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Abstract

Layer-by-layer construction of concrete through additive manufacturing allows for greater
design freedom in concrete construction compared to conventional casting methods. This has led
researchers to pursue a variety of potential system solutions to the enable the creation of
architectural-scale additively-manufactured concrete structures. One of the most common
approaches is through the extrusion of concrete patterned via a six-axis robotic arm. However,
while the use of a six-axis robotic arm can offer significant geometric advantages in the printing
of architectural-scale concrete structures, it also suffers from significant challenges that must be
addressed. In this paper, the authors discuss potential methods to address such challenges
associated with (1) minimizing travel moves in toolpath design, (2) expanding the achievable build
volume, and (3) inserting pre-fabricated components in a structure being printed. These solutions
are then demonstrated through the context of NASA’s 3D-Printed Habitat Challenge.

Introduction and State of the Art

Architectural-scale additive manufacturing (AM) is rapidly becoming a crucial facet of the AM
landscape. While the majority of modern construction still relies on filling formwork with concrete
to create a final structure, researchers have begun to investigate whether material-extrusion AM
can offer a more flexible and responsive approach to the creation of low-cost concrete structures.
For viable extrusion-based AM of concrete, the material needs to be workable during extrusion,
then rigid enough after extrusion to hold itself in place as well as hold weight from subsequent
layers without significant deformation [1]. Through ongoing materials research, concrete is
becoming more and more capable of meeting these needs. This has the potential to transform the
way that architects and engineers approach the design and implementation of habitat-scale
structures, especially in remote or austere environments, which include impoverished regions,
areas subjected to natural disasters, or even extraterrestrial bodies such as Mars.

Concrete construction can uniquely benefit from AM due to the high labor costs associated
with construction along with the high cost of custom formwork. By reducing the cost of labor and
allowing for custom designs without the need of producing formwork, AM could drastically reduce
the cost of custom concrete construction. Additive construction will allow for new design methods
that will be able to take advantage of the shape and hierarchical complexity AM provides.
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However, in order to take advantage of AM in construction and the new materials being developed,
a physical system needs to be designed to deposit the material, which brings a host of new
challenges to be addressed.

Currently, there are three main architectures employed in the design of printing systems large
enough to produce architectural-scale structures: gantry systems, cable-driven systems, and
robotic-arm systems. The gantry system is common and has been used to print both in-place
buildings as well as printed-for-assembly structures. The company ICON and the U.S. Army Corps
of Engineers have been able to develop gantry systems that can be used to print entire structures
with no assembly required [2,3]. Their system uses a large frame that moves a nozzle in each axis
within the frame. Concrete is then pumped to the nozzle by a concrete pump positioned next to the
gantry frame. This method is a scaled-up version of the common gantry-based small plastic
printers. This makes for a simple printing system design as well as a simple control system [4].
However, a key downside to gantry-based systems is the required scale for the frame. The frame
must be larger than the structure to be built, which can require a massive system along with costly
transportation and setup and teardown processes. This can hurt the overall responsiveness of a
gantry-based printing system in remote environments. Additionally, the gantry system only allows
for movement in the X, Y, and Z directions, which generally limits their capability to extrusion of
simple 2D layers. While researchers have added unique capabilities to such systems, such as
rotating nozzles, angling nozzles, or automated reinforcement placement [5], gantry-based
concrete printing systems are still relatively disadvantageous when compared with other
approaches to large-scale printing.

A cable-based system strung between multiple fixed points allows for a system that is more
compact and easier to transport as compared to a gantry-based system. By making the long bulky
components of the system into cables rather than rigid as in a gantry system, there is less of a setup
process. Oak Ridge National Laboratory (ORNL) has demonstrated the use of such as system,
which uses a series of five fixed points combined with cables to hold the nozzle assembly [6]. By
manipulating the five cables, the nozzle can be positioned within a 3D space. This allows the
system to be scaled up without increasing the cost significantly. However, this system shares some
of the limitations of the gantry system, such as the constraint of the three axes, which limits the
system’s ability to execute complex maneuvers or perform multiple processes. Additionally, while
not requiring a large direct footprint for the equipment, these systems do require large areas for
the equipment to be sufficiently separated such that the cables do not interfere with the structure
being printed.

Finally, robotic-arm printing is third method currently being pursued for concrete printing.
These can take the form of off-the-shelf six-axis robotic arms or custom-made arms like Apis Cor’s
cylindrical coordinate system arm [7]. This approach offers several benefits when compared with
gantry or cable-based systems, specifically due to the potential flexibility of robotic arms along
with their compact form factor. Their size simplifies transportation to remote environments when
compared with gantry-based systems, while the decreased assembly requirements can reduce
deployment time compared with cable-based systems. The advantage of having six axes of
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freedom also increases the achievable geometric complexity compared with the three axes of the
cable-based and gantry-based systems. For example, robotic arms can achieve out-of-plane
deposition or deposit printed layers in sections, rather than requiring the entirety of the layer to be
printed at once. They also allow for multiple processes to be performed by a single robot. By
adding tool changes to the process, the arm can deposit concrete, embed components, and perform
post processing to the structure. The main issue with robotic printing though, is the limited scale;
robots have limited reach and must be moved to print structures larger than their reach [4].

Ultimately, while these three different system approaches to concrete AM have their
advantages and challenges, we contend that the opportunities enabled by six-axis robotic extrusion
of concrete makes this method ideal for agile, on-demand printing of architectural-scale structures
in remote environments. As such, this paper provides an overview of a concrete AM system created
in response to NASA’s 3D-Printed Habitat Challenge, along with crucial modifications made in
order to improve the system’s capabilities while also accounting for its shortcomings.

System Design

The system pursued for this research was a robotic extrusion platform. This choice was made,
in part, to take advantage of the multi-process capabilities of robots, in addition to the size
advantages discussed earlier. The physical system is comprised of two parts. The first is a concrete
mixer—pump (m-tec Duo mix 2000) used to pump the concrete through the system. The material
for the mixer—pump is supplied from a silo via one of two methods: (1) through pneumatic feeding
from the silo to the mixer—pump or (2) gravity fed with the mixer—pump below the silo. In this
system, dry concrete powder is added to the mixer—pump automatically as the powder gets low.
Water and powder are then added to a mixing chamber where it is mixed and then gravity fed into
a progressive cavity pump. The concrete is then pumped through a hydraulic hose. The hydraulic
hose then feeds the concrete into an extrusion nozzle held by the second part of the system, in this
case, an ABB six-axis robotic arm. The robot being used to print is an ABB IRB 6640 with a 2.8-
m reach. It is a six-axis robotic arm with a quoted absolute accuracy of =1 mm. The robotic arm is
used to position the nozzle for material deposition. The nozzle used has an internal diameter of
25.4 mm, which results in an extruded bead of approximately 25 mm in width and 15 mm in height.
An image of the overall system can be seen in Figure 1.
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Figure 1: Robotic concrete printing setup

In order to prepare and process a structure for printing with the robotic arm system, a typical
AM digital thread is followed, with some added steps required after toolpath generation. This starts
with the digital model (.STL) of the intended print. The model is then sliced and a toolpath is
generated for the print. The toolpath for this system can be generated using slicing software such
as Cura, or by manually coding the toolpath using a software such as MATLAB. However, at this
point, it is necessary to modify the toolpath to fit with the six-axis robotic arm, rather than a
traditional three-axis gantry. Generated toolpath points are imported into Rhino’s Grasshopper
using an extension called HAL. Once in Grasshopper, point orientations are then assigned, which
is necessary to take advantage of more complex deposition paths, such as printing off-axis. Once
the toolpath points and point orientations are generated, the code is converted into the ABB robotic
language, Rapid. The Rapid code is then loaded onto the ABB robot controller for printing.

Addressing the Challenges and Opportunities of Robotic-Arm Printing

While the use of a six-axis robotic arm can offer significant geometric advantages in the
printing of architectural-scale concrete structures, it also suffers from significant challenges that
must be addressed. In this section, we discuss potential methods to address such challenges
associated with (1) minimizing travel moves in toolpath design, (2) expanding the achievable build
volume, and (3) inserting pre-fabricated components into the structure being printed.

Toolpath Design to Reduce Travel Moves

Due to the distance from the pump to the nozzle, toggling the pump on and off results in a
significant delay to start and stop the flow of concrete. However, the concrete material also cannot
simply be retracted as is common in filament-based material-extrusion systems. This means that,
to print most consistently, few-to-no travel moves should be employed during a print. This means
the development of the print toolpath is a non-trivial step that is required to prevent over-extrusion
or unnecessary travel moves.
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The most common approach to toolpath generation in extrusion AM is to deposit a series of
shells defining the outer perimeter of a slice first. Once the shells are deposited, the system deposits
the infill, which results in the final solid or semi-solid printed layer. However, depending on the
approach taken to shell and infill deposition, a single slice may require numerous travel moves.
Travel moves require the extrusion nozzle to move from one point in a layer to another without
depositing material. Due to the challenges with accurately stopping the flow of material as
mentioned earlier, it is crucial that any given toolpath for concrete deposition be designed in such
a way as to minimize or eliminate the need for travel moves. Figure 2 demonstrates the conceptual
difference between the traditional approach (Toolpath A), in which a shell is first deposited
followed by an infill, and the approach required for concrete deposition (Toolpath B), in which
one continuous bead of material is used to complete the entire layer.
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Flgure 2 Toolpath A is an examplé of a toolpath only achlevable usmg travel moves. Toolpath B
is able to be printed with no travel moves.

In some cases, depending on the geometry of the printed layer, travel moves cannot be avoided.
For example, when a layer does not have continuous cross section, travel moves are required
between different sections of the geometry within that layer. An example of one such geometry is
shown in Figure 3. In order to print the layer in this figure, travel moves are required to span the
gaps on the right side of the structure. One possible solution for reducing the number of travel
moves in this situation is to print multiple layers of a single section between travel moves. In
conventional printing, each layer is fully printed at a single height before the nozzle is raised to
deposit the subsequent layer. However, this method requires travel moves between each section
on each layer. By traveling to a section and printing several layers before traveling to another
section to print another set of layers, travel moves are drastically reduced. Figure 3 (left) shows
how printing in sections can reduce the travel moves in this case to two travel moves, whereas
conventional slicing as represented on the right would have many more travel moves. This
approach is only achievable due to the flexibility of the six-axis robotic arm. The use of a gantry-
based system would result in collisions with the previously printed sections. By printing sections
further away first, then printing sections closer to the arm, collisions can be avoided. The robot
also has the ability to reach over printed sections where necessary.
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Figure 3: Example of non-continuous geometry and resulting toolpath sections reducing travel
moves (in red) on the left and using conventional slicing on the right.

Increasing the Achievable Build Volume

One of the most significant drawbacks of a robotic arm is its limited reach. Whereas
conventional gantry systems have been demonstrated to be capable of scaling to construction-size
structures, achieving similar deposition sizes with robotic arm systems is challenging. To address
this limitation, the robotic arm used in this study was strategically modified to increase the
achievable build volume. Specifically, whereas the nozzle is held in a vertical orientation during
the printing process, not all of the axes are being used at their full potential. The fourth and sixth
axes, in particular, do not play a major role in the printing process when the nozzle maintains a
constant orientation. Noting this, an extension was designed to be controlled by the unused axes.
By adding this extension to the unused axes, it becomes possible print significantly larger
structures than were previously possible in the robot’s default state.

In the case of the system used in this study, the extension added to the robotic arm expands the
printing volume in both the X—Y plane, as well as the Z direction. By adding the extension arm
perpendicular to the sixth axis, the reach on the X—Y plane is increased. By using a 0-degree angle
on the sixth axis, the robot’s reach in the X direction is increased by the length of the extension.
Conversely, by using an axis angle above 90 degrees, the nozzle can also reach closer to the robot.
By doing so, the robot was able to extend its range without just shifting the print away, but keeping
the print area close to the robot.

By using the fourth axis, the reach of the robot can be extended in the Z-direction. Adding an
extension parallel to the sixth axis allows the robot to reach farther down than in its default state.
While the fourth axis is at 0 degrees, or in the down position as shown in Figure 4, the robot reaches
down the length of the Z extension. When the fourth axis is at 180 degrees, as in the Figure 4 in
the up position, the robot reaches up the distance of the Z extension. This maneuver requires the
nozzle itself to be rotated 180 degrees, in order to keep the direction of extrusion downwards. In
doing so, this extends the print volume height by double the length of the extension in the Z
direction. However, this enables the robotic arm to reach down below its base. This requires the
robotic arm to be raised by a height at least equal to the height of the Z-extension. By combining
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both the XY-extension and the Z-extension methods, a build volume can be achieved at a scale far
beyond the standard reach of the robot. The full extension setup as implemented can be seen in
Figure 5.

Down Position

Up Position
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Figure 4: The extension in both the down position on the left and up position on the right.

Figure 5: Extensions on the robotic arm to increase the build volume.

The use of extensions does comes with limitations. For example, they sacrifice much of the
freedom of nozzle orientation, as well as the X-Y plane reach when the fourth axis is in its 180-
degree position. When using the X—Y plane extension, a much larger robot movement is required
in order to angle the nozzle forward and backward. This can cause such maneuvers to be out of
reach of the robot or may cause collision with the printed structure. As discussed, when printing
with the flipped fourth axis, the base of the extension is below the extrusion point of the nozzle.
This can cause a collision when the cross section of the print is longer than the length of the X-Y
plane extension. Figure 6 shows the extension in the fourth axis flipped position with the red line
representing the maximum depth of a layer’s cross section the robot is able to print. Ultimately,
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the design of the printed structure must take these limitations into consideration in order to prevent
a collision with the structure.

/i) A\ =
Figure 6: Extension on the fourth axis to extend reach in Z direction. The red line represents the
maximum depth of a layer in this orientation.

Incorporating Multifunctional, Embedded Components

Concrete used alone does not make for useful structures; in concrete construction there are
often many pre-fabricated components that are embedded to increase the strength of the concrete
as well as add more functionality to the manufactured structure. For example, the tensile strength
of normal-weight concrete in flexure is 10-15% of concrete’s compressive strength. This means
that, while concrete is very strong in compression, it is unsafe to use concrete alone under
significant tensile loading. This is why modern concrete construction must use reinforcement;
without it, concrete can crack and crumble [8]. Similarly, in a concrete wall in a building, there
are often windows, electrical wiring, plumbing, and various other embedded components. In
conventional concrete construction, workers must manually install these components after the
concrete cures. This often involves cutting the concrete to place the prefabricated components.

When using a robotic arm to additively manufacture concrete structures, reinforcement and
multifunctional pre-fabricated components can be directly incorporated during the printing
process. This is further enabled by the flexibility of the robot’s end-effector. By either adding a
tool change to the robot, or by integrating a multi-process tool to the robotic arm, it can gain the
ability to lay the necessary reinforcement (e.g., rebar) as well as the concrete. This can eliminate
the time-consuming process of assembling the reinforcement prior to pouring the concrete in
conventional construction. Similarly, a tool change or second robotic arm can be used to grip and
place larger, more complex pre-fabricated items within the concrete structure during printing. This
requires a designer to incorporate a cavity to accept the foreign component in the digital model of
the desired concrete geometry. An example of this is shown through the mid-print, robotic
placement of a window seen in Figure 7
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Figure 7: Robotically embedded, pre-fabricated structure in mid-print

One consideration that must be made when embedding into concrete is the potential error in
geometric accuracy of the printed structure. During the printing process, vibrations in the system,
imperfect extrusion speed and material properties, and deformation due to the weight of stacked
layers can affect the geometric exactness of the manufactured structure [9]. As such, the potential
for geometric error must be accounted for when designing the structure’s toolpath for embedded
components. This compensation takes the form of X—Y tolerances in the embedding cavity; for
the system described in this paper, the cavity is designed to be significantly larger than the
component so that the pre-fabricated part can be lowered into the structure without interference.

Case Study: NASA’s 3D-Printed Habitat Challenge

Based on the robotic arm system and the considerations discussed in the previous section, we
were able to successfully print the first fully-enclosed, self-supporting concrete structure at an
architectural scale. The structure seen in Figure 8 is the result of our participation in NASA’s 3D-
Printed Habitat Challenge; this challenge’s requirements dictated some of the decisions made
regarding the design of the structure. Specifically, the challenge required the printing of a 1/3 scale
model of a habitat designed for use on Mars. The total floor area and height required for the full-
scale model was 100 square meters with the ceilings of at minimum 2.25 meters. The resulting
printed structure printed was 3.7 m tall and consisted of two cylinders, each topped with a cone
printed at the concrete’s self-supporting angle (approximately 70 degrees from horizontal). The
walls of the structure were 20 cm thick and included three pre-fabricated windows (defined by
competition rules) embedded within the printed concrete structure.
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at NASA’s 3D-Printed Habitat Challenge.

To successfully print this structure, the three considerations of toolpath moves, build volume,
and in-situ embedding had to be employed for the robotic arm system. The first consideration
involved the tool path design around each of the required windows. Each of the windows resulted
in a discontinuity in the wall’s toolpath. To reduce the number of required travel moves, the cross-
sectional area was broken into three distinct regions as seen in Figure 9. Each section was then
printed for the height of the window before moving to the next section. This minimized unwanted
material extrusion by completing the entire windowed portion of the structure using only four
travel moves. If each layer had been printed in its entirety before moving to the next, over 50 travel
moves would have been required to print the windowed section.

Figure 9: Sections of toolpath made to reduce travel moves for the competition print.

Due to the large volume of the required structure, the printing system also needed to
incorporate the use of both XY - and Z-extensions as detailed earlier. Without these extensions, the
robotic arm would have been incapable of reaching every point of the toolpath while still
maintaining the nozzle’s vertical orientation. The necessary self-supporting angle for the conical
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sections in particular required the structure to be much taller than the robot could reach in its
default state. By adding an extension to the end of the arm, the print volume was expanded enough
to print the entire structure. The extension had to be 1.5-m-long along the X-Y plane and 0.5-m-
tall on the Z axis. By using the sixth axis to rotate the extension in the X—Y plane, the robot could
reach each full layer; by flipping the fourth axis, the robot was able to print the upper layers of the
conical structure.

Finally, the placement of the prefabricated windows required the robotic arm system to be
capable of secondary operations. However, while six-axis robotic arms are generally capable of
performing multiple tasks through tool changes, the need to maintain continuous extrusion did not
allow the same arm to be used to both extrude concrete and place the windows. As such, a second
robot, an ABB IRB 6600 with a 2.8-m reach, was used and coordinated with the printing arm to
embed the windows within the structure mid-print. By positioning the printing robot at the
locations of the bottom vertices of each window, the position and orientation of the windows could
be found before the print took place. Once all three window positions were found, the second robot
could be taught how to place each window by manually controlling the robot to place the windows
into the determined position. The robot could then automatically repeat these maneuvers during
the print. To compensate for any potential geometric errors in the concrete structure surrounding
the windows, the window cavities were designed to be wider than the actual pre-fabricated
window. Through previous experimentation at a smaller scale, a gap of 2.25 cm was added on
either side of the window. However, during the final print, it was found that this added tolerance
was not sufficient, likely due to the larger scale and additional unforeseen vibrations in the added
XY-extension. A failed automatic window placement can be seen in Figure 10. This demonstrates
the need for robust closed-loop control in the printing system to ensure that foreign components
can be reliably embedded as needed.

Conclusion and Future Work

This paper addresses the system used to print the first fully-enclosed, self-supporting,
architectural-scale concrete structure. Through this discussion, it also details the use of robotic arm

1593



as a viable platform for large-scale deposition of multifunctional concrete structures. However, to
achieve this, it is necessary to consider the opportunities and limitations of the system. These
include minimizing travel moves in toolpath design to account for the flow of concrete material,
expanding the achievable build volume through the addition of XY- and Z-extensions on unused
axes, and inserting pre-fabricated components into a structure by coordinating with a secondary
robotic arm. By accounting for these considerations, robotic-arm deposition of concrete can be an
advantageous alternative to gantry-based systems, especially in remote or austere environments.

Next steps will involve integrating a closed-loop system to allow for better process control
with less human input into the system. This will include the integration of sensors for in-situ
monitoring of print quality and adjustment of print parameters to maintain consistency throughout
the print. In addition to a closed-loop printing system, other methods for adding embedded
components into the print are being developed. This includes automated placement of reinforcing
elements by using the multi-tool capability of the robotic arm. Finally, we will seek to more
thoroughly leverage the potential for out-of-plane deposition that the robotic arm enables, as this
is one of its key advantages when compared with traditional gantry-style systems.
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