Equation (3.2), the discrete equation

becomes computationally linear in time (i.e. no products with the same time level):

 20

 ()
n n 1

n 1 n 2 n 1 2 n 1 2 3f O t t t
2

+
+ + +  φ + φ

φ = φ + + ∆ φ φ ∆ + ∆  
  

/ /
, O() (3.4)

Reorganizing Equation (3.4) provides

 () ()n 1 n n n 1 2 n 1 2 n 1 n 1 2 n 1 2 3t t
f f t

2 2

+ + + + + +∆ ∆
φ = φ + φ φ φ + φ φ φ + ∆/ / / /

, , O() (3.5)

Equation (3.5) is computationally split into two steps and an intermediate variable *φ is

defined as,

 ()* n n n 1/ 2 n 1/ 2 t
f ,

2

+ + ∆
φ = φ + φ φ φ (3.6)

Subtracting Equation (3.6) from Equation (3.5) provides

 ()n 1 n 1 n 1 2 n 1 2 3t
f t

2

+ + + + ∆
φ = φ + φ φ φ + ∆* / /

, O() (3.7)

After introducing the above time-centered split, Equations (3.6) and (3.7) are both

computationally linear. Furthermore, Equation (3.6) is similar to the implicit Euler

approximation of n 1/ 2+φ written as:

 ()
2

n 1 2 n n 1 2 n 1 2 n 1 2 t t
f

2 2

/ / / /, O+ + + + ∆ ∆ φ = φ + φ φ φ +  
 

 (3.8)

Using the Taylor expansion, n 1/ 2+φ can be expanded as:

2

n 1 2 n

t

t t

2 2

/ O+ ∆ ∆ φ = φ + φ +  
 

 (3.9)

Substituting Equation (3.9) into the nonlinear term of Equation (3.8), provides

2

n 1 2 n n n 1 2 n 1 2t t t
f

2 2 2

/ / /
O , O

+ + + ∆ ∆ ∆    φ = φ + φ + φ φ +          
 (3.10)

Grouping the higher order terms,

 ()
2

n 1 2 n n n 1 2 n 1 2 t t
f

2 2

/ / /, O+ + + ∆ ∆ φ = φ + φ φ φ +  
 

 (3.11)

Substituting Equation (3.6) into Equation (3.11), results in

 21

2

n 1 2 t

2

+ ∆ φ = φ +  
 

/ * O (3.12)

Substitution of Equation (3.12) into Equations (3.6) and (3.7) provides a two-step

method

 ()n n 3t
f t

2

∆
φ = φ + φ φ φ + ∆* * *

, O() (3.13)

 ()n 1 n 1 3t
f t

2

+ + ∆
φ = φ + φ φ φ + ∆* * *

, O() (3.14)

Equations (3.13) and (3.14) are a computationally linearized implicit equation system.

The summation of Equations (3.13) and (3.14) is a 2
nd
-order computational equivalent of

Equation (3.2).

Remark:

Although the derivation above provides a two-step direct linearization method, an

outer iteration might also be combined for a big t∆ value. This process can be illustrated

as the following:

1. obtain
n 1+φ from Equations (3.13) and (3.14).

2. calculate
n 1/2+φ using ()n 1 n / 2+φ + φ , where

n 1+φ is calculated from step 1.

3. calculate a new
n 1+φ using Equations (3.13) and (3.14) with the updated

n 1/2+φ in step 2.

Repeat the procedure until the difference between the old and new
n 1+φ is

acceptable.

3.1.2 Computationally Splitting the Linear Term

In the previous section, we introduced time-centered split only into the nonlinear

term of φφ . In addition to splitting the nonlinear product term, one can also use the same

splitting idea in the linear termφ , following

 22

() ()
n n 1 n n 1

n 1 n 2 n 1 2 2 3f t t t (t)
2 2

/
O , O O

+ +
+ +    φ + φ φ + φ

φ = φ + + ∆ φ + ∆ ∆ + ∆    
    

 (3.15)

Equation (3.15) is guaranteed 2
nd
-order accurate in time because of Equation (3.3).

Reorganizing Equation (3.15) and grouping the higher order terms,

 { }n 1 n n n 1 2 n 1 n 1 2 n n 1 3t
f (t)

2

/ /
, , , O

+ + + + + ∆
φ = φ + φ φ φ φ φ φ + ∆ (3.16)

In Equation (3.16), not only the nonlinear term but also the linear term is split into two

parts. Therefore, a different intermediate variable *φ is defined as

 ()* n n n 1/ 2 n t
f ,

2

+ ∆
φ = φ + φ φ φ (3.17)

The second step of the splitting system then becomes,

 ()n 1 * n 1 n 1/ 2 n 1 t
f ,

2

+ + + + ∆
φ = φ + φ φ φ (3.18)

Equations (3.17) and (3.18) are different from the split system in the previous section. As

a result, the correspondence between *φ and n 1 2/+φ is proved differently. Instead of the

implicit Euler equation, the explicit Euler approximation for n 1 2/+φ is introduced,

 ()
2

n 1 2 n n n n t t
f

2 2

/ , O+ ∆ ∆ φ = φ + φ φ φ +  
 

 (3.19)

Substituting the Taylor expansion of n 1 2/+φ into Equation (3.17) and grouping the higher

order terms,

 ()
2

* n n n n t t
f , O

2 2

∆ ∆ φ = φ + φ φ φ +  
 

 (3.20)

Substituting Equation (3.20) into Equation (3.19), we obtain

2

n 1 2 t

2

+ ∆ φ = φ +  
 

/ * O (3.21)

Thus, we can use *φ to replace n 1 2/+φ in Equations (3.17) and (3.18). A different set of

computationally linearized two-step equations can be written as:

 23

 ()* n n * n t
f ,

2

∆
φ = φ + φ φ φ (3.22)

 ()n 1 * n 1 * n 1 t
f ,

2

+ + + ∆
φ = φ + φ φ φ (3.23)

The key to the TCS method is the second-order time-splitting of quadratic

nonlinear terms to two different time levels, i.e. n *φ φ and n 1 *+φ φ . The result is discretely

linear in any time-level of information. A further application of the same splitting in the

linear terms will give another set of discrete linearized equations. The above derivation

for the single variable φ can be readily extended to a vector of variables, 1 2 N[, ,...]φ φ φ , or

variables and linear operators, e.g. 1 1 2 2 N 2[,L(), ,L()... ,L()]φ φ φ φ φ φ . However, as

additional variables (or operators) are introduced, the discretization method has multiple

implementations. For example, even with a 1D advection diffusion equation, we can

obtain at least four different TCS discrete formats. In the next section, we will present

these four different TCS formats by applying the TCS method to a 1D Burgers’ equation.

3.2 DERIVATION OF THE TCS METHOD IN A 1D ADVECTION-DIFFUSION EQUATION

The Burgers’ equation is the simplest advection-diffusion test case and can be

viewed as a prototype of the Navier-Stokes equation or the SWE. The non-conservative

Burgers’ equation can be written as:

2

2

u u u
u

t x x

∂ ∂ ∂
+ = ν

∂ ∂ ∂
 (3.24)

To develop the TCS method, we note that in the same vein as Equation (3.7), the

midpoint rule can be written across only two time levels as

 () ()n 1 n n 1 2 n 1 2 2 n 1 2 3

x xu u u u u t t/ / / O+ + + += + − δ + νδ ∆ + ∆ (3.25)

where xδ is the shorthand notation of the generic discretized spatial derivative of ‘u’.

 24

3.2.1 The TCSF Discrete Format

The nonlinear advection term in Equation (3.24) is constructed by the flux part ‘u’

and the gradient part, ‘ u x/∂ ∂ ’. The time-centered splitting maybe applied to either part

of the advection term. We first introduce a time-centered linear approximation of

() ()n 1/ 2 n n 1 2u u u / 2 tO+ += + + ∆ to the flux term in the nonlinear product in Equation

(3.25). The discrete equation becomes computationally linear in time (i.e. no products

with the same time level):

 ()
n 1 n

n 1 n n 1 2 2 n 1 2 3

x x

u u
u u u u t t

2

/ /
O

+
+ + +  +
= + − δ + νδ ∆ + ∆  

  
 (3.26)

Multiplying the products in Equation (3.26) provides

 () () () ()n 1 n n 1 n 1/ 2 n n 1/ 2 2 n 1/ 2 3

x x x

t t
u u u u u u u t O t

2 2

+ + + + +∆ ∆
= + − δ + − δ + νδ ∆ + ∆ (3.27)

A computational-splitting technique is used to obtain a numerically-solvable set of

equations from the discrete form of Equation (3.27). Defining a generic intermediate

variable *u as

 () ()n n n 1 2 2 n 1 2

x x

t t
u u u u u

2 2

* / /+ +∆ ∆
= + − δ + νδ (3.28)

and subtracting Equation (3.28) from Equation (3.27) provides

 () () ()n 1 n 1 n 1 2 2 n 1 2 3

x x

t t
u u u u u t

2 2

* / /
O

+ + + +∆ ∆
= + − δ + νδ + ∆ (3.29)

Using an implicit Euler approximation of n 1 2u /+ and the same mathematical derivation as

in Equation (3.12), we can prove

2

n 1/ 2 * t
u u

4
O

+  ∆
= +  

 
 (3.30)

 25

Substitution of Equation (3.30) into Equations (3.28) and (3.29) provides a two-step

method, which is called the TCSF method:

 { }n n 2

x x

t
u u u u u

2

* * *∆
= + − δ + νδ (3.31)

 { } ()n 1 n 1 2 3

x x

t
u u u u u t

2

* * *
O

+ +∆
= + − δ + νδ + ∆ (3.32)

The summation of Equations (3.31) and (3.32) is equivalent to the original Equation

(3.25). The first step is an implicit solution for the variable u* involving only nu and with

an implicit discretization of the diffusion term. n 1u + in the second step can be explicitly

calculated.

3.2.2 The TCSG Discrete Format

Splitting the gradient term instead of the flux term in Equation (3.25) results in a

second basic form of TCS. Thus, instead of Equation (3.26), we obtain

n 1 n

n 1 n n 1/ 2 2 n 1/ 2 3

x x

u u
u u u u t (t)

2
O

+
+ + +  +
= + − δ + νδ ∆ + ∆  

  
 (3.33)

For this second form, we define a slightly different intermediate variable as

 () ()* n n 1/ 2 n 2 n 1/ 2

x x

t t
u u u u u

2 2

+ +∆ ∆
= + − δ + νδ (3.34)

Similarly in Equation (3.30), we have

2

n 1/ 2 * t
u u

4
O

+  ∆
= +  

 
 (3.35)

Subtracting Equation (3.34) from (3.33) and substituting Equation (3.35) in the same

manner as the transition from Equation (3.27) through (3.32), we obtain a second discrete

split form that we will call TCSG

 { }* n * n 2 *

x x

t
u u u u u

2

∆
= + − δ + νδ (3.36)

 26

 { }n 1 * * n 1 2 *

x x

t
u u u u u

2

+ +∆
= + − δ + νδ (3.37)

The summation of Equations (3.36) and (3.37) is equivalent to the original Equation

(3.25). The first step is an implicit solution for the variable u* involving nu and with an

implicit discretization of the diffusion term. The second step is an implicit solution for

the variable n 1u + involving only u* and with an explicit discretization of the diffusion

term.

3.2.3 The TCSF-D Discrete Format

The TCSF and TCSG forms are obtained by introducing the time-centered split

into the advection term. Further approximation of the diffusion term using the same time

splitting techniques will create different discretizations. For instance, in Equation (3.26),

we can substitute the time splitting into both the flux and diffusion terms,

 ()
n 1 n n 1 n

n 1 n n 1 2 2 3

x x

u u u u
u u u t t

2 2

/
O

+ +
+ +    + +
= + − δ + νδ ∆ + ∆    

    
 (3.38)

Defining u* as,

 () ()n n n 1 2 2 n

x x

t t
u u u u u

2 2

* /+ ∆ ∆
= + − δ + νδ (3.39)

the second step follows as,

 () () ()n 1 n 1 n 1 2 2 n 1 3

x x

t t
u u u u u t

2 2

* /
O

+ + + +∆ ∆
= + − δ + νδ + ∆ (3.40)

Using an explicit Euler approximation of n 1 2u /+ and the same mathematical derivation as

in Equation (3.21), we can prove that

2

n 1/ 2 * t
u u

4
O

+  ∆
= +  

 
 (3.41)

 27

Substituting Equation (3.30) into Equations (3.39) and (3.40), we obtained the TCSF-D

format as

 { }n n 2 n

x x

t
u u u u u

2

* *∆
= + − δ + νδ (3.42)

 { } ()n 1 n 1 2 n 1 3

x x

t
u u u u u t

2

* *
O

+ + +∆
= + − δ + νδ + ∆ (3.43)

We call Equations (3.42) and (3.43) the TCSF-D method because we apply the time-

centered splitting to both the flux term and the diffusion term. The summation of

Equations (3.42) and (3.43) is equivalent to the original Equation (3.25). The first step is

an implicit solution for the variable u* involving nu and with an explicit discretization of

the diffusion term. The second step is an implicit solution for the variable n 1u + involving

only u* and with an implicit discretization of the diffusion term.

3.2.4 The TCSG-D Discrete Format

Similar to the development of the TCSF-D method, substitution of time-centered

splitting into the diffusion term in the TCSG provides another set of two-step equations

as

 { }* n * n 2 n

x x

t
u u u u u

2

∆
= + − δ + νδ (3.44)

 { }n 1 * * n 1 2 n 1

x x

t
u u u u u

2

+ + +∆
= + − δ + νδ (3.45)

Equations (3.44) and (3.45) are called the TCSG-D discrete form. The summation of

Equations (3.44) and (3.45) is equivalent to the original Equation (3.25). u* in the first

step can be explicitly calculated and the diffusion term is explicitly discretized. The

second step is an implicit solution for the variable n 1u + involving only u* and with an

implicit discretization of the diffusion term.

 28

We have derived four discrete forms of the TCS method applied to a 1D Burgers’

equation in the previous sections. More possible discretizations will be generated when

we apply the TCS method to an equation system with multiple variables. We will discuss

this characteristic in Chapter 5.

3.3 TCS FOR COUPLED MOMENTUM AND SCALAR TRANSPORT

A key advantage of the TCS method is that it provides non-iterative coupling

between multiple variables. The method is best understood through application to a

simple model problem. First, we will consider the 1D advection-diffusion equation for a

scalar ψ

2

2
u

t x x

∂ψ ∂ψ ∂ ψ
+ = κ

∂ ∂ ∂
 (3.46)

where u is the velocity and κ is a diffusion coefficient. Equation (3.46) can be coupled to

the 1D Burgers’ equation for momentum

2

2

u u u
u

t x x

∂ ∂ ∂
+ = ν

∂ ∂ ∂
 (3.47)

Applying TCSF to Equation (3.46) provides

2 *

n n

2

t
u

2 x x

∗
∗  ∆ ∂ψ ∂ ψ

ψ = ψ − − κ 
∂ ∂ 

 (3.48)

2 *

n 1 n 1

2

t
u

2 x x

∗
+ ∗ + ∆ ∂ψ ∂ ψ

ψ = ψ − − κ 
∂ ∂ 

 (3.49)

The first step, Equation (3.48), is an implicit equation for *ψ involving only time ‘n’

values of u, whereas the second step, Equation (3.49), linearly couples solution of n 1+ψ to

n 1u + . To complete the algorithm, Equation (3.47) can be similarly discretized so that the

coupled TCSF method for both scalar transport and momentum can be written as linear

operators,

 29

() ()2

n n

2

t
1 u

2 x x

∗
  ∂ ∂∆  

+ − κ ψ = ψ  
∂ ∂    

 (3.50)

() ()2

n n

2

t
1 u u u

2 x x

∗
  ∂ ∂∆ 

+ − ν =  
∂ ∂    

 (3.51)

2 *
n 1

2

2 *
n 1

2

t t
1

2 x 2 x

t u t u
u0 1 u

2 x 2 x

∗
+ ∗

∗
+ ∗

    ∆ ∂ψ ∆ ∂ ψ
ψ ψ + κ    ∂ ∂     =

    ∆ ∂ ∆ ∂
+ + ν    

∂ ∂    

 (3.52)

where the parentheses indicate a spatial derivative operator on the term to the right of the

brackets. The first step of the TSCF method for N variables over Q grid cells results in N

independent linear problems of order Q. The second step of TCSF results in a single

linear problem of order NQ. This series of linear problems is a 2
nd
-order temporal

equivalent of the original time-marching, coupled, nonlinear momentum-advection

problem. As the TCS uses an intermediate solution (,u)∗ ∗ψ followed by final solution

n 1 n 1(,u)+ +ψ , it resembles predictor-corrector schemes. However, classic predictor-

corrector methods are formulated with an explicit predictor of the time n+1 values

followed by an implicit corrector to the time n+1 values, which makes the classic

predictor-corrector methods restricted by the CFL condition; furthermore, predictor-

corrector methods do not provide an avenue for a simple nonlinear solution (see

discussions in Lomax et al, 1999 and Tannehill et al, 1997). In contrast, the new TCS

method provides an implicit linearized predictor of the time n+1/2 values that are used in

a coupled implicit solution of the time n+1 values. This new approach provides a simple

method of linearly-coupling equations that are nonlinearly-coupled in the original

problem. The method requires only linear matrix solutions and does not require the outer

iteration of Picard or Newton methods. As compared to the functional Jacobians required

 30

for local linearization and Newton iteration, the TCS coefficient matrices are relatively

easy to derive and have forms very similar to the original model problem.

3.4 SUMMARY

A new computational linearization method, the TCS, is derived and analyzed in

this chapter. Without iteration and calculation of the Jacobian, the TCS method splits the

quadratic nonlinear term into two steps so that each step is computationally linear. That

is, for time marching from known state nx to unknown state n 1+x we use a linear solution

of n() =A x x b% %% followed by n 1() + =A x x b
% %% %% that is a second-order equivalent to

n 1 n 1()+ + =A x x b . In addition to the linearization, the TCS method can generate different

TCS discrete forms. All different TCS formats are mathematically equivalent to the

original implicit midpoint rule discretization. As a result, they share the same 2nd-order

temporal accuracy. Furthermore, we also demonstrated that the TCS method can couple

multiple variables without iterations. Characteristics of the TCS method such as

accuracy, stability and efficiency will be explored in the next chapter using examples

with analytical solutions.

 31

Chapter 4 Implementation of the TCS Method in 1D Problems

The theory of the TCS method is illustrated in Chapter 3. To investigate the

characteristics of the new method, we apply the TCS method to three different test cases:

a 1D conservative Burgers’ equation, a 1D non-conservative Burgers’ equation and a 1D

nonlinear ordinary differential equation (ODE). For each test case, the TCS algorithm is

compared to the conventional implicit nonlinear solution methods (local linearization,

Picard iteration and Newton iteration) applied to Crank-Nicolson discretization. The

temporal accuracy of different TCS discretizations is verified by all three test cases. The

practical stability of the TCS method is confirmed using the unsteady flow test case with

an analytical solution in both conservative and non-conservative forms. The method is

shown to require computational effort similar to local linearization, but does not require

discrete computation of a functional Jacobian for solution.

4.1 APPLICATION OF THE TCS METHOD TO THE 1D CONSERVATIVE BURGERS’

EQUATION

4.1.1 Discrete formats of the 1D Conservative Burger’s equation using various

methods

Burgers’ equation provides a useful model problem for comparing the TCS to

other nonlinear solution methods. We will begin from the conservative form of Burgers’

equation. The application of the TCS method to the non-conservative Burgers’ equation

will be discussed in the next section. The conservative form of the 1D Burgers’ equation

is:

 32

 ()
2

2

2

u 1 u
u

t 2 x x

∂ ∂ ∂
+ = ν

∂ ∂ ∂
 (4.1)

Time-Centered Split Method

For an equation with one variable and a simple quadratic nonlinearity, TCSF and

TCSG collapse into a single form. For Equation (4.1), the TCSF and TCSG methods are

identical, and can be presented as linear operators

() ()n 2

n

2

ut 1
1 u u

2 2 x x

∗
  ∂ ∂∆  

+ − ν =  
∂ ∂    

 (4.2)

() 2 *

n 1

2

ut t u
1 u u

4 x 2 x

∗
+ ∗ ∂∆ ∆ ν ∂

+ = + ∂ ∂ 
 (4.3)

For simplicity in the following discussion, we use the generic symbols A, x and b to

represent a coefficient matrix, the left-hand-side (LHS) variable vector and the right-

hand-side (RHS) known vector in a matrix equation of the form of Ax = b for various

solution methods. The number of grid points in space is Q. A central difference spatial

discretization is applied to derivatives in Equation (4.2) and(4.3). It is useful to define a

viscous scale, γ ,

2

t

x

ν∆
γ ≡

∆
 (4.4)

and the ‘i’ grid cell CFL number for the { }L n, ,n 1∈ ∗ + time level for { }i 1,2,...Q= as

L

L i
i

u t
C

x

∆
≡

∆
 (4.5)

Similarly, it will be useful to also define a diffusion operator at any time level as

 ()L L L L

i i 1 i i 1D u 2u u+ −≡ γ − + (4.6)

and a nonlinear adjective gradient operator

 33

 L L L L L

i i 1 i 1 i 1 i 1G C u C u+ + − −≡ − (4.7)

It follows that Eq, (4.2), the first step of TCSF can be written in the form Ax = b over Q

grid points where the A matrix is tridiagonal such that

n

2

n n

1 3

n n

Q 2 Q

n

Q 1

C
1 0

2 8

C C
1

2 8 2 8

C C
1

2 8 2 8

C
0 1

2 8

−

−

 γ
+ γ − + 

 
 γ γ − − + γ − +
 
 
 =
 
 

γ γ − − + γ − + 
 
 γ

− − + γ 
 

A O O O (4.8)

T

* *
1 2 Qu ,u ,...u =  x (4.9)

n
n 0
1 0

n

2

n

3

n

Q 1

n

Q 1n

Q Q 1

C
u u

2 8

u

u

u

C
u u

2 8

∗

−

+ ∗
+

  γ
+ +  
  

 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 

 γ 
+ −   
  

b

M

 (4.10)

 34

with n n

0 0 Q 1C , u , C∗
+ and Q 1u∗

+ implemented as Dirichlet boundary conditions. Neumann

boundary conditions can also be readily invoked, but are not presented here for brevity.

The second step of TCS for the 1D Burgers’ equation can be as evaluated from

another Ax = b problem using

2

1 3

Q 2 Q

Q 1

C
1 0

8

C C
1

8 8

C C
1

8 8

C
0 1

8

∗

∗ ∗

∗ ∗
−

∗
−

 
+ 

 
 
 − +
 
 
 =
 
 
 − + 
 
 

− 
 

A O O O (4.11)

T

n 1 n 1 n 1
1 2 Qu ,u ,...u+ + + =  x (4.12)

0
1 1

2 2

3 3

Q 1 Q 1

Q 1

Q Q

1 C
u D

2 8

1
u D

2

1
u D

2

1
u D

2

C1
u D

2 8

∗
∗ ∗

∗ ∗

∗ ∗

∗ ∗
− −

∗
+∗ ∗

 
+ + 

 
 + 
 
 +
 =
 
 
 

+ 
 
 

+ − 
 

b

M
 (4.13)

Thus, the TCSF method for the 1D conservative Burgers’ equation requires solution of

two tridiagonal linear problems at each time step.

 35

If we further split the diffusion term, we obtain the TCSF-D form for Equation

(4.1) as,

()n 2 n

n

2

ut t u
1 u u

4 x 2 x

∗ ∂∆ ∆ ν ∂
+ = + ∂ ∂ 

 (4.14)

() ()2

n 1

2

ut 1
1 u u

2 2 x x

∗
+ ∗

  ∂ ∂∆
+ − ν =  

∂ ∂   
 (4.15)

The first step is a matrix equation Ax=b with

n

2

n n

1 3

n n

Q 2 Q

n

Q 1

C
1 0

8

C C
1

8 8

C C
1

8 8

C
0 1

8

−

−

 
+ 

 
 
− + 

 
 
 =
 
 
 − +
 
 
 − 
 

A O O O (4.16)

T

* * *
1 2 Qu ,u ,...u =  x (4.17)

 36

n
n n 0
1 1

n n

2 2

n n

3 3

n n

Q 1 Q 1

n

Q 1n n

Q Q

1 C
u D

2 8

1
u D

2

1
u D

2

1
u D

2

C1
u D

2 8

− −

+

 
+ + 

 
 + 
 
 +

=  
 
 
 + 
 
 + −  

b

M
 (4.18)

In the second step, we have

*

2

* *

1 3

* *

Q 2 Q

*

Q 1

C
1 0

2 8

C C
1

2 8 2 8

C C
1

2 8 2 8

C
0 1

2 8

−

−

 γ
+ γ − + 

 
 γ γ
− − + γ − + 

 
 
 =
 
 

γ γ − − + γ − +
 
 

γ − − + γ 
 

A O O O (4.19)

T

n 1 n 1 n 1
1 2 Qu ,u ,...u+ + + =  x (4.20)

 37

n
* n 10
1 0

*

2

*

3

*

Q 1

n

Q 1* n 1

Q Q 1

C
u u

2 8

u

u

u

C
u u

2 8

+

−

+ +
+

  γ
+ +  
  

 
 
 
 
 
 
 =  
 
 
 
 
 
 
  γ + −    

b

M

 (4.21)

Similar to TCSF, the TCSF-D method for the 1D conservative Burgers’ equation also

requires solution of two tridiagonal linear problems at each time step. However, TCSF-D

reverses the solution process in TCSF. The first step in TCSF-D is in the same structure

as the second step in TCSF; the second step in TCSF-D is in the same structure as the

first step in TCSF.

To compare the above TCS methods to other temporally 2
nd
-order accurate

implicit nonlinear solution methods, we apply Crank-Nicolson 2
nd
-order temporal and

central difference spatial 2
nd
-order discretization to Equation (4.1), resulting in

n n n n n n n
n 1 n i 1 i 1 i 1 i 1 i 1 i i 1
i i 2

n 1 n 1 n 1 n 1 n 1 n 1 n 1

i 1 i 1 i 1 i 1 i 1 i i 1

2

t u u u u u 2u u
u u

2 4 x x

u u u u u 2u u

4 x x

+ + + − − + −

+ + + + + + +
+ + − − + −

∆ − − +
= − − ν

∆ ∆

− − +
+ − ν 

∆ ∆ 

 (4.22)

Conventional linearization methods such as Picard iteration, Newton iteration and local

linearization methods are used to solve Equation (4.22).

 38

Picard Iteration

The simplest approach to implement for a nonlinear equation such as Equation

(4.22) is a lagged-coefficient iteration (Tannehill et al. 1997,pg 450) , which is a form of

Picard iteration. A linear inner equation is formed by estimating the time n+1 flux as

()k
n 1

iu + , where the additional superscript ‘k’ is introduced as the outer iteration counter.

Equation (4.22) can then be represented as the Picard method

()

() () () ()

() () ()

n n n n n n n
k 1

n 1 n i 1 i 1 i 1 i 1 i 1 i i 1
i i 2

k k 1 k k 1
n 1 n 1 n 1 n 1

i 1 i 1 i 1 i 1

k 1 k 1 k 1
n 1 n 1 n 1

i 1 i i 1

2

t u u u u u 2u u
u u

2 4 x x

u u u u

4 x

u 2 u u

x

++ + + − − + −

+ ++ + + +
+ + − −

+ + ++ + +
+ −

= −
∆ − − +

− ν
∆ ∆

−
+

∆
− + 

− ν 
∆ 

 (4.23)

which is solved for k={1,2,3...} until an appropriate convergence criterion is reached. .

Thus, each outer iteration requires an inner linear solution of the form Ax = b. For

comparison with other methods, it is useful to define an k k 1 k+ = +A x b c form in which

the b vector requires only a single computation in each time step whereas the c vector is

recomputed in each outer iteration. For Equation (4.23), the result is

 39

k

3

k k

2 4

k

k k

Q 2 Q

k

Q 1

C
1 0

2 8

C C
1

2 8 2 8

C C
1

2 8 2 8

C
0 1

2 8

−

−

 γ
+ γ − + 

 
 γ γ
− − + γ − + 

 
 
 =
 
 

γ γ − − + γ − +
 
 

γ − − + γ 
 

A O O O (4.24)

 () () ()
T

k 1 k 1 k 1
k 1 n 1 n 1 n 1

1 2 Qu , u ,... u
+ + ++ + + + =   

x (4.25)

n n n

1 1 1

n n n

2 2 2

n n n

3 3 3

n n n

Q 1 Q 1 Q 1

n n n

Q Q Q

1 1
u G D

8 2

1 1
u G D

8 2

1 1
u G D

8 2

1 1
u G D

8 2

1 1
u G D

8 2

− − −

 − + 
 
 − +
 
 
 − +

=  
 
 
 − +
 
 
 − +
 

b

M

 (4.26)

 40

k

0

k

k

Q 1

1
C

2 8

0

0

0

1
C

2 8
+

γ + 
 
 
 
 =
 
 
 
 γ

−  

c
M

 (4.27)

For the Picard iteration, the first outer iterative solution is started with ()1
n 1 n

i iu u+ = . The

outer iteration is stopped when () (){ }k 1 k
n 1 n 1

++ +− < εu uL where L is an appropriate

linear norm acting on the vector u and ε is the desired convergence. The above method

can be expected to have no better than first order convergence for the outer iteration.

Solution for each time step requires multiple tridiagonal solutions of the = +Ax b c

problem where the A matrix and boundary conditions (possibly) in c are re-calculated at

each outer iteration.

Newton Iteration

The Newton method is commonly used for accelerated convergence in iterative solution

of nonlinear problems. Using classic Newton iteration method, the time-march from ‘n’

to ‘n+1’ of Equation (4.22) can be written as the root-finding problem for the function g

as

()n 1 n 1 n 1 n 1 n

i i 1 i i 1 i i

n 1 n 1 n 1 n 1 n 1 n 1 n 1

i 1 i 1 i 1 i 1 i 1 i i 1

2

n n n n n n n

i 1 i 1 i 1 i 1 i 1 i i 1

2

g u ,u ,u u u

t u u u u u 2u u

2 4 x x

u u u u u 2u u
0

2 x x

+ + + +
− +

+ + + + + + +
+ + − − + −

+ + − − + −

= −

∆ − − +
+ − ν

∆ ∆

− − +
+ − ν =

∆ ∆ 

 (4.28)

 41

Applying Newton iteration(Ferziger and Peric 1999), Equation (4.28) can be written as

 ()
k

k 1
n 1 ki
j in 1

j

g
u g

u

++
+

 ∂
∆ = −  ∂ 

 (4.29)

where

 () () ()k 1 k 1 k
n 1 n 1 n 1

j j ju u u
+ ++ + +∆ = − (4.30)

and

k

i

n 1

j

g

u +

 ∂
  ∂ 

 is the Jacobian matrix, evaluated using term by term discretizations of

Equation (4.28). The result can be presented as a linearized equation system

k k 1 k+ = +A x b c with

k

2

k k

1 3

k

k k

Q 2 Q

k

Q 1

C
1 0

4 2

C C
1

4 2 4 2

C C
1

4 2 2 4

C
0 1

4 2

−

−

 γ
+ γ − 

 
γ γ 

− − + γ − 
 

=  
 

γ γ − − + γ −
 
 

γ − − + γ
  

A O O O (4.31)

 () () ()
T

k 1 k 1 k 1
k 1 n 1 n 1 n 1

1 2 Qu , u ,... u
+ + ++ + + + = ∆ ∆ ∆  

x (4.32)

 42

n n
n 1 1
1

n n
n 2 2
2

n n

Q 1 Q 1n

Q 1

n n

Q Qn

Q

G D
u

8 2

G D
u

8 2

G D
u

8 2

G D
u

8 2

− −
−

 
+ − 

 
 

+ − 
 

= − 
 
 + −
 
 
 + −
  

b M (4.33)

k k k
k 1 1 0
1

k k
k 2 2
2

k

k k

Q 1 Q 1k

Q 1

k k k

Q Q Q 1k

Q

G D c
u

8 2 4 2

G D
u

8 2

G D
u

8 2

G D c
u

8 2 4 2

− −
−

+

 γ
+ − + + 

 
 

+ − 
 

= − 
 
 + −
 
 

γ + − − +
  

c M (4.34)

In the present 1D single-variable example, the Jacobian is relatively easy to compute and

thus it is easy to form the A matrix. However, in multi-dimensional, multi-variable

equation systems, the element-by-element calculation of the A matrix from g / u∂ ∂ is

generally difficult to derive and code. As the A matrix must be recomputed for every

outer iteration, the resulting outer iterations can be computationally expensive.

Local Linearization

Local linearization is not widely used for time-marching CFD problems, but is

presented here because it has some similarities to the TCS method. Lomax et al. (1999)

provides an example of solving an ODE using Local linearization which we extend to

 43

solving Equation (4.22). Local linearization approximates the time march to the “n+1”

time level using “n” time level and a Taylor expansion. The result is a linear equation set

without an outer iteration. To apply Local Linearization, Equation (4.22) can be written

as,

 () ()n 1 n n 1 n 1 n 1 n 1 n n 1 n 1 n 1

i i i i 1 i i 1 i i 1 i i 1

t
u u F u ,u ,u F u ,u ,u

2

+ + + + + + + +
− − − −

∆  = + +  (4.35)

where

 ()
L L L L L L L

L L L L i 1 i 1 i 1 i 1 i 1 i i 1
i i 1 i i 1 2

u u u u u 2u u
F u ,u ,u

4 x x

+ + − − + −
− +

− − +
= − + ν

∆ ∆
 (4.36)

for L {n,n 1}∈ + . Following Lomax et al. (1999), apply a Taylor expansion onto n 1

iF + ,

(){

() ()

()} ()

n 1 n n n 1 n 1 n 1

i i i i 1 i i 1

n n 1 n 1 n 1i 1

i i 1 i i 1n 1 n

j j n

jj i 1

n n 1 n 1 n 1 3

i i 1 i i 1

t
u u F u ,u ,u

2

F u ,u ,u
u u

u

F u ,u ,u O t

+ + + +
− −

+ + ++
− −+

= −

+ + +
− −

∆
= +

∂
+ −

∂

+ + ∆

∑ (4.37)

Equation (4.37) can be reorganized as

n

n 1 ni
j in

j

t F
1 u tF

2 u

+
 ∆ ∂
− ∆ = ∆ 

∂  
 (4.38)

where n n

i jF / u∂ ∂ is the Jacobian and

 n 1 n 1 n

j j ju u u+ +∆ = − (4.39)

Therefore, the Local Linearization system can be written as n 1+ =Ax b :

 44

n

2

n n

1 3

n n

Q 2 Q

n

Q 1

C
1 0

4 2

C C
1

4 2 4 2

C C
1

4 2 2 4

C
0 1

4 2

−

−

 γ
+ γ − 

 
γ γ − − + γ − 

 
=  
 γ γ − − + γ −
 
 γ
 − − + γ
 

A O O O (4.40)

T

n 1 n 1 n 1 n 1
1 2 Qu , u ,... u+ + + + = ∆ ∆ ∆ x (4.41)

n n
n1 0
1

n
n2
2

n

Q 1 n

Q 1

n n

Q Q 1n

Q

G C
D

4 4 2

G
D

4

G
D

4

G C
D

4 4 2

−
−

+

 γ
− + + + 
 
 − + 
 

=  
 
 − +
 
 γ
 − + − +
 

b M (4.42)

Much like the TCS method, Local Linearization provides a linear equation system that is

a second-order approximation of the original nonlinear system and does not require an

outer iteration. In the above 1D single variable example, the Jacobian is relatively easy

to compute and derive the A matrix, however, in multi-dimensional, multi-variable

systems the Jacobian may be difficult to derive and compute. Indeed, the difficulty of

deriving the Jacobian for general multi-dimensional systems is arguably the principal

reason that local linearization has not been widely used in CFD.

 45

4.1.2 Results and Discussion

Accuracy

The accuracy of the TCS method is demonstrated and compared to the other

nonlinear methods for the unsteady 1D Burgers’ equation. Over the domain 0 x 1≤ ≤

with initial and boundary conditions of

 ()u 0, t 0= (4.43)

 ()u 1, t 0= (4.44)

 u(x,0) sin(x) : 0 x 1= π < < (4.45)

the 1D Burgers’ equation has a solution constructed from truncated Fourier series:

 ()

K
2 2

m
k 1

analytical K
2 2

0 k
k 1

a exp(k t)ksin(k x)
u (x, t) 2 k 1,2,3,...K

a a exp(k t)cos(k x)

=

=

− π ν π
= πν =

+ − π ν π

∑
∑

 (4.46)

where

 () (){ }
1

1

0

0

a exp 2 1 cos x dx
−

= − πν − π  ∫ (4.47)

 () (){ } ()
1

1

k

0

a 2 exp 2 1 cos x cos k x dx
−

= − πν − π π  ∫ (4.48)

The solution becomes exact as K →∞ . This specific case of Burgers’ equation has been

frequently used to verify numerical methods (Kadalbajoo and Awasthi 2006; Kutluay et

al. 1999). A discrete approximation of Equation (4.46) for a truncated series of K=30

terms is plotted in Figure 4.1. The integrals in Equations (4.47) and (4.48) are

numerically evaluated using “quad” function in MATLAB with x∆ =0.01 and 0.05ν = .

 46

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

u

t
=
 0

t =
 0

.6
t = 3

t =
 0

.3

t = 1

Figure 4.1 Solution of 1D Burgers’ equation evolving in time for t∈{0, 0.1, 0.2, 0.3, 0.6,
1, 2, 3} using 0.05ν = along with the initial and boundary conditions of

Equations (4.43) through (4.45).

We have solved this 1D Burgers’ equation for the various nonlinear methods

discretized in the previous session. All methods use 2
nd

-order central difference spatial

discretization and a sufficiently fine uniform mesh (x 0.02∆ =) such that error is

controlled by temporal accuracy. As a basis for error comparison, we use the time of

maximum absolute error found in these two TCS methods, which is determined from

Figure 4.2 as t = 0.3 for both the TCSF and TCSF-D. Note that the maximum error

 47

occurs when the solution reaches its maximum steepness in Figure 4.1. With a smaller ν ,

the similar asymptotic behavior is obtained when t∆ is sufficiently small.

0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−4

t

ε a
b

s

TCSF

TCSF−D

Figure 4.2 Absolute error time evolution for numerical solutions of 1D conservative

Burgers’ equation for TCSF and TCSF-D using { t∆ =0.01, x∆ =1/50,

ν=0.05}, where

50

abs model i analytical i

i 1

1
(t) u (x , t) u (x , t)

50
=

ε = −∑ and

analyticalu (x, t) is numerically calculated from Equation (4.46) with K=30.

 48

To evaluate the model error, we examine performance with nine different time

steps over the range 0.006 t 0.15≤ ∆ ≤ and with grid cell spacing of

{ }2 3 3x 2 10 5 10 1 25 10− − −∆ ∈ × × ×, , . . Based on the Burgers’ equation solution for analyticalu ,

the test conditions cover the range 0.25 CFL 50≤ ≤ , where

 analytical

t
CFL max u (t)

x

∆
=

∆
 (4.49)

is the maximum CFL number. The error for the different methods has been estimated

using the RMS error, 2L and L∞ over Q grid points. These approaches are similar to

Rueda and Schladow (2002), where

 ()
Q

2

RMS j j

j 1

1
u u

Q
=

ε = −∑ % (4.50)

()

()

1/ 2
M

2

k k

k 1

2 1/ 2
M

2

k

k 1

u u

L

u

=

=

 
− 

  =
 
 
  

∑

∑

%

%

 (4.51)

 k k

k

max u u
L : 1 k M

max u
∞

−
= ≤ ≤

%

%
 (4.52)

and u% is the model solution using an extremely fine time step such that 40.3/10 , which is

0.5% of the smallest time step used in the other simulations. Using a fine-time step

solution is a standard approach (e.g. Ferziger and Peric, 1999) and is preferred over the

approximate numerical solution of Equation (4.46), so that the accuracy measure is not

distorted by the differences in the numerical approximations. Similarly, for consistency in

the inter-model comparison, each model is compared to the small time-step solution for

that model (e.g., the Picard method is compared to the small time-step solution of the

Picard method, not to a small time-step TCSF solution). Figure 4.3 shows the RMS

 49

error associated with different methods over the tested ranges of CFL. It can be seen that

all the methods provide 2nd-order accuracy for fixed x∆ and decreasing t∆ . Error

magnitudes are substantially similar using the same x∆ and t∆ except for the TCSF-D

method. The TCSF-D method has a noticeably smaller error than all the other methods.

2L and L∞ norms behave similar to RMS error and are plotted in Figure 4.4 and Figure

4.5 respectively.

10
0

10
1

10
2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

CFL

ε R
M

S

TCSF

TCSF−D

Picard

Newton

Local linearization

2nd order slope

∆x=1/50

∆x=1/200

∆x=1/800

Figure 4.3 RMSε vs. CFL number of various methods for solution of 1D conservative

Burgers’ equation with three different x∆ , where 0.05ν = and

t 0.3/∆ = Γ with Γ∈{50, 30, 25, 20, 10, 8, 5, 4, 2}.

 50

10
0

10
1

10
2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

CFL

L
2

TCSF

TCSF−D

Picard

Newton

Local linearization

2nd order slope

∆x=1/200

∆x=1/800

∆x=1/50

Figure 4.4 2L norm vs. CFL number of various methods for solution of 1D conservative

Burgers’ equation with three different x∆ , where 0.05ν = and

t 0.3/∆ = Γ with Γ∈{50, 30, 25, 20, 10, 8, 5, 4, 2}.

 51

10
0

10
1

10
2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

CFL

L
∞

TCSF

TCSF−D

Picard

Newton

Local linearization

2nd order slope

∆x=1/800
∆x=1/50

∆x=1/200

Figure 4.5 L∞ norm vs. CFL number of various methods for solution of 1D conservative

Burgers’ equation with three different x∆ , where 0.05ν = and

t 0.3/∆ = Γ with Γ∈{50, 30, 25, 20, 10, 8, 5, 4, 2}.

Stability

Nonlinear stability cannot be generally proven, but is instead demonstrated by

examples. As shown in Figure 4.3, all five numerical methods remain stable over the full

range of tested conditions. The stability of Picard iteration, Newton iteration and Local

linearization may be expected because all the underlying discretizations begin with the

 52

Crank-Nicolson scheme. The TCS method is based on a midpoint rule discretization that

is split, which cannot be guranteed stable even if the split matrices are linearly stable. Our

tests thus far have shown very promising stability characteristics; however, such result

cannot be presumed definitive. The new TCS method may theoretically be applied for

any class of quadratically-nonlinear coupled equations, but its stability characteristics for

different equations remains a subject for future investigation.

The TCS method is in an implicit format, thus it is expected to have stability

advantage over the explicit methods. To compare the TCS method with explicit methods,

we solve the same 1D conservative Burgers’ equation using Runge-Kutta 2
nd
-Order

(RK2) and Runge-Kutta 4
th
-Order (RK4) methods. The RMS error over a range of CFL

numbers is plotted in Figure 4.3 for the TCSF, TCSF-D, RK2 and RK4 methods. In this

comparison, we study the performance with 12 different time steps over the range

0 0006 t 0 06. .≤ ∆ ≤ and with grid cell spacing of x 0 02.∆ = . As a result, the test

conditions cover the range, 0 0013 CFL 2 57. .≤ ≤ . The points of th RK2 and RK4

methods are only shown in the left part of Figure 4.6 because these two explicit methods

become unstable when CFL≥0.3. Contrarily, the TCSF and TCSF-D methods remain

stable in the whole range of CFL numbers.

 53

10
−2

10
−1

10
0

10
1

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

CFL

ε R
M

S

TCSF

TCSF−D

RK2

RK4

2nd order slope

unstable

unstable

Figure 4.6 RMSε vs. CFL number of TCSF, RK2 and RK4 methods for solution of 1D

conservative Burgers’ equation, where 0.05ν = x∆ =1/50, and

t 0.3/∆ = Γ with Γ∈{500, 200, 100, 80, 50, 30, 25, 20, 10, 8, 5}.

Computational Requirements

To gain a better understanding of the computational requirements of the different

methods, it is useful to compare the ideal operation counts using tridiagonal solutions of

the Ax = b problems. We focus on idealized operation counts rather than CPU time as

we solve the above discrete problems using a MATLAB script, for which the software

 54

overhead tends to dominate the model runtime. Based on algorithms in Press et al

(1992) and Pozrikidis et al (2005, pg50), a tridiagonal solution ideally requires 8Q

operations and a pentadiagonal solution requires 24Q operations, where Q is the number

of grid points. Here we do not distinguish between addition, multiplication or division

operations. If the Newton method requires R outer iterations for convergence, the Picard

method should require R
2
 outer iterations for the same convergence level. A tridiagonal

Matrix algorithm (TDMA) is used for each method. A comparison of operations per grid

point for the different methods is shown in Figure 4.7. Although these operation counts

are idealized and only for the 1D Burgers’ equation with direct inner solutions, they

represent the general trends that should be expected in any comparison of nonlinear

solution methods. The operation counts for both the TCSF and TCSF-D methods are

identical because the solution processes for both methods are the same although they are

in a reversed manner. For this 1D test case with an analytical Jacobian, the TCS method

does not have any computational efficiency advantage over Local Linearization.

However, the TCS derivation does not require a functional Jacobian computation, so

extending the method to multiple dimensions and multiple variables is arguably easier, an

idea that will be explored in next chapter.

 55

1 2 3 4 5
0

50

100

150

200

250

300

350

R

o
p

e
ra

ti
o

n
s

 p
e

r
g

ri
d

 p
o

in
t

TCSF

TCSF−D

local linearization

Newton iteration

Picard iteration

Figure 4.7 Ideal operations per grid point for one time step using various nonlinear
solution methods for 1D conservative Burgers’ equation. R is the number of
outer iterations taken by Newton method. It is assumed that the Picard
method convergences in R

2
 outer iterations.

4.2 APPLICATIONS OF THE TCS METHOD TO THE 1D NON-CONSERVATIVE

BURGERS’ EQUATION

Unlike in the conservative Burgers’ equation, the TCSF and TCSG formats

remain distinct for the non-conservative Burgers’ equation. Applying the TCS method to

the non-conservative Burgers’ equation can create four different discretizations: the

TCSF, TCSG, TCSF-D and the TCSG-D. In this section, we analyze all four different

discretizations in the same vein as in the conservative case.

 56

4.2.1 Discrete formats of the 1D Non-Conservative Burger’s equation using various

methods

The TCSF Discrete Form

The non-conservative Burgers’ equation can be written as:

2

2

u u u
u

t x x

∂ ∂ ∂
+ = ν

∂ ∂ ∂
 (4.53)

Introducing the approximation in the flux term results in the TCSF form as below:

* 2 *

* n n

2

t u u
u u u

2 x x

 ∆ ∂ ∂
= + − + ν 

∂ ∂ 
 (4.54)

* 2 *

n 1 n 1

2

u ut
u u u

2 x x

+ ∗ + ∂ ∂∆
= + − + ν 

∂ ∂ 
 (4.55)

Similar to the analysis in the conservative Burger’s equation, in the following discussion,

we examine each method in a generic matrix equation, Ax=b. A central difference

discretization is used for all the spatial derivatives. The same parameters such as the

number of spatial grid points Q, the viscous scale γ , the grid cell CFL number L

iC , the

diffusion operator L

iD , and the nonlinear adjective gradient operator L

iG are also used in

the following discussion. In the first step of the TCSF,

n

2

n n

1 3

n n

Q 2 Q

Q 1

C
1 0 0 0

2 4

C C
1 0 0

2 4 2 4

0 0

C C
0 0 1

2 4 2 4

c
0 0 0 1

2 4

−

−

 γ
+ γ − + 

 
γ γ − − + γ − + 

 
=  
 γ γ − − + γ − +
 
 γ

− − + γ 
 

A O O O (4.56)

T

* * *

1 2 Qu ,u ,...u =  x (4.57)

 57

n
n *0
1 0

n

2

n

3

n

Q 1

n

Q 1n *

Q Q 1

C
u u

2 4

u

u

u

C
u u

2 4

−

+
+

  γ
+ +  
  

 
 
 

=  
 
 
 
  γ

+ −  
   

b
M

 (4.58)

The second step of the TCSF is in an explicit format, which can be represented as

()

()

* * *

i i 1 i i 1
n 1

i
* *

i 1 i 1

u u 2u u
2u ; i {1,2,...Q}

1
1 c c

4

∗
+ −

+

+ −

γ
+ − +

= =
+ −

 (4.59)

Thus, the TCSF solution for the 1D non-conservative Burgers’ equation only needs one

tridagonal linear problem at the first step and an explicit solution for n 1u + at the second

step.

The TCSG Discrete Form

If the linear approximation is introduced in the gradient rather than the flux part, the

resulting discrete equations are the TCSG form:

n 2 *

* n *

2

u ut
u u u

2 x x

 ∂ ∂∆
= + − + ν 

∂ ∂ 
 (4.60)

n 1 2 *

n 1 * *

2

u ut
u u u

2 x x

+
+  ∂ ∂∆
= + − + ν 

∂ ∂ 
 (4.61)

The first step of the TCSG has

 58

()

()

()

()

n n

3 1

n n

4 2

n n

Q Q 2

n n

Q 1 Q 1

C C
1 0

4 2

C C
1

2 4 2

C C
1

2 4 2

C C
0 1

2 4

−

+ −

 − γ
+ + γ − 

 
 −γ γ − + + γ −
 
 =
 

− γ γ
− + + γ − 

 
 −γ
 − + + γ
 

A O O O (4.62)

T

* * *

1 2 Qu ,u ,...u =  x (4.63)

and

n *

1 1

n

2

n

3

n

Q 1

n *

Q Q 1

u u
2

u

u

u

u u
2

−

+

γ + 
 
 
 
 =
 
 
 
 γ
 +
 

b
M

 (4.64)

 59

In the second step of the TCSG,

*

1

* *

2 2

* *

Q 1 Q 1

* *

Q Q

C
1 0

4

C C
1

4 4

C C
1

4 4

C C
0 1

4 4

− −

 
 
 
 − 
 

=  
 
 −
 
 
 −
 

A O O O (4.65)

T

n 1 n 1 n 1
1 2 Qu ,u ,...u+ + + =  x (4.66)

and

* *
* n 11 1
1 1

*
* 2
2

*

Q 1*

Q 1

* *

Q Q* n 1

Q Q

D C
u u

2 4

D
u

2

D
u

2

D C
u u

2 4

+

−
−

+

 
+ + 

 
 + 
 

=  
 
 +
 
 
 + −
 

b M (4.67)

Thus the TCSG method for the 1D non-conservative Burgers’ equation requires solution

of two tridiagonal linear problems at each time step.

 60

The TCSF-D Discrete Form

If we further split the diffusion term in the TCSF, we obtain the TCSF-D form. The

TCSF-D form for Equation (4.53) can be written as,

* 2 n

* n n

2

t u u
u u u

2 x x

 ∆ ∂ ∂
= + − + ν 

∂ ∂ 
 (4.68)

* 2 n 1

n 1 n 1

2

t u u
u u u

2 x x

+
+ ∗ + ∆ ∂ ∂
= + − + ν 

∂ ∂ 
 (4.69)

In the first step,

n

1

n n

2 2

n n

Q 1 Q 1

n n

Q Q

C
1 0

4

C C
1

4 4

C C
1

4 4

C C
0 1

4 4

− −

 
 
 
 − 
 

=  
 
 −
 
 
 −
 

A O O O (4.70)

T

* * *

1 2 Qu ,u ,...u =  x (4.71)

and

n n
n *1 1
1 1

n
n 2
2

n

Q 1n

Q 1

n n

Q Qn *

Q Q

D C
u u

2 4

D
u

2

D
u

2

D C
u u

2 4

−
−

 
+ + 

 
 + 
 

=  
 
 +
 
 
 + −
 

b M (4.72)

 61

In the second step,

()

()

()

()

* *

3 1

* *

4 2

* *

Q Q 2

* *

Q 1 Q 1

C C
1 0

4 2

C C
1

2 4 2

C C
1

2 4 2

C C
0 1

2 4

−

+ −

 − γ
+ + γ − 

 
 −γ γ − + + γ −
 
 =
 

− γ γ
− + + γ − 

 
 −γ
 − + + γ
 

A O O O (4.73)

T

n 1 n 1 n 1

1 2 Qu ,u ,...u+ + + =  x (4.74)

and

* n 1

1 1

*

2

*

3

*

Q 1

* n 1

Q Q 1

u u
2

u

u

u

u u
2

+

−

+
+

γ + 
 
 
 
 =
 
 
 
 γ
 +
 

b
M

 (4.75)

It can be observed that the TCSF-D method reverses the solution process of the TCSG

method. The first step in TCSF-D is in the same structure as the second step in TCSG; the

second step in TCSF-D is in the same structure as the first step in TCSG.

 62

The TCSG-D Discrete Form

The TCSG-D is obtained by further splitting the diffusion term in the TCSG

method written as

n 2 n

* n *

2

t u u
u u u

2 x x

 ∆ ∂ ∂
= + − + ν 

∂ ∂ 
 (4.76)

n 1 2 n 1

n 1 * *

2

t u u
u u u

2 x x

+ +
+  ∆ ∂ ∂
= + − + ν 

∂ ∂ 
 (4.77)

u* in the first step of Equation (4.76) can be explicitly calculated,

()

()

n n n n

i i 1 i i 1
*

i
n n

i 1 i 1

u u 2u u
2u ; i {1,2,...Q}

1
1 c c

4

+ −

+ −

γ
+ − +

= =
+ −

 (4.78)

The second step is a matrix equation with

*

2

* *

1 3

* *

Q 2 Q

*

Q 1

C
1 0 0 0

2 4

C C
1 0 0

2 4 2 4

0 0

C C
0 0 1

2 4 2 4

C
0 0 0 1

2 4

−

−

 γ
+ γ − + 

 
γ γ − − + γ − + 

 
=  
 γ γ − − + γ − +
 
 γ
 − − + γ
 

A O O O (4.79)

T

n 1 n 1 n 1
1 2 Qu ,u ,...u+ + + =  x (4.80)

 63

*
* n 10
1 0

*

2

*

3

*

Q 1

*

Q 1* n 1

Q Q 1

C
u u

2 4

u

u

u

C
u u

2 4

+

−

+ +
+

  γ
+ +  
  

 
 
 

=  
 
 
 
  γ

+ −  
   

b
M

 (4.81)

The TCSG-D method reverses the solution process of the TCSF. The first step in TCSG-

D is in the same structure as in the second step in TCSF; the second step in TCSG-D is in

the same structure as in the first step in TCSF.

Similar to the last section, we first apply CN 2
nd
-order discretization to Equation

(4.53), such that Equation (4.53) is

n n n n n
n 1 n n i 1 i 1 i 1 i i 1
i i i 2

n 1 n 1 n 1 n 1 n 1
n 1 i 1 i 1 i 1 i i 1
i 2

t u u u 2u u
u u u

2 2 x x

u u u 2u u
u

2 x x

+ + − + −

+ + + + +
+ + − + −

∆ − − +
= − − ν

∆ ∆

− − +
+ − ν 

∆ ∆ 

 (4.82)

Equation (4.82) is then linearized using conventional Picard, Newton and local

linearization methods.

 64

Picard iteration

Applying Picard iteration to Equation (4.82), the linearized equation can be written as,

()

() () ()

() () ()

n n n n n
k 1

n 1 n n i 1 i 1 i 1 i i 1
i i i 2

k 1 k 1
n 1 n 1

k i 1 i 1n 1

i

k 1 k 1 k 1
n 1 n 1 n 1

i 1 i i 1

2

t u u u 2u u
u u u

2 2 x x

u u
u

2 x

u 2 u u

x

++ + − + −

+ ++ +
+ −+

+ + ++ + +
+ −

= −
∆ − − +

− ν
∆ ∆

−
+

∆
− + 

− ν 
∆ 

 (4.83)

where the superscripts n and k indicate the time step and iteration number respectively.

with

k

3

k k

2 4

k

k k

Q 2 Q

k

M

C
1 0

2 4

C C
1

2 4 2 4

C C
1

2 4 2 4

C
0 1

2 4

−

 γ
+ γ − + 

 
γ γ − − + γ − + 

 
=  
 γ γ − − + γ − +
 
 γ

− − + γ 
 

A O O O (4.84)

 () () ()
T

k 1 k 1 k 1
k 1 n 1 n 1 n 1

1 2 Qu , u ,... u
+ + ++ + + + =   

x (4.85)

 65

n n k
n 1 1 1
1

n n
n 2 2
2

n n

Q 1 Q 1n

Q 1

n n k

Q Q Qn

Q

D G C
u

2 4 2 4

D G
u

2 4

D G
u

2 4

D G C
u

2 4 2 4

− −
−

 γ
− − + + 

 
 − − 
 

=  
 
 − −
 
 γ
 − − + −
 

b M (4.86)

k

1

k

k

Q 1

C

2 4

0

0

C

2 4

+

 γ
+ 

 
 
 =
 
 
 
γ −

  

c M (4.87)

Newton Iteration

Applying the Newton iteration to Equation (4.82), the linearized equation can be written

as:

 ()
k

k 1
n 1 ki
j in 1

j

g
u g

u

++
+

 ∂
∆ = −  ∂ 

 (4.88)

with

 66

()n 1 n 1 n 1 n 1 n

i i 1 i i 1 i i

n 1 n 1 n 1 n 1 n 1
n 1 i 1 i 1 i 1 i i 1
i 2

n n n n n
n i 1 i 1 i 1 i i 1
i 2

g u ,u ,u u u

t u u u 2u u
u

2 2 x x

u u u 2u u
u 0

2 x x

+ + + +
− +

+ + + + +
+ + − + −

+ − + −

= −

∆ − − +
+ − ν

∆ ∆

− − +
+ − ν =

∆ ∆ 

 (4.89)

and

 () () ()k k 1 k
n 1 n 1 n 1u u u

++ + +∆ = − (4.90)

Equation (4.88) is a matrix equation Ax=b with

k k

2 3

k k k

2 3 4

k

k k k

Q 2 Q 1 Q

k k

Q 1 Q

G C
1 0

4 2 4

C G C
1

2 4 4 2 4

C G C
1

2 4 4 2 4

C G
0 1

2 4 4

− −

−

 γ
+ + γ − + 

 
γ γ − − + + γ − + 

 
=  
 γ γ − − + + γ − +
 
 γ
 − − + + γ
 

A O O O (4.91)

 () () ()
T

k 1 k 1 k 1
k 1 n 1 n 1 n 1

1 2 Qu , u ,... u
+ + ++ + + + = ∆ ∆ ∆  

x (4.92)

n n
n 1 1
1

n n
n 2 2
2

n n

Q 1 Q 1n

Q 1

n n

Q Qn

Q

G D
u

4 2

G D
u

4 2

G D
u

4 2

G D
u

4 2

− −
−

 
+ − 

 
 + − 
 

= −  
 
 + −
 
 
 + −
 

b M (4.93)

 67

k k k
k 1 1 0
1

k k
k 2 2
2

k

k k

Q-1 Q-1k

Q-1

k k k

Q Q Q 1k

Q

G D C
u +

4 2 2 4

G D
u +

4 2

G D
u +

4 2

G D C
u +

4 2 2 4

+

 γ
− + + 

 
 − 
 

=  
 
 −
 
 γ
 − + −
 

C M (4.94)

Local linearization

Applying Local linearization to Equation (4.82), the linearized equation system can be

written as:

n

n ni
j i

j

1 F
1 t u tF

2 u

  ∂ − ∆ ∆ = ∆  ∂   

 (4.95)

where

 ()
L L L L L

L L L L L i 1 i 1 i 1 i i 1
i i 1 i i 1 i 2

u u u 2u u
F u ,u ,u u

2 x x

+ − + −
− +

− − +
= − + ν

∆ ∆
 (4.96)

for L {n,n 1}∈ + and

 n n 1 n

i i iu u u+∆ = - (4.97)

Therefore, Equation (4.95) is a matrix equation Ax=b with

 68

n

2 3

n n

2 3 4

n

Q 2 Q 1 Q

Q 1 Q

G C
1 0

4 2 4

C G C
1

2 4 4 2 4

C G C
1

2 4 4 2 4

C G
0 1

2 4 4

− −

−

 γ
+ + γ − + 

 
γ γ − − + + γ − + 

 
=  
 γ γ − − + + γ − +
 
 γ

− − + + γ 
 

A O O O (4.98)

T

n 1 n 1 n 1 n 1

1 2 Qu , u ,... u+ + + + = ∆ ∆ ∆ x (4.99)

n
n n 0
1 1

n n

2 2

n n

Q 1 Q 1

n

Q 1n n

Q Q

1 C
G D

2 2 4

1
G D

2

1
G D

2

C1
G D

2 2 4

− −

+

 γ
− + + + 
 
 − + 
 =  
 

− + 
 
 γ
− + + −  

b M
 (4.100)

4.2.2 Results and Discussion

Accuracy

As in the analysis of the conservative Burgers’ equation, we first locate the

maximum absolute error for all four discrete forms of the TCS method. As shown in

Figure 4.8, the maximum absolute error occurs at t=0.6 for all four forms. The exact

solution of the Burgers’ equation at t=0.6 can be found in Figure 4.3.

 69

To evaluate the model error, we examine performance with seven different time

steps over the range, 0 012 t 0 12. .≤ ∆ ≤ , and with grid cell spacing of

{ }2 3 3x 2 10 5 10 1 25 10, , .− − −∆ ∈ × × × . As a result, the test conditions cover the range,

0 41 CFL 66 2. .≤ ≤ . Similar to section 4.1, the fine-time step solution u% is used in the

analysis of RMS error, 2L norm and L∞ norm. Here u% is the model solution of an

extremely fine time step such that 4t 0.6 /10∆ = , which is 0.5% of the smallest time step

used in the other simulations. The RMS 2, L norm, and L∞ε norm associated with different

methods over the tested ranges of CFL numbers are shown in Figure 4.9, 4.10 and 4.11

respectively. All methods are proven to be 2
nd
-order temporal accurate for fixed x∆ and

decreasing t∆ . For the same x∆ and t∆ , it can be seen that the difference in relative error

among all methods is within one order of magnitude except for the TCSF method. The

TCSF method has a noticeably smaller error than all the other methods, and about 1

magnitude smaller error than the TCSG-D form.

 70

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8
x 10

−4

t

ε a
b

s

TCSF

TCSG

TCSF−D

TCSG−D

Figure 4.8 Absolute error time evolution for numerical solutions of 1D non-conservative
Burgers’ equation for the TCSF and TCSG methods using

{ }t 0.01, x 1/ 50, 0.05∆ = ∆ = ν = where

50

abs model i analytical i

i 1

1
(t) u (x , t) u (x , t)

50
=

ε = −∑ and analyticalu (x, t) is numerically

calculated from Equation (4.46) with K=30.

 71

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

CFL

ε R
M

S

TCSF

TCSG

TCSF−D

TCSG−D

Picard

Newton

Local linearization

2nd order slope

∆x=1/50

∆x=1/200

∆x=1/800

Figure 4.9 RMSε vs. CFL numbers of various methods for solution of 1D non-

conservative Burgers’ equation at different CFL numbers, where ν=0.05,

x∆ =1/50 and t∆ =0.6/Γ with Γ ∈{50, 30, 25, 20, 10, 8, 5}.

 72

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

CFL

L
2

TCSF

TCSG

TCSF−D

TCSG−D

Picard

Newton

Local linearization

2nd order slope

∆x=1/50

∆x=1/200
∆x=1/800

Figure 4.10 2L norm vs. CFL numbers of various methods for solution of 1D non-

conservative Burgers’ equation at different CFL numbers, where ν=0.05,

x∆ =1/50 and t∆ =0.6/Γ with Γ ∈{50, 30, 25, 20, 10, 8, 5}.

 73

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

CFL

L
∞

TCSF

TCSG

TCSF−D

TCSG−D

Picard

Newton

Local linearization

2nd order slope

∆x=1/50 ∆x=1/200 ∆x=1/800

Figure 4.11 L∞ norm vs. CFL numbers of various methods for solution of 1D non-

conservative Burgers’ equation at different CFL numbers, where ν=0.05,

x∆ =1/50 and t∆ =0.6/Γ with Γ ∈{50, 30, 25, 20, 10, 8, 5}.

 74

Stability

As shown in Figure 4.9, Figure 4.10 and Figure 4.11, all the methods remain

stable over the full range of tested conditions. The RK2 and RK4 methods are also used

to solve this 1D non-conservative Burgers’ equation. The RMS error over a range of

CFL for the TCSF, TCSG, TCSF-D, TCSG-D, RK2 and RK4 methods is plotted in

Figure 4.12. In this comparison, 0 0006 t 0 06. .≤ ∆ ≤ and x 0 02.∆ = provide test

conditions 0 013 CFL 2 57. .≤ ≤ . The RK methods become unstable when CFL>0.1.

However, the TCS methods remain stable in the whole range of CFL number.

10
−2

10
−1

10
0

10
1

10
−15

10
−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

CFL

ε R
M

S

TCSF

TCSF−D

RK2

RK4

2nd order slope

unstable

unstable

Figure 4.12 Temporal accuracy of the TCS and RK methods for solution of 1D non-
conservative Burgers’ equation at different CFL numbers, where ν=0.05,

x∆ =1/50 and t∆ =0.6/Γ with Γ ∈{500, 200, 100, 80, 50, 30, 25, 20, 10, 8,

5}.

 75

Computational requirement

The same assessment of operation counts is used in this non-conservative

Burgers’ equation. All the methods perform similar to the non-conservative Burgers’

equation. The TCSF and TCSG-D have the identical operation counts because they have

the same solution process only in a reverse mode. The same correspondence can be found

between the TCSG and TCSF-D for the same reason. In this 1D non-conservative

Burgers’ equation test case, the TCSF and TCSG-D have the least operation counts.

1 2 3 4 5 6 7
0

100

200

300

400

500

600

R

o
p

e
ra

ti
o

n
s

 p
e

r
g

ri
d

 p
o

in
t

TCSF

TCSG

TCSF−D

TCSG−D

local linearization

Newton iteration

Picard iteration

Figure 4.13 Ideal operations per grid point for one time step using various nonlinear
solution methods for 1D Non-conservative Burgers equation. R is the
number of outer iterations taken by Newton method. It is assumed that the

Picard method convergences in 2R outer iterations.

 76

4.3 APPLICATION OF THE TCS METHOD TO A 1D NONLINEAR ORDINARY

DIFFERENTIAL EQUATION

The TCS method can be extended to any equation system with quadratic

nonlinearities. To test this general capability, we use a nonlinear ODE as our example:

dy

y(1 y) 0
dt

+ − = (4.101)

For the initial condition y(0) 1/ 2= , Equation (4.101) has the analytical solution (Moin

2001)

 [] 1
y 1 exp(t)

−
= + (4.102)

4.3.1 The TCS discretizations

The TCSF Discretization

As in the 1D conservative Burgers’ equation, the TCSF and TCSG are the same

for Equation (4.101). Applying the TCSF method to Equation (4.101) provides

 ()n n * * t
y y y y y

2

∗ ∆
= + − (4.103)

 ()n 1 * n 1 * * t
y y y y y

2

+ + ∆
= + − (4.104)

The discrete form can be written from Equation (4.103) and (4.104) as

n

n

y
y

t
1 y 1

2

∗ =
∆  − − 

 (4.105)

* *

n 1

*

t
y y

2y
t

1 y
2

+

∆
−

=
∆

−
 (4.106)

 77

The TCSF-D Discretization

Similarly, the TCSF-D discrete format for Equation (4.101) is written as

n n

n

t
y y

2y
t

1 y
2

∗

∆
−

=
∆

−
 (4.107)

()

*
n 1

*

y
y

t
1 y 1

2

+ =
∆

− −
 (4.108)

It can be seen that Equation (4.108) has the same structure as Equation (4.105) and

Equation (4.107) has the same structure as Equation (4.106). Therefore, the TCSF and

TCSF-D discrete forms for Equation (4.101) are similar but reversed.

4.3.2 Conventional linearization methods

Crank-Nicolson (CN) discretized Equation (4.101) is,

 () ()n 1 n n n n 1 n 1t t
y y y 1 y y 1 y

2 2

+ + +∆ ∆
= + − + − (4.109)

To linearize the nonlinear term on right hand side of Equation (4.109), we use the

Newton iteration, Picard iteration and local linearization methods.

Newton method

Applying the Newton iteration approach, Equation (4.109) can be written as:

 () () ()k
n 1

k 1 k
n 1 n 1

n 1

k

g y
y y

g

y

+
++ +

+

= −
 ∂
 ∂ 

 (4.110)

where the outer superscript indicates the outer iteration number and

 () () ()n 1 n 1 n 1 n 1 n n nt t
g y y y 1 y y y 1 y

2 2

+ + + +∆ ∆
= − − − − − (4.111)

 78

Substituting Equation (4.111) into Equation (4.110), the original ODE in the Newton

linearized CN discretized form is

 () ()
() () () ()

()

k k k
n 1 n 1 n 1 n n n

k 1 k
n 1 n 1

k
n 1

t t
y y 1 y y y 1 y

2 2y y
t

1 2 y 1
2

+ + +

++ +

+

∆ ∆ − − − − −  = −
∆  − −  

 (4.112)

n 1 n

0y y+ = can be used as the initial condition to start the solution.

Picard method

 A second conventional approach, Picard iteration, in Equation (4.109), results in

 () () () ()k 1 k k
n 1 n n n n 1 n 1t t

y y y 1 y y 1 y
2 2

++ + +∆ ∆  = + − + −  
 (4.113)

The same initial condition, n 1 n

0y y+ = can be used to start the solution.

Local linearization

Applying the third conventional method, local linearization method, Equation

(4.109) can be written as

n

n 1 n

n

tf
y y

t f
1

2 y

+ ∆
= +

  ∆ ∂
−  ∂   

 (4.114)

where

 ()f y 1 y= − (4.115)

Substituting Equation (4.115) into Equation (4.114) provides the locally-linearized

Equation (4.109) as

()

()

n n

n 1 n

n

t y 1 y
y y

t
1 2y 1

2

+
∆ −

= +
∆ − −  

 (4.116)

 79

In this specific case, the local linearization, TCSF and TCSF-D are mathematically

equivalent. If we substitute Equation (4.105) to Equation (4.106) and substitute Equation

(4.107) to Equation (4.108), we will have two expressions which are exactly the same as

Equation (4.116).

4.3.3 Comparisons between the TCS and other methods

The evolution of the absolute errors for two TCS methods applied to the ODE is

shown in Figure 4.14. The maximum absolute errors for both TCS discrete formats occur

at time t=1.5.

0 2 4 6 8 10
0

1

x 10
−4

t

ε a
b

s

TCSF

TCSF−D

Figure 4.14 Time evolution of absolute errors for TCS methods applied to the ODE,

Equation (4.101), for t∆ =0.1, where abs model analytical(t) y (t) y (t)ε = − .

 80

Figure 4.15 provides a comparison of root-mean-square (RMS) error over Γ time

steps prior to maximum error, defined as

1/ 2

2

RMS model i analytical i

i 1

1
y (t) y (t)

Γ

=

   ε ≡ −  Γ  
∑ (4.117)

 where maxt 1.5= and { }10, 50, 100, 200, 500, 600, 800, 1000, 1200, 1500, 2000Γ∈ . All

tested methods provide second-order accuracy. In this particular case, the iterative

methods have slightly smaller error than non-iterative methods. The errors from the three

non-iterative methods are identical since TCSF, TCSF-D and local linearization are

mathematically equivalent.

 81

10
1

10
2

10
3

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Γ

ε R
M

S

TCSF

TCSF−D

Picard

Newton

Local linearization

2nd order

Figure 4.15 RMS error from Equation (4.117) for discrete solutions of the ODE,
Equation (4.101), computed using a range of Γ time steps.

4.4 SUMMARY

The TCS method has been tested on three different test cases: a 1D conservative

Burgers’ equation, a 1D non-conservative Burgers’ equation and an ODE. The TCS

method has multiple discrete forms for each test case. All the TCS discretizations have

been compared to conventional implicit linearization methods, including Picard iteration,

Newton iteration and local linearization methods. All the TCS discretizations

demonstrate 2
nd
-order temporal accuracy and are shown stable up to a CFL O (10). All

the TCS discretizations are proved stable when the CFL value is in the order of 10. The

 82

stability advantage of the TCS methods has been further demonstrated by the comparison

with the RK methods. The TCS methods require fewer operation counts than Picard and

Newton method, but are similar to local linearization. The principal advantage of the

TCS method over local linearization is the relative ease with which the TCS method can

be derived and implemented as it does not require discrete evaluation of a function

Jacobian. The TCS method is applicable to any quadratically-nonlinear problems, which

is verified by the ODE case.

For each test case, different TCS discretizations perform similarly in temporal

accuracy, stability and efficiency. However, difference can be observed among different

discretizations. In the 1D conservative Burgers’ equation, the TCSF and TCSG collapse

into one single form. The TCSF-D reverses the solution process of the TCSF.

Nevertheless, the TCSF-D has a noticeably smaller relative error than the TCSF and other

methods. In the 1D non-conservative Burgers’ equation, the TCSF and TCSG hold

distinct forms. The TCSF-D reverses the solution process of the TCSG, and the TCSG-D

reverses the solution process of the TCSF. Among the four discretizations, the TCSF has

the smallest relative error, which is about one order of magnitude smaller than the TCSG-

D. In the 1D nonlinear ODE case, the TCSF and TCSG remain the same. The TCSF-D

reverses the solution process of the TCSF, but they have the same relative error.

 83

Chapter 5 The TCS Family Method

In Chapter 3, we revealed that the key to the TCS method is the 2nd-order

accurate time-centered splitting. Applying this splitting to different terms, different TCS

discretizations can be generated. In Chapter 4, we compared the TCS discretizations with

conventional linearization methods using various examples. In this chapter, we derive the

TCS family method in one general form by introducing weighting factors to different

terms. A significance of this TCS family method is that the value of the weighting factors

does not affect the order of accuracy of the scheme. Since weighting factors can be any

value between zero and one while still providing essentially the same advantages, it may

provide a flexible approach for a variety of problems. To examine the properties of

weighting factors, the 1D non-conservative Burgers’ equation is solved using different

combinations of weighting factors. Furthermore, we demonstrate that the TCS method

can computationally decouple an equation system of coupled variables using special

combinations of weighting factors. This advantage makes the TCS method more efficient

in solving coupled multi-variable equation systems.

5.1 DERIVATION OF THE TCS FAMILY METHOD

Let us start a time marching differential equation from a simplest form:

 () () (){ }f F M L N
t

∂φ
= φ φ φ  ∂

, (5.1)

where φ s a generic variable, F, M, L and N represent generic linear operators. The

function f is a linear function of () ()F M Lφ φ   and ()N φ . Equation (5.1) then

 84

represents a time marching differential equation with a quadratic nonlinearity of

() ()F M Lφ φ   and a linear operator of the variable, ()N φ . This quadratic nonlinearity

can be: the product of the variable itself, 2φ if F, M and L are equal to 1; the product of

the variable and the gradient of the variable, / xφ∂φ ∂ , if F=1, M=1 and L= () / x∂ ∂ ; the

gradient of the product of the variable, () / x∂ φφ ∂ if M=1, L=1 and F= () / x∂ ∂ . Thus,

Equation (5.1) represents a generic time marching differential equation with any kind of

quadratic nonlinearity. Equation (5.1) can be discretized using the midpoint rule, written

as

 () () (){ } ()n 1 n n 1 2 n 1 2 n 1 2 3f F M L N t t+ + + + φ = φ + φ φ φ ∆ + ∆ 
/ / /

, O (5.2)

In the previous chapters, we demonstrated that the time-centered split can be introduced

to the quadratic nonlinear term and/or the linear term. Introducing two weighting factors,

1θ and 2θ , and combining with the time-centered linear approximation,

()
n n 1

n 1 2 2t
2

/
O

+
+ φ + φ

φ = + ∆ , Equation (5.2) can be written as a general discretization

() () ()

() () ()

n n 1 n n 1
n 1 n n 1 2 n 1 2

1 1

n n 1
n 1 2 3

2 2

f F M L 1 F M L
2 2

N 1 N t t
2

+ +
+ + +

+
+

       φ + φ φ + φφ = φ + θ φ + − θ φ       
       

 φ + φ
θ φ + − θ ∆ + ∆ 

 

/ /

/

,

O

(5.3)

where the weighting factor iθ ({ }i 1 2,∈) is required that i0 1≤ θ ≤ . Equation (5.3) is

mathematically equivalent to Equation (5.2). Similar to the derivation in Chapter 3, an

intermediate variable *φ is introduced as

 85

() () () () (){
() () ()}

n n n 1 2 n 1 2 n

1 1

n 1 2 n

2 2

f F M L 1 F M L

t
N 1 N

2

+ +

+

   φ = φ + θ φ φ + − θ φ φ   
∆

θ φ + − θ φ

* / /

/

,

 (5.4)

Subtracting Equation (5.4) from Equation (5.3), the second step is written as:

() () () () (){
() () ()} ()

n 1 n 1 n 1 2 n 1 2 n 1

1 1

n 1 2 n 1 3

2 2

f F M L 1 F M L

t
N 1 N t

2

+ + + + +

+ +

   φ = φ + θ φ φ + − θ φ φ   
∆

θ φ + − θ φ + ∆

* / /

/

,

O

 (5.5)

Expanding n 1 2/+φ in Equation (5.4) using the Taylor expansion,

()

() ()

() ()

2

n n n

1 t

2

n n

1 t

2

n n

2 t 2

t t
f F M L

2 2

t t
1 F M L

2 2

t t t
N 1 N

2 2 2

   ∆ ∆  φ = φ + θ φ φ + φ +          

  ∆ ∆ + − θ φ + φ + φ        

 ∆ ∆ ∆ θ φ + φ + + − θ φ        

*
O

O ,

O

 (5.6)

Organizing Equation (5.6) and grouping the higher order terms,

 () (){ ()}
2

n n n n t t
f F M L N

2 2

∆ ∆  φ = φ + φ φ φ +     
* , O (5.7)

n 1 2/+φ can be approximated using the explicit Euler approximation as

 () () (){ }
2

n 1 2 n n n n t t
f F M L N

2 2

+ ∆ ∆  φ = φ + φ φ φ +     
/ , O (5.8)

Therefore, we obtain the correspondence between *φ and n 1 2/+φ from Equations (5.7) and

(5.8) such that

 ()n 1 2 2t* / O+φ = φ + ∆ (5.9)

Substituting Equation (5.9) into Equations (5.4) and (5.5), the original equation set

becomes a computationally linearized two-step equation system:

 86

() () () () (){
() () ()}

n n n

1 1

n

2 2

f F M L 1 F M L

t
N 1 N

2

   φ = φ + θ φ φ + − θ φ φ   
∆

θ φ + − θ φ

* * *

*

,

 (5.10)

() () () () (){
() () ()} ()

n 1 n 1 n 1

1 1

n 1 3

2 2

f F M L 1 F M L

t
N 1 N t

2

+ + +

+

   φ = φ + θ φ φ + − θ φ φ   
∆

θ φ + − θ φ + ∆

* * *

*

,

O

 (5.11)

The weighting factor, iθ , distinguishes this derivation above from the original derivation

of TCS method in Chapter 3 because the value of iθ will not affect the 2
nd
-order accuracy

of the TCS methods. In addition, there is no dependent relationship between 1θ and 2θ . In

other words, as long as i0 1≤ θ ≤ , Equations (5.10) and (5.11) are a 2
nd

-order equivalent

to Equation (5.2). Although the derivation above uses a single variable, the same

mathematic principles apply to any quadratic nonlinearity. In ordinary differential

equations (ODE), the nonlinearity is simply 2x or xy; in partial differential equations

(PDE), this quadratic nonlinearity can be U U / x∂ ∂ or ()HU / x∂ ∂ . Therefore, the

derivation above is applicable to an ODE or ODE system with quadratic nonlinearity and

typical flow transport equation such as 1D advection-diffusion equation or shallow water

equations. In addition, the more variables are involved in an equation system, the more

weighting factors that can be introduced. As a result, the TCS method provides not a

single kind, but a whole family of TCS discretizations.

As we illustrated in the previous chapters, all the TCS family methods keep 2
nd
-

order temporal accuracy and they share the same simplicity advantages in computation.

However, with different combinations of iθ , the numerical solutions perform differently.

In the next section, we will use the 1D non-conservative Burgers’ equation as an example

to explore the different performance of different TCS discretizations.

 87

5.2 APPLICATION OF THE TCS FAMILY METHOD TO THE 1D NON-CONSERVATIVE

BURGERS’ EQUATION

With the introduction of the weighting factors 1θ and 2θ , the general format of

the TCS discretized non-conservative Burgers’ equation is written as,

 () () () () (){ }n n n 2 2 n

1 x 1 x 2 x 2 x

t
u u u u 1 u u u 1 u

2

* * * *∆
= + θ − δ + − θ − δ + θ νδ + − θ νδ (5.12)

 () () () (){ }n 1 n 1 n 1 2 2 n 1

1 x 1 x 2 x 2 x

t
u u u u 1 u u u 1 u

2

* * * *+ + + +∆
= + θ − δ + − θ − δ + θ νδ + − θ νδ (5.13)

The above equations are a two-step matrix equation system in the format of Ax=b. Using

a central difference in spatial derivatives, the LHS coefficient matrix A in the first step is

tridiagonal such that

1,1 1,2

2,1 2,2 2,3

3,2 3,3 3,4

Q 2,N 3 Q 2,Q 2 Q 2,Q 1

Q 1,N 2 Q 1,Q 1 Q 1,Q

Q,Q 1 Q,Q

a a 0

a a a

a a a

a a a

a a a

0 a a

− − − − − −

− − − − −

−

 
 
 
 
 

=  
 
 
 
  

A O O O (5.14)

where Q is the number of the grid points in space, and the non-zero components of A for

{ }i 1,2...Q= are of the form

n1 2
i

n n

i, j 1 i 1 i 1 2

n1 2
i

C : j i 1
4 2

1
a 1 C C : j i

4

C : j i 1
4 2

+ −

θ θ− − γ = −

  = + θ − + θ γ =  


θ θ+ − γ = +

 (5.15)

Also in the first step,

T

* * *

1 2 Qu ,u ,...u =  x (5.16)

 88

and

()

()

()

()

n n
n 2 1 1 1 2
1

n

n 2 2

2

n

2 Q 1n

Q 1

n n

2 Q 1 Qn 2
Q

1 D C
u

2 4 2

1 D
u

2

1 D
u

2

1 D C
u

2 4 2

−
−

 − θ γ θ θ γ
+ + + 

 
− θ γ 

+ 
 

=  
 − θ γ +
 
 − θ γ θ θ γ + − +
  

b M (5.17)

In the second step, we also have a tridiagonal coefficient matrix A with different

tridiagonal elements as

 () ()

*1 2
i

* *

i, j 1 i 1 i 1 2

*1 2
i

1 1
C : j i 1

4 2

1
a 1 1 C C 1 : j i

4

1 1
C : j i 1

4 2

+ −

− θ − θ− − γ = −

  = + − θ − + − θ γ =  


− θ − θ+ − γ = +

 (5.18)

and

T

n 1 n 1 n 1

1 2 Qu ,u ,...u+ + + =  x (5.19)

 89

() ()

() ()

**
* 1 1 22 1
1

*
* 2 2
2

*

2 Q 1*

Q 1

* *

2 Q 1 Q* 2

Q

1 C 1D
u

2 4 2

D
u

2

D
u

2

D 1 C 1
u

2 4 2

−
−

 − θ − θ γθ γ
+ + + 

 
θ γ 

+ 
 

=  
 θ γ +
 
 θ γ − θ − θ γ
 + − +
 

b M (5.20)

where C, γ and D in these two steps have the same definitions as in Chapter 4.

5.3 RESULTS AND DISCUSSION

To explore the properties of different weighting factors, the 1D non-conservative

Burgers’ equation is solved using Equations (5.12) and (5.13) with different

combinations of 1θ and 2θ . Before we analyze the results from various combinations of

1θ and 2θ , it is necessary to review their meanings. In the TCS scheme, n 1 2u /+ in the

Burgers’ equation is either approximated using the time-centered splitting as

() ()n 1 2 n n 1 2u u u 2 t/ / O+ += + + ∆ or u* as ()n 1 2 2u u t/ * O+ = + ∆ . Different iθ indicates

different approximations of n 1 2u /+ . When iθ =0 or iθ =1, n 1/ 2u + is approximated only

using one kind of the approximations. When iθ lies between 0 and 1, n 1/ 2u + is

approximated by the combinations of these two approximations. Table 5.1 lists the

mathematical meaning of different values of iθ .

 90

Table 5.1 The mathematical meaning of the value of 1θ and 2θ .

value 1θ 2θ

0

split the entire gradient term and
approximate the entire flux term using

u*

split the entire diffusion
term

0 and 1< <

split part of the gradient and flux terms
approximate part of the gradient and flux

terms using u*

split part of the diffusion
term and approximate part
of the diffusion term using

u*

1

split the entire flux term and
approximate the entire gradient term

using u*

approximate the entire

diffusion term using u*

5.3.1 Accuracy of Different Weighting Factors

The error analysis of different TCS discretizations is evaluated in the same vein as

in Chapter 4. In figure 5.1, the RMS error is plotted against a range of CFL numbers for

six different 1θ values ({ }1 0 1 3 1 2 2 3 3 4 1, / , / , / , / ,θ ∈). For each 1θ value, four

different 2θ values ({ }2 0 1 3 1 2 1, / , / ,θ ∈) are chosen for comparison, resulting

twenty four different TCS discretizations.

 The total marching time t=0.6 is used as the basis for error comparison in Figure

5.1 because the maximum absolute error occurs at t=0.6 (as demonstrated in Chapter 4).

The CFL number is defined using analyticalu , x 1 50/∆ = and t∆ = 0 6. / Γ , where Γ is the

number of the time steps and { }5, 8, 10, 20, 25, 30, 50Γ∈ . Thus, the tested CFL number

covers the range of 0 4 CFL 4 2. .≤ ≤ . It can be observed that every TCS discretization

has the same 2nd-order temporal accuracy and remains stable in the whole range of the

CFL numbers. The computation requirement of each TCS discretization is essentially the

same since they share the same general structure of matrix equations as in Equations

 91

(5.14) to (5.20). Figure 5.1 clearly shows that for a given value of 1θ , any choice of 2θ

gives an error of the same magnitude. The reverse also holds true, as shown in Figure 5.2.

The RMS error is plotted for six values of 2θ , choosing four 1θ values for each 2θ value.

Again, given a value for 2θ , the choice of 1θ affects the RMS error less than or equal to

one order of magnitude.

Though 1 22 3 1 2/ , /θ = θ = gives the lowest RMS error in these two examples,

the best combination for the smallest error is problem-specific; error arises from

approximations of different terms. To obtain optimal combinations of iθ for the lowest

error, one needs to examine the nature of the solution and each term at the designated

marching time. For this Burgers’ equation, the solution u, the gradient term u x/∂ ∂ , and

the diffusion term 2 2u x/ν∂ ∂ all need to be taken into consideration because

approximations have been introduced to all of these terms.

 92

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=0

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=1/3

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=1/2

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=2/3

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=3/4

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=1

θ
2
=0 θ

2
=1/3 θ

2
=1/2 θ

2
=1 2nd order slope

Figure 5.1 Temporal accuracy of various combinations of 1θ and 2θ for solution of the

Burgers’ equation at t=0.6, where x 1 50/∆ = , 0 05.ν = and t 0 6. /∆ = Γ

({ }5, 8, 10, 20, 25, 30, 50Γ∈).

 93

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
2
=0

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
2
=1/3

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
2
=1/2

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
2
=2/3

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
2
=3/4

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
2
=1

θ
1
=0 θ

1
=1/3 θ

1
=1/2 θ

1
=1 2nd order slope

Figure 5.2 Temporal accuracy of various combinations of 2θ and 1θ for solution of the

Burgers’ equation at t=0.6, where x 1 50/∆ = , 0 05.ν = and t 0 6. /∆ = Γ

({ }5, 8, 10, 20, 25, 30, 50Γ∈).

 94

5.3.2 Stability of Different Weighting Factors

Figure 5.1 and 5.2 display the temporal accuracy of the solution of the Burgers’

equation at t=0.6. All TCS discretizations produce stable solutions for the whole range of

tested CFL numbers. To further explore the stability characteristics, we investigate the

performance of the TCS family method at t=0.3, 1 and 2, and these results are shown in

Figure 5.3, 5.4 and 5.5, respectively. Similar to Figure 5.1, the RMS error is plotted

against a range of CFL numbers for several choices of 2θ given a 1θ value. Similar to

t=0.6, all 24 TCS discretizations stay stable at t=0.3.

At t=1and t=2, though, we find different results. At t=1 (Figure 5.4), for any given

1θ value, the solution of 2 1θ = becomes unstable with the increase of the CFL number,

but the solutions for any 2 1θ ≠ remain stable. At t=2, the solutions of both 2 0θ = and

2 1θ = become unstable with the increase of the CFL number, but the solutions with any

20 1< θ < remain stable.

To understand this stability property associated with the 2θ value, we need to

examine the nature of the solution and the meaning of the weighting factor 2θ . The

solution of the Burgers’ equation evolving with time is plotted in Figure 4.1. It can be

observed that after t=0.6, damping dominates the solution, which suggests that the

diffusion effect dominates. The weighting factor 2θ controls the approximation of the

diffusion term as shown in Table 5.1. If 2 0θ = , the entire diffusion term, 2 n 1/ 2 2u / x+ν∂ ∂ ,

is completely approximated using the time-centered split, which means n 1/ 2u + in the

diffusion term is first approximated as ()n 1 2 n n 1u u u 2/ /+ +≈ + and then we split the

diffusion terms into two steps as 2 n 2u / xν∂ ∂ and 2 n 1 2u / x+ν∂ ∂ . If 2 1θ = , the entire

diffusion term, 2 n 1/ 2 2u / x+ν∂ ∂ , is completely approximated using u* , which means

2 n 1/ 2 2 2 * 2u / x u / x+ν∂ ∂ ≈ ν∂ ∂ . Figures 5.1 to 5.5 indicate that the TCS method remains

stable and the stability is not affected by the values of the weighing factors. If the

 95

diffusion dominates the solution, the weighting factor associated with the diffusion term

can affect the stability. Our results suggest that if the weighting factor, 2 20 and 1θ ≠ θ ≠ ,

the solutions remain stable for the tested CFL numbers. In other words, using only one

kind of approximation for the diffusion term, the solution may become unstable with the

increase of the CFL number; using a combination of the two kinds of approximations for

the diffusion term can stabilize the solution.

 96

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=0

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=1/3

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=1/2

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=2/3

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=3/4

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=1

θ
2
=0 θ

2
=1/3 θ

2
=1/2 θ

2
=1 2nd order slope

Figure 5.3 Temporal accuracy of various combinations of 2θ and 1θ for solution of the

Burgers’ equation at t=0.3, where x 1 50/∆ = , 0 05.ν = and t 0 3∆ = Γ. /

({ }5, 8, 10, 20, 25, 30, 50Γ∈).

 97

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=0

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=1/3

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=1/2

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=2/3

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=3/4

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=1

θ
2
=0 θ

2
=1/3 θ

2
=1/2 θ

2
=1 2nd order slope

Figure 5.4 Temporal accuracy of various combinations of 2θ and 1θ for solution of the

Burgers’ equation at t=1, where x 1 50∆ = / , 0 05ν = . and t 1∆ = Γ/

({ }5, 8, 10, 20, 25, 30, 50Γ∈).

 98

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=0

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=1/3

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=1/2

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=2/3

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=3/4

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CFL

ε R
M

S

θ
1
=1

θ
2
=0 θ

2
=1/3 θ

2
=1/2 θ

2
=1 2nd order slope

Figure 5.5 Temporal accuracy of various combinations of 2θ and 1θ for solution of the

Burgers’ equation at t=2, where x 1 50/∆ = , 0 05.ν = and t 2∆ = Γ/

({ }5, 8, 10, 20, 25, 30, 50Γ∈).

 99

The general form of TCS method is demonstrated using the 1D non-conservative

Burgers’ equation. The same application of the weighting factors can be used for an

equation system with coupled variables. Hence, a general form of a two-step linearized

coupled equation system can be created using the same principle. Since the values of the

weighting factors will not affect the 2
nd
-order temporal accuracy of the scheme, TCS

method may provide a flexible approach to solve different problems. Furthermore,

properly chosen weighting factors in the TCS method can computationally decouple a

system of coupled equations. This decoupling advantage of the TCS method is analyzed

in the following section.

5.4 COMPUTATIONAL DECOUPLING

In the previous sections, we demonstrated the effects of weighting factors in the

TCS method on the accuracy and stability of the solution. In this section, we will

introduce the decoupling advantage of the TCS method. The two-dimensional Burgers’

equation provides a convenient example:

2 2

2 2

u u u u u
u v

t x y x y

∂ ∂ ∂ ∂ ∂
+ + = ν + ν

∂ ∂ ∂ ∂ ∂
 (5.21)

2 2

2 2

v v v v v
u v

t x y x y

∂ ∂ ∂ ∂ ∂
+ + = ν + ν

∂ ∂ ∂ ∂ ∂
 (5.22)

Equations (5.21) and (5.22) are a two-variable two-dimensional system with coupled

variables ‘u’ and ‘v’. If we use the 2
nd
-order temporal accurate C-N method to discretize

equations (5.21) and (5.22), the resulting equations become

 100

n n 2 n 2 n
n 1 n n n

2 2

n 1 n 1 2 n 1 2 n 1
n 1 n 1

2 2

t u u u u
u u u v

2 x y x y

t u v u u
u v

2 x y x y

+

+ + + +
+ +

 ∆ ∂ ∂ ∂ ∂
= + − − + ν + ν 

∂ ∂ ∂ ∂ 

 ∆ ∂ ∂ ∂ ∂
+ − − + ν + ν 

∂ ∂ ∂ ∂ 

 (5.23)

n n 2 n 2 n
n 1 n n n

2 2

n 1 n 1 2 n 1 2 n 1
n 1 n 1

2 2

t v v v v
v v u v

2 x y x y

t v v v v
u v

2 x y x y

+

+ + + +
+ +

 ∆ ∂ ∂ ∂ ∂
= + − − + ν + ν 

∂ ∂ ∂ ∂ 

 ∆ ∂ ∂ ∂ ∂
+ − − + ν + ν 

∂ ∂ ∂ ∂ 

 (5.24)

Equations (5.23) and (5.24) are a coupled nonlinear equation system. Conventionally, to

solve a coupled equation system, either a simultaneous solution or a sequential solution

method can be used (Ferziger and Peric, 1996). However, such an equation system is too

complex and expensive to solve simultaneously due to its nonlinearity. Therefore,

sequential solution methods are more appropriate. To solve this equation system

sequentially, inner iterations are required to solve Equations (5.23) and (5.24)

individually, and outer iterations are required to satisfy Equations (5.23) and (5.24)

together.

Alternatively, we can decouple and linearize Equations (5.23) and (5.24) using

TCS method without iterations by choosing specific weighting factors. Applying the TCS

method to Equation (5.21) results in a two-step system with a specific iθ weighting factor

for each term

() () (){
() () ()

() ()

() () }

n n n

1 x 1 x

n n

2 y 2 y

2 2 n

3 x 3 x

2 2 n

4 y 4 y

t
u u u u 1 u u

2

v u 1 v u

u 1 u

u 1 u

* * *

* *

*

*

∆
= + θ − δ + − θ − δ

+ θ − δ + − θ − δ

+ θ νδ + − θ νδ

+θ νδ + − θ νδ

 (5.25)

 101

() () (){
() () ()

()
() }

n 1 n 1 n 1

1 x 1 x

n 1 n 1

2 y 2 y

2 2 n 1

3 x 3 x

2 2 n 1

4 y 4 y

t
u u u u 1 u u

2

v u 1 v u

u 1 u

u 1 u

* * *

* *

*

*

+ + +

+ +

+

+

∆
= + θ − δ + − θ − δ

+ θ − δ + − θ − δ

+ θ νδ + − θ νδ

+θ νδ + − θ νδ

 (5.26)

Applying the TCS method to Equation (5.22) results in a two-step system:

() () (){
() () ()

() ()

() () }

n n n

5 x 5 x

n n

6 y 6 y

2 2 n

7 x 7 x

2 2 n

8 y 8 y

t
v v u v 1 u v

2

v v 1 v v

v 1 v

v 1 v

* * *

* *

*

*

∆
= + θ − δ + − θ − δ

+ θ − δ + − θ − δ

+ θ νδ + − θ νδ

+θ νδ + − θ νδ

 (5.27)

() () (){
() () ()

()
() }

n 1 n 1 n 1

5 x 5 x

n 1 n 1

6 y 6 y

2 2 n 1

7 x 7 x

2 2 n 1

8 y 8 y

t
v v u v 1 u v

2

v v 1 v v

v 1 v

v 1 v

* * *

* *

*

*

+ + +

+ +

+

+

∆
= + θ − δ + − θ − δ

+ θ − δ + − θ − δ

+ θ νδ + − θ νδ

+θ νδ + − θ νδ

 (5.28)

For this two-variable two-dimensional Burgers’ equation, eight different weighting

factors are applied in the general TCS discretized form. Observing Equations (5.21) and

(5.22), we discover that the coupling only occurs in the nonlinear advection term.

Therefore, the weighting factors for the diffusion terms will not affect the computational

decoupling.

In the following discussion, we omit the diffusion terms and their associated

weighting factors. We then discover that the coupling occurs between the nonlinear

advection terms ‘ v u y/∂ ∂ ’ and ‘ u v x/∂ ∂ ’. The two weighting factors for these two terms

are 2θ and 5θ respectively and these two factors are the key to computationally

decoupling the equation system. The other two advection terms ‘ u u x/∂ ∂ ’ and

 102

‘ v v y/∂ ∂ ’ are not coupled. Therefore, we have more choices for their weighting factors

1θ and 6θ . To completely decouple u and v, Table 5.2 shows the possible combinations

of the weighting factors for each advection term.

Table 5.2 Weighting factors for computational decoupling the 2D Burgers’ equation

2θ 5θ 1θ 6θ

0 0

1 0

0 1
0 1

1 1

0 0

1 0

0 1
1 0

1 1

It can be seen from Table 5.2 that two kinds of combinations of 2θ and 5θ can decouple

the 2D Burgers’ equation. For each pair of 2θ and 5θ , four different combinations of

1θ and 6θ can be chosen such as 1 6 0θ = θ = , 1 61 and 0θ = θ = , 1 6 1θ = θ = ,

1 60 and 1θ = θ = . To illustrate the procedure of decoupling, we use the values from the

first row in Table 5.2, applying 2 5 1 60 1 0 0, , ,θ = θ = θ = θ = to Equations (5.25) to

(5.28) and reordering the equation system to

 ()n n n

x y

t
v v u v v v

2

* * *∆
= + − δ − δ (5.29)

 ()n n n

x y

t
u u u u v u

2

* * *∆
= + − δ − δ (5.30)

 ()n 1 n 1 n 1

x y

t
u u u u v u

2

* * *+ + +∆
= + − δ − δ (5.31)

 ()n 1 n 1 n 1

x y

t
v v u v v v

2

* * *+ + +∆
= + − δ − δ (5.32)

 103

Each step from Equation (5.29) to (5.32) is computationally linearized, and each

step has only one unknown variable. Variables “u” and “v” are effectively decoupled in

each step. The solution process for these chosen weighting factors is as follows:

1. Solve for v* using nu and nv

2. Solve for u* using nu and v* obtained from step 1

3. Solve for n 1u + using u* obtained from step 2 and v* obtained from step 1

4. Solve for n 1v + using n 1u + obtained from step 3 and v* obtained from step 1

A different combination of weighting factors from Table 5.2 results in a different

equation system, and the order of the solution procedure is changed appropriately. Using

the following set of weighting factors in Equations (5.25) to (5.28): 2 1θ = , 5 0θ = ,

1 0θ = , and 6 0θ = , results in the following system:

 ()n n n

x y

t
u u u u v u

2

* * *∆
= + − δ − δ (5.33)

 ()n n n

x y

t
v v u v v v

2

* * *∆
= + − δ − δ (5.34)

 ()n 1 n 1 n 1

x y

t
v v u v v v

2

* * *+ + +∆
= + − δ − δ (5.35)

 ()n 1 n 1 n 1

x y

t
u u u u v u

2

* * *+ + +∆
= + − δ − δ (5.36)

The corresponding solution process is:

1. Solve for u* using nu and nv

2. Solve for v* using nv and u* obtained from step 1

3. Solve for n 1v + using v* obtained from step 2 and u* obtained from step 1

4. Solve for n 1u + using n 1v + obtained from step 3 and u* obtained from step 1

This computational decoupling technique can be extended to equation systems

with more than two variables. The underlying principle for decoupling is that when the

weighting factor is switched from 0 to 1, the approximation for the variable n 1 2/+φ is

 104

changed from *φ to either nφ or n 1+φ . Consequently, we can change the variable in one

equation from unknown to known.

5.5 SUMMARY

A general form of the TCS family method is developed in this chapter by

introducing a weighting factor iθ for each term in a quadratic nonlinear differential

equation. The 1D non-conservative Burgers’ equation is used as an example to test how

the weighting factors affect the solutions. The value of iθ controls the approximations of

the advection and diffusion terms. If iθ =0 or iθ =1, the advection term or the diffusion

term is approximated only by one kind of approximation; if iθ lies between 0 and 1, the

advection term or the diffusion term is approximated by the combination of two

approximations. Although various TCS discretizations can be generated by changing iθ

the 2
nd
 order temporal accuracy of the TCS method is not affected by the choice of the

weighting factor. We proved analytically and by examples that the TCS family method is

2
nd
-order temporal accurate if i0 1≤ θ ≤ . Different combinations of iθ value have been

tested using 1D Burgers’ equation as an example. The results presented here show that

the optimum combination of the weighting factors for the most accurate solutions is

problem-specific. However, our results indicate that the optimal values for the weighting

factors lie between 0 and 1 such that the advection term and diffusion term are

approximated using the combination of two different approximations. Our examples also

demonstrate the stability advantage of the TCS method. When the advection effect is

dominant, the stability is not affected by iθ value and all the tested TCS discretizations

remain stable for the whole range of CFL numbers. When the diffusion effect is

dominant, the TCS method stays stable under all iθ values except 0 or 1 for the diffusion

 105

term. This observation suggests that the solution from the TCS method may be stabilized

by adjusting the weighting factors. Most of the problems in Environmental Fluid

Mechanics are dominated by advection. Hence, the TCS family method has a promising

stability advantage in simulating environmental flows.

In addition to its accuracy and stability advantages, the TCS method is also

capable of decoupling coupled equation systems by choosing specific combinations of

the weighting factors. This advantage is displayed using the two-dimensional Burgers’

equation as an example. Compared to the conventional decoupling techniques, no

iteration is required in the TCS method. Therefore, the TCS method is more efficient in

solving coupled nonlinear equation systems. Moreover, the TCS family method provides

theoretically unlimited possible discretizations for one problem. This, in turn, provides

flexibility in discretizing specific problems.

In the next chapter, we will apply the TCS method to a multi-variable and multi-

dimensional equation system: depth averaged shallow water equations (SWE). The

advantage of computational linearization and decoupling of the TCS method will be

further illustrated in the next chapter. Numerical experiments will be carried out to test

the TCS discretized depth averaged SWE.

 106

Chapter 6 Application of the TCS Method to a 2D Depth Averaged

Shallow Water Equations (SWE)

The TCS (Time-Centered Split) family of methods are derived and analyzed in

Chapter 5. To investigate the application of the TCS method in a multi-variable and

multi-dimension equation system, depth averaged SWE (shallow water equations) is

solved using the TCS method in this chapter. The computational decoupling

characteristics of the TCS method are explored using depth averaged SWE as an

example. The decoupling procedure is discussed and three representative linearized and

decoupled TCS discretizations are presented in this Chapter. Numerical experiments such

as a one-dimensional standing wave and a two-dimensional standing wave in a

rectangular domain are performed to verify the TCS numerical model. In the one-

dimensional standing wave case, the numerical results are compared with the analytical

solutions; and in the two-dimensional standing wave case, the characteristics and

performance from three TCS discretizations are compared and discussed.

6.1. THE 2D DEPTH AVERAGED SWE

The 2D depth averaged SWE are obtained by integrating the 3D incompressible

Navier-Stokes equations over the water depth with the two following assumptions: 1)

neglecting the vertical velocity and acceleration; 2) applying a hydrostatic pressure

distribution (Vreugdenhil 1994). These equations are widely used in hydraulic science

and engineering (Ancey et al. 2008; Arega et al. 2008; Hunter et al. 2008). The definition

of “shallow” requires that the vertical scale of the flow is small compared to the

horizontal scale. In nature or common engineering practice, many types of flows fall into

this category such as atmospheric flow (Mohebalhojeh and Dritschel 2007), river flow

 107

(Arega et al. 2008), and storm surge (Bajo et al. 2007). Although the 2D SWE cannot

simulate vertical velocity gradients, they are useful for flows where strong turbulence

provides complete vertical mixing of momentum or for flows dominated by barotropic

motions. The 2D shallow water equations can be written as:

2 2

2 2

U U U U U
U V g

t x y x x y

 ∂ ∂ ∂ ∂ζ ∂ ∂
+ + = − + ν + ∂ ∂ ∂ ∂ ∂ ∂ 

 (6.1)

2 2

2 2

V V V V V
U V g

t x y y x y

 ∂ ∂ ∂ ∂ζ ∂ ∂
+ + = − + ν + ∂ ∂ ∂ ∂ ∂ ∂ 

 (6.2)

H HU HV

0
t x y

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (6.3)

 bH Zζ = + (6.4)

where U and V are depth-averaged velocities in x and y directions; g is the

gravitational acceleration; H is the water depth; ζ is the water surface elevation; and

bZ is the bottom elevation. The above statement of the 2D SWE neglects the turbulence

closure and bottom stress for the test case of the TCS numerical method.

6.2 THE TCS DISCRETIZED SWE

Applying the midpoint rule between time n and n+1 along with central-

differencing of spatial derivatives on an Arakawa C grid (Arakawa and Lamb, 1977), as

shown in Figure 6.1, Equations (6.1), (6.2) and (6.3) can be discretized as a set of coupled

nonlinear equations:

 108

() ()

()

n 1/ 2 n 1/ 2 n 1/ 2 n 1/ 2

i, j 3/ 2 i, j 1/ 2 i 1, j 1/ 2 i 1, j 1/ 2n 1 n n 1/ 2 n 1/ 2

i, j 1/ 2 i, j 1/ 2 i, j 1/ 2 i, j 1/ 2

n 1/ 2 n 1/ 2 n 1/ 2

i, j 1/ 2 i, j 1/ 2 i, j 3/ 22

n 1/ 2 n

i 1, j 1/ 2 i, j 1/ 22

U U U U
U U t U V

2 x 2 y

U 2U U
x

U 2U
y

+ + + +
+ − + + − ++ + +

+ + + +

+ + +
− + +

+ +
− + +

 − −
= + ∆ − −

∆ ∆
ν

+ − +
∆

ν
+ −
∆

()

()

1/ 2 n 1/ 2

i 1, j 1/ 2

n 1/ 2 n 1/ 2

i, j 1 i, j

U

g

x

+
+ +

+ +
+

+

− ζ − ζ 
∆ 

 (6.5)

() ()

()

n 1/ 2 n 1/ 2 n 1/ 2 n 1/ 2

i 1/ 2, j 1 i 1/ 2, j 1 i 3/ 2, j i 1/ 2, jn 1 n n 1/ 2 n 1/ 2

i 1/ 2, j i 1/ 2, j i 1/ 2, j i 1/ 2, j

n 1/ 2 n 1/ 2 n 1/ 2

i 1/ 2, j 1 i 1/ 2, j i 1/ 2, j 12

n 1/ 2

i 1/ 2, j i 1/ 2, j2

V V V V
V V t U V

2 x 2 y

v
V 2V V

x

v
V 2V

y

+ + + +
+ + + − + −+ + +

+ + + +

+ + +
+ − + + +

+
− +

 − −
= + ∆ − −

∆ ∆

+ − +
∆

+ −
∆

()

()

n 1/ 2 n 1/ 2

i 1/ 2, j

n 1/ 2 n 1/ 2

i 1, j i, j

V

g

y

+ +
+

+ +
+

+


− ζ − ζ 
∆ 

 (6.6)

()

()

n 1 n n 1/ 2 n 1/ 2 n 1/ 2 n 1/ 2

i, j i, j i, j 1/ 2 i, j 1/ 2 i, j 1/ 2 i, j 1/ 2

n 1/ 2 n 1/ 2 n 1/ 2 n 1/ 2

i 1/ 2, j i 1/ 2, j i 1/ 2, j i 1/ 2, j

1
H H t H U H U

x

1
H V H V

y

+ + + + +
+ + − −

+ + + +
+ + − −

= + ∆ − −
∆


− − 
∆ 

 (6.7)

 109

Figure 6.1 Illustration of Arakawa C grid.

As illustrated in Figure 6.1, Arakawa C grid is one kind of staggered grid. Cartesian

staggered grid is standard in modeling SWE (Schoenstadt 1980; Stelling and Duinmeijer

2003). In Equations (6.5) to (6.7), the discrete value of the velocity component U is

defined at (i, j+1/2); and the value of the velocity component V is defined at (i+1/2, j);

and the discrete value of surface elevation ζ is defined at (i, j). In Equation (6.5), V (i,

j+1/2) is obtained by the linear interpolation of the values: V (i+1/2, j), V (i-1/2, j), V

(i+1/2, j+1), and V (i-1/2, j+1). In Equation (6.6), U (i+1/2, j) is obtained by the linear

interpolation of the values: U (i, j+1/2), U (i+1, j+1/2), U (i, j-1/2), and U (i+1, j-1/2). In

Equation (6.7), H (i, j+1/2) is obtained by the linear interpolation of the values of H (i, j)

and H (i, j+1). H (I, j-1/2) is obtained by the linear interpolation of the values of H (i, j)

and H (i, j-1).

Velocity, U Velocity, V Surface elevation, ζ

j

1 2 3 4

1

2

3

i U

V

j+1/2

i+1/2

 110

To simplify exposition of the TCS method, we will use the shorthand notation xδ

and yδ for spatial derivatives in x and y, resulting in:

()n 1 n n 1/ 2 n 1/ 2 n 1/ 2 n 1/ 2 2 n 1/ 2 2 n 1/ 2 n 1/ 2

x y x y x

t
U U U U V U U U g

2

+ + + + + + + +∆  = + − δ − δ + ν δ + δ − δ ζ  (6.8)

()n 1 n n 1/ 2 n 1/ 2 n 1/ 2 n 1/ 2 2 n 1/ 2 2 n 1/ 2 n 1/ 2

x y x y y

t
V V U V V V V V g

2

+ + + + + + + +∆  = + − δ − δ + ν δ + δ − δ ζ  (6.9)

 () ()n 1 n n 1/ 2 n 1/ 2 n 1/ 2 n 1/ 2

x y

t
H U H V

2

+ + + + +∆  ζ = ζ + −δ − δ  (6.10)

Equations (6.8) through (6.10) are a nonlinear three-variable coupled time dependent

system. However, this complex equation system can be computationally linearized and

decoupled by applying the TCS method. The general form of TCS discretized SWE U-

velocity equation is:

() () (){
() () ()

() ()

() ()

() }

n n n

1 x 1 x

n n

2 y 2 y

2 2 n

3 x 3 x

2 2 n

4 y 4 y

n

5 x 5 x

t
U U U U 1 U U

2

V U 1 V U

U 1 U

U 1 U

g 1 g

* * *

* *

*

*

*

∆
= + θ − δ + − θ − δ

+ θ − δ + − θ − δ

+ θ νδ + − θ νδ

+ θ νδ + − θ νδ

−θ δ ζ − − θ δ ζ

 (6.11)

() () (){
() () ()

()
()
() }

n 1 n 1 n 1

1 x 1 x

n 1 n 1

2 y 2 y

2 2 n 1

3 x 3 x

2 2 n 1

4 y 4 y

n 1

5 x 5 x

t
U U U U 1 U U

2

V U 1 V U

U 1 U

U 1 U

g 1 g

* * *

* *

*

*

*

+ + +

+ +

+

+

+

∆
= + θ − δ + − θ − δ

+ θ − δ + − θ − δ

+ θ νδ + − θ νδ

+ θ νδ + − θ νδ

− θ δ ζ − − θ δ ζ

 (6.12)

where the summation of Equations (6.11) and (6.12) is Equation (6.8). Similarly, for the

other equations, it follows that,

 111

() () (){
() () ()

() ()

() ()

() }

n n n

6 x 6 x

n n

7 y 7 y

2 2 n

8 x 8 x

2 2 n

9 y 9 y

n

10 y 10 y

t
V V U V 1 U V

2

V V 1 V V

V 1 V

V 1 V

g 1 g

* * *

* *

*

*

*

∆
= + θ − δ + − θ − δ

+ θ − δ + − θ − δ

+ θ νδ + − θ νδ

+ θ νδ + − θ νδ

−θ δ ζ − − θ δ ζ

 (6.13)

() () (){
() () ()

()
() }

() }

n 1 n 1 n 1

6 x 6 x

n 1 n 1

7 y 7 y

2 2 n 1

8 x 8 x

2 2 n 1

9 y 9 y

n 1

10 y 10 y

t
V V U V 1 U V

2

V V 1 V V

V 1 V

V 1 V

g 1 g

* * *

* *

*

*

*

+ + +

+ +

+

+

+

∆
= + θ − δ + − θ − δ

+ θ − δ + − θ − δ

+ θ νδ + − θ νδ

+θ νδ + − θ νδ

− θ δ ζ − − θ δ ζ

 (6.14)

and the summation of Equations (6.13) and (6.14) is equivalent to Equation (6.9). The

two steps of the ζ -equation are:

() () (){

() () ()}

* n * n n *

11 x 11 x

* n n *

12 y 12 y

t
H U 1 H U

2

H V 1 H V

∆
ζ = ζ − θ δ + − θ δ

+ θ δ + − θ δ
 (6.15)

() () (){
() () ()}

n 1 * * n 1 n 1 *

11 x 11 x

* n 1 n 1 *

12 y 12 y

t
H U 1 H U

2

H V 1 H V

+ + +

+ +

∆
ζ = ζ − θ δ + − θ δ

+ θ δ + − θ δ
 (6.16)

and the summation of Equation (6.15) and (6.16) is equivalent to Equation (6.10). In the

above equation system, iθ is the weighting factor and { }i 1 2 12, , ,∈ K for each term. As

discussed in Chapter 5, properly chosen iθ can computationally decouple and linearize

the equation system. In the next section, we will illustrate the possible decoupled

discretizations for Equations (6.1) through (6.4).

 112

6.3 DECOUPLING THE SWE

Observing Equations (6.1) through (6.4), we discover that the advection terms

V U / y∂ ∂ and U V / x∂ ∂ couple the two momentum equations for U and V. g / x∂ζ ∂ and

HU / x∂ ∂ couple the U-momentum equation and the continuity equation. g / y∂ζ ∂ and

HV / y∂ ∂ couple the V-momentum equation and the continuity equation. Consequently,

the weighting factors associated with these terms are crucial in the decoupling process.

By examining Equations (6.11) through (6.16), the weighting factors are

2 5 6 10 11 12andθ θ θ θ θ θ, , , , , . The other weighting factors, including the ones for the viscous

terms, 3 4 8 9θ θ θ θ, , , and the ones for non-coupled advection terms, 1 7θ θ, , are not

involved in the decoupling process. In other words, the values of the weighting factors,

1 3 4 7 8 9andθ θ θ θ θ θ, , , , , , will not affect the decoupling process.

There are limited combinations of the weighting factors, 2 5 6 10 11 12andθ θ θ θ θ θ, , , , ,

that will produce a completely decoupled equation system. Each combination will create

a unique discretization and a solution order. The principal for the decoupling process is

that only one dependent variable can appear in each equation and we can change the

number of the variables by changing the values of the weighting factors. This can be

better understood by the following example:

• If Equation (6.11) for *U is chosen to be solved first, 2 1θ = and 5 0θ = are

necessary conditions, because only one dependent variable *U can be

included. Thus, the weighting factors for * *V and ζ have to be equal to 0.

It follows that Equation (6.12) for n 1U + will include n 1 n 1V and+ +ζ . To

have a decoupled solution, Equation (6.12) for n 1U + has to be solved at the

last. This unique solution sequence holds true for each variable. If *V or

*ζ is chosen to be solved first, then n 1V + or n 1+ζ has to be solved last.

 113

• If Equation (6.13) for *V is solved right after *U , 6 100 and 0θ = θ = are

necessary conditions. In Equation (6.13), *ζ cannot be included, so 10θ has

to equal to 0, which causes n 1+ζ to be included in Equation (6.14) . To

have a decoupled solution, Equation (6.16) for n 1+ζ has to be solved

before Equation (6.14) for n 1V + . Furthermore, in Equation (6.14), n 1U +

cannot be included since n 1U + will be obtained at the end, therefore 6θ

has to equal to 0. After choosing the second equation, two more weighting

factors are decided and solution order is decided as *U , *V , *ζ then n 1+ζ ,

n 1V + and n 1U + .

• Since n 1+ζ has to be solved before n 1U + and n 1V + , 11 120 and 0θ = θ = are

necessary conditions because n 1U + and n 1V + cannot be included in

Equation (6.16).

• Hence, from the procedure described above, we can see that a solution

order determines a unique combination of weighting factors. Since we

have six equations in the system, six solution orders exist. Table 6.1 lists

all six solution orders and their correspondent combinations of the

weighting factors.

 114

Table 6.1 Weighting factors and the solution orders for decoupled Equations (6.11)
through (6.16).

row 2θ 5θ 6θ 10θ 11θ 12θ solution order

a 0 1 1 0 1 0
*V , *ζ , *U , n 1U + , n 1+ζ , n 1V +

b 1 0 0 1 0 1
*U , *ζ , *V , n 1V + , n 1+ζ , n 1U +

c 1 0 0 0 0 0
*U , *V , *ζ , n 1+ζ , n 1V + , n 1U +

d 0 0 1 0 0 0
*V , *U , *ζ , n 1+ζ , n 1U + , n 1V +

e 1 1 0 1 1 1 *ζ , *U , *V , n 1V + , n 1U + , n 1+ζ

f 0 1 1 1 1 1 *ζ , *V , *U , n 1U + , n 1V + , n 1+ζ

6.4 CHARACTERISTICS OF THE TCS DECOUPLED EQUATION SYSTEM

The main advantage of the TCS method is that it can completely decouple and

linearize an equation system with quadratic nonlinearity. As shown in the previous

section, multiple TCS decoupled and linearized discretizations exist. To explore this

characteristic of the TCS method, we choose values from row a, c and e in Table 6.1 to

create three different TCS discretizations since the continuity equation is solved in

different orders in these three rows.

Choosing weighting factors from row a, Equations (6.11) to (6.16) become a two

step computationally linearized and decoupled equation system. The implicit steps for

solution of intermediate variables (* * *U , V ,ζ) are

 ()* n n * n * 2 * 2 * n

x y x y x

t
V V U V V V V V g

2

∆  = + − δ − δ + ν δ + δ − δ ζ  (6.17)

 115

 () ()* n * n n *

x y

t
H U H V

2

∆  ζ = ζ − δ + δ  (6.18)

 ()* n * n * n 2 * 2 * *

x y x y x

t
U U U U V U U U g

2

∆  = + − δ − δ + ν δ + δ − δ ζ  (6.19)

where * *

bZ Hζ − = . The implicit steps for the ‘n+1’ values are sequentially solved as

 ()n 1 * * n 1 * n 1 2 * 2 * *

x y x y x

t
U U U U V U U U g

2

+ + +∆  = + − δ − δ + ν δ + δ − δ ζ  (6.20)

 () ()n 1 * * n 1 n 1 *

x y

t
H U H V

2

+ + +∆  ζ = ζ − δ + δ  (6.21)

 ()n 1 * n 1 * n 1 * 2 * 2 * n 1

x y x y y

t
V V U V V V V V g

2

+ + + +∆  = + − δ − δ + ν δ + δ − δ ζ  (6.22)

As we stated in section 6.3, weighting factors for the viscous terms and non-

coupled advection terms will not affect the decoupling process, so the values for these

weighting factors can be anything from 0 to 1. In Equations (6.17) through (6.22), the

weighting factors for the viscous terms: 3 4 8 9 1θ = θ = θ = θ = and the weighting factors

for the non-coupled advection terms: 1 1θ = and 7 1θ = . Thus the original set of the

coupled nonlinear equations becomes a sequence of linear implicit equations for each

variable. All variables in Equations (6.17) through (6.22) are solved in order

as: * * * n 1 n 1 n 1V , , U , U , , and V+ + +ζ ζ . We call the solution from the above equation system

“TCS solution 1”.

In the same vein, if we choose the weighting factors at row c combining

3 4 8 9 1θ = θ = θ = θ = , 1 1θ = and 7 1θ = , a different decoupled and linearized

discretization is obtained. In the first step, intermediate variables (* * *U ,V ,ζ) are solved

as

 ()n n n 2 2 n

x y x y x

t
U U U U V U U U g

2

* * * * *∆  = + − δ − δ + ν δ + δ − δ ζ  (6.23)

 116

 ()n n n 2 2 n

x y x y y

t
V V U V V V V V g

2

* * * * *∆  = + − δ − δ + ν δ + δ − δ ζ  (6.24)

 () ()* n n * n *

x y

t
H U H V

2

∆  ζ = ζ − δ + δ  (6.25)

and in the second step,

 () ()n 1 * n 1 * n 1 *

x y

t
H U H V

2

+ + +∆  ζ = ζ − δ + δ  (6.26)

 ()n 1 n 1 n 1 2 2 n 1

x y x y y

t
V V U V V V V V g

2

* * * * *+ + + +∆  = + − δ − δ + ν δ + δ − δ ζ  (6.27)

 ()n 1 n 1 n 1 2 2 n 1

x y x y x

t
U U U U V U U U g

2

* * * * *+ + + +∆  = + − δ − δ + ν δ + δ − δ ζ  (6.28)

The solution order of the equation set (6.17) to (6.22) is changed to

* * * n 1 n 1 n 1U ,V , , , V , U+ + +ζ ζ . The solution from Equations (6.23) to (6.28) is called “TCS

solution 2”.

Similarly, anther set of equations can be obtained by using the weighting factors

in row e combining 3 4 8 9 1θ = θ = θ = θ = , 1 1θ = and 7 0θ = . In the first step,

 () ()* n * n * n

x y

t
H U H V

2

∆  ζ = ζ − δ + δ  (6.29)

 ()n n n 2 2

x y x y x

t
U U U U V U U U g

2

∆  = + − δ − δ + ν δ + δ − δ ζ 
* * * * * * (6.30)

 ()n n n 2 2

x y x y y

t
V V U V V V V V g

2

∆  = + − δ − δ + ν δ + δ − δ ζ 
* * * * * * (6.31)

and in the second step,

 ()n 1 n 1 n 1 2 2

x y x y y

t
V V U V V V V V g

2

+ + +∆  = + − δ − δ + ν δ + δ − δ ζ 
* * * * * * (6.32)

 ()n 1 n 1 n 1 2 2

x y x y x

t
U U U U V U U U g

2

+ + +∆  = + − δ − δ + ν δ + δ − δ ζ 
* * * * * * (6.33)

 () ()n 1 * * n 1 * n 1

x y

t
H U H V

2

+ + +∆  ζ = ζ − δ + δ  (6.34)

 117

In the above equation system, the solution order is * * * n 1 n 1 n 1, U ,V , V , U ,+ + +ζ ζ . We call

this “TCS solution 3”.

Each TCS discretization has a different solution procedure. Table 6.2 provides the

detailed solution procedures for each TCS method.

Table 6.2 Solution procedures of the three TCS discretizations

Step TCS solution 1 TCS solution 2 TCS solution 3

* n n nV U , V ,← ζ * n n nU U , V ,← ζ * n n nU , V ,ζ ← ζ

* n * nU , V ,ζ ← ζ * * n nV U , V ,← ζ * n n *U U , V ,← ζ 1

* n * *U U , V ,← ζ * * * nU , V ,ζ ← ζ * * n nV U , V ,← ζ

n 1 * * *U U , V ,+ ← ζ n 1 * * *U , V ,+ζ ← ζ n 1 * * *V U , V ,+ ← ζ

n 1 n 1 * *U , V ,+ +ζ ← ζ n 1 * * n 1V U , V ,+ +← ζ n 1 * n 1 *U U , V ,+ +← ζ 2

n 1 n 1 * n 1V U , V ,+ + +← ζ n 1 * n 1 n 1U U , V ,+ + +← ζ n 1 n 1 n 1 *U , V ,+ + +ζ ← ζ

6.5 NUMERICAL TESTS

To test the general performance of the TCS method in solving 2D depth averaged

SWE, a series of numerical experiments are presented in this section. In these numerical

experiments, we want to test 1) how the method treats the nonlinear terms such as

U V / x∂ ∂ , V U / y∂ ∂ , HU / x∂ ∂ and HV / y∂ ∂ ; 2) how the method decouples the terms

 118

U, V, and H; and 3) How different discretizations and different solution procedures

affect the solutions.

A one-dimensional standing wave in a closed basin is first tested to compare our

numerical model with the analytical solution. A two-dimensional standing wave in a

closed basin is simulated to investigate the different characteristics among three TCS

solutions. As an initial attempt to simulating an open boundary case, a one-dimensional

wave traveling through an open boundary system is tested in Appendix A.

6.5.1 One dimensional Standing Waves

As a first test of the TCS method, a free surface standing wave in a rectangular

basin has been simulated and is shown schematically in Figure 6.2. Free-slip boundary

conditions are enforced on all walls. An equally-spaced 20 5× mesh is applied to the

computational domain.

L

H

2a

x

yz

Figure 6.2 A standing wave in a rectangular basin

 119

Analytical Solution

The period of an inviscid free surface wave is (Dean and Dalrymple 1998):

 () 12
T tanh kH

g

−πλ
=    (6.35)

According to linear wave theory, the wave function is a sinusoid for small amplitude

waves. The surface height (h) above the still water level is:

 () ()h(x, t) a sin kx sin t= σ (6.36)

where the frequency (σ) is 2 / Tπ . For a viscous unconfined wave in deep water, the

evolution of the wave amplitude can be approximated as (Lamb 1932),

22 k ta(t) a(0)e− ν= (6.37)

where ‘a’ is the free surface wave amplitude, ‘ν ’ is kinematic viscosity and ‘ k ’ is the

wavenumber. However, wave damping based on Equation (6.37) is unlikely to be well-

represented in a 2D depth-averaged model as vertical velocity and vertical velocity shears

are part of the closure term. The Reynolds number is defined as:

Lu

Re =
ν

 (6.38)

where L is the length of the basin, ν is the kinematic viscosity and u is the

characteristic Cartesian fluid velocity based on the wave amplitude (a) and the wave

frequency (σ) :

 u a= σ (6.39)

Results and Discussion

Simulations have been run for different cases to examine a variety of model

characteristics. Three simulations with different initial wave steepness (i.e. ratio of wave

 120

amplitude to basin length) are presented in Figure 6.3. The three simulations were run in

an inviscid flow to minimize the viscous damping effects. In Figure 6.3, results of the

simulations illustrate the nondimensionalized water surface elevation (i.e. ()H / aζ −)

at x x / 2= ∆ , which is the grid cell center closest to the left wall. The important

parameters for these three test cases are listed in Table 6.3.

Table 6.3 Parameters of simulations of a 1D standing wave

case H/L a/L L /λ

6.4a 0.05 0.05% 0.5

6.4b 0.05 0.2% 0.5

6.4c 0.05 0.5% 0.5

 121

0 1 2 3 4 5 6 7
−1

0

1

t/T

(ζ
−

H
)/

a

case a: a/L=0.05%

0 1 2 3 4 5 6 7
−1

0

1

t/T

(ζ
−

H
)/

a

case b: a/L=0.2%

0 1 2 3 4 5 6 7
−1

0

1

t/T

(ζ
−

H
)/

a

case c: a/L=0.5%

TCS solution 1 TCS solution 2 TCS solution 3 analytical solution

Figure 6.3 Simulations in the inviscid flow with different wave steepness

Figure 6.3 shows results of the three different initial wave steepness. The non-

linearity of the advection term causes nonlinear wave steepening. Hydrostatic

approximation from the depth averaged SWE enhances the nonlinear steepening because

the dispersive effects from the non-hydrostatic effects are neglected (Daily and Imberger

2003). This nonlinear steepening can be observed from Figure 6.3. Furthermore, with the

increase of the nonlinearity of the wave (i.e. the initial wave steepness), the nonlinear-

steepening effects increase. In case 6.3a, a very small initial wave steepness is introduced

and the simulation shows little nonlinear effects. When the initial steepness is increased

in case 6.3b and 6.3c, the nonlinear effects become apparent. In theory, a series of

solitary wave can be formed when the nonlinear steepening is balanced by the non-

 122

hydrostatic pressure gradient (Miropol'sky 2001). However, In Figure 6.3c, a train of

solitary waves can be observed from the TCS simulations, which are solutions under

hydrostatic approximation. This is probably due to the numerical dispersion, which plays

an opposition effect to the nonlinear steepening. This phenomena has been reported in

other literatures (Hodges et al. 2006; Wadzuk 2004).

Figure 6.4 displays the viscous damping effects in our shallow water model. The

Reynolds number is equal to 0.1, which indicates a very viscous flow. The simulation

results damped faster than the analytical solution. This is mainly a result of the staggered

grids used in the numerical model. The staggered grids necessitate averaging from the

cell surfaces, which creates numerical dissipation (Garcia and Kahawita 1986).

0 1 2 3

−1

0

1

t/T

(ζ
−

H
)/

a

Re=0.1, H/L=0.05, a/L=0.05%

TCS solution 1 TCS solution 2 TCS solution3 analytical solution

Figure 6.4 Viscous damping effects in the shallow water model

 123

In Figures 6.3 and 6.4, the results from the three TCS discretizations are

indistinguishable. To have a better comparison among three TCS solutions, we run a

simulation of a two dimensional standing wave in a square box in the next section.

6.5.2 Two-dimensional Standing Waves

In this test case, the ability of the TCS method to simulate a two dimensional

finite-amplitude free surface wave in a square box is investigated and the performances

from different TCS discretizations are compared.

A two-dimensional free surface standing wave in a square box is shown in Figure

6.5. This initial wave is linearly composed by two one-dimensional (one in x-direction

and the other one in y direction) identical and orthogonal standing waves, which is also

shown in Figure 6.5. This superimposed condition creates a two dimensional standing

wave that is exactly symmetric to the diagonal plane of the square box. The horizontal

scale of the square box is 10m 10× m, and the initial still water elevation is 0.5m. The

initial wave amplitude for the two one-dimensional waves is 0.005m. The computational

domain is illustrated in Figure 6.6. The surface elevation is measured from the still water

surface and nondimensionalized by the wave amplitude which is the summation of the

one dimensional wave amplitudes. The horizontal length scales are normalized by the

wave length. A 20 20× mesh is used in this simulation and the free slip condition is

enforced on all the side walls. The simulation is run in an inviscid flow condition to

eliminate the viscous effects. Table 6.4 listed all the important parameters in the

simulations of this 2D standing wave.

 124

0.1
0.2

0.3
0.4

0.5
0.1

0.2
0.3

0.4
0.5

−1.5

−1

−0.5

0

0.5

1

1.5

y/λ

initial suface elevation

x/λ

(ζ
−

H
)/

2
a (0, 0)

(0, 0.5)

(0.5, 0.5)

(0.5, 0)

0.1
0.2

0.3
0.4

0.5

0.1
0.2

0.3
0.4

0.5

−1

0

1

x/λ

initial x−wave

y/λ

(ζ
−

H
)/

a

0.1
0.2

0.3
0.4

0.5

0.1

0.2

0.3

0.4

0.5

−1

0

1

x/λ

initial y−wave

y/λ

(ζ
−

H
)/

a

Figure 6.5 The initial 2D standing wave and its decomposed x and y direction 1D wave

 125

10m
10m

0
.5

m

initial wave amplitude: 0.01m

Figure 6.6 Computational domain (not to scale)

Table 6.4 Parameters of simulations of the 2D standing wave

L λ a H x∆ y∆ t∆ ν

10m 20m 0.005m 0.5m 0.5m 0.5m 0.01s 0

Although six representative decoupled linearized TCS discretizations and their

correspondent solution orders are listed in Table 6.1, only three discretizations need to be

tested here because velocity U and V are given symmetrically. In TCS solution 1, the

surface elevation *ζ and n 1+ζ are solved in between two velocity equations; In TCS

solution 2, the surface elevation *ζ is solved after the two velocity equations and n 1+ζ is

 126

solved before the two velocity equations; In TCS solution 3, *ζ is solved before the two

velocity equations and n 1+ζ is solved after the two velocity equations.

To explore how different discretizations and solution orders affect the results. We

first compare the results from TCS solutions 1, 2 and 3 at different simulation times. The

simulation time is normalized by the wave period, T. In Figure 6.7, the surface elevation

contour calculated using these three TCS forms are plotted for the whole computational

domain at time 4T. The surface elevation is measured from the still water surface and

normalized by the amplitude. The horizontal length scale is normalized by the wave

length, λ . The surface elevation contour from TCS solution 2 and 3 are nearly identical,

and the result from TCS solution 1 behaves differently than that from solution 2 and 3.

The result from each solution has a symmetric shape. When the simulation time is

increased to 15T (results shown in Figure 6.8), TCS solution 2 and 3 still perform

similarly, but TCS solution 1 has an observable difference. Similar phenomena can be

better observed in the velocity U and V contours. Figure 6.9 and 6.10 demonstrate the U-

velocity simulated using three TCS methods at 4T and 15 T respectively. Figure 6.11 and

6.12 display the V-velocity at 4T and 15T respectively. Each velocity component in the

figures is normalized by its maximum value. The results form TCS solution 2 and 3 are

almost the same, but the result from TCS solution is different.

This can be analyzed by the solution procedures of the three tested TCS

discretizations presented in Table 6.2. First of all, in TCS solution 1, the continuity

equation (solving ζ) is solved in between two momentum equations (solving U and V);

but in both TCS solutions 2 and 3, the two momentum equations are solved

consecutively. The only difference between TCS solution 2 and 3 is that one solve

momentum equations first, the other solve continuity equation first in one time step.

However, this difference between solution 2 and 3 could be reduced with the marching of

 127

the simulation time. Second, in TCS solution 1, the surface elevation *ζ is solved using

the velocity components, nU and *V in the first step; and n 1+ζ is solved using the

velocity components, n 1U + and *V in the second step. Thus, in TCS solution 1, the

surface elevation is obtained using a velocity vector field which is constructed by the

components from different time steps. Third, we further discover that water depth H is

not used symmetrically in the continuity equation. In Equation (6.18), nH is used in the x

direction, but *H is used in the y direction to solve *ζ in the first step; in Equation (6.21),

*H is used in x direction but n 1H + is used in the y direction to solve n 1+ζ . All of these

asymmetric solution procedures introduce extra numerical errors since our initial

condition is symmetric. However, in both TCS solutions 2 and 3, the surface elevation is

obtained using the velocity components and water depth at the same time step although

the velocity field and water depth are not exactly symmetric because of the sequential

solution procedure. The difference caused by different solution procedure is further

exemplified by a cross mode analysis in the following.

 With the given symmetric initial condition, ideally, we should expect this

standing wave oscillates along one diagonal line and no wave motion should be expected

in the cross direction. That means, the wave surface oscillates at point (0, 0) and (0.5, 0.5)

with an amplitude 0.01m (2 0.005m×), and the wave surface should be fixed at point

(0.5, 0) and (0, 0.5). However, the TCS decoupled equation system is solved in a

sequential order, which causes each equation to be solved anisotropically. This in turn

induces numerical error that causes cross mode wave motion. The similar phenomena

have been observed in Alternate Direction Implicit (ADI) method. In ADI method, this

cross mode is induced by solving the equation in different coordinate direction as

observed by Hodges (1997). To examine how cross mode is established in the three TCS

discretizations, we plot the surface displacement at point (0.5, 0) and (0, 0.5) against

 128

simulation time in Figure 6.13. The surface displacement is normalized by the wave

amplitude and the simulation time is normalized by wave period. The results from TCS

solutions 2 and 3 are indistinguishable. The cross mode at the two monitored points are

nearly identical in these two TCS solutions and gradually increase with time. At time 15

T, the surface displacement at those two points is almost 25% of the wave amplitude. In

contrast, this numerical cross mode from solution 1 behaves rather differently. The

surface at the two monitored points oscillates with an amplitude and a period the same as

the initial standing wave. In addition, the oscillation of the cross direction is one half

phase behind the initial standing wave. To have a better visualization of the cross mode,

Figure 6.14 and Figure 6.15 display the snapshots of the standing wave at 0.5 T and 15T

respectively. At 0.5 T, no obvious motion can be observed at the two monitored points

solved from TCS solutions 2 and 3. With the increase of the simulation time, at time 15

T, an observable surface displacement can be discovered from both TCS solution 2 and 3.

In contrast, a maximum oscillation with a displacement of 2a can be observed for TCS

solution 1 at 0.5 T, but no obvious motion can be found at time 15T. This is probably

because in TCS solution 1, the surface elevation is solved using asymmetric velocity

components and water depth components. There is a half time step difference between x

and y direction in both velocity and water depth components, which causes the wave at

the cross direction oscillates with a half phase lag.

 129

x/λλλλ

y
/ λλ λλ

TCS solution 1

0 0.5
0

0.5

-1

-0.5

0

0.5

1

x/λλλλ

y
/ λλ λλ

TCS solution 2

0 0.5
0

0.5

-1

-0.5

0

0.5

1

x/λλλλ

y
/ λλ λλ

TCS solution 3

0 0.5
0

0.5

-1

-0.5

0

0.5

1

4 T

Figure 6.7 Normalized surface elevation contours in the computational domain at time
4T.

 130

x/λλλλ

y
/ λλ λλ

TCS solution 1

0 0.5
0

0.5

-1

-0.5

0

0.5

1

x/λλλλ

y
/ λλ λλ

TCS solution 2

0 0.5
0

0.5

-1

-0.5

0

0.5

1

x/λλλλ

y
/ λλ λλ

TCS solution 3

0 0.5
0

0.5

-1

-0.5

0

0.5

1

15 T

Figure 6.8 Normalized surface elevation contours in the computational domain at time
15T.

 131

x/λλλλ

y
/ λλ λλ

TCS solution 1

0 0.5
0

0.5

-1

-0.5

0

0.5

1

x/λλλλ

y
/ λλ λλ

TCS solution 2

0 0.5
0

0.5

-1

-0.5

0

0.5

1

x/λλλλ

y
/ λλ λλ

TCS solution 3

0 0.5
0

0.5

-1

-0.5

0

0.5

1

4 T

Figure 6.9 Normalized U-velocity contours in the computational domain at time 4T.

 132

x/λλλλ

y
/ λλ λλ

TCS solution 1

0 0.5
0

0.5

-1

-0.5

0

0.5

1

x/λλλλ

y
/ λλ λλ

TCS solution 2

0 0.5
0

0.5

-1

-0.5

0

0.5

1

x/λλλλ

y
/ λλ λλ

TCS solution 3

0 0.5
0

0.5

-1

-0.5

0

0.5

1

15 T

Figure 6.10 Normalized U-velocity contours in the computational domain at time 15T.

 133

x/λλλλ

y
/ λλ λλ

TCS solution 1

0 0.5
0

0.5

-1

-0.5

0

0.5

1

x/λλλλ

y
/ λλ λλ

TCS solution 2

0 0.5
0

0.5

-1

-0.5

0

0.5

1

x/λλλλ

y
/ λλ λλ

TCS solution 3

0 0.5
0

0.5

-1

-0.5

0

0.5

1

4 T

Figure 6.11 Normalized V-velocity contours in the computational domain at time 4T.

 134

x/λλλλ

y
/ λλ λλ

TCS solution 1

0 0.5
0

0.5

-1

-0.5

0

0.5

1

x/λλλλ

y
/ λλ λλ

TCS solution 2

0 0.5
0

0.5

-1

-0.5

0

0.5

1

x/λλλλ

y
/ λλ λλ

TCS solution 3

0 0.5
0

0.5

-1

-0.5

0

0.5

1

15 T

Figure 6.12 Normalized V-velocity contours in the computational domain at time 15T.

 135

0 1 2 3 4 5 6 7 7.5

−1.5

−1

−0.5

0

0.5

1

1.5

t/T

(ζ
−

H
)/

2
a

7.5 8 9 10 11 12 13 14 15

−1.5

−1

−0.5

0

0.5

1

1.5

t/T

(ζ
−

H
)/

2
a

 TCS solution 1 at point (0.5, 0) TCS solution 1 at point (0, 0.5)
 TCS solution 2 at point (0.5, 0) TCS solution 2 at point (0, 0.5)
 TCS solution 1 at point (0.5, 0) TCS solution 3 at point (0, 0.5)

Figure 6.13 Surface displacement at points (0.5, 0) and (0, 0.5) simulated using three
TCS solutions

 136

0.1
0.2

0.3
0.4

0.5

0.1
0.2

0.3
0.4

0.5

-1

0

1

x/λλλλ

TCS solution 1

y/λλλλ

(ζζ ζζ
-H

)/
2
a

0.1
0.2

0.3
0.4

0.5

0.1
0.2

0.3
0.4

0.5

-1

0

1

x/λλλλ

TCS solution 2

y/λλλλ

(ζζ ζζ
-H

)/
2
a

0.1
0.2

0.3
0.4

0.5

0.1
0.2

0.3
0.4

0.5

-1

0

1

x/λλλλ

TCS solution 3

y/λλλλ

(ζζ ζζ
-H

)/
2
a

0.5 T

Figure 6.14 Snapshot of the standing wave at 0.5 T. The surface displacements at the two
monitored points (0.5, 0) and (0, 0.5) are circled.

 137

0.1
0.2

0.3
0.4

0.5

0.1
0.2

0.3
0.4

0.5

-1

0

1

x/λλλλ

TCS solution 1

y/λλλλ

(ζζ ζζ
-H

)/
2
a

0.1
0.2

0.3
0.4

0.5

0.1
0.2

0.3
0.4

0.5

-1

0

1

x/λλλλ

TCS solution 2

y/λλλλ

(ζζ ζζ
-H

)/
2
a

0.1
0.2

0.3
0.4

0.5

0.1
0.2

0.3
0.4

0.5

-1

0

1

x/λλλλ

TCS solution 3

y/λλλλ

(ζζ ζζ
-H

)/
2
a

15 T

Figure 6.15 Snapshot of the standing wave at 15 T. The surface displacements at the two
monitored points (0.5, 0) and (0, 0.5) are circled.

 138

6.6 SUMMARY

In this chapter, the TCS method is applied to a multi-variable and multi-

dimension equation system: the depth averaged SWE. The TCS method not only

computationally discretizes the nonlinear term in the equation set, but also decouples the

variables in the SWE. Three TCS discretizations and are derived for the SWE. Each TCS

decoupled and linearized equation system has a unique solution order.

A one-dimensional and two-dimensional standing waves in a closed rectangular

domain are simulated using all three TCS discretizations. In the one dimensional standing

wave case, we compare our numerical results with the analytical solutions. The results

demonstrate that our TCS method well capture the nonlinear effects and display the

combination effects of nonlinear steepening and hydrostatic approximation. In the

viscous flow test case, the staggered grids used in the simulation causes numerical

dissipation. In the two-dimensional standing wave case, we compare the performance

from three representative TCS solutions: TCS solutions 1, 2 and 3. TCS solutions 2 and 3

are solved similarly because the surface elevation is obtained using the velocity

components at the same time step. However, TCS solution 1 performs differently because

the surface elevation is obtained using the velocity components from different time step.

The anisotropically solution process also causes numerical cross mode. The cross

mode analysis shows that TCS solution 2 and 3 has smaller numerical cross mode

compare to TCS solution 1. However, the cross mode gradually increase with simulation

time. The solution procedure in TCS solution 1 causes wave oscillate in the cross

direction. Therefore, when we apply TCS method to decouple the equation system, we

have to be aware of the numerical errors generated by the decoupling process.

 139

Chapter 7 Conclusions and Recommendations

The main objective for this research is:

Develop a new implicit solution for unsteady nonlinear advection

problems. The new numerical algorithm should have the advantage in both

stability and efficiency while keep the 2
nd

-order temporal accuracy as in

the most existing shallow water equations (SWE) models. In addition, this

new method would provide a novel approach in decoupling a coupled

equation system.

This objective has been accomplished. A new finite difference temporal scheme

(Time-centered split method) is developed to solve the unsteady nonlinear advection

problems. This new method provides a general approach for solving any unsteady

quadratic nonlinearity. In this chapter, we summarize 1) discussions 2) conclusions 3)

recommendations for future work.

7.1 SUMMARY OF DISCUSSION

A new computational linearization method, time-centered split (TCS) method, is

derived from the midpoint rule temporal discretization. The fundamental principle of the

TCS method is that it splits the quadratic nonlinear term into two steps so that each step

is computationally linear. The two-step equation system is 2
nd
-oder equivalent to the

original midpoint rule discretization. The essential theoretical development of the TCS

method is illustrated in Chapter 3. The derivations in Chapter 3 demonstrate one of the

most important significances of the TCS method: it is a direct linearization method while

 140

in an implicit format. The conventional implicit nonlinear solutions including Newton

method, Picard method and local linearization method require either 1) outer iteration (

Newton and Picard methods) or 2) calculations of the Jacobian (Newton and local

linearization methods). Therefore, compared to the conventional implicit nonlinear

solutions, the TCS method has the advantage in efficiency and stability.

In a time marching differential equation, the time-centered split concept can be

applied to different terms: either part of the quadratic nonlinear term and the linear term.

Different TCS discretizations can be generated when we apply the split to different terms.

Based on this characteristic of the TCS method, a general form of the TCS family method

is created in Chapter 5. A weighting factor iθ (i0 1≤ θ ≤) is introduced in the TCS

general form. The weighting factor iθ combines different approximations (splitting on

different terms) of the nonlinear terms and the linear terms. The value of iθ will not

affect the 2
nd
-order temporal accuracy of the TCS method. The theoretical proof is shown

in Chapter 5. This revealed another important significance of the TCS method: unlimited

TCS discretized forms can be created for one problem. Thus, the TCS method provides

flexibility when we solve a specific problem because we can choose the discretizations

based on the specific requirement of the problem.

The significance of the weighting factors is further exemplified when the TCS

method is applied to a multi-variable and multi-dimension equation system. Properly

chosen weighting factors can not only linearize but also decouple the equation system

without outer iterations. This property theoretically enhances the efficiency advantage of

the TCS method. The 2D Burgers’ equation is used as the example to show the process

and principle of the decoupling in Chapter 5. The decoupling characteristics of the TCS

method is analyzed in detail using 2D depth averaged shallow water equations (SWE) in

Chapter 6. Both cases show that the TCS method can computationally linearize and

 141

decouple an equation system without outer iterations. Each variable in the TCS linearized

and decoupled two-step system is solved in a sequential order.

To verify and explore the basic characteristics of the TCS method, a 1D problem

is first chosen as the test case. In Chapter 4, three 1D differential equations: 1D

conservative Burgers’ equation, 1D non-conservative Burgers’ equation and 1D nonlinear

ordinary differential equation (ODE) are solved using the TCS method. In all the three

equations, we apply the time-centered split to different terms: either flux or gradient part

in the nonlinear advection term in the Burgers’ equation, the quadratic nonlinear term of

the ODE, the diffusion term in the Burgers’ equation and the linear term in the ODE.

Consequently, multiple TCS disretizations are created such as TCSF (split the flux term),

TCSG (split the gradient term), TCSF-D (split flux and diffusion/linear term) and TCSG-

D (split the gradient and the diffusion/linear term). To compare to the conventional

implicit linearization method, all three equations are also solved using the implicit Crank-

Nicolson scheme combining with the conventional computational linearization methods:

Newton method, Picard method and local linearization method. In the two Burgers’

equation cases, each TCS discretization demonstrates 2
nd
-order temporal accuracy and

remains stable up to a CFL O (10). The stability advantage of the TCS method is further

demonstrated by comparing it to the Runge-Kutta (RK) method. The efficiency of the

TCS method is examined using operation count at each grid point at each time step.

Results in the two 1D Burgers’ equations show that the TCS method requires fewer

operations than Newton and Picard methods but has a similar computation expense to the

local linearization method. The principal advantage of the TCS method over local

linearization is the relative ease with which the TCS method can be derived and

implemented as it does not require discrete evaluation of a function Jacobian. The test

 142

case in 1D nonlinear ODE verified that the TCS method can be applied to any quadratic

nonlinearity.

In the 1D ODE test case, two different TCS discretizations collapse into one

expression, which is also mathematically equivalent to the local linearization. However,

in both conservative and non-conservative Burgers’ equation cases, different TCS

disretizations have different relative errors although they perform similarly in temporal

accuracy, stability and efficiency. This difference can also be observed in Chapter 5.

Because of the introduction of the weighting factors, more TCS discretizations are tested

for the 1D non-conservative Burgers’ equation in Chapter 5. Our results show that

changing iθ will not affect the overall 2
nd
-order temporal accuracy of all the TCS

discretizations. However, the relative accuracy of each TCS discretization is different.

The results show that the most accurate solution occurs when the two weighting factors

equal to some value between 0 and 1 but not 0 or 1. The similar results can also be

observed for the stability. The stability is also enhanced when the weighting factors are

not equal to 0 or1. This can be explained by mathematical meaning of the weighting

factors. The weighting factors control how we approximate each term in the equation.

When the weighting factors equal to 0 or1, we only use one kind of approximation: either

approximate n 1/ 2u + using the time-centered split completely or approximate n 1/ 2u + using

*u completely. Our results suggest that combing both approximations will enhance the

performance of the TCS method in both accuracy and stability. However, the best

combinations of the weighting factors for accuracy and stability is problem-specific and

one needs to analyze each approximated term and the nature of the solution itself at the

designated marching time. This phenomenon verified that TCS method provides

flexibility in solving a specific problem because a more accurate or stable solution can be

obtained by changing the choice of the weighting factors.

 143

In Chapter 6, the TCS method is used to solve 2D depth averaged SWE. We

discover that six terms in the SWE couple the entire equation system. These six terms are

V U / y∂ ∂ , U V / x∂ ∂ , HU / x∂ ∂ , HV / y∂ ∂ , / x∂ζ ∂ and / y∂ζ ∂ . Their associated

weighting factors are crucial in the decoupling process. It is revealed that only six

combinations of these weighting factors can fully decouple the SWE. Each combination

of the weighting fact has a unique solution order. Three representative TCS solutions are

chosen to solve the SWE based on the solution order of the continuity equation. In the

one-dimensional standing wave case, how the TCS method treat the nonlinear term is

tested. The results show that that the TCS methods well capture the nonlinear effects and

display the combination effects of numerical dispersion and hydrostatic approximation.

How the solution order affects the results is analyzed in the two-dimensional standing

wave case. The results show that TCS solution 1 perform differently than TCS solutions

2 and 3 because the surface elevation is obtained using the velocity components from

different time step in TCS solution 1. The fully-decoupled TCS-discretized SWE is

solved in a sequential order, which causes each equation solved anisotropically. This in

turn causes the numerical cross modes. The cross mode from TCS solution 2 and 3

behave similarly: the cross mode gradually increases with time. However, the solution

procedure in TCS solution 1 causes wave oscillate in the cross direction with the same

amplitude as the initial standing wave and half phase behind the initial standing wave.

Hence, we need to take into account the numerical errors generated by the decoupling

process when we apply the TCS method to decouple an equation system.

7.2 CONCLUSIONS

The conclusions that may be drawn from the present work are:

 144

• A new time marching numerical algorithm for solving unsteady nonlinear

advection problems is proposed using a time-centered split (TCS)

technique.

• The principle advantage of the TCS method is it computationally

linearizes the implicit nonlinear advection without either 1) iterations or 2)

calculations of the Jacobian.

• The TCS method is 2
nd
-order temporal accurate and has advantages in

stability and efficiency.

• A family of the TCS discretizations can be generated using the same

principle. This provides flexibility when solving a specific problem using

the TCS method.

• The TCS method can fully decouple an equation system. However,

additional numerical error is introduced through the decoupling process.

 7.3 RECOMMENDATIONS FOR FUTURE WORK

The TCS method is proposed and verified using 1D transport equation, 1D

nonlinear ODE, 2D transport equation. The following potential application is

recommended for future work.

Application of the TCS method to a coupled nonlinear ODE system

This research is motivated by solving unsteady nonlinear advection problems. 1D

and 2D flow transport problems are tested using the TCS method. However, the new TCS

method provides a general approach to solve any quadratic nonlinearity. Although a 1D

nonlinear ODE is used as an example in Chapter 3, application of the TCS method to the

nonlinear ODE can be further investigated. A coupled quadratic nonlinear ODE system

can be used as an example to verify the capability of the TCS method in computational

 145

linearization and decoupling. Moreover, various TCS discretizations can be compared

and tested by changing the weighting factors.

More test cases for the SWE

In Chapter 6, initial tests of 2D depth averaged SWE have been conducted. All the

test cases in 2D standing wave are in an inviscid flow condition. Since the weighting

factors associated with the viscous terms will not affect the decoupling process, the

inviscid flow condition is a valid test condition for investigating decoupling process.

However, the weighting factor associated with the non-coupled advection terms such as

U U / x∂ ∂ and V V / y∂ ∂ can be any value from 0 to 1. In Chapter 6, we didn’t change the

weighting factors for these two terms to see how these two will affect the solution. Based

on the analysis in Chapter 5, the numerical error induced by the decoupling might be

decreased by choosing different weighting factors for these two terms. An additional test

for numerical error could be conducted by decreasing the time interval t∆ .

Solve problems with discontinued flow conditions

We often need to solve a transport problem with a discontinuity flow condition,

for example, hydraulic jump. All the test cases conducted in this research use central

difference spatial discretizations, which cannot represent the sharp front of a shock wave.

Test cases can be designed by the TCS temporal discretization combining upwind spatial

discretization to simulate a shock wave.

 146

Appendix A Test of a Progressive Wave in an Open Boundary System

Another way to verify our numerical method is to simulate a wave progressing in

an open boundary system. This test case simulates a free surface oscillation in a

rectangular channel, which is open at both upstream (inlet) and downstream (outlet

boundary). This also could be thought of as a step leading to the simulation of a river

flow. In this section, a progressive wave is introduced by oscillating the inlet boundary of

an open quiescent water body. A sponge layer is successfully applied as the open

boundary condition at the outlet of the domain. Our numerical models satisfactorily

simulate a progressive wave traveling through an open boundary system. As shown in

Chapter 6, TCS solutions 2 and 3 give similar results. Thus, in this test, only results from

TCS solution 1 and 2 are presented and compared.

A.1 INITIAL AND INLET BOUNDARY CONDITION

Initially, the water is at rest with uniform depth:

 () 0H x,0 h= (A.1)

The inlet water level suddenly raised at t=0 and oscillated as a cosine wave described as

 0H(0, t) h a cos(t)= + σ (A.2)

where a is the progressive wave amplitude and σ is the frequency. The initial condition

and inlet boundary condition is shown in Figure A.1 and A.2.

 147

Figure A.1 Initial water level, H (x, 0), in the rectangular open channel

Figure A.2 Inlet boundary condition H (0, t)

A.2 OUTLET BOUNDARY CONDITION

One of the challenges to simulate an open boundary system with a finite

computational domain is that open boundary conditions are required at both the inlet and

outlet. Developing outlet non-reflective boundary conditions has been the subject of

extensive research (Blayo and Debreu 2005; Tsynkov 1998).

In the present work we apply an artificial damping layer (or sponge layer)

upstream of the outlet boundary and downstream of the “test section” (i.e. the

0h

x

H

 148

computational domain of interest). In this approach, an artificial damping function is

prescribed over a range of grid cells to dissipate the surface wave and its reflections

before it propagates back into the test section (Durran 1999). Although a sponge layer has

additional computational costs associated with computations outside of the test section,

the ratio of the additional cost to the initial cost is generally small (Blayo and Debreu

2005). In the present work, the sponge layer damping function uses an increasing

viscosity from the end of the test section to the outlet (Vinayan 2003). We use an inviscid

progressive wave for the test case, so the viscosity is set to be zero within test section. In

general, the viscosity is represented as a function of position such that max0 (x)≤ ν ≤ ν .

If we define the viscosity is a function of x,

 max(x) f (x)ν = ν (A.3)

where, f (x) is a function satisfying the following conditions:

r

s

r

s

f (x) 0

f (x) 1

df (x)
0

dx

df (x)
0

dx

=

=

=

=

 (A.4)

where x
r
 and x

s
 are the upstream and downstream limits of the sponge layer, as shown in

Figure A.3. If the artificial viscosity changes rapidly, spurious reflections may also

occur. A gradual change, as shown in Figure A.3, can be invoked by defining f (x) as

 r

s r

x x1
f (x) 1 cos

2 x x−

  −
= − π  

  
 (A.5)

 149

Figure A.3 Shape function of viscosity

Using the above definitions, a sponge layer is defined by its length (s rx x−) and its

maximum viscosity maxν . In this work, s rx x 2− = λ and maxν is basically a relative big

number obtained by trial and error. The sponge layer arrangement is shown in Figure

A.4.

Figure A.4 An open boundary rectangular channel with a sponge layer

These initial and boundary conditions generate a traveling wave with height 2a,

progressing along the channel. To see the damping effects of the sponge layer, we

 150

monitored the surface height of point A, which is the point in the test section closest to

the sponge layer, and B, which is the point within the sponge layer closest to the outlet, as

shown in Figure A.5.

Figure A.5 Schematic illustrations of grids

0 2 4 6 8 10 12 14 16 18 20
-2

-1

0

1

2

(ζζ ζζ
-H

)/
a
 a

t
p

o
in

t
A

 w
it

h
/w

it
h

o
u

t
th

e
 s

p
o

n
g

e
 l
a

y
e
r

t/T

with sponge layer without sponge layer

Figure A.6 Water level at point A with/without the sponge layer

Figure A.6 shows the evolution of the nondimensionalized water depth (()H / aζ −) at

point A with and without a sponge layer. Without the sponge layer, when the wave

A
a

B
b

x
a

z
a

test section sponge layer

 151

reaches the solid wall where zero flux is prescribed, reflection occurs and its amplitude is

increased to about two times of the original one. However, with a sponge layer condition,

the wave amplitude stays the same. We also compare the wave at point A and B in Figure

A.7. The wave inside the sponge layer is damped about 10% of the wave in the test

section. Thus the reflection effect is minimized.

0 2 4 6 8 10 12 14 16 18 20

-1

0

1

t/T

(ζζ ζζ
-H

)/
a
 a

t
p

o
in

t
A

 a
n

d
 B

 water level at point A, inside the test section

 water level at point B, inside the sponge layer

Figure A.7 Water level evolutions inside the test section and sponge layer.

A.3 RESULTS AND DISCUSSION

Figure A.8 compares the free surface shape in the entire domain (including test

section and sponge layer) at 7T and 14T for TCS solution 1 and 2 respectively. At 7T, the

progressive wave has traveled through the domain. When we double the simulation time

to 14T, the free surface shape remains almost the same. This indicates that we

 152

successfully simulated a wave progress through an open boundary system, and our

numerical results model the wave characteristics such as wave speed and period well.

Both TCS solutions 1 and 2 give us similar results.

To further compare the two TCS solutions in this progressive wave test case, we

compare the free surface shape calculated using both TCS discretizations in the entire

domain at 7T and 14 T, respectively, in Figure A.9. The results simulated using each TCS

discretization overlapped at 7T. After a longer simulation time, this similarity between

two solutions still holds true at 14T.

The time evolution of free surface at different periods in the entire domain for

TCS solutions 1 and 2 are shown in Figure A.10 and Figure A.11 respectively.

 153

0 1

−1

0

1

L/L

(ζ
−

H
)/

a

TCS solution 1

0 1

−1

0

1

L/L

(ζ
−

H
)/

a

TCS solution 2

7T

14T

7T

14T

Figure A.8 Comparison of wave shape at time 7T and 14T for TCS solution1 and TCS
solution 2 respectively

 154

0 1

−1

0

1

L/L

(ζ
−

H
)/

a

7T

TCS solution 1

TCS solution 2

0 1

−1

0

1

L/L

(ζ
−

H
)/

a

14T

TCS solution 1

TCS solution 2

Figure A.9 Comparison of wave shape simulated from TCS solution 1 and 2 at time 7T
and 14T respectively

 155

1T 2T

4T 6T

7T 14T

Figure A.10 Time evolution of a progressive wave at different wave periods from TCS
solution 1.

 156

1T 2T

4T 6T

7T 14T

Figure A.11 Time evolution of a progressive wave at different wave periods from TCS
solution 2.

 157

References

Agoshkov, V., Ovchinnikov, E., Quarteroni, A., and Saleri, F. (1994). "Recent
Developments in the Numerical Simulation of Shallow Water Equations. II.
Temporal Discretization." Mathematical Models and Methods in Applied
Sciences, 4(4), 533-566.

Amat, S., Busquier, S., and Gutierrez, J. M. (2003). "Geometric constructions of iterative
functions to solve nonlinear equations." Journal of Computational and Applied
Mathematics, 157(1), 197-205.

Anderson, D. A., Tannehill, J. C. and Pletcher, R. H. (1997). Computational Fluid
Mechanics and Heat Transfer. 2

nd
 ed. Hemisphere Publishing, MacGraw-Hill.

Andrus, C. W., Long, B. A., and Froehlich. H. A. (1988). “Woody debris and its
contribution to pool formation in a coastal stream 50 years after logging.” Can. J.
of Fisheries and Aquatic Sci., 45, 2080-2086.

Ancey, C., Iverson, R. M., Rentschler, M., and Denlinger, R. P. (2008). "An exact
solution for ideal dam-break floods on steep slopes." Water Resources Research,
44(1).

Arakawa, A., and Lamb, V.R. (1977). “Computational design of the basic dynamical
processes of the UCLA general circulation model.” Methods in Computational

Physics, 17, 173-265.

Arega, F., Lee, J. H. W., and Tang, H. W. (2008). "Hydraulic jet control for river junction
design of Yuen Long Bypass Floodway, Hong Kong." Journal of Hydraulic
Engineering-Asce, 134(1), 23-33.

Bagatur, T. (2007). "Modified Newton-Raphson solution for dispersion equation of
transition water waves." Journal of Coastal Research, 23(6), 1588-1592.

Bajo, M., Zampato, L., Umgiesser, G., Cucco, A., and Canestrelli, P. (2007). "A finite
element operational model for storm surge predicition in Venice." Estuarine
Coastal and Shelf Science, 75(1-2), 236-249.

Baldwin, B.S., Lomax H. (1978). “Thin-layer approximation and algebraic model for
separated turbulent flows.” AISS paper, No. 78-257.

Baldwin, B.S., Barth T.J. (1990). “A one-equation turbulence transport model for high
Reynolds number wall-bounded flows.” NASA TM-102847.

 158

Barros, S. R. M., and Garcia, C. I. (2007). "A global finite-difference semi-Lagrangian
model for the adiabatic primitive equations." Journal of Computational Physics,
226(2), 1645-1667.

Bisson, P.A., et al. (1987). Large woody debris in forested streams in the Pacific
Northwest, past, present and future; Contribution No.57. in Streamside
management, forestry and fishery interactions. E. O. Salo and T. W. Cundy. Eds.,
Coll. Of Forest Resour, Univ. of Washington, Seattle, Wash., 143-190.

Blayo, E. and Debreu, L. (2005). “Revisting open boundary conditions from the point of
view of characteristic variables.” Ocean Modeling, 9, pp. 231-252.

Blumberg, A. F., and Mellor, G. L. (1987). A description of a three-dimensional coastal

ocean circulation model, In Three-Dimensional Coastal Ocean Models, American
Geophysical Union, Washington, DC.

Bonaventura, L., and Rosatti, G. (2002). "A cascadic conjugate gradient algorithm for
mass conservative, semi-implicit discretization of the shallow water equations on
locally refined structured grids." International Journal for Numerical Methods in

Fluids, 40(1-2), 217-230.

Bourchtein, A., and Bourchtein, L. (2006). "Modified Time Splitting Scheme for Shallow
Water Equations." Mathematics and Computers in Simulation, 73, 52-64.

Bourchtein, A., and Bourchtein, L. (2007). "Semi-Lagrangian semi-implicit time-splitting
scheme for the shallow water equations." International Journal for Numerical

Methods in Fluids, 54(4), 453-471.

Brown, P. N., and Saad, Y. (1990). "Hybrid Krylov methods for nonlinear systems of
equations." SIAM J. Sci. Stat. Comput., 11, 450-481.

Burguete, J., and Garcia-Navarro, P. (2004). "Implicit schemes with large time step for
non-linear equations: application to river flow hydraulics." International Journal

for Numerical Methods in Fluids, 46(6), 607-636.

Burguete, J., Garcia-Navarro, P., and Murillo, J. (2006). "Numerical boundary conditions
for globally mass conservative methods to solve the shallow-water equations and
applied to river flow." International Journal for Numerical Methods in Fluids,
51(6), 585-615.

Cao, J. W., and Sun, J. C. (2005). "An efficient and effective nonlinear solver in a
parallel software for large scale petroleum reservoir simulation." International
Journal of Numerical Analysis and Modeling, 2, 15-27.

 159

Cao, Z., and Carling, P. A. (2002). "Mathematical modelling of alluvial rivers: reality and
myth. Part 2: Special issues." Proceedings of the Institution of Civil Engineers-
Water and Maritime Engineering, 154(4), 297-307.

Casulli, V. (1990). "Semi-implicit Finite Difference Methods for the Two-Dimensional
Shallow Water Equations." Journal of Computational Physics, 86, 56-74.

Casulli, V., and Cattani, E. (1994). "Stability, Accuracy and Efficiency of a Semiimplicit
Method for 3-Dimensional Shallow-Water Flow." Computers & Mathematics
with Applications, 27(4), 99-112.

Casulli, V., and Cheng, R. T. (1992). "Semiimplicit Finite-Difference Methods for 3-
Dimensional Shallow-Water Flow." International Journal for Numerical Methods

in Fluids, 15(6), 629-648.

Celia, M. A., Ahuja, L. R., and Pinder, G. F. (1987). "Orthogonal collocation and
alternating-direction procedures for unsaturated flow problems " Adv. Water

Resour., 10, 178-187.

Chan, T. F., and Jackson, K. R. (1984). "Nonlinearly preconditioned Krylov subspace
methods for discrete Newton algorithms." SIAM J. Sci. Stat. Comput., 5, 533-542.

Chen, S. C., and Peng, S. H. (2006). "Two-dimensional numerical model of two-layer
shallow water equations for confluence simulation." Advances in Water

Resources, 29(11), 1608-1617.

Cho, Y.-S., and Yoon, S. B. (1998). "A Modified Leap-Frog Scheme for Linear Shallow-
Water Equations." Costal Engineering Journal, JSCE, 40(2), 191-205.

Clement, T. P., Wise, W. R., and Molz, F. J. (1994). "A Physically-Based, 2-
Dimensional, Finite-Difference Algorithm for Modeling Variably Saturated
Flow." Journal of Hydrology, 161(1-4), 71-90.

Cullen, M. J. P. (2001). "Alternative implementations of the semi-Lagrangian semi-
implicit schemes in the ECMWF model." Quarterly Journal of the Royal

Meteorological Society, 127(578), 2787-2802.

Daily, C., and Imberger, J. (2003). "Modelling solitons under the hydrostatic and
Boussinesq approximations." International Journal for Numerical Methods in
Fluids, 43(3), 231-252.

Davis, J. A. (1986). Boundary Layers, Flow Microenvironments and Stream Benthos.
Limnology in Australia (eds De Deck and Williams), pp. 293-312. CSIRO
Australia, Melbourne. Dr. W. Junk Publishers, Doedercht.

 160

Dean, R. G. and R. A. Dalrymple (1998). Water Wave Mechanics for Engineering and
Scientists. World Scientific Publishing Co. Pte. Ltd., New Jersey.

Dedong, L., Zhongbo, Y., Zhenchun, H., Chuanguo, Y., and Qin, J. (2007).
"Groundwater simulation in the Yangtze River basin with a coupled climate-
hydrologic model." Journal of China University of Geosciences, 18, 155-157.

Delis, A. I., and Katsaounis, T. (2005). "Numerical solution of the two-dimensional
shallow water equations by the application of relaxation methods." Applied
Mathematical Modelling, 29(8), 754-783.

Dettmer, W. G., and Peric, D. (2007). "A fully implicit computational strategy for
strongly coupled fluid-solid interaction." Archives of Computational Methods in

Engineering, 14(3), 205-247.

Dubois, T., Jauberteau, F., Temam, R. M., and Tribbia, J. (2005). "Multilevel schemes
for the shallow water equations." Journal of Computational Physics, 207, 660-
694.

Durran, D. R. (1999). Numerical Methods for Wave Equations in Geophysical Fluid
Dynamics. Springer-Verlag, New York.

Dutta, D., Alam, J., Umeda, K., Hayashi, M., and Hironaka, S. (2007). "A two-
dimensional hydrodynamic model for flood inundation simulation: a case study in
the lower Mekong river basin." Hydrological Processes, 21(9), 1223-1237.

Fennema, R. J., and Chaudhry, M. H. (1990). "Explicit Methods for 2-D Transient Free-
Surface Flows." Journal of Hydraulic Engineering, 116(8), 1013-1035.

Ferziger J.H. (1996). Simulation and Modeling of Turbulent Flows: Large eddy
simulation. M.Y. Hussaini, T. Gatski (eds.), Cambridge Univ. Press, New York.
1996

Ferziger J. H., Koseff, J.R., Monismith, S.G. (2002). “Numerical simulation of
geophysical turbulence.” Computers & Fluids, 31, 557-568.

Ferziger, J. H., and Peric, M. (1999). Computational Methods for Fluid Dynamics,
Springer, New York.Fleckenstein, J. H., Niswonger, R. G., and Fogg, G. E.
(2006). "River-aquifer interactions, geologic heterogeneity, and low-flow
management." Ground Water, 44(6), 837-852.

Fu, S. and Hodges, B. R. (2005). “Grid-scale dependency of subgrid-scale structure
effects in hydraulic models of rivers and streams.” Proc., 2005 Mechanics and
Materials Conference (McMat 2005), Louisiana State University, Baton Rouge.

 161

Fujima, K. and Shigemura, T (2000). “Determination of Grid Size for Leap-Frog Finite
Difference Model to Simulate Tsunamis around A Conical Island.” Costal

Engineering, 42(2), 197-210.

Garcia, R., and Kahawita, R. A. (1986). "Numerical Solution of the St. Venant Equations
with the MacCormack Finite-Difference Scheme." International Journal for

Numerical Methods in Fluids, 6, 259-274.

Gejadze, I. Y., and Monnier, J. (2007). "On a 2D 'zoom' for the 1D shallow water model:
Coupling and data assimilation." Computer Methods in Applied Mechanics and
Engineering, 196(45-48), 4628-4643.

Gippel, C. J.(1995). “Environmental hydraulics of large woody debris in streams and
rivers.” J. Environmental Engineering, 121, 388-395.

Giri, S., and Shimizu, Y. (2006). "Numerical computation of sand dune migration with
free surface flow." Water Resources Research, 42(10).

Grötzner, A. et al. (1996). “The Impact of Sub-grid Scale Sea-ice Inhomogeneities on the
Performance of the Atmospheric General Circulation Model ECHAM3.” Climate

Dynamics,12,477-496.

Grossman, G.D., Rincon, P. A., Farr, M.D., and Ratajczak, R. E. (2002). “A new optimal
foraging model predicts habitat use by drift-feeding stream minnows.” Ecol.
Freshwat. Fish, 11,2-10.

Hamrick, J. M. (1992). "A three-dimensional environmental fluid dynamics computer
code: theoretical and computarional aspects." Virginia Institute of Marine
Science, School of Marine Science, The College of William and Mary, Special
Report 317., Gloucester Point, VA 23062.

Harmon, M. E., et al. (1986). “Ecology of coarse woody debris in temperature
ecosystems.” Adv. in Ecological Res, 15, 133-302.

Hirose, N., Asai, K., Ikawa, K., and Kawamura, R. (1991). "Euler Flow-Analysis of
Turbine Powered Simulator and Fanjet Engine." Journal of Propulsion and

Power, 7(6), 1015-1022.

Hodges, B. R. (1997). "Numerical simulation of nonlinear free-surface waves on a
turbulent open-channel flow," Ph.D. dissertation, Department of Civil
Engineering, Stanford University.

Hodges, B. R. (2000). "Numerical Techniques in CWR-ELCOM (code release v.1)."
Centre Water Res., Nedlands, Western Australia, Australia.

 162

Hodges, B. R., B. Laval, Wadzuk, B. (2006). “Numerical error assessment and temporal
horizon for internal waves in a hydrostatic model.” Ocean Modeling, 13(1), 44-
64.

Hunter, N. M., Bates, P. D., Neelz, S., Pender, G., Villanueva, I., Wright, N. G., Liang,
D., Falconer, R. A., Lin, B., Waller, S., Crossley, A. J., and Mason, D. C. (2008).
"Benchmarking 2D hydraulic models for urban flooding." Proceedings of the

Institution of Civil Engineers-Water Management, 161(1), 13-30.

Iskandarani, M., Levin, J. C., Choi, B. J., and Haidvogel, D. B. (2005). "Comparison of
advection schemes for high-order h-p finite element and finite volume methods."
Ocean Modelling, 10(1-2), 233-252.

Kadalbajoo, M. K., and Awasthi, A. (2006). "A numerical method based on Crank-
Nicolson Scheme for Burgers' Equation." Applied Mathematics and Computation,
182, 1430-1442.

Kar, S. K. (2006). "A Semi-Implicit Runge-Kutta Time-Difference Scheme for the Two-
Dimensional Shallow Water Equations." Monthly Weather Review, 134(October),
2916-2926.

Kazezyılmaz-Alhana, C. M., Medina, M. A., and Raob, P. (2005). "On numerical
modeling of overland flow." Applied Mathematics and Computation 166(3), 724-
740.

Kutluay, S., Bahadir, A. R., and Ozdes, A. (1999). "Numerical solution of one-
dimensional Burgers equation: explicit and exact-explicit finite difference
methods." Journal of Computational and Applied Mathematics, 103, 251-261.

Keller, E.A., and Swanson, F.J. (1979). “Effect of large organic material on channel form
and fluvial processes.” Earth Surface Processes, 4, 361-380.

Keshari, A. K., and Koo, M. H. (2007). "A numerical model for estimating groundwater
flux from subsurface temperature profiles." Hydrological Processes, 21(25),
3440-3448.

Knoll, D. A., and Keyes, D. E. (2004). "Jacobian-free Newton-Krylov methods: a survey
of approaches and applications." Journal of Computational Physics, 193(2), 357-
397.

Kolmogorov, AN. (1942). “The equations of turbulent motion in an incompressible
fluid.” Isv. Acad. Sci., USSR, Phys. 6, 56-58.

Kurbatskii, K. A., and Mankbadi, R. R. (2004). "Review of computational aeroacoustics
algorithms." International Journal of Computational Fluid Dynamics, 18(6), 533-
546.

 163

Kwag, S. H. (2000). "Computation of water and air flow with submerged hydrofoil by
interface capturing method." Ksme International Journal, 14(7), 789-795.

Kwok, F., and Tchelepi, H. (2007). "Potential-based reduced Newton algorithm for
nonlinear multiphase flow in porous media." Journal of Computational Physics,
227(1), 706-727.

Lomax, H., Pulliam, T. H., and Zingg, D. W. (1999). Fundamentals of Computational

Fluid Dynamics, Springer, New York.

Le, V. S., Yamashita, T., Okunishi, T., Shinohara, R., and Miyatake, M. (2006).
"Characteristics of suspended sediment material transport in the Ishikari Bay in
snowmelt season." Applied Ocean Research, 28(4), 275-289.

Lehmann, F., and Ackerer, P. (1998). "Comparison of Iterative Methods for Improved
Solutions of the Fluid Flow Equation in Partially Saturated Porous Media."
Transport in Porous Media, 31, 275-292.

Li, C. W. (1993). "A simplified Newton iteration method with linear finite elements for
transient unsaturated flow." Water Resour. Res., 29(4), 965-971.

Li, G. Y., and Jackson, C. R. (2007). "Simple, accurate, and efficient revisions to
MacCormack and Saulyev schemes: High Peclet numbers." Applied Mathematics
and Computation, 186(1), 610-622.

Liao, C. B., Wu, M. S., and Liang, S. J. (2007). "Numerical simulation of a dam break for
an actual river terrain environment." Hydrological Processes, 21(4), 447-460.

Lomax, H., Pulliam, T. H. and Zingg, D.W. (1996) Fundamentals of Computational Fluid
Dynamics. Springer, New York Inc.

Luo, Q. (2007). "A distributed surface flow model for watersheds with large water bodies
and channel loops." Journal of Hydrology, 337(1-2), 172-186.

MacCormack, R. W. (1969). "The effect of viscosity in hypervelocity impact cratering."
AIAA-1969-354.

Marzolf, G. R. (1978). The potential effects of clearing and snagging on stream
ecosystems. FWS/OBS-78-14, U.S. Dept of Interior. Fish and Wildlife Service,
Nat. Stream Alteration Team, Washington, D.C.

McMahon, T. E., and Hartman, G. F. (1989). “Influence of cover complexity and current
velocity on winter habitat use by juvenile Coho Salmon (Oncorhynchus kisutch).”
Can. J. of Fisheries and Aquatic Sci., 46, 1551-1557.

 164

Mendez-Nunez, L. R., and Carroll, J. J. (1993). "Comparison of Leapfrog,
Smolarkiewicz, and MacCormack Schemes Applied to Nonlinear Equations."
Mon. Weather Rev., 121(February), 565-578.

Miropol'sky, Y. Z. (2001). Dynamics of internal gravity waves in the ocean, Kluwer.

Mohebalhojeh, A. R., and Dritschel, D. G. (2007). "Assessing the numerical accuracy of
complex spherical shallow-water flows." Monthly Weather Review, 135(11),
3876-3894.

Moin, P. (2001). Fundamentals of Engineering Numerical Analysis. Cambridge, U.K.,
Cambridge University Press.

Mousseau, V. A., Knoll, D. A., and Reisner, J. M. (2002). "An implicit nonlinearly
consistent method for the two-dimensional shallow-water equations with coriolis
force." Monthly Weather Review, 130(11), 2611-2625.

Murillo, J., Garcia-Navarro, P., and Burguete, J. (2008). "Analysis of a second-order
upwind method for the simulation of solute transport in 2D shallow water flow."
International Journal for Numerical Methods in Fluids, 56(6), 661-686.

Nguyen, D. K., Shi, Y. E., Wang, S. S. Y., and Nguyen, H. (2006). "2D shallow-water
model using unstructured finite-volumes methods." Journal of Hydraulic
Engineering-Asce, 132(3), 258-269.

Niet, A. d., Wubs, F., Scheltinga, A. T. v., and Dijkstra, H. A. (2007). "A tailored solver
for bifurcation analysis of ocean-climate models." Journal of Computational

Physics, 227 (1), 654-679.

Paniconi, C., Aldama, A. A., and Wood, E. F. (1991). "Numerical Evaluation of Iterative
and Noniterative Methods for the Solution of the Nonlinear Richards Equation."
Water Resources Research, 27(6), 1147-1163.

Paniconi, C., and Putti, M. (1994). "A Comparison of Picard and Newton Iteration in the
Numerical Solution of Multidimensional Varibly Saturated Flow Problems."
Water Resources Research, 30(12), 3357-3374.

Peyret, R., and Taylor, T. D. (1983). Computational Methods for Fluid Flow, Springer,
New York.

Pozrikidis, C. (2005). Introduction to finite and spectral element methods using

MATLAB, Chapman & Hall/CRC, Boca Raton.

Prandtl L. (1925). Uber die ausgebildete turbulenz. ZAMM 5, pp. 331-340.

Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1992). Numerical

recipes in FORTRAN : the art of scientific computing, Cambridge University

 165

Press, New York.Peyret R. and Taylor, T. D. (1983). Computational Method s for
Fluid Flow. Springer-Verlag, New York Inc.

Rabeni. C. F., and Jacobson, R. B. (1993). “The importance of fluvial hydraulics to fish-
habitat restoration in low-gradient alluvial streams.” Freshwater Biology, 29, 211-
220.

Reisner, J. M., Mousseau, V. A., Wyszogrodzki, A. A., and Knoll, D. A. (2005). "An
implicitly balanced hurricane model with physics-based preconditioning."
Monthly Weather Review, 133(4), 1003-1022.

Robert, L. W. (1992). Oceanographical Enginereing, Dover Publications, Inc., Mineola,
New York.

Rosatti, G., Cesari, D., and Bonaventura, L. (2005). "Semi-implicit, semi-Lagrangian
modelling for environmental problems on staggered Cartesian grids with cut
cells." Journal of Computational Physics, 204(1), 353-377.

Rueda, F. J., and Schladow, G. S. (2002). "Quantitative Comparison of Models for
Barotropic Response of Homogeneous Basins." Journal of Hydraulic

Engineering, 128(2), 201-213.

Salvetti, MV, Banerjee, S. (1995). “A priori tests of a new dynamic subgrid-scale model
for finite- difference large-eddy simulations.” Phys. Fluids, 7(11), 2831-2847.

Schoenstadt, A. (1980). "A transfer analysis of numerical schemes used to simulate
geostrophic adjustment." Mon. Weather Rev., 108, 1248-1295.

Shaw, D., Martz, L. W., and Pietroniro, A. (2005). "Flow routing in large-scale models
using vector addition." Journal of Hydrology, 307(1-4), 38-47.

Shields, F.D. Jr., and Nunnally, N.R. (1984). “Environmental aspects of clearing and
snagging.” Journal of Environmental Engineering, 110 (1), 152-165.

Spalart, P.R, Allmaras, S.R. (1992). “A one-equation turbulence model for aerodynamic
flow.” AIAA J. 29, 1819-1835.

Spitaleri, R. M., and Corinaldesi, L. (1997). "A multigrid semi-implicit finite difference
method for the two-dimensional shallow water equations." International Journal

for Numerical Methods in Fluids, 25(11), 1229 - 1240.

Stelling, G. S., and Duinmeijer, S. P. A. (2003). "A staggered conservative scheme for
every Froude number in rapidly varied shallow water flows." International

Journal for Numerical Methods in Fluids, 43(12), 1329-1354.

 166

Steppeler, J. (2006). "HLI, a direct method suitable for partial and fully implicit time
integration of primitive equation meteorological models." Computers &
Mathematics with Applications, 52(8-9), 1357-1372.

Sullivan, K., Lisle, T. E., Dolloff, C. A., Grant, G. E., and Reid, L. M. (1987). “Stream
channels: the link between forest and fishes.” Streamside management, forestry
and fishery interactions. E. O. Salo and T. W. Cundy. Eds., Coll. Of Forest
Resour., Univ. of Washington, Seattle, Wash., 39-97.

Szymkiewicz, R. (1992). "A Mathematical-Model of Storm-Surge in the Vistula Lagoon,
Poland." Coastal Engineering, 16(2), 181-203.

Tannehill, J. C., Anderson, D. A., and Pletcher, R. H. (1997). Computational fluid

mechanics and heat transfer, Taylor & Francis, Washington, DC.

Thomee, V. (2001). "From finite differences to finite elements - A short history of
numerical analysis of partial differential equations." Journal of Computational

and Applied Mathematics, 128(1-2), 1-54.

Thouvenin, B., Gonzalez, J. L., Chiffoleau, J. F., Boutier, B., and Le Hir, P. (2007).
"Modelling Pb and Cd dynamics in the Seine estuary." Hydrobiologia, 588, 109-
124.

Tsynkov, S. V. (1998). “Numerical solution of problems on unbounded domains. A
review.” Applied Numerical Mathematics, 27, 465-532.

Turek, S. (1996). "A comparative study of time-stepping techniques for the
incompressible Navier-Stokes equations: From fully implicit non-linear schemes
to semi-implicit projection methods." International Journal for Numerical
Methods in Fluids, 22(10), 987-1011.

Vinayan, V. (2003). Boundary-Integral Analysis of Nonlinear Diffraction Forces on a
Submerged Body. Master thesis, Department of Ocean Engineering, Florida
Atlantic University.

Vreugdenhil, C. B. (1994). Numerical Methods For Shallow-Water Flow, Kluwer
Academic, Dordrecht, The Netherlands.

Wadzuk, B. M. (2004). "Hydrostatic and non-hydrostatic internerwave models," Ph.D
dissertation, The Univeristy of Texas at Austin.

Weerakoon, S. B., Tamai, N., and Kawahara, Y. (2003). "Depth-averaged flow
computation at a river confluence." Proceedings of the Institution of Civil
Engineers-Water and Maritime Engineering, 156(1), 73-83.

 167

Webster, R. (2007). "Algebraic multigrid and incompressible fluid flow." International

Journal for Numerical Methods in Fluids, 53(4), 669-690.

Wiegel, R. L. (1964). Oceanographical Engineering. Dover Publication, Inc., Mineola,
New York.

Wilders, P., Van Stijn, T. L., Stelling, G. S., and Fokkema, G. A. (1988). "A Fully
Implicit Splitting Method for Accuracy Tidal Computations." International

Journal for Numerical Methods in Engineering, 26, 2707-2721.

Wubs, F. W., de Niet, A. C., and Dijkstra, H. A. (2006). "The performance of implicit
ocean models on B- and C-grids." Journal of Computational Physics, 211(1),
210-228.

Yuan, H., and Wu, C. (2004). "An implicit three-dimensional fully non-hydrostatic model
for free-surface flows." International Journal for Numerical Methods in Fluids,
44(8), 811-835

Zhang, Y., Baptista, A. M., and III, E. P. M. (2004). "A cross-scale model for 3D
baroclinic circulation in estuary–plume–shelf systems: I. Formulation and skill
assessment." Continental Shelf Research, 24(18), 2187-2214.

Zhou, J. T., Lin, J. G., and Xie, Z. H. (2007). "A compact explicit difference scheme of
high accuracy for extended Boussinesq equations." China Ocean Engineering,
21(3), 507-514.

Zhou, W. (2002). "An Alternative Leapfrog Scheme for Surface Gravity Wave
Equations." Journal of Atmospheric and Oceanic Technology, 19(September),
1415-1423.

 168

Vita

Shipeng Fu was born in Jinhua, Zhejiang, China on August 6, 1975, the daughter

of Zhaojun Wang and Xuede Fu. After completing her work at the Jinhua No.1 High

School of Zhejiang, she entered Sichuan University in 1992. After receiving her degree

of Bachelor of Science in Engineering in 1996, she continued her graduate study at the

State Key Laboratory of Hydraulics in Sichuan University. In 1999, she received her

degree of Master of Science in Engineering. Upon graduation, she joined Beijing

Municipal Institute of City Planning and Design as an Engineer from 1999 to 2002. She

entered the Graduate School of The University of Texas at Austin in September 2003.

Permanent address: 263 West Shuangxi Road, Jinhua, Zhejinag, China 321001

This dissertation was typed by the author.

