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Abstract. Drift waves occur universally in magnetized plasmas producing the dominant mechanism for transport of particles,
energy and momentum across magnetic field lines. A wealth of information obtained from laboratory experiments for plasma
confinement is reviewed for drift waves driven unstable by density gradients, temperature gradients and trapped particle
effects. The modern understanding of origin of the scaling laws for Bohm and gyro-Bohm transport fluxes is discussed. The
role of sheared flows and magnetic shear in reducing the transport fluxes is discussed and illustrated with large scale computer
simulations. Plasmas turbulence models are derived with reduced magnetized fluid descriptions. The types of theoretical
descriptions reviewed include weak turbulence theory and anisotropic Kolmogorov-like spectral indices, and the mixing
length. A number of standard turbulent diffusivity formulas are given for the various space-time scales of the drift-wave
turbulent mixing.
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1. DRIFT WAVE MECHANISM

One of the most intellectually interesting problems in plasma physics is the problem of turbulence and the associated
transport of the plasma properties including density, temperature and momentum. Plasma turbulence can be rather
different from that in neutral fluids due to the numerous waves in the plasma. Plasma turbulence is closer to that
of geostrophic flows on rotating planets where the Rossby wave is closely analogous to the plasma drift wave. At
finite amplitude the wave dispersion often balances the wave nonlinearity to form solitary structures and coherent
vortex structures. This aspect of plasma turbulence has been the topic of workshops and conferences both at ITP
Santa Barbara [1] and the Marseille Workshops published as Benkadda et al. [2]. A monograph largely devoted to
these problems is Horton and Ichikawa [3]. Drift waves are the most widely studied form of plasma turbulence in
magnetized, confined plasmas so this first Chapter of the ITER School Proceedings is devoted to the study of these
drift waves.

The search for controlled thermonuclear fusion has been dominated by the use of strong magnetic fields to confine
laboratory plasmas. Through the 1970s to the 1990s the dominant thought was that the low-amplitude drift-wave
turbulence would not seriously impede reaching the critical Lawson condition in MHD stable machines and sufficient
auxiliary (external) plasma heating, P,,x. Exceeding the Lawson condition, n,Tg ~ 1.5 X 10®m~3s at 25KeV, is
required for D-T ignition. In the Lawson condition on n,Tg, T = W /(Py, —dW /dt) is the energy confinement time
defined by stored plasma energy (W), the power input (P,,) and the time variation of the stored energy (dW /dt).

The plasma community now realizes that merely increasing the auxiliary heating is not sufficient to reach ignition.
As external heating is added to the plasma, the turbulence level increases dramatically and more coherent structures
appear so that the confinement time is seriously degraded compared to that of lower levels of auxiliary heating.

A less stringent condition derived from the fusion power P; amplification factor, QO = Pr/P, is maximized at a
lower temperature between 10 —20KeV where the reaction rate (6v)pp o< T} so that Qf ~ n, 7T > 10*! m—KeVs.
Here, to reduce the amplification Qy to the fusion triple product n,tgT, we use Py = (1/4)En2 (0v)py, where
Ey=17.6MeV is the fusion energy release by a D-T reaction and Pogs = nTg /.

Reference values for the drift wave turbulence parameters in the ITER device are given in Table 1. Coherent
structures are now understood to produce intermittent plasma turbulence. There is now a broader level of recognition
in the fusion community that an understanding of the chaos and coherent structures created by plasma drift-wave
instabilities is required to reach practical fusion energy producing regimes. Let us now examine in detail how the basic
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FIGURE 1. The Drift Wave Mechanism

drift-wave mechanism works.

In Fig. 1, we show the profiles of electron density, n,., and pressure, p., along with a drift wave localized over a radial
region Ar = /., between the two cells in the correlation length. The electrostatic potential that gives rise to the electric
field, E = —V ¢, is shown by the positive (red) and negative (blue) ovals. Ahead of the potential there are contours of
enhanced density (0n, > 0) and lower density (0n, < 0) phase shifted by y; = y(n, ¢). The magnetic field is taken to
be in the vertical z direction. Thus, the positive potential cell gives a clockwise rotation and the negative cell a counter-
clockwise rotation of E X B convected plasma. Clearly, due the phase shift there is a greater transport of plasma down
rather than up the density gradient. Thus, there is a net outward flux of density or pressure given by the y-integrated
or time averaged flux (n.v,) = <neEy /B> To be explicit, the model in Fig. 1 and calculation is characterized by the
electric potential wave ¢ sin(kyy — a¢) and by the density wave &n, sin(kyy — @it — ). Calculating the local flux,
onev,, gives I" and averaging over y or time gives I' = Y [k, ¢4 6ny/B] sin ;.. We will see that the electron response to
the potential determines the phase shift y; and amplitude ratio dn./¢. The special case where the phase shift is zero
gives dn,/n, = ey /T, and is called the adiabatic response. This adiabatic response is used in many of the classical
drift-wave models, e.g. when the temperature gradient drives the drift waves unstable rather than the density gradient
(n — T in Fig. 1). In the turbulent plasma this convective flux occurs at each k with the total being a sum over all
scales of k.

We shall see that the typical size of the turbulent cells A; = 27m/k; ~ 6p; and the frequency is approximately
oy = kyvg,, where vg, = —(T, /eBn,)(dn./dr) = T, /eBL, = csps/L,. The scale length, p; = c;/ @, is called the ion
inertial scale length and determines the scale of the waves and vortex structures. In the quasi-geostrophic flow in
planetary atmospheres the equivalent quantity is the Rossby radius [3, p.225]. For reference, a present-day tokamak,
e.g. Tore Supra [4] has R/a = 2.4m/0.72m, B = 2T, n, = 3 x 10"m~3 and 7, = 1KeV. For these parameters
ps/Ly, = 0.1cm/80cm, the sound speed ¢, = 3 x 107 cm/s and thus v4, = 3 x 10*cm/s and the drift wave frequency
for ky = 20cm ™! is like 6 x 10°rad/s or 100kHz. Reference values for ITER included in Table 1. These drift-wave
fluctuations have been studied in detail in a wide variety of laboratory machines.

Drift waves are sufficiently slow so that the electrons adjust to the potential fluctuations such that
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Thus, the waves have the opposite polarization of the MHD waves, which have E| = 0. The parallel electric field,
measured in detail in the experiments, is a key part of the drift waves and the related trapped particle mode instabilities.
The fluctuating electron current, 6y, driven by the parallel electric field takes the energy <5 jHEH> < 0 out of the
nonuniform electron distributions and produces the wave growth. The effect is as though the plasma had a negative
resistivity/conductivity oj (@, k) for the drift wave.

Detailed measurements and comparisons with theory suggest that, in fact, one of the most serious limiting factor for
the success of ITER and similar machines is the control of the drift-wave turbulent transport. The seriousness of the



TABLE 1. ITER [9] and drift wave parameters

Installed auxiliary heating T3MW
Fusion power 500MW
Plasma major radius(R) 6.2m
Plasma minor radius(a) 2.0m
Plasma volume 830m?>
Plasma current(/),) 15SMA
Toroidal field at 6.2 m radius 5.3T
Density gradient length (L) Im
Electron temperature (7,) 10KeV
Electron Diamagnetic Drift Velocity (vg,) 1.9km/s
Ion inertial radius (py) 0.3cm
gyro-Bohm diffusivity (Dgp = Psvg.) 5.7m?/s
Drift wave frequency (@ = kyvy,) 190KHz at kyp; = 0.3
ny
n
(%) f
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FIGURE 2. Expansion diagram under density gradient ny > nj.

turbulence became more evident as machines with increased injected power Py,x have reached core power densities of

1MW /m?. The plasma temperature rises only as a fractional power law, like Pdlu/f , owing to the associated increased
turbulence level. The energy confinement time, Tg, thus decreases even though the temperature increases. The triple
product may remain essentially constant.

As a consequence of this stronger heating power, Py, the turbulence is amplified, which shortens the plasma
energy confinement time, Tz = W /Py, in agreement with the ITER database [5, 6, 7]. The drift-wave turbulence
has explained the empirical database laws for both helical systems [8] and Tokamaks [6, 7], showing that Tz =
Tg(Po /Paux)z/ 3. Thus, doubling the P,y shortens the confinement time, Tz — Tg /1.59 = 0.64172. For example, the
reference design for ITER (see Table 1) has Acrr = Pecg = 20MW and Pypr = 16 MW injected into the plasma
volume of V = 27?Rab ~ 800m>. The average power density is then only 0.07MW /m?. To reach the power density
of 1MW /m? at the core as in current large tokamaks, the ICRH and ECE power need to be focused in the central core
volume of 40m?, corresponding to the core radius r. = 0.6m.

2. ENERGY BOUNDS FOR TURBULENCE

2.1. Density Gradients

The electron drift wave and trapped electron instability (trapped particle mode [10])are driven by the square of the
plasma density gradient in plasmas with no background temperature gradient. The wave with a temperature gradient is
analyzed in Sec.2.2. In the early literature the electron drift wave with y, = (7/2)'/? @2k% p?/ |k [ve o< (dn/ dx)?* was
called the universal instability owing to the drive from (V#)?, which is always present in confined plasmas.

Fig. 2 shows the model for the energy release for the density gradient. The left higher density n; (and pressure
p1 =mnT) box from x = [0,x;] is allowed to expand to [0,xs] and compress the gas in the right box until the force
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FIGURE 3. Carnot cycle diagram for temperature-gradient driven drift waves

balance is reached with

i

X r a—Xx; r
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Solving for the new position xy and calculating the work,

L [
W=- / (Pl —Pz)dx,

a Jx;

per unit volume done by the gas during the expansion gives the free energy. For Ax/a < 1, the turbulent energy per
unit volume is

(AP)xi(a—xi) _ (AP
Waurb < Winax = PL2 < ATP (3)
If the drift wave energy W, is almost entirely in the E X B Kinetic energy of the ions, then we have the bound for
the average turbulent convection velocity,
1/2 £
G2 < (LC) . @)
n

When the correlation length ¢, is limited by the ion inertial scale length ¢, = p;, the bound for the mean square

turbulent plasma velocity is
2\ o Ps
(Vi) < L,

The limit of <v%> < vi . follows from another argument called the mixing length limit. This argument states that when
the gradient of the fluctuating density, Vdn, reaches the value dn/dx = —n/L, of the ambient density gradient, the
gradient source, on average, has been eliminated and growth stops. We then have 6n/n = 1/k.L,. With £, = 1 /ky = p,

The same amplitude limit applies and the scale of the turbulent diffusion Dyp = <v%>1/ 20, = (py/Ly)(T,/eB) is defined
as the gyro-Bohm diffusivity. To derive the famous Bohm diffusivity, Dg = T,/eB, one instead assumes /. to be the
geometric mean of L, and p, [11].

2
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2.2. Temperature Gradients

For auxiliarily heated plasmas that develop a temperature gradient VT (either ion or electron) from input power
P,ux, the relevant thermodynamic argument is the Carnot engine.

As shown in Fig. 3, there is an input of energy Q; in the left box. The vortices and streamers cycle the plasma over
the correlation length £., connecting 77 and 75. Now, for each cycle, the temperature gradient drives the drift wave to
release the energy,

Waarb < AWeamot = ASAT, (6)

where AS is the change in the entropy of the gas. From kinetic theory, the value of the gas constant, I', depends on the
type of drift wave. I' = 5/3 where the wave-particle resonance is @ = @yg + Ocurv and I' = 3 where @y = kHVH and
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FIGURE 4. The Vlasov (GKE) equation growth rate for the ratio of the temperature gradient length to the density gradient
length[12].

ky p; < 1. For toroidal ITG and ETG, a simple calculation for modes with ' = 5/3 yields
3AT A
AS:n<—n>, %
which in Eq. (6) together with AT = —(.dT /dr give
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Fig. 4 shows the roots of the Vlasov-Poisson dispersion relation, Dy (o, it) = 0, with increasing n = VInT /VInn.
Thus, for the kinetic dispersion relation,

Dk(w,u):1+1[1—<“’“’*"("’.€)>}, ©)

T, T;  — op;€+10T

where € = E/T; and 1 denotes system parameters such as 1; and T, /T;. The average < - > is over the local Maxwell
phase-space density f(¢€)
We find from the Nyquist analysis that the critical temperature gradient is given by

olnT 2

dinn 3’ (1%

Nerit =
as shown in Fig. 4. The agreement between the thermodynamical formula and the stability condition of the kinetic
dispersion relations can be understood when we see that the wave frequency, w; ~ 0 at the critical point. Here the
relevant gradient of the phase-space density function f(r) is proportional to d/dr[n/T/?] where

W_a(“”
ar  dr \T9/2(r)

)me<ﬂ (11)

with I = (d +2)/d for a plasma with d degrees of freedom. For one-dimensional waves like Langmuir waves, d = 1
and I' = 3, and for toroidal drift wavesd =3 and " = 5/3.

The key, universal result given by Eq. (8) for Weamot is that there is only a window of 1 values, 0 <n <I'—1
which are generally stable. Drift waves are unstable for both inverted gradients Vn- VT < 0, and strong temperature
gradients VT > Vn.
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FIGURE 5. Compression/Rarefraction in Convection

3. DRIFT WAVE EIGEN-MODES IN TOROIDAL GEOMETRY

The first effect of toroidal geometry that changes the stability of the drift waves is the unfavorable magnetic field line
curvature vector, K = (b- V)b ~ (#cos 6 + 0sin8) /R, which covers the outer half (cos 8 > 0) of the toroidal surfaces.
This magnetic curvature creates small scale interchange turbulence with waves that are only partially stabilized by the
magnetic shear, s = rq’/q, where q(r) = rBy/RBg gives the helical pitch of the field lines. The E,— shear can also
stabilize the modes as discussed in Sec. 4.2. In addition, and closely related, the weakening of the magnetic field with
increasing radius (see Fig. 5) leads to an outward acceleration given by the force, F = — VB acting on the plasma.

In the toroidal drift wave equations the local gradients of the density and pressure are normalized with respect to the
gradient length, R, of the magnetic field. Thus, the key parameters are

L, L,
€= g and g, = R (12)

throughout the toroidal equations.

The faster radial flows shown in Fig. 5 gives the plasma compression,

Vg ="——, 13)

compared to the plasma convection,

nvy n J0d
ve - Vn=——2=— -
L, L,B dy

(14)

gives rise to the two terms proportional to (1 — 2g, cos 8) @, in the drift-wave eigen-mode equation.
The density and potential fluctuations set up along the magnetic field line give rise to ion acoustic waves with

w? = kﬁc?, where
> L (9 CAY
ki 7% \ 30 +q(r)a¢ (15)

is a differential operator.

Similarly, the shear-Alfvén wave > = kﬁvf1 propagates with the kﬁ operator. The periodicity of the torus means that
a physical field is the same at (0 +27m, $ + 27n) for all integer values of m,n. These rational surfaces appear when
the pitch of the magnetic field is the same as that of the mode exp(im0 — in¢), which occurs when the RHS of Eq. (15)
vanishes. The compressional term in Eq. (13) and convection term in Eq. (14) combine with the ion acoustic waves to
make the drift wave eigen-mode equation for waves of the form,

Y(x,t) = ZdDm’,,(r)ei"’e*i”‘Z)*"w’ +c.c.=D(r,0)e MO ) (16)
m



The toroidal mode solution, ®(r, 0) of this Mathieu-type equation is for each given r determined by

@y
- we(1—28,,c0s9)}¢:0. 17)

c? J . ? , 292
W %_an(r) ¢+{1—l5k—psvl

Here we used the simple phase-shifted, non-adiabatic electron response, dn, = n.(e¢ /T, )(1 — id). Introducing the
phase variation ® — ®(6)e™(")?  required to keep kﬁdD small, we find that V2 & = (9% +r~293)®e4® = — (k2 +-k3) =
—k3(1+5%6%)®, where k, = sko0 and kg = nq/r.

The drift-eigen-mode equation for the one-dimensional ansatz ®(6) is called the "ballooning mode" equation, which
from Eqs.(15 - 17) is

2 9%

s

prpersaeT 1—i8 +k3p2(1456%) — Fe(l —2¢€,c080)| ®=0. (18)

The solution of Eq. (18) with a shooting code requires as a boundary condition such that when 82 — oo the solution
@ — exp(i$ 6?%), where 6 = wgR|skg|p;/c; with Im 6 o< Im @ > 0. When the mode is strongly localized to the small 62
region, we may use cos 8 ~ 1 — 82 /2 to reduce Eq. (18) to the analytic harmonic oscillator problem with eigenvalues,

o — i (1 —2€,) —icg|ske|ps/(gR)(2n+1)
ko1 14+12p2 —i&

19)

and eigen-functions, ®,(0) = exp(i %QZ)Hn((—iG)l/ 20). Thus, the magnetic shear, |s|, introduces a damping of the
waves due to the coupling to the ion acoustic waves that the propagate wave energy to region of Landau damping.
Marginal stability conditions follow from Eq. (19) once the details of the dissipative J (i) function are given.

4. LABORATORY DRIFT WAVE EXPERIMENTS

4.1. Identification of Drift Waves

Let us now examine how these drift waves arise in simple geometries and what has been measured with probes in
university-scale drift wave experiments.

The first detailed study of the drift wave growth, saturation and anomalous transport was in a series of Q-machine
experiments [13]. Hendel et al. [13] and Chen [14] describe the identification of the mode frequencies and wavelengths
in detail with variation of the system parameters in the Q-machine. The linear growth rate, ¥, = Im , is produced by
the phase shift, s, 4, from the electron collisions, V., resulting in a density response,

Sn, O~ O +ik{V2/ Ve ey
ne w—l—ikﬁv?/ve T,’

(20)

from the potential wave ¢;. The growth rate, %, was controlled in the experiments by varying the ion viscosity (,
where p/p, = (3/10)v;p?, v; is the ion collision frequency, p; the ion gyroradius and p,, the mass density. Since
W/Pm o< 1 /B?, the experimentalists varied the B-field through the critical value, B, to measure the growth rate
directly as well as the wave frequency. The nonlinear saturation occurs when the nonlinearity in the ion dynamics
balances the growth rate from the electrons. This type of nonlinear saturation is generic to drift waves since the rapid
electron motion leaves the electron phase as in the linear response theory. In section 6 we show these nonlinear features
in more detail.

The first clear measurements of the ITG drift mode in a tokamak was provided by Brower et al. [15] (see Fig. 6)
using laser scattering in the TEXT tokamak. This TEXT data used a Heavy Ion Beam Probe (HIBP) to measure
both the DC radial electric field, E,, and the local fluctuating potential, d¢ (x,#). The plasma density fluctuation, én,,
was measured with a 6-channel CO, laser-scattering diagnostic that yields k = koy — ki from the Bragg scattering
condition of the outgoing Ej , and incoming Ej, electromagnetic waves from the plasma wave &n, (k). The wave
number, kg, is shown on the axis in Fig. 7. The frequency in the laboratory frame is shown on the y-axis, which
includes the Doppler shift k- vy = —(E,/B)kg, where v is derived from HIBP data that measures E,.
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FIGURE 7. The frequency of the electron density fluctuation in the laboratory versus the azimuthal wave number kg for
scattering.

For the TFTR machine Fig. 8 gives the estimate of the density fluctuation level 6n/n as a function of increasing
neutral beam (NB) heating power Pyg. At the left, the data for Pxg = O is for the ohmic discharge with very low
on/n ~ 0.001. As the beam heating power increases, the fractional fluctuations rise to 0.003 at 5SMW, 0.006 at 9W
and 0.015 at 19MW. This increase of dn/n is consistent with power balance < nT > /tg = (Pxp + Pon)/ Vol with
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FIGURE 8. Power scan in TFTR microwave scattering for the density radial scale length (circles) and density fluctuation level
(squares) as a function of NB power at r/a ~ 0.3[16].

/g o< Yep/a* = T3/2. Here Vol is the mean plasma volume determined by the mean value theorem,
3 3
/Ean3r =2 <nT > Vol. @1

In tokamaks with higher temperatures and thus stronger radial temperature gradients, the drift wave changes
character and is destabilized by the ion temperature gradient, VT;. In this regime, called the ion temperature gradient
(ITG) instability, the electron dissipation id; can be dropped and the electron response taken as adiabatic and is
therefore defined by on,/n. = ey /T..

Simpler basic experiments validating the ITG model were carried out in the Columbia Linear Machine (CLM) as
given in Sen et al. [17]. These plasmas, produced by RF heating, have n, ~ 2 x 10"*m~3 and T; ~ 10eV . There is a
temperature anisotropy T; # T;, that complicates the linear dispersion but is useful for both NBI or RF heated toroidal
experiments and the central cell of the tandem mirror. In the GAMMA-10 tandem mirror resonant ion cyclotron heating
in the central cell results in 7;; ~ 6.5KeV and T} ~ 2.5KeV[18]. The details of the two temperature components of
the ITG theory with the simple cylindrical central-cell plasma data can be found in Hojo [19] and Sen et al. [17].

In section 6, we will discuss the free energy of the ITG modes and their simulation in the gyro-kinetic Vlasov
system. The literature concerning the numerical modeling of ITG modes is extensive due to its role as the standard
model for explaining the anomalous ion thermal diffusivity, ;.

4.2. The effect of magnetic and E, shear on drift waves

The amplitude of the ITG turbulence is controlled by the magnetic shear, s = rq’ /g, and the shear in the azimuthal
(or poloidal) flow velocity, vg = —E,/B. For example, Hamaguchi and Horton [20, 21, 22] show, with an FLR fluid
model, the variation of the amplitudes and the resulting turbulent ion heat flux, ¢; = (n;T;v,), with magnetic and E,
shears. Kishimoto et al. [23] showed similar results with a PIC code. In the toroidal code, the shear, vg, from E, stifles
the y; transport, whereas suppression of J; in the local slab model is given by

Xi

xi(VE) = 1+ (LSV%/CX)2’ (22)

as shown in Terry [24] and Newman et al. [25]. Here L; = gR/s(r) is the shear length defined by the distance spanned
by the magnetic field when the B-vector rotates by approximately 7 /4. The physical picture of the velocity-shear effect

is given in Biglari et al. [26] where the large eddies or vortices of size Ar = ps(Ls/Ly) in the absence of shear flows are
reduced in the shearing time, T, = 1/V;, to small eddies. The details of the shear flow stabilization are complicated,
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FIGURE 10. Mean profiles obtained as an average in 25 experimental shots during the stationary turbulent state during the
wall-bias pulse [30]

see P.H. Diamond’s chapter of the proceedings. A kinetic theory calculation is given by Dong et al. [27] and the role
of shear flow in magnetized plasma is reviewed by Itoh and Itoh [28], Terry [24], Diamond et al. [29].

Experiments for validation of drift-wave theory were performed on LAPD (Fig. 9). These regimes were created by
varying the radial electric field, E,, from weak to moderate and then to strong. In the moderate and strong E, regime,
the electron-density transport barrier was measured as shown in Fig. 10. The main characteristic of the drift wave was
identified clearly in the weak E,-shear regime and the mixed Kelvin-Helmbholtz drift-wave regime.

In the strong E,-shear regime there is a deep well of negative E, — as occurs in the edge of H-mode tokamak plasmas.
The vorticity probe measures @, = b -V x vg (see Fig. 11).

As the probe sweeps across the shear layer, the vorticity changes from counter-clockwise to clockwise rotating
vortices, just as expected from simple considerations and computer simulations. The region between these two
oppositely spinning vortices forms the partial transport barrier as suggested by Biglari et al. [26] and Terry [24].

The strong shear flow in a plasma creates temporal and spatial intermittency as shown by the probability distribution
function with large skewness and excess probability levels over the gaussian level (red parabola) in Fig. 11. In the
central cell of the GAMMA-10 tandem mirror, where the electron temperature 7, ~ 800eV, there is sufficient soft-X-
ray emission to image the growth and decay of the vortices using two micro-channel plates and tomographic image
reconstruction [31, 18]. In Fig. 12, the X-ray tomography shows such an event over the rotational period of 50 us.
The growth and decay of vortex structures are clearly seen. Moreover, they appear consistent with simulations by Kim
et al. [32], which show vortex intermittency in sheared flows.
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FIGURE 11. Vorticity probabiliy distribution functions for representative radius in strong the E,-shear regime[30].
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FIGURE 12. X-ray tomography of a detailed vortex structure of an intermittent object showing its typical lifetime ranging around
a hundred microseconds, approximately with the rotational motion of an E X B drift[31].

4.3. Electromagnetic scattering from turbulent density fluctuations

Non-perturbative measurements of the plasma fluctuation are carried out with Bragg scattering, k = kout — kip,
where an in coming micro-wave or lower wave, Ej, exp(iki, - X — ipf), sets the electron into quiver motion with
Ov, = —¢Ei, /im, o, that radiates E oy exp(ikoyt - X — i@oyit ), with current 8 j = —edni v, (kin). The scattered wave,
E uiexp(ikoy - X — iwot) has koye = k + kin and @our = @y + @y Since @ < kinc, the frequency shift is often
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too small to be useful. The scattering cross-section, do /dQ = (e? /m.c*)? <|5ne(k)|2> Qgcar /e, Where Qe is the

scattering volume defined by the insertion of the two electromagnetic waves giving a non-perturbative measurement
of {|8n.(k)|*). Both X- and O-mode polarizations are useful [33].

In 1976 electromagnetic scattering experiments, by Mazzucato [16] on the ATC machine and by Slusher and Surko
[34] on Alcator, showed clearly the presence of substantial drift wave turbulence. The weak turbulence mode coupling
theory was used in Horton [35] to give, within error bars, the level of |6n(k )| at the six k, ranging from 1/2.3
to 1/0.4cm~! used in ATC. This type of scattering data is shown in Fig. 8 for TFTR. Use of scattering from O- to

X-mode polarization gives a measure of <|6B,(k)|2> in Zou et al. [36] and in Colas et al. [37] in the core of Tore

Supra.

The cross-polarization experiments by Colas et al. [37] show §B2/B? increasing up to levels of 8B, /By ~ 5 x 1073
with higher heating power and VT, . The interpretation of the cross-polarizing experiments is difficult since part of
the O—X-mode conversion can also be scattered power that can arise from internal reflection in the machine. These
experiments and their interpretation are discussed further in the chapter by P. Hennequin.

5. WEAK TURBULENCE THEORY FOR DRIFT WAVES

For turbulent states with a broad range of wavenumbers, Ak, and frequencies, Ay, in the fluctuation spectrum the
Weak Turbulence Theory is developed by assuming that the deviation of the fluctuations from Gaussian statistics is
weak. Under this condition the chain of coupled correlation functions is broken off at fourth order with what is called
the “quasi-normal closure approximation”. This means that the ensemble average of the product of four ¢ fields is
factorized as

(O, Dy Oy Py —— ks —ko ks ) = Pk, Dhy ) (Do Dk, ) + (P, Dk ) Poer Dk, ) + (P, Dk ) { Poer P ) » (23)

which closes the equations for the dynamics of I (t) = (¢; ¢x ).
For drift waves the energy spectrum,

Wi = (1+K2 p) (1), (24)
and the resulting weak-turbulence wave-kinetic equation is
AW (k x ky -2)
o 20 Wi+ Y T(k% — k)R, ky °
ki ko=k—k;
[(k3 — k) Wi, Wi, — (K — KT ) WieW, + (K — K3) WieWi, | (25)

with the resonance function given by

1
O — W, — O, +i(Vi + Vi, + Vi,)

Rik, k, = —Im ~ (0 — O, — W, ), (26)

for v < max(ay). In the classical model with adiabatic electrons, the wave-kinetic equation obeys the conservation
laws of energy, d/dt ¥ W = 0, and enstropy, d /dt ¥ ; (1 + k2 )W, = 0.

These two invariants lead to the cascade of enstropy, Q =Y kf_ Wi (2), to high k| and the inverse cascade of energy
W to low k. The equilibrium solution of the wave-kinetic equation with no growth/damping, i.e. % = 0, is the
equipartition of the energy Wi = Wiota1/Nmodes» Where Npoges is the total number of modes.

In reality, there are limited regions of k-space where % > 0 and hence where modes can grow from the gradient
mechanism in Sec. 1. In all other regions modes are damped. While some approximate analytic solutions to Eqs. (24-
26) are known in terms of anisotropic Kolmogorov-type spectra 1/|ky|"|ky|™, the general solution to the problem can
only be found numerically.

Fig. 13 shows by the shaded loop in k-space the region of resonant three-wave interaction defined by the subspace
(k) — (k) — o(k2) = 0. There are two special parts of this resonant manifold : one where k| = (2ky,0), which is
a zonal flow type of state with u,(x) = k@, sin(2k,x) and u, = 0, and the the second is the quasi-adiabatic part of
the resonant manifold where two neighboring waves (ki,k;) resonate, i.e. (k, wy) — (k2, @y,) = (ki, ®,) with small
values of ki and @y, . This second class gives a scale separation where the symbols g = k| < |k| and Q = oy, < ||
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FIGURE 14. Drift-wave spectrum for model with isotropic ring of unstable modes, ¥ > 0, for 0.35 < k < 0.4 and high k damping
for k > 2.

are often introduced for the large scale part of the spectrum. These cross-scale k < g interactions give a long-range
energy transfer in k-space. These two regions of special interest are marked by rectangles in Fig. 13.

Fig. 14 shows an example of the anisotropic Kolmogorov spectrum applied, where there is only an unstable ring for
035 < (kf +k§)1/ 2 < 0.4 with small 95 > 0 and damping of —7}p at both high k and low k. The steady state spectra
of W(ky) = Xa, W (ke ky) = 1/[ke|™ and W (ky) = ¥ W (kx, ky) = 1/|ky|™ are shown in Fig. 14. We see that most of
the turbulent energy has accumulated in k’s below the growth region (k; ~ 0.35), while the region above the growth
region has a power-law decay with m, = 3.7 £ 0.4 and m, = 4.1 == 0.4. These results are typical but not universal for
drift wave turbulence.

The adiabatic electron model leads to that the nonlinear E X B convection of the density by vg - Vi = 0 vanishes.
In general however, there is an appreciable non-adiabatic part of the density response to ¢ as in Eq. (20). The non-
adiabatic part, for example, 6n = (14 80d/dy)¢ — (1 + ik, )@ leads to a nonlinear E x B drift vg - Vi # 0 and
turbulent transport for d % 0. Waltz has shown that the additional nonlinear term from vg - Vn leads to a lower

amplitude as shown in Fig. 15. The values of ¢y = <d)2>1/ * and the diffusivity D are shown as a function of the
non-adiabatic parameter &.
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FIGURE 15. Waltz simulation comparing the saturation levels of the Hasegawa-Mima model with NL (nonlinear vg - VSn) off
and the Terry-Horton model with vg - V8n turned on.

6. ION TEMPERATURE GRADIENT MODE

There are numerous nonlinear formulations of the ion temperature gradient mode in the literature. The models
range from one-field models (e.g. Hasegawa-Mima) with one nonlinearity vg - V, to two field-models; both of them
include the fluctuating electrostatic potential ¢. The one-field model, however, uses the the adiabatic electron response
on,/n. = e¢ /T, for the density fluctuation whereas the two-field model uses either the fluctuating ion pressure, 8 p;, or
the fluctuating ion temperature, 87;, dynamical equation. These gyro-fluid models assume a closure that can be either
an equation of state with adiabatic gas constant, I, for the ion fluid or closure formulas for the parallel ion-thermal-heat
flux, dg;) [38, 39, 40]

References describing different models are Horton et al. [41], Hamaguchi and Horton [20], Dimits et al. [42] for
the slab ITG mode and Horton et al. [43], Waltz et al. [44], Beer and Hammett [45] for the toroidal ITG mode. The
toroidal ITG mode is typically stronger than the slab ITG mode and has a mathematical structure similar to a small
scale (A, 2 p;) Rayleigh-Taylor instability. The Rayleigh-Taylor MHD instability,

k2 (1dp1
2 y p 2.2
0 =— == |——= ) >k, 27
A= (5 ) >
is changed in drift-wave theory to a slower growing mode with y(k, = 0) = 0 and a well-defined maximum growth
rate, Ymax, at a finite kyps >~ [(1 —2¢,)/(1+1;)] 2 Here &, = L,/R and 1; = dInT;/dlnn;. The electrostatic shielding
by the adiabatic electron fluid that has a dielectric constant, e = 1+ 1/ kﬁlﬁe > 1, since kMDe = kHve /0pe < 1. The

energy source of the instability is explained in Sec. 2.2. The typical Ymax = 0.1c¢;/ (LT,-R)I/ 2 for a toroidal system
with a magnetic radius of curvature, R, = R, on the outside of the torus where the mode balloons. The ballooning-
mode equation and a simple nonlinear model for the toroidal ITG are given in Horton et al. [43]. Here we give the
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Time = 161.40

FIGURE 16. ITG simulation from Wakanabe GKV

Balescu version of the Hamaguchi-Horton slab ITG model as an example of a new model that needs numerical solving.
Following Balescu [46, p.33] we find that the ITG mode has four partial differential equations,

agt”" - —vde% — Vv — ;—2 56, 5n:] (28)
% (8ni—piV3 69) = —Vdea%(l —1(14+n,)p;V3)8¢ — V| 8y

5 [50.(6m—p2¥2 60)] 9)
ag:” - —milnovﬂap,- — V59 — ;—2 [59,v] (30)
% = —vge7(1 +ﬂi)% =TIV év— Scz_fl [6¢.6pi] @31

where T =T;/T,, vqe = (ps/Lyn)cs and T is the ion adiabatic gas constant. Each equation has a convective nonlinearity.

Currently there are a number of global and flux-tube codes that simulate the full gyro-kinetic equations for the ITG
turbulence Lin et al. [47], Dimits et al. [48], Jenko and Dorland [49]. Here we show the distribution of the electrostatic
potential fluctuations in all three dimensions in Fig. 16. In this figure where saturation has occurred, the tendency for
the fluctuations to establish a zonal-flow pattern is evident.

6.1. Closure models
When the velocity moments of the original gyrokinetic equation are taken to derive the gyrofluid equations, we need

to construct closure models which describe high-order moment variables arising from kinetic effects such as parallel
streaming, finite gyroradii, and toroidal magnetic drift. Closure models for these kinetic effects were proposed in a
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series of works by Hammett & Perkins [38], Dorland & Hammett [50], and Beer et. al. [51]. In these models, high-
order moment variables are written in dissipative forms given by linear combination of low-order moment variables
so as to reproduce well the linear kinetic dispersion relation. In the Hammett-Perkins model, the parallel heat flux g
with the wave number vector k is given in terms of the temperature fluctuation 7 as

2,/2 g (32)
qdk = — — noVy 1 1k,
I P ! ‘kH|

where k| is the wave number in the direction parallel to the magnetic field. The Hammett-Perkins model is successfully
applied to calculation of frequencies and growth rates of linear ITG modes while it does not discribe time-reversal
symmetric behaviors of the three-mode nonlinear kinetic ITG system [39] which consists of two unstable slab ITG
modes and a stable mode representing a quasilinear flattening of the background temperature profile. Mattor &
Parker [39] presented a nonlinear closure model and successfully reproduced the solution of the three-mode ITG
problem although it cannot be easily extended to turbulent systems with a large number of degrees of freedom.
Realizing that the time-reversal symmetric solution of the three-mode ITG problem can be represented by the
superposition of an unstable normal-mode distribution function and its complex conjugate, Sugama, Watanabe &
Horton [40] proposed the nondissipative closure model (NCM) which relates the parallel heat flux g in the linearly
unstable wave number region to the temperature fluctuation 7x and the parallel flow uy in terms of real-valued
coefficients,
gk = Crxnove Tx + Cuxno Tiuk (for linearly unstable modes), 33)

where the real-valued coefficients Crk and C,k are determined by requiring that the kinetic dispersion relation should
be derived from the closure relation. The NCM gives the correct relation between ks T, and uy both for the unstable
normal-mode solution and its complex-conjugate solution as well as for any linear combination of these solutions.

Since the time reversal symmetry of the original collisionless kinetic equation is retained in Eq. (33), the NCM can
exactly reproduce the solution of the three-mode ITG problem.

Furthermore, the NCM was used in two-dimensional fluid simulation of the strong turbulence driven the slab ITG
modes and its validity for quantitative prediction of the anomalous ion thermal transport in the slab ITG turbulence
was confirmed by comparison to collisionless kinetic simulation results as shown in Fig. 17 [52].

We should note that the NCM can be applicable only to linearly unstable modes and that the Hammett-Perkins-type
dissipative closure model was still used for linearly stable modes even for the NCM fluid simulation.

In the slab ITG turbulence shown in Fig. 17, the zonal-flow component was not included whereas only quiet steady
states with turbulence transport suppressed by large zonal-flow generation were obtained by both of our kinetic and
fluid simulations when including the zonal flow component [53].

In toroidal configurations, zonal-flow generation is weaker than in slab cases although zonal flows are still an
important factor to regulate turbulent transport and a wrong description of zonal flows was once suspected by
Rosenbluth & Hinton [54] as a cause of difference between gyrokinetic and gyrofluid simulation results of toroidal
ITG turbulence.

Improved closure models, which give residual zonal flows predicted by Rosenbluth & Hinton, were proposed by
Beer & Hammett [55] and recently by Sugama, Watanabe, & Horton [56].

7. CONCLUSIONS

The basic physical mechanisms of drift-wave instabilities and the associated plasma transport are described in detail.
Drift waves develop into a mixture of wave turbulence and coherent structures with details of the mixture depending
on the driving forces Vn,, VT, and VT; and the amount of magnetic shear and background velocity shear in the system.
The mixture of zonal flows, waves and vortices has certain similarities to the Rossby waves in planetary atmospheres
and the equatorial-to-polar temperature gradient driven turbulent heat. The principal difference is in the replacement
of the gravitational force on planets with a electric force from charge separation in the curved magnetic fields.

The free energy sources created by the radial gradients of the plasma density and the temperature are useful to
characterize the strength of the drift wave turbulence. We have suggested that real time diagnostic signals from
microwave interferometers and Thompson scattering data can be used to compute the thermodynamic formulas for
the upper bounds of the turbulence given in Sec.2 for the density and temperature fluctuations. The derivations of the
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FIGURE 17. Normalized turbulent ion heat diffusivity x/(p?v:/L,) as a function of normalized time v;¢/L, obtained by the
two-dimensional slab ITG turbulence simulation [52]. Black, red, and blue lines correspond to results from the kinetic simulation,
the fluid simulation using the NCM, and that using the Hammett-Perkins (HP) model, respectively.

free energy formulas treat the plasma as an ideal gas with a compressibility gas constant, I' = (d +2)/d, where d is the
number of degrees of freedom associated with the type of instability under investigation. The Carnot-cycle description
of the auxiliary heated plasma is particularly relevant and was used in Horton et al. [57] for the electron temperature
profiles in Tore Supra and is being used for real-time data in NSTX.

The structure of the drift wave eigen-modes in the double-periodic toroidal geometry is described after a brief
review of the early experiments on drift waves in steady state cylindrical Q-machines. The recent experiments in the
Columbia Linear Machine [17] devoted to the ion temperature gradient (ITG) mode and the 6-channel CO; laser
scattering experiments in TEXT [15] clearly show the role of the hybrid ITG mode and trapped electron mode TEM.

The ITG mode has become the standard model for describing ion transport in basically all toroidal experiments with
strong ion temperature gradients. The basic toroidal mechanism and nonlinear models are given in Horton et al. [43].
Nowadays large-scale Tera-flop computers commonly compute the ITG turbulence from direct numerical solutions of
the gyrokinetic-Vlasov-Poisson system and as an example the state of the turbulence is shown in section 6 from the
NIFS GKYV simulation. The standard article on the comparison of direct numerical simulation for the ITG turbulence
is Dimits et al. [48]. Review of the state of the numerical simulations of the ETG turbulence is Nevins et al. [58].
The electron turbulent transport is more demanding to compute but shows very large enhancements over the quasi-
linear fluxes due to the formation of extended radial structures with correlation lengths, £, > p,., and the structures are
insensitive to the radial electric-field shear but do depend sensitively on the magnetic-shear profile.

The empirical energy confinement scaling laws for both helical system [8] and tokamaks [6, 7] follow the drift-wave
formulas and simulations to within the accuracy of the experimental data. Some of the more detailed comparisons of
theoretical models [59, 60, 61, 62] with tokamak databases are referenced but a detailed discussion is beyond the scope
of this chapter.
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