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SUPERVISOR:  Jonathan Pierce-Shimomura 

 
Alcohol abuse is an enormous problem causing death and disability to over 43 

million people worldwide each year (WHO).  Chronic alcohol consumption also 

contributes to abnormal brain morphology and significant brain volume loss indicative of 

neurodegeneration.  Until there are effective treatments to alter maladaptive behavioral 

patterns in alcohol abuse, more research is needed to prevent alcohol-induced toxicity 

and degeneration.  We used C. elegans as a model system to identify genetic modulators 

of alcohol toxicity and explored whether prolonged alcohol exposure damages the 

nervous system.  In our study, we exposed L4-larval stage worms to varying 

concentrations of ethanol for three days and found a dose-dependent deficit in crawling.  

Furthermore, we evaluated degeneration by assessing the health of neurons using 

fluorescent reporters.  Compared to the untreated group, we found that ethanol-exposed 

worms had a significant neurodegeneration.  Previous findings using C. elegans have 
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suggested that the innate immune pathway may protect against neurodegeneration caused 

by drug toxicity (Schreiber & McIntire, 2012). We find that deletion of either the innate 

immune gene nsy-1 (orthologous to the mammalian ASK-1 MAPKKK) or pmk-1 

(orthologous to the mammalian p38 MAPK) caused hypersensitivity to ethanol toxicity.  

Conversely, boosting innate immune signaling via gain-of-function mutation in nsy-1 

produced resistance to ethanol toxicity and ameliorated ethanol-induced cholinergic 

degeneration.  Our findings indicate that prolonged exposure to ethanol leads to both 

behavioral impairments and neuronal degeneration in C. elegans and that the ASK1/p38 

MAP kinase pathway may play a role in ethanol-induced damage to the nervous system.  
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Chapter One: Review on alcohol-induced neurodegeneration and innate 
immunity 

INTRODUCTION 
Innate immune system function is the first line of defense against all types of 

exogenous pathogens, toxins and injury. Upon infection, the innate immune system 

activates signaling cascades that ultimately induce inflammation, immunity and repair. 

The innate immune system and its role in disease have received significant attention over 

the past decades.  Increasing evidence in animal models indicates that sustained 

inflammation due to a dysregulated innate immune system results in tissue pathology and 

production of neurotoxic agents— components that are directly linked to 

neurodegenerative diseases. Understanding mechanisms of innate immune system 

activation as it produces inflammatory responses will be vital for providing therapeutic 

strategies for the prevention and treatment of chronic degenerative diseases.  

Due to its well-established role in the pathogenesis of many CNS disorders, 

understanding the innate immune system inflammatory response as it relates to 

alcoholism and alcohol-induced brain damage has been an expanding area of interest. 

Recent discoveries have provided evidence of a direct link between alcohol-induced brain 

damage and immune system activation, specifically, neuroinflammation. Alcohol 

exposure results in Toll-like receptors (TLRs) activation, phosphorylation of mitogen-

activated protein (MAP) kinase pathways and proinflammatory cytokine production. 

These exciting discoveries have elucidated mechanisms by which chronic alcohol 

consumption induces both short and long term damage to the central nervous system. 



 2 

Advances within the areas of neuroimmunology and alcohol abuse may provide new 

approaches for the treatment of alcohol-induced neurodegeneration and brain damage.  

INNATE IMMUNE SIGNALING PATHWAY 
Increasing evidence within the ethanol and neuroimmunology field has suggested 

a critical role for Toll-like receptors (TLRs) in alcohol-induced brain damage. TLRs are a 

family of highly conserved membrane glycoproteins that recognize molecules, or 

pathogen-associated molecular patterns (PAMPs), derived from microbes. TLRs were 

first cloned in Drosophila, and so far, 11 mammalian homologs have been characterized 

(Hashimoto et al., 1988). TLRs form a complex with the superfamily of proteins known 

as interleukin-1 receptors (IL-1R). This complex is activated upon binding of different 

ligands including bacterial lipopolysaccharide (LPS), heat shock proteins and 

lipopeptides. Some of the molecules needed to initiate the immune signaling cascade 

include myeloid differentiation primary-response protein 88 (MyD88), IL-1R-associated 

kinase (IRAK), transforming growth factor-β (TGF-β)-activated kinase (TAK1), TAK1-

binding protein 1 (TAB1), TAB2 and tumour-necrosis factor (TNF)-receptor-associated 

factor 6 (TRAF6) (See figure 1). Collectively, recruitment of these downstream signaling 

molecules can activate mitogen-activated protein kinase (MAPK) pathways. Stimulation 

of the MAPK signaling cassette results in activation of transcription factors (TFs) — AP-

1 and NF-κB. Ultimately, stimulation of AP-1 and Nf-κB increases expression of genes 

that encode pro-inflammatory mediators such as inflammatory cytokines (Li et al., 2002; 

Akira and Takeda, 2004, Nguyen et al., 2002).  
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MAMMALIAN MAP KINASE (MAPK) SIGNAL TRANSDUCTION PATHWAYS 
Mammalian MAPKs can also be activated by endogenous stimuli such as growth 

factors, hormones and cytokines as well as environmental factors including UV 

irradiation, heat shock and injury. Currently, there are six different groups of MAPKs that 

have been characterized—extracellular regulated kinases (ERK) 1/2, ERK 7/8, ERK 3/4, 

ERK5, Jun terminal kinases (JNK 1/2/3) and lastly, p38 (p38 α/β/ϒ/δ). MAPK signaling 

induces downstream phosphorylation of MAPK kinase kinase (MAP3Ks), MAPK kinase 

(MAPKK) and MAPK, which act via downstream substrates (i.e. CREB, AP-1, etc.) and 

eventually induce expression of MAPK-activated protein kinases (MKs). Activation of 

these pathways has been implicated in many different biological responses and processes 

including cell proliferation, survival, apoptosis and inflammation (Krishna and Narang, 

2008).  

The p38 MAPK pathway has been extensively studied, and its critical role in 

innate immune response has received significant attention over the past decades.  Some 

of the upstream activators of p38 kinases are MKK3, MKK6, ASK1 and TAK1; upon 

activation, p38 phosphorylates downstream targets that include transcription factors (TF)  

(i.e. ATF and CREB), which lead to activation of genes that encode proinflammatory 

proteins. Studies have indicated that activation of p38 initiates production of pro-

inflammatory cytokines, enzymes such as cyclooxygenase-2 (COX-2) and inducible 

nitric oxide synthase (iNOS) (Pietersma et al, 1997; Krishna and Narang, 2008).  

Additionally, activation of the p38 MAPK pathway regulates expression of 

proinflammatory genes via post-transcriptional and post-translational mechanisms 
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(Bolling et al., 2003). Although the role of p38 MAPK has been found to be essential in 

immune function, the exact mechanisms involved in p38 functions remain elusive. 

Moreover, due to its involvement in various cellular processes (i.e. cell cycle, apoptosis, 

cell survival, differentiation and development, etc.)  its categorization to a specific 

response has been proven difficult. 

INNATE IMMUNITY IN C. ELEGANS 
 Although the mammalian immune system consists of innate and adaptive layers 

of protection, the nematode worm C. elegans relies solely on innate immune system 

activation against pathogenic attack. This is one of the advantages of using C. elegans as 

a model organism for the study of innate immunity—it allows for a clear dissection and 

characterization of key innate immunity components independent from adaptive immune 

system interaction.  Similarly, C. elegans is a powerful tool that provides a genetically 

tractable model system that can be used to identify genes responsible for innate immune 

response at the molecular and cellular levels. One approach that has been fundamental in 

the identification of innate immune genes is through the use of genetic screens.  Here, 

worms are exposed to a strong mutagen, which results in random gene mutations in the 

subsequent generation of worms.  Genetic manipulations available in C. elegans offer 

complementary tools for studying the contribution of individual genes to innate immune 

function.  

Although the innate immune system is conserved across species, there are certain 

differences between C. elegans and mammalian immune systems. Firstly, there are no 
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known homologs of the transcription factor NF-κB or adaptor protein MYD88. Secondly, 

the C. elegans gene tol-1, orthologous to the mammalian Tlr genes, does not appear to 

regulate innate immune response upon PAMP exposure. Thirdly, there are no known 

cytokines produced by the C. elegans innate immune system upon microbe infection.  

Although some of important components of mammalian innate immune system are not 

encoded in the C. elegans genome, there are, however, evolutionarily conserved signal 

transduction pathways including p38 MAPK, β-catenin, and FOXO, which are activated 

during immune response (Troemel et al., 2006; Pukkila-Worley et al., 2012) Furthermore, 

due to the lack of homology to NF-kB and MYD88 mediated immune response, C. 

elegans is a powerful genetic model, which has proven useful in identifying and 

elucidating TLR-independent components of innate immunity.  

RECENT STUDIES IN C. ELEGANS INNATE IMMUNITY 
 Genetic screens have yielded important discoveries in innate immunity C. 

elegans.  For instance, the mammalian p38 mitogen-activated protein (MAP) kinase 

pathway has been identified to be homologous with the C. elegans NSY-1/SEK-1/PMK-1 

pathway. NSY-1 is orthologous to the mammalian ASK-1 gene; SEK-1 mammalian 

ortholog is MKK3/MKK6 and PMK-1 is orthologous to the mammalian p38 MAP 

kinase. Activation of nsy-1 requires activation of the upstream gene tir-1, orthologous to 

the mammalian SARM. Additionally, recent findings have indicated that the nsy-1/sek-

1/pmk-1 pathway is activated upon exposure to pathogen infection, osmotic stress and 

biogenic amines (Hisamoto et al., 2001; Kim et al., 2002; Schreiber and Mcintire, 2012). 
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  nsy-1, sek-1, pmk-1 null mutants exhibited higher susceptibility to killing by a 

wide variety of infections including Gram-negative pathogens P. aeruginosa (Kim et al., 

2002; Troemel et al., 2006), Salmonella enterica (Aballay et al., 2003), Yersinia pestis 

(Bolz et al., 2010) and Serratia marcescens (Shivers et al., 2010); as well as the Gram-

positive pathogens Enterococcus faecalis (Shivers et al., 2010) and Staphylococcus 

aureus (Sifri et al., 2003). Similarly, it was discovered that sek-1 and pmk-1 are required 

for defense against oxidative agents as well as the crystal toxin produced by Bacillus 

thuringensis, respectively (Inoue et al. 2005;Troemel et al., 2006;). Together, these 

findings have provided important insight into conserved aspects of innate immune 

pathways. Combining findings in C. elegans and rodent models will shed light to the 

molecular components of innate immune response and their involvement in human 

disease.   

LPS: ITS ROLE IN NEURODEGENERATION AND ALCOHOLISM 
Lipopolysaccharide (LPS) is an endotoxin present in the outer membranes of 

Gram-negative bacteria. LPS binding to TLRs activates a signaling cascade, which 

ultimately results in an immune response. Studies have demonstrated that systemic or 

central administration of LPS induces the expression of proinflammatory cytokine 

mRNAs and proteins such as IL-1β AND TNF- α in the brain (Van Dam et al., 1992; 

Laye et al., 1994; Quan et al., 1999).  Although LPS is one of several other molecules 

recognized by TLRs— the interaction between LPS and TLRs and their role in 

neuroinflammation/neurodegeneration remain elusive.  
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Recent studies demonstrated that shortly after systemic LPS and alcohol 

administration induced increases in TNF-α production (Qin et al., 2008). This was one of 

the first studies to suggest a link between systemic LPS and cytokine-mediated 

neuroinflammation. Shortly after this discovery, Qin and colleagues extended their 

previous study by administering 3 mg/kg of LPS and measuring its immediate (1hr post 

LPS administration) and chronic (10 days ethanol treatment) effect on cytokine 

production. They found that LPS quickly generated significant increases in TNFα, MCP-

1, and IL-1β mRNA and protein levels in mouse brain, serum and liver.  

A recent study by Blednov and colleagues (2011) described the effect of LPS 

administration on alcohol consumption. Different strains of mice were tested for alcohol 

preference, motivation and consumption following LPS administration. They found that 

two injections of LPS produced persistent increases in alcohol consumption, and that this 

effect was dependent on genetic background and gender (Blednov et al., 2011). Their 

results are consistent with previous findings-- mice lacking functional chemokines, 

cytokines, or TLR4 show reduced ethanol consumption in comparison to wild type. The 

results of this study strongly suggest that there is a neuroimmune regulation of ethanol 

consumption and that innate immune signaling may indirectly promote alcohol drinking 

in mice and possibly humans.  

TLR4 IS ACTIVATED BY ETHANOL 
It was recently discovered that acute or chronic ethanol exposure activated glial 

cells by stimulating the TLR4 and IL-1R signal transduction pathways in cultured 
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astrocytes (Blanco et al., 2005). Subsequent studies by Silvia Alfonso-Loeches et al. 

demonstrated that TLR4 is essential for ethanol-induced neuroinflammatory signaling 

since TLR4-deficient mice did not show activation of astrocytes, pro-inflammatory 

cytokines as well as MAPK and NFkB signaling pathways after chronic ethanol exposure 

(Alfonso-Loeches et al., 2010). This was the first study to provide evidence that glia 

activation following ethanol exposure is associated with increased levels of pro-

inflammatory molecules IL-1, caspase-3, iNOS and COX-2 in wild type mice.  

Further corroborating the role of TLR4 signaling in ethanol-induced effects, a 

study by Wu and colleagues (2012) found that inhibiting the TLR4/MyD88 signaling 

cascade using either naloxone (an opioid and TLR4 antagonist) or TLR4 or MyD88- 

knockout mice reduced sedation and motor impairment in mice that were acutely exposed 

to ethanol. In this particular study, naïve mice with null mutations in the Tlr4 and Myd88 

genes were injected with a single, high or moderate, alcohol dose and were assessed for 

alcohol-induced sedation and motor dysfunction. Furthermore, Tlr4 and Myd88 knockout 

mice were assessed for alcohol-induced behavioral changes following naloxone treatment 

before alcohol exposure. They found that mice null in Tlr4 and Myd88 recover more 

quickly from alcohol-induced motor impairment and sedation. They also found that low 

and high alcohol doses activate proinflammatory-signaling molecules within the CNS. 

However, they did not observe p38, JNK or ERK phosphorylation following acute 

ethanol exposure in hippocampal cells in vitro. Their data contradict previous findings by 

Alfonso-Loeches et al., indicating that the mechanisms underlying chronic and acute 
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ethanol-induced neuroinflammation may be constitutively different. Their data suggest 

that other inflammatory mediators may also be involved in the alcohol-induced 

inflammatory damage in the brain.   

Although the mechanism by which ethanol interacts and promotes TLR4 and IL-

1R recruitment remains unknown, a study by Blanco et al., found that stimulation and 

signaling of TLR4/IL-1R complex in glia occurs exclusively through lipid rafts, or 

cholesterol-enriched plasma membrane microdomains. Additionally, they suggest that 

ethanol is a TLR4 and IL-1R agonist and that it may interact with other proinflammatory 

signaling molecules including IRAK and ERK (Blanco et al., 2008).   

NF-ΚB AND ITS ROLE IN NEURODEGENERATION AND ALCOHOLISM 
NF-κB is a family of transcription factors (TFs) known for their regulation of 

genes involved in immune response, synaptic plasticity, cell death/cell survival, and 

inflammation (Crews et al., 2006; Rulten et al., 2006; Ward et al., 1996; Zou and Crews, 

2006, 2010). In its inactive form, the NF-κB family of dimers is composed of five 

members: p65, p50, REL-B, cytoplasmic REL, and p52.   NF-κB heterodimer (p65/p50) 

is kept inactive by IκB—an inhibitor protein that keeps NF-κB from translocating to the 

nucleus (Akira and Takeda, 2004).  NF-κB can be activated by a variety of extracellular 

stimuli such as growth factors, inflammatory mediators and glutamatergic excitotoxicity.  

(Yakovleva et al., 2011). Additionally, it was recently demonstrated that chronic or acute 

ethanol exposure activates NF-κB TFs in the CNS resulting in downstream activation of 

TNF-α and proinflammatory cytokines (Crews et al., 2006). A different study performed 
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DNA microarray analysis in ethanol treated mice in order to identify ethanol-regulated 

genes. Upon either acute or chronic ethanol administration, they found that ethanol 

differentially regulated the NF-κB pathway in a dose-dependent manner: acute ethanol 

treatment resulted in increased NF-κB protein expression, whereas chronic ethanol 

treatment led to significant inhibition of NF-κB transcription (Rulten et al., 2006). These 

findings provide evidence that at the mammalian transcripitional level, ethanol may be 

acting via the NF-κB pathway.  

CYTOKINES AND ETHANOL 
It was recently discovered that there is reciprocal communication between the 

brain and the immune system, mediated by signaling molecules known as cytokines. 

Cytokines are widely expressed in glia (astrocytes and microglia) and their receptors are 

ubiquitously expressed in all cell types in the CNS. During physiological conditions, 

cytokines regulate inflammation by producing pro or anti-inflammatory responses. For 

instance, pro-inflammatory cytokines such as tumor-necrosis factor-α (TNF-α), 

interleukin-1 (IL-1) and IL-6 levels are elevated during brain injury as well as in response 

to infections and endotoxins. Increased cytokine production has been associated with a 

variety of pathologies such as neurodegenerative diseases including Alzheimer’s disease, 

Parkinson’s disease, amyotrophic lateral sclerosis and multiple sclerosis, mood disorders 

(depression) as well as alcoholism (Glass et al., 2010).  

The effect of alcohol on cytokine production and innate immune activation is 

complex and variable. For instance, during the last decade, it has been established that 
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alcohol consumption causes increased levels in both systemic and brain levels of 

cytokines.  Specifically, chronic alcohol intake in humans was associated with elevated 

levels of TNF- α, IL-1 and IL-6 (McClain et al., 2004; McClain and Cohen, 1989 and 

Crews et al., 2006). Conversely, low to moderate alcohol consumption has been shown to 

reduce the risk of developing type-2 diabetes and coronary heart disease (Hendriks and 

Van Tol, 2005; Collins et al., 2009, Sinforiani et al., 2011). It is proposed that the 

mechanism by which alcohol protects from these diseases is by inducing anti-

inflammatory signals via anti-inflammatory cytokines such as IL-4 and IL-10.  In vitro 

studies demonstrated that moderate alcohol exposure increased production of IL-10 in 

monocytes. Additionally, they found that alcohol treatment in macrophages inhibited the 

production of proinflammatory cytokines via the NF-kB pathway (Mandrekar et al., 

2001).  Both of these findings suggest that light-to-moderate alcohol intake exerts anti-

inflammatory effects by both suppressing pro-inflammatory signals as well as by 

increasing anti-inflammatory cytokine production. Collectively, this evidence suggests 

that ethanol induces different effects on cytokine production and immune response 

depending on the dosage (acute or chronic exposure) and on the history of alcohol 

consumption (see figure 2).  

INCREASED MCP-1 IN THE ALCOHOLIC BRAIN   
 Another important cytokine that has been implicated in alcohol-induced 

neuroinflammation and ethanol consumption is monocyte chemoattractant protein-1 

(MCP-1 or also known as CCL2) (Blednov et al., 2005). For instance, a study in human 

postmortem brains of alcoholics found elevated MCP-1 protein concentration in the 
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ventral tegmental area (VTA), substantia nigra, hippocampus and amygdala in 

comparison to non-alcoholic brains (He et al., 2008). This evidence identifies another key 

component in the neuroimmune involvement in alcohol-induced brain damage. 

ALCOHOL-INDUCED CNS DAMAGE 
Chronic alcohol exposure results in a dysregulation of the innate immune system 

by altering cytokine expression and immune response, all which may ultimately lead to 

long-term damage to the central nervous system. For example, individuals who consumed 

alcohol chronically had abnormal brain morphology, significant volume loss and reduced 

neurogenesis (Crews and Nixon, 2009), all of which are indicative of neurodegeneration.  

It has been noted that alcohol-induced neurodegeneration occurs during intoxication, and 

that the frequency and recency of binge-drinking episodes best predicts the extent of 

alcohol-induced brain damage.  

Severe alcohol abuse impairs learning and memory abilities and can sometimes 

develop into more severe forms of mental dysfunction such as alcoholic-related amnesia 

and/or dementia.  The most common form of alcoholic amnesia is Korsakoff’s syndrome, 

being the second leading cause of adult dementia in the U.S. (Eckard and Martin, 1986) -- 

characterized by severe memory loss, impaired executive function and apathy (Kessels 

and Kopelman, 2012). Although memory deficits are accompanied by this condition, 

intelligence and other cognitive functions remain intact. Imaging studies have found 

significant changes in morphology and physiology in the brains of alcoholics. These 

changes have been associated with the memory loss and cognitive impairments seen in 
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individuals with Korsakoff’s syndrome and alcoholic-related dementia.  Typically, there 

is significant volume loss and weight reduction in the brains of alcoholics (Crews and 

Nixon, 2009).  Specifically, postmortem studies have shown shrinkage of both gray and 

white matter across different brain regions as well as reduced ventricle size (Sullivan and 

Pfefferbaum, 2005). Even though alcohol-induced damage has been observed throughout 

the entire brain, the frontal cortex appears to be particularly vulnerable (Kubota et al., 

2001). Disrupted frontal lobe function contributes to impaired judgment, reduced affect, 

decreased motivation, distractibility, and impulsivity (Crews and Nixon, 2009); behaviors 

that are typically observed in alcoholics.  Other affected brain regions include the 

hypothalamus, medial septal nucleus, insula, cerebellum and hippocampal area (Fadda 

and Rossetti, 1998).  

  In addition to inducing abnormal brain morphology and volume reduction, 

chronic alcohol consumption also inhibits neurogenesis. For instance, a study by Herrera 

et al., (2003) found that ethanol selectively reduced the number of newly formed neurons 

in the dentate gyrus of ethanol dependent animals. A different study found that chronic, 

but not acute, ethanol administration resulted in significantly decreased neurogenesis in 

the dentate gyrus of animals that were pretreated with both ethanol and LPS (Qin and 

Crews, 2008). This, and other studies have found that chronic alcohol exposure results in 

reduced neurogenesis, and that this effect occurs via LPS induced neuroinflammation—

elucidating the mechanism by which chronic alcohol consumption contributes to 

neurodegeneration via an innate immune response.  
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MECHANISM UNDERLYING ALCOHOL-INDUCED CNS DAMAGE 
Currently, the mechanism of alcohol-induced neurodegeneration and how the 

innate immune system is influencing this damage remains unclear. In a binge ethanol 

model of alcohol dependence (Zou and Crews, 2006), it was demonstrated that alcohol 

induced oxidative stress and proinflammatory signals all of which are indicative of 

neurotoxicity and neuronal death. Similarly, ethanol reduced BDNF and CREB-regulated 

gene expression at similar times when neurodegeneration was most noted. Another study 

suggested oxidative damage to have an important role in alcohol-induced neuronal 

damage.  

It has been proposed that NADPH oxidase (NOX) plays in role in alcohol-induced 

neurodegeneration and neurotoxicity. Activation of NOX in microglia results in the 

formation of reactive oxygen species (ROS) in the brain ultimately leading to 

neurotoxicity (Qin et al., 2004). Previous studies found significant increases in 

proinflammatory cytokine, chemokine and ROS levels following chronic alcohol 

exposure. Qin and Crews expanded these findings by establishing a critical role of the 

NOX-ROS complex in alcohol-induced neurodegeneration. Data from this study 

suggested that chronic ethanol consumption leads to long lasting increases in both NOX 

production and proinflammatory oxidative stress in the brains of mice and humans. 

Conversely, treatment with diphenyliodonium (DPI), a known NOX inhibitor, resulted in 

decreased ROS production, which in turn stopped alcohol-induced neurodegeneration in 

ethanol treated mice.  Results from this study further support the theory of 

neuroinflammation and oxidative stress as key mediators in alcohol-induced 
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neurodegeneration and neuronal death (Qin and Crews, 2012). Although this evidence 

elucidates a pathway by which atrophy and degeneration occur following chronic alcohol 

consumption, the exact mechanism that underlie CNS degeneration as a result of chronic 

alcohol consumption remain elusive.  

PROTECTIVE ROLES OF THE INNATE IMMUNE SYSTEM 
 

There have been discrepancies in deciphering the role of inflammatory response 

in neurodegenerative diseases, mood disorders and alcoholism. While an inflammatory 

response due to injury or infection is necessary for repair and protection of neurons as 

well as the maintenance of normal functioning, sustained inflammation can cause 

degeneration and damage to the CNS. Although a growing number of studies have 

demonstrated that proinflammatory molecules have detrimental effects in the CNS, there 

is evidence of beneficial roles of the innate immune response.  

For instance, in a study by Arnett et al. (2001), mice lacking TNF- α and TNF- α 

receptors had a significant reduction in neuronal remyelination in their model of Multiple 

Sclerosis (MS).  They found that TNF receptor 2 (TNFR2), and not TNFR1 was critical 

for oligodendrocyte regeneration, and that TNF- α is involved in nerve remyelination and 

reparation (Arnett et. al 2001). In addition to its involvement in degenerative processes, 

TNF- α has been shown to play a role in ischemic injury as well as epileptic seizures. 

Heldmann et al., (2005) investigated the effect of TNF- α inhibition on the survival of 

hippocampal neurons in rats that had endured an ischemic injury. They found that rats 

treated with anti-TNF antibodies had reduced hippocampal and striatal neurogenesis in 
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comparison to animals given control protein. Theses results suggest that TNF- α 

signaling may be necessary for neuronal repair and survival after an ischemic insult 

(Heldmann et al., 2005).  In a different study by Bruce and colleagues (1996), mice 

genetically deficient in TNF receptors that received an ischemic or excitotoxic brain 

injury exhibited increased neurodegeneration and oxidative stress, indicating that TNF 

may have neuroprotective properties by activating antioxidant pathways (Bruce et al., 

1996).  

Another proinflammatory cytokine that has been linked to CNS repair is 

interleukin-1β (IL-1 β). Its role in the remyelination process was demonstrated in a study 

by Mason et al., (2001). Following curprizone (a strong demyelinating agent that results 

in impairment and death of oligodendrocytes) treatment, IL-1β knockout mice showed 

decreased remyelination as well as insulin-like growth factor-1 (IGF-1) levels in 

comparison to wild-type animals. Together, these findings indicate that receptors and 

cytokines that are involved in the innate immune response (such as TNF and IL-1 β) have 

neuroprotective properties against injury and toxin-induced demyelination. More research 

is needed to elucidate innate immune response and its role in normal brain functions as 

well as in neurodegeneration; currently this mechanism remains unknown, and it appears 

that the immune system can have dual roles in the CNS. 
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Chapter Two: ethanol-induced toxicity and neurodegeneration in C. 
elegans 

 

INTRODUCTION 
Excessive alcohol consumption results in damage to various organs particularly 

the brain. Neuropathologies consequent to chronic alcohol consumption include reduced 

brain volume, abnormal brain morphology and decreased neurogenesis (Crews and 

Nixon, 2009; Fadda and Rossetti, 1998). Conversely, lower to moderate alcohol 

consumption can exert protective actions by reducing the risk of developing type 2 

diabetes, cerebrovascular and coronary heart disease by promoting anti inflammatory and 

anti oxidative processes (Hendriks and Van Tol, 2005; Collins et al., 2009, Sinforiani et 

al., 2009). These findings suggest that alcohol consumption has beneficial and deleterious 

health effects dependent on frequency and dosage of drinking. 

 Emerging evidence indicates a role for innate immune system activation in 

neurodegenerative diseases as well as alcohol abuse disorders. For instance, chronic 

alcohol exposure caused increases in brain levels of inflammatory mediators, 

upregulation of innate immune gene expression and activation of innate immune 

signaling pathways, all which have been implicated in CNS atrophy and degeneration 

(Alfonso-Loeches et al. 2010; Blanco et al., 2005; Arlinde et al., 2004; Zou and Crews, 

2010).  

Despite increasing evidence supporting a role for innate immunity in alcohol-
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induced brain damage, the mechanisms of alcohol-induced neurodegeneration and how 

the innate immune system is influencing this damage remain unclear. We used the 

genetically tractable organism Caenorhabditis elegans to explore molecular and cellular 

mechanisms of alcohol-induced neurodegeneration. Firstly, its short-life span, transparent 

body and well-characterized nervous system allow for a simpler approach to studying 

neurodegeneration.  Secondly, its lack of an adaptive immune system facilitates the study 

of innate immunity independent of adaptive immune system activation.  Lastly, it has 

been demonstrated that C. elegans exhibits behavioral intoxication at physiologically 

relevant ethanol doses, and that these effects are mediated by conserved genes and targets 

in the nervous systems of invertebrates and mammals (Morgan and Sedensky, 1995; 

Bettinger and McIntire, 2004; Davies et al., 2003, 2004; Davis et al., 2008; Graham et al., 

2009; Kapfhamer et al., 2008; Lee et al., 2009; Mitchell et al., 2007; Speca et al., 2010). 

In this study, we developed an in vivo model of chronic alcohol exposure to 

investigate whether high doses of ethanol could result in neuronal degeneration and 

toxicity in C. elegans. Because a novel model of Alzheimer’s disease (AD) developed by 

Crisp et al. (in submission, 2013) demonstrated that a specific subset of neurons (VC-

class cholinergic neurons 4 and 5) were particularly susceptible to amyloid precursor 

protein (APP)-induced degeneration, we explored whether prolonged alcohol exposure 

could also lead to cholinergic neurodegeneration. We discovered that alcohol-treated WT 

worms exhibited notable deficits in crawling as well as increased cholinergic 

degeneration. Additionally, we found that mutations in the nsy-1 gene bidirectionally 
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influenced locomotion rates following chronic alcohol exposure and that boosting activity 

of nsy-1 resulted in enhanced resistance from alcohol-induced neurodegeneration and 

toxicity. 

RESULTS 

There is a dose-dependent deficit in crawling after prolonged exposure to ethanol 
We first examined the behavioral effects of ethanol in C. elegans. To determine 

appropriate ethanol doses to study chronic (72 hours) ethanol exposure, we treated L4-

larval stage worms with 100mM, 200mM and 400mM ethanol.  Previous work by Davies 

et al. 2003, showed that internal concentrations of ethanol for worms exposed to 400 mM 

and 500 mM ethanol were about 22 mM and 29 mM, respectively. These concentrations 

are equivalent to human blood alcohol concentrations of 0.1% (Davies et al., 2003). 

 We examined crawling behavior by quantifying the number of head bends over a 

20 second period following chronic ethanol exposure.  We found that treatment with 

200mM and 400mM ethanol strongly inhibited crawling behavior as indicated in figure 3 

(p-value = 0.00 for 200mM and 400mM ethanol at α = 0.05). Our results are consistent 

with previous reports that showed dose-dependent depression in locomotion in animals 

treated with ethanol (Davies et al., 2003, 2004; Alaimo et al., 2012; Morgan and 

Sedensky, 1995).  

nsy-1 activity bidirectionally influences ethanol-induced toxicity 
Once we confirmed alcohol-induced behavioral defects using our in vivo assay of 

chronic ethanol exposure and found that 400mM ethanol produced the most dramatic 
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effect on crawling behavior in ‘wild type’ worms, we next examined ethanol-induced 

crawling impairments in animals carrying mutations in the nsy-1 gene (orthologous to the 

mammalian apoptosis signal-regulating kinase 1 (ASK1)). Our rationale for testing these 

strains arose from a study by Schreiber and McIntire, 2012, in which a screen using 

dopamine-induced lethality identified a mutation in the nsy-1 gene that resulted in strong 

resistance to toxic effects of exogenous dopamine as well as various types of 

amphetamines. Furthermore, nsy-1 gene both prevented degeneration and maintained 

neuronal function in a subset of cholinergic and dopaminergic neurons in Alzheimer’s 

disease (AD) and Parkinson’s disease models, respectively. (Schreiber & McIntire, 2012; 

Crisp et al., in submission). 

We hypothesized a protective role for innate immunity; specifically, that boosting 

innate immune signaling, through gain-of-function mutation in nsy-1 enhances resistance 

to ethanol-induced toxicity and neurodegeneration. We found that nsy-1(gf) mutants had 

significantly higher number of head bends (3.8 head bends/20 sec) compared to wild type 

animals (2.2. head bends/20 sec) after chronic ethanol treatment (p-value = 0.00) (Figure 

4). This suggests that increasing nsy-1 activity may be protective of crawling deficits 

associated with ethanol intoxication.  

We next explored whether nsy-1(lf)  mutants showed opposite phenotypes to nsy-

1(gf) strain. We found that nsy-1(lf) worms were hypersensitive to ethanol by showing 

significantly reduced number of head bends in comparison to control ‘wild type’ (p-value 

= 0.005) and nsy-1(gf) (p-value = 0.00).  Together, our findings suggest that there is an 
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inverse relationship between innate immunity and ethanol toxicity, and that nsy-1 activity 

correlates with the concentration of exogenous ethanol.  

It was previously discovered that nsy-1 interacts with downstream gene pmk-1 

(orthologous to mammalian p38 MAP kinase) in response to pathogenic bacterial attack, 

and that pmk-1(lf) mutant worms showed enhanced susceptibility to killing upon 

infection (Troemel et al., 2006). We thus tested whether pmk-1(lf) worms were 

hypersensitive to ethanol toxicity and found significantly impaired crawling behavior in 

comparison to nsy-1(gf) mutants (p-value = 0.00). These findings further support the idea 

that immuno-compromised mutants are more vulnerable to the effects of toxic agents and 

bacterial infection, and for the first time, we show that innate immunity in C. elegans is 

modulated by prolonged ethanol exposure.  

The nsy-1 and pmk-1 loss-of-function mutant animals we tested had lower 

average number of head bends (5.6 and 5.9 head bends/ 20 sec, respectively) than the 

wild-type animals (6.8 head bends/20 sec) in the absence of ethanol treatment (figure 5). 

To account for these genotype-specific crawling differences, we calculated the effect of 

ethanol relative to the untreated crawling rates for each strain. We found nsy-1(lf) and 

pmk-1(lf) mutants showed significantly reduced number of head bends in comparison to 

nsy-1(gf) worms indicating that the crawling deficits are mediated by ethanol and not by 

the specific genotype (p-value = 0.00 for nsy-1(lf) and pmk-1(lf)) (figure 5).   

To further explore alcohol-induced toxicity, we assessed lethality following 
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chronic ethanol exposure. Because earlier results indicated that ethanol treated nsy-1 (lf) 

and pmk-1 (lf) mutant worms had dramatic locomotor impairments, we predicted 

increased lethality rates in these strains. We observed ~ 29% dead pmk-1 (lf) worms in 

comparison to only ~8% dead wild-type animals. Intriguingly, nsy-1 (lf) mutants did not 

display enhanced ethanol-induced lethality as was observed in pmk-1(lf) mutants, with 

only ~ 1% dead worms (figure 6).  

Chronic ethanol exposure results in degeneration of cholinergic neurons 
Analysis and characterization of cholinergic neuronal degeneration in our 

laboratory prompted us to study the effect of chronic alcohol exposure on the health of 

these neurons (VC4 and 5).  Using fluorescent reporters (see methods), we first 

investigated whether alcohol treatment induced cholinergic degeneration in wild type 

strains.  We discovered that this specific subset of cholinergic neurons was dying 

following ethanol treatment (Figure 7). Compared to untreated ‘wild type’ worms, 

ethanol treated worms had significantly higher percentage of VC4 and VC5 degeneration 

(~45%). To our knowledge, this is the first demonstration of cholinergic degeneration 

following prolonged alcohol exposure in C. elegans.  

To test whether increasing nsy-1 activity produced resistance against alcohol-

induced neuoredegeneration, we compared wild-type versus nsy-1(gf) mutant worms and 

found significant resistance in these mutants to damage to cholinergic neuron somas and 

processes (figure 8). This suggests that boosting innate immunity through nsy-1 

ameliorates alcohol-induced toxicity as well as neurodegeneration.    
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DISCUSSION 
We have discovered behavioral effects of prolonged ethanol exposure on C. 

elegans, suggesting this genetically tractable organism is useful for studying conserved 

mechanisms of alcohol-induced effects. Our study complemented previous findings by 

demonstrating that nsy-1(gf) mutants are resistant against the toxic effects of prolonged 

exposure to ethanol in addition to amphetamines and dopamine (Schreiber & McIntire, 

2012).  Moreover, our results provide evidence that genetic modulation of nsy-1 activity 

(by either increasing or decreasing nsy-1 signaling) bidirectionally influences ethanol-

induced toxicity. For instance, we found that nsy-1 gain of function mutants had 

increased crawling rates compared to wild type after chronic treatment to ethanol. 

Conversely, nsy-1(null) mutants showed significantly inhibited locomotion rates 

compared to wild type and nsy-1(gf) worms. This indicates that alcohol exposure may 

trigger activation of the conserved p38 MAP kinase pathway—an innate immune 

signaling cassette that is activated in response to pathogenic attack and osmotic and 

oxidative stress (Krishna and Narang, 2008; Inoue et al., 2005). We propose that 

increased nsy-1 activity increases protein NSY-1/ASK1 synthesis, which in turn may 

promote cell survival and immune-like function yielding protection against toxic agents 

including ethanol.  

We show that alcohol induces degeneration of cholinergic neurons and that 

increasing nsy-1 activity ameliorates this degeneration.  Further experiments will reveal 

whether alcohol exposure triggers degeneration in other classes of neurons, and whether 

this is a patterned degenerative process. Additionally, we will need to investigate ethanol 
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toxicity using lower ethanol concentrations at various time points. By doing so, we will 

determine whether there is a time-dependent effect of ethanol on crawling, 

neurodegeneration and lethality in nsy-1 and pmk-1 mutants. Furthermore, it will be 

important to determine p38/MAP kinase pathway’s activity biochemically and the 

mechanism of ethanol-induced toxicity and neurodegeneration—is neuronal death 

occurring via a necrotic or apoptotic process?  

Deciphering the role of innate immunity in the degenerating central nervous 

system (CNS), identifying the mechanism underlying alcohol-induced neurodegeneration 

and lastly, understanding how alcohol modulates immunity would be vital in providing 

therapeutic approaches for the treatment and prevention of neuronal damage.   

 

CONCLUSION 
Our results suggest that the level of p38 MAP kinase innate immune signaling 

bidirectionally influences alcohol-induced toxicity in C. elegans. To our knowledge, this 

study provides the first example of neurodegeneration following prolonged alcohol in C. 

elegans. We believe this is the first evidence demonstrating that boosting innate immune 

signaling via nsy-1 produces enhanced resistance to alcohol-induced toxicity and 

neurodegeneration. More research is needed for a better understanding of the mechanisms 

of p38 MAP kinase-activity dependent induction of immune response and its role in 

alcohol-induced CNS damage.  We hope that the results presented in this study may 

provide insight into the genetic modulators and signaling pathways associated with 
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alcohol-induced neurodegeneration and toxicity, and that the knowledge learned from 

worms can be tested in species closer in homology to humans, such as rats and mice.  

MATERIALS AND METHODS 
Nematode culture and strains: Strains used were wild-type C. elegans, and mutant strains 

BZ981 nsy-1 (eg691); AU3 nsy-1(ag3); and KU25 pmk- 1(km25). For visualizing VC 

neurons, Ptph-1::GFP (strain LX959)  was used. Strains were grown on nematode growth 

media (NGM) agar plates seeded with OP50 bacteria at 20°C as previously described 

(Brenner et al., 1974).  Animals cultured on plates contaminated with fungi or other 

bacteria were excluded from this study. 

 

Behavioral Tests: For all behavior assays, a suspension of E. coli (50 microliters) was 

placed in the center of plates and allowed to air-dry. Each assay was conducted on worms 

beginning at L4-larval stage onward over several trials. 15 minutes prior to the assay, 

cold 100% ethanol was added to the dried assay treatment plates to a final concentration 

of 400 mM ethanol unless otherwise noted. 

 

Crawling and survival assays: 15 worms were placed on ethanol plates; then plates were 

sealed and stored at room temperature (20°C) and scored for crawling and survival at 72 

hours of ethanol exposure. For locomotion, worms were scored for number of head bends 

in a 20 second window using one-way (single strain concentration effects) or two-way 

(multiple strains comparing both genotype and concentration) ANOVA.  Only worms 

crawling on the bacterial lawn were scored. Significance is indicated for p < 0.05 with 



 26 

Bonferroni correction. For survival, the percentage of dead animals after 72 hours of 

ethanol exposure was compared using Chi-Square Test. 

 

Quantification of Neurodegeneration: Age-synchronized animals were paralyzed on 2% 

agar pads containing 0.7 mM sodium azide.  Neurons that had dimly-lit somas with 

missing/broken projections or absent GFP labeling in the appropriate neuronal location 

were scored as degenerating. All animals were evaluated within 10 minutes of azide 

treatment.  All animals were treated at L4-larval stage onward with the sterilization drug 

5-fluoro-2’-deoxyuridne (FUDR, 0.12mM final) (Sigma).  The percentage of VC4 and 

VC5 neurons that succumbed to alcohol-induced degeneration was compared using one-

way (single strain concentration effects) or two-way (multiple strains comparing both 

genotype and concentration) ANOVA. 
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Figure 1: TLR signaling in mammals 
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Figure 2: Ethanol effect on production of proinflammatory molecules 
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Figure 3: Dose-dependent deficit in crawling after prolonged exposure to ethanol. 
Average number of head bends determined over a 20 second period 
following 72 h exposure to ethanol is shown for wild type (N = 25 trials of 
15 animals per trial). For all figures (except figure 3), data shown are 95% 
mean CI; (*) indicates significance at α = 0.05 (**) α= 0.01 with multiple 
comparison Bonferroni correction. 
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Figure 4: Crawling deficits following prolonged exposure to ethanol in innate immune 
mutants. Boosting innate immune signaling through gain of function 
mutation in nsy-1 resulted in enhanced resistance to ethanol-induced toxicity 
compared to wild type (p-value = 0.00). Loss of function alleles in nsy-1 and 
pmk-1 resulted in hypersensitivity to ethanol compared to wild-type and nsy-
1(gf), respectively). 
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Figure 5: normalized to untreated. Increasing activity through nsy-1 gene resulted in 
enhanced resistance to ethanol-induced toxicity compared to wild type. Loss 
of function alleles in nsy-1 and pmk-1 resulted in hypersensitivity to ethanol 
compared to wild-type  and nsy-1(gf). 
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Figure 6: Lethal effect of prolonged exposure to ethanol. pmk-1(lf) mutants exhibited 
higher lethality (29.3%) to ethanol in comparison to wild type animals 
(8.3%). Lethality is less than 1% for untreated strains. Statistical analysis 
was conducted using Chi Square Test.  
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Figure 7: Chronic ethanol exposure results in degeneration of cholinergic neurons in wild 
type worms. On 400mM, wild type exhibited 47% degeneration.  Untreated 
wild-type animals had 19% degeneration.  
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Figure 8: Boosting innate immune signaling protects against alcohol-induced cholinergic 
degeneration. nsy-1(gf) mutants show lower % degeneration (35%) 
compared to wild type (47%) and nsy-1(lf) (47%). 
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