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Supervisor: Varun Rai

This thesis presents a step-by-step implementation of the Solar Energy Con-

sumer Agent Decision (SECAD) model: an empirically-grounded multi-agent

model of residential solar photovoltaic (PV) adoption with an integrated geospa-

tial topology. Solar PV diffusion is a complex system with geographic hetero-

geneity, uncertain information, high financial risk, and important social inter-

action and feedback effects between consumers. A key limitation for agent-

based models in human socio-technical systems is the integration of empirical

patterns in the model structure, initialization, and validation efforts. This lim-

itation is addressed though highly granular and interlocking data-streams from

the geographic, social network, financial, demographic, and decision-making

process of real households in the study. The fitted and validation model is used

to simulate implementation of potential policies to inform decision-makers: i)

Targeted informational dissemination campaigns, ii) Tiered rebates, iii) Loca-

tional pricing, and iv) Alternative rebate schedules. Informational campaigns

vi



can increase cumulative installations by as much as 12%, but vary greatly in

their effectiveness based on which agents are targeted. Simulations suggest

that by lowering the cost barrier to lower wealth households through a slightly

higher rebate (+$0.25/Watt), the mean difference in wealth between solar

adopters and non adopters could be reduced by 22.6%. Locational pricing

can allow the utility more control over diffusion patterns with regard to load

pockets–a $0.25 higher offering increased the percentage of adopters in the tar-

get area from less than 1% to over 10%. Relative to flatter rebate schedules,

sharply decreasing schedules are effective in terms of motivating adoption but

inefficient in small markets. It is our hope that this work will provide a work-

ing example for other agent-based models of human socio-technical systems as

well as provide insight into the likely outcomes of novel policy-levers such as

those described above.
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Chapter 1

Introduction

1.1 Diffusion of Technology

The rate at which new technologies are incorporated into an economy has long

been linked with the performance of that economy, and is nearly inseparable

from the idea of competitiveness on an international scale [45, 105]. The

process by which this occurs is generally referred to as diffusion, in reference

to the movement of the technology through the population over time [48].

Because the diffusion process is so tightly bound to economic competitiveness,

and examples of successful and unsuccessful innovations are abundant, the

literature pertaining to diffusion of technologies has flourished in economics,

[12, 55, 140], marketing [47, 93, 116], sociology [21, 41, 127], and policy analysis

[70, 71, 100]. In order to predict technology diffusion outcomes and whatever

benefits or costs might be associated with that diffusion, it is necessary to

model the diffusion process.

Fundamental to diffusion of innovations theory is the idea that technology dif-

fusion is quantified as the cumulative sum of the adoption states of individuals.

In other words, what researchers measure as diffusion is the aggregate result

of the individual decision-making process for each consumer. Therefore, suc-
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cessful models will simulate this individual process, at least on the aggregate.

While aspects of consumer decision-making have been modeled with vary-

ing degrees of accuracy and abstraction using econometric models [71, 133],

stochastic models [13, 51], and Geographic Information Systems (GIS) [76, 84],

three theoretical models are commonly used to explain product diffusion as

an aggregated decision-making process: the consumer heterogeneity or Bass

model, the contagion model, and the real options model [61, 93].

1.2 Diffusion Modeling in Socio-Technical Systems

1. The consumer heterogeneity (Bass) model. This model starts from the

reasonable assumption that consumers vary in the costs and benefits they

associate with a technology. These differences are attributed to hetero-

geneity in tolerance for risk, values, or information. For example one

person might value staying on the cutting edge of technological change,

while another might place more value reliability or proven functionality

[127]. The most common implementation of the consumer heterogeneity

model is the Bass model [10], where marginal adoption S at a given time

t is a function of the size of the market m, time, and two coefficients p

and q representing advertising and word of mouth effects:

S(t) = m
(p+ q)2

p

e−(p+q)t

1 + (q/p)e−(p+q)t2
(1.1)

Because Bass models only employ consumer heterogeneity along one di-

mension, the ’innovativeness’ of the individual relative to the rest of the

2



population, there is little potential to incorporate attributes that have

been demonstrated to affect consumer purchase decisions, such as the

availability of capital. Further, the model makes it difficult to incorpo-

rate price shocks, multiple influencing institutions, or competing prod-

ucts, and can incorporate spatial relationships only on the aggregate, for

example through multiple state-level specifications. While some econo-

metric methods such as accelerated time to failure or proportional hazard

models allow for the handling of multiple attributes, in each case hetero-

geneity is reduced to aggregate terms, and the inclusion of network ef-

fects, institutional influences, and uncertainty remain problematic [123].

2. The contagion model. In this formulation, costs and benefits to con-

sumers are essentially held constant, and individuals make adoption deci-

sions as they gain information about the technology. Information passes

from one agent to another through proximity in a network. Consumers

become informed (active) after another consumer in their network does.

Once active, consumers are infectious, meaning they spread information

to their network connections in the form of an adoption probability. Over

time, more consumers are informed and adopt the technology. As the

population reaches saturation, marginal adoptions continue but the rate

of adoption decreases [141], creating an S-shaped curve. One of the most

common implementations of this model is the cascade model [79], which

in a simple form where b is the number of contacts for each consumer,

and φ is the ratio of non-adopters to adopters at time 0, results in a

3



logistic function [48]:

S(t) = m
1

1 + φe−pmt
(1.2)

Some authors have categorized consumer heterogeneity models as a type

of contagion model with internal and external influences [153]. In prac-

tice, contagion models often employ a threshold (number of infected con-

nections) in order to fit diffusion rates to empirical scenarios [145], and

the model can incorporate spatial relationships implicitly through the

initialization of the network. Many current applications of these mod-

els utilize social network graphs [88]. The biggest problem with these

models lies in the simplicity of their assumptions. Contagion models do

not model consumer heterogeneity outside the attributes of the social

network–two nodes placed identically in the network will always adopt

at the same time or with the same probability. In other words, the

network attributes of the nodes, such as degree, centrality, and density

(see section 1.6) correlate perfectly with underlying diffusion determi-

nants. This assumption is difficult or impossible to justify empirically or

theoretically.

3. The real options model. This model is seen in the economics literature as

an improvement on deterministic discounted cash flow approaches [82],

mainly through recognition of the economic value of waiting (comparing

the net-present value (NPV) of an investment at time t to the NPV of

the investment at time t + 1, expressed in equation 1.3), where ut is an

investment opportunity yielding some profit π. The continuation value

4



(expectation of net present value at time t+1) is discounted by the factor

1
1+ρ

.

Et(NPV ) = max
ut

(πt(ut) +
1

1 + ρ
Et(NPVt+1)) (1.3)

Here the adoption decision is cast as an investment decision under un-

certainty, and although it is not explicit, the value calculation can be

viewed as a decision threshold for the consumer or firm. An adopter

faces an upfront investment that is treated as a sunk cost, to be offset

with a future returns stream. The consumer is generally thought to have

accurate information regarding investment costs, and uncertain informa-

tion regarding future benefit. Rather that being derived from consumer

attributes, uncertainty is modeled by a stochastic process. Importantly,

the consumer can exercise the buy option at a future time, when the

cost-benefit calculation may be more favorable. This creates incentives

for delay in adoption of products with declining costs, uncertain payoffs,

and low ”reversibility” (the ability to un-adopt cheaply) [11, 89]. Real

options models seem to have great potential, although applications to

empirical diffusion scenarios are fairly scarce [78], and require the as-

sumption (and choice) of set discount and learning rates [82]. They also

do not have social network information sharing or spatial relationships

modeled explicitly, and because the driving component of the model re-

lies on an NPV calculation, consumer rationality is assumed.

In part because of the problems noted above with the consumer heterogeneity,

contagion, and real options models, applying of traditional models to diffusion
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of innovations in socio-technical systems remains problematic. Weak points

of traditional diffusion modeling are compiled in a 2004 review by Kemp [78].

Seven of these are particularly relevant to socio-technical systems and are

summarized below:

1. Focus on the macro social process rather than modeling decisions explic-

itly.

2. The full incorporation of social and network effects.

3. Lack of feedback between knowledge transfer and changing economics.

4. Failure to incorporate the actions and effects of policy and policy actors.

5. Failure to address uncertainty in the time of adoption by a given con-

sumer.

6. Lack of consideration for competing technologies.

7. Failure to incorporate complementary innovations and infrastructure

growth.

The unifying theme of this criticism is that diffusion models suffer from a

failure to address the complexity of human systems. While the ease of imple-

mentation of these models makes them attractive, this simplicity also makes

the above models limited in their explanatory power. If we model a system

to gain useful insight into how it operates and how it might be altered, an

alternative method must be employed.
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1.3 Agent-Based Modeling

An alternative option, agent-based modeling (ABM), is flexible enough to in-

corporate the strengths or each of these models, while avoiding weaknesses,

such as aggregation, handling spatial relationships, modeling heterogeneity

across multiple dimensions, feedback effects, and emergent phenomena. ABM

is a simulation technique in which the entities in a system are represented as

autonomous functions that have memory and interact with each other and

their environment, which is modeled explicitly [90, 108]. Relative to compet-

ing methods, the strength of ABM is derived from the ability to capture the

heterogeneity of individuals and interaction effects in the agent class [29, 117].

By explicitly coding the decision rules for agents, the processes that lead to

aggregate results can be probed and altered experimentally [4, 29, 90]. Allow-

ing emergent processes to be modeled is particularly useful in complex systems

as outcomes are often counter intuitive [17].

1.3.1 State of the Practice

While the potential of ABM to address the weaknesses of conventional diffu-

sion models in socio-technical systems is very promising, and state-of-the-art

models can do so, these are few and far between. Current ABM practices as

applied to human systems are lacking, mostly due to inadequate validation

[12, 35, 76, 149], or inadequate empirical basis [16, 25, 35, 36, 146].

Though not always done in practice, the need for empirical basis and validation
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in the model has been recognized [56, 122]. By tying the agent states, decision

rules and environmental variable to empirical patterns, ABM gains descriptive,

explanatory, and predictive power. Seven principles of empirical ABM are

presented in detail in chapter 2.

1.3.2 ABM and GIS

As noted in section 1.2, traditional models do a poor job of incorporating spa-

tial relationships. This is fairly simple in ABM through specification of the

topology and environment [108]. This coupling of ABM and Geographic Infor-

mation Systems (GIS) can increase the empirical basis of the model (figure 1.1),

and allow greater precision in agent attributes. While increased precision can

have large computational costs, leading many to employ aggregated agents,

or stylized environments and topologies, the increasing accessibility of high

performance computing (HPC) resources makes these costs less significant.

Specific to solar PV, ABM integrated with GIS offers four distinct advantages,

all of which contribute to the ability of the ABM to generate realistic outcomes

during simulated scenarios that have not been directly observed in the study

area [117]. First, each household in the model can take on the actual attributes

and street location of the real household it represents. Because neighborhood

peer effects have been demonstrated to be the most relevant social interactions

for solar PV diffusion [118], it is much more likely that our agent-to-agent

interactions simulate the actual relationships in the study area. Second, there

is the possibility to examine and utilize derived network attributes, such as the
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Figure 1.1: Grid versus GIS topology in the SECAD model.

location of influential households, which can be utilized in policy simulation

scenarios. Third, it becomes possible to simulate at an extremely granular level

not only when, but where PV will come on-line, allowing policymakers to plan

and target infrastructure investments, and see the geographic implications

of different policies. Fourth, GIS integrated ABM allows us to delve into

important issues of social demographics and equity associated with PV that

may be exacerbated by peer effects and local information flows.

Before moving on to the discussion of the principals of empirical ABM, it is

useful to provide a more complete picture of consumer decision-making from

a social/behavioral standpoint. While limited, the three diffusion models dis-

cussed above have demonstrated the necessary aspects of a robust diffusion

model of a socio-technical system: heterogeneity, social networks, and uncer-

tainty. The remaining sections of this chapter will be dedicated to further

detailing these issues towards their application to a robust ABM of solar PV

diffusion.
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1.4 Theory of Planned Behavior

The fundamental insight of heterogeneity models is that consumers vary in

their perception of value, which has a direct influence on behavior. Perhaps

both the most nuanced and validated behavioral model that can be readily in-

corporated into a computational framework comes from the theory of planned

behavior (TPB) [6, 52], which itself arises from the theory of reasoned action

[2, 92]. TPB starts with the assertion that any action is the result of an in-

tention to perform that action, limited by one’s ability to perform that action.

Intention is a function of an individual’s attitude (his/her overall assessment of

the probable outcome), subjective norm (the beliefs and information available

through social connections), and perceived behavioral control (the consumer’s

perception of his/her own ability to perform the action) [3].

In an applied context, the three components of intention can be modeled as

a function of attitudinal, social, and demographic variables [94, 103]. This

framework has been successfully applied in a number of ABMs, for example:

theoretical markets [154], human migration [81], dietary choice [125] and the

diffusion of organic farming [76], smart meters[155], pellet burning stoves [138],

and water saving innovations [130]. While the importance of modeling agent

beliefs is gaining recognition, many models still avoid or ignore this aspect, or

represent it in an over-simplified way [142].
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1.5 Information and Uncertainty

The incorporation of uncertainty in information in the real options model is

an important step toward a more realistic view of the way costs are evaluated.

The true cost of a technology to consumers is often much above the hardware

or sticker price given by the supplier. Uncertainty in the cost-benefit associated

with the technology and its alternatives takes time and energy to resolve. The

potential for error or missed opportunity creates a disincentive for the decision

to be made quickly, leading to the information search process and its associated

costs[80, 104, 139]. As each consumer takes a longer time to make a decision,

and perceives the decision as being more risky, the rate of diffusion decreases

[61].

The adoption decision requires multiple information inputs. First there is the

knowledge that the product exists. Second is the suitability of the product

to the consumer’s needs. This information comes to the consumer from two

main paths: from producers of the technology, and from interactions with

other users, often through geographic proximity [61]. In the presence of in-

formational externalities, these interactions can be part of a social learning

process used to address the uncertainty associated with an innovation: poten-

tial adopters wait and observe the experience of others [74]. This perspective

is emphasized in the diffusion of innovations literature in sociology [127]). For

nascent technologies, because the social network is relatively unsaturated with

information, the amount of time and effort spent by the consumer is greater.

This effect is further amplified for capital intensive technologies because the
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potential down-side is greater [89, 115]. Clearly, imperfect information leads

to the inefficient operation of markets as consumers deal with uncertainty,

creating the potential for market failure [57, 128]. For technologies with sig-

nificant positive environmental externalities a compounded market failure can

be created as the external benefit associated with the environmental good is

combined with the external cost of information search. Together this can cause

a large barrier to diffusion [72].

1.6 Social Network Analysis

The implicit (consumer heterogeneity model) and explicit (contagion model)

assumption that diffusion of technology and information occurs through in-

terpersonal connections, as well as the importance placed on social systems

in diffusion of innovations theory [127] motivates a clearer understanding of

social network structure and theory. To quote E. Katz, “It is as unthinkable

to study diffusion without some knowledge of the social structures in which

potential adopters are located as it is to study blood circulation without ad-

equate knowledge of the structure of veins and arteries [75].” In this section,

the focus will be on two main topics: social network metrics and social net-

work models. Social networks are represented in scientific models by graphs on

nodes connected by edges, usually stored in an adjacency matrix of binary val-

ues. Each node represents one person or households, and each edge represents

a connection or relationship between two nodes.
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1.6.1 Social Network Metrics

Social network metrics are numeric values used to characterize nodes within a

graph, or the entire distribution of nodes [132].

1. Degree The number of edges incident on a node. The social network

can be characterized by the degree distribution. If a graph is directed,

meaning that the relationships in the network are not symmetrical, de-

gree can be broken down further into in-degree and out-degree. Degree

can be thought of as a measure of centrality for a given node, although

it is quite possible for a node with high degree to have low centrality

measured in a different way (see below).

In Degree Number of other nodes with edges terminating in node

i. Shown for adjacency matrix A in equation 1.4:

DIi =
n∑
i=1

Aij (1.4)

Out Degree Number of edges with origins in node i. Shown for

adjacency matrix A in equation 1.5:

DOi =
n∑
j=1

Aij (1.5)

2. Centrality The importance of a given node can be measured in different

ways. The relevance of given measure will depend on the network being

characterized and the problem the researcher hopes to address. For

example, in a corporate hierarchy more important nodes may not be
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those that are near the center of the graph, but rather those that act as

brokers between different groups.

Betweenness The degree to which node i acts as a broker between

different groups, due to that node lying on the shortest paths gjk between

any other two nodes j and k:

CBi =
n∑
j<k

gjki
gjk

(n− 1)(n− 2)/2
(1.6)

Closeness The degree to which the rest of the network is accessible

from node i, also thought of as the shortest number of steps or distance

d on the graph (in edges) from i to all other nodes j. This is shown in

equation 1.7.

Cci =

(
n∑
j=1

di,j)
−1

n− 1
(1.7)

Eigenvector centrality Intuitively, the importance of node i in the

network is influenced by the importance of i’s neighbors on the graph.

This is not fully captured by the above metrics, but can be calculated

iteratively (as the centrality of a node is calculated, the centrality of its

neighbors must be updated) though equation 1.8 [18]. It has been noted

that Eigenvector centrality is uniquely suited to calculate centrality for

complex and irregular graphs, particularly those with non-binary rela-

tions between nodes [19]. The coefficient β can be varied to reflect the
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importance of neighbor’s centrality relative to the centrality of i. As β

approaches zero, centrality reflects more of the global network structure.

α is a normalization constant. If Eigenvector centrality is calculated on

a directed network, this is known as PageRank [110].

CEi(β, α) =
n∑
j=1

(α + βCEj)Aij (1.8)

Centralization Some networks are more highly centralized than

others. The amount a variation in the distribution of centrality scores

for the nodes is known as centralization. There are multiple metrics,

including standard deviation, the gini coefficient [87], or Freeman’s cen-

tralization, which measures how central the most central node is relative

to the other nodes on the graph (Cx), where Cx(pi) is any centrality

measure (see above) for a given node pi, and p∗ is the most central node

(shown in equation 1.9) [46].

Cx =

n∑
i=1

Cx(p∗)− Cx(pi)

(N − 1)(N − 2)
(1.9)

3. Connectivity Components in the network are strongly connected when

each node can be reached through directed links by any other node.

Components in the network are weakly connected when each node can

be reached through undirected links by any other node. If the largest

component takes up a significant portion of the network, it is known as

the giant component.
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4. Average Shortest Path Mean number of steps or distance (di,j) needed

to move along edges from one randomly chosen node to another.

5. Local Clustering Also called transitivity: the number of node i’s con-

nections that are connected by an edge, νi, over the total number of

potential connections [150]. Transitivity can thus be thought of as the

probability that adjacent nodes are connected. This is shown in equa-

tion 1.10 for a directed network. For diffusion of innovations studies,

higher clustering is associated with slower information flow compared to

random graphs [109]. This slightly counter-intuitive result is caused by

the lack of “short-cuts” in highly localized networks.

Cli =
νi

ni(ni − 1)
(1.10)

Equation 1.11 shows the global clustering coefficient as simply the aver-

age of the local clustering values Cli over all nodes n.

Cl =
1

n

n∑
i=1

Cli (1.11)

1.6.2 Social Network Models

Social network models are simplified representations of empirical networks,

used to derive and predict properties and outcomes of the network mathe-

matically [23, 132]. The intent of this section is not to provide the reader
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with a summary of all network models, but rather to provide details of several

models that will be useful in developing an understanding of how the model

specification might effect social network metrics and diffusion.

1. Erdos-Renyi This undirected network model assumes that nodes are

connected at random with some probability p. As the individual con-

nections are independent Bernoulli variables, the degree distribution is

described by a binomial distribution with parameter p.

2. Static Geographical This network model connects each node to a num-

ber NumC of its closest neighbors, which are defined by proximity in

space. Alternatively, each node can be connected to each of its neigh-

bors within a set distance r. Relative to Erdos Renyi graphs, Static

Geographical networks have longer average shortest-path length. If pa-

rameterized by NumC, the degree distribution will tend to be tighter,

while if parameterized by r the degree distribution will reflect the den-

sity of nodes in space. These networks often display structure similar to

that of a regular or semi-regular lattice.

3. Small-World This model is characterized by high clustering relative

to Erdos-Renyi random graphs, and low average shortest-path. These

networks have been observed in a variety of empirical settings [1, 102,

129, 150]. Small-word networks can be conceptualized in a modeling

setting by initializing a static geographical or a lattice network, and re-

wiring edges on the graph with some probability p, holding the degree
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constant. This achieves a network in which the majority (n − n ∗ p) of

connections are local, and the minority (n ∗ p) are non-local, or random.

The structure of the network can have a large impact on diffusion outcomes,

making the specification of the network critical [113]. This been well-studied

in simulated networks, and positive effects result from word-of-mouth and

rewiring, and negative effects result from network externalities where an inno-

vation becomes more useful when more nodes have acquired it [53].

To illustrate this point, a simple model was created in Netlogo to illustrate

the diffusion outcome for simple networks each made of 200 nodes, each with

four edges. The model is shown in figure 1.2. In each case, one node was

seeded with an innovation (shown in green), and the model was advanced ten

time-steps. At each time-step, the innovation was given a probability of 0.25

of spreading through an edge to a connected node. Under these simplistic

conditions, on average the random graph (a) displays more rapid diffusion

than the small-world graph (b), which displays more diffusion than the static

geographical graph (c). These findings support previous conclusions from the

literature.

One limitation that becomes clear with this type of model is the way that the

consumers (nodes) make the decision to adopt. In this simplified model, the

decision is made as a probabilistic outcome of contact. While this may be

adequate for some disease or for theoretical models [15, 83], a more nuanced

framework is necessary in order to gain the benefits of social network analysis
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(a) Erdos Renyi (b) Small-World (c) Static Geographical

Figure 1.2: The effect of Network structure on diffusion outcomes.

in an empirical diffusion model.
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Chapter 2

Principles of Empirical Agent-Based Modeling

2.1 Motivation

The expanding popularity of agent-based models (ABMs) in the characteriza-

tion of human systems (for example in economics [124], psychology [137], and

anthropology [144]) demands further development and unification of ABM

methodology to allow researchers to gain the full benefit of this technique.

While ABM can be used for virtually any modeling application [40], the

strengths of ABM are most effectively utilized in the exploration of previously

unobserved situations, or scenario analysis [9]. Consequently ABM allows for

the creation of virtual laboratories used in decision support roles. However,

the usefulness of this analysis will depend on the degree to which the ABM re-

flects real-world conditions. While this is intuitive, too often this is overlooked

or ignored.

The focus on socio-technical energy systems, and particularly the diffusion of

environmentally friendly technologies, is driven by need. Cumulative diffusion

trends for a given technology are driven by decision-making and interactions

within a heterogeneous population of consumers, which traditional modeling

frameworks do not adequately reflect [61]. As a further complication, these
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interactions, the attributes of the consumers, and the characteristics of the

technology depend on the specific geographic context [67, 120, 147]. While

there have been many applications of ABM in the diffusion of technologies

field in recent years (for example see [22, 58, 85, 131, 143, 149, 155]) the

success of these models has so far been impeded by the lack of empirical

foundation, especially in regards to the geographic relationships of the agents

and environment.

While the ABM discipline as a whole has begun to shift toward empirical

models [134] following previous calls for agent-based modeling to increase its

focus on validation [56, 108, 122], these efforts have so far gained little traction

within human systems. This is likely due to the complexity of these systems

and the level of data required (there are a few notable exemptions: for example

[42, 64, 86]).

In order to guide the development of more useful agent-based models for

environmentally-friendly technologies, seven principles are proposed that will

help researchers move away from proof-of-concept or toy models (for example

see [68]) and toward decision-support models. To ground each principle, con-

crete examples are given to illustrate each principle. The seven principles are

the following:

1. Empirical Agents

2. Theoretical Validation

3. Networks and Interaction
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4. Empirical Environment

5. Precise Initialization

6. Empirical Validation

7. Simulation Process

The central thread tying these principles together is the use of empirical data

bring the model closer to real-world conditions. While this thesis is specifically

intended to present the SECAD model of solar PV diffusion, several other

socio-technical ABMs are discussed to provide a deeper context for empirical

ABM principles.

2.2 Empirical Agents

The empirical agents principle has three components: use of data, level of

aggregation, and agent classes. It is worth noting that the data required to

design a successful ABM is rarely collected in one round. Rather, the level of

aggregation in the proposed model can drive data collection. Analysis of the

data provides a basis for new agent classes and validates the proposed level of

aggregation, which in turn motivate collection of new data. This feedback is

vital to the creation of robust models.
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2.2.1 Use of Data

Using real-world data to design and validate the ABM and move away from

toy models builds on other authors’ discussion of ABM parameterization in

human systems and the use of empirical data [43, 136]. Perhaps more than

any other modeling technique, the danger of drawing erroneous conclusions

from an invalid assumptions (“garbage in, garbage out”) is prevalent in ABM.

To avoid this, modeling must be preceded by deep micro-data collection and

analysis, perhaps through multiple, integrated, and iterative levels. Examples

of this is the use of household level survey data with program data [126], and

combining survey data, expert interviews, and census data [135]. Methods for

collection of sample data and up-scaling the data to population parameters (or

down-scaling from aggregate data) have been thoroughly addressed by other

authors [8, 135, 136]. Initial models can provide direction to further data

collection, and step-wise refinement.

2.2.2 Level of Aggregation

The level of aggregation defines the unit at which agents operate. It can

mean moving from modeling individuals to modeling groups of individuals.

While it is tempting to base aggregation on the availability of data, this is

not appropriate. The level of aggregation chosen for a successful agent-based

model must allow the ABM to be motivated by the same mechanisms that

drive the target system. If the agents are so abstracted that the mechanism

must deviate from that observed empirically, more granular agents should be
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Figure 2.1: Wealth distributions for PV owners versus population wealth dis-
tributions in three zip codes.

used. For example, the diffusion of residential solar PV is driven by individual

consumer decision-making, while the diffusion of wind turbine generators is

driven by firm-level decision-making. Using zip code level agents for solar

PV is clearly too aggregated, while individual level agents for wind is too

granular; the use of each would require a fundamental departure from the

target mechanism.

To elaborate on the PV example above, the distribution of adopter attributes

may not reflect zip code level attributes. This is evident in density distributions

such as the one displayed in Figure 2.1. In the figure, the distributions of

wealth across four zip codes among adopters are distinct from population

distributions. This demonstrates the need for the model to operate below the

zip code level. The mechanisms behind successful ABMs will try to reproduce

as closely as possible the way the target system operates.[156]

It is important to note that a successful ABM can contain multiple levels
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Figure 2.2: Local marketing effects visible in the distribution of PV systems
over space.

of aggregation. Within the wind model for example, firm-level actions could

coincide with state-level policy modeling. The different levels of aggregation

exist for different agent classes.

2.2.3 Agent Classes

The complexity of the systems that are best suited for ABM often require

additional agents to increase the realism of the model. This is appropriate

when there is a quantifiable impact on the target output that is driven by an

autonomous, heterogeneous force. In the case of solar PV, the solar installation

companies may pass this test. While individual consumers are the primary

agents within a solar PV model, the installer-specific density of empirical data

shown in figure 2.2 suggest autonomy and heterogeneity that justify creation

of an agent class to represent solar installers.
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2.3 Theoretical Validation

Theoretical validation of an ABM means assessing the degree to which the

model is an accurate representation of the target system, as defined by existing

theory and empirical data, with reference to the central research question.

2.3.1 Existing theory

Existing theory does three things: it places the model within its scientific

context, it guides the model structure, and it supports the choice of algorithms

to codify decision rules.

Because ABM is a simulation method, the model must be derived from exist-

ing theory in the scientific literature of the system. Otherwise, the functions

(behavioral rules) that define agent behavior will be arbitrary. Arbitrary rules

will not generate model results that can easily contribute to scientific under-

standing of the target system.

While the emphasis of this work is on the use of empirical data to provide

the basis for the ABM, neither raw data, nor supporting models will provide

model structure. In a simple example, empirical data shows that wind turbine

hub heights have been increasing over time, but does not provide a mechanism

for this increase. How are the agent’s actions driving this pattern? The use

of theory to guide the gathering, analysis, and incorporation of data into the

model is critical to an effective approach [43].

There are potentially many algorithms that can be written for a given theory,
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and many theories that describe a target system. Using an example from

human behavior, agents can be programmed according to CODA (continuous

opinions, discrete actions) for opinion dynamics, rational choice, or theory of

planned behavior. In this case, one useful application of ABM is to create

batch parameters (see section 2.8) or scripts that simulate the target system

according to each theory. The batches can then be evaluated for accuracy

against the empirical data, as shown in section 2.7.

2.3.2 Empirical patterns and decision Rules

Like most statistical and computational models, highly effective ABMs require

a thorough understanding of the processes that generated the data and of the

critical patterns in the data that motivate the research question. The model

structure should reflect descriptive findings from empirical data uncovered

during data exploration. This concept is related to what has been called

Patten Oriented Modeling or POM [56]. The idea is to shape the structure

of the model based on multiple patterns observed in the target system, where

patterns generally reflect data-driven relationships and correlations. This idea

has been applied in the modeling of biological systems [5, 98, 101], but has not

yet caught on for human processes. Successful agent-based models validate

the theoretical basis for parameter choices and decision rules with reference

to empirical patterns. For example, analysis of data on solar and electric

vehicle purchases suggests that the technologies have different social network

structures. Figure 2.3 shows that the networks that define solar PV diffusion
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Figure 2.3: Trust and local network structure in solar PV versus electric vehi-
cles.

are driven by geographically local connections. This is much less true for

electric vehicle diffusion, which is driven by higher dimension networks, as

discussed in section 2.4

Without knowledge of this empirical pattern, it could be quite plausible to

specify the same network structure for both of these technologies and end up

with an invalid model for the system.
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2.4 Networks and Interaction

While nearly all agent-based models of socio-technical systems incorporate

social networks, the most common practice is to position the agents randomly

in a network structure [16, 35]. This can have profound effects, as adoption

outcomes are strongly influenced by proximity to central nodes in the network,

and the state of those nodes. If network characteristics are assigned randomly,

these effects will either remain external to the model if a new distribution is

created for each simulation run, or they will bias the model outcomes if one

distribution is used for multiple simulation runs.

The appropriate dimensionality of a network is dependent on the technology or

process being modeled. Dimensionality is the number of levels on which nodes

must be empirically derived. For example, Figure 2.4 shows that the sources

of information used by potential PV owners during their research periods are

much fewer, and more concentrated than those used by potential EV owners.

This means that robust networks for PV will require fewer specified dimensions

than EV networks. There is strong evidence that for solar PV, the most

influential nodes are those of geographic neighbors [118] and installers [120].

In electric vehicles, by contrast, these connections are less important, while

those with manufacturers, media, friends and family, and others are more

important.

If there is interaction between agents in the model, the network definitions

must be specified with care. Several of the problems highlighted in Section 2.3
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can arise due to incorrect network specification. For example, the geographi-

cally defined small world networks that can be appropriate for residential solar

PV may not be appropriate for electric vehicles, which are non-stationary and

have different associated information channels.

Further empirical grounding of networks can be established by leveraging sur-

vey data with GIS. The responses of the surveyed individuals can be compared

to the same measure in the GIS: for example, the number of solar PV systems

in the neighborhood, shown in Figure 2.5. The simulation can then incorpo-

rate both measures by defining the degree distribution from the survey and

the specific nodes from the GIS. Using the survey data alone would not allow

for empirically defined edges to be created between nodes (connections would

be the right number but randomly defined), while a static geographical model

would over-estimate in-degree (too many neighbors).

2.5 Empirical Environment

Successful ABMs incorporate micro-data into the specification of the environ-

ment as well as the agents. Models that utilize GIS have a strong advantage

here, as agent interactions with the environment can be modeled realistically

at a high level of granularity and realism. GIS incorporation means that the

model uses a Cartesian coordinate system for the study area, with datum and

projection parameters maintained in the model and object attributes recorded

through remote or on-site measurement. For example, the environment plays
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an influential, though not deterministic, role in the siting of wind turbines and

solar PV systems, as shown in Figure 2.6. Two examples of relevant envi-

ronmental variables are shown: a 1-meter LIDAR tree-cover layer on the left

panel, and transmission lines and substations right panel. It is important to

note that though the environment is not autonomous, it can be highly dy-

namic. For example, models that incorporate land use/land cover (LULC)

change allow the environment to react to changes in agent state, such as loca-

tion [97]. Further, the resolution of environmental variables has been shown

to have a large impact on agent behavior and ultimate conclusions drawn from

the model [42].
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Figure 2.6: Environment variables in solar PV and wind turbine ABMs.

2.6 Precise Initialization

2.6.1 Time

The aspect of time in ABMs is critical, and has not been adequately addressed

in the literature. Initializing the model in time refers to setting t0 in the model

to a specific date in an observed time series. If agent states do not reflect the

ground-truth at that time initialization bias is created. Because the agent

states at time t and the states at time t+ 1 are not independent, initialization

bias can be perpetuated throughout the simulation.

What this means in practice is that on initialization, or t0, the modeler should

take care to set up agent and environment states using the empirical time-

series. For example, if a researcher seeks to simulate the diffusion of electric

vehicles in consumer markets, and has access to empirical data from 2000 -

2013, starting in 2004 might make sense. At this point there has been enough
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preceding activity to generate observable patterns on which to ground the

model, and enough subsequent activity on which to fit and validate the model.

The would then refer to matching the relevant conditions in 2004 within the

modeling framework as closely as possible.

This process can be very difficult, especially if spatial validation is sought be-

cause initialized variables will have to reflect empirical spatial characteristics.

However, if the model is not referenced to a specific real-world time at t0,

fitting and validation may not be possible, and there is a good chance of sim-

ulation time that is not representative of empirical agent behavior. Improper

initialization is usually revealed during validation. For example, a spike in sim-

ulated marginal adoption in the first model cycle would suggest that values

were initialized too close to proposed thresholds.

2.6.2 Randomness, Independence

It is common practice for modelers to initialize assignment of agent attributes

and agent location randomly (for example see [38]) regardless of how this will

affect conclusions drawn from the batch. Random initialization of input vari-

ables that have an impact on output variables, or have important interaction

effects will affect outcomes of the model and conclusions drawn from those

outcomes. For a example of this, imagine trying to evaluate the impact of

increasing electricity prices on solar PV diffusion. If attitude regarding PV

and wealth are randomly and independently distributed at time 0, the impact

of electricity price increase may be biased downward as there will be fewer
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high-income, high-attitude agents. This problem is further compounded when

network effects are taken into account, given their interaction with agent at-

tributes and spatial location. With the use of stochastic variables, sensitivity

testing and the use of batch runs (see section 2.8) is critical. New techniques

such as Bayesian Analysis of Computer Code Outputs (BACCO) have im-

proved the ability of modelers to use multi-parameter models efficiently [111].

Random initialization can be used for variables for which data cannot be as-

sociated with specific agents, for example with anonymous survey data. In

this case, the distribution of the variable should be identified and its param-

eters specified through statistical modeling. This methodology is available in

a number of common statistical packages, such as R’s distFit or Matlab’s fit-

dist tools. Perhaps the best random initialization occurs through Bayesian

methods, where the prior is defined by existing theory, and empirical data is

represented in the likelihood function. Initialization via sampling from the

posterior distribution can yield robust results that mitigate the potential for

over-fitting without requiring agent-level data for t0. However they are created,

random initialization distributions must be correctly specified and empirically

grounded. For variables for which no empirical data is available, sensitivity

testing on the specified distribution can provide a range of potential outcomes.

2.6.3 Input vs Emergent Variables

There is an important distinction between those variables that are important

to initialize in order for the model mechanism to be specified correctly, and
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those measures that should emerge from a correctly specified model. In gen-

eral, emergent patterns should not be initialized–built into the model directly–

because it can cause over-fitting, and thus poor predictive performance. The

best models will create patterns based on the behavioral rules, network config-

urations and resolutions, agent types, and decision thresholds. However, if not

enough data is available, this fitting technique may be justified. One example

of this is using regression models to estimate agent behavior, and building in

probabilities to the ABM, shown in Figure 2.7. The odds of adopting solar

PV increase with income, vary with the density of systems in the neighbor-

hood. These odds could be built into the model to increase validation results.

However, building the odds in directly fits the model to observed behavior

rather than simulating it. This pattern should emerge from the model me-

chanics, such as the interaction between attitude, income, and the number of

neighborhood systems.

An example of a valid input variable initialization is that of consumer atti-

tudes. Figure 2.8 shows attitude as a multi-dimensional measure of opinion of

a technology observed in empirical data across five income quintiles (Q1-Q5).

The distribution of this metric can be mapped to income, allowing the measure

to be empirically initialized at a the start of the model (t0) within the ABM

without over-fitting the model.
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Figure 2.7: Effect of income on odds of adoption for neighborhoods with high
and low numbers of PV systems.
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Figure 2.8: Empirical attitude evolution over time for solar PV consumers for
different wealth levels.
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2.7 Empirical Validation

The comparison between empirical data and simulated data should be per-

formed on the cumulative as well as marginal distributions. The cumulative

distribution will show the overall fit of the model, while the marginal distri-

bution will reveal specific times where the model has deviated, as well as give

a sense for how well the model matches the any empirical volatility. One com-

mon deviation can be due to seasonality–if there are systematic deviations on

the margin, this suggests the existence of a pattern in the empirical data that

has not been incorporated into the agent decision rules.

Over time, the most simple validation metric is the deviation, or root mean

squared error (RMSE) between the empirical observations at time t, and the

model outcome at time t. Residuals are calculated for each run within a batch

along one agent-state dimension. The residuals are squared and averaged. The

residuals should be randomly distributed with the central tendency around

zero such that they do not show any time-trends.

Spatial validation means comparing simulation output maps against empirical

maps. While most geographical comparison still relies on cell-by-cell evaluation

[151] where the two maps are overlain and the error is calculated arithmetically,

this method is deeply flawed for many applications [114, 148]. Two potential

methods are suggested here: fuzzy numerical analysis and spatial clustering.

The fuzzy numerical statistic, Ξ is calculated in equation 4.9, where A is a

simulated raster and B is the empirical raster (either density or clustering),
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and w(d) is the function defining the weighted distance between the two cells.

[59, 60].

ξi(A,B) = maxNj(f(Ai, Bj)w(di,j)) (2.1a)

Ξi(A,B) = min(ξi(A,B, ), ξi(B,A)) (2.1b)

Ξ(A,B) =
1

n

n∑
i=1

Ξi(A,B) (2.1c)

f(a, b) = 1− |a− b|
max(|a|, |b|)

(2.1d)

Another useful measure for spatial validation is the use of a clustering metric.

Evaluation of clustering of observations (Adoption of solar PV, Electric vehi-

cles, or the construction of wind turbines) differs from density because it takes

into account the likelihood of each value given its neighboring values. Moran’s

I can be used to test for the presence of global clustering [77], and the Getis

Ord Gi∗ test statistic [49], and derived P values can be plotted and compared

in contingency tables. If there are systematic differences in the empirical and

simulated results, but good temporal fit, it is a sign of either incomplete geo-

graphic information in the model environment, poor characterization of agent

interaction, or misrepresentation of networks. Figure 2.9 shows empirical and

simulated data for wind turbine placement compared through density, and

spatial autocorrelation metrics. The spatial over-dispersion in the simulation

reflects the fact that land value is incomplete in the GIS, which allows agents

to economically site turbines further apart.
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Figure 2.9: Empirical wind turbine location compared to simulated location.
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2.8 Simulation Process

2.8.1 GIS Integration

The integration of Geographic Information Systems (GIS) in ABM has several

advantages.

1. Most processes have a spatial component, either at the agent level or the

environment level.

2. Modeling this component creates a more realistic simulation, increasing

the validity of the model.

3. Modeling this component allows the model to be validated along another

dimension, increasing the robustness of the model.

However, the best way to approach this integration is not always clear, after

all, ABMs are explicitly dynamic and time-dependent, while robust represen-

tation of time within GIS remains a challenge [65]. Here a few key insights on

the simulation process in general are offered, several software packages that

integrate GIS and ABM are covered.

2.8.2 Randomization

If a system is perfectly deterministic, ABMs offer few advantages over other

techniques. One of the strengths of ABM is allowing for the modeling of

systems with some inherent randomness– for example, the choice of agent i

to interact with agent j or agent k. The order in which the agents act (step
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through actions) should also be random at each time step, unless there is

empirical justification for natural ordering. Critically, if agent location plays a

role in agent interaction or the model dynamics, the placement of agents in the

GIS should not be random, but be initialized to reflect empirical location data

at t0. If agent interaction has a geographic component, empirical patterns

should provide insight on the scope/scale of interaction. One useful technique

is through Ripley’sK function [37], or one of the many transformations thereof,

such as the one shown in equation 2.2.

L(d) =

√
A
∑n

i=1

∑n
j=1 ki,j

πn(n− 1)
, i 6= j (2.2)

where L is a measure of the dependency on point (incident) data as a function

of distance d, the total area A, the number of data points n, and a weight k.

2.8.3 Batches

When ABMs contain random elements, runs with identical parameters (inputs)

will produce different outcomes. If the ABM is run often enough, the resulting

outcomes can be placed in distributions. While it is acceptable to present

the central tendency and shape (deviation) of the output, when possible the

full distribution should be shown in the results. Sensitivity analysis on the

minimum number of runs involves holding the parameters constant, varying

the number of runs, and analyzing the deviation from the outcome mean as a

function of the number of runs. If this is plotted graphically with deviation on
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the y axis, the minimum number of runs can be chosen where the slope of the

line approaches zero. Another potential difficulty that arises with Batch runs

on a GIS integrated model is the spatial validation of batch data. For social-

technical energy systems modeling where the outcome is a purchase decision,

each run will produce agent states with binary adoption values for each time

interval. Many spatial statistics procedures will require batch aggregation

before the procedure is completed. In this case, the empirical state of agent

i at time t: Se,i,t can be compared to the simulation output expected value:

E(Ss,i,t).

2.8.4 Time

In an ABM, the basic unit of time is the “tick”, or model cycle. Because

this unit has no inherent value, this cycle must be tied to the target system

units. Without this link, temporal validation is impossible. Like other aspects

of the model, the time step should reflect empirical patterns observed in the

target system. If there are multiple temporal patterns that are observed, this

can be controlled through the inclusion of an inner loop within the larger step

function. For example, agents might reassess their financial capability every

month but interact once per week.

2.8.5 Number of agents

Calculating the number of agents represented in the model is simple: it should

match exactly with the number of empirical individuals in the population on
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which the modeler has data, given the chosen level of aggregation, as discussed

in section 2.2. In many cases the empirical data is a sample from the modeled

population. In this case the number of agents should match the population,

but have characteristics derived from the sample. If empirical data is available

for a greater number of individuals than can be modeled, geographic or other

empirical boundaries should be used to restrict the study area, increasing the

chance of accurate representation. However, generalizations drawn from a

restricted sample may not be valid.

2.8.6 Simulation package

Agent-based simulations can be run on a variety of software packages and pro-

gramming languages, each with distinct advantages and disadvantages. The

choice of software should reflect the project goals and the constraints of the

research team. A comprehensive review of the available tools is well beyond

the scope of this paper, and other reviews have covered this topic adequately

[50, 121]. Instead, I note a few software packages of interest to researchers in-

terested in explicit integration of GIS with ABM. Further review of this topic

is available elsewhere [28].

1. Agent Analyst Utilizing the Repast Engine (see item 2), Agent Analyst

interfaces directly with a ESRI’s Arc GIS software and easily handles

vector and raster agents as well as environments. Agent Analyst allows

the use of explicit GIS processing through the ArcPy Python module

developed by ESRI, and model outputs are exported directly to ARC
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Info, allowing for local model outcome processing and analysis using the

Arc GIS spatial statistics tools [73].

2. RepastS The Recursive Porous Agent Simulation Toolkit (Repast) was

developed by the University of Chicago and is maintained by Argonne

National Laboratory. Spatially explicit models can be built in RepastS

and visualized in included 3D satellite raster display. RepastS also sup-

ports importing shapefiles for agent and environment classes.[28, 90]

3. NetLogo Raster and vector data are now supported in NetLogo, sig-

nificantly increasing the flexibility of the software. However, substantial

geoprocessing must be completed through third party applications [152].

4. R While R does not contain built-in ABM structure, the flexibility of

the program allows for ABM functionality, and there are open-source

vector and raster mapping packages available. R does not provide the

GUI environment of Agent Analyst, RepastS or NetLogo, but it has the

advantage of scalability, flexibility, simple parallelization, vectorization,

and ease of integration in high performance computing environments.

2.9 The SECAD Model

The remainder of this thesis will be dedicated to the implementation of the

Solar Energy Consumer Agent Decision (SECAD) model. The SECAD model

is an empirical ABM built on the principles defined in this chapter, and seeks

to simulate the diffusion of residential solar PV in Austin, Texas.
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Chapter 3

Agents in the SECAD Model

3.1 Residential Households

The primary agents operating in the model are single-family residential house-

holds. The number of agents was determined by using Travis Country Ap-

praisal District parcel data, selecting those parcels which were within the

Austin Energy Service Territory, and were designated as single family residen-

tial. Under these criteria, 173,466 household agents were used in the SECAD

model. Each of these households has a number of attributes, shown in table

3.1. One of the most important factors that sets the SECAD model apart from

other ABMs is the degree to which these attributes are empirically derived.

Because the ability to explicitly incorporate heterogeneity across multiple di-

mensions is a defining feature of ABM, the degree to which this heterogeneity

is grounded in actual data has a large bearing on verification and validation

of the model (see chapter 2).

3.2 Electric Utility

Properly, the electric utility entity is not an agent in that it is not heterogeneous–

effectively it is an agent class with N = 1. However, it is discussed here to
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Table 3.1: Heterogenous variables and attributes in the agent class.

Agent-level Attributes

Variable Name Description Basis

siai Socially informed attitude:
overall opinion of solar

Derived

pbci Perceived behavioral control:
economic capability

Derived

kWi PV system size in kW AC Derived

si Size of the home (sq. ft.) City of Austin

sP i Size of the lot (sq. ft.) TCAD

Ti Tree cover (sq. ft.) City of Austin LIDAR

w1i − w4i Importance of financial, so-
cial, & environmental factors
on installation decision

UT Austin Solar Survey

Eci Environmental concern UT Austin Solar Survey

PayEi Willingness to pay to protect
the environment

UT Austin Solar Survey

NeiEi Level of environmental con-
cern in the neighborhood

UT Austin Solar Survey

Ei Index of environmental com-
ponents

Derived:
f(Eci, PayEi, NeiEi)

Pri Characterization of the prof-
itability of solar

UT Austin Solar Survey

Msi Net monthly savings UT Austin Solar Survey

PPi Simple payback UT Austin Solar Survey

Fi Index of financial components UT Austin Solar Survey

Aci Contacts with PV systems
outside the neighborhood

UT Austin Solar Survey

Nsi Contacts with PV systems
within the neighborhood

UT Austin Solar Survey

Moi Degree of motivation from
neighborhood systems

UT Austin Solar Survey

Coni Confidence from neighbor-
hood systems

UT Austin Solar Survey

Ai Index of non-neighborhood
social components

Derived: f(Aci)

Neii Index of neighborhood social
components

Derived: f(Ni,Moi, Coni)

Si Index of social components Derived: f(Neii, Ai)
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demonstrate the possibility of expansion of the model to multiple service ar-

eas. The utility creates an annual budget for its solar program, and gives out

a rebate incentive to solar adopters in proportion to their system size: the

rebate amount is described in dollars per watt, with system sizes capped at

a certain level. Thus, the amount that the utility will draw from its budget

depends on the adopter system size and the number of adopters. In the bud-

get constrained case, the utility will tolerate one quarter of deficit only before

shutting down the rebate program. In the unconstrained case, the utility will

allow a constant deficit roll-over.

When a household is ready to adopt, the agent chooses a system size. The

agent will choose a size in proportion to need.

kWi = β0 + β1
si

1000
+ β2t+ β3

Ti
1000

+ εi (3.1)

After an agent is assigned a system size and price, the rebate is deducted from

the utility budget for the current fiscal year (system sizes above 20kW are not

eligible for a rebate) at the end of the quarter. Budget data was gathered

from historical Austin Energy quarterly reports, and reflects the empirical

residential solar PV budget available for each fiscal year in the simulation.

Critically, in the constrained case, if the utility agent is currently in deficit, no

rebate will be allocated and the household will delay the purchase decision.
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Chapter 4

Methods

Agent Analyst [73], an extension of the ESRI ArcGIS R© software suite utilizing

the Repast engine [27], was used for verification and validation of the model on

one zip-code[126]. The platform was extended in the R programming language

to all residential households in Austin, TX, and simulation was performed on

the Texas Advanced Computing Center’s Stampede Supercomputer. In this

section, the structure of the simulation process as well as the three central

components of the SECAD model are described.

4.1 Model Structure and Process

The in-simulation agent decision behavior is shown diagrammatically in figure

4.2. Importantly, there are three major components to the model: the Attitu-

dinal component, the Social component, and the Economic component. The

basic relationship between the components is the following: Agents modify

their attitude(sia) about solar through interactions within their social circle.

If attitude is sufficiently high, agents compare the simple payback at that time

period to their perceived behavioral control (pbc)– their wealth plus any physi-

cal constraints, such as tree cover over their roof. Perceived behavioral control
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Figure 4.1: The geographic information system tied to the SECAD model.

is static, but is compared with the payback period, which is dynamic. The

model environment is a detailed and multi-layered GIS, as shown in figure 4.1

Simulation batches of 100 runs with identical parameters were initialized to Q4

2007 conditions, described in section 5 and cycled forward to the 2nd quarter

2013 and validated against empirical results. The results of the validation

are shown in Section 5. Goodness of fit is evaluated over space and time.

Temporal validation is based on RMSE of the number of adopters predicted

by the model at each time step. Spatial validation is based on simple error

calculation (empirical - simulated), Fuzzy Numerical similarity statistics, and

(Harr) wavelet transformation correlation coefficients–all of which evaluate the

similarity between two raster maps. This raster map is derived from kernel

density raster maps of solar PV installations over the study area (simulated

and empirical).
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Figure 4.2: Flowchart of the behavioral rules applied to the household agent
class in each time step.

Table 4.1: Agent-level variables active during the model cycle.

Agent Variables

Variable Description Basis Dynamic

sia
Socially informed Empirical:
(overall) attitude see section 5.1 Yes
of solar PV

U
Uncertainty: Derived:
confidence regarding f(Udist) Yes
sia

pbc
Perceived behavioral Empirical:

control: Ability to
∑k=1

K (log(Zk + 1))/K No
follow intention

A
Solar PV Empirical:
adoption status Q4 2007 Yes
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4.2 Attitudinal

To operationalize the attitude and social norms components of TPB the rela-

tive agreement algorithm is used [34, 99], an extension of bounded confidence

models [63]. This algorithm is a significant improvement from other common

behavioral models, the most common being probabilistic [13], number -of-

neighbors [35], and percentage-of-neighbors [16]). These agent-based models

do not take advantage of heterogeneity in the agent state as a compliment to

heterogeneity in network position. The relative agreement algorithm is partic-

ularly well adapted for ABM because it allows for heterogeneity in state, and

can create spillover and multiplier effects without the problems associated with

linear models such as identification, endogenous group formation, correlative

unobservables, and simultaneity [62].

Social influence in the network is modeled through two dynamic states: socially

informed attitude (sia) and uncertainty (U), both of which are heterogeneous

in the agent class. Socially informed attitude is initialized to reflect attitudes

in the study area at t0. Because it is next to impossible to obtain accurate

data on past opinion through survey data, instead this state is modeled, as

described in section 5.1. Uncertainty is distributed in proportion to the inverse

absolute value of sia, as in the absence of empirical distributions, behavioral

research indicates that people are more likely to process relevant information if

they do not hold extreme attitudes.[26, 95]. This means that agents with very

high and very low attitudes will be highly influential within their social circles.

Interestingly, of the other simulations reviewed using relative agreement, none
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explored empirically grounded uncertainty [30, 32, 33, 44, 76, 99].

In the relative agreement algorithm, pairs of agents interact (i and j, where i

influences j ). Each agent is associated with two variables, opinion x i (equiva-

lent to attitude in TPB), and uncertainty u i. Each agent i interacts with one

other random agent j by determining the opinion overlap h ij. Thus, agents

are only influenced by relatively similar opinions:

hij = min((xi + ui), (xj + uj))−max((xi − ui), (xj − uj)) (4.1)

Equation 4.1 returns the overlap of the two agent’s opinion levels–the distance

between their opinions. Overlap does not take into account the non-overlap–

where one agent’s opinion is outside the range of the other, in turn decreasing

their potential for exchange. The non-overlap is subtracted from the overlap,

thus yielding total agreement:

hij − (2ui − hij) = 2(hij − ui) (4.2)

Because uncertainty is relevant both above and below the agent’s opinion level,

an agent j is willing to consider an opinion from agent i in the range 2u i. The

relative agreement is thus:

2(hij − ui)
2ui

=
hij
ui
− 1 (4.3)

If overlap (h ij) is greater than the influencing agent’s uncertainty (u i) then

the opinion of agent j is increased or decreased by the amount of relative
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agreement, where µ is a constant controlling speed of convergence and weight

of interaction:

xj = xj + µ((
hij
ui

)− 1)(xi − xj) (4.4)

and uncertainty is updated:

uj = uj + µ((
hij
ui

)− 1)(ui − uj) (4.5)

Thus, certain agents with lower uncertainty will have a stronger influence on

other agent’s opinion, allowing for the model to represent influential agents

with both high and low opinion about solar PV [31]. This presumably adds

psychological realism as individuals that are firm in their convictions will prob-

ably be more convincing to others [33, 99]. Clearly, when the agent states such

as socially informed attitude (sia) and uncertainty are heterogeneous, the like-

lihood that agent j will be influenced by agent i depends on the choice of agent

i.

If the agent is influenced positively, there is a chance that the attitude has

become high enough for the agent to adopt, given the ability to do so finan-

cially. The agent’s attitude is evaluated against a set threshold value after

each time step, making attitude a necessary but not sufficient condition for

adoption. This is a shared component with the threshold models common in

social network analysis [145].
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4.3 Social

Agent interactions occur through their social connections, represented by a

household-level modified static geographical model rewired into a small world

network. In this section, descriptive measures are presented for the network

in order to provide a better understanding of how the social network structure

contributes to in-simulation agent interactions. Recall that locals are derived

according to empirical geographic data using a GIS of residential households

in Austin, TX, where each node (household) connects to its neighbors, which

are defined as those within a given radius, ρ. ρ was determined empirically

using Ripley’s K function[37], shown in equation 2.2. These connections are

further filtered for wealth similarity, as discussed in chapter 5.

Table 4.2 compares several centrality measures for the base-case social network

described here and an equivalent Erdos-Renyi random graph. For all central-

ization measures except for betweenness, the empirical graph shows higher

centralization than the Erdos-Renyi random graph, but these differences are

not large.

The betweenness distribution is shown in figure 4.3. Betweenness is the ability

of a node to act as a “broker” between other nodes, such that it is located on

the shortest path between those nodes. The distribution of betweenness in the

base-case SECAD model is more skewed than the degree distribution.

Distribution of closeness for each agent-node is displayed in figure 4.4. This

is a measurement of the normalized number of steps needed to move to every
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Table 4.2: Comparison of centrality measures for empirical social networks
and random networks.

Centrality Comparison

Measure Empirical Erdos Renyi

In-degree Centralization 0.00034 0.00034
Eigenvector Centralization 0.99921 0.81061
Closeness Centralization 3.15758 3.15965
Betweenness Centralization 0.00002 0.00001
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Figure 4.3: Distribution of betweenness for agents under base-case parameters.
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Figure 4.4: Distribution of betweenness for agents under base-case parameters.

other node on the graph from each given node. Nodes that are peripheral in

the network will have low closeness.

The social network model used in the base-case has one giant component that

contains all nodes. This means that all neighborhoods are connected through

at least one edge, and information has the potential to diffuse from one node

to the rest of the network.

The presence of local clustering is a defining property of a small-world net-

work. Recall that a static geographical model is one where all neighbors are

connected. In this model, local clustering–the probability that adjacent nodes

are connected– is one. As figure 4.5 shows, local clustering is much higher
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Figure 4.5: Distribution of local clustering or transitivity for agents under
base-case parameters (a), and for the equivalent Erdos-Renyi graph.

and more evenly distributed in the base-case than for the equivalent Erdos-

Renyi graph. This is supported further by the global clustering coefficient

(equation 1.11, calculated as 0.418 for the base-case model, and 0.083 for the

Erdos-Renyi graph.

4.4 Economic

Given an attitude (sia) value above the threshold, agents will compare their

perceived behavior control (pbc) to the payback period at the current time,

t. Perceived behavioral control is defined as the agent’s perception of their

ability to follow through with an intention. For solar PV this means the agent’s

ability to afford the technology, subject to any limiting physical constraints

(see section 5.2). Because pbc is taken as one index value, the assumption

is that given a sufficiently financially attractive payback period, the agent

will take measures to overcome physical constraints. This is empirically the
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case, and can be seen for example in wealthy households with high tree-cover.

Presumably this is due to willingness to pay for tree-trimming services or the

like.

While simple payback is a flawed financial metric in that it does not discount

future cash-flows, it is the one most commonly used by potential solar adopters

[119, 120]. Payback is modeled as a function of electricity prices, et–the value

of electricity produced by the system, the price of the system in dollars per

Watt DC (p), and any rebates available through utility (R) and the federal

investment tax credit (ITC). Two constants, ψ and γ represent the utility

discounting of the system price for rebate purposes, and the estimate of system

generation in kWh respectively. The values used for these constants are the

same as those used by Austin Energy in their own calculations (.9556, 1361).

PPi(t) = (pt − (Rtψ)− ((pt − (Rtψ))ITCt))
1000

γet
(4.6)

Empirically system sizes are increasing over time in the study area, while

system prices (in dollars per Watt) are decreasing, as shown in figure 4.6. The

agent will choose a system size in proportion to need: the size of a system

(kW ) is a function of the size of the home footprint (yielding available roof-

space and approximating consumption), the amount of tree-cover for the roof

(a constraint on available roof-space) and time in equation 4.7. On average,

system size in kilowatts DC increases with time (number of quarters from Q4

2007), and with the size of the home, and decreases with tree cover, holding all
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other factors constant. This model was fit to empirical data for all PV owners

in the study area (n = 2738). After three influential outliers (cook’s D >0.4)

were removed, the AdjR2 was calculated as 0.32, with a p-value <0.001. All

variables were highly significant (p <0.001), diagnostics showed that residuals

were distributed normally, and VIFs were below three.

kWi = β0 + β1
si

1000
+ β2t+ β3

Ti
1000

+ εi (4.7)

After an agent is assigned a system size and price, the rebate is deducted

from the utility budget for the current fiscal year (system sizes above 20kW

are not eligible for a rebate). Empirical budget data was used from historical

Austin Energy quarterly reports. Critically, in the budget constrained case,

if the utility agent does not have sufficient funds, no rebate will be allocated.

If there is no rebate available, the household will delay the purchase decision,

subject to both attitude and control values remaining above their respective

thresholds. These values are still dynamic for an agent that has delayed their

decision.

Normalized system prices are not correlated with household variables, but

are quite predictable as a function of time. Prices were modeled using non-

parametric local polynomial regression (LOESS). A moving window compris-

ing 33% of the data was used to create subsets of the time-series system-size

data. Second-order weighted least-squared polynomial regression estimates

were obtained for each subset. The pseudo R2 from this technique was 0.72,
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Figure 4.6: System price LOESS regression model.

and residuals were approximately normal (QQ plot showed slightly higher

residuals on the right tail, demonstrating worse fit for systems that were priced

much higher than the local average).

The combined economic model described in this section has the effect of limit-

ing the number of agents that are willing to adopt during a given time period.

Alone, this economic model By itself, this as if there were quasi-perfect infor-
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Figure 4.7: Potential market for solar PV, without informational or attitudinal
constraints.

mation available to potential adopters (system prices are still variable due to

the distribution of installation prices for a given time period). This is shown

graphically in figure 4.7, which was created by running the economic module

of the SECAD model alone. To capture the variability in system prices, the

simulation was run 1000 times to generate 80% and 95% confidence intervals,

shown in blue and grey.
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4.5 Parameters

While additional parameters are used in the individual scenarios (described

in section 7), the model has seven structural parameters used to tune the

social networks, opinion convergence, and economic distribution, shown in

table 4.3. Because model outcomes are sensitive to these parameters, they are

used to fit the base-case model to the observed temporal data, minimizing root

mean squared error. Full sensitivity testing on these parameters is reported in

Appendix B.

4.6 Model Fitting and Validation

4.6.1 Temporal

Residuals for the marginal number of new adopters and the cumulative number

of adopters were calculated by subtracting the model output for a given quarter

from the empirical outcome in the same quarter. The deviation, or root mean

squared error (RMSE ) of the model was calculated accordingly, where q is a

given quarter, â is the number of adopters in the model, and a is the number

of adopters in the empirical data:

RMSE =

√√√√ n∑
q=1

(
(â− aq)2

n
) (4.8)

RMSE was calculated for the marginal adoptions each quarter (the number

of new adopters over that time period) and for the cumulative number of

adoptions each quarter (the total number of adopters from t0 to that period).
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Table 4.3: Parameters of the SECAD model.

ABM Parameters

Parameter Description Base-Case Value Basis

φ
Number of interactions
interactions per 5 Fitted
agent per tick

siaThresh
Minimum sia value Fitted,
needed for agent 0.6 relative to
to adopt initialization

Udist

Distribution of
uncertainty in the −1|sia| Theoretical
agent population

µ
Coefficient
of convergence 0.55 Fitted
in RA algorithm

ρ
Maximum distance Empirical:
at which an agent 2000ft Derived from
is considered local Ripley’s K function

λr
Percentage of
connections rewired 10 Fitted
randomly

pbcC
Maximum value used Highest
to scale pbc 32.46 observed adopter
to payback payback
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The marginal RMSE measures the error in volatility, while the cumulative

RMSE measures the overall fit. The model was fit to the empirical data

during parameter sweeps.

4.6.2 Spatial

Simulation output density prediction surfaces are created by summing over the

adoption outcomes for each household within each batch and dividing by the

number of runs in the batch. The result is an adoption probability for each

agent in the model that reflects the central tendency of the batch. A kernel

density function was used to calculate the number of systems per square mile

for each 100 x 100 square cell in the study area. This procedure was duplicated

for the empirical data (the empirical data can be thought of as a simulation

with only one run) so that the rasters could be compared directly.

The methodology for calculating error over space has received quite a bit of

attention in the geography and remote sensing literature [114, 148]. While

most statistical comparison of maps still relies on cell-by-cell evaluation [151],

where the two maps are overlain and the error is calculated arithmetically, this

method is deeply flawed for many applications. The problem with this method

is that it ignores the spatial structure of errors: if the goal of a simulation is to

match a pattern, for example “high, low”, a structure with a similar pattern

but different cell-by-cell value, for example “low, high”, is actually a much

better match than the error equivalent “medium, medium.” Simply stated, a

simulation that predicts positive for a positive target’s neighbors but negative
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for the target is better than one that predicts negative for both, a fact not

recognized by contingency-table style methods that compare cells on a direct

one-to-one basis.

The fuzzy numerical statistic, Ξ is calculated in equation 4.9, where A is a

simulated raster and B is the empirical raster (either density or clustering),

and w(d) is the function defining the weighted distance between the two cells.

Here a simple exponential decay function is used over a 20 cell radius, with a

half-life of five cells: Vj = Vi2
−d/5, where d is the number of cells in the raster

separating i and j. The similarity of the two values is given by f(a, b) [59, 60].

ξi(A,B) = maxNj(f(Ai, Bj)w(di,j)) (4.9a)

Ξi(A,B) = min(ξi(A,B, ), ξi(B,A)) (4.9b)

Ξ(A,B) =
1

n

n∑
i=1

Ξi(A,B) (4.9c)

f(a, b) = 1− |a− b|
max(|a|, |b|)

(4.9d)

While the fuzzy numerical method is useful for assessing spatial similarity, the

choice of parameterization of the smoothing kernel function can have a large

impact on results. In order to further check the robustness of the results, we

calculated correlation coefficients using wavelet verification.

Wavelet verification has gained popularity in the meteorological forecasting

literature due to the need to compare forecasts against observed weather pat-

terns [20, 24]. In this method, a wavelet transformation of the raster set is
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performed for several wavelets. The wavelet with the lowest Shannon Entropy

is selected, and noise is removed by applying a soft threshold function, and a

correlation coefficient (r) is generated. The discrete wavelets (Harr wavelets

are used in this study) aggregate the rasters to coarser resolutions. Here 8th

level aggregation (8x8) are used [20].
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Chapter 5

Initialization

The goal of initialization is to map relevant states onto the agent class. The

most common method for initialization in the literature is random initializa-

tion, where agents are assigned states from a distribution, usually uniform or

normal. However, while this method is simple, it disconnects the model from

the empirical reality and decreases the model’s relevance. The better (but

much more data and time intensive) method is to initialize the agent states

to reflect the point in time at which the simulation will begin, as is discussed

in Section 2.6. The SECAD model was initialized with data from TCAD, the

City of Austin, and the Austin Energy Solar Rebate program from Jan. 1,

2005 to Dec. 31, 2007. At this point there were 489 solar PV adopters in

the study area. These adopters were matched to corresponding survey results

used in initialization.

Initialization of an agent-based model that is empirically grounded in time as

well as geography presents several important challenges: specifically, the agent

states must reflect the geographical and temporal ground truth a t0 as closely

as possible. Otherwise there is no reason to believe that states at t1 − tT

will be accurate; initialization bias is passed through the entire simulation, a
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fact which is often ignored in the literature. Ideally, empirical initialization

would mean obtaining measurements of each desired state for each individual

in the study area at t0. In practice, this is often impossible. For example, to

follow this methodology for our model would require surveying over 173,466

households on at least two metrics on Jan. 1, 2008.

Not having access to these empirical distributions creates two large problems in

the context of ABM. First, the problem of “burn-in”: we know that attitudes

evolve continuously within a social context, creating networks of individuals

with similar attitudes. For the model to simulate this given a random initial

distribution, convergence takes a number of model steps [34]. Because the

empirical amount of convergence is also unknown, the number of steps until

burn-in is also unknown.

Secondly, sia is the “currency” that agents exchange in the model. If the dis-

tribution of this currency does not match the empirical distribution at t0 there

is a much greater chance of error over time and space. Imagine a highly con-

nected, highly influential agent: if we measure the agent’s attitude empirically,

and find it to be very low, the agent’s network, particularly the agent’s inter-

connected neighbors, will also be expected to have low attitude. If this same

agent in the model is initialized with high attitude, the opposite will occur in

the model, creating a large residual attitude in the agent’s neighborhood, and

likely a high number of false-positive adoptions. To address this challenge, we

instead use statistical inference, described below.
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5.1 Initializing Socially Informed Attitude

Initializing attitude regarding solar PV at t0 (Dec. 31, 2007) poses several

problems. Ideally, we would be able to survey each household in the study area,

or at least a random sample of people regarding their attitude. Regardless of

the usual difficulties associated with conducting a random sample survey to a

large group of people, this would require the respondent to recall how they felt

about a decision outcome, the choice to install solar PV or not, six years ago–

which would likely result in massive measurement error. Because we did not

have disaggregated information about opinion levels regarding solar among

non-adopters, we instead used existing survey data to model and interpolate

sia to the entire population, according to a four-step process:

i. First, we create an index that adequately describes the idea of socially

informed attitude. From Ajzen [3] we use the idea of attitude as an individual’s

best estimation of the net outcome of an action. Over time, this attitude is

modified through social interaction and expectation. Analysis of the survey

data showed that attitude regarding solar was informed primarily by k primary

components:

1. Financial: the profitability of the technology

2. Environmental: the environmental impact of the technology

3. Social: the perceived social norm for the technology
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Thus, socially informed attitude regarding solar PV for any given individual i

can be thought of as the an index of K these components ζk, shown in equation

5.1, where ζki is in turn composed of financial (Fi), environmental (Ei), and

social (Si) indexes (equations 5.2). Note that this is improved by incorporating

components weights in equation 5.4.

siai =
1

K

K∑
k=1

ζki (5.1)

Fi = PP ∗
i + Pri +Msi (5.2a)

Ei = ECi + PayEi +NeiEi (5.2b)

Relevant survey questions related to these variables in this chapter are found in

Appendix A.1. PP ∗
i is the reported payback period (question 3). Pri is an in-

dividual’s characterization of the profitability of the system (question 2). Msi

is an individual’s net monthly savings (question 3). PP ∗
i is the simple pay-

back, estimated by the respondent as a part of their financial decision-making

(question 3). ECi is the level of overall environmental concern (question 7).

PayEi is the amount an individual is willing to pay to protect the environment

(question 8), and NeiEi is the level of concern for environmental issues in the

individual’s neighborhood (question 9).

The treatment of Si requires some additional attention: there is heterogeneity

in where potential adopters get social norms. We expect most of this to come
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from within neighborhoods except in areas with low system density. To allow

for this, we measure social aspects from neighbors and acquaintances, and

take the social norm to be the maximum of the two. Thus, δ is an indicator

variable: δi = I(Neii > Ai) operating on the definition of Si:

Si =
(
∑k

p=1Neipi)
δ

k

(
∑m

q=1Aqi)
1−δ

m
(5.3a)

Neipi = (log(Nsi + 1),Moi, Coni) (5.3b)

Aqi = log(Aci + 1) (5.3c)

Nsi is the number of reported systems in the neighborhood (question 5). Moi

is the degree of motivation obtained from neighborhood systems (question 6.

Coni is the degree of confidence obtained from neighborhood systems (question

6). Aci is the number of contacts with systems outside the neighborhood

(question 4). The variables k and m represent the number of components in

each index p and q. Thus the definition Si is flexible to the social characteristics

observed for each individual.

ii. Equation 5.1 does not allow for observed consumer segmentation in the

residential solar market, suggesting that attitudes are homogeneously con-

structed over the vector of individuals (apart from the social component Si

as shown in equation 5.3). In other words, ζk takes equal weight from finan-

cial, environmental, and social components for all agents. This assumption

can be avoided by taking advantage of additional survey information. The

resulting calculation is a weighted average, where the weights are the revealed
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importance of each component–taken from survey question 1. This is shown

in expanded form in equation 5.4:

siai = w1iFi + w2iEi + (w3i
(
∑k

p=1Neipi)
δ

k
)(w4i

(
∑m

q=1Aqi)
1−δ

m
) (5.4)

Using the revealed weights that individuals place on different factors adds an

additional layer of realism. For example, this allows for the situation where

two agents can care about the environment, but it was only an important

factor in the installation decision for one of them.

iii. As noted above, collecting past micro-data from the entire population of

N households is not possible and would likely involve a very high degree of

observation error. To infer these values we use the predictive linear regression

model in equation 5.5.

siai = β0 + β1log(spi) + β2log(spi)
2 + β3log(spi)

3

+ β4(
Ti
spi

) + β5(
Ti
spi

)2 + β6(
Ti
spi

)3 + β7(
spi
Wi

)2 + β8(
spi
Wi

)3 + εi (5.5)

For each household i, sp is the size of the lot in square feet, T is the amount of

tree cover on the household parcel, W is the household wealth, approximated

through market home value, and ε is the error term. The model fits well

given the high variability inherent in survey data, and attitudinal measures

especially. The AdjR2 was calculated as 0.19. Full diagnostics and additional

information about this model can be found in A.2.
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iv. While the regression model presented above provides fair estimates of

predicted sia values ( ˆsiai), it assumes that there is no geographic relationship

in sia. This relationship is expected for two reasons: first due to potential

unobserved but geographically related socio-demographic variables, and sec-

ond because sia is socially informed attitude, attitudes will tend to converge

locally. To account for this, we model the error term (εi) in a spatial autocor-

relation model (kriging with trend). Survey data were matched to program

data through a fuzzy logic procedure on names and email addresses. Addresses

were then geocoded, creating precise latitude and longitude vectors for each

survey respondent. These values locations associated with the corresponding

ε and used in the kriging model.

ε∗(u) =

n(u)∑
α=1

λα(u)ε(uα) (5.6)

such that:
n(u)∑
α=1

λα(u) = 1 (5.7)

while minimizing L, the error variance plus an additional Lagrange parameter

muε(u):

L = σ2
ε(u) + 2µε(u)(1−

n(u)∑
α=1

λα(u)) (5.8)

Here ε∗(u) is the error term from equation 5.5 at location u, defined by lon-

gitude and latitude vectors; m(u) is the expected value at location u, defined

by a second order spatial trend, shown in equation 5.9.

m(u) = m(x, y) = β0 + β1x+ β2x
2 + bη3y + beta4y

2 (5.9)
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n(u) is the number of local (neighboring) observations at location u; α is

the index of the n(u) local observation locations, and lambda is the kriging

weight, which is associated with each neighbor α at location u. λ and α are

derived from the semivariogram, which models the residual value on ε after

the removal of the local trend. A Stable model for the semivariance with

six lags, a partial sill of 0.3, and no nugget was used in this model. Kriging

acts as a spatial interpolator, using the sum of neighboring de-trended values,

weighted by distance to location u and distance to other neighbors, to estimate

values at unobserved locations [54]. One of the main advantages of kriging,

especially within a simulation framework such as ABM, is that is allows for the

computation not only of estimates, but of variances around those estimates:

σ2
ε(u) = C(0)−

n(u)∑
α=1

λα(u)C(uα − u)− µε(u) (5.10)

The geographic distribution of standard errors from the kriging estimate are

shown in figure 5.1. This map effectively shows the error that is a function

of neither geography nor the variables in equation 5.5. As can be expected,

error increases around the edges of the map, and where survey samples were

not abundant. The green points on the map show the locations of the pre-

2008 adopter sample. Figure 5.2 displays the total error adjustment values

obtained by the kriging model. As the figure demonstrates, there are pockets

of high and low adjustment in the study area. For example, equation 5.5

overestimates sia for households in the SSE and WNW, and underestimates

sia for households in the south central and east. These values were mapped
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Figure 5.1: Distribution of the kriging model standard error.

onto the household agents using the latitude and longitude of the home. The

individual adjustment values were then plugged in to equation 5.5, increasing

the model adjR2 by an additional 0.15

Thus at t0, sia is distributed across all agents as a function of demographic,

physical, and geographic characteristics. The scaled distribution of sia is

shown in figure 5.3, with the green vertical line showing the sia threshold

for adoption.

5.2 Initializing Perceived Behavioral Control

Perceived behavioral control (pbc) is the degree to which an agent feels he/she

is able to perform an intended behavior. Specifically, agents look to their finan-
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High : 0.76

Low : -0.84

Figure 5.2: Distribution of spatial error correction values from the kriging
model.

cial well-being and physical constraints and compare this with the empirical

payback at the current time period. Thus the pbc for each agent i is:

pbci =

∑K
k=1 log(Zk)

K
(5.11a)

s2,W, (T − s)2 ∈ Zk (5.11b)

Note that the components Zk are taken on the log scale to moderate the effect

of the large skew in the distribution of population variables such as home

value and size. This variable was then scaled to the range of observed payback

periods PPi, allowing it to be directly compared with calculated payback for a

given system price at each time t in the simulation. The choice of the scaling

ceiling deserves some attention: we want to choose a ceiling that best reflects
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the relationship between payback and pbc. Here we use the ceiling of 32.46,

the highest observed payback in the empirical adopter sample. In order to

measure the accuracy of the scale, we can compare the empirical payback for

each adopter to their scaled pbc value at their time of adoption. If the scale is

correct, pbc will be greater than the observed payback at the time of adoption.

As the ceiling increases, the percentage of true positives will increase, but so

will the number of false positives: an infinite ceiling would pose no constraint

regardless of payback. The ceiling of 32.46 results in 82.4% correct predictions,

shown in figure 5.4, and results in the distribution shown in figure 5.5. Model

sensitivity to this parameter is explored in section B.
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Figure 5.4: Distribution of perceived behavioral control pbci for each household
in the simulation.
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Figure 5.5: Scaled perceived behavioral control (pbc) for empirical adopters
compared to their actual payback period.

5.3 Initializing Social Networks

We start with the assumption that the social networks that arise from shar-

ing information about solar ABM are entirely local geographically. This as-

sumption is not unreasonable given that with regards to solar PV, informed
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neighbors are a critical source of trustworthy, relevant information. However,

it is clear that neighborhoods can be defined in various ways: for example by

continuity, natural boundaries, or radial distance (this has been examined ex-

perimentally in a previous iteration of this model at the zip-code level [126]).

Contiguity (next-door neighbors only) is difficult to justify, while natural bar-

riers require subjective definitions and thus reduce the potential for replication

of the methodology. Radial distance is a better option but requires a radius

(r) to be defined. This can be done empirically by choosing the distance d at

which L(d) is the greatest relative to L(d) calculated for randomly dispersed

points in the study area. This is shown in equation 5.12c.

L(d) =

√
A
∑n

i=1

∑n
j=1 ki,j

πn(n− 1)
(5.12a)

L(d)rand =

√
A
∑nrand

irand=1

∑nrand

jrand=1 kirand,jrand

πnrand(nrand − 1)
(5.12b)

r = max(L(d)− L(d)rand) (5.12c)

Then agent i’s connections are defined by those nlocal agents within radius r. In

our study area, the static geographical network model yields an approximately

normal degree distribution (truncated at 0) with mean 498, and standard

deviation 226.7. To scale down the degree distribution to a more realistic

range, we add the additional constraint of wealth similarity. In the base-case,

we maintain proportionality by calculating the squared difference in wealth

between the target node and its geographical neighbors: (Wi − Wj)
2, and

connecting those which are in the bottom 5%. Thus geographic neighbors that
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Figure 5.6: The distribution of in-degree, the number of edges connecting to
each node in a directed graph (a), and out-degree, the number of originating
edges for each node in a directed graph (b).

are the most similar in wealth are connected as locals. Random connections

are substituted with a 10% re-wiring probability in the base-case. This yields

the degree distribution shown in figure5.6.
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Chapter 6

Results

In this section results and verification are presented for base-case models over

time and space. Scenario analysis results are reported in section 7, and sen-

sitivity testing is covered in section B. It should be noted that parameters

(table 4.3) were used to fit the model over time, but the spatial structure was

not used in fitting.

6.1 Temporal Evaluation

The SECAD model advances ABM methodology in two important ways: first

we use households-level agents at a large scale. Secondly, we have attempted

to empirically initialize as many agent variables and model parameters as

possible, making the SECAD model perhaps the most empirically grounded

large-scale ABM attempted to date. Here we include results with random

components as well as the fully empirical base-cases in order to demonstrate

the effect on the model outcomes. The best fitting models were used as base-

cases, shown in figure 6.1.

Because we advance the principles of empirical ABM, it is important to eval-
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Figure 6.1: Cumulative number of installations over time, with each point as
the quarterly outcome for one simulation. The dark blue represents the un-
constrained budget case, and the the lighter blue represents the unconstrained
case. The yellow curve and heavy black dots show empirical adoption levels.
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Figure 6.2: Effect on temporal model outcomes from incorporating random
uniform components.

uate the performance of the empirical model against models with varying

amounts of randomness. Further, this demonstrates where empirical specifica-

tion is the most important. Random batches have all other parameters equal

to batch 317, which is the ’unconstrained’ base-case. Random components

were added combinatorially, and different parameterizations of distributions

were attempted. Deviation is reported in table 6.1 for random uniform distri-

butions, and table 6.2 for unimodal distributions (Beta, Normal, and Poisson).

Figures 6.2 and 6.3 show a selection of batch runs against the empirical cu-

mulative adoption levels in the study area–showing the overall error as well as

the sign and temporal location of deviation.

Through this iterative process, a fully random model was fit to the empiri-

cal data by minimizing cumulative and marginal RMSE. Batch 331 showed

the best fit of any model with entirely random components tested. sia was
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Table 6.1: RMSE calculated for marginal (quarterly) and cumulative adoption
rates, base-case against random uniform initializations. Description shows
random components in each batch.

RMSE

Batch Marginal Adoption Cumulative Adoption Description

317 106.01 126.65 un-constrained
326 116.98 173.95 constrained
251 5675.18 68168.25 pbc
252 2080.65 21395.00 pp
253 6660.13 82439.46 pbc, pp
254 122.30 967.23 U
255 122.30 967.23 sia
276 122.29 966.60 sia, pbc
277 122.31 966.36 sia, pbc, pp
278 122.29 966.58 sia, pp
256 364.50 1143.23 λr

257 122.30 967.23 λr, sia
258 122.30 967.23 λr, sia, U
259 122.30 967.23 λr, sia, U , pp
260 122.30 967.23 λr, sia, U , pp, pbc
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Figure 6.3: Effect on temporal model outcomes from incorporating random
unimodal components.

initialized to a Normal (0.2,0.3), payback was described by a Poisson (13)

distribution, pbc was initialized to a Poisson (3) distribution, uncertainty was

initialized to a Beta (5,5) distribution, and λr was initialized to 1 (Erdos-Renyi

random graph). While this batch shows the lowest temporal error of any fully

random model, it does not adequately replicate the shape of the empirical

curve, most noticeably during the period 2008-2012 (see figure 6.4). Aver-

age spatial error is summarized in table 6.3 for base-case models and several

important random batches (see table 6.1 and 6.2 for model descriptions).

6.2 Spatial Evaluation

After the model is fit, it is important the simulated model outcomes match

patterns in the data that were not used in the fitting process. The density

distribution of systems over space is one important pattern to match, given
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Figure 6.4: Random initialization batch with fit distribution parameters.
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Table 6.2: RMSE calculated for marginal (quarterly) and cumulative adoption
rates, base-case against random Normal, Poisson, and Beta initializations.

RMSE

Batch Marginal Adoption Cumulative Adoption Description

317 106.01 126.65 un-constrained
326 116.98 173.95 constrained
264 6937.44 75383.57 pbc Pois(13)
265 81.65 251.33 pp Pois(13)
263 6841.48 84472.24 pbc Pois(13), pp Pois(13)
266 122.27 966.22 U Beta(1,2)
262 106.8 874.35 sia N(0, 0.3)
256 364.50 1143.23 λr

261 109.79 885.97 λr, sia N(0,0.3)
279 6498.72 29253.84 sia, pbc
280 6190.95 37642.05 sia, pbc, pp
281 116.64 892.63 sia, pp
260 122.30 967.23 λr, sia, U , pp, pbc
331 65.95 257.49 λr, sia, U , pp, pbc

90



the importance of location for value of solar calculations, infrastructure invest-

ments and system performance among other things. Spatial error aligns with

temporal error in most cases, in that lower values are found for the base-cases

than for batches with random components. Relative to the fitted random

model, an increase of 0.1 in the spatial correlation coefficient was observed

in the base-case model. This is substantiated by the 0.08 increase in fuzzy

numerical similarity. The base-case is compared to the empirical spatial dis-

tribution of PV owners in figure 6.5. Also, the wavelet analysis correlation

coefficients seem to match well with the Fuzzy Numerical statistics. Both sug-

gest that empirical distributions generate outcomes that are more similar to

observed spatial patterns than random distributions, even in the fitted case.

It is also notable however, that the fitted random case performs considerably

better than the unfitted cases.

Table 6.3: Means of spatial error statistics for base-cases and random models.

Spatial Error

Batch bi − ai Correlation, r Fuzzy Numerical, Ξ

317 -0.99 0.56 0.42
326 0.79 0.56 0.41
262 4.20 0.39 0.34
256 -9.52 0.48 0.38
263 -158.18 0.33 0.18
280 -237.19 0.31 0.13
331 1.09 0.46 0.34
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a. Empirical b. Simulated (B317)

c. Simple Error (a-b) d. Fuzzy Numerical
Similarity
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Figure 6.5: Spatial verification of the base-case SECAD model.
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Figure 6.6: In-simulation evolution of attitude and economic capability.

6.2.1 Spatial Evolution of Agent Variables

Both sia and pbc are necessary conditions for adoption: an agent must have

an attitude over 0.6, and a pbc that is greater than the simple payback at

time t. Figure 6.6 shows the difference in payback and pbc in blue, and sia

in red and yellow at snapshots taken at Q1 2010, Q1 2012 and Q2 2013 for

the unconstrained base-case, batch 317. Negative numbers (blue) show areas

where the agents are over the economic threshold and are thus able to adopt

given a high sia. Positive numbers over 0.6 (red) show areas where agents are

over the attitude threshold and are able to adopt given favorable economics.

Overlapping areas are solar PV adopters.
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Chapter 7

Scenarios

In this section we discuss several hypothetical policy scenarios, leveraging the

ability of a validated ABM to simulate situations outside the observed range

of the data. While we explore three scenarios here (Targeted Information Dis-

semination Campaigns, Tiered Rebates, and Alternative Rebate Schedules),

there is large potential for expansion. The exploration of additional scenarios

will be the primary focus of future work with the SECAD model.

7.1 Targeted Information Dissemination Campaigns

As shown in figure 4.7, the market penetration of PV is far beneath the po-

tential market in terms of economic capacity to adopt; there are many more

households that could afford solar PV than purchase the technology. This gap

then is a function of attitude and information. This is in line with the identifi-

cation of informational costs with non-technical barriers to solar energy market

penetration [96]. It has been noted in the literature that information dissem-

ination campaigns and direct subsidies act as economic complements rather

than substitutes: the combined effect of information dissemination campaigns

and subsidies has a greater effect than either enacted in isolation [7]. Thus it
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would appear that there is large potential for identifying influential nodes in

the network through centrality measures, and using them to diffuse informa-

tion through the social network.

Existing solar policies are targeted exclusively at the economic barriers to so-

lar PV adoption. In this scenario, we reroute a small portion of the utility’s

budget into an informational campaign. These kinds of campaigns are often

performed by solar community organizations (SCO’s), and can include work-

shops, meetings, mailings, home visits, etc.[107]. While we leave the exact

nature of the campaign unspecified (in reality this campaign could be any one

of or any combination of the above), we assume that the effect of the campaign

on the target household is a marginal decrease in uncertainty (U).

To operationalize the effect of an added informational campaign, it is nec-

essary to estimate the cost of this intervention. There is little information

about the cost-range of these types of programs. One review of the medical

intervention literature found costs ranging from $0.03-$0.32 per person per

year using mass-media resources. However, targeted information dissemina-

tion campaigns presumably require substantially greater investment. Here, we

assume a highly conservative cost of $10 per 0.01 decrease in uncertainty. No

literature was found that attempted to quantify the cost and return associated

with this kind of campaign in terms of attitude or uncertainty. The cost per

agent, the number of agents, and the method for determining the targeted

agents are all scenario parameters. Here we hold the cost and the marginal

uncertainty decrease constant, and explore the number of targets and mode
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Centrality Measure
Eigenvector
Degree
Betweenness
Closeness

Figure 7.1: Geographic distribution of central agents in the study area accord-
ing to different centrality measures.
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of targeting. Specifically, we target specific households based on their cen-

trality in the social network. Figure 7.1 plots the 100 most influential nodes

in the network with respect to each of the centrality measures discussed in

section 1.6. These targeting methods are compared to randomly chosen target

agents (Batches 351, 352), and results are summarized in table 7.1. Percent-

age increase reflects the mean difference in cumulative installations relative to

unconstrained base-case at end of simulation (Q2 2013).

Table 7.1: Targeted information dissemination campaigns outcome summary.

Targeted Information

Batch % Increase $ per Watt $ per Watt Increase Description

317 0.00 2.04 0.00 Base-case, un-constrained
351 2.11 2.05 0.01 100 random targets
352 9.34 2.09 0.05 random targets
310 -0.01 2.05 0.01 100 in-degree targets
311 1.39 2.07 0.03 500 in-degree targets
312 10.34 2.10 0.06 100 betweenness targets
313 12.03 2.12 0.08 500 betweenness targets
322 1.75 2.06 0.02 100 closeness targets
323 9.54 2.09 0.05 500 closeness targets
324 0.08 2.05 0.01 100 eigenvector targets
325 3.39 2.06 0.02 500 eigenvector targets

7.1.1 Degree Centrality

We targeted 100 influential agents based on highest degree-centrality. We

hypothesized that because these agents were the ones most likely to be reached

out to, seeding them with information would result in an increase in cumulative
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Figure 7.2: Informational dissemination campaign simulation targeting high
in-degree agents.

adoptions. However, as figure 7.2 shows, there was no noticeable increase off

the base-case, even when the number of targeted agents was increased to 500

(Batch 311). This is explained by the dynamic illustrated in figure 7.3–there

is a clear impact on sia, but because central nodes tend to be co-located in

highly dense neighborhoods with lower pbc levels, there is little impact in terms

of installed systems.

7.1.2 Betweenness Centrality

Next we targeted influential nodes based on betweenness centrality in batches

312 and 313. Agents with higher betweenness tended to be less clustered
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Q1 2010Q1 2010 Q1 2012Q1 2012 Q2 2013Q2 2013In-Degree Targets

PP-PBC

SIA
-1 - 0

-40 - -8
-7 - 0
0.1 - 10

0.01 - 0.59
0.6 - 1

Figure 7.3: Evolution of attitudes and economic capacity under informational
dissemination campaign scenario targeting high in-degree nodes.

than those with high in-degree, increasing their potential for impact. Fur-

ther, these agents are by definition able to act as connectors between different

neighborhoods. Here we did observe a relatively large increase in the cumula-

tive number of installations over the base-case (see table 7.1). This is due to

high-betweenness agents with connections to areas that become economically

activated as solar PV prices decline (figure 7.5).

7.1.3 Closeness Centrality

The nodes with highest closeness centrality are those which can reach all the

other nodes on the graph in the fewest amount of steps. They tend to be well-

dispersed geographically. Batch 322 examines the effects of an informational

campaign targeted at the 100 a nodes with the highest closeness centrality. We

find an increase the cumulative number of installations in the study area as

a result of this campaign. The effect is increased in Batch 323, which targets

500 agents based on closeness. Results are shown in figure 7.6.
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Figure 7.4: Informational dissemination campaign simulation targeting high
betweenness agents.

Q1 2010Q1 2010 Q1 2012Q1 2012 Q2 2013Q2 2013

PP-PBCPP-PBC

SIA
-1 - 0-1 - 0

-40 - -8-40 - -8
-7 - 0-7 - 0
0.1 - 100.1 - 10

0.01 - 0.590.01 - 0.59
0.6 - 10.6 - 1 Betweenness TargetsBetweenness Targets

Figure 7.5: Evolution of attitudes and economic capacity under informational
dissemination campaign scenario targeting high betweenness nodes.
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Figure 7.6: Informational dissemination campaign simulation targeting high
closeness agents.
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7.1.4 Eigenvector Centrality

Batches 324 and 325 look at an informational campaign targeted at 100 nodes

with high Eigenvector centrality. Eigenvector centrality accounts for the cen-

trality of an agent’s neighbors in calculating its degree of influence. In this

way, a low-degree node can be central if it is connected to a few high-degree

nodes. However, this can have the effect of amplifying spatial clustering in

geographic networks. As the map in figure 7.1 shows, agents with high eigen-

vector centrality are all concentrated in one high-density area in south Austin,

and tend to be low-pbc agents. Thus, any visible effect from the informational

campaign is slightly negative in terms of attitude as uncertainty is decreased,

creating a slight local cooling effect. This is seen in figure 7.8.

7.2 Tiered Rebates

The potential to vary rebate amount to customers potentially addresses two

areas of interest for policy makers. First, the fact that solar PV owners tend

to be much wealthier than average has raised equity concerns in relation to

rebates for solar PV. Because rebates are drawn from publicly generated rev-

enues, they can have a regressive effect [91, 106]. Further, due to heterogeneity

in wealth and price elasticity, when offered the same rebate, some consumers

are capturing a surplus: for example, if the same consumer would have bought

their system if given a $4,000 rebate, but received a $5,000 rebate, the extra

$1,000 is surplus to the customer.
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Figure 7.7: Informational dissemination campaign simulation targeting high
Eigenvector centrality agents.

Q1 2010Q1 2010 Q1 2012Q1 2012 Q2 2013Q2 2013
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0.6 - 1 Eigenvector Targets

Figure 7.8: Evolution of attitudes and economic capacity under informational
dissemination campaign scenario targeting high Eigenvector centrality nodes.
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Second, due to transmission congestion, the occurrence of load-pockets and

other factors [14], the electricity generated by solar PV systems may have

different values for electric utilities based on location. The potential to offer

different rebates in different locations based on value increases the ability of the

utility to take advantage of solar energy and could allow for greater penetration

levels without grid destabilization.

Therefore, we simulate a two-tiered utility offering: one at the empirical rate

in dollars per Watt, and another at a higher rate. The first scenario (Batch

327) explores offering $0.25 above the empirical rate to all customers in the

bottom wealth (W ) quartile. The impact of this offering over space can be

seen in figure 7.9. The left panel (a) shows density in the base-case (Batch

317) for the selected zip code, the middle panel (b) shows Batch 327, where a

tiered rebate ($0.25) is offered to low wealth households, and the right panel

(c) shows Batch 328, where the increased rebate is offered to all households in

the target zip code. The density of installations increases in south and east

Austin (generally low wealth areas), and decreases slightly in north and west

Austin (generally high wealth areas).

In (Batch 328) we select just one zip code, intended to represent any potential

locationally relevant segment (for example a dense load-pocket) and offer the

higher rebate to all the agents in that zip code. As expected, this scenario

results in a large increase in adoptions in that zip code relative to the base

case. In the base case, on average 42 of the 5376 households in the zip code

(0.78%) became PV adopters by Q2 2013. Under the tiered rebate, on average
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(a) Base-case (b) Batch 327
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(c) Batch 328

Figure 7.9: Spatial assessment of tiered rebate scenario simulations.

594 of the 5376 households (11.05%) became adopters. Next (Batch 308), we

simulate a mixed strategy–attempting to stimulate adoption in one key area

among low wealth households. Batch 309 repeats this with a slightly higher

rebate ($0.50 above the empirical rate).

Tiered rebates have a large impact on the mean wealth distribution for adopters.

Figure 7.13 plots the mean home value for adopters over time in the tiered

rebate scenarios described above. Average home value for non-adopters in the

study area ($267,965.80) is much lower than that of adopters in all scenar-

ios, regardless of the time period. Interestingly, in all scenarios, the average

wealth of solar PV adopters is increasing. This reflects an area of poor model

fit, as the empirical data suggests average home values have decreased overall,

although the trend is not smooth over time. This is likely due to the model

generally over-predicting installation density in central Austin, where home

values tend to be higher.
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Figure 7.10: Cumulative number of installations over time in the Tiered Re-
bates Scenarios.
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(a) Base-Case, Batch
317)

(b) Tiered Rebate
($0.25), Batch 308

(c) Tiered Rebate
($0.50), Batch 309

Figure 7.11: Low income tiered rebate scenario impact on Q2 2013 system
density, target zip code, highlighted by white dashed line.
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Figure 7.12: Evolution of sia and pbc in the tiered rebate scenario model 308.
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Figure 7.13: Mean wealth for adopters in the scenario simulations.
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7.2.1 Alternative Rebate Schedules

The schedule of utility rebates has a large effect on the value proposition of

solar PV. Further, there is the possibility of optimizing the rebate schedule

in order to take advantage of peer effects on the demand side, and learning-

by-doing on the supply side. In different market contexts, it may make sense

to have a declining rebate schedule, or a flat rebate schedule. The empirical

rebate schedule and the two simulated schedules used as scenarios are shown

in figure 7.14. In both the flat and the steep scenario the average offering over

the course of the study time-frame is held at the empirical average(2.51). The

steep schedule starts at $9.5 per Watt, and declines exponentially according

to equation 7.1.

Rt = R0.9
t−1 (7.1)

Altering the rebate schedule has a large impact on cumulative installations.

As expected, the unconstrained steep schedule (Batch 330) shows very rapid

installations, followed by a long period of gradual increase. The constrained

steep case (Batch 334) shows a similar pattern, but the budget is quickly

exhausted due to the size of the rebates being offered. This eventually re-

sults in fewer cumulative installations than the base-case. The unconstrained

flat schedule (Batch 329) shows markedly fewer installations early, but by-

passes the base-case in 2013. The flat constrained case (Batch 333) results

in a few more systems than the base-case on average, trading off early sys-
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empirical case and two hypothetical scenarios.
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Figure 7.15: Cumulative number of installations over time in the adjusted
rebate schedule scenarios.

tems for late systems. Results are shown in table 7.2 and figure 7.15. The

budget-constrained cases are much cheaper on a cost-per-system basis. Both

for the constrained and unconstrained cases, the program costs (per-system)

are higher for the flat rebate schedule, and much higher for the steep schedule

relative to the base-cases.
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Table 7.2: Alternative rebate schedule outcome summary.

Alternative Rebate Schedules

Batch % Increase $ per Watt $ per Watt Increase Description

317 0 2.04 0.00 Base-case, un-constrained
330 335.27 4.56 2.52 Steep, un-constrained
329 25.04 2.25 0.21 Flat, un-constrained

326 0 2.19 0.00 Base-case, constrained
334 -14.19 3.26 1.07 Steep, constrained
333 1.06 2.22 0.03 Flat, constrained
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Chapter 8

Discussion

This work has six major novel contributions to the scientific understanding

of the diffusion of innovations and solar photovoltaics, each of which has a

concrete policy application. These findings can be summarized as follows:

1. Consumer Attitudes and Economics

In the popular discourse, the diffusion of solar PV, and the outcomes

associated with it, such as the de-centralization and transformation of

the electric power system [69], the threat to utility business models [14],

large-scale emissions reductions [66, 112], and decreasing grid stability

[39], is thought of only as a function of economics. However, many cur-

rent solar PV owners are not wealthier than average and were able to

purchase panels at a time when the systems were not highly profitable.

This suggests that other factors are acting to limit solar diffusion. As

shown in figure 4.7, the actual market penetration at any given point is

dwarfed by the potential market defined by economic capability. Differ-

ences in attitude and information explain this gap. Importantly, both

attitude and information are inherently dynamic, much more so than

economic capacity: people change their minds, and become informed.
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Addressing this information and attitude gap is a golden opportunity for

policy-makers looking for low-cost ways to reduce greenhouse gas emis-

sions, meet RPS requirements, achieve distributed generation targets, or

increase power generation capacity.

2. Successful Informational Dissemination Campaigns

While this golden opportunity certainly exists, the way outcomes can be

influenced by information dissemination campaigns will be determined

by the structure of the social network. Using influential individuals to

disperse this information is a low cost way for utilities, solar installers,

or non-profits to disperse accurate information to the public, more so

than randomly located individuals. In geographically local small-world

networks, individuals with high betweenness centrality are ideal for in-

formation dispersal due to their ability to act as informational brokers

between neighborhoods that could otherwise be isolated. Further, in a

market where prices are declining over time, because targeted informa-

tional campaigns increase the number of installations in early periods,

they have the potential to increase costs for the utility above the cost of

program implementation.

3. Addressing Equity Issues

Ensuring that rebate dollars are not inequitably captured requires clas-

sifying households by wealth. Measures like income or home-value, while

not perfect, can be acceptable proxies for wealth. Tiered rebate struc-
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tures can change the wealth distribution of adopters, and decrease the

magnitude of the wealth inequality. In the scenario offering $0.25 to the

bottom 25% of households by market home-value, the magnitude of the

inequality was reduced by 22.6% on average. However, this will decrease

the number of systems installed under a constrained-budget environment

and increase program costs. Further, if a low-wealth area does not have

a reasonable installed base of PV systems, the rebate offering will not

have its full effect due to informational and attitudinal deficiencies. In

low installed-base areas informational campaigns should be combined

with tiered rebates.

4. Increasing Value of Solar in the Grid

Simulations suggest that utilities can easily increase the installed base in

a load-pocket through targeted rebates, if information is readily available

through existing solar PV systems in the neighborhood. However, be-

cause the offering is associated with costs, utilities will need to perform

granular value-of-solar calculations to find a suitable rebate offering. An

ideal (but challenging and potentially costly) way this could be imple-

mented is to perform value-of-solar calculations at the feeder level, and

pay solar PV owners this rate for the electricity produced by their sys-

tems. We will attempt to better simulate this potential scenario in future

work.

5. Designing Rebate Schedules
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While optimization was not performed on the rebate schedule design, the

path to doing so by minimizing the simulated $ per system metric in table

7.2 is clear. Clearly the major influencing factors are the system price

curve and the system size curve, as the utility has costs in proportion to

the number of Watts added to the grid. In smaller markets that act as

price-takers, and thus are not able to generate learning-by-doing effects

in suppliers, policy-makers should not expect to derive as much value

from steeply declining rebate schedules. Further, it is noteworthy that

on a per-system cost basis, the empirical utility rebate schedule out-

performed the two hypothetical cases in the budget constrained as well

as unconstrained case. Further, there is evidence that using hard budget

constraints reduces program costs on a per-system basis, although it does

not appear that this is the way the electric utility has operated in our

current study area. Because attitudes and prices continue to change in

the absence of rebate hand-outs, budget constraints may be an effective

way for utilities to reduce program costs.

6. Modeling solar PV diffusion Distributed rooftop solar PV is an im-

portant part of the emerging portfolio of energy technologies that will

shape the future electricity generation landscape. The ability to accu-

rately model how much PV will be added to the grid and where will im-

pact the important decisions made by utilities and governments regard-

ing future investments, climate change, air quality and human health.

Apart from the shortcomings addressed in chapter 1, traditional models
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(and even some ABMs) tend to inadequately address either the social,

economic, or attitudinal sub-models that interact in consumer decision-

making. The lack of empirical grounding in any of these components

has large effects on simulation outcomes over time and space. Even fit-

ted random models are not able to fully replicate existing patterns, and

perform far worse on emergent pattern replication.

We hope to have demonstrated the value and potential of empirical agent-based

modeling, particularly in the ability to generate hypothetical policy scenarios.

Although other socio-technical systems were not explored at the level of detail

that solar PV was, it is very likely that these general lessons apply. Emergent

technologies, particularly those with large environmental benefits, will likely

require policy measures to internalize market externalities and reach market

penetration levels at which these benefits are realized. As both the granular-

ity and availability of socio-technical data increase, the ability for modeling

complex human systems will provide new opportunities for informed policy

design. To make an analogy from the diffusion of innovations literature, simu-

lation provides ’trialability,’ which is absolutely critical in designing effective,

equitable, and cost-efficient policies and programs.

8.1 Future Work

Work on the SECAD model is ongoing, and will focus on the development of

further policy and decision-support scenarios. A few additional scenarios we
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plan to test include: electricity price change sensitivity, rebate schedule op-

timization, strategic seeding of systems in low-income neighborhoods, smart-

targeting (proving information to low-attitude households, and economic in-

centives to low-wealth households), and induced peer effects through social-

media interventions. Further, the fitted model allows us to test other impor-

tant hypotheses that are difficult to assess in the field, such as the relative

importance of strong and weak ties in the formation of new adoption clusters,

and time-to-economic versus time to attitudinal activation models. We also

intend to examine the role of peer-effects in our model in parallel with existing

survey-based research [118].

Beyond these scenarios, we plan on expanding the SECAD model to include

supply-side agents (installers, contractors, etc.), who use various marketing

techniques to push technologies into the marketplace. In addition to creating

more realistic agent interactions, this will allow for the testing and assessment

of competing business strategies within a dynamic marketplace. We would also

like to expand the model to different residential markets, and are continuing

to collect data from different municipalities toward this goal.

Network topology plays a large role in adoption outcomes. To improve the

extra-local connections in the small world network, we must determine the

structure of relevant non-neighborhood connections influential to decision-

making about solar PV. Future work will seek to empirically derive these

non-local connections, or at least reduce the degree to which they are random.

We are working on a nation-wide survey to reveal these connections that is
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scheduled to be deployed sometime this year.
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Appendix A

Supporting Information

A.1 Relevant Survey Questions

The UT solar survey data used in this analysis were gathered in two phases:

the first in 2011, the second in 2012, and the third in 2013. The survey

administered electronically (online) was used to construct a novel dataset of

solar PV adopters in Texas. The majority of respondents were located in the

greater Austin and Dallas-Fort Worth metro areas. The sample of complete

responses for the Austin area (616) reflects a total response rate of (22.5%).

The following questions were used in this analysis (question numbers refer to

survey ordering):

1. 2.2 How important were the following factors in your final decision to

install a PV system (1-5)?

Your general interest in energy and electricity generation

Your evaluation that solar PV is a good financial investment

Reducing impact on the environment by using a renewable energy

source
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Influence of others in the neighborhood with PV systems

Influence of a close acquaintance not from your neighborhood

2. 3.1 Please characterize the overall profitability of your PV system at the

time you decided to install.

3. 3.4 What resulting values from the above financial estimates (Net Present

Value (NPV); Rate of Return; Payback Period; Net Monthly Savings)

did you arrive at?

4. 4.3 How many other owners of a PV system did you have contact with

regarding PV before installing your system?

How many of these contacts were in your neighborhood?

5. 4.5 As far as you know, how many PV systems were in your neighbrohood

when you were deciding to install?

6. 4.6 How much do you agree or disagree with each of the following state-

ments about PV systems in your neighborhood during the decision-

making process (1-5)?

PV Systems in the neighborhood motivated me to seriously consider

installing one

Seeing other PV systems in the neighborhood gave me confidence

that it would be a good decision to install one

7. 6.2 In general, how concerned were you about environmental issues before
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the installation of your PV system?

8. 6.3 How willing are you to pay much higher prices in order to protect

the environment?

9. 6.4 How would you describe the level of concern for environmental issues

in your neighborhood (a radius of roughly 5-10 blocks around your house)

(1-5)?

A.2 Diagnostics for Regression (equation 5.5)

The model generates expected values for socially informed attitude about PV

through correlated regressors: wealth (W ), size of the lot in square feet (sP ),

and tree cover in square feet (T ). Four data points were found to have a large

amount of influence in the regression (Cook’s D ¿ 0.2), and were removed.

Four of the plots used to identify these points are shown in figure A.1. Due to

the large number of potential covariates, model selection was performed via a

stepwise procedure using AIC and AdjR2. The model presented in equation

5.5 is the result of this process, having an AdjR2 of 0.21, and an AIC of 557.44.

The p-value for the model is <0.0001. Further, analysis of residuals suggests

good fit. Figure A.2 shows four additional diagnostic plots: the residuals

appear to be randomly and normally distributed, and there are no highly

influential points after those shown in figure A.1. Surprisingly, while sP was

consistently a significant predictor, in none of the models was s (size of the

home in square feet) significant.
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Figure A.1: Cooks distance, standardized residuals, Bonferroni’s P-values, and
hat-matrix values for the model were plotted to identify influential observa-
tions. Four of these were removed.
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Figure A.2: Diagnositic plots for equation 5.5
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Appendix B

Sensitivity Testing

Because agent-based modeling involves multiple parameters (see table 4.3), it

is important to test the model’s sensitivity to each model parameter across a

range of potential values. Sensitivity testing serves five distinct purposes.

1. Verify model structure and parameter definitions. From a verification

standpoint, sensitivity testing shows that each parameter is behaving as

expected, or if not, shows which parameters require further scrutiny.

2. Increase understanding of the model. By altering parameter values, it

is possible to quantify each parameter’s marginal effect. This is useful

in allowing the parameter to be understood in a classical econometric

sense. Further, full parameter sweeps can generate insight into parameter

interaction effects.

3. Demonstrate ABM flexibility and range of outcomes. By varying param-

eters along realistic ranges, the total range of outcomes that the model

will generate can be found. This can be compared to the range generated

by each parameter to gain an understanding of relative sensitivity.

4. Cast insight on the system being modeled. Through identifying marginal
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impacts, and potentially by finding unforeseen interaction effects, it is

possible to generate inference into the system being modeled. This is

only possible given an empirical framework, and is especially relevant to

policy-makers wary of unintended consequences.

5. Show potential alternative scenarios. While the generalization of any

model results should be approached with extreme caution, altering the

ABM parameters can potentially shed light into alternative markets, or

at least show the effect of a range of behavioral nudges.

B.1 Budget

The model is sensitive to the presence of a budget constraint, implemented

in model 326. In model number 317, we remove the constraint, simulating

the utility’s willing to take on an deficit. This alters the shape of curve by

effectively capping installations until the next fiscal year if the budget is fully

allocated, as is shown in figure B.1. Here we show model sensitivity results for

constrained and unconstrained models. Importantly, the budget-constrained

cases were run under slightly different parameters than batch 326, which is

why the curves appear altered relative to those seen in chapter 7. However,

the effects remain the same.
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Figure B.1: Model sensitivity of the utility budget constraint
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B.2 Intensity of Interaction

Figure B.2 shows the model’s sensitivity to µ, which controls the speed of

convergence in the model. The budget constraint was applied in each of these

models. µ does not have a linear relationship with cumulative adoption, be-

cause with very quick convergence, average sia levels in the model are repressed

by influence of non-adopters. Because uncertainty U is also dynamic, if atti-

tudes stay low they become more difficult to influence over time. Table B.1

lists RMSE statistics for this parameter sensitivity. Low µ minimizes marginal

RMSE, while a moderate µ of 0.5 minimizes cumulative RMSE.

The scenario’s showing the sensitivity to µ without the budget constraint are

shown in figure B.3. The results are similar in that µ has a non-linear effect

on the number of cumulative installations.
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Figure B.2: Model sensitivity to the weight on each interaction, µ.

Table B.1: Marginal and cumulative RMSE for µ sensitivity.

RMSE

Batch Marginal Adoption Cumulative Adoption µ

214 95.73 639.21 0.2
218 128.78 431.88 0.3
217 139.18 359.90 0.35
215 152.20 295.67 0.4
216 161.60 262.14 0.45
219 207.86 242.50 0.5
220 147.18 297.50 0.55
221 134.93 355.25 0.6
222 112.22 414.18 0.7
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Table B.2: Means of spatial error statistics for µ sensitivity.

Spatial Error, µ

Batch bi − ai Correlation, r Fuzzy Numerical, Ξ

218 1.73 4.91 0.35 0.3
216 0.62 4.84 0.40 0.45
222 1.64 3.89 0.40 0.7
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Figure B.3: Model sensitivity to the weight on each interaction, µ, in uncon-
strained case.
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Figure B.4: Model sensitivity to number of interactions, φ, with budget con-
straint.

B.3 Number of Interactions

Increasing the number of interactions (φ)that each agent has per quarter has a

positive marginal effect on the number of cumulative installations, as shown in

figure B.4. The budget constraint was applied in each of these models. Table

B.3 lists RMSE for sensitivity to φ. Low φ minimizes marginal error while

high φ of 7 minimizes cumulative error in the budget constrained case.

After lifting the budget constraint, increasing the number of interactions has

a larger effect on the number of cumulative installations (figure B.5), however,

there are diminishing marginal returns–increasing from one to two has a much

larger effect than increasing from seven to eight.
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Table B.3: Marginal and cumulative RMSE for φ sensitivity.

RMSE

Batch Marginal Adoption Cumulative Adoption φ

227 100.28 588.58 1
226 130.57 429.05 2
225 143.65 347.09 3
226 130.57 329.05 4
216 161.60 262.14 5
228 168.41 240.95 6
229 172.49 229.08 7
230 173.87 229.19 8

Table B.4: Means of spatial error statistics for φ sensitivity.

Spatial Error, φ

Batch bi − ai abs(bi − ai) Fuzzy Numerical (Ξ) φ

227 1.99 4.81 0.35 1
216 0.62 4.84 0.40 5
230 0.49 4.68 0.41 8

Table B.5: Marginal and cumulative RMSE for φ sensitivity, without the
budget constraint.

RMSE

Batch Marginal Adoption Cumulative Adoption φ

267 90.76 646.22 1
268 103.72 366.64 2
269 140.94 290.12 3
270 162.10 380.32 4
250 188.76 432.09 5
271 206.22 506.63 6
272 220.34 565.35 7
273 231.89 612.78 8
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Figure B.5: Model sensitivity to number of interactions, φ, without the budget
constraint.

B.4 Random Connections

The proportion of random connections (λr) in the agent social networks has

an interesting effect on diffusion outcomes over time. As shown in figure B.6,

more random networks show increased adoption over empirically derived net-

works until t11 (Q3 2010), when the effect is inverted. This is due to the

trade-off between the speed of information spread and the strength of feed-

back effects. Early, static geographic networks help reinforce positive attitudes

toward solar PV, leading to high cumulative installations. In the language of

TPB, these local effects create a strong social norm. However, the same local

structure creates barriers to widespread adoption as information disseminates

more slowly compared to the random networks (λ = 1), where information

can take rapid shortcuts across the entire graph. The budget constraint was
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Figure B.6: Model sensitivity to the proportion of random connections, λ.

applied in each of these models. Table B.6 lists λr sensitivity RMSE. The

base-case proportion of random connections, 0.1, minimizes marginal error,

while the lowest cumulative error is seen with 20% random connections.

After lifting the budget constraint, the same effect is observed, and can be seen

more clearly for high λr simulations. The low λr effect of increasing adoptions

early on is still visible, although somewhat less-so.

B.5 Perceived Behavioral Control Ceiling

Altering the scale ceiling for pbc changes the way the agent’s calculated per-

ceived behavioral control (equation 5.11) is mapped onto a scale representative

of the payback period. Increasing this value increases the number of agents

that can potentially adopt solar at a given time t, which has the logical conse-
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Table B.6: Marginal and cumulative RMSE for λr sensitivity.

RMSE

Batch Marginal Adoption Cumulative Adoption λr

240 142.96 311.80 0.0
216 128.78 262.14 0.1
231 176.93 247.01 0.2
232 173.11 265.47 0.3
233 182.85 260.77 0.4
234 192.12 261.67 0.5
235 204.03 266.66 0.6
236 212.34 284.08 0.7
237 219.61 301.97 0.8
238 224.92 310.69 0.9
239 231.88 318.20 1.0

Table B.7: Means of spatial error statistics for λr sensitivity.

Spatial Error, λr

Batch bi − ai abs(bi − ai) Fuzzy Numerical (Ξ) λr

240 1.22 5.09 0.38 0.0
216 0.62 4.84 0.40 0.1
233 1.13 3.78 0.43 0.4
234 0.97 3.73 0.44 0.5
239 1.19 3.37 0.37 1.0
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Figure B.7: Model sensitivity to the proportion of random connections, λ
without the budget constraint.

quence of increasing the cumulative number of installations predicted by the

simulation. The budget constraint was applied in each of these models. Tem-

poral error statistics are shown in table B.8. The lowest marginal RMSE is

observed with the 28.56 floor, while the lowest cumulative RMSE is seen with

the 24.56 floor. Unconstrained results are shown in figure B.9, and show the

same relationship as the constrained case.
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Figure B.8: Model sensitivity to the scale ceiling for mapping pbc to payback,
pbcC.

Table B.8: Marginal and cumulative RMSE for pbcC sensitivity.

RMSE, pbcC

Batch Marginal Adoption Cumulative Adoption pbcC

243 98.09 635.86 26.56
242 95.77 551.85 28.56
241 116.26 432.37 30.56
216 161.60 262.14 32.56
244 175.32 223.66 34.56
245 207.86 242.50 36.56
246 255.86 394.49 38.56
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Figure B.9: Model sensitivity to the scale ceiling for mapping pbc to payback,
pbcC, without the budget constraint.

Table B.9: Means of spatial error statistics for pbcC several sensitivities.

Spatial Error, pbcC

Batch bi − ai abs(bi − ai) Fuzzy Numerical (Ξ) pbcC

243 2.58 4.41 0.33 26.56
216 0.62 4.84 0.40 32.56
246 0.15 5.85 0.38 38.56
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