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Environmental flows (e.g. river and atmospheric flows) governed by the shallow 

water equations (SWE) are usually dominated by the advective mechanism over multiple 

time-scales. The combination of time dependency and nonlinear advection creates 

difficulties in the numerical solution of the SWE. A fully-implicit scheme is desirable 

because a relatively large time step may be used in a simulation. However, nonlinearity in 

a fully implicit method results in a system of nonlinear equations to be solved at each 

time step. To address this difficulty, a new method for implicit solution of unsteady 

nonlinear advection equations is developed in this research.  This Time-Centered Split 

(TCS) method uses a nested application of the midpoint rule to computationally decouple 

advection terms in a temporally second-order accurate time-marching discretization. The 

method requires solution of only two sets of linear equations without an outer iteration, 

and is theoretically applicable to quadratically-nonlinear coupled equations for any 

number of variables.  
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To explore its characteristics, the TCS algorithm is first applied to one-

dimensional problems and compared to the conventional nonlinear solution methods.  

The temporal accuracy and practical stability of the method is confirmed using these 1D 

examples.  It is shown that TCS can computationally linearize unsteady nonlinear 

advection problems without either 1) outer iteration or 2) calculation of the Jacobian. A 

family of the TCS method is created in one general form by introducing weighting factors 

to different terms. We prove both analytically and by examples that the value of the 

weighting factors does not affect the order of accuracy of the scheme. In addition, the 

TCS method can not only computationally linearize but also decouple an equation system 

of coupled variables using special combinations of weighting factors. Hence, the TCS 

method provides flexibilities and efficiency in applications. 
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Chapter 1 Introduction 

 

Models of river flow using mathematic tools have been developed since last half 

century (Cao and Carling 2002). Various numerical river models have been created to 

study flood control (Dutta et al. 2007; Liao et al. 2007), water allocation (Fleckenstein et 

al. 2006; Luo 2007), sediment and morphological evolution (Giri and Shimizu 2006; Le 

et al. 2006) and so on. The river flow is usually modeled at a coarse-grid scale due to the 

limitations of the computational power (Dedong et al. 2007; Shaw et al. 2005; Thouvenin 

et al. 2007). However, there exist some particular river systems such as a river with many 

large woody debris (LWD), as shown in Figure 1.1. The flow information around LWD 

is at subgrid-scale, which can’t satisfactorily be modeled at the conventional coarse-grid. 

In addition, the river flow is often simulated using two-dimensional (2D) depth 

averaged shallow water equations (SWE) as the governing equations (Chen and Peng 

2006; Nguyen et al. 2006; Weerakoon et al. 2003). However, the unsteadiness and the 

dominant advective mechanism of a river flow create difficulties in SWE based 

numerical simulation because of the combination of the “stiffness” (i.e. the unsteady 

term) and “nonlinearity” (i.e. the nonlinear advection term) in the momentum equations. 

Therefore, in this research, we develop a new numerical algorithm to address the 

difficulties in simulating the unsteady nonlinear advection. This numerical scheme can 

also serve as a platform to perform the new conceptual model which can integrate the 

subgrid-scale physics into a coarse-grid scale model. The detailed development of the 

conceptual model can be found in Fu and Hodges (2005).  First, let us start with the 

background information of the LWD.  
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1.1 BACKGROUND  

Large woody debris (LWD) refers to woody material such as fallen tree trunks or 

root balls that become lodged in stream channels. Figure 1.1 gives an example of a river 

laden with large woody debris (LWD).  The conventional size of LWD is diameters 

larger than 0.1 m and lengths greater than 1.0 m (Keller and Swanson 1979; Andrus et al. 

1988). LWD accumulations have been historically called “snags”, a pejorative term 

reflecting a perception of LWD as a nuisance to river navigation and efficient water use. 

River “improvement” schemes typically involve removing LWD (Shields & Nunnaly 

1984; Gippel 1995), to improve water conveyance, rejuvenate channels, lessen the risk of 

damage to bridges, improve recreational amenity, and remove barriers to fish migration 

(Harmon et al. 1986). However, from an ecological perspective, LWD provides a stable 

substratum for microorganisms, algae and invertebrates (Minshall 1984; Brown & May 

2000; Statzner & Higler 1986). This, in turn, creates grater local productivity for higher 

trophic levels such as invertebrates and fish (Price & Lovett 2002). Furthermore, LWD 

enhances hydraulic diversity (i.e. a wide range of flow conditions), which in turn 

enhances diversity in fish habitat, e.g. providing low-velocity refuges sought by many 

fish species (Benke et al. 1985; Matthews & Hill 1980), and also providing cover from 

predators (Angermeier & Karr 1984, Everett & Ruiz, 1993), foraging habitat, and 

spawning substratum - all of which vary dynamically with flow rate (Bao & Mathews 

1991; Mathews & Tallent 1997; Marzolf 1978). In short, LWD creates greater habitat 

complexity (O’Conner 1991), which should produce greater biodiversity (Gerhard & 

Reich 2000).  
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Figure 1.1 Sulphur River (Texas) large woody debris at low-flow conditions 

(Photo courtesy of Texas Water Development Board) 

 

Over the past two decades, a wide variety of studies demonstrate how woody 

debris may be a dominant player in aquatic habitat. Angermeier & Karr (1984) 

selectively modified a stream by inducing and removing woody debris, subsequently 

showing a greater abundance of fish and benthic invertebrates correlated with the 

introduced debris. Benke et al. (1985) examined a low-gradient stream, showing that only 

4% of habitat surface was in LWD and yet this supported 60% of the invertebrate 

biomass and 16% of overall production. Similar results are noted in Benke et al. 1984 and 

Jacobi & Benke1991. Effects of flooding on fish movements and distribution (Hill & 

Grossman 1987; Harvey et al. 1999) have confirmed the importance of habitat 

complexity (including LWD) for population persistence. More subtle and indirect effects 

on habitat have been attributed to LWD’s modification of the flow field and water level 

(Triska & Cromack 1980; Sedell et al. 1982; Wallace & Benke 1984). Near LWD, 

reduced velocities allow retention of organic matter, building up ecologically-important 

debris dams, while water lever effects at high flow rates can influence the seed dispersal 

from riparian vegetation (Merritt & Wohl 2002). Studies drawing similar conclusions 
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have been conducted over a variety of locales and river types, ranging from salmon 

spawning streams in Alaska (Dolloff 1986), low-gradient rivers in West Virginia (Lobb 

& Orth 1991) to an ephemeral river in Africa (Jacobson et al. 1999). The common theme 

is that LWD plays a varied and critical role in aquatic habitat for rivers and streams – a 

role determined by the flow field near LWD. Moreover, water management agencies are 

interested in including the effects of LWD in aquatic habitat assessments used for water 

resource allocations.   

The flow structure around LWD is very complicated and varied, which has been 

revealed by several previous field studies (e.g. Mutz 2000; Beebe 2001; Daniels & 

Rhoads 2003). Moreover, there is a large difference in scales between hydraulic 

processes and the critical ecological processes. Because of this scale difference, the 

small-scale flow heterogeneity (important to biota) is poorly represented in the channel-

scale numerical models currently used for aquatic habitat analysis (e.g. Waddle 2001). To 

address this problem, a new conceptual model is proposed to integrate the subgrid-scale 

physics into a coarse-grid scale model (Fu and Hodges, 2005).  

 

1.2 CHALLENGE AND MOTIVATION OF THE NUMERICAL MODEL 

In addition to the scale difference, another challenge for solving the river flow 

with LWD is to build a numerical model to simulate the unsteady river flow. River flow 

is usually characterized as shallow-water flow. As shown in Figure 1.1, the flow around 

LWD is indeed shallow as most of the LWD are exposed out of the water surface. This 

kind of river system is usually modeled by 2D depth averaged shallow water equations 

(SWE) (Arega et al. 2008; Burguete et al. 2006; Gejadze and Monnier 2007). 2D depth 

averaged SWE can be obtained by integrating the Navier-Stokes equation over the water 

depth with the underlying hydrostatic assumption. One of the difficulties in solving SWE 
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numerically is the combination of the “stiffness” (i.e. the unsteady term) and 

“nonlinearity” (i.e. the nonlinear advection term) in the momentum equations. Numerous 

finite-difference numerical models for solving SWE have been developed over the past 

several decades. Among these developed numerical models, explicit and semi-implicit 

schemes are the most widely used. For example, in the atmospheric or weather research 

community, explicit methods such as Leapfrog and Lax-Wendroff-type are the most 

popular ones (Mendez-Nunez and Carroll 1993). Casulli (Casulli 1990) proposed a semi-

implicit scheme, on which a number of  variations are based. A common property for 

both the explicit and semi-implicit methods is that they explicitly discretize the advection 

term. Hence, the nonlinearity does not arise in an explicit or a semi-implicit sachem. 

However, their stability is restricted by the Courant-Friedrichs-Lewy (CFL) condition 

because of the explicitness. A fully implicit scheme is desirable because we can use a 

relative large time step in the simulation. A fully implicit solution for an unsteady 

nonlinear advection problem involves solving a system of nonlinear equation at each 

step. The conventional techniques for solving a system of nonlinear equations require 

either 1) iterations of root-finding procedure or/and 2) calculations of the Jacobian. These 

two processes make a fully implicit solution more complex and computationally 

expensive. These motivate this research to develop a new implicit scheme to solve 

unsteady nonlinear advection problems.  
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1.3 OBJECTIVE 

The primary objective of this research is:  

Develop a new implicit solution for unsteady nonlinear advection problems. The 

new numerical algorithm should have the advantage in both stability and efficiency while 

keeping the 2
nd

-order temporal accuracy as in most existing SWE models. In addition, this 

new method would provide a novel approach in decoupling a coupled equation system. 

 

1.4 APPROACH 

To achieve the objective of this research, several steps need to be taken to guide 

this study. The major steps are as follows: 

Literature review 

• Review current finite-difference models for the 2D depth averaged SWE. 

• Examine how the nonlinear advection term is treated in different temporal 

discretizations.   

• Review the merits and limitations of the existing models.  

This part of the dissertation work is presented in Chapter 2.  

 

Analytical development of the new numerical algorithm 

Illustrate the theoretical principle and concept of the new algorithm. This part of 

the dissertation work is presented in Chapter 3. 

 

Verify the new method using 1D test case 

• Test the new algorithm using a 1D PDE with time dependent nonlinear 

advection term.  

• Test the new algorithm using 1D ordinary differential equation (ODE).  
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• Explore the characteristics of the method in accuracy, stability and 

efficiency.   

This part of the dissertation work can be found in Chapter 4. 

 

Verify the new method using a multi-variable and multi-dimensional problem 

• Theoretically develop the new algorithm in multi-variable and multi-

dimensional problems.  

• Demonstrate and analyze the decoupling process of the new method.  

• Conduct initial test cases of the numerical algorithm in 2D depth averaged 

SWE.  

This work can be found in Chapter 5 and Chapter 6.  

 

1.5 BROAD APPLICATION 

The initial motivation and application for this research is simulating a river flow 

with LWD. The newly developed numerical algorithm for solving unsteady nonlinear 

advection problems is not limited only in simulating river flows. In most of the 

environmental flows such as atmospheric flow, ocean circulation, storm surge and etc., 

advection is the dominant mechanism and we are often interested in simulating these 

flows with a range of different time scales. Therefore, the difficulties arising from the 

combination of the unsteadiness and nonlinear advection exist in modeling many types of 

environmental flows. This new numerical method provides a new approach to address 

this difficulty in these and many other research areas. 
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Chapter 2 Review of Finite Difference Schemes for Solving the 

Unsteady Nonlinear Advection in the Shallow Water Equations 

 

Environmental flows (e.g. river and atmospheric flows) governed by the SWE are 

usually dominated by the advective mechanism over multiple time-scales (Vreugdenhil 

1994). The combination of  time dependency and nonlinear advection creates difficulties 

in the numerical solution of the shallow water equations (SWE) (Bourchtein and 

Bourchtein 2006). To address this difficulty, numerous numerical schemes have been 

developed over the past several decades. Iskandarani et al (2005) reviewed the finite 

element/finite volume methods in solving advection equations. More reviews about finite 

element methods can be found in the article by Thomee (2001).  The research herein 

focuses on developing a finite difference algorithm for solving unsteady nonlinear 

advection problems. To review the existing finite difference techniques, we first classify 

time-marching algorithms into three categories: explicit, semi-implicit and implicit 

methods. In the explicit and semi-implicit methods, the nonlinear advection terms are 

treated explicitly. Hence, the issue of solving a nonlinear matrix inversion does not arise 

in these two temporal discretizations. However, to solve a fully-implicit system, different 

computational linearization methods are required treat the nonlinearity, so that the 

inversion of a nonlinear matrix can be obtained. Therefore, we briefly review the explicit 

and semi-implicit models for solving the SWE and examine different linearization 

approaches in the implicit system.  Comparisons among different existing methods are 

summarized in the last section of this chapter.  
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2.1 EXPLICIT METHOD 

Fully explicit methods are popular in atmospheric or weather research 

community. The most widely used explicit methods in atmospheric research are Leapfrog 

and Lax-wendroff-type schemes (Mendez-Nunez and Carroll 1993). The Leapfrog 

method is a one-step method, requiring two time levels of known values to compute an 

unknown level. Modifications of the Leapfrog methods are used in simulating ocean 

circulation (Cho and Yoon 1998; Fujima and Shigemura 2000). The Lax-Wendroff-type 

method is a two-step Predictor-Corrector method. One of the popular variations of the 

Lax-wendroff scheme is developed by MacCormack (1969). The MacCormack scheme is 

extended to many research areas such as aerospace engineering (Hirose et al. 1991; 

Kurbatskii and Mankbadi 2004) and hydrological science in simulating free surface flow 

(Fennema and Chaudhry 1990; Garcia and Kahawita 1986; Kazezyılmaz-Alhana et al. 

2005; Keshari and Koo 2007; Li and Jackson 2007), groundwater flow (Keshari and Koo 

2007) and dam-break shock wave (Li and Jackson 2007). Another commonly used 

explicit Predictor-Corrector method is the Runge-Kutta method (Delis and Katsaounis 

2005; Zhou et al. 2007). The Leapfrog and the two-step Predictor-Corrector methods can 

maintain 2
nd
-order temporal accuracy. Although simpler explicit schemes such as 

forward-time scheme is also used in solving SWE (Murillo et al. 2008), it can only 

maintain 1
st
-order temporal accuracy.  

Explicit schemes are straightforward and easy to implement. Nonlinear advective 

terms in partial differential equations (PDE) are readily-computed from known time-

levels using fully-explicit time-marching methods. However, the implementations of 

explicit methods are restricted by stability requirements. Runge-Kutta and MacCormack 

methods typically require an excessively small time step to satisfy the Courant-

Friedrichs-Lewy (CFL) condition(Mendez-Nunez and Carroll 1993); the Leapfrog 
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approach must be applied with appropriate numerical strategies such as alternate time 

levels of the solution (Agoshkov et al. 1994; Peyret and Taylor 1983; Zhou 2002) or  

sophisticated mode-splitting (e.g.Blumberg and Mellor 1987). 

 

2.2 SEMI-IMPLICIT METHOD 

Semi-implicit methods have been developed and widely used in temporal 

discretized SWE. In most semi-implicit methods, the nonlinear advection terms are 

discretized explicitly (Bonaventura and Rosatti 2002; Bourchtein and Bourchtein 2007; 

Casulli 1990; Casulli and Cattani 1994; Casulli and Cheng 1992; Kar 2006; Spitaleri and 

Corinaldesi 1997) so that the issue of solving a nonlinear matrix inversion does not arise. 

For instance, Environmental Fluid Dynamics Computer code (EFDC) uses a three-level 

semi-implicit method, in which advection terms are explicitly discretized using upwind 

scheme.  As a result, the stability is constrained by the explicit advection terms (Hamrick 

1992). Some other models (Kar 2006) use the explicit Runge-Kutta method to calculate 

the advection term. It is obvious that the stability of this treatment is constrained by the 

CFL number.  

To overcome the stability constraint, different numerical treatments are 

introduced to calculate the linearized advection term. One of the most widely used 

techniques is the semi-Lagrangian method (Cullen 2001; Rosatti et al. 2005). Casulli 

(Casulli 1990; Casulli and Cattani 1994; Casulli and Cheng 1992) used this method in 

UnTRIM and the earlier version, TRIM. Some latest models including ELCIRC (Zhang 

et al. 2004) and ELCOM(Hodges 2000) followed this idea. Although Casulli’s approach 

has been successful and stable, its accuracy is relatively poor (Hodges, 2004).  

The main advantage of the semi-Lagrangian method is that the stability is not 

constrained by the CFL condition (Barros and Garcia 2007).  However, a set of trajectory 
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equations need to be solved at each time step and the maximum allowable time step is 

restricted by the convergence criteria of the iteration of the trajectory equations 

(Bourchtein and Bourchtein 2007).  

 

2.3 IMPLICIT METHOD 

An obvious advantage of a fully-implicit method is that the time step is not 

restricted by the CFL number. Various fully-implicit finite difference schemes have been 

developed. Steppeler (2006) solved a fully implicit, SWE based meteorological model 

using the Fourier transformation method at each grid point and each time step. Some 

researchers derived a fully-implicit scheme based on Alternating Direction Implicit (ADI) 

method (Szymkiewicz 1992; Wilders et al. 1988). Yuan and Wu solved implicit Navier-

Stokes equations using a staggered finite difference Crank-Nicolson scheme (Yuan and 

Wu 2004).  Burguete and Garcia-Navarro (Burguete and Garcia-Navarro 2004) 

implemented a first order upwind implicit scheme to simulate river hydraulics problem.   

Although the fully-implicit methods are more accurate and robust, they are less 

common, possibly due to computational complexity and expense (Turek 1996). 

Nonlinearity in a fully-implicit method results in a system of nonlinear algebraic 

equations to be solved at each time step. Existing strategies for solving implicit nonlinear 

equations include iterative and non-iterative methods (Moin 2001). In the following, we 

will review the conventional techniques for implicit nonlinear solutions.  

The Newton method and Picard method (Ferziger and Peric 1999; Lehmann and 

Ackerer 1998; Paniconi et al. 1991) are the most widely used two-level iterative 

techniques for implicit time-marching of nonlinear equations. For steady-state nonlinear 

problems, Newton and Picard iterative algorithms have proven quite successful (Paniconi 

and Putti 1994).  These methods may be thought of as successive linear solutions of 
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=Ax b% , where A%  is an approximation of A that is iteratively refined to solve the 

nonlinear problem.  However, for time-evolving CFD problems, each time-marching step 

using the Newton or Picard method requires an outer iteration applied over an inner 

solution of a linear equation set.  When the inner problem also requires an iterative 

solution (as is common in CFD), the time march for this doubly-iterative approach is 

computationally expensive.  The principal differences between the Picard and Newton 

methods are that the former is easier to implement and requires fewer computations per 

outer iteration but has only 1st-order convergence, whereas the latter is more difficult to 

implement but provides 2nd-order convergence.  Thus, which method is appropriate 

depends upon the difficulty in implementing the Newton method compared to the slower 

convergence of the Picard method. A further implicit technique, local linearization, has 

not been widely used in CFD but does provide time-marching with 2nd-order accuracy 

(Lomax et al. 1999) without an outer iteration.  By providing a single linear 

approximation of the nonlinear problem, local linearization side-steps the convergence 

issue of the outer iteration for Newton/Picard techniques.  However, local linearization 

requires discretization of the Jacobian, which is often difficult to derive and implement 

for typical CFD applications.   

To better illustrate these existing implicit linearization methods, we use a simple 

scalar ODE with a quadratic nonlinearity as an example. The nonlinear ODE is written as 

 
d

f ( , t)
dt

ψ
= ψ  (2.1) 

Using a finite-difference Crank-Nicolson discretization (the simplest 2
nd
-order implicit 

method), the above can be approximated as 

 ( ) ( ){ } ( )n 1 n n 1 n 3t
f f t

2

+ +∆
ψ = ψ + ψ + ψ + ∆O   (2.2) 
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where superscripts indicate the discrete time step and ( )n 1f +ψ  implies a quadratic 

nonlinear relationship in n 1+ψ  (e.g. n 1+ψ n 1+ψ or n 1

x

+ψ n 1+ψ ). Equation  (2.2) is our example 

of an implicit nonlinear equation. In the following, we will demonstrate the principles of 

existing techniques to linearize Equation (2.2) computationally. 

 

2.3.1 Newton methods 

The Newton method is one kind of root-finding algorithm. It starts with an initial 

guess and iteratively estimates the root of the function. The Newton method can be 

derived from a Taylor series expansion or a geometric proof (Amat et al. 2003). One of 

the advantages of the Newton method is that it can be applied to equation systems with 

complex nonlinearities and keeps the quadratic convergence rate. In petroleum 

engineering and other research areas concerning flow through porous media, the Newton 

method is a standard approach because of the complex nonlinearities (Cao and Sun 2005; 

Dettmer and Peric 2007; Kwok and Tchelepi 2007). Using the Newton method, the 

linearized equation system of Equation (2.2) can be written as 

 ( ) ( )
( )

k
n 1

k 1 k
n 1 n 1

k

n 1

g

g

+
++ +

+

 ψ ψ = ψ −
 ∂
 ∂ψ 

 (2.3) 

where the outer superscript indicates the iteration number and  

 ( ) ( ) ( ){ }n 1 n 1 n n n 1t
g f f

2

+ + +∆
ψ = ψ −ψ − ψ + ψ  (2.4) 

In general, we can use the value at the previous time step as the value at the first iteration, 

which means 

 ( )1n 1 n+ψ = ψ  (2.5) 
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Equation (2.3) is solved repeatedly until the difference between two successive iterations 

satisfies the pre-defined convergence criteria. In Equation (2.3), a first order derivative 

( )n 1g / +∂ ∂ψ must be calculated and updated at each iteration. If ψ is a vector and 

discretized in space, the resulting ( )n 1g / +∂ ∂ψ  is a matrix and called the Jacobian of the 

linearized equation system. However,  the Jacobian matrix may be computationally 

expensive and difficult to calculate analytically (Ferziger and Peric 1999; Niet et al. 

2007).   

A number of approaches have been proposed to modify Newton method. For 

example, it can be modified with a Chebyshev approximation to accelerate the 

convergence (Bagatur 2007). To simplify the Newton method, much research has been 

carried out to simplify the calculation of the Jacobian matrix. Niet et al. (2007) evaluated 

the Jacobian matrix using a partial-analytical and partial-numerical technique in an 

ocean-climate model. Li (1993) attempted to reduce the effort to compute the derivatives. 

A Jacobian-free Newton-Krylov (JFNK) method has been developed recently to solve 

nonlinear equation systems (Brown and Saad 1990; Chan and Jackson 1984; Knoll and 

Keyes 2004; Mousseau et al. 2002; Reisner et al. 2005; Wubs et al. 2006). The key to 

JFNK solver is approximating the Jacobian-vector product iteratively instead of 

evaluating each element of the Jacobian matrix. Although all these modifications reduce 

the computation effort of Jacobian, inconvenient iteration still remains in the Newton 

method.  

 

2.3.2 Picard Iteration 

The Picard iteration is more straightforward than the Newton method. In the 

Picard iteration, the previous outer iteration value, ( )k
n 1+ψ , is substituted for n 1+ψ  on the 

RHS of Equation (2.2), resulting in  
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 ( ) ( ) ( ){ }k 1 k
n 1 n n n 1t

f f
2

++ +∆  ψ = ψ + ψ + ψ  
 (2.6) 

As in the Newton iteration, Equation (2.6) is solved repeatedly until the difference 

between two successive iterations satisfies pre-defined convergence criteria. The same 

initial condition, Equation (2.5) is used to start the solution. Due to the simplicity, Picard 

iteration has been widely used in fully implicit nonlinear solver in Computational Fluid 

Dynamics (CFD)(Clement et al. 1994; Kwag 2000; Webster 2007). Different 

modifications of the Picard method have been reported in the literature. For example, 

Celia et al.(1987) proposed a modified Picard iteration that is a combination of Picard 

iteration and Newton iteration. However, this and other modified Picard methods remain 

linearly convergent (Lehmann and Ackerer 1998). A detailed comparison of the Picard 

and Newton methods is provided by Paniconi and Putti (1994).  In general, Newton 

methods require more computations per iteration, but converge more rapidly (quadratic) 

than Picard methods (linear).  However, for advection equations, the overall 

computational cost of Newton methods is typically greater than Picard methods because 

of the computational cost of the Jacobian (Ferziger and Peric 1999).   

 

2.3.2 Local linearization 

In contrast to the above-mentioned Newton and Picard methods, local 

linearization is a non-iterative method.  Let’s first review the derivation of the local 

linearization techniques, which are based on a Taylor-series expansion for n 1f + about nt in 

Equation (2.2). The following derivation is based on Lomax et al.(1999), 

 ( )
n n

n 1 n 2f f
f f t t

t

+  ∂ ∂ = + ∆ψ + ∆ + ∆  ∂ψ ∂  
O  (2.7) 
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where 
n 1 n+∆ψ = ψ −ψ . For advection equations, f is generally not an explicit function 

of t, so ( )n
t f / t∆ ∂ ∂  in Equation (2.7) is zero.  Substituting Equation  (2.7) into Equation 

(2.2)  provides 

 ( )
n

n 1 n n n 3t f
f f t

2
O

+
  ∆ ∂ 

ψ = ψ + + ∆ψ + + ∆  ∂ψ   
 (2.8) 

which is equivalent to   

 

n

nt f
1 tf

2

  ∆ ∂
− ∆ψ = ∆  ∂ψ   

 (2.9) 

Equation  (2.9) is a linear second-order discrete form of the original nonlinear ODE and 

can be solved by any number of standard techniques once ( )n
f /∂ ∂ψ  is explicitly 

computed. However, as in the Newton method, the evaluation of the Jacobian ( )n
f /∂ ∂ψ  

complicates the overall computation.  

 

2.4 SUMMARY 

SWE is widely used in simulating environmental flows. Mathematically, the 

stiffness and nonlinear advection increases the difficulty in the numerical solutions of 

SWE. Explicit methods can easily solve the nonlinearity but are restricted by the CFL 

stability criteria. Semi-implicit methods treat the advection term explicitly but need 

additional numerical treatment such as the semi-Lagrangian method to calculate 

advection terms for a higher CFL number. A fully implicit method is desirable but 

requires further computational linearization to solve a nonlinear system of equations. 

Existing implicit linearization techniques (including Newton, Picard and local 

linearization methods) require either 1) additional explicit derivative evaluations to 

provide an approximate linear problem, or 2) an outer iteration that converges an inner 
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approximate linear problem.  These two characteristics make implicit systems complex 

and expensive to solve. To address the nonlinearity in a fully implicit system, in the next 

chapter we propose a new computational linearization method that can linearize the 

nonlinear advection term without either 1) the outer iteration or 2) computation of the 

Jacobian. 
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Chapter 3 Theoretical Development of the Time-Centered Split (TCS) 

Method 

 

In Chapter 2 we reviewed the current implicit linearization methods that require 

either an outer iteration or a computation of the Jacobian. In this chapter, we develop a 

new method that is similar to local linearization in that it allows non-iterative 

discretization of a temporally 2
nd
-order approximation of the nonlinear equation set.  

Instead of requiring the Jacobian, the new method splits the time-marching nonlinear 

problem into two sets of linear problems that are solved in succession.  The new method 

has both the computational efficiency of a non-iterative local linearization method and 

the implementation simplicity of a Picard iterative method. We call this the Time-

Centered-Split (TCS) method. 

The theory of the TCS method is first derived using a generic single variable 

nonlinear equation in this chapter. The TCS method can generate different discrete forms 

by introducing the time-centered split to different terms. This advantage is demonstrated 

by applying the TCS method to a 1D advection-diffusion equation (Burgers’ equation). 

Four different TCS formats such as TCSF (split the flux term), TCSG (split the gradient 

term), TCSF-D (split the flux and diffusion terms) and TCSG-D (split the gradient and 

the diffusion terms) are derived and presented for the 1D Burgers’ equation. One of the 

key advantages of the TCS method is that it provides non-iterative coupling between 

multiple variables. A 1D coupled advection diffusion equation and scalar transport 

equation are used as an example to illustrate this advantage. A summary of the principles 

of the TCS method and its advantages are provided in the last section. 
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3.1 THE THEORY OF TIME-CENTERED SPLITTING  

3.1.1 Computational Splitting of the Nonlinear Term 

The TCS method is based on a nested application of the midpoint rule (i.e. a 

centered-time approximation).  Midpoint rule discretizations are often used for time-

marching to obtain second-order temporal accuracy (Ferziger and Peric 1999).  A 

common approach for nonlinear time-marching in meteorology and oceanography is 

application of the midpoint rule in an explicit formulation known as the 3-level Leapfrog 

method (Dubois et al. 2005; Fujima and Shigemura 2000).  The explicit Leapfrog method 

can be written as 

 ( )n 1 n 1 n n n 3f 2 t t+ −φ = φ + φ φ φ ∆ + ∆, O( )  (3.1) 

where superscripts represent time levels and t∆  is the model time step.  Equation (3.1) 

can be seen as a generic form of a nonlinear equation. The function f is a linear operator 

of φφ  and φ . Inside the function f, the product term φφ  represents a generic quadratic 

nonlinear term. This quadratic nonlinear term in a flow and transport problem is of the 

interest in this research. To develop the TCS method, we note that in the same vein as 

Equation (3.1), the midpoint rule can be written across only two time levels as  

 ( )n 1 n n 1 2 n 1 2 n 1 2 3f t t+ + + +φ = φ + φ φ φ ∆ + ∆/ / /, O( )  (3.2) 

Equation (3.2) has the desirable property that the time n+1/2 information is retained only 

within the computation of the n to n+1 time step so that the advance is not leapfrogging 

over alternating data.  By introducing a time-centered linear approximation of  

 ( ) ( )n 1/ 2 n n 1 2/ 2 tO+ +φ = φ + φ + ∆  (3.3) 

 in one part of the nonlinear product n 1/ 2 n 1/ 2+ +φ φ in Equation (3.2), the discrete equation 

becomes computationally linear in time (i.e. no products with the same time level): 
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 ( )
n n 1

n 1 n 2 n 1 2 n 1 2 3f O t t t
2

+
+ + +  φ + φ

φ = φ + + ∆ φ φ ∆ + ∆  
  

/ /
, O( )  (3.4) 

Reorganizing Equation (3.4) provides  

 ( ) ( )n 1 n n n 1 2 n 1 2 n 1 n 1 2 n 1 2 3t t
f f t

2 2

+ + + + + +∆ ∆
φ = φ + φ φ φ + φ φ φ + ∆/ / / /

, , O( )  (3.5) 

Equation (3.5) is computationally split into two steps and an intermediate variable *φ  is 

defined as,   

 ( )* n n n 1/ 2 n 1/ 2 t
f ,

2

+ + ∆
φ = φ + φ φ φ  (3.6) 

Subtracting Equation (3.6) from Equation (3.5) provides 

 ( )n 1 n 1 n 1 2 n 1 2 3t
f t

2

+ + + + ∆
φ = φ + φ φ φ + ∆* / /

, O( )  (3.7) 

After introducing the above time-centered split, Equations (3.6) and (3.7) are both 

computationally linear. Furthermore, Equation (3.6) is similar to the implicit Euler 

approximation of n 1/ 2+φ  written as: 

 ( )
2

n 1 2 n n 1 2 n 1 2 n 1 2 t t
f

2 2

/ / / /, O+ + + + ∆ ∆ φ = φ + φ φ φ +  
 

 (3.8) 

Using the Taylor expansion, n 1/ 2+φ can be expanded as: 

 

2

n 1 2 n

t

t t

2 2

/ O+ ∆ ∆ φ = φ + φ +  
 

 (3.9) 

Substituting Equation (3.9) into the nonlinear term of Equation (3.8), provides 

 

2

n 1 2 n n n 1 2 n 1 2t t t
f

2 2 2

/ / /
O , O

+ + + ∆ ∆ ∆    φ = φ + φ + φ φ +          
 (3.10) 

Grouping the higher order terms,  

 ( )
2

n 1 2 n n n 1 2 n 1 2 t t
f

2 2

/ / /, O+ + + ∆ ∆ φ = φ + φ φ φ +  
 

 (3.11) 

Substituting Equation (3.6) into Equation (3.11), results in 
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2

n 1 2 t

2

+ ∆ φ = φ +  
 

/ * O  (3.12) 

Substitution of Equation (3.12)  into Equations (3.6) and (3.7) provides a two-step 

method  

 ( )n n 3t
f t

2

∆
φ = φ + φ φ φ + ∆* * *

, O( )  (3.13) 

 ( )n 1 n 1 3t
f t

2

+ + ∆
φ = φ + φ φ φ + ∆* * *

, O( )  (3.14) 

Equations (3.13) and (3.14) are a computationally linearized implicit equation system. 

The summation of Equations (3.13) and (3.14) is a 2
nd
-order computational equivalent of 

Equation (3.2). 

Remark: 

Although the derivation above provides a two-step direct linearization method, an 

outer iteration might also be combined for a big t∆  value. This process can be illustrated 

as the following:  

1. obtain 
n 1+φ  from Equations (3.13) and (3.14). 

2. calculate  
n 1/2+φ using ( )n 1 n / 2+φ + φ , where 

n 1+φ  is calculated from step 1. 

3. calculate a new 
n 1+φ  using Equations (3.13) and (3.14) with the updated 

n 1/2+φ  in step 2. 

Repeat the procedure until the difference between the old and new 
n 1+φ is 

acceptable.  

 

3.1.2 Computationally Splitting the Linear Term  

In the previous section, we introduced time-centered split only into the nonlinear 

term of φφ . In addition to splitting the nonlinear product term, one can also use the same 

splitting idea in the linear termφ , following 
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( ) ( )
n n 1 n n 1

n 1 n 2 n 1 2 2 3f t t t ( t )
2 2

/
O , O O

+ +
+ +    φ + φ φ + φ

φ = φ + + ∆ φ + ∆ ∆ + ∆    
    

 (3.15) 

Equation (3.15) is guaranteed 2
nd
-order accurate in time because of Equation (3.3).   

Reorganizing Equation (3.15) and grouping the higher order terms, 

 { }n 1 n n n 1 2 n 1 n 1 2 n n 1 3t
f ( t )

2

/ /
, , , O

+ + + + + ∆
φ = φ + φ φ φ φ φ φ + ∆  (3.16) 

In Equation (3.16), not only the nonlinear term but also the linear term is split into two 

parts.  Therefore, a different intermediate variable *φ is defined as 

 ( )* n n n 1/ 2 n t
f ,

2

+ ∆
φ = φ + φ φ φ  (3.17) 

The second step of the splitting system then becomes, 

 ( )n 1 * n 1 n 1/ 2 n 1 t
f ,

2

+ + + + ∆
φ = φ + φ φ φ  (3.18) 

Equations (3.17) and (3.18) are different from the split system in the previous section. As 

a result, the correspondence between *φ and n 1 2/+φ  is proved differently. Instead of the 

implicit Euler equation, the explicit Euler approximation for n 1 2/+φ  is introduced,    

 ( )
2

n 1 2 n n n n t t
f

2 2

/ , O+ ∆ ∆ φ = φ + φ φ φ +  
 

 (3.19) 

Substituting the Taylor expansion of n 1 2/+φ  into Equation (3.17) and grouping the higher 

order terms,   

 ( )
2

* n n n n t t
f , O

2 2

∆ ∆ φ = φ + φ φ φ +  
 

 (3.20) 

Substituting Equation (3.20) into Equation (3.19), we obtain 

 

2

n 1 2 t

2

+ ∆ φ = φ +  
 

/ * O  (3.21) 

Thus, we can use *φ  to replace n 1 2/+φ in Equations (3.17) and (3.18). A different set of 

computationally linearized two-step equations can be written as: 
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 ( )* n n * n t
f ,

2

∆
φ = φ + φ φ φ  (3.22) 

 ( )n 1 * n 1 * n 1 t
f ,

2

+ + + ∆
φ = φ + φ φ φ  (3.23) 

The key to the TCS method is the second-order time-splitting of quadratic 

nonlinear terms to two different time levels, i.e. n *φ φ and n 1 *+φ φ . The result is discretely 

linear in any time-level of information.  A further application of the same splitting in the 

linear terms will give another set of discrete linearized equations. The above derivation 

for the single variable φ  can be readily extended to a vector of variables, 1 2 N[ , ,... ]φ φ φ , or 

variables and linear operators, e.g. 1 1 2 2 N 2[ ,L( ), ,L( )... ,L( )]φ φ φ φ φ φ .   However, as 

additional variables (or operators) are introduced, the discretization method has multiple 

implementations.  For example, even with a 1D advection diffusion equation, we can 

obtain at least four different TCS discrete formats. In the next section, we will present 

these four different TCS formats by applying the TCS method to a 1D Burgers’ equation. 

 

3.2 DERIVATION OF THE TCS METHOD IN A 1D ADVECTION-DIFFUSION EQUATION 

The Burgers’ equation is the simplest advection-diffusion test case and can be 

viewed as a prototype of the Navier-Stokes equation or the SWE. The non-conservative 

Burgers’ equation can be written as: 

 
2

2

u u u
u

t x x

∂ ∂ ∂
+ = ν

∂ ∂ ∂
 (3.24) 

To develop the TCS method, we note that in the same vein as Equation (3.7), the 

midpoint rule can be written across only two time levels as  

 ( ) ( )n 1 n n 1 2 n 1 2 2 n 1 2 3

x xu u u u u t t/ / / O+ + + += + − δ + νδ ∆ + ∆  (3.25) 

where xδ is the shorthand notation of the generic discretized spatial derivative of ‘u’.  
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3.2.1 The TCSF Discrete Format 

The nonlinear advection term in Equation (3.24) is constructed by the flux part ‘u’ 

and the gradient part, ‘ u x/∂ ∂ ’. The time-centered splitting maybe applied to either part 

of the advection term. We first introduce a time-centered linear approximation of 

( ) ( )n 1/ 2 n n 1 2u u u / 2 tO+ += + + ∆  to the flux term in the nonlinear product in Equation 

(3.25). The discrete equation becomes computationally linear in time (i.e. no products 

with the same time level): 

 ( )
n 1 n

n 1 n n 1 2 2 n 1 2 3

x x

u u
u u u u t t

2

/ /
O

+
+ + +  +
= + − δ + νδ ∆ + ∆  

  
 (3.26) 

 

Multiplying the products in Equation (3.26) provides 

 ( ) ( ) ( ) ( )n 1 n n 1 n 1/ 2 n n 1/ 2 2 n 1/ 2 3

x x x

t t
u u u u u u u t O t

2 2

+ + + + +∆ ∆
= + − δ + − δ + νδ ∆ + ∆  (3.27) 

A computational-splitting technique is used to obtain a numerically-solvable set of 

equations from the discrete form of Equation (3.27).  Defining a generic intermediate 

variable *u  as 

 ( ) ( )n n n 1 2 2 n 1 2

x x

t t
u u u u u

2 2

* / /+ +∆ ∆
= + − δ + νδ  (3.28) 

and subtracting Equation (3.28) from Equation (3.27) provides 

 ( ) ( ) ( )n 1 n 1 n 1 2 2 n 1 2 3

x x

t t
u u u u u t

2 2

* / /
O

+ + + +∆ ∆
= + − δ + νδ + ∆  (3.29) 

Using an implicit Euler approximation of n 1 2u /+ and the same mathematical derivation as 

in Equation (3.12), we can prove 

 
2

n 1/ 2 * t
u u

4
O

+  ∆
= +  

 
 (3.30) 
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Substitution of Equation (3.30) into Equations  (3.28) and (3.29) provides a two-step 

method, which is called the TCSF method: 

 { }n n 2

x x

t
u u u u u

2

* * *∆
= + − δ + νδ  (3.31) 

 { } ( )n 1 n 1 2 3

x x

t
u u u u u t

2

* * *
O

+ +∆
= + − δ + νδ + ∆  (3.32) 

The summation of Equations  (3.31) and (3.32) is equivalent to the original Equation 

(3.25). The first step is an implicit solution for the variable u*  involving only nu and with 

an implicit discretization of the diffusion term. n 1u +  in the second step can be explicitly 

calculated. 
 

3.2.2 The TCSG Discrete Format 

Splitting the gradient term instead of the flux term in Equation (3.25) results in a 

second basic form of TCS.  Thus, instead of Equation (3.26), we obtain  

 
n 1 n

n 1 n n 1/ 2 2 n 1/ 2 3

x x

u u
u u u u t ( t )

2
O

+
+ + +  +
= + − δ + νδ ∆ + ∆  

  
 (3.33) 

For this second form, we define a slightly different intermediate variable as 

 ( ) ( )* n n 1/ 2 n 2 n 1/ 2

x x

t t
u u u u u

2 2

+ +∆ ∆
= + − δ + νδ  (3.34) 

Similarly in Equation (3.30), we have 

 
2

n 1/ 2 * t
u u

4
O

+  ∆
= +  

 
 (3.35) 

Subtracting Equation (3.34) from (3.33) and substituting Equation (3.35) in the same 

manner as the transition from Equation (3.27) through (3.32), we obtain a second discrete 

split form that we will call TCSG 

 { }* n * n 2 *

x x

t
u u u u u

2

∆
= + − δ + νδ  (3.36) 
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 { }n 1 * * n 1 2 *

x x

t
u u u u u

2

+ +∆
= + − δ + νδ  (3.37) 

The summation of Equations (3.36) and (3.37) is equivalent to the original Equation 

(3.25). The first step is an implicit solution for the variable u*  involving nu  and with an 

implicit discretization of the diffusion term. The second step is an implicit solution for 

the variable n 1u +  involving only u* and with an explicit discretization of the diffusion 

term. 

 

3.2.3 The TCSF-D Discrete Format 

The TCSF and TCSG forms are obtained by introducing the time-centered split 

into the advection term. Further approximation of the diffusion term using the same time 

splitting techniques will create different discretizations. For instance, in Equation (3.26), 

we can substitute the time splitting into both the flux and diffusion terms,  

 ( )
n 1 n n 1 n

n 1 n n 1 2 2 3

x x

u u u u
u u u t t

2 2

/
O

+ +
+ +    + +
= + − δ + νδ ∆ + ∆    

    
 (3.38) 

Defining  u*  as, 

 ( ) ( )n n n 1 2 2 n

x x

t t
u u u u u

2 2

* /+ ∆ ∆
= + − δ + νδ  (3.39) 

the second step follows as, 

 ( ) ( ) ( )n 1 n 1 n 1 2 2 n 1 3

x x

t t
u u u u u t

2 2

* /
O

+ + + +∆ ∆
= + − δ + νδ + ∆  (3.40) 

Using an explicit Euler approximation of n 1 2u /+ and the same mathematical derivation as 

in Equation (3.21), we can prove that 

 
2

n 1/ 2 * t
u u

4
O

+  ∆
= +  

 
 (3.41) 



 27 

Substituting Equation (3.30) into Equations (3.39) and (3.40), we obtained the TCSF-D 

format as 

 { }n n 2 n

x x

t
u u u u u

2

* *∆
= + − δ + νδ  (3.42) 

 { } ( )n 1 n 1 2 n 1 3

x x

t
u u u u u t

2

* *
O

+ + +∆
= + − δ + νδ + ∆  (3.43) 

We call Equations  (3.42) and (3.43) the TCSF-D method because we apply the time-

centered splitting to both the flux term and the diffusion term. The summation of 

Equations  (3.42) and (3.43) is equivalent to the original Equation (3.25). The first step is 

an implicit solution for the variable u*  involving nu  and with an explicit discretization of 

the diffusion term. The second step is an implicit solution for the variable n 1u +  involving 

only u* and with an implicit discretization of the diffusion term. 

  

3.2.4 The TCSG-D Discrete Format 

Similar to the development of the TCSF-D method, substitution of time-centered 

splitting into the diffusion term in the TCSG provides another set of two-step equations 

as 

 { }* n * n 2 n

x x

t
u u u u u

2

∆
= + − δ + νδ  (3.44) 

 { }n 1 * * n 1 2 n 1

x x

t
u u u u u

2

+ + +∆
= + − δ + νδ  (3.45) 

Equations (3.44) and (3.45) are called the TCSG-D discrete form. The summation of 

Equations  (3.44) and (3.45) is equivalent to the original Equation (3.25). u* in the first 

step can be explicitly calculated and the diffusion term is explicitly discretized. The 

second step is an implicit solution for the variable n 1u +  involving only u* and with an 

implicit discretization of the diffusion term. 
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We have derived four discrete forms of the TCS method applied to a 1D Burgers’ 

equation in the previous sections. More possible discretizations will be generated when 

we apply the TCS method to an equation system with multiple variables. We will discuss 

this characteristic in Chapter 5. 

 

3.3 TCS FOR COUPLED MOMENTUM AND SCALAR TRANSPORT 

A key advantage of the TCS method is that it provides non-iterative coupling 

between multiple variables.   The method is best understood through application to a 

simple model problem.  First, we will consider the 1D advection-diffusion equation for a 

scalar ψ 

 
2

2
u

t x x

∂ψ ∂ψ ∂ ψ
+ = κ

∂ ∂ ∂
 (3.46) 

where u is the velocity and κ is a diffusion coefficient.  Equation (3.46) can be coupled to 

the 1D Burgers’ equation for momentum 

 
2

2

u u u
u

t x x

∂ ∂ ∂
+ = ν

∂ ∂ ∂
 (3.47) 

Applying TCSF to Equation (3.46) provides 

 
2 *

n n

2

t
u

2 x x

∗
∗  ∆ ∂ψ ∂ ψ

ψ = ψ − − κ 
∂ ∂ 

 (3.48) 

 
2 *

n 1 n 1

2

t
u

2 x x

∗
+ ∗ + ∆ ∂ψ ∂ ψ

ψ = ψ − − κ 
∂ ∂ 

 (3.49) 

The first step, Equation (3.48), is an implicit equation for *ψ  involving only time ‘n’ 

values of u, whereas the second step, Equation (3.49), linearly couples solution of n 1+ψ  to 

n 1u + .  To complete the algorithm, Equation (3.47) can be similarly discretized so that the 

coupled TCSF method for both scalar transport and momentum can be written as linear 

operators, 
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( ) ( )2

n n

2

t
1 u

2 x x

∗
  ∂ ∂∆  

+ − κ ψ = ψ  
∂ ∂    

 (3.50) 

 
( ) ( )2

n n

2

t
1 u u u

2 x x

∗
  ∂ ∂∆ 

+ − ν =  
∂ ∂    

 (3.51) 

 

2 *
n 1

2

2 *
n 1

2

t t
1

2 x 2 x

t u t u
u0 1 u

2 x 2 x

∗
+ ∗

∗
+ ∗

    ∆ ∂ψ ∆ ∂ ψ
ψ ψ + κ    ∂ ∂     =

    ∆ ∂ ∆ ∂
+ + ν    

∂ ∂    

 (3.52) 

where the parentheses indicate a spatial derivative operator on the term to the right of the 

brackets.  The first step of the TSCF method for N variables over Q grid cells results in N 

independent linear problems of order Q.  The second step of TCSF results in a single 

linear problem of order NQ.  This series of linear problems is a 2
nd
-order temporal 

equivalent of the original time-marching, coupled, nonlinear momentum-advection 

problem.  As the TCS uses an intermediate solution ( ,u )∗ ∗ψ  followed by final solution 

n 1 n 1( ,u )+ +ψ , it resembles predictor-corrector schemes.  However, classic predictor-

corrector methods are formulated with an explicit predictor of the time n+1 values 

followed by an implicit corrector to the time n+1 values, which makes the classic 

predictor-corrector methods restricted by the CFL condition; furthermore, predictor-

corrector methods do not provide an avenue for a simple nonlinear solution (see 

discussions in Lomax et al, 1999 and Tannehill et al, 1997).  In contrast, the new TCS 

method provides an implicit linearized predictor of the time n+1/2 values that are used in 

a coupled implicit solution of the time n+1 values.   This new approach provides a simple 

method of linearly-coupling equations that are nonlinearly-coupled in the original 

problem.  The method requires only linear matrix solutions and does not require the outer 

iteration of Picard or Newton methods.  As compared to the functional Jacobians required 
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for local linearization and Newton iteration, the TCS coefficient matrices are relatively 

easy to derive and have forms very similar to the original model problem.   

 

3.4 SUMMARY 

A new computational linearization method, the TCS, is derived and analyzed in 

this chapter. Without iteration and calculation of the Jacobian, the TCS method splits the 

quadratic nonlinear term into two steps so that each step is computationally linear. That 

is, for time marching from known state nx  to unknown state n 1+x  we use a linear solution 

of n( ) =A x x b% %%  followed by n 1( ) + =A x x b
% %% %%  that is a second-order equivalent to 

n 1 n 1( )+ + =A x x b .  In addition to the linearization, the TCS method can generate different 

TCS discrete forms.  All different TCS formats are mathematically equivalent to the 

original implicit midpoint rule discretization. As a result, they share the same 2nd-order 

temporal accuracy. Furthermore, we also demonstrated that the TCS method can couple 

multiple variables without iterations. Characteristics of the TCS method such as 

accuracy, stability and efficiency will be explored in the next chapter using examples 

with analytical solutions. 
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Chapter 4 Implementation of the TCS Method in 1D Problems 

 

The theory of the TCS method is illustrated in Chapter 3. To investigate the 

characteristics of the new method, we apply the TCS method to three different test cases: 

a 1D conservative Burgers’ equation, a 1D non-conservative Burgers’ equation and a 1D 

nonlinear ordinary differential equation (ODE).  For each test case, the TCS algorithm is 

compared to the conventional implicit nonlinear solution methods (local linearization, 

Picard iteration and Newton iteration) applied to Crank-Nicolson discretization. The 

temporal accuracy of different TCS discretizations is verified by all three test cases. The 

practical stability of the TCS method is confirmed using the unsteady flow test case with 

an analytical solution in both conservative and non-conservative forms.  The method is 

shown to require computational effort similar to local linearization, but does not require 

discrete computation of a functional Jacobian for solution. 

 

4.1 APPLICATION OF THE TCS METHOD TO THE 1D CONSERVATIVE BURGERS’ 

EQUATION 

4.1.1 Discrete formats of the 1D Conservative Burger’s equation using various 

methods 

Burgers’ equation provides a useful model problem for comparing the TCS to 

other nonlinear solution methods. We will begin from the conservative form of Burgers’ 

equation. The application of the TCS method to the non-conservative Burgers’ equation 

will be discussed in the next section. The conservative form of the 1D Burgers’ equation 

is: 
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 ( )
2

2

2

u 1 u
u

t 2 x x

∂ ∂ ∂
+ = ν

∂ ∂ ∂
 (4.1) 

 

Time-Centered Split Method 

For an equation with one variable and a simple quadratic nonlinearity, TCSF and 

TCSG collapse into a single form. For Equation (4.1), the TCSF and TCSG methods are 

identical, and can be presented as linear operators 

 
( ) ( )n 2

n

2

ut 1
1 u u

2 2 x x

∗
  ∂ ∂∆  

+ − ν =  
∂ ∂    

 (4.2) 

 
( ) 2 *

n 1

2

ut t u
1 u u

4 x 2 x

∗
+ ∗ ∂∆ ∆ ν ∂

+ = + ∂ ∂ 
 (4.3) 

For simplicity in the following discussion, we use the generic symbols A, x and b to 

represent a coefficient matrix, the left-hand-side (LHS) variable vector and the right-

hand-side (RHS) known vector in a matrix equation of the form of Ax = b for various 

solution methods.  The number of grid points in space is Q.  A central difference spatial 

discretization is applied to derivatives in Equation (4.2) and(4.3). It is useful to define a 

viscous scale, γ , 

 
2

t

x

ν∆
γ ≡

∆
 (4.4) 

and the ‘i’ grid cell CFL number for the { }L n, ,n 1∈ ∗ + time level for { }i 1,2,...Q=  as 

 
L

L i
i

u t
C

x

∆
≡

∆
 (4.5) 

Similarly, it will be useful to also define a diffusion operator at any time level as 

 ( )L L L L

i i 1 i i 1D u 2u u+ −≡ γ − +  (4.6) 

and a nonlinear adjective gradient operator 
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 L L L L L

i i 1 i 1 i 1 i 1G C u C u+ + − −≡ −  (4.7) 

It follows that Eq, (4.2), the first step of TCSF can be written in the form Ax = b over Q 

grid points where the A matrix is tridiagonal such that 
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T
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1 2 Qu ,u ,...u =  x  (4.9) 
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 (4.10) 
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with n n

0 0 Q 1C , u , C∗
+ and Q 1u∗

+  implemented as Dirichlet boundary conditions. Neumann 

boundary conditions can also be readily invoked, but are not presented here for brevity.   

The second step of TCS for the 1D Burgers’ equation can be as evaluated from 

another Ax = b problem using 
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 (4.13) 

Thus, the TCSF method for the 1D conservative Burgers’ equation requires solution of 

two tridiagonal linear problems at each time step. 
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If we further split the diffusion term, we obtain the TCSF-D form for Equation 

(4.1) as, 

 
( )n 2 n
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4 x 2 x
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 (4.15) 

The first step is a matrix equation Ax=b with  
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 36 

 

n
n n 0
1 1

n n

2 2

n n

3 3

n n

Q 1 Q 1

n

Q 1n n

Q Q

1 C
u D

2 8

1
u D

2

1
u D

2

1
u D

2

C1
u D

2 8

− −

+

 
+ + 

 
 + 
 
 +

=  
 
 
 + 
 
 + −  

b

M
 (4.18) 

In the second step, we have 
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Similar to TCSF, the TCSF-D method for the 1D conservative Burgers’ equation also 

requires solution of two tridiagonal linear problems at each time step. However, TCSF-D 

reverses the solution process in TCSF. The first step in TCSF-D is in the same structure 

as the second step in TCSF; the second step in TCSF-D is in the same structure as the 

first step in TCSF. 

To compare the above TCS methods to other temporally 2
nd
-order accurate 

implicit nonlinear solution methods, we apply Crank-Nicolson 2
nd
-order temporal and 

central difference spatial 2
nd
-order discretization to Equation (4.1), resulting in 
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 (4.22) 

Conventional linearization methods such as Picard iteration, Newton iteration and local 

linearization methods are used to solve Equation (4.22). 
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Picard Iteration 

The simplest approach to implement for a nonlinear equation such as Equation  

(4.22) is a lagged-coefficient iteration (Tannehill et al. 1997,pg 450) , which is a form of 

Picard iteration. A linear inner equation is formed by estimating the time n+1 flux as 

( )k
n 1

iu + , where the additional superscript ‘k’ is introduced as the outer iteration counter. 

Equation (4.22) can then be represented as the Picard method 

 

( )

( ) ( ) ( ) ( )

( ) ( ) ( )

n n n n n n n
k 1

n 1 n i 1 i 1 i 1 i 1 i 1 i i 1
i i 2

k k 1 k k 1
n 1 n 1 n 1 n 1

i 1 i 1 i 1 i 1

k 1 k 1 k 1
n 1 n 1 n 1

i 1 i i 1

2

t u u u u u 2u u
u u

2 4 x x

u u u u

4 x

u 2 u u

x

++ + + − − + −

+ ++ + + +
+ + − −

+ + ++ + +
+ −

= −
∆ − − +

− ν
∆ ∆

−
+

∆
− + 

− ν 
∆ 

 (4.23) 

which is solved for k={1,2,3...} until an appropriate convergence criterion is reached.  .  

Thus, each outer iteration requires an inner linear solution of the form Ax = b.  For 

comparison with other methods, it is useful to define an k k 1 k+ = +A x b c  form in which 

the b vector requires only a single computation in each time step whereas the c vector is 

recomputed in each outer iteration. For Equation (4.23), the result is 
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C C
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1
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C
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2 8

−

−

 γ
+ γ − + 

 
 γ γ
− − + γ − + 

 
 
 =
 
 

γ γ − − + γ − +
 
 

γ − − + γ 
 

A O O O  (4.24) 

  

 ( ) ( ) ( )
T

k 1 k 1 k 1
k 1 n 1 n 1 n 1

1 2 Qu , u ,... u
+ + ++ + + + =   

x  (4.25) 
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8 2

1 1
u G D

8 2

1 1
u G D

8 2

1 1
u G D

8 2

− − −
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 
 
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 
 − +
 
 
 − +
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 (4.26) 
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For the Picard iteration, the first outer iterative solution is started with ( )1
n 1 n

i iu u+ =  .  The 

outer iteration is stopped when ( ) ( ){ }k 1 k
n 1 n 1

++ +− < εu uL  where L is an appropriate 

linear norm acting on the vector u and ε  is the desired convergence.  The above method 

can be expected to have no better than first order convergence for the outer iteration.  

Solution for each time step requires multiple tridiagonal solutions of the = +Ax b c  

problem where the A matrix and boundary conditions (possibly) in c are re-calculated at 

each outer iteration. 

 

Newton Iteration 

The Newton method is commonly used for accelerated convergence in iterative solution 

of nonlinear problems. Using classic Newton iteration method, the time-march from ‘n’ 

to ‘n+1’ of Equation (4.22) can be written as the root-finding problem for the function g 

as 

 

( )n 1 n 1 n 1 n 1 n

i i 1 i i 1 i i

n 1 n 1 n 1 n 1 n 1 n 1 n 1

i 1 i 1 i 1 i 1 i 1 i i 1

2

n n n n n n n

i 1 i 1 i 1 i 1 i 1 i i 1

2

g u ,u ,u u u

t u u u u u 2u u

2 4 x x

u u u u u 2u u
0

2 x x

+ + + +
− +

+ + + + + + +
+ + − − + −

+ + − − + −

= −

∆ − − +
+ − ν

∆ ∆

− − +
+ − ν =

∆ ∆ 

 (4.28) 
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Applying Newton iteration(Ferziger and Peric 1999), Equation (4.28) can be written as 

 ( )
k

k 1
n 1 ki
j in 1

j

g
u g

u

++
+

 ∂
∆ = −  ∂ 

 (4.29) 

where  

 ( ) ( ) ( )k 1 k 1 k
n 1 n 1 n 1

j j ju u u
+ ++ + +∆ = −  (4.30) 

and

k

i

n 1

j

g

u +

 ∂
  ∂ 

 is the Jacobian matrix, evaluated using term by term discretizations of 

Equation  (4.28).  The result can be presented as a linearized equation system 

k k 1 k+ = +A x b c  with 

 

k

2

k k

1 3

k

k k

Q 2 Q

k

Q 1

C
1 0

4 2

C C
1

4 2 4 2

C C
1

4 2 2 4

C
0 1

4 2

−

−

 γ
+ γ − 

 
γ γ 
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 

=  
 
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 
 
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A O O O  (4.31) 

 

 ( ) ( ) ( )
T

k 1 k 1 k 1
k 1 n 1 n 1 n 1

1 2 Qu , u ,... u
+ + ++ + + + = ∆ ∆ ∆  

x  (4.32) 
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In the present 1D single-variable example, the Jacobian is relatively easy to compute and 

thus it is easy to form the A matrix.  However, in multi-dimensional, multi-variable 

equation systems, the element-by-element calculation of the A matrix from g / u∂ ∂  is 

generally difficult to derive and code.  As the A matrix must be recomputed for every 

outer iteration, the resulting outer iterations can be computationally expensive.   

 

Local Linearization 

Local linearization is not widely used for time-marching CFD problems, but is 

presented here because it has some similarities to the TCS method.  Lomax et al. (1999) 

provides an example of solving an ODE using Local linearization  which we extend to 
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solving Equation (4.22). Local linearization approximates the time march to the “n+1” 

time level using “n” time level and a Taylor expansion.  The result is a linear equation set 

without an outer iteration. To apply Local Linearization, Equation  (4.22) can be written 

as, 

 ( ) ( )n 1 n n 1 n 1 n 1 n 1 n n 1 n 1 n 1

i i i i 1 i i 1 i i 1 i i 1

t
u u F u ,u ,u F u ,u ,u

2

+ + + + + + + +
− − − −

∆  = + +   (4.35) 

where   

 ( )
L L L L L L L

L L L L i 1 i 1 i 1 i 1 i 1 i i 1
i i 1 i i 1 2

u u u u u 2u u
F u ,u ,u

4 x x

+ + − − + −
− +

− − +
= − + ν

∆ ∆
 (4.36) 

for L {n,n 1}∈ + .  Following Lomax et al. (1999), apply a Taylor expansion onto n 1

iF +  , 
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( )} ( )

n 1 n n n 1 n 1 n 1
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i i 1 i i 1n 1 n
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i i 1 i i 1
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u u F u ,u ,u

2

F u ,u ,u
u u

u

F u ,u ,u O t

+ + + +
− −

+ + ++
− −+

= −

+ + +
− −

∆
= +

∂
+ −

∂

+ + ∆

∑  (4.37) 

Equation (4.37) can be reorganized as 

 
n

n 1 ni
j in

j

t F
1 u tF

2 u

+
 ∆ ∂
− ∆ = ∆ 

∂  
 (4.38) 

where n n

i jF / u∂ ∂  is the Jacobian and 

 n 1 n 1 n

j j ju u u+ +∆ = −  (4.39) 

Therefore, the Local Linearization system can be written as n 1+ =Ax b : 
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Much like the TCS method, Local Linearization provides a linear equation system that is 

a second-order approximation of the original nonlinear system and does not require an 

outer iteration.  In the above 1D single variable example, the Jacobian is relatively easy 

to compute and derive the A matrix, however, in multi-dimensional, multi-variable 

systems the Jacobian may be difficult to derive and compute.  Indeed, the difficulty of 

deriving the Jacobian for general multi-dimensional systems is arguably the principal 

reason that local linearization has not been widely used in CFD.  
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4.1.2 Results and Discussion  

Accuracy 

The accuracy of the TCS method is demonstrated and compared to the other 

nonlinear methods for the unsteady 1D Burgers’ equation.  Over the domain 0 x 1≤ ≤  

with initial and boundary conditions of 

 ( )u 0, t 0=  (4.43) 

 ( )u 1, t 0=  (4.44) 

 u(x,0) sin( x) : 0 x 1= π < <  (4.45) 

the 1D Burgers’ equation has a solution constructed from truncated Fourier series:  

 ( )

K
2 2

m
k 1

analytical K
2 2

0 k
k 1

a exp( k t)ksin(k x)
u (x, t) 2 k 1,2,3,...K

a a exp( k t)cos(k x)

=

=

− π ν π
= πν =

+ − π ν π

∑
∑

 (4.46) 

where 

 ( ) ( ){ }
1

1

0

0

a exp 2 1 cos x dx
−

= − πν − π  ∫  (4.47) 

 ( ) ( ){ } ( )
1

1

k

0

a 2 exp 2 1 cos x cos k x dx
−

= − πν − π π  ∫  (4.48) 

The solution becomes exact as K →∞ .  This specific case of Burgers’ equation has been 

frequently used to verify numerical methods (Kadalbajoo and Awasthi 2006; Kutluay et 

al. 1999).  A discrete approximation of Equation  (4.46) for a truncated series of K=30 

terms is plotted in Figure 4.1. The integrals in Equations (4.47) and (4.48) are 

numerically evaluated using “quad” function in MATLAB with x∆ =0.01 and 0.05ν = .   
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Figure 4.1 Solution of 1D Burgers’ equation evolving in time for t∈{0, 0.1, 0.2, 0.3, 0.6, 
1, 2, 3} using 0.05ν =  along with the initial and boundary conditions of 

Equations   (4.43) through (4.45). 

 

We have solved this 1D Burgers’ equation for the various nonlinear methods 

discretized in the previous session.  All methods use 2
nd

-order central difference spatial 

discretization and a sufficiently fine uniform mesh ( x 0.02∆ = ) such that error is 

controlled by temporal accuracy.  As a basis for error comparison, we use the time of 

maximum absolute error found in these two TCS methods, which is determined from 

Figure 4.2 as t = 0.3 for both the TCSF and TCSF-D. Note that the maximum error 
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occurs when the solution reaches its maximum steepness in Figure 4.1. With a smaller ν , 

the similar asymptotic behavior is obtained when t∆ is sufficiently small.  
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Figure 4.2 Absolute error time evolution for numerical solutions of 1D conservative 

Burgers’ equation for TCSF and TCSF-D using { t∆ =0.01, x∆ =1/50, 

ν=0.05}, where 

50

abs model i analytical i

i 1

1
(t) u (x , t) u (x , t)

50
=

ε = −∑  and 

analyticalu (x, t)  is numerically calculated from Equation  (4.46) with K=30. 
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To evaluate the model error, we examine performance with nine different time 

steps over the range 0.006 t 0.15≤ ∆ ≤  and with grid cell spacing of 

{ }2 3 3x 2 10 5 10 1 25 10− − −∆ ∈ × × ×, , . . Based on the Burgers’ equation solution for analyticalu , 

the test conditions cover the range 0.25 CFL 50≤ ≤ , where  

 analytical

t
CFL max u (t)

x

∆
=

∆
 (4.49) 

is the maximum CFL number. The error for the different methods has been estimated 

using the RMS error, 2L  and L∞ over Q grid points.  These approaches are similar to 

Rueda and Schladow (2002), where 

 ( )
Q

2

RMS j j

j 1

1
u u

Q
=

ε = −∑ %  (4.50) 
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 
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∑

∑

%

%

 (4.51) 

 k k

k

max u u
L : 1 k M

max u
∞

−
= ≤ ≤

%

%
 (4.52) 

and u%  is the model solution using an extremely fine time step such that 40.3/10 , which is 

0.5% of the smallest  time step used in the other simulations.  Using a fine-time step 

solution is a standard approach (e.g. Ferziger and Peric, 1999) and is preferred over the 

approximate numerical solution of Equation (4.46), so that the accuracy measure is not 

distorted by the differences in the numerical approximations. Similarly, for consistency in 

the inter-model comparison, each model is compared to the small time-step solution for 

that model (e.g., the Picard method is compared to the small time-step solution of the 

Picard method, not to a small time-step TCSF solution).   Figure 4.3 shows the RMS 
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error associated with different methods over the tested ranges of CFL.  It can be seen that 

all the methods provide 2nd-order accuracy for fixed x∆ and decreasing t∆ . Error 

magnitudes are substantially similar using the same x∆ and t∆  except for the TCSF-D 

method. The TCSF-D method has a noticeably smaller error than all the other methods.  

2L and L∞  norms behave similar to RMS error and are plotted in Figure 4.4 and Figure 

4.5 respectively.  
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Figure 4.3 RMSε vs. CFL number of various methods for solution of 1D conservative 

Burgers’ equation with three different x∆ , where 0.05ν =  and 

t 0.3/∆ = Γ with Γ∈{50, 30, 25, 20, 10, 8, 5, 4, 2}.  
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Figure 4.4 2L  norm vs. CFL number of various methods for solution of 1D conservative 

Burgers’ equation with three different x∆ , where 0.05ν =  and 

t 0.3/∆ = Γ with Γ∈{50, 30, 25, 20, 10, 8, 5, 4, 2}. 
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Figure 4.5 L∞ norm vs. CFL number of various methods for solution of 1D conservative 

Burgers’ equation with three different x∆ , where 0.05ν =  and 

t 0.3/∆ = Γ with Γ∈{50, 30, 25, 20, 10, 8, 5, 4, 2}. 

 

Stability 

Nonlinear stability cannot be generally proven, but is instead demonstrated by 

examples.  As shown in Figure 4.3, all five numerical methods remain stable over the full 

range of tested conditions. The stability of Picard iteration, Newton iteration and Local 

linearization may be expected because all the underlying discretizations begin with the 
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Crank-Nicolson scheme. The TCS method is based on a midpoint rule discretization that 

is split, which cannot be guranteed stable even if the split matrices are linearly stable. Our 

tests thus far have shown very promising stability characteristics; however, such result 

cannot be presumed definitive. The new TCS method may theoretically be applied for 

any class of quadratically-nonlinear coupled equations, but its stability characteristics for 

different equations remains a subject for future investigation.   

The TCS method is in an implicit format, thus it is expected to have stability 

advantage over the explicit methods. To compare the TCS method with explicit methods, 

we solve the same 1D conservative Burgers’ equation using Runge-Kutta 2
nd
-Order 

(RK2) and Runge-Kutta 4
th
-Order (RK4) methods. The RMS error over a range of CFL 

numbers is plotted in Figure 4.3 for the TCSF, TCSF-D, RK2 and RK4 methods. In this 

comparison, we study the performance with 12 different time steps over the range 

0 0006 t 0 06. .≤ ∆ ≤  and with grid cell spacing of x 0 02.∆ = . As a result, the test 

conditions cover the range, 0 0013 CFL 2 57. .≤ ≤ . The points of th RK2 and RK4 

methods are only shown in the left part of Figure 4.6 because these two explicit methods 

become unstable when CFL≥0.3. Contrarily, the TCSF and TCSF-D methods remain 

stable in the whole range of CFL numbers. 
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Figure 4.6 RMSε  vs. CFL number of TCSF, RK2 and RK4 methods for solution of 1D 

conservative Burgers’ equation, where 0.05ν = x∆ =1/50, and 

t 0.3/∆ = Γ with Γ∈{500, 200, 100, 80, 50, 30, 25, 20, 10, 8, 5}. 

 

Computational Requirements 

To gain a better understanding of the computational requirements of the different 

methods, it is useful to compare the ideal operation counts using tridiagonal solutions of 

the Ax = b problems.  We focus on idealized operation counts rather than CPU time as 

we solve the above discrete problems using a MATLAB script, for which the software 
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overhead tends to dominate the model runtime.   Based on algorithms in Press et al 

(1992) and Pozrikidis et al (2005, pg50), a tridiagonal solution ideally requires 8Q 

operations and a pentadiagonal solution requires 24Q operations, where Q is the number 

of grid points.  Here we do not distinguish between addition, multiplication or division 

operations.  If the Newton method requires R outer iterations for convergence, the Picard 

method should require R
2
 outer iterations for the same convergence level.  A tridiagonal 

Matrix algorithm (TDMA) is used for each method. A comparison of operations per grid 

point for the different methods is shown in Figure 4.7.   Although these operation counts 

are idealized and only for the 1D Burgers’ equation with direct inner solutions, they 

represent the general trends that should be expected in any comparison of nonlinear 

solution methods.  The operation counts for both the TCSF and TCSF-D methods are 

identical because the solution processes for both methods are the same although they are 

in a reversed manner. For this 1D test case with an analytical Jacobian, the TCS method 

does not have any computational efficiency advantage over Local Linearization.  

However, the TCS derivation does not require a functional Jacobian computation, so 

extending the method to multiple dimensions and multiple variables is arguably easier, an 

idea that will be explored in next chapter.  
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Figure 4.7 Ideal operations per grid point for one time step using various nonlinear 
solution methods for 1D conservative Burgers’ equation. R is the number of 
outer iterations taken by Newton method.  It is assumed that the Picard 
method convergences in R

2
 outer iterations. 

 

4.2 APPLICATIONS OF THE TCS METHOD TO THE 1D NON-CONSERVATIVE 

BURGERS’ EQUATION 

Unlike in the conservative Burgers’ equation, the TCSF and TCSG formats 

remain distinct for the non-conservative Burgers’ equation. Applying the TCS method to 

the non-conservative Burgers’ equation can create four different discretizations: the 

TCSF, TCSG, TCSF-D and the TCSG-D. In this section, we analyze all four different 

discretizations in the same vein as in the conservative case.   
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4.2.1 Discrete formats of the 1D Non-Conservative Burger’s equation using various 

methods 

The TCSF Discrete Form 

The non-conservative Burgers’ equation can be written as:  

 
2

2

u u u
u

t x x

∂ ∂ ∂
+ = ν

∂ ∂ ∂
 (4.53) 

Introducing the approximation in the flux term results in the TCSF form as below: 
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u u u

2 x x

+ ∗ + ∂ ∂∆
= + − + ν 

∂ ∂ 
 (4.55) 

Similar to the analysis in the conservative Burger’s equation, in the following discussion, 

we examine each method in a generic matrix equation, Ax=b. A central difference 

discretization is used for all the spatial derivatives. The same parameters such as the 

number of spatial grid points Q, the viscous scale γ , the grid cell CFL number L

iC , the 

diffusion operator L

iD , and the nonlinear adjective gradient operator L

iG are also used in 

the following discussion. In the first step of the TCSF,  
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A O O O  (4.56) 

 

 
T

* * *

1 2 Qu ,u ,...u =  x  (4.57) 
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 (4.58) 

The second step of the TCSF is in an explicit format, which can be represented as  
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 (4.59) 

Thus, the TCSF solution for the 1D non-conservative Burgers’ equation only needs one 

tridagonal linear problem at the first step and an explicit solution for n 1u +  at the second 

step.  

  

The TCSG Discrete Form 

If the linear approximation is introduced in the gradient rather than the flux part, the 

resulting discrete equations are the TCSG form:  
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 (4.61) 

The first step of the TCSG has  
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In the second step of the TCSG,   
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Thus the TCSG method for the 1D non-conservative Burgers’ equation requires solution 

of two tridiagonal linear problems at each time step. 
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The TCSF-D Discrete Form 

If we further split the diffusion term in the TCSF, we obtain the TCSF-D form. The 

TCSF-D form for Equation (4.53) can be written as, 
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In the first step, 
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In the second step, 
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It can be observed that the TCSF-D method reverses the solution process of the TCSG 

method. The first step in TCSF-D is in the same structure as the second step in TCSG; the 

second step in TCSF-D is in the same structure as the first step in TCSG. 
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The TCSG-D Discrete Form 

The TCSG-D is obtained by further splitting the diffusion term in the TCSG 

method written as 
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u*  in the first step of Equation (4.76) can be explicitly calculated, 
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The second step is a matrix equation with 
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The TCSG-D method reverses the solution process of the TCSF. The first step in TCSG-

D is in the same structure as in the second step in TCSF; the second step in TCSG-D is in 

the same structure as in the first step in TCSF. 

Similar to the last section, we first apply CN 2
nd
-order discretization to Equation 

(4.53), such that Equation  (4.53) is 
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Equation (4.82) is then linearized using conventional Picard, Newton and local 

linearization methods.  
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Picard iteration 

Applying Picard iteration to Equation (4.82), the linearized equation can be written as, 
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where the superscripts n and k indicate the time step and iteration number respectively. 
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Newton Iteration 

Applying the Newton iteration to Equation (4.82), the linearized equation can be written 

as: 
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Equation (4.88) is a matrix equation Ax=b with  
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Local linearization 

Applying Local linearization to Equation (4.82), the linearized equation system can be 

written as: 
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for L {n,n 1}∈ +  and 
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Therefore, Equation (4.95) is a matrix equation Ax=b with  
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4.2.2 Results and Discussion 

Accuracy 

As in the analysis of the conservative Burgers’ equation, we first locate the 

maximum absolute error for all four discrete forms of the TCS method. As shown in 

Figure 4.8, the maximum absolute error occurs at t=0.6 for all four forms. The exact 

solution of the Burgers’ equation at t=0.6 can be found in Figure 4.3.  
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To evaluate the model error, we examine performance with seven different time 

steps over the range, 0 012 t 0 12. .≤ ∆ ≤ , and with grid cell spacing of 

{ }2 3 3x 2 10 5 10 1 25 10, , .− − −∆ ∈ × × × . As a result, the test conditions cover the range, 

0 41 CFL 66 2. .≤ ≤ . Similar to section 4.1, the fine-time step solution u% is used in the 

analysis of RMS error, 2L  norm and L∞ norm.  Here u%  is the model solution of an 

extremely fine time step such that 4t 0.6 /10∆ = , which is 0.5% of the smallest  time step 

used in the other simulations. The RMS 2, L norm, and L∞ε norm associated with different 

methods over the tested ranges of CFL numbers are shown in Figure 4.9, 4.10 and 4.11 

respectively. All methods are proven to be 2
nd
-order temporal accurate for fixed x∆ and 

decreasing t∆ . For the same x∆ and t∆ , it can be seen that the difference in relative error 

among all methods is within one order of magnitude except for the TCSF method. The 

TCSF method has a noticeably smaller error than all the other methods, and about 1 

magnitude smaller error than the TCSG-D form.  
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Figure 4.8 Absolute error time evolution for numerical solutions of 1D non-conservative 
Burgers’ equation for the TCSF and TCSG methods using 

{ }t 0.01, x 1/ 50, 0.05∆ = ∆ = ν =  where 

50

abs model i analytical i

i 1

1
(t) u (x , t) u (x , t)

50
=

ε = −∑  and analyticalu (x, t)  is numerically 

calculated from Equation  (4.46) with K=30. 
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Figure 4.9 RMSε  vs. CFL numbers of various methods for solution of 1D non-

conservative Burgers’ equation at different CFL numbers, where ν=0.05, 

x∆ =1/50 and t∆ =0.6/Γ  with Γ  ∈{50, 30, 25, 20, 10, 8, 5}. 
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Figure 4.10  2L  norm vs. CFL numbers of various methods for solution of 1D non-

conservative Burgers’ equation at different CFL numbers, where ν=0.05, 

x∆ =1/50 and t∆ =0.6/Γ  with Γ  ∈{50, 30, 25, 20, 10, 8, 5}. 
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Figure 4.11 L∞  norm vs. CFL numbers of various methods for solution of 1D non-

conservative Burgers’ equation at different CFL numbers, where ν=0.05, 

x∆ =1/50 and t∆ =0.6/Γ  with Γ  ∈{50, 30, 25, 20, 10, 8, 5}. 
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Stability  

As shown in Figure 4.9, Figure 4.10 and Figure 4.11, all the methods remain 

stable over the full range of tested conditions.  The RK2 and RK4 methods are also used 

to solve this 1D non-conservative Burgers’ equation.  The RMS error over a range of 

CFL for the TCSF, TCSG, TCSF-D, TCSG-D, RK2 and RK4 methods is plotted in 

Figure 4.12. In this comparison, 0 0006 t 0 06. .≤ ∆ ≤ and x 0 02.∆ =  provide test 

conditions 0 013 CFL 2 57. .≤ ≤ . The RK methods become unstable when CFL>0.1. 

However, the TCS methods remain stable in the whole range of CFL number. 
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Figure 4.12 Temporal accuracy of the TCS and RK methods for solution of 1D non-
conservative Burgers’ equation at different CFL numbers, where ν=0.05, 

x∆ =1/50 and t∆ =0.6/Γ  with Γ  ∈{500, 200, 100, 80, 50, 30, 25, 20, 10, 8, 

5}. 
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Computational requirement 

The same assessment of operation counts is used in this non-conservative 

Burgers’ equation. All the methods perform similar to the non-conservative Burgers’ 

equation. The TCSF and TCSG-D have the identical operation counts because they have 

the same solution process only in a reverse mode. The same correspondence can be found 

between the TCSG and TCSF-D for the same reason. In this 1D non-conservative 

Burgers’ equation test case, the TCSF and TCSG-D have the least operation counts.  
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Figure 4.13 Ideal operations per grid point for one time step using various nonlinear 
solution methods for 1D Non-conservative Burgers equation. R is the 
number of outer iterations taken by Newton method. It is assumed that the 

Picard method convergences in 2R outer iterations. 
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4.3 APPLICATION OF THE TCS METHOD TO A 1D NONLINEAR ORDINARY 

DIFFERENTIAL EQUATION 

The TCS method can be extended to any equation system with quadratic 

nonlinearities. To test this general capability, we use a nonlinear ODE as our example:   

 
dy

y(1 y) 0
dt

+ − =  (4.101) 

For the initial condition y(0) 1/ 2= , Equation  (4.101) has the analytical solution (Moin 

2001) 

 [ ] 1
y 1 exp(t)

−
= +  (4.102) 

 

4.3.1 The TCS discretizations  

The TCSF Discretization 

As in the 1D conservative Burgers’ equation, the TCSF and TCSG are the same 

for Equation (4.101). Applying the TCSF method to Equation (4.101) provides 

 ( )n n * * t
y y y y y

2

∗ ∆
= + −  (4.103) 

 ( )n 1 * n 1 * * t
y y y y y

2

+ + ∆
= + −  (4.104) 

The discrete form can be written from Equation  (4.103) and  (4.104) as 

 
n

n

y
y

t
1 y 1

2

∗ =
∆  − − 

 (4.105) 

 

* *

n 1

*

t
y y

2y
t

1 y
2

+

∆
−

=
∆

−
 (4.106) 
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The TCSF-D Discretization 

Similarly, the TCSF-D discrete format for Equation (4.101) is written as 

 

n n

n

t
y y

2y
t

1 y
2

∗

∆
−

=
∆

−
 (4.107) 

 

( )

*
n 1

*

y
y

t
1 y 1

2

+ =
∆

− −
 (4.108) 

It can be seen that Equation (4.108) has the same structure as Equation (4.105) and 

Equation (4.107) has the same structure as Equation (4.106). Therefore, the TCSF and 

TCSF-D discrete forms for Equation (4.101) are similar but reversed.  

 

4.3.2 Conventional linearization methods 

Crank-Nicolson (CN) discretized Equation (4.101) is,  

 ( ) ( )n 1 n n n n 1 n 1t t
y y y 1 y y 1 y

2 2

+ + +∆ ∆
= + − + −  (4.109) 

To linearize the nonlinear term on right hand side of Equation (4.109), we use the 

Newton iteration, Picard iteration and local linearization methods.  

 

Newton method 

Applying the Newton iteration approach, Equation  (4.109) can be written as: 

 ( ) ( ) ( )k
n 1

k 1 k
n 1 n 1

n 1

k

g y
y y

g

y

+
++ +

+

= −
 ∂
 ∂ 

 (4.110) 

where the outer superscript indicates the outer iteration number and 

 ( ) ( ) ( )n 1 n 1 n 1 n 1 n n nt t
g y y y 1 y y y 1 y

2 2

+ + + +∆ ∆
= − − − − −  (4.111) 
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Substituting Equation (4.111) into Equation (4.110),  the original ODE in the Newton 

linearized CN discretized form is 

 ( ) ( )
( ) ( ) ( ) ( )

( )

k k k
n 1 n 1 n 1 n n n

k 1 k
n 1 n 1

k
n 1

t t
y y 1 y y y 1 y

2 2y y
t

1 2 y 1
2

+ + +

++ +

+

∆ ∆ − − − − −  = −
∆  − −  

 (4.112) 

n 1 n

0y y+ =  can be used as the initial condition to start the solution. 

 

Picard method 

 A second conventional approach, Picard iteration, in Equation (4.109), results in 

 ( ) ( ) ( ) ( )k 1 k k
n 1 n n n n 1 n 1t t

y y y 1 y y 1 y
2 2

++ + +∆ ∆  = + − + −  
 (4.113) 

The same initial condition, n 1 n

0y y+ = can be used to start the solution.  

 

Local linearization 

Applying the third conventional method, local linearization method, Equation 

(4.109) can be written as    

 
n

n 1 n

n

tf
y y

t f
1

2 y

+ ∆
= +

  ∆ ∂
−  ∂   

 (4.114) 

where  

 ( )f y 1 y= −  (4.115) 

Substituting Equation  (4.115) into Equation (4.114) provides the locally-linearized 

Equation  (4.109) as 

 
( )

( )

n n

n 1 n

n

t y 1 y
y y

t
1 2y 1

2

+
∆ −

= +
∆ − −  

 (4.116) 
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In this specific case, the local linearization, TCSF and TCSF-D are mathematically 

equivalent. If we substitute Equation (4.105) to Equation (4.106) and substitute Equation 

(4.107) to Equation (4.108), we will have two expressions which are exactly the same as 

Equation (4.116).  

    

4.3.3 Comparisons between the TCS and other methods  

The evolution of the absolute errors for two TCS methods applied to the ODE is 

shown in Figure 4.14.  The maximum absolute errors for both TCS discrete formats occur 

at time t=1.5.  
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Figure 4.14 Time evolution of absolute errors for TCS methods applied to the ODE, 

Equation  (4.101), for t∆ =0.1, where abs model analytical(t) y (t) y (t)ε = − .  
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Figure 4.15 provides a comparison of root-mean-square (RMS) error over Γ  time 

steps prior to maximum error, defined as 

 

1/ 2

2

RMS model i analytical i

i 1

1
y (t ) y (t )

Γ

=

   ε ≡ −  Γ  
∑  (4.117) 

 where maxt 1.5=  and { }10, 50, 100, 200, 500, 600, 800, 1000, 1200, 1500, 2000Γ∈ .  All 

tested methods provide second-order accuracy. In this particular case, the iterative 

methods have slightly smaller error than non-iterative methods. The errors from the three 

non-iterative methods are identical since TCSF, TCSF-D and local linearization are 

mathematically equivalent. 
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Figure 4.15 RMS error from Equation  (4.117) for discrete solutions of the ODE, 
Equation (4.101), computed using a range of Γ  time steps. 

 

4.4 SUMMARY 

The TCS method has been tested on three different test cases: a 1D conservative 

Burgers’ equation, a 1D non-conservative Burgers’ equation and an ODE.  The TCS 

method has multiple discrete forms for each test case. All the TCS discretizations have 

been compared to conventional implicit linearization methods, including Picard iteration, 

Newton iteration and local linearization methods.  All the TCS discretizations 

demonstrate 2
nd
-order temporal accuracy and are shown stable up to a CFL O (10).   All 

the TCS discretizations are proved stable when the CFL value is in the order of 10.  The 
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stability advantage of the TCS methods has been further demonstrated by the comparison 

with the RK methods. The TCS methods require fewer operation counts than Picard and 

Newton method, but are similar to local linearization.  The principal advantage of the 

TCS method over local linearization is the relative ease with which the TCS method can 

be derived and implemented as it does not require discrete evaluation of a function 

Jacobian. The TCS method is applicable to any quadratically-nonlinear problems, which 

is verified by the ODE case.   

For each test case, different TCS discretizations perform similarly in temporal 

accuracy, stability and efficiency. However, difference can be observed among different 

discretizations. In the 1D conservative Burgers’ equation, the TCSF and TCSG collapse 

into one single form. The TCSF-D reverses the solution process of the TCSF. 

Nevertheless, the TCSF-D has a noticeably smaller relative error than the TCSF and other 

methods. In the 1D non-conservative Burgers’ equation, the TCSF and TCSG hold 

distinct forms. The TCSF-D reverses the solution process of the TCSG, and the TCSG-D 

reverses the solution process of the TCSF. Among the four discretizations, the TCSF has 

the smallest relative error, which is about one order of magnitude smaller than the TCSG-

D. In the 1D nonlinear ODE case, the TCSF and TCSG remain the same. The TCSF-D 

reverses the solution process of the TCSF, but they have the same relative error.    
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Chapter 5 The TCS Family Method 

 

In Chapter 3, we revealed that the key to the TCS method is the 2nd-order 

accurate time-centered splitting. Applying this splitting to different terms, different TCS 

discretizations can be generated. In Chapter 4, we compared the TCS discretizations with 

conventional linearization methods using various examples. In this chapter, we derive the 

TCS family method in one general form by introducing weighting factors to different 

terms. A significance of this TCS family method is that the value of the weighting factors 

does not affect the order of accuracy of the scheme. Since weighting factors can be any 

value between zero and one while still providing essentially the same advantages, it may 

provide a flexible approach for a variety of problems. To examine the properties of 

weighting factors, the 1D non-conservative Burgers’ equation is solved using different 

combinations of weighting factors. Furthermore, we demonstrate that the TCS method 

can computationally decouple an equation system of coupled variables using special 

combinations of weighting factors. This advantage makes the TCS method more efficient 

in solving coupled multi-variable equation systems.  

 

5.1 DERIVATION OF THE TCS FAMILY METHOD 

Let us start a time marching differential equation from a simplest form: 

 ( ) ( ) ( ){ }f F M L N
t

∂φ
= φ φ φ  ∂

,  (5.1) 

where φ  s a generic variable, F, M, L and N represent generic linear operators. The 

function f is a linear function of ( ) ( )F M Lφ φ    and ( )N φ . Equation (5.1) then 
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represents a time marching differential equation with a quadratic nonlinearity of 

( ) ( )F M Lφ φ    and a linear operator of the variable, ( )N φ . This quadratic nonlinearity 

can be: the product of the variable itself, 2φ  if F, M and L are equal to 1; the product of 

the variable and the gradient of the variable, / xφ∂φ ∂ ,  if F=1, M=1 and L= ( ) / x∂ ∂ ; the 

gradient of the product of the variable, ( ) / x∂ φφ ∂  if  M=1, L=1 and F= ( ) / x∂ ∂ . Thus, 

Equation (5.1) represents a generic time marching differential equation with any kind of 

quadratic nonlinearity. Equation (5.1) can be discretized using the midpoint rule, written 

as  

 ( ) ( ) ( ){ } ( )n 1 n n 1 2 n 1 2 n 1 2 3f F M L N t t+ + + + φ = φ + φ φ φ ∆ + ∆ 
/ / /

, O  (5.2) 

In the previous chapters, we demonstrated that the time-centered split can be introduced 

to the quadratic nonlinear term and/or the linear term. Introducing two weighting factors, 

1θ and 2θ , and combining with the time-centered linear approximation, 

( )
n n 1

n 1 2 2t
2

/
O

+
+ φ + φ

φ = + ∆  , Equation (5.2) can be written as a general discretization 

 

( ) ( ) ( )

( ) ( ) ( )

n n 1 n n 1
n 1 n n 1 2 n 1 2

1 1

n n 1
n 1 2 3

2 2

f F M L 1 F M L
2 2

N 1 N t t
2

+ +
+ + +

+
+

       φ + φ φ + φφ = φ + θ φ + − θ φ       
       

 φ + φ
θ φ + − θ ∆ + ∆ 

 

/ /

/

,

O

(5.3) 

 

where the weighting factor iθ  ( { }i 1 2,∈ ) is required that i0 1≤ θ ≤ . Equation (5.3) is 

mathematically equivalent to Equation (5.2). Similar to the derivation in Chapter 3, an 

intermediate variable *φ is introduced as 
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( ) ( ) ( ) ( ) ( ){
( ) ( ) ( )}

n n n 1 2 n 1 2 n

1 1

n 1 2 n

2 2

f F M L 1 F M L

t
N 1 N

2

+ +

+

   φ = φ + θ φ φ + − θ φ φ   
∆

θ φ + − θ φ

* / /

/

,

 (5.4) 

Subtracting Equation (5.4) from Equation (5.3), the second step is written as: 

 

( ) ( ) ( ) ( ) ( ){
( ) ( ) ( )} ( )

n 1 n 1 n 1 2 n 1 2 n 1

1 1

n 1 2 n 1 3

2 2

f F M L 1 F M L

t
N 1 N t

2

+ + + + +

+ +

   φ = φ + θ φ φ + − θ φ φ   
∆

θ φ + − θ φ + ∆

* / /

/

,

O

 (5.5) 

Expanding n 1 2/+φ in Equation (5.4) using the Taylor expansion,  

 

( )

( ) ( )

( ) ( )

2

n n n

1 t

2

n n

1 t

2

n n

2 t 2

t t
f F M L

2 2

t t
1 F M L

2 2

t t t
N 1 N

2 2 2

   ∆ ∆  φ = φ + θ φ φ + φ +          

  ∆ ∆ + − θ φ + φ + φ        

 ∆ ∆ ∆ θ φ + φ + + − θ φ        

*
O

O ,

O

 (5.6) 

Organizing Equation (5.6)  and grouping the higher order terms, 

 ( ) ( ){ ( )}
2

n n n n t t
f F M L N

2 2

∆ ∆  φ = φ + φ φ φ +     
* , O  (5.7) 

n 1 2/+φ can be approximated using the explicit Euler approximation as 

 ( ) ( ) ( ){ }
2

n 1 2 n n n n t t
f F M L N

2 2

+ ∆ ∆  φ = φ + φ φ φ +     
/ , O  (5.8) 

Therefore, we obtain the correspondence between *φ and n 1 2/+φ from Equations (5.7) and 

(5.8) such that 

 ( )n 1 2 2t* / O+φ = φ + ∆  (5.9) 

Substituting Equation (5.9) into Equations (5.4) and (5.5), the original equation set 

becomes a computationally linearized two-step equation system: 
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( ) ( ) ( ) ( ) ( ){
( ) ( ) ( )}

n n n

1 1

n

2 2

f F M L 1 F M L

t
N 1 N

2

   φ = φ + θ φ φ + − θ φ φ   
∆

θ φ + − θ φ

* * *

*

,

 (5.10) 

 

( ) ( ) ( ) ( ) ( ){
( ) ( ) ( )} ( )

n 1 n 1 n 1

1 1

n 1 3

2 2

f F M L 1 F M L

t
N 1 N t

2

+ + +

+

   φ = φ + θ φ φ + − θ φ φ   
∆

θ φ + − θ φ + ∆

* * *

*

,

O

 (5.11) 

The weighting factor, iθ , distinguishes this derivation above from the original derivation 

of TCS method in Chapter 3 because the value of  iθ will not affect the 2
nd
-order accuracy 

of the TCS methods. In addition, there is no dependent relationship between 1θ and 2θ . In 

other words, as long as i0 1≤ θ ≤ , Equations (5.10) and (5.11) are a 2
nd

-order equivalent 

to Equation (5.2). Although the derivation above uses a single variable, the same 

mathematic principles apply to any quadratic nonlinearity. In ordinary differential 

equations (ODE), the nonlinearity is simply 2x  or xy; in partial differential equations 

(PDE), this quadratic nonlinearity can be U U / x∂ ∂  or ( )HU / x∂ ∂ . Therefore, the 

derivation above is applicable to an ODE or ODE system with quadratic nonlinearity and 

typical flow transport equation such as 1D advection-diffusion equation or shallow water 

equations. In addition, the more variables are involved in an equation system, the more 

weighting factors that can be introduced. As a result, the TCS method provides not a 

single kind, but a whole family of TCS discretizations.  

As we illustrated in the previous chapters, all the TCS family methods keep 2
nd
-

order temporal accuracy and they share the same simplicity advantages in computation. 

However, with different combinations of iθ , the numerical solutions perform differently. 

In the next section, we will use the 1D non-conservative Burgers’ equation as an example 

to explore the different performance of different TCS discretizations.  
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5.2 APPLICATION OF THE TCS FAMILY METHOD TO THE 1D NON-CONSERVATIVE 

BURGERS’ EQUATION 

With the introduction of the weighting factors 1θ  and 2θ , the general format of 

the TCS discretized non-conservative Burgers’ equation is written as, 

 ( ) ( ) ( ) ( ) ( ){ }n n n 2 2 n

1 x 1 x 2 x 2 x

t
u u u u 1 u u u 1 u

2

* * * *∆
= + θ − δ + − θ − δ + θ νδ + − θ νδ  (5.12) 

 

 ( ) ( ) ( ) ( ){ }n 1 n 1 n 1 2 2 n 1

1 x 1 x 2 x 2 x

t
u u u u 1 u u u 1 u

2

* * * *+ + + +∆
= + θ − δ + − θ − δ + θ νδ + − θ νδ (5.13) 

The above equations are a two-step matrix equation system in the format of Ax=b. Using 

a central difference in spatial derivatives, the LHS coefficient matrix A in the first step is 

tridiagonal such that 

 

1,1 1,2

2,1 2,2 2,3

3,2 3,3 3,4

Q 2,N 3 Q 2,Q 2 Q 2,Q 1

Q 1,N 2 Q 1,Q 1 Q 1,Q

Q,Q 1 Q,Q

a a 0

a a a

a a a

a a a

a a a

0 a a

− − − − − −

− − − − −

−

 
 
 
 
 

=  
 
 
 
  

A O O O  (5.14) 

 

where Q is the number of the grid points in space, and the non-zero components of A  for 

{ }i 1,2...Q=  are of the form 

 

n1 2
i

n n

i, j 1 i 1 i 1 2

n1 2
i

C : j i 1
4 2

1
a 1 C C : j i

4

C : j i 1
4 2

+ −

θ θ− − γ = −

  = + θ − + θ γ =  


θ θ+ − γ = +

 (5.15) 

  
Also in the first step,  

 
T

* * *

1 2 Qu ,u ,...u =  x  (5.16) 
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and 
 
 

 

( )

( )

( )

( )

n n
n 2 1 1 1 2
1

n

n 2 2

2

n

2 Q 1n

Q 1

n n

2 Q 1 Qn 2
Q

1 D C
u

2 4 2

1 D
u

2

1 D
u

2

1 D C
u

2 4 2

−
−

 − θ γ θ θ γ
+ + + 

 
− θ γ 

+ 
 

=  
 − θ γ +
 
 − θ γ θ θ γ + − +
  

b M  (5.17) 

 

In the second step, we also have a tridiagonal coefficient matrix A with different 

tridiagonal elements as 

 ( ) ( )

*1 2
i

* *

i, j 1 i 1 i 1 2

*1 2
i

1 1
C : j i 1

4 2

1
a 1 1 C C 1 : j i

4

1 1
C : j i 1

4 2

+ −

− θ − θ− − γ = −

  = + − θ − + − θ γ =  


− θ − θ+ − γ = +

 (5.18) 

 
and 

 
T

n 1 n 1 n 1

1 2 Qu ,u ,...u+ + + =  x  (5.19) 
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( ) ( )

( ) ( )

**
* 1 1 22 1
1

*
* 2 2
2

*

2 Q 1*

Q 1

* *

2 Q 1 Q* 2

Q

1 C 1D
u

2 4 2

D
u

2

D
u

2

D 1 C 1
u

2 4 2

−
−

 − θ − θ γθ γ
+ + + 

 
θ γ 

+ 
 

=  
 θ γ +
 
 θ γ − θ − θ γ
 + − +
 

b M  (5.20) 

 
where C, γ  and D  in these two steps have the same definitions as in Chapter 4.  

 

5.3 RESULTS AND DISCUSSION 

To explore the properties of different weighting factors, the 1D non-conservative 

Burgers’ equation is solved using Equations (5.12) and (5.13) with different 

combinations of 1θ and 2θ . Before we analyze the results from various combinations of 

1θ and 2θ , it is necessary to review their meanings. In the TCS scheme, n 1 2u /+  in the 

Burgers’ equation is either approximated using the time-centered splitting as 

( ) ( )n 1 2 n n 1 2u u u 2 t/ / O+ += + + ∆  or u*  as ( )n 1 2 2u u t/ * O+ = + ∆ . Different iθ  indicates 

different approximations of n 1 2u /+ . When iθ =0 or iθ =1, n 1/ 2u +  is approximated only 

using one kind of the approximations. When iθ  lies between 0 and 1, n 1/ 2u +  is 

approximated by the combinations of these two approximations. Table 5.1 lists the 

mathematical meaning of different values of iθ . 

 

 

 



 90 

Table 5.1 The mathematical meaning of the value of 1θ and 2θ . 

value 1θ  2θ  

0 

split the entire gradient term and 
approximate the entire flux term using 

u*  

split the entire diffusion 
term 

0 and 1< <  

split part of the gradient and flux terms 
approximate part of the gradient and flux 

terms using u*  

split part of the diffusion 
term and approximate part 
of the diffusion term using 

u*  

1 

split the entire flux term and 
approximate the entire gradient term 

using u*  

approximate the entire 

diffusion term using u*  

 

 

5.3.1 Accuracy of Different Weighting Factors 

The error analysis of different TCS discretizations is evaluated in the same vein as 

in Chapter 4. In figure 5.1, the RMS error is plotted against a range of CFL numbers for 

six different 1θ values ( { }1 0 1 3 1 2 2 3 3 4 1, / , / , / , / ,θ ∈ ). For each 1θ value, four 

different 2θ  values ( { }2 0 1 3 1 2 1, / , / ,θ ∈ ) are chosen for comparison, resulting 

twenty four different TCS discretizations. 

 The total marching time t=0.6 is used as the basis for error comparison in Figure 

5.1 because the maximum absolute error occurs at t=0.6 (as demonstrated in Chapter 4). 

The CFL number is defined using analyticalu , x 1 50/∆ =  and t∆ = 0 6. / Γ , where Γ  is the 

number of the time steps and { }5, 8, 10, 20, 25, 30, 50Γ∈ . Thus, the tested CFL number 

covers the range of  0 4 CFL 4 2. .≤ ≤ .  It can be observed that every TCS discretization 

has the same 2nd-order temporal accuracy and remains stable in the whole range of the 

CFL numbers. The computation requirement of each TCS discretization is essentially the 

same since they share the same general structure of matrix equations as in Equations 
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(5.14) to (5.20). Figure 5.1 clearly shows that for a given value of 1θ , any choice of 2θ  

gives an error of the same magnitude. The reverse also holds true, as shown in Figure 5.2.  

The RMS error is plotted for six values of 2θ , choosing four 1θ  values for each 2θ  value. 

Again, given a value for 2θ , the choice of 1θ  affects the RMS error less than or equal to 

one order of magnitude.  

Though 1 22 3 1 2/ , /θ = θ =  gives the lowest RMS error in these two examples, 

the best combination for the smallest error is problem-specific; error arises from 

approximations of different terms. To obtain optimal combinations of iθ for the lowest 

error, one needs to examine the nature of the solution and each term at the designated 

marching time. For this Burgers’ equation, the solution u, the gradient term u x/∂ ∂ ,  and 

the diffusion term 2 2u x/ν∂ ∂  all need to be taken into consideration because 

approximations have been introduced to all of these terms.  
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Figure  5.1 Temporal accuracy of various combinations of 1θ  and 2θ for solution of the 

Burgers’ equation at t=0.6, where x 1 50/∆ = , 0 05.ν =  and t 0 6. /∆ = Γ  

( { }5, 8, 10, 20, 25, 30, 50Γ∈ ).  
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Figure  5.2 Temporal accuracy of various combinations of 2θ and 1θ for solution of the 

Burgers’ equation at t=0.6, where x 1 50/∆ = , 0 05.ν =  and t 0 6. /∆ = Γ  

( { }5, 8, 10, 20, 25, 30, 50Γ∈ ).  
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5.3.2 Stability of Different Weighting Factors 

Figure 5.1 and 5.2 display the temporal accuracy of the solution of the Burgers’ 

equation at t=0.6. All TCS discretizations produce stable solutions for the whole range of 

tested CFL numbers. To further explore the stability characteristics, we investigate the 

performance of the TCS family method at t=0.3, 1 and 2, and these results are shown in 

Figure 5.3, 5.4 and 5.5, respectively. Similar to Figure 5.1, the RMS error is plotted 

against a range of CFL numbers for several choices of  2θ  given a 1θ  value. Similar to 

t=0.6, all 24 TCS discretizations stay stable at t=0.3.  

At t=1and t=2, though, we find different results. At t=1 (Figure 5.4), for any given 

1θ  value, the solution of 2 1θ = becomes unstable with the increase of the CFL number, 

but the solutions for any 2 1θ ≠  remain stable. At t=2, the solutions of both 2 0θ = and 

2 1θ = become unstable with the increase of the CFL number, but the solutions with any 

20 1< θ <  remain stable.  

To understand this stability property associated with the 2θ value, we need to 

examine the nature of the solution and the meaning of the weighting factor 2θ . The 

solution of the Burgers’ equation evolving with time is plotted in Figure 4.1. It can be 

observed that after t=0.6, damping dominates the solution, which suggests that the 

diffusion effect dominates.  The weighting factor 2θ  controls the approximation of the 

diffusion term as shown in Table 5.1.  If 2 0θ = , the entire diffusion term, 2 n 1/ 2 2u / x+ν∂ ∂ , 

is completely approximated using the time-centered split, which means  n 1/ 2u + in the 

diffusion term is first approximated as ( )n 1 2 n n 1u u u 2/ /+ +≈ +  and then we split the 

diffusion terms into two steps as 2 n 2u / xν∂ ∂  and 2 n 1 2u / x+ν∂ ∂ . If  2 1θ = , the entire 

diffusion term, 2 n 1/ 2 2u / x+ν∂ ∂ ,  is completely approximated  using u* , which means 

2 n 1/ 2 2 2 * 2u / x u / x+ν∂ ∂ ≈ ν∂ ∂ . Figures 5.1 to 5.5 indicate that the TCS method remains 

stable and the stability is not affected by the values of the weighing factors. If the 
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diffusion dominates the solution, the weighting factor associated with the diffusion term 

can affect the stability. Our results suggest that if the weighting factor, 2 20 and 1θ ≠ θ ≠ , 

the solutions remain stable for the tested CFL numbers. In other words, using only one 

kind of approximation for the diffusion term, the solution may become unstable with the 

increase of the CFL number; using a combination of the two kinds of approximations for 

the diffusion term can stabilize the solution.  
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Figure  5.3 Temporal accuracy of various combinations of 2θ and 1θ for solution of the 

Burgers’ equation at t=0.3, where x 1 50/∆ = , 0 05.ν =  and t 0 3∆ = Γ. /  

( { }5, 8, 10, 20, 25, 30, 50Γ∈ ).  
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Figure  5.4 Temporal accuracy of various combinations of 2θ and 1θ for solution of the 

Burgers’ equation at t=1, where x 1 50∆ = / , 0 05ν = .  and t 1∆ = Γ/  

( { }5, 8, 10, 20, 25, 30, 50Γ∈ ).  
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Figure 5.5 Temporal accuracy of various combinations of 2θ and 1θ for solution of the 

Burgers’ equation at t=2, where x 1 50/∆ = , 0 05.ν =  and t 2∆ = Γ/  

( { }5, 8, 10, 20, 25, 30, 50Γ∈ ).  
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The general form of TCS method is demonstrated using the 1D non-conservative 

Burgers’ equation. The same application of the weighting factors can be used for an 

equation system with coupled variables. Hence, a general form of a two-step linearized 

coupled equation system can be created using the same principle. Since the values of the 

weighting factors will not affect the 2
nd
-order temporal accuracy of the scheme, TCS 

method may provide a flexible approach to solve different problems. Furthermore, 

properly chosen weighting factors in the TCS method can computationally decouple a 

system of coupled equations. This decoupling advantage of the TCS method is analyzed 

in the following section.  

 

5.4 COMPUTATIONAL DECOUPLING  

In the previous sections, we demonstrated the effects of weighting factors in the 

TCS method on the accuracy and stability of the solution. In this section, we will 

introduce the decoupling advantage of the TCS method. The two-dimensional Burgers’ 

equation provides a convenient example: 

 
2 2

2 2

u u u u u
u v

t x y x y

∂ ∂ ∂ ∂ ∂
+ + = ν + ν

∂ ∂ ∂ ∂ ∂
 (5.21) 

 
2 2

2 2

v v v v v
u v

t x y x y

∂ ∂ ∂ ∂ ∂
+ + = ν + ν

∂ ∂ ∂ ∂ ∂
 (5.22) 

 

Equations (5.21) and (5.22) are a two-variable two-dimensional system with coupled 

variables ‘u’ and ‘v’. If we use the 2
nd
-order temporal accurate C-N method to discretize 

equations (5.21) and (5.22), the resulting equations become 
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n n 2 n 2 n
n 1 n n n

2 2

n 1 n 1 2 n 1 2 n 1
n 1 n 1

2 2

t u u u u
u u u v

2 x y x y

t u v u u
u v

2 x y x y

+

+ + + +
+ +

 ∆ ∂ ∂ ∂ ∂
= + − − + ν + ν 

∂ ∂ ∂ ∂ 

 ∆ ∂ ∂ ∂ ∂
+ − − + ν + ν 

∂ ∂ ∂ ∂ 

 (5.23) 

 

 

n n 2 n 2 n
n 1 n n n

2 2

n 1 n 1 2 n 1 2 n 1
n 1 n 1

2 2

t v v v v
v v u v

2 x y x y

t v v v v
u v

2 x y x y

+

+ + + +
+ +

 ∆ ∂ ∂ ∂ ∂
= + − − + ν + ν 

∂ ∂ ∂ ∂ 

 ∆ ∂ ∂ ∂ ∂
+ − − + ν + ν 

∂ ∂ ∂ ∂ 

 (5.24) 

Equations (5.23) and (5.24) are a coupled nonlinear equation system. Conventionally, to 

solve a coupled equation system, either a simultaneous solution or a sequential solution 

method can be used (Ferziger and Peric, 1996). However, such an equation system is too 

complex and expensive to solve simultaneously due to its nonlinearity. Therefore, 

sequential solution methods are more appropriate. To solve this equation system 

sequentially, inner iterations are required to solve Equations (5.23) and (5.24) 

individually, and outer iterations are required to satisfy Equations (5.23) and (5.24) 

together.  

Alternatively, we can decouple and linearize Equations (5.23) and (5.24) using 

TCS method without iterations by choosing specific weighting factors. Applying the TCS 

method to Equation (5.21) results in a two-step system with a specific iθ weighting factor 

for each term 

 

( ) ( ) ( ){
( ) ( ) ( )

( ) ( )

( ) ( ) }

n n n

1 x 1 x

n n

2 y 2 y

2 2 n

3 x 3 x

2 2 n

4 y 4 y

t
u u u u 1 u u

2

v u 1 v u

u 1 u

u 1 u

* * *

* *

*

*

∆
= + θ − δ + − θ − δ

+ θ − δ + − θ − δ

+ θ νδ + − θ νδ

+θ νδ + − θ νδ

 (5.25) 
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( ) ( ) ( ){
( ) ( ) ( )

( )
( ) }

n 1 n 1 n 1

1 x 1 x

n 1 n 1

2 y 2 y

2 2 n 1

3 x 3 x

2 2 n 1

4 y 4 y

t
u u u u 1 u u

2

v u 1 v u

u 1 u

u 1 u

* * *

* *

*

*

+ + +

+ +

+

+

∆
= + θ − δ + − θ − δ

+ θ − δ + − θ − δ

+ θ νδ + − θ νδ

+θ νδ + − θ νδ

 (5.26) 

 
Applying the TCS method to Equation (5.22) results in a two-step system: 

 

( ) ( ) ( ){
( ) ( ) ( )

( ) ( )

( ) ( ) }

n n n

5 x 5 x

n n

6 y 6 y

2 2 n

7 x 7 x

2 2 n

8 y 8 y

t
v v u v 1 u v

2

v v 1 v v

v 1 v

v 1 v

* * *

* *

*

*

∆
= + θ − δ + − θ − δ

+ θ − δ + − θ − δ

+ θ νδ + − θ νδ

+θ νδ + − θ νδ

 (5.27) 

 

 

( ) ( ) ( ){
( ) ( ) ( )

( )
( ) }

n 1 n 1 n 1

5 x 5 x

n 1 n 1

6 y 6 y

2 2 n 1

7 x 7 x

2 2 n 1

8 y 8 y

t
v v u v 1 u v

2

v v 1 v v

v 1 v

v 1 v

* * *

* *

*

*

+ + +

+ +

+

+

∆
= + θ − δ + − θ − δ

+ θ − δ + − θ − δ

+ θ νδ + − θ νδ

+θ νδ + − θ νδ

 (5.28) 

For this two-variable two-dimensional Burgers’ equation, eight different weighting 

factors are applied in the general TCS discretized form. Observing Equations (5.21) and 

(5.22), we discover that the coupling only occurs in the nonlinear advection term. 

Therefore, the weighting factors for the diffusion terms will not affect the computational 

decoupling.  

In the following discussion, we omit the diffusion terms and their associated 

weighting factors. We then discover that the coupling occurs between the nonlinear 

advection terms ‘ v u y/∂ ∂ ’ and ‘ u v x/∂ ∂ ’. The two weighting factors for these two terms 

are 2θ  and 5θ  respectively and these two factors are the key to computationally 

decoupling the equation system. The other two advection terms ‘ u u x/∂ ∂ ’ and 



 102 

‘ v v y/∂ ∂ ’ are not coupled. Therefore, we have more choices for their weighting factors 

1θ  and 6θ . To completely decouple u and v, Table 5.2 shows the possible combinations 

of the weighting factors for each advection term.  

 

Table 5.2 Weighting factors for computational decoupling the 2D Burgers’ equation 

2θ  5θ  1θ  6θ  

0 0 

1 0 

0 1 
0 1 

1 1 

0 0 

1 0 

0 1 
1 0 

1 1 

 

It can be seen from Table 5.2 that two kinds of combinations of 2θ  and 5θ can decouple 

the 2D Burgers’ equation. For each pair of 2θ  and 5θ , four different combinations of 

1θ and 6θ  can be chosen such as 1 6 0θ = θ = , 1 61 and 0θ = θ = , 1 6 1θ = θ = , 

1 60 and 1θ = θ = . To illustrate the procedure of decoupling, we use the values from the 

first row in Table 5.2, applying 2 5 1 60 1 0 0, , ,θ = θ = θ = θ =  to Equations (5.25) to 

(5.28) and reordering the equation system to 

 ( )n n n

x y

t
v v u v v v

2

* * *∆
= + − δ − δ  (5.29) 

 ( )n n n

x y

t
u u u u v u

2

* * *∆
= + − δ − δ  (5.30) 

 ( )n 1 n 1 n 1

x y

t
u u u u v u

2

* * *+ + +∆
= + − δ − δ  (5.31) 

 ( )n 1 n 1 n 1

x y

t
v v u v v v

2

* * *+ + +∆
= + − δ − δ  (5.32) 
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Each step from Equation (5.29) to (5.32) is computationally linearized, and each 

step has only one unknown variable. Variables “u” and “v” are effectively decoupled in 

each step. The solution process for these chosen weighting factors is as follows: 

1. Solve for v*  using nu  and nv   

2. Solve for u*  using nu  and v*  obtained from step 1 

3. Solve for n 1u +  using u*  obtained from step 2 and v*  obtained from step 1 

4. Solve for n 1v +  using n 1u +  obtained from step 3 and v*  obtained from step 1 

A different combination of weighting factors from Table 5.2 results in a different 

equation system, and the order of the solution procedure is changed appropriately. Using 

the following set of weighting factors in Equations  (5.25) to (5.28): 2 1θ = , 5 0θ = , 

1 0θ = , and 6 0θ = , results in the following system: 

 ( )n n n

x y

t
u u u u v u

2

* * *∆
= + − δ − δ  (5.33) 

 ( )n n n

x y

t
v v u v v v

2

* * *∆
= + − δ − δ  (5.34) 

 ( )n 1 n 1 n 1

x y

t
v v u v v v

2

* * *+ + +∆
= + − δ − δ  (5.35) 

 ( )n 1 n 1 n 1

x y

t
u u u u v u

2

* * *+ + +∆
= + − δ − δ  (5.36) 

The corresponding solution process is:  

1. Solve for u*  using nu  and nv   

2. Solve for v*  using nv  and u*  obtained from step 1 

3. Solve for n 1v +  using v*  obtained from step 2 and u*  obtained from step 1 

4. Solve for n 1u +  using n 1v +  obtained from step 3 and u*  obtained from step 1 

This computational decoupling technique can be extended to equation systems 

with more than two variables. The underlying principle for decoupling is that when the 

weighting factor is switched from 0 to 1, the approximation for the variable n 1 2/+φ  is 
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changed from  *φ   to either  nφ  or n 1+φ . Consequently, we can change the variable in one 

equation from unknown to known.  

 

5.5 SUMMARY 

A general form of the TCS family method is developed in this chapter by 

introducing a weighting factor iθ  for each term in a quadratic nonlinear differential 

equation. The 1D non-conservative Burgers’ equation is used as an example to test how 

the weighting factors affect the solutions. The value of iθ  controls the approximations of 

the advection and diffusion terms.  If iθ =0 or iθ =1, the advection term or the diffusion 

term is approximated only by one kind of approximation; if iθ  lies between 0 and 1, the 

advection term or the diffusion term is approximated by the combination of  two 

approximations. Although various TCS discretizations can be generated by changing iθ  

the 2
nd
 order temporal accuracy of the TCS method is not affected by the choice of the 

weighting factor. We proved analytically and by examples that the TCS family method is 

2
nd
-order temporal accurate if i0 1≤ θ ≤ .  Different combinations of iθ value have been 

tested using 1D Burgers’ equation as an example. The results presented here show that 

the optimum combination of the weighting factors for the most accurate solutions is 

problem-specific. However, our results indicate that the optimal values for the weighting 

factors lie between 0 and 1 such that the advection term and diffusion term are 

approximated using the combination of two different approximations. Our examples also 

demonstrate the stability advantage of the TCS method. When the advection effect is 

dominant, the stability is not affected by iθ  value and all the tested TCS discretizations 

remain stable for the whole range of CFL numbers. When the diffusion effect is 

dominant, the TCS method stays stable under all iθ  values except 0 or 1 for the diffusion 
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term. This observation suggests that the solution from the TCS method may be stabilized 

by adjusting the weighting factors. Most of the problems in Environmental Fluid 

Mechanics are dominated by advection. Hence, the TCS family method has a promising 

stability advantage in simulating environmental flows.  

In addition to its accuracy and stability advantages, the TCS method is also 

capable of decoupling coupled equation systems by choosing specific combinations of 

the weighting factors. This advantage is displayed using the two-dimensional Burgers’ 

equation as an example. Compared to the conventional decoupling techniques, no 

iteration is required in the TCS method. Therefore, the TCS method is more efficient in 

solving coupled nonlinear equation systems. Moreover, the TCS family method provides 

theoretically unlimited possible discretizations for one problem. This, in turn, provides 

flexibility in discretizing specific problems.  

In the next chapter, we will apply the TCS method to a multi-variable and multi-

dimensional equation system: depth averaged shallow water equations (SWE). The 

advantage of computational linearization and decoupling of the TCS method will be 

further illustrated in the next chapter. Numerical experiments will be carried out to test 

the TCS discretized depth averaged SWE.  
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Chapter 6 Application of the TCS Method to a 2D Depth Averaged 

Shallow Water Equations (SWE) 

 

The TCS (Time-Centered Split) family of methods are derived and analyzed in 

Chapter 5. To investigate the application of the TCS method in a multi-variable and 

multi-dimension equation system, depth averaged SWE (shallow water equations) is 

solved using the TCS method in this chapter. The computational decoupling 

characteristics of the TCS method are explored using depth averaged SWE as an 

example. The decoupling procedure is discussed and three representative linearized and 

decoupled TCS discretizations are presented in this Chapter. Numerical experiments such 

as a one-dimensional standing wave and a two-dimensional standing wave in a 

rectangular domain are performed to verify the TCS numerical model. In the one-

dimensional standing wave case, the numerical results are compared with the analytical 

solutions; and in the two-dimensional standing wave case, the characteristics and 

performance from three TCS discretizations are compared and discussed.  

 

6.1. THE 2D DEPTH AVERAGED SWE 

The 2D depth averaged SWE are obtained by integrating the 3D incompressible 

Navier-Stokes equations over the water depth with the two following assumptions: 1) 

neglecting the vertical velocity and acceleration; 2) applying a hydrostatic pressure 

distribution (Vreugdenhil 1994). These equations are widely used in hydraulic science 

and engineering (Ancey et al. 2008; Arega et al. 2008; Hunter et al. 2008). The definition 

of “shallow” requires that the vertical scale of the flow is small compared to the 

horizontal scale. In nature or common engineering practice, many types of flows fall into 

this category such as atmospheric flow (Mohebalhojeh and Dritschel 2007), river flow 
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(Arega et al. 2008), and storm surge (Bajo et al. 2007). Although the 2D SWE cannot 

simulate vertical velocity gradients, they are useful for flows where strong turbulence 

provides complete vertical mixing of momentum or for flows dominated by barotropic 

motions. The 2D shallow water equations can be written as: 

 
2 2

2 2

U U U U U
U V g

t x y x x y

 ∂ ∂ ∂ ∂ζ ∂ ∂
+ + = − + ν + ∂ ∂ ∂ ∂ ∂ ∂ 

 (6.1) 

 
2 2

2 2

V V V V V
U V g

t x y y x y

 ∂ ∂ ∂ ∂ζ ∂ ∂
+ + = − + ν + ∂ ∂ ∂ ∂ ∂ ∂ 

 (6.2) 

 
H HU HV

0
t x y

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (6.3) 

 bH Zζ = +  (6.4) 

where U  and V  are depth-averaged velocities in x  and y  directions; g is the 

gravitational acceleration; H  is the water depth; ζ  is the water surface elevation; and 

bZ is the bottom elevation.  The above statement of the 2D SWE neglects the turbulence 

closure and bottom stress for the test case of the TCS numerical method. 

 

6.2 THE TCS DISCRETIZED SWE   

Applying the midpoint rule between time n and n+1 along with central-

differencing of spatial derivatives on an Arakawa C grid (Arakawa and Lamb, 1977), as 

shown in Figure 6.1, Equations (6.1), (6.2) and (6.3) can be discretized as a set of coupled 

nonlinear equations: 
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( ) ( )

( )

n 1/ 2 n 1/ 2 n 1/ 2 n 1/ 2

i, j 3/ 2 i, j 1/ 2 i 1, j 1/ 2 i 1, j 1/ 2n 1 n n 1/ 2 n 1/ 2

i, j 1/ 2 i, j 1/ 2 i, j 1/ 2 i, j 1/ 2

n 1/ 2 n 1/ 2 n 1/ 2

i, j 1/ 2 i, j 1/ 2 i, j 3/ 22

n 1/ 2 n

i 1, j 1/ 2 i, j 1/ 22

U U U U
U U t U V

2 x 2 y

U 2U U
x

U 2U
y

+ + + +
+ − + + − ++ + +

+ + + +

+ + +
− + +

+ +
− + +

 − −
= + ∆ − −

∆ ∆
ν

+ − +
∆

ν
+ −
∆

( )

( )

1/ 2 n 1/ 2

i 1, j 1/ 2

n 1/ 2 n 1/ 2

i, j 1 i, j

U

g

x

+
+ +

+ +
+

+

− ζ − ζ 
∆ 

 (6.5) 

 

( ) ( )

( )

n 1/ 2 n 1/ 2 n 1/ 2 n 1/ 2

i 1/ 2, j 1 i 1/ 2, j 1 i 3/ 2, j i 1/ 2, jn 1 n n 1/ 2 n 1/ 2

i 1/ 2, j i 1/ 2, j i 1/ 2, j i 1/ 2, j

n 1/ 2 n 1/ 2 n 1/ 2

i 1/ 2, j 1 i 1/ 2, j i 1/ 2, j 12

n 1/ 2

i 1/ 2, j i 1/ 2, j2

V V V V
V V t U V

2 x 2 y

v
V 2V V

x

v
V 2V

y

+ + + +
+ + + − + −+ + +

+ + + +

+ + +
+ − + + +

+
− +

 − −
= + ∆ − −

∆ ∆

+ − +
∆

+ −
∆

( )

( )

n 1/ 2 n 1/ 2

i 1/ 2, j

n 1/ 2 n 1/ 2

i 1, j i, j

V

g

y

+ +
+

+ +
+

+


− ζ − ζ 
∆ 

 (6.6) 

  

( )

( )

n 1 n n 1/ 2 n 1/ 2 n 1/ 2 n 1/ 2

i, j i, j i, j 1/ 2 i, j 1/ 2 i, j 1/ 2 i, j 1/ 2

n 1/ 2 n 1/ 2 n 1/ 2 n 1/ 2

i 1/ 2, j i 1/ 2, j i 1/ 2, j i 1/ 2, j

1
H H t H U H U

x

1
H V H V

y

+ + + + +
+ + − −

+ + + +
+ + − −

= + ∆ − −
∆


− − 
∆ 

 (6.7) 
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Figure 6.1 Illustration of Arakawa C grid.  

 

As illustrated in Figure 6.1, Arakawa C grid is one kind of staggered grid. Cartesian 

staggered grid is standard in modeling SWE (Schoenstadt 1980; Stelling and Duinmeijer 

2003). In Equations (6.5) to (6.7), the discrete value of the velocity component U is 

defined at (i, j+1/2); and the value of the velocity component V is defined at (i+1/2, j); 

and the discrete value of surface elevation ζ  is defined at (i, j).  In Equation (6.5), V (i, 

j+1/2) is obtained by the linear interpolation of the values: V (i+1/2, j), V (i-1/2, j), V 

(i+1/2, j+1), and V (i-1/2, j+1). In Equation (6.6), U (i+1/2, j) is obtained by the linear 

interpolation of the values: U (i, j+1/2), U (i+1, j+1/2), U (i, j-1/2), and U (i+1, j-1/2). In 

Equation (6.7), H (i, j+1/2) is obtained by the linear interpolation of the values of H (i, j) 

and H (i, j+1). H (I, j-1/2) is obtained by the linear interpolation of the values of H (i, j) 

and H (i, j-1).  

Velocity, U Velocity, V Surface elevation, ζ  

j 

1 2 3 4 

1 

2 

3 

i U 

V 

j+1/2 

i+1/2 
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To simplify exposition of the TCS method, we will use the shorthand notation xδ  

and yδ for spatial derivatives in x and y, resulting in:  

( )n 1 n n 1/ 2 n 1/ 2 n 1/ 2 n 1/ 2 2 n 1/ 2 2 n 1/ 2 n 1/ 2

x y x y x

t
U U U U V U U U g

2

+ + + + + + + +∆  = + − δ − δ + ν δ + δ − δ ζ  (6.8) 

( )n 1 n n 1/ 2 n 1/ 2 n 1/ 2 n 1/ 2 2 n 1/ 2 2 n 1/ 2 n 1/ 2

x y x y y

t
V V U V V V V V g

2

+ + + + + + + +∆  = + − δ − δ + ν δ + δ − δ ζ   (6.9) 

 ( ) ( )n 1 n n 1/ 2 n 1/ 2 n 1/ 2 n 1/ 2

x y

t
H U H V

2

+ + + + +∆  ζ = ζ + −δ − δ   (6.10) 

Equations (6.8) through (6.10) are a nonlinear three-variable coupled time dependent 

system. However, this complex equation system can be computationally linearized and 

decoupled by applying the TCS method. The general form of TCS discretized SWE U-

velocity equation is: 

 

( ) ( ) ( ){
( ) ( ) ( )

( ) ( )

( ) ( )

( ) }

n n n

1 x 1 x

n n

2 y 2 y

2 2 n

3 x 3 x

2 2 n

4 y 4 y

n

5 x 5 x

t
U U U U 1 U U

2

V U 1 V U

U 1 U

U 1 U

g 1 g

* * *

* *

*

*

*

∆
= + θ − δ + − θ − δ

+ θ − δ + − θ − δ

+ θ νδ + − θ νδ

+ θ νδ + − θ νδ

−θ δ ζ − − θ δ ζ

 (6.11) 

 

 

( ) ( ) ( ){
( ) ( ) ( )

( )
( )
( ) }

n 1 n 1 n 1

1 x 1 x

n 1 n 1

2 y 2 y

2 2 n 1

3 x 3 x

2 2 n 1

4 y 4 y

n 1

5 x 5 x

t
U U U U 1 U U

2

V U 1 V U

U 1 U

U 1 U

g 1 g

* * *

* *

*

*

*

+ + +

+ +

+

+

+

∆
= + θ − δ + − θ − δ

+ θ − δ + − θ − δ

+ θ νδ + − θ νδ

+ θ νδ + − θ νδ

− θ δ ζ − − θ δ ζ

 (6.12) 

where the summation of Equations (6.11) and (6.12) is Equation (6.8). Similarly, for the 

other equations, it follows that, 
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( ) ( ) ( ){
( ) ( ) ( )

( ) ( )

( ) ( )

( ) }

n n n

6 x 6 x

n n

7 y 7 y

2 2 n

8 x 8 x

2 2 n

9 y 9 y

n

10 y 10 y

t
V V U V 1 U V

2

V V 1 V V

V 1 V

V 1 V

g 1 g

* * *

* *

*

*

*

∆
= + θ − δ + − θ − δ

+ θ − δ + − θ − δ

+ θ νδ + − θ νδ

+ θ νδ + − θ νδ

−θ δ ζ − − θ δ ζ

 (6.13) 

 

 

( ) ( ) ( ){
( ) ( ) ( )

( )
( ) }

( ) }

n 1 n 1 n 1

6 x 6 x

n 1 n 1

7 y 7 y

2 2 n 1

8 x 8 x

2 2 n 1

9 y 9 y

n 1

10 y 10 y

t
V V U V 1 U V

2

V V 1 V V

V 1 V

V 1 V

g 1 g

* * *

* *

*

*

*

+ + +

+ +

+

+

+

∆
= + θ − δ + − θ − δ

+ θ − δ + − θ − δ

+ θ νδ + − θ νδ

+θ νδ + − θ νδ

− θ δ ζ − − θ δ ζ

 (6.14) 

and the summation of Equations (6.13) and (6.14) is equivalent to Equation (6.9). The 

two steps of the ζ -equation are: 

 

 
( ) ( ) ( ){

( ) ( ) ( )}

* n * n n *

11 x 11 x

* n n *

12 y 12 y

t
H U 1 H U

2

H V 1 H V

∆
ζ = ζ − θ δ + − θ δ

+ θ δ + − θ δ
 (6.15) 

 
( ) ( ) ( ){
( ) ( ) ( )}

n 1 * * n 1 n 1 *

11 x 11 x

* n 1 n 1 *

12 y 12 y

t
H U 1 H U

2

H V 1 H V

+ + +

+ +

∆
ζ = ζ − θ δ + − θ δ

+ θ δ + − θ δ
 (6.16) 

and the summation of Equation (6.15) and (6.16) is equivalent to Equation (6.10). In the 

above equation system, iθ is the weighting factor and { }i 1 2 12, , ,∈ K for each term. As 

discussed in Chapter 5, properly chosen iθ can computationally decouple and linearize 

the equation system. In the next section, we will illustrate the possible decoupled 

discretizations for  Equations (6.1) through (6.4). 
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6.3 DECOUPLING THE SWE 

Observing Equations (6.1) through (6.4), we discover that the advection terms 

V U / y∂ ∂ and U V / x∂ ∂  couple the two momentum equations for U and V. g / x∂ζ ∂ and 

HU / x∂ ∂  couple the U-momentum equation and the continuity equation. g / y∂ζ ∂ and 

HV / y∂ ∂  couple the V-momentum equation and the continuity equation. Consequently, 

the weighting factors associated with these terms are crucial in the decoupling process. 

By examining Equations (6.11) through (6.16), the weighting factors are 

2 5 6 10 11 12andθ θ θ θ θ θ, , , , , . The other weighting factors, including the ones for the viscous 

terms, 3 4 8 9θ θ θ θ, , ,  and the ones for non-coupled advection terms, 1 7θ θ, , are not 

involved in the decoupling process. In other words, the values of the weighting factors, 

1 3 4 7 8 9andθ θ θ θ θ θ, , , , , , will not affect the decoupling process.  

There are limited combinations of the weighting factors, 2 5 6 10 11 12andθ θ θ θ θ θ, , , , ,  

that will produce a completely decoupled equation system. Each combination will create 

a unique discretization and a solution order. The principal for the decoupling process is 

that only one dependent variable can appear in each equation and we can change the 

number of the variables by changing the values of the weighting factors. This can be 

better understood by the following example:  

• If Equation (6.11) for *U  is chosen to be solved first, 2 1θ = and 5 0θ =  are 

necessary conditions, because only one dependent variable *U  can be 

included. Thus, the weighting factors for * *V and ζ  have to be equal to 0. 

It follows that Equation (6.12) for n 1U +  will include n 1 n 1V and+ +ζ . To 

have a decoupled solution, Equation (6.12) for n 1U + has to be solved at the 

last. This unique solution sequence holds true for each variable. If *V  or 

*ζ  is chosen to be solved first, then n 1V +  or n 1+ζ  has to be solved last. 
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• If Equation (6.13) for *V  is solved right after *U , 6 100 and 0θ = θ =  are 

necessary conditions. In Equation (6.13), *ζ cannot be included, so 10θ  has 

to equal to 0, which causes n 1+ζ  to be included in  Equation (6.14) . To 

have a decoupled solution, Equation (6.16) for n 1+ζ  has to be solved 

before Equation (6.14) for n 1V + . Furthermore, in Equation (6.14), n 1U +  

cannot be included since  n 1U +  will be obtained at the end, therefore 6θ  

has to equal to 0. After choosing the second equation, two more weighting 

factors are decided and solution order is decided as *U , *V , *ζ  then n 1+ζ , 

n 1V +  and n 1U + . 

• Since n 1+ζ  has to be solved before n 1U +  and n 1V + , 11 120 and 0θ = θ =  are 

necessary conditions because n 1U +  and n 1V + cannot be included in 

Equation (6.16).  

• Hence, from the procedure described above, we can see that a solution 

order determines a unique combination of weighting factors. Since we 

have six equations in the system, six solution orders exist. Table 6.1 lists 

all six solution orders and their correspondent combinations of the 

weighting factors.   
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Table 6.1 Weighting factors and the solution orders for decoupled Equations (6.11) 
through (6.16). 

row 2θ  5θ  6θ  10θ  11θ  12θ  solution order 

a 0 1 1 0 1 0 
*V , *ζ , *U ,  n 1U + , n 1+ζ , n 1V +  

b 1 0 0 1 0 1 
*U , *ζ , *V ,  n 1V + , n 1+ζ , n 1U +  

c 1 0 0 0 0 0 
*U , *V , *ζ ,  n 1+ζ , n 1V + , n 1U +  

d 0 0 1 0 0 0 
*V , *U ,  *ζ ,  n 1+ζ , n 1U + , n 1V +  

e 1 1 0 1 1 1 *ζ , *U , *V , n 1V + , n 1U + ,  n 1+ζ  

f 0 1 1 1 1 1 *ζ , *V , *U , n 1U + , n 1V + ,  n 1+ζ  

 

 

6.4 CHARACTERISTICS OF THE TCS DECOUPLED EQUATION SYSTEM 

The main advantage of the TCS method is that it can completely decouple and 

linearize an equation system with quadratic nonlinearity. As shown in the previous 

section, multiple TCS decoupled and linearized discretizations exist. To explore this 

characteristic of the TCS method, we choose values from row a, c and e in Table 6.1 to 

create three different TCS discretizations since the continuity equation is solved in 

different orders in these three rows. 

Choosing weighting factors from row a, Equations (6.11) to (6.16) become a two 

step computationally linearized and decoupled equation system. The implicit steps for 

solution of intermediate variables ( * * *U , V ,ζ ) are 

 ( )* n n * n * 2 * 2 * n

x y x y x

t
V V U V V V V V g

2

∆  = + − δ − δ + ν δ + δ − δ ζ   (6.17) 
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 ( ) ( )* n * n n *

x y

t
H U H V

2

∆  ζ = ζ − δ + δ   (6.18) 

 ( )* n * n * n 2 * 2 * *

x y x y x

t
U U U U V U U U g

2

∆  = + − δ − δ + ν δ + δ − δ ζ   (6.19) 

where * *

bZ Hζ − = .  The implicit steps for the ‘n+1’ values are sequentially solved as 

 ( )n 1 * * n 1 * n 1 2 * 2 * *

x y x y x

t
U U U U V U U U g

2

+ + +∆  = + − δ − δ + ν δ + δ − δ ζ   (6.20) 

 ( ) ( )n 1 * * n 1 n 1 *

x y

t
H U H V

2

+ + +∆  ζ = ζ − δ + δ   (6.21) 

 ( )n 1 * n 1 * n 1 * 2 * 2 * n 1

x y x y y

t
V V U V V V V V g

2

+ + + +∆  = + − δ − δ + ν δ + δ − δ ζ   (6.22) 

As we stated in section 6.3, weighting factors for the viscous terms and non-

coupled advection terms will not affect the decoupling process, so the values for these 

weighting factors can be anything from 0 to 1.  In Equations (6.17) through (6.22), the 

weighting factors for the viscous terms: 3 4 8 9 1θ = θ = θ = θ =  and the weighting factors 

for the non-coupled advection terms: 1 1θ =  and 7 1θ = . Thus the original set of the 

coupled nonlinear equations becomes a sequence of linear implicit equations for each 

variable. All variables in Equations (6.17) through (6.22) are solved in order 

as: * * * n 1 n 1 n 1V , , U , U , , and V+ + +ζ ζ .  We call the solution from the above equation system 

“TCS solution 1”.  

In the same vein, if we choose the weighting factors at row c combining 

3 4 8 9 1θ = θ = θ = θ = , 1 1θ =  and 7 1θ = , a different decoupled and linearized 

discretization is obtained. In the first step, intermediate variables ( * * *U ,V ,ζ ) are solved 

as 

 ( )n n n 2 2 n

x y x y x

t
U U U U V U U U g

2

* * * * *∆  = + − δ − δ + ν δ + δ − δ ζ   (6.23) 
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 ( )n n n 2 2 n

x y x y y

t
V V U V V V V V g

2

* * * * *∆  = + − δ − δ + ν δ + δ − δ ζ   (6.24) 

 

 ( ) ( )* n n * n *

x y

t
H U H V

2

∆  ζ = ζ − δ + δ   (6.25) 

and in the second step, 

 ( ) ( )n 1 * n 1 * n 1 *

x y

t
H U H V

2

+ + +∆  ζ = ζ − δ + δ   (6.26) 

 ( )n 1 n 1 n 1 2 2 n 1

x y x y y

t
V V U V V V V V g

2

* * * * *+ + + +∆  = + − δ − δ + ν δ + δ − δ ζ   (6.27) 

 

 ( )n 1 n 1 n 1 2 2 n 1

x y x y x

t
U U U U V U U U g

2

* * * * *+ + + +∆  = + − δ − δ + ν δ + δ − δ ζ   (6.28) 

The solution order of the equation set (6.17) to (6.22) is changed to 

* * * n 1 n 1 n 1U ,V , , , V , U+ + +ζ ζ .  The solution from Equations (6.23) to (6.28) is called “TCS 

solution 2”.  

Similarly, anther set of equations can be obtained by using the weighting factors 

in row e combining 3 4 8 9 1θ = θ = θ = θ = , 1 1θ =  and 7 0θ = . In the first step, 

 ( ) ( )* n * n * n

x y

t
H U H V

2

∆  ζ = ζ − δ + δ   (6.29) 

 ( )n n n 2 2

x y x y x

t
U U U U V U U U g

2

∆  = + − δ − δ + ν δ + δ − δ ζ 
* * * * * *  (6.30) 

 ( )n n n 2 2

x y x y y

t
V V U V V V V V g

2

∆  = + − δ − δ + ν δ + δ − δ ζ 
* * * * * *  (6.31) 

and in the second step, 

 ( )n 1 n 1 n 1 2 2

x y x y y

t
V V U V V V V V g

2

+ + +∆  = + − δ − δ + ν δ + δ − δ ζ 
* * * * * *  (6.32) 

 ( )n 1 n 1 n 1 2 2

x y x y x

t
U U U U V U U U g

2

+ + +∆  = + − δ − δ + ν δ + δ − δ ζ 
* * * * * *  (6.33) 

 ( ) ( )n 1 * * n 1 * n 1

x y

t
H U H V

2

+ + +∆  ζ = ζ − δ + δ   (6.34) 
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In the above equation system, the solution order is * * * n 1 n 1 n 1, U ,V , V , U ,+ + +ζ ζ . We call 

this “TCS solution 3”.  

Each TCS discretization has a different solution procedure. Table 6.2 provides the 

detailed solution procedures for each TCS method.   

 

Table 6.2 Solution procedures of the three TCS discretizations  

Step TCS solution 1 TCS solution 2 TCS solution 3 

* n n nV U , V ,← ζ  * n n nU U , V ,← ζ  * n n nU , V ,ζ ← ζ  

* n * nU , V ,ζ ← ζ  * * n nV U , V ,← ζ  * n n *U U , V ,← ζ  1 

* n * *U U , V ,← ζ  * * * nU , V ,ζ ← ζ  * * n nV U , V ,← ζ  

n 1 * * *U U , V ,+ ← ζ  n 1 * * *U , V ,+ζ ← ζ  n 1 * * *V U , V ,+ ← ζ  

n 1 n 1 * *U , V ,+ +ζ ← ζ  n 1 * * n 1V U , V ,+ +← ζ  n 1 * n 1 *U U , V ,+ +← ζ  2 

n 1 n 1 * n 1V U , V ,+ + +← ζ  n 1 * n 1 n 1U U , V ,+ + +← ζ  n 1 n 1 n 1 *U , V ,+ + +ζ ← ζ  

 

6.5 NUMERICAL TESTS  

To test the general performance of the TCS method in solving 2D depth averaged 

SWE, a series of numerical experiments are presented in this section. In these numerical 

experiments, we want to test 1) how the method treats the nonlinear terms such as 

U V / x∂ ∂ , V U / y∂ ∂ , HU / x∂ ∂  and HV / y∂ ∂ ; 2) how the method decouples the terms 
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U, V, and H; and 3) How different discretizations and  different solution procedures 

affect the solutions.  

A one-dimensional standing wave in a closed basin is first tested to compare our 

numerical model with the analytical solution. A two-dimensional standing wave in a 

closed basin is simulated to investigate the different characteristics among three TCS 

solutions. As an initial attempt to simulating an open boundary case, a one-dimensional 

wave traveling through an open boundary system is tested in Appendix A.     

 

6.5.1 One dimensional Standing Waves 

As a first test of the TCS method, a free surface standing wave in a rectangular 

basin has been simulated and is shown schematically in Figure 6.2. Free-slip boundary 

conditions are enforced on all walls. An equally-spaced 20 5×  mesh is applied to the 

computational domain.   

L

H

2a

x

yz

 

Figure 6.2 A standing wave in a rectangular basin 
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Analytical Solution 

The period of an inviscid free surface wave is (Dean and Dalrymple 1998): 

 ( ) 12
T tanh kH

g

−πλ
=     (6.35) 

According to linear wave theory, the wave function is a sinusoid for small amplitude 

waves. The surface height (h) above the still water level is: 

 ( ) ( )h(x, t) a sin kx sin t= σ  (6.36) 

where the frequency (σ) is 2 / Tπ .  For a viscous unconfined wave in deep water, the 

evolution of the wave amplitude can be approximated as (Lamb 1932), 

 
22 k ta(t) a(0)e− ν=  (6.37) 

where ‘a’ is the free surface wave amplitude, ‘ν ’ is kinematic viscosity and ‘ k ’ is the 

wavenumber.  However, wave damping based on Equation (6.37) is unlikely to be well-

represented in a 2D depth-averaged model as vertical velocity and vertical velocity shears 

are part of the closure term. The Reynolds number is defined as: 

 
Lu

Re =
ν

 (6.38) 

where L  is the length of the basin, ν  is the kinematic viscosity and u  is the 

characteristic Cartesian fluid velocity based on the wave amplitude (a) and the wave 

frequency (σ ) : 

 u a= σ  (6.39) 

 

Results and Discussion 

Simulations have been run for different cases to examine a variety of model 

characteristics. Three simulations with different initial wave steepness (i.e. ratio of wave 
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amplitude to basin length) are presented in Figure 6.3. The three simulations were run in 

an inviscid flow to minimize the viscous damping effects. In Figure 6.3, results of the 

simulations illustrate the nondimensionalized water surface elevation (i.e. ( )H / aζ − ) 

at x x / 2= ∆ , which is the grid cell center closest to the left wall. The important 

parameters for these three test cases are listed in Table 6.3.   

 

Table 6.3 Parameters of simulations of a 1D standing wave 

case H/L a/L L /λ  

6.4a 0.05 0.05% 0.5 

6.4b 0.05 0.2% 0.5 

6.4c 0.05 0.5% 0.5 
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TCS solution 1 TCS solution 2 TCS solution 3 analytical solution  

Figure 6.3 Simulations in the inviscid flow with different wave steepness 

 

Figure 6.3 shows results of the three different initial wave steepness. The non-

linearity of the advection term causes nonlinear wave steepening. Hydrostatic 

approximation from the depth averaged SWE enhances the nonlinear steepening because 

the dispersive effects from the non-hydrostatic effects are neglected (Daily and Imberger 

2003). This nonlinear steepening can be observed from Figure 6.3. Furthermore, with the 

increase of the nonlinearity of the wave (i.e. the initial wave steepness), the nonlinear-

steepening effects increase. In case 6.3a, a very small initial wave steepness is introduced 

and the simulation shows little nonlinear effects. When the initial steepness is increased 

in case 6.3b and 6.3c, the nonlinear effects become apparent. In theory, a series of 

solitary wave can be formed when the nonlinear steepening is balanced by the non-
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hydrostatic pressure gradient (Miropol'sky 2001). However, In Figure 6.3c, a train of 

solitary waves can be observed from the TCS simulations, which are solutions under 

hydrostatic approximation. This is probably due to the numerical dispersion, which plays 

an opposition effect to the nonlinear steepening. This phenomena has been reported in 

other literatures (Hodges et al. 2006; Wadzuk 2004).  

Figure 6.4 displays the viscous damping effects in our shallow water model. The 

Reynolds number is equal to 0.1, which indicates a very viscous flow. The simulation 

results damped faster than the analytical solution. This is mainly a result of the staggered 

grids used in the numerical model. The staggered grids necessitate averaging from the 

cell surfaces, which creates numerical dissipation (Garcia and Kahawita 1986).   
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0

1

t/T

(ζ
−

H
)/

a

Re=0.1, H/L=0.05, a/L=0.05%
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Figure 6.4 Viscous damping effects in the shallow water model 
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In Figures 6.3 and 6.4, the results from the three TCS discretizations are 

indistinguishable. To have a better comparison among three TCS solutions, we run a 

simulation of a two dimensional standing wave in a square box in the next section.  

 

6.5.2 Two-dimensional Standing Waves 

In this test case, the ability of the TCS method to simulate a two dimensional 

finite-amplitude free surface wave in a square box is investigated and the performances 

from different TCS discretizations are compared.  

A two-dimensional free surface standing wave in a square box is shown in Figure 

6.5. This initial wave is linearly composed by two one-dimensional (one in x-direction 

and the other one in y direction) identical and orthogonal standing waves, which is also 

shown in Figure 6.5. This superimposed condition creates a two dimensional standing 

wave that is exactly symmetric to the diagonal plane of the square box.  The horizontal 

scale of the square box is 10m 10× m, and the initial still water elevation is 0.5m. The 

initial wave amplitude for the two one-dimensional waves is 0.005m. The computational 

domain is illustrated in Figure 6.6.  The surface elevation is measured from the still water 

surface and nondimensionalized by the wave amplitude which is the summation of the 

one dimensional wave amplitudes. The horizontal length scales are normalized by the 

wave length. A 20 20× mesh is used in this simulation and the free slip condition is 

enforced on all the side walls. The simulation is run in an inviscid flow condition to 

eliminate the viscous effects.  Table 6.4 listed all the important parameters in the 

simulations of this 2D standing wave. 
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Figure 6.5 The initial 2D standing wave and its decomposed x and y direction 1D wave 
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Figure 6.6 Computational domain (not to scale) 

 

Table 6.4 Parameters of simulations of the 2D standing wave 

L λ  a H x∆  y∆  t∆  ν  

10m 20m 0.005m 0.5m 0.5m 0.5m 0.01s 0 

 

 

Although six representative decoupled linearized TCS discretizations and their 

correspondent solution orders are listed in Table 6.1, only three discretizations need to be 

tested here because velocity U and V are given symmetrically. In TCS solution 1, the 

surface elevation *ζ  and n 1+ζ  are solved in between two velocity equations; In TCS 

solution 2, the surface elevation  *ζ  is solved after the two velocity equations and n 1+ζ  is 
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solved before the two velocity equations; In TCS solution 3, *ζ  is solved before the two 

velocity equations and n 1+ζ  is solved after the two velocity equations.  

To explore how different discretizations and solution orders affect the results. We 

first compare the results from TCS solutions 1, 2 and 3 at different simulation times. The 

simulation time is normalized by the wave period, T.  In Figure 6.7, the surface elevation 

contour calculated using these three TCS forms are plotted for the whole computational 

domain at time 4T. The surface elevation is measured from the still water surface and 

normalized by the amplitude. The horizontal length scale is normalized by the wave 

length, λ . The surface elevation contour from TCS solution 2 and 3 are nearly identical, 

and the result from TCS solution 1 behaves differently than that from solution 2 and 3. 

The result from each solution has a symmetric shape. When the simulation time is 

increased to 15T (results shown in Figure 6.8), TCS solution 2 and 3 still perform 

similarly, but TCS solution 1 has an observable difference. Similar phenomena can be 

better observed in the velocity U and V contours. Figure 6.9 and 6.10 demonstrate the U-

velocity simulated using three TCS methods at 4T and 15 T respectively. Figure 6.11 and 

6.12 display the V-velocity at 4T and 15T respectively. Each velocity component in the 

figures is normalized by its maximum value. The results form TCS solution 2 and 3 are 

almost the same, but the result from TCS solution is different. 

This can be analyzed by the solution procedures of the three tested TCS 

discretizations presented in Table 6.2. First of all, in TCS solution 1, the continuity 

equation (solving ζ ) is solved in between two momentum equations (solving U and V); 

but in both TCS solutions 2 and 3, the two momentum equations are solved 

consecutively. The only difference between TCS solution 2 and 3 is that one solve 

momentum equations first, the other solve continuity equation first in one time step. 

However, this difference between solution 2 and 3 could be reduced with the marching of 
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the simulation time.  Second, in TCS solution 1, the surface elevation *ζ is solved using 

the velocity components, nU  and *V  in the first step; and n 1+ζ  is solved using the 

velocity components, n 1U +  and *V  in the second step.  Thus, in TCS solution 1, the 

surface elevation is obtained using a velocity vector field which is constructed by the 

components from different time steps. Third, we further discover that water depth H is 

not used symmetrically in the continuity equation. In Equation (6.18), nH  is used in the x 

direction, but *H  is used in the y direction to solve *ζ  in the first step; in Equation (6.21), 

*H  is used in x direction but n 1H +  is used in the y direction to solve n 1+ζ .  All of these 

asymmetric solution procedures introduce extra numerical errors since our initial 

condition is symmetric. However, in both TCS solutions 2 and 3, the surface elevation is 

obtained using the velocity components and water depth at the same time step although 

the velocity field and water depth are not exactly symmetric because of the sequential 

solution procedure.  The difference caused by different solution procedure is further 

exemplified by a cross mode analysis in the following.  

 With the given symmetric initial condition, ideally, we should expect this 

standing wave oscillates along one diagonal line and no wave motion should be expected 

in the cross direction. That means, the wave surface oscillates at point (0, 0) and (0.5, 0.5) 

with an amplitude 0.01m ( 2 0.005m× ), and the wave surface should be fixed at point 

(0.5, 0) and (0, 0.5). However, the TCS decoupled equation system is solved in a 

sequential order, which causes each equation to be solved anisotropically. This in turn 

induces numerical error that causes cross mode wave motion. The similar phenomena 

have been observed in Alternate Direction Implicit (ADI) method. In ADI method, this 

cross mode is induced by solving the equation in different coordinate direction as 

observed by Hodges (1997). To examine how cross mode is established in the three TCS 

discretizations, we plot the surface displacement at point (0.5, 0) and (0, 0.5) against 
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simulation time in Figure 6.13. The surface displacement is normalized by the wave 

amplitude and the simulation time is normalized by wave period. The results from TCS 

solutions 2 and 3 are indistinguishable. The cross mode at the two monitored points are 

nearly identical in these two TCS solutions and gradually increase with time. At time 15 

T, the surface displacement at those two points is almost 25% of the wave amplitude. In 

contrast, this numerical cross mode from solution 1 behaves rather differently. The 

surface at the two monitored points oscillates with an amplitude and a period the same as 

the initial standing wave. In addition, the oscillation of the cross direction is one half 

phase behind the initial standing wave. To have a better visualization of the cross mode, 

Figure 6.14 and Figure 6.15 display the snapshots of the standing wave at 0.5 T and 15T 

respectively. At 0.5 T, no obvious motion can be observed at the two monitored points 

solved from TCS solutions 2 and 3. With the increase of the simulation time, at time 15 

T, an observable surface displacement can be discovered from both TCS solution 2 and 3. 

In contrast, a maximum oscillation with a displacement of 2a can be observed for TCS 

solution 1 at 0.5 T, but no obvious motion can be found at time 15T. This is probably 

because in TCS solution 1, the surface elevation is solved using asymmetric velocity 

components and water depth components. There is a half time step difference between x 

and y direction in both velocity and water depth components, which causes the wave at 

the cross direction oscillates with a half phase lag.  
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Figure 6.7 Normalized surface elevation contours in the computational domain at time 
4T.  
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Figure 6.8 Normalized surface elevation contours in the computational domain at time 
15T. 
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Figure 6.9 Normalized U-velocity contours in the computational domain at time 4T.  
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Figure 6.10 Normalized U-velocity contours in the computational domain at time 15T.  
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Figure 6.11 Normalized V-velocity contours in the computational domain at time 4T.  
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Figure 6.12 Normalized V-velocity contours in the computational domain at time 15T.  
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Figure 6.13 Surface displacement at points (0.5, 0) and (0, 0.5) simulated using three 
TCS solutions 
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Figure 6.14 Snapshot of the standing wave at 0.5 T. The surface displacements at the two 
monitored points (0.5, 0) and (0, 0.5) are circled.  
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Figure 6.15 Snapshot of the standing wave at 15 T. The surface displacements at the two 
monitored points (0.5, 0) and (0, 0.5) are circled.  
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6.6 SUMMARY  

In this chapter, the TCS method is applied to a multi-variable and multi-

dimension equation system: the depth averaged SWE. The TCS method not only 

computationally discretizes the nonlinear term in the equation set, but also decouples the 

variables in the SWE. Three TCS discretizations and are derived for the SWE. Each TCS 

decoupled and linearized equation system has a unique solution order. 

A one-dimensional and two-dimensional standing waves in a closed rectangular 

domain are simulated using all three TCS discretizations. In the one dimensional standing 

wave case, we compare our numerical results with the analytical solutions. The results 

demonstrate that our TCS method well capture the nonlinear effects and display the 

combination effects of nonlinear steepening and hydrostatic approximation. In the 

viscous flow test case, the staggered grids used in the simulation causes numerical 

dissipation. In the two-dimensional standing wave case, we compare the performance 

from three representative TCS solutions: TCS solutions 1, 2 and 3. TCS solutions 2 and 3 

are solved similarly because the surface elevation is obtained using the velocity 

components at the same time step. However, TCS solution 1 performs differently because 

the surface elevation is obtained using the velocity components from different time step.  

The anisotropically solution process also causes numerical cross mode. The cross 

mode analysis shows that TCS solution 2 and 3 has smaller numerical cross mode 

compare to TCS solution 1. However, the cross mode gradually increase with simulation 

time. The solution procedure in TCS solution 1 causes wave oscillate in the cross 

direction. Therefore, when we apply TCS method to decouple the equation system, we 

have to be aware of the numerical errors generated by the decoupling process.   
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Chapter 7 Conclusions and Recommendations 

 

The main objective for this research is: 

Develop a new implicit solution for unsteady nonlinear advection 

problems. The new numerical algorithm should have the advantage in both 

stability and efficiency while keep the 2
nd

-order temporal accuracy as in 

the most existing shallow water equations (SWE) models. In addition, this 

new method would provide a novel approach in decoupling a coupled 

equation system. 

 

This objective has been accomplished. A new finite difference temporal scheme 

(Time-centered split method) is developed to solve the unsteady nonlinear advection 

problems. This new method provides a general approach for solving any unsteady 

quadratic nonlinearity. In this chapter, we summarize 1) discussions 2) conclusions 3) 

recommendations for future work. 
 

7.1 SUMMARY OF DISCUSSION 

A new computational linearization method, time-centered split (TCS) method, is 

derived from the midpoint rule temporal discretization. The fundamental principle of the 

TCS method is that it splits the quadratic nonlinear term into two steps so that each step 

is computationally linear. The two-step equation system is 2
nd
-oder equivalent to the 

original midpoint rule discretization. The essential theoretical development of the TCS 

method is illustrated in Chapter 3. The derivations in Chapter 3 demonstrate one of the 

most important significances of the TCS method: it is a direct linearization method while 
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in an implicit format. The conventional implicit nonlinear solutions including Newton 

method, Picard method and local linearization method require either 1) outer iteration ( 

Newton and Picard methods) or 2) calculations of the Jacobian (Newton and local 

linearization methods). Therefore, compared to the conventional implicit nonlinear 

solutions, the TCS method has the advantage in efficiency and stability.  

In a time marching differential equation, the time-centered split concept can be 

applied to different terms: either part of the quadratic nonlinear term and the linear term. 

Different TCS discretizations can be generated when we apply the split to different terms. 

Based on this characteristic of the TCS method, a general form of the TCS family method 

is created in Chapter 5. A weighting factor iθ  ( i0 1≤ θ ≤ ) is introduced in the TCS 

general form. The weighting factor iθ  combines different approximations (splitting on 

different terms) of the nonlinear terms and the linear terms. The value of iθ  will not 

affect the 2
nd
-order temporal accuracy of the TCS method. The theoretical proof is shown 

in Chapter 5. This revealed another important significance of the TCS method: unlimited 

TCS discretized forms can be created for one problem. Thus, the TCS method provides 

flexibility when we solve a specific problem because we can choose the discretizations 

based on the specific requirement of the problem.    

The significance of the weighting factors is further exemplified when the TCS 

method is applied to a multi-variable and multi-dimension equation system. Properly 

chosen weighting factors can not only linearize but also decouple the equation system 

without outer iterations. This property theoretically enhances the efficiency advantage of 

the TCS method. The 2D Burgers’ equation is used as the example to show the process 

and principle of the decoupling in Chapter 5. The decoupling characteristics of the TCS 

method is analyzed in detail using 2D depth averaged shallow water equations (SWE) in 

Chapter 6. Both cases show that the TCS method can computationally linearize and 
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decouple an equation system without outer iterations. Each variable in the TCS linearized 

and decoupled two-step system is solved in a sequential order.  

To verify and explore the basic characteristics of the TCS method, a 1D problem 

is first chosen as the test case. In Chapter 4, three 1D differential equations: 1D 

conservative Burgers’ equation, 1D non-conservative Burgers’ equation and 1D nonlinear 

ordinary differential equation (ODE) are solved using the TCS method. In all the three 

equations, we apply the time-centered split to different terms: either flux or gradient part 

in the nonlinear advection term in the Burgers’ equation, the quadratic nonlinear term of 

the ODE, the diffusion term in the Burgers’ equation and the linear term in the ODE. 

Consequently, multiple TCS disretizations are created such as TCSF (split the flux term), 

TCSG (split the gradient term), TCSF-D (split flux and diffusion/linear term) and TCSG-

D (split the gradient and the diffusion/linear term). To compare to the conventional 

implicit linearization method, all three equations are also solved using the implicit Crank-

Nicolson scheme combining with the conventional computational linearization methods: 

Newton method, Picard method and local linearization method. In the two Burgers’ 

equation cases, each TCS discretization demonstrates 2
nd
-order temporal accuracy and 

remains stable up to a CFL O (10).   The stability advantage of the TCS method is further 

demonstrated by comparing it to the Runge-Kutta (RK) method. The efficiency of the 

TCS method is examined using operation count at each grid point at each time step. 

Results in the two 1D Burgers’ equations show that the TCS method requires fewer 

operations than Newton and Picard methods but has a similar computation expense to the 

local linearization method. The principal advantage of the TCS method over local 

linearization is the relative ease with which the TCS method can be derived and 

implemented as it does not require discrete evaluation of a function Jacobian. The test 
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case in 1D nonlinear ODE verified that the TCS method can be applied to any quadratic 

nonlinearity.  

In the 1D ODE test case, two different TCS discretizations collapse into one 

expression, which is also mathematically equivalent to the local linearization. However, 

in both conservative and non-conservative Burgers’ equation cases, different TCS 

disretizations have different relative errors although they perform similarly in temporal 

accuracy, stability and efficiency. This difference can also be observed in Chapter 5. 

Because of the introduction of the weighting factors, more TCS discretizations are tested 

for the 1D non-conservative Burgers’ equation in Chapter 5. Our results show that 

changing iθ  will not affect the overall 2
nd
-order temporal accuracy of all the TCS 

discretizations. However, the relative accuracy of each TCS discretization is different. 

The results show that the most accurate solution occurs when the two weighting factors 

equal to some value between 0 and 1 but not 0 or 1. The similar results can also be 

observed for the stability. The stability is also enhanced when the weighting factors are 

not equal to 0 or1. This can be explained by mathematical meaning of the weighting 

factors. The weighting factors control how we approximate each term in the equation. 

When the weighting factors equal to 0 or1, we only use one kind of approximation: either 

approximate n 1/ 2u +  using the time-centered split completely or approximate n 1/ 2u +  using 

*u  completely. Our results suggest that combing both approximations will enhance the 

performance of the TCS method in both accuracy and stability. However, the best 

combinations of the weighting factors for accuracy and stability is problem-specific and 

one needs to analyze each approximated term and the nature of the solution itself at the 

designated marching time. This phenomenon verified that TCS method provides 

flexibility in solving a specific problem because a more accurate or stable solution can be 

obtained by changing the choice of the weighting factors. 
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In Chapter 6, the TCS method is used to solve 2D depth averaged SWE. We 

discover that six terms in the SWE couple the entire equation system. These six terms are   

V U / y∂ ∂ , U V / x∂ ∂ , HU / x∂ ∂ , HV / y∂ ∂ , / x∂ζ ∂  and / y∂ζ ∂ . Their associated 

weighting factors are crucial in the decoupling process. It is revealed that only six 

combinations of these weighting factors can fully decouple the SWE. Each combination 

of the weighting fact has a unique solution order. Three representative TCS solutions are 

chosen to solve the SWE based on the solution order of the continuity equation. In the 

one-dimensional standing wave case, how the TCS method treat the nonlinear term is 

tested. The results show that that the TCS methods well capture the nonlinear effects and 

display the combination effects of numerical dispersion and hydrostatic approximation. 

How the solution order affects the results is analyzed in the two-dimensional standing 

wave case. The results show that TCS solution 1 perform differently than TCS solutions 

2 and 3 because the surface elevation is obtained using the velocity components from 

different time step in TCS solution 1. The fully-decoupled TCS-discretized SWE is 

solved in a sequential order, which causes each equation solved anisotropically. This in 

turn causes the numerical cross modes. The cross mode from TCS solution 2 and 3 

behave similarly: the cross mode gradually increases with time. However, the solution 

procedure in TCS solution 1 causes wave oscillate in the cross direction with the same 

amplitude as the initial standing wave and half phase behind the initial standing wave. 

Hence, we need to take into account the numerical errors generated by the decoupling 

process when we apply the TCS method to decouple an equation system.  

   

7.2 CONCLUSIONS 

The conclusions that may be drawn from the present work are: 
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• A new time marching numerical algorithm for solving unsteady nonlinear 

advection problems is proposed using a time-centered split (TCS) 

technique. 

• The principle advantage of the TCS method is it computationally 

linearizes the implicit nonlinear advection without either 1) iterations or 2) 

calculations of the Jacobian.  

• The TCS method is 2
nd
-order temporal accurate and has advantages in 

stability and efficiency. 

• A family of the TCS discretizations can be generated using the same 

principle. This provides flexibility when solving a specific problem using 

the TCS method. 

• The TCS method can fully decouple an equation system. However, 

additional numerical error is introduced through the decoupling process.  

 

 7.3 RECOMMENDATIONS FOR FUTURE WORK 

The TCS method is proposed and verified using 1D transport equation, 1D 

nonlinear ODE, 2D transport equation. The following potential application is 

recommended for future work.   

Application of  the TCS method to a coupled nonlinear ODE system 

This research is motivated by solving unsteady nonlinear advection problems. 1D 

and 2D flow transport problems are tested using the TCS method. However, the new TCS 

method provides a general approach to solve any quadratic nonlinearity. Although a 1D 

nonlinear ODE is used as an example in Chapter 3, application of the TCS method to the 

nonlinear ODE can be further investigated. A coupled quadratic nonlinear ODE system 

can be used as an example to verify the capability of the TCS method in computational 
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linearization and decoupling. Moreover, various TCS discretizations can be compared 

and tested by changing the weighting factors.   

 

More test cases for the SWE 

In Chapter 6, initial tests of 2D depth averaged SWE have been conducted. All the 

test cases in 2D standing wave are in an inviscid flow condition. Since the weighting 

factors associated with the viscous terms will not affect the decoupling process, the 

inviscid flow condition is a valid test condition for investigating decoupling process. 

However, the weighting factor associated with the non-coupled advection terms such as 

U U / x∂ ∂  and V V / y∂ ∂ can be any value from 0 to 1. In Chapter 6, we didn’t change the 

weighting factors for these two terms to see how these two will affect the solution. Based 

on the analysis in Chapter 5, the numerical error induced by the decoupling might be 

decreased by choosing different weighting factors for these two terms. An additional test 

for numerical error could be conducted by decreasing the time interval t∆ .  

Solve problems with discontinued flow conditions 

We often need to solve a transport problem with a discontinuity flow condition, 

for example, hydraulic jump. All the test cases conducted in this research use central 

difference spatial discretizations, which cannot represent the sharp front of a shock wave. 

Test cases can be designed by the TCS temporal discretization combining upwind spatial 

discretization to simulate a shock wave.  
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Appendix A Test of a Progressive Wave in an Open Boundary System 

    

Another way to verify our numerical method is to simulate a wave progressing in 

an open boundary system. This test case simulates a free surface oscillation in a 

rectangular channel, which is open at both upstream (inlet) and downstream (outlet 

boundary). This also could be thought of as a step leading to the simulation of a river 

flow. In this section, a progressive wave is introduced by oscillating the inlet boundary of 

an open quiescent water body. A sponge layer is successfully applied as the open 

boundary condition at the outlet of the domain. Our numerical models satisfactorily 

simulate a progressive wave traveling through an open boundary system. As shown in 

Chapter 6, TCS solutions 2 and 3 give similar results. Thus, in this test, only results from 

TCS solution 1 and 2 are presented and compared.  

 

A.1 INITIAL AND INLET BOUNDARY CONDITION 

Initially, the water is at rest with uniform depth: 

  ( ) 0H x,0 h=  (A.1)   

The inlet water level suddenly raised at t=0 and oscillated as a cosine wave described as 

 0H(0, t) h a cos( t)= + σ  (A.2) 

where a is the progressive wave amplitude and σ is the frequency. The initial condition 

and inlet boundary condition is shown in Figure A.1 and A.2. 
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Figure A.1 Initial water level, H (x, 0), in the rectangular open channel  

 
 

 

Figure A.2 Inlet boundary condition H (0, t) 

 

A.2 OUTLET BOUNDARY CONDITION 

One of the challenges to simulate an open boundary system with a finite 

computational domain is that open boundary conditions are required at both the inlet and 

outlet. Developing outlet non-reflective boundary conditions has been the subject of 

extensive research (Blayo and Debreu 2005; Tsynkov 1998).   

In the present work we apply an artificial damping layer (or sponge layer) 

upstream of the outlet boundary and downstream of the “test section” (i.e. the 

0h  

x 

H 
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computational domain of interest).  In this approach, an artificial damping function is 

prescribed over a range of grid cells to dissipate the surface wave and its reflections 

before it propagates back into the test section (Durran 1999). Although a sponge layer has 

additional computational costs associated with computations outside of the test section, 

the ratio of the additional cost to the initial cost is generally small (Blayo and Debreu 

2005).  In the present work, the sponge layer damping function uses an increasing 

viscosity from the end of the test section to the outlet (Vinayan 2003). We use an inviscid 

progressive wave for the test case, so the viscosity is set to be zero within test section.  In 

general, the viscosity is represented as a function of position such that max0 (x)≤ ν ≤ ν .  

If we define the viscosity is a function of x, 

 max(x) f (x)ν = ν  (A.3) 

where, f (x) is a function satisfying the following conditions: 

 

r

s

r

s

f (x ) 0

f (x ) 1

df (x )
0

dx

df (x )
0

dx

=

=

=

=

 (A.4) 

where x
r
 and x

s
 are the upstream and downstream limits of the sponge layer, as shown in 

Figure A.3.  If the artificial viscosity changes rapidly, spurious reflections may also 

occur. A gradual change, as shown in Figure A.3, can be invoked by defining f (x) as   

 r

s r

x x1
f (x) 1 cos

2 x x−

  −
= − π  

  
 (A.5) 
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Figure A.3 Shape function of viscosity 

 

Using the above definitions, a sponge layer is defined by its length ( s rx x− ) and its 

maximum viscosity maxν . In this work, s rx x 2− = λ  and maxν is basically a relative big 

number obtained by trial and error. The sponge layer arrangement is shown in Figure 

A.4.  
 

 

Figure A.4 An open boundary rectangular channel with a sponge layer 

 

These initial and boundary conditions generate a traveling wave with height 2a, 

progressing along the channel. To see the damping effects of the sponge layer, we 
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monitored the surface height of point A, which is the point in the test section closest to 

the sponge layer, and B, which is the point within the sponge layer closest to the outlet, as 

shown in Figure A.5.   

 

 

Figure A.5 Schematic illustrations of grids 
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Figure A.6 Water level at point A with/without the sponge layer 

 

Figure A.6 shows the evolution of the nondimensionalized water depth ( ( )H / aζ − ) at 

point A with and without a sponge layer. Without the sponge layer, when the wave 

A
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reaches the solid wall where zero flux is prescribed, reflection occurs and its amplitude is 

increased to about two times of the original one. However, with a sponge layer condition, 

the wave amplitude stays the same. We also compare the wave at point A and B in Figure 

A.7. The wave inside the sponge layer is damped about 10% of the wave in the test 

section. Thus the reflection effect is minimized.  
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Figure A.7 Water level evolutions inside the test section and sponge layer. 

 

A.3 RESULTS AND DISCUSSION 

Figure A.8 compares the free surface shape in the entire domain (including test 

section and sponge layer) at 7T and 14T for TCS solution 1 and 2 respectively. At 7T, the 

progressive wave has traveled through the domain. When we double the simulation time 

to 14T, the free surface shape remains almost the same. This indicates that we 
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successfully simulated a wave progress through an open boundary system, and our 

numerical results model the wave characteristics such as wave speed and period well. 

Both TCS solutions 1 and 2 give us similar results.  

To further compare the two TCS solutions  in this progressive wave test case, we 

compare the free surface shape calculated using both TCS discretizations in the entire 

domain at 7T and 14 T, respectively, in Figure A.9. The results simulated using each TCS 

discretization overlapped at 7T. After a longer simulation time, this similarity between 

two solutions still holds true at 14T.  

The time evolution of free surface at different periods in the entire domain for 

TCS solutions 1 and 2 are shown in Figure A.10 and Figure A.11 respectively. 
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Figure A.8 Comparison of wave shape at time 7T and 14T for TCS solution1 and TCS 
solution 2 respectively 
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Figure A.9 Comparison of wave shape simulated from TCS solution 1 and 2 at time 7T 
and 14T respectively 
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Figure A.10 Time evolution of a progressive wave at different wave periods from TCS 
solution 1. 
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Figure A.11 Time evolution of a progressive wave at different wave periods from TCS 
solution 2. 
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