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In the United States, buildings are responsible for 40.36 Quads (40.36 × 1015

BTU) of total primary energy consumption per year, 22.15 of which are used in

residential buildings (reference year 2010). Also, the United States residential sector

is responsible for about 20% of United States carbon emissions or about 4% of the

world’s total. While there are over 130 million residential units in the United States,

only 0.1% of R&D is spent in the residential sector. This means the residential sector

represents an underinvested opportunity for energy savings. Tackling that problem,

this dissertation presents work that is focused on assessing, analyzing, and optimizing

how residential buildings use and generate energy.

This work presents an analysis of a unique dataset of 4971 energy audits per-

formed on homes in Austin, Texas in 2009–2010. The analysis quantifies the preva-

lence of typical air-conditioner design and installation issues such as low efficiency,

oversizing, duct leakage, and low measured capacity, then estimates the impacts that

resolving these issues would have on peak power demand and cooling energy con-

sumption. It is estimated that air-conditioner use in single-family residences currently

accounts for 17–18% of peak demand in Austin, and that improving equipment effi-

ciency alone could save up to 205 MW, or 8%, of peak demand. It was also found
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that 31% of systems in this study were oversized, leading to up to 41 MW of excess

peak demand. Replacing oversized systems with correctly sized higher efficiency units

has the potential for further savings of up to 81 MW. Also, the mean system could

achieve 18% and 20% in cooling energy savings by sealing duct leaks and servicing

air-conditioning units to achieve 100% of nominal capacity, respectively.

A different dataset of measured whole-home electricity consumption from 103

homes in Austin, TX was analyzed to 1) determine the shape of seasonally-resolved

residential demand profiles, 2) determine the optimal number of normalized represen-

tative residential electricity use profiles within each season, and 3) draw correlations

to the different profiles based on survey data from the occupants of the 103 homes.

Within each season, homes with similar hourly electricity use patterns were clustered

into groups using the k-means clustering algorithm. The number of groups within

each season was determined by comparing 30 different optimal clustering criteria.

Then probit regression was performed to determine if homeowner survey responses

could serve as explanatory variables for the clustering results. This analysis found

that Austin homes typically fall into one of two seasonal groups. Because these groups

differ in temporal energy use and the wholesale electricity price is temporal, homes

in one group use more expensive electricity than others. The probit regression re-

sults indicated that variables such as whether or not someone worked from home, the

number of hours of television watched per week, and level of education have signifi-

cant correlation with average profile shape, but that significant indicators of profile

shape can vary across seasons. Also, these results point to markers of households that

might be more impacted by time-of-use (TOU) or real time price (RTP) electricity

rates and can act as predictors as to how changing local demographics can change

local electricity demand patterns.
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This work also considers the effect of the placement (azimuth and tilt) of

fixed solar PV systems on their total energy production, peak power production, and

economic value given local solar radiation, weather, and electricity market prices and

rate structures. This model was then used to calculate the output of solar PV systems

across a range of azimuths and tilts to find the energetically and economically optimal

placement. The result of this method, which concludes that the optimal placement

can vary with a multitude of conditions, challenges the default due-south placement

that is conventional for typical installations. For Austin, TX the optimal azimuth

to maximize energy production is about 187–188◦, or 7–8◦ west of south, while the

optimal azimuth to maximize economic output based on the value of the solar energy

produced is about 200–230◦ or 20–50◦ west of south. The differences between due

south (which is the conventional orientation) and the optimal placement were on

the order of 1–7%. For the rest of the US and for most locations the energetically

optimal solar PV azimuth is within 10◦ of south. Considering the temporal value

of the solar energy produced from spatially-resolved market conditions derived from

local time-of-use rates, the optimal placement shifts to a west-of-south azimuth in

attempt to align solar energy production with higher afternoon prices and higher grid

stress times. There are some locations particularly on the west coast that have west-

of-south energy optimal placements, possibly due to typical morning clouds or fog.

These results have the potential to be significant for solar PV installations: utilities

might alter rate structures to encourage solar generation that is more coincident

with peak demand, utilities might also use west-of-south solar placements as a hedge

against future wholesale electricity price volatility, building codes might encourage

buildings to match roof azimuths with local optimal solar PV generation placements,

and calculations of the true value of solar in optimal and non-optimal placements can

be more accurate.
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This analysis also uses a dataset of whole home electricity consumption to

consider the role of small distributed fuel cells in managing energy and thermal flows in

the home. The analysis determines that the average home in Austin, TX could utilize

a 5.5 kW fuel cell either for total generation or backup, and the average home could

operate as its own micro-grid while not sacrificing core functionality. Matching the

thermal output of a possibly smaller fuel cell, used in combined heat and power mode

(CHP), to an absorption refrigeration system in place of traditional space cooling

further reduces the needed capacity. Lastly, it is estimated that the system efficiency

could possibly double by transporting natural gas to the end user to be converted

into electricity and heat as compared with traditional methods of using natural gas

for power generation followed by electricity delivery.

Results from two regression analyses of total energy use and energy use reduc-

tions following energy efficiency retrofits are also presented. The first model shows

that home size and age were positively correlated with total yearly energy use, but

there is significant correlation of reduced yearly energy use with increased energy and

water knowledge. This result might lend some support for increased energy and water

education campaigns. The second model (retrofit analysis) also provided results that

utilities can use to assess the value of residential retrofit rebates as compared to the

cost of acquiring energy on the wholesale market. The second model indicates that

the current level of rebates is cost effective for the utility (on a $ per kWh offset ba-

sis) for all three considered retrofits (air-sealing, attic insulation, and air-conditioner

replacement) and the rebates could be increased while still being below the cost of

acquiring electricity on the wholesale market. Considering an average of $0.113/kWh

for residential electric service, both the air-sealing and increased attic insulation seem

to make economic sense for the homeowner given current rebate structures.
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Chapter 1

Introduction

1.1 Purpose and motivation

This dissertation presents work that is focused on assessing, analyzing, and op-

timizing how residential buildings use and generate energy. The work within attempts

to assess the amount of efficiency to be gained through improvements in residential

energy systems, the drivers behind residential electric demand profiles, and optimal

strategies for renewable residential distributed generation systems.

In the United States, buildings are responsible for 40.36 Quads (40.36 × 1015

BTU), or about 40% of total primary energy consumption per year, 22.15 Quads or

about 22% of which are used in residential buildings [3]. Also, the United States

residential sector is responsible for about 20% of United States carbon emissions or

about 4% of the world’s total [4]. While there are over 130 million residential units in

the United States, only 0.1% of R&D is spent in the residential sector [5]. This means

the residential sector represents an underinvested opportunity for energy savings.

Residential structures are unique in form, build, and use. Even tract homes built

by the same builder in the same time period can be similar in outward appearance,

but vary greatly in terms of efficiency and energy use. Residential air-conditioning

systems are particularly disruptive to the electric grid and create significant swings

in demand. In Texas, 7.7 million households (both single-family and multi-family

units) use approximately 43 TWh of electricity for air-conditioning annually [6] –

about 13% of total electricity use in Texas. The percentage of electrical load on the
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Electric Reliability Council of Texas (ERCOT) electric grid attributed to residential

users increases from about 20% in the spring to 48% in the summer of 2010 (400% real

increase, 6,139 vs. 30,735 MW in 2010), mostly due to the operation of residential

air-conditioning systems [7].

Numerous studies have evaluated the energy savings associated with increasing

the energy efficiency of the United States residential building stock [8–22]. Many stud-

ies have focused on various aspects of residential buildings such as heating, ventilation,

and air-conditioning (HVAC) equipment, façade, air tightness, insulation levels, duct

leakage, and construction type. Evidence suggests that there is significant value in

intensive energy commissioning and monitoring of buildings [23] and that significant

numbers of residential buildings built to energy codes are non-compliant [24, 25].

Although many residential efficiency standards exist [26,27], few studies [13] can esti-

mate residential resource consumption and savings for a large, statistically significant

portion of a local residential building stock because of a lack of data, particularly for

a hot and humid cooling climate such as Austin, Texas. This dissertation proposes

to do that analysis through the assessment of residential energy audits.

While the drivers of macro-level, aggregate energy use are current topics of

study [28], the factors affecting residential energy use at finely-resolved timescales

are poorly understood. This work seeks to fill part of that knowledge gap by identi-

fying correlations between electric customer survey data and electricity use profiles.

Understanding temporally-resolved electricity consumption patterns and their influ-

encing factors could potentially lead to more robust energy modeling, more precise

demand forecasts, and more effective energy conservation and peak reduction cam-

paigns. One relatively new method of electricity profile analysis involves clustering

like profiles. Clustering analysis has currently been limited to generating typical load
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profiles, grouping like customers, or finding outliers [29–35]. This analysis seeks to

take the body of knowledge a step further by leveraging the comprehensive data set

available from a local smart grid demonstration project [36] and explore the drivers

behind the derived groups of electricity customers.

Knowing what to measure or ask in order to quantify and predict resource

demands of residential buildings will be a significant contribution of this dissertation.

Few studies have analyzed real measured energy use, audit data, and/or survey data

for more than a few homes [37–40]. Some recent work has correlated the effect of

surveys and audit data to total annual residential electrical energy usage in a heating

climate [38] and narrowed the number of field questions and measurements from 60

to 8. This type of analysis will be helpful in developing the framework from which

to assess the most important factors that contribute to temporal residential electric

demand profiles, which to date (to the best of my knowledge and literature search),

has not been studied. Given that the typical grid load curve in Texas is significantly

affected by residential energy consumption [7], knowledge of the most important fac-

tors that contribute to residential electric demand profiles would be helpful in shaping

policy tools directed at reducing electric grid strain. This dissertation will strive to

provide this novel analysis.

While it is better to increase the energy efficiency of homes before installing

energy generation systems [41, 42], low carbon energy sources such as rooftop solar

PV systems are becoming popular. There has been some research on the strategic

placement of residential solar for the stability of the grid [43–45], for the economic

benefit of the homeowner [46–48], as well as the correlation [49] and the impact [50]

of solar production to electricity spot prices. However, there is a lack of analysis

using real data that ties these concepts together to show the impact of placement of
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residential solar PV on temporal generation and how that aligns with the grid as a

whole and the price signals that the utility receives. This dissertation proposes to fill

that knowledge gap.

To that end, this analysis considers the effect of the placement (azimuth and

tilt) of fixed solar PV systems on their total energy production, peak power produc-

tion, and the economic value of that energy production. Solar energy production is

important for a multitude of reasons including reduced carbon emissions; the fuel is

free, renewable, domestic and distributed; it contributes to energy equity; and because

the prices of solar panels are falling [51–54]. However, since solar energy production

curves do not always precisely align with maximum home or electricity grid load,

even placements that might be non-optimal from an energy production basis might

be optimal on an economic or peak power production basis [55,56]. Most studies have

been limited to either calculations of incident solar radiation on an optimal plane or

limited to a small location [57, 58]. This analysis extends the body of knowledge by

not only considering the amount of solar radiation hitting the optimal collector plane,

but estimating the amount of energy and value of the energy produced through fixed

solar PV systems, which can depend on environmental and system aspects, such as

the temperature of the solar PV system itself and which prices are considered. As

the realized price of solar energy gets closer to grid parity, new home builders might

choose to orient homes such that sections of the roof are optimally aligned for solar

generation or local municipalities might mandate it. The 2015 Austin Energy Code

mandates that all new homes in Austin must be net-zero energy capable. Thus since

solar placement matters for energy and temporal power production, this analysis

could possibly inform that process, including variable rebates for more valuable solar

placements. This analysis also extends the consideration of the value of solar energy

produced by using time-of-use rates throughout the continental US as a proxy for
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average local grid conditions.

Common types of distributed generation include rooftop solar PV and small

wind electric power generation. These types of generation, while carbon friendly, are

not dispatchable, meaning that the amount of power they produce is not controllable

like a typical power plant. Therefore, a grid that relies more on distributed generation

of these types would benefit from electricity storage or firming power (such as from

dispatchable generating units on stand-by), to provide continuous service even with

the added variability. This analysis considers small-scale fuel cells for that purpose.

Numerous computer models and prototype units have been built to test the ability of

small-scale fuel cells to perform in residential-specific situations [59–63]. While most

analyses consider the potential for fuel cells to match average loads or ramp with

dynamic loads, this analysis uses real data to optimize the size of the fuel cell needed

to provide power and keep the home thermally comfortable.

Engineering calculations of energy saved from residential energy retrofits often

give optimistic predictions, but rebound effects can reduce those savings [64]. Many

times these interventions are prescriptive-based, not performance based, (i.e. insula-

tion is brought up to a certain level, a building envelope is air tightened, etc.), but

there is little measurement and verification (M&V) for how retrofits actually perform.

The last analysis in this dissertation provides some actual energy reduction results

from homes that have gone through one of Austin Energy’s residential energy retrofit

programs, along with the associated cost to the homeowner and utility in $/kWh

saved.

This dissertation has the following four objectives:

1. Explore the residential electricity consumption and common air-conditioner de-

sign and installation parameters of homes in Austin, Texas,
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2. Determine the key correlations between homeowners and their temporal energy

use in Austin,

3. Determine the optimal placement of residential-based solar PV systems for Austin

and the greater US, and

4. Explore the efficiencies associated with firm distributed generation and residen-

tial energy retrofits.

1.2 Scope and organization

Three research chapters (2-4) explore objectives 1-3 above, and chapter 5

presents work that is related to the three. Each chapter contains an introduction,

background/literature review, methods, results, and discussions/conclusions section.

Chapter 2 uses an expansive set of energy audits from Austin Energy’s En-

ergy Conservation and Disclosure (ECAD) ordinance to assess the total energy and

peak power demand implications of inefficiencies associated with poor energy as-

pects of homes, including air-conditioning systems. This chapter uses the industry

standard Manual J calculation for “right-sizing” air-conditioning units and considers

the improvements (energy and peak power demand) that would be associated with

aggressive participation in residential energy retrofit programs.

Chapter 3 explores the correlations between homeowner survey results and

seasonal, temporal (hourly) power demand profiles. A probit regression model built

from the data is used to give insight into the types of profiles that one might expect

from a given demographic of persons inhabiting a home in Austin.

Chapter 4 considers the effect of solar radiation and economics toward the

optimal placement of solar PV systems. A fundamental model of a generic solar
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PV system was constructed and optimized for various locations and prices including

wholesale market prices and electricity rates. The model considers multiple Austin

inputs and then is extended to over 1,000 locations across the US.

Chapter 5 has two preliminary sections that 1) look at the ability of a residential-

sized natural gas fuel cell to provide distributed firming power for non dispatchable

generation sources such as solar PV and reduce distributed electricity demand by gen-

erating electricity and providing waste heat for absorption cooling and 2) estimate

the costs and measured energy use difference (before and after) of residential energy

retrofits on daily energy use for homes in Austin, TX.

This dissertation also includes Appendix A, which is a complementary analysis

that compares the output of commercially available residential energy simulation

software to actual use in various scenarios including the impacts of various weather

data files, thermostat set-point temperatures, and simplified home geometries. This

analysis also considers the error associated with homes that use significantly more

or less energy per home area than the average and lastly considers the ability of the

model to predict inter-daily energy use patterns.

1.3 Major high-level findings from this body of work

The major findings from this body of work include:

1. Single-family residential air-conditioning systems account for about 17-18% of

summer peak power demand in Austin, TX.

2. Increasing the efficiency of single-family residential air-conditioning systems

could save as much as 205 MW of peak power demand.
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3. Right-sizing oversized residential air-conditioning systems could avoid up to 81

MW of peak power demand.

4. Austin Energy could almost double their maximum residential efficiency retrofit

rebates and still be at price parity with building new power generation.

5. There are typically two groups of residential power demand profiles in each

season, one of which tends to use more expensive power than the other.

6. Demographic variables (if persons work from home, how many hours of TV are

watched per week, and the amount of computing devices inside the home) can

be indicators of what type of power demand profile a home will have.

7. A due south orientation is not always the energy optimum placement for solar

PV systems.

8. Temporal pricing schemes such as time-of-use rates and real-time pricing sce-

narios affect the optimal economic placements for solar PV systems, generally

pushing placements to west-of-south.

9. West-of-south solar PV placements could be used as a hedge for utilities against

volatile wholesale electricity markets in cooling climates.

10. Small distributed firm combined heat and power generation such as residential

sized fuel cells can significantly increase the primary energy efficiency of homes.

11. Homes whose inhabitants scored higher on general energy and water knowledge

questions had reduced yearly electricity use.

12. The average “rebate cost” ($/kWh reduced) incurred by Austin Energy (the

electric utility for Austin, TX) for residential energy retrofit rebates cost less

than yearly average wholesale electricity costs.
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13. The average “customer cost” ($/kWh saved) incurred by Austin Energy cus-

tomers for some residential energy retrofits (air-sealing and attic insulation)

cost less than purchasing retail electricity.

The findings listed above are explored further in the following chapters.
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Chapter 2

Using energy audits to investigate the impacts of

common air-conditioning design and installation

issues on peak power demand and energy

consumption in Austin, Texas

2.1 Introduction

Air-conditioning∗ has become ubiquitous in buildings in the developed world [14,

65] and is typically one of the largest summer electrical loads in residential build-

ings, particularly in cooling climates such as the southern United States. In Texas,

7.7 million households (both single-family and multi-family units) use approximately

43 TWh of electricity for air-conditioning annually [6], and load in Electric Reliability

Council of Texas (ERCOT) attributed to residential users increased from 20% (6,139

MW) in the spring to 48% (30,735 MW) in the summer of 2010, mostly due to the

seasonal operation of residential air-conditioning systems [7].

∗Part of the analysis in this chapter has been published as a journal article [8]:

Rhodes, J.D., Brent Stephens, Michael E.Webber, ”Using energy audits to investigate the
impacts of common air-conditioning design and installation issues on peak power demand and
energy consumption in Austin, Texas”, Energy and Buildings 43 (11) (2011) 32713278, DOI:
10.1016/j.enbuild.2011.08.032

and part as a conference paper [9]:

Rhodes, J.D, Brent Stephens, Michael E. Webber, Energy audit analysis of residential air-
conditioning systems in Austin, Texas, ASHRAE Transactions 118 (1) (2012) 143150.

Co-authors included Drs. Brent Stephen and Michael E. Webber (supervisor) – their contri-
butions included editing the manuscript.
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There is a lack of statistically relevant recent data about the installed base of

air-conditioning systems, which leaves a knowledge gap about current air-conditioning

operation in the residential sector even though it is particularly important in hot cli-

mates. This work uses a database of 4,971 recently performed energy audits on single

family homes in Austin, Texas to fill that knowledge gap by 1) investigating the

prevalence of the most common air-conditioning system design and installation is-

sues that lead to excess power draw and energy consumption, and 2) estimating the

impacts that these issues have on aggregate peak power demand, 3) quantifying the

likely distribution of achievable energy savings from retrofits in individual residences,

and 4) assessing the potential savings from mass participation in energy retrofit pro-

grams. Additionally, several shortcomings in the audit database are identified and

recommendations are made of some additional energy audit procedures that can be

implemented in order to improve the database.

2.2 Background

Several widespread design and installation issues associated with residential

air-conditioning systems have been shown to contribute to these loads in the U.S. by

increasing both energy consumption (e.g. sub-optimal airflow rates, low refrigerant

charge, and excess duct leakage) and peak power demand (e.g. improper equipment

sizing and low equipment efficiency) [13, 22, 66–69]. Duct sealing is a common resi-

dential retrofit that has been shown to be an effective means of energy conservation

for space conditioning [1, 2, 70]. Some researchers have predicted that sealing duct

leaks could also reduce peak power draw of residential air-conditioning units [71],

although others have failed to produce this result [72]. Low measured capacity has

been identified in several previous studies, e.g. [14], and may be indicative of low

airflow rates [67], improper refrigerant charge [68], and excess duct leakage [73].
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Previous investigations of these issues have focused on various sample sizes

and levels of detail. Some have been case studies using detailed measurements in

small samples of residences. James et al. (1997) [66] compared the installed air-

conditioner capacity of 368 Florida homes to their Manual J calculation (industry-

standard residential HVAC sizing metric) and found that over half were sized to be

over 120% of their Manual J calculation. They also found that oversized systems

had a 13% increase in peak demand cooling, but no noticeable difference in overall

runtimes. Proctor et al. (1997) [67] analyzed 28 residential air-conditioning systems

in Phoenix and found substantial defects in their installations – only 18% of systems

were correctly charged, airflow across the coils was on average 14% below specification,

and the average system was 48% oversized. Stephens et al. (2011) [14] considered 17

residential and light commercial air-conditioning systems and found that all were out

of recommended air flow range and that the systems were one average only operating

at 62–67% of rated cooling capacities.

Other studies have analyzed large regional mixed residential and commercial

data [13,69]. Downey and Proctor (2002) [13] studied a database of 13,000 residential

and commercial air-conditioning diagnostic reports from a commercial HVAC com-

puter aided diagnostic tool. They found that 67% of systems needed repair, 57% were

improperly charged, and 21% had improper air flow rates. Mowris et al. (2004) [69]

analyzed the results of 4,168 air-conditioner field tests in California and found that

72% had improper refrigerant charge and 44% had suboptimal airflow. They found

that realized measured efficiency (realized EER) gains for fixed air-conditioners were

17 – 21%. However, only a few previous studies have sample sizes large enough and

diverse enough to scale to the utility level. Neme et al. (1999) [22] in a meta analysis

of studies found that aggressive energy efficiency upgrades to HVAC systems in the

US could yield a national savings of 15,000 TWh, 40 GW of peak demand, and 12
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million metric tons of avoided CO2 per year.

2.3 Energy audit database

Austin, Texas, is unique in that it is one of the few cities in the U.S. that

requires an energy audit to be performed on a home before it can be sold. This

mandate is part of the City of Austin’s Energy Conservation Audit and Disclosure

(ECAD) ordinance [74, 75]. A home may be exempted from this ordinance under

several conditions, including its participation in utility-sponsored energy efficiency

programs within the previous 10 years of the sale of the home, if it is a condominium

or manufactured home, or if the change of ownership occurs under a variety of ex-

tenuating legal conditions (e.g. foreclosure, exercise of eminent domain, or property

settlements). The program hopes to induce investment that increases the energy

efficiency of existing homes and also aims to address part of the Austin Climate

Protection Plan, which includes avoiding 800 MW of new generating capacity.

There are over 200 companies in the greater Austin area permitted to con-

duct official ECAD audits. Each auditor receives training by Austin Energy (the

local municipally-owned electric utility) and is given a detailed handbook explaining

the steps necessary to conduct an official ECAD audit. Individual audits typically

cost between $200 and $300 and audit results are all submitted on a uniform docu-

ment to Austin Energy who then supplies the completed audit to prospective buyers.

Auditors’ results are internally checked against similar home audits to determine au-

thenticity [76], and non-compliance with the ordinance is a Class C misdemeanor for

the party selling the home. Because of the rarity of Austin’s energy audit require-

ments, the recentness of the audits, and the size of the sample, this information forms

a unique dataset in terms of scope, size, and content.
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While the ECAD ordinance applies to both residential (single and multi-

family) and commercial buildings, this analysis considers only single-family resi-

dences. This work presents an analysis of a database of 4971 energy audits that were

performed on single-family detached homes under the mandatory ECAD ordinance

between January 2009 and December 2010. To the best of the authors’ knowledge,

these audits are the first of their kind for southern climates and this analysis is the

first with such an extensive data set. While the results are not directly applicable to

other climates, it is expected that some of the findings will have relevance for other

southern states, and the methods are general to any climate region.

2.4 Methodology

2.4.1 Energy audit procedure

The ECAD handbook provides instructions to auditors to gather information

about the homes, including details related to the cooling and/or heating systems and

ductwork, window types and shading, attic insulation, obvious pathways of air infil-

tration, and the number and types of appliances. Thus, information obtained from

the energy audit database was used first to describe general building and system char-

acteristics in the audited homes, including building age, floor area, window type, and

attic insulation; age, nominal capacity, and manufacturer-rated efficiency of the pri-

mary air-conditioning system; and several other HVAC system parameters, including

estimates of system airflow rates, measurements of duct leakage, and measurements

of temperature differences across cooling coils. While some parameters were directly

measured, many were simply recorded by visual inspection of equipment and build-

ing details by the auditors. For example, attic insulation levels were estimated by

multiplying the depth of existing insulation in the attic by R-values provided to the

auditors for typical insulation types found in homes built over the past century in
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Austin (e.g. fiberglass batts, blown-in cellulose, or spray-foam). System airflow rates

were not actually measured during the energy audits, but were estimated by using

manufacturer’s data for the blower or were assumed to be 193 m3 hr−1 per kW of

rated capacity (400 ft3 min−1 per ton). Duct leakage measurements were made by

installing a calibrated fan at a return grille of the system or an access panel of the air

handling unit, taping the remaining supply registers and return grille(s), and measur-

ing the airflow rate required to depressurize the duct system to -25 Pa. These leakage

measurements thus represent total duct leakage (supply and return) to both interior

and exterior spaces. Additionally, the temperature difference across the cooling coil

was measured at the return air intake and immediately after the evaporator coil after

the system had been operating at least 15 minutes.

Relevant calculations for four parameters of interest are described in the fol-

lowing sections, including 1) installed nominal air-conditioning system efficiency,

2) air-conditioning system oversizing, 3) excess duct leakage, and 4) measured vs.

rated system capacity. After quantifying several parameters for the audited homes

in the database, the actual (or estimated) performance of the buildings and their

air-conditioning systems was compared against design or nominal values of the same

parameters. Differences between the two were used to estimate the impacts on peak

demand attributed to common design and installation issues present in the homes,

and to estimate the potential energy savings of remedying some of these issues in

individual homes. Finally, some of these estimates were scaled to represent the entire

single-family residential building stock in Austin, Texas.
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2.4.2 Estimating energy impacts of common problems

2.4.2.1 Installed nominal air-conditioning system efficiency

The outdoor condenser-compressor unit and indoor blower fan of a residential

air-conditioning system typically accounts for 80–85% of the total power draw of the

system [14]. Because the database contained values of nominal system capacities

(BTU hr−1) and rated energy efficiency ratios (EER†, in BTU hr−1 W−1), the power

draw of the outdoor condenser-compressor units, P , during operation under rated

conditions was estimated by Equation 2.1:

P =
CAP × 12× (1 + CF )

EER
(2.1)

where P is the peak power draw (kW), CAP is the nominal capacity of the unit

(tons), 12 is the unit conversion factor (BTU kW hr−1tons−1W−1), EER is the rated

efficiency of the unit (BTU hr−1 W−1), and CF is the consumption factor used to

account for increased power draw at outdoor conditions during the peak hour in

Austin that are likely higher than rated conditions. The total maximum power draw

that all of the units in the database could theoretically demand if operating at the

same time is simply the sum of the individual power draw values. To achieve more

realistic estimates of aggregate demand during the peak period it was assumed that

70% of these systems operate during the summer peak hour (best estimate using

the high end of hourly runtimes reported in 8 residential air-conditioning systems in

Austin in Stephens et al. [14]). Additionally, systems are typically rated at indoor

and outdoor temperatures of 26.7◦C and 35◦C, respectively [77], but the outdoor

temperature in Austin is typically higher during the summer peak hour. Thus, rated

†SI equivalent = coefficient of performance, or COP – the useful refrigerating effect per power
supplied, kWthermal kW−1power
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power draws were scaled to approximately 10% over rated conditions to match a peak

summer temperature of 40.6◦C [78], using an increase of 1.8 ± 0.8% per ◦C rise in

outdoor temperature, as observed in Stephens et al. [14].

Scenarios were explored where all the homes in the audit database were up-

graded to either 12 EER (COP 3.5) and 14 EER (COP 4.1) air-conditioning units,

which is consistent with Austin Energy’s energy efficiency rebate program. The low

and high ranges of improved efficiency were chosen to reflect the requirements of the

US Environmental Protection Agency’s and US Department of Energy’s ENERGY

STAR program (which requires a minimum EER of 12, COP 3.5) and the upper end

of efficiency available on the market in 2011 (EER 14, COP 4.1). Also the possible

reductions in peak power demand from replacing all oversized units (estimated us-

ing methods in the subsequent section) with correctly sized units of higher efficiency,

either EER 12 (COP 3.5) or EER 14 (COP 4.1) were explored.

2.4.2.2 Air-conditioning oversizing

A custom spreadsheet program was used to perform the Manual J sizing cal-

culations. The Manual J method allows for two different design scenarios: 1) a peak

cooling load procedure and 2) an average load procedure. The latter design scheme is

typically used for sizing residential HVAC equipment and is used in this analysis. A

portion of the calculation is based on the design temperature difference between the

inside and outside of the home. The interior conditions were assumed to be 23.9 ◦C

and 50% relative humidity (RH), which is a standard industry assumption [27] and is

in the middle of the human comfort zone. Outdoor design conditions for Austin, 35.6

◦C and 50% RH, are included in the Manual J literature and were used in the calcula-

tions (Manual J is designed to meet the demand of 97.5% of summer cooling hours).

The resulting estimated design system capacities (referred to as “correctly sized”)
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were compared to the installed rated capacities in order to determine the prevalence

of oversized systems in the audited homes. An installed unit with a capacity that is

greater than or equal to 120% of the Manual J calculation is considered oversized for

the purposes of this investigation, which is consistent with previous studies [66,79].

Only houses that contained one central air-conditioning unit were included in

this oversizing analysis (19% had more than 1 air-conditioner), but there is evidence

that homes with multiple air-conditioners are just as, if not more, oversized [67]. Also,

only houses between 46.5 and 325 m2 (500 and 3500 ft2) of floor area were considered

(4% were out of this range). Homes that were missing audit data, such as installed

system capacity and attic R-values, were also excluded. Missing audit information was

not correlated with any specific auditor and is most likely the result of the difficulty

of obtaining some information (e.g. nameplates missing from air-conditioning units).

Several home characteristics were not assessed at all in the energy audits,

and some reasonable assumptions were made in their absence. For example, wall

insulation R-values were not included in the energy audits, as that level of inspection

would require significant equipment or penetration of the façade. Thus, wall insulation

levels were assumed to meet the City of Austin building codes that coincided with

the year of construction of each home: pre-1983 code required RSI of 0.53 m2 K

W−1 (R-3) and post-1983 code requires RSI 2 m2 K W−1 (R-11). Because infiltration

rates were not measured in the homes, the default “leaky” infiltration values that are

provided in the Manual J workbook were used for all homes. Also, the number of

occupants was not noted by the auditors, so the value was assumed to be one more

than the number of bedrooms, the thermal contribution of individual occupants is

generally small and not expected to significantly affect the results [27]. Windows

were classified as either single- or double-paned in the audits, so U-values for generic
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single- and double-paned windows provided in the Manual J literature were used (3.18

and 5.57 W m−2 K−1, respectively). The area of windows was missing from the audit

database, so it was assumed that the percentage of windows per floor surface area was

16.8% for every home, based on the average of previous investigations of single-family

residences in the U.S. [66].

The assumptions for wall insulation levels (that every home meets code and

no homes have greater insulation than code requirements) and infiltration rates (that

every home is “leaky”) should over-estimate cooling loads and required cooling capac-

ities overall, which should provide a conservative estimate of the extent of equipment

oversizing. Ultimately, for the analysis of the effect of residential air-conditioner

oversizing on peak power demand, the rated power draws of oversized installed units

were compared to correctly sized systems of the same efficiency. Again, rated power

draws were scaled to increase approximately 10% over rated conditions, as previously

described.

2.4.2.3 Duct leakage

Because supply duct leaks should not alter return air temperatures and return

leaks should not increase entering air temperatures enough to drastically alter the

power draw of outdoor units [73], it was assumed that the only impact that widespread

duct sealing would have on peak demand would be a potential reduction in individual

system runtimes, which when aggregated across the building stock, might reduce the

likelihood that multiple systems are operating concurrently during hours of peak

demand. However, because work investigating system runtimes with varying leakage

conditions could not be found, the duct retrofit analysis was limited to the technical

energy savings in the individual homes.

To estimate the impacts of sealing duct leaks on cooling energy consumption
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in individual homes, data were used from two field studies that measured actual

reductions in cooling energy after duct retrofits [1, 2]. A linear regression model was

built relating cooling energy savings relative to the absolute reduction in the total

duct leakage fraction. The slope of that regression was used to estimate how much

cooling energy could be saved if each system with a duct leakage fraction greater than

10% was reduced to 10% (as recommended by Austin Energy and other efficiency

programs).

2.4.2.4 Measured vs. rated air-conditioning system capacity

Because airflow rates were estimated and temperature differences across cool-

ing coils were measured, the actual cooling capacity of the systems in the audit

database were estimated, and compared those values to the nominal cooling capac-

ity of the units. Actual sensible capacity of the audit homes was estimated using

Equation 2.2:

qs = Q× ρ× C ×∆T (2.2)

where qs is the estimated sensible capacity (kWcap), Q is the system airflow rate (m3

s−1), ρ is the air density (assumed constant, 1.2 kg m−3), C is the specific heat of air

(assumed constant, 1.012 kJ kg−1 K−1), and ∆T is the temperature difference across

the cooling coil (K). Nominal installed sensible capacity was estimated as 80% of the

nominal total capacity identified on each unit by the auditors, which is consistent with

a typical sensible heat ratio (SHR) of 0.80 in residential systems [14, 73]. Systems

with measured capacities less than rated capacities were assumed to operate longer

and consume more energy at a rate directly proportional to the difference between

the two values, which is a common assumption, although experimental justification
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was not found in the literature.

2.4.3 Estimating energy impacts enrolling all homes in Austin Energy’s
Power Saver Program – Home Performance with ENERGY STAR

The potential peak power demand reductions were estimated from various

levels of participation in the Home Performance with ENERGY STAR (HPwES)

program. HPwES is a joint program between the US Department of Energy and the

US Environmental Protection Agency. According to the HPwES website, the program

is a “comprehensive, whole-house approach to improving energy efficiency and home

comfort, while helping to protect the environment” [80]. Austin Energy is the local

sponsor, and has garnered over 7000 participants since 1998. Homeowners participate

in the program by first contacting an approved home energy company to perform an

energy audit on their home and offer recommendations on improving the efficiency of

the home in the following areas: duct sealing and repair, attic insulation, upgrading

windows, caulking, weather stripping, radiant barriers, and correctly sizing the air-

conditioner or heat pump to a unit with a EER of 12 (COP-3.5). The participant

decides which improvements they would like to have performed, and Austin Energy

reviews the proposal for work. Once approved, the homeowner has two options, 1)

receive a rebate of up to 20% of the cost of repairs, up to $1575 or 2) apply for a low

or 0% interest, unsecured loan through Austin Energy.

To establish a “best case” scenario of improved homes, each home in the

database was modified with the most commonly performed improvements in the HP-

wES program, and then each air-conditioning system was resized. The power demand

savings of a resized air-conditioning unit, as compared to the installed unit at the time

of the home audit, in each home were then summed and multiplied by a scaling factor

to estimate the peak power consequences at the utility scale. For all homes in the
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database, attic insulation was brought to code (R-38 hr ft2 ◦F BTU−1, RSI-6.7 m2 K

W−1), caulking and weather-stripping was assumed to increase air tightness to 0.35

ACH [27], leaky ducts were sealed, and windows were upgraded (if single-paned) to a

generic double-paned window (U-value of 0.56 BTU hr−1ft−2 ◦F−1, 0.97 W m−2 K−1).

Although nearly 5000 homes underwent energy audits as part of a sales transaction

as required by the ECAD ordinance, it is assumed that no home energy improve-

ments were implemented in these homes, post audit. Thus, it is assumed that the

home characteristics as listed in the ECAD database are an accurate reflection of the

homes today, as well as the rest of the single-family homes in Austin.

To assess peak power improvements, the optimal air-conditioner capacity for

each improved home in the audit database was estimated by performing a Manual

J calculation, the industry standard sizing calculation for residential air-conditioning

systems [26]. The calculated unit size (EER 12, COP 3.5) was then compared to

the installed unit size (installed EER) and the difference in peak power demand was

calculated. Peak power demand was estimated in both cases by dividing equipment

nominal capacity by rated EER and adjusting for likely operating conditions, as shown

in Equation 2.1.

2.4.4 Scaling analysis to represent the residential building stock in Austin

There are approximately 332,000 residential buildings in Austin Energy’s ser-

vice area, 41.7% (156,000) of which are single-family detached units (US Census,

2009). Thus, this database of 4971 energy audits represents over 3% of all single-

family homes in Austin, making it a statistically relevant representation of the build-

ing stock (a Wilcoxon signed-rank test yielded no statistical difference in the distribu-

tions of year built between the two databases, p > 0.05). Because the audits available

from the ECAD database were for single-family detached homes, the results of the
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analysis were extrapolated to all single-family units in Austin.

2.5 Findings from the energy audit database

This section first summarizes building and system characteristics of homes in

the audit database. Figure 2.1 shows the distribution of the year that each home

in the database was built. The majority (99%) of homes in the audit database were

built prior to 2000, with a mean and median year built of 1972 and 1976, respectively.

Figure 2.1 gives a distribution of the year built of the homes in the dataset. The mean

floor area of the homes in the audit database was approximately 1798 ft2 (167 m2)

(standard deviation (σ) = 764 ft2, 71 m2), with a median value of 1615 ft2 (150 m2).

Figure 2.2 shows the measured attic insulation levels for ECAD homes. Austin

Energy recommends an attic R-value of 38 hr ft2 ◦F/Btu (RSI-6.7 m2 K/W) for homes

in the Austin area, although the majority of homes in the audit database (92%) fall

below this recommendation. Homes in the audit database had an average attic insula-

tion R-value of 21.5 hr ft2 ◦F/Btu (σ = 9.5) (RSI-3.8 m2K/W; σ = 1.7). High thermal

conductivity between conditioned spaces and attic spaces increases cooling demand

in the summer, as the temperature difference between the attic and conditioned space

can be greater than 54◦F (30◦C) [19].

Table 2.1 describes selected characteristics for the primary air-conditioning

systems in the homes in the audit database, and the subsequent sections describe se-

lected measured (or estimated) air-conditioning system parameters. Only a negligible

fraction (< 0.2%) of homes did not have central air-conditioning.

Figure 2.3 shows the distribution of total duct leakage across the audit homes,

measured as the leakage airflow rate at -25 Pa, normalized to the estimated system

airflow rates. Duct leakage fractions include the combined supply and return leakage
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Figure 2.1: Distribution of year built of the homes in the ECAD audit database (N
= 4893).

Table 2.1: Air-Conditioning System Characteristics

Parameter Mean Median Standard Deviation Number of Units

Nominal Capacity (kW) 11.00 10.60 2.80 4763
Airflow Rate (m3/s) 0.61 0.56 0.31 4714
Rated Efficiency (COP) 2.90 2.90 0.50 3818
Floor Area/Capacity (m2/kW) 13.30 13.20 2.40 4693
Unit Age (years) 10.80 11.00 5.70 3480
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Figure 2.2: Distribution of Attic insulation levels of homes in the ECAD audit
database.
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to both interior and exterior spaces. The majority of homes (approximately 77%)

had duct leakage that would typically require sealing (greater than 10%), although

there is considerable uncertainty associated with both the leakage measurements and

the estimated system airflow rates. The mean duct leakage fraction was 19% (σ =

13%), with a median of 16% and an interquartile range of 10-24%. The mean duct

leakage airflow rate, measured at -25 Pa, was approximately 234 ft3 min−1 (0.108 m3

s−1), which was at the low end of Neme et al. [22], who summarized 19 duct studies

that yielded a range of 193-396 ft3 min−1 (0.091-0.187 m3 s−1) at -25 Pa.
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Figure 2.3: Distribution of duct leakage as a fraction of total duct flow for homes in
the database.

The temperature difference across the cooling coil is another parameter mea-
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sured in the audit homes and is an important indicator of how well the system is

functioning. Figure 2.4 shows the distribution of temperature differences measured

across the audit homes. The mean temperature difference was 17.1◦F (9.5◦C) (σ =

5.9◦F (3.3◦C), N = 3687). Austin Energy recommends that the temperature differ-

ence across the cooling coil be in the range of 15-20◦F (8.3-11.1◦C). About 47% of

the systems were operating outside of the recommended range, split approximately

equally between too high (24%) and too low (23%). Temperatures that are below this

range might be indicators of low airflow rates, fouled coils, or improper refrigerant

charge, all of which can reduce the cooling capacity of the unit [67]. Excessive tem-

perature differences may be indicators of improper sizing or overcharging, but can be

an indication of increased sensible capacity.

Additionally, the distribution of rated EER of the installed units is presented

in Figure 2.5, in units of cooling output (BTU/hr) per electrical power input (W).

The installed unit efficiency has a direct impact on the energy consumption and power

draw of the air-conditioning unit. Approximately 86% of homes had systems with

a rated EER less than Austin Energy’s recommendation of EER 12 (COP 3.5), and

less than 2% exceeded EER 14 (COP 4.1).

2.6 Results

This section describes the effect of the previously mentioned common air-

conditioner design and installation issues in the audit homes and estimates the im-

pacts they have on peak power demand and energy consumption.
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Temperature Difference Across the Coil (°F)

N
um

be
r 

of
 H

om
es

0

100

200

300

400

500

600

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Mean: 11.7 °F
Median: 17.0 °F
Std. Dev.: 5.9 °F
Number: 3687

Figure 2.4: Distribution of temperature difference across the evaporator coil for homes
in the ECAD audit database.
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Figure 2.5: Distribution of the installed efficiency of air-conditioning units in the
ECAD audit database.
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2.6.1 Installed system efficiency

Because new commercially available air-conditioning units continue to increase

in efficiency over time, it was attempted to quantify the excess energy consumption

and peak power demand associated with older inefficient systems across the homes

in the audit database. The estimated distribution of rated power draws for homes in

the audit database is shown in Figure 2.6.
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Figure 2.6: Distribution of estimated power draw at rated conditions for homes in the
ECAD audit database, in increments of 0.5 kW, where N is the number of individual
systems.

The average system in the audit database had an EER of 9.9 (COP 2.9) (σ =

1.7, COP 0.5) and the average power demand was 3.9 kW (σ = 1.3 kW). This average
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is likely a low estimate for summer peak power demand, as the outdoor temperature

during the summer peak hour can exceed 40 ◦C (104 ◦F). Again using an increase

in outdoor unit power draw of 1.8 ± 0.8% per ◦C rise in outdoor temperatures [14],

the average peak power demand is estimated as 4.3 kW (σ = 1.4 kW). The best

estimate of the uncertainty in this value is approximately 5%, taken as the standard

deviation of the high, medium, and low bounds of the estimated increase in power

draw over rated conditions that were calculated using the above reference. Scaling to

the approximately 156,000 single-family units in Austin, and assuming this dataset is

roughly representative of the distribution all single-family detached homes in Austin,

this estimate leads to a total peak power demand of approximately 663 ± 33 MW

for air-conditioning (or approximately 464 ± 23MW if it is assumed that 70% of air-

conditioners are operating during the peak hour). For reference, 464 MW represents

approximately 17–18% of Austin’s highest recorded peak demand of 2628 MW in

August 2010.

If every system was upgraded to at least an EER 12 (COP 3.5), it is estimated

that the collective peak power draw of single-family detached homes in Austin could

decrease by 132 MW to 532 MW (or 372 MW assuming 70% of systems operating at

peak). This reduction would be approximately 5% of Austin’s highest peak demand

and approximately 17% of the city’s 800 MW peak reduction goal. Similarly, if every

system was upgraded to at least EER 14 (COP 4.1), it is estimated that peak demand

could be reduced by 205 MW, or almost 8% of Austin’s peak demand, and almost

26% of its peak reduction goal.

Holding all else constant, increasing the efficiency of a unit should directly

affect the amount of power draw required to meet the same cooling load but should

not alter system runtimes, as the system still has the same capacity to remove heat
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from the airstream. Thus, it is estimated that increasing the EER of the average

system from 9.9 to 14 (COP 2.9 to COP 4.1) would yield an average reduction in

household cooling energy consumption of approximately 29%. Thus, approximately

70% of homes in the database could save at least 25% in cooling energy by upgrading

their air-conditioners to 14 EER (COP 4.1) units.

2.6.2 Oversizing

Air-conditioning systems were also analyzed to determine the appropriateness

of their sizing. This analysis was restricted to homes in the audit database that have

a single air-conditioner, have a floor area between 46.5 m2 and 325.2 m2, and that

had enough audit information to facilitate a Manual J calculation; 74% of the homes

in the database met these requirements (N = 3669). There did not appear to be any

systematic reason for missing data, and so it is expected that this smaller subset is

still representative of the Austin housing stock.

Figure 2.7 compares “correct” cooling capacities estimated using Manual J

calculations and the actual installed capacities as found in the audits. Each circle

represents an installed unit in the database. Because manufacturers only provide air

conditioning units in certain size intervals, usually in 1.76 kW (1
2

ton) increments,

design capacities recommended by Manual J calculations were rounded up to the

nearest 1.76 kW. The rounded values are used for all percentages stated for oversizing,

as well as calculations involving aggregated peak power demand; the pre-rounded

Manual J values are left in Figure 2.7 for clarity.

Manual J calculations showed that 31% of the installed units to be sized at

least 120% of necessary capacity (units to the left of the dotted line in Figure 2.7),

and 66% were at least 100% of necessary capacity (units to the left of the solid

line in Figure 2.7). These results are in general agreement with previous studies on
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Figure 2.7: Distribution of the actual installed air-conditioner capacities vs. cal-
culated (Manual J) capacities for homes in the audit database (N = 3669 homes).
Because of the large size of the data set, it is difficult to clearly see each point, but
the seemingly solid horizontal lines are closely spaced individual units.
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residential air-conditioner oversizing [66, 67]. In addition, approximately 9% were

undersized (below the dashed 75% line). Figure 2.8 shows a cumulative distribution

of the installed units vs. percent of Manual J capacity.
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Figure 2.8: Cumulative distribution of the installed units vs. percent of Manual J
capacity showing the percent of homes above various levels of oversizing.

The average power draw of oversized (≥120% Manual J) units is 4.86 kW (σ =

1.45 kW, N = 923), compared to 3.54 kW (σ = 0.97 kW, N = 923) for correctly sized

units, both calculated at 5.6 ◦C above rated conditions. If 31% of all single-family

residential units in Austin are considered to be oversized, and it is assumed that 70%

of these systems are operating during the summer peak hour, with a 10% increase

in power draw with a 5.6 ◦C temperature increase over rated conditions [14], it is

estimated that the aggregated excess peak power demand due to all oversized single

family residential air-conditioner units is as much as 41 MW (or approximately 1.6%

of Austin’s peak demand). Furthermore, if each oversized unit was replaced with a
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correctly sized unit that is also upgraded to an EER of 12 (COP 3.5) or 14 (COP 4.1),

that would yield a peak power reduction of 67 MW or 81 MW, respectively (or 2.5%

and 3.1% of peak). If the undersized units in Figure 2.7 were simultaneously upgraded

in size and efficiency (EER 14, COP 4.1), extrapolated to the entire single-family

housing stock, the aggregated peak power demand increase would be approximately

1 MW.

The aggregated peak power demand of residential air-conditioners depends

on how many are operating concurrently and it is important to note that smaller,

correctly sized air-conditioning units should actually run longer to meet the same

cooling load in a building. In the only two studies (of which the author is aware) that

measured the additional runtime caused by correctly sizing over-sized air-conditioning

units, Pigg [81] measured an average increase in runtime of 32% (σ = 21%) in three

homes in Wisconsin after reducing unit sizes by approximately 30% and Sonne et

al. [82] measured increases in runtimes of 57 ± 19% and 33 ± 17% in two homes in

Florida after reducing the units’ sizes by one-third. Thus it is reasonable to assume

that there is a greater likelihood of multiple units across the building stock operating

more often during the peak hour (i.e. more than the assumption of 70%), and that

the potential reductions in peak power due to correctly sizing units may not actually

be realized without the incorporation of utility-controlled thermostat cycling pro-

grams [83]. However, a recent analysis by the author looking at the air-conditioner

runtimes of 14 green built homes in Austin found that 85% of units were running

during summer peak hours [84].

The energy impacts of correctly sizing systems in individual residences are not

as clear. Smaller systems will draw less power when operating, but because cooling

loads do not change, the amount of energy (all else equal) required to condition the
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space will remain the same. One would expect that decreasing the size of a residential

system would lead to longer runtimes and ultimately observe little change in overall

energy use. This phenomenon has been observed in field studies in both Wisconsin [81]

and Florida [82]. Additionally, James et al. [66] observed that systems sized 120%

greater of Manual J increased overall cooling energy use by just under 4% and by 13%

during the peak hour in the summer in Florida. Although the overall energy impacts

of correctly sizing systems are unclear, occupants might benefit from added comfort,

as correctly sized systems that operate for longer periods of time should provide more

dehumidification [72], thus possibly allowing for a higher dry bulb temperature while

remaining in the human comfort zone [27].

2.6.3 Duct leakage

Because there was not enough information to support a detailed model of the

ductwork in the homes, values of energy savings from previous studies of duct retrofits

were relied on. Figure 2.9 shows actual reductions in cooling energy use measured

in two previous field investigations of the impact of sealing duct leaks in residential

buildings [1, 2]. As previously mentioned, a linear regression was performed on these

data to estimate the average cooling energy savings achievable from a reduction in

total duct leakage fractions [1,2]. Three outliers from Jump et al. [2] were ignored to

achieve some reasonable certainty (slope = 1.47, R2 = 0.73, 95% CI = 1.16-1.77), as

shown in Figure 2.9. The regression output means that, for example, if duct retrofits

achieve a 20% reduction in total leakage (e.g. from 30% to 10%), approximately 30%

savings in cooling energy can be achieved. For comparison, Cummings et al. [1]

reduced mean total leakage in 23 homes from 16% (std dev. 10%) to 5% (std dev.

4%), which yielded mean cooling energy savings of 18% (σ = 11%) [1].

Assuming a target duct leakage of 10%, approximately 76% of the homes in
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Figure 2.9: Estimations of the reduction in cooling energy use associated with reduc-
tions in total duct leakage. Plot generated with data taken from [1, 2], and ignoring
three outliers from Jump et al. [2].
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the database would require duct sealing (mean sealing required = 13%, σ = 13%).

The required duct sealing values (in absolute terms) was multiplied by the slope in

Figure 2.9 to yield the likely cooling energy savings achievable by sealing ducts in

each eligible home. The distribution of achievable energy savings is shown in Fig-

ure 2.10. The amount of energy savings is capped at 60% because of data limitations

in Figure 2.9 and likely invalid values of duct leakage fractions entered at the extreme

ends in the audit database.
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Figure 2.10: Distribution of the estimated reduction in cooling energy consumption
achievable by sealing duct leaks in the audit homes (N = 3418 homes).

Repeating the calculations using the confidence intervals for the slopes of the
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regression line in Figure 2.9, it is estimated that the mean system could achieve 14–

22% in cooling energy savings by sealing duct leaks. The best estimate of the mean

cooling energy savings (using only the slope from Figure 2.9) is 18% (σ = 15%), with

a median savings of 14% and an interquartile range of 7–23%. Unfortunately, the

values of peak reduction cannot extrapolate absolute from these data because of lack

of information about individual system runtimes, although it can be estimated that

more than 75% of homes in the audit database (and thus single-family homes in the

city of Austin) could benefit from sealing duct leaks, with an average cooling energy

savings of approximately 18%.

2.6.4 Measured vs. nominal capacity

Because system airflow rates were estimated and temperature differences across

cooling coils were measured, the operating sensible capacity could be compared to the

estimated rated sensible capacity. The average system was estimated to be operating

at approximately 77% of rated sensible capacity (σ = 21%). Approximately 10% of

systems were operating under 50% of rated capacity and approximately 10% were

operating over 100% of rated capacity, respectively, as shown in Figure 2.11.

Low operating capacity has a direct impact on energy consumption and system

runtime, as systems that remove less energy than they are rated for should operate

longer. If a linear relationship is assumed between deficiencies in delivered capacity

and increases in runtime [72], the average homeowner could save up to 23% in cool-

ing energy by servicing their air-conditioning units to achieve 100% of rated sensible

capacity (although there is some evidence that this relationship may be nonlinear

and the savings may be smaller; for example, Stephens et al. [15] reported that res-

idential air-conditioning systems that observed a 4% decrease in sensible capacity

due to the installation of high-efficiency filters did not lead to an increase in total
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Figure 2.11: Distribution of the estimated operating sensible capacity relative to the
rated sensible capacity, assuming a sensible heat ratio (SHR) of 0.8 (N = 2886 homes)
showing that the mean system was operating at approximately 77% of rated sensible
capacity (σ = 21%).
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energy consumption). Although there are no estimates of the uncertainty of these

measurements, these values should be taken as rough estimates because there is a

considerable amount of uncertainty in the airflow measurements/estimates, the mea-

sured temperature differences, and the assumed SHR = 0.8 [14, 73]. Sensible heat

ratios typically range from 0.7 to 0.8 in residential settings [85]. If a SHR = 0.7 is

assumed, the mean system would be operating at 88% of rated capacity (σ = 23%),

and the average energy savings of tuning equipment would decrease to 12%. Finally,

although this analysis focuses on the energy savings to residents achievable by in-

creasing system cooling capacities, reductions in peak demand might be realized due

to reduced system runtimes. There is not enough information to quantify this impact.

2.6.5 Increasing the efficiency of the homes with the Home Performance
with ENERGY STAR Program

Enrolling all the homes in the audit database in the HPwES program (increas-

ing attic insulation levels, tightening the building envelope, sealing ducts, and up-

grading windows) and replacing oversized units with new correctly sized units would

reduce cooling demand. For the audit homes that go through the program, the mean

unit size in the database would decrease from 11 kW (σ = 2.8 kW) to 7.7 kW (σ = 1.8

kW), which would allow the average home to realize a peak power demand reduction

of approximately 1.8 kW (σ = 1.2 kW) with an EER 12 (COP 3.5) unit. Results

indicate that more than 97% of the homes in the audit database would benefit from

this program. Aggregated across all 156,000 single-family detached homes in Austin,

it is estimated that the application of HPwES retrofits could reduce Austin Energy’s

peak power demand by as much as 200 MW, or almost 8% of peak demand in 2008.

The estimate of the potential peak power savings of HPwES retrofits assumes

that the fraction of systems operating simultaneously during the peak hour does not
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change after correctly sized units are installed, although this fraction could potentially

increase as smaller systems will generally operate for longer periods of time to meet

the same cooling load. Oversized systems often cycle on and off frequently, which

can help reduce the aggregate instantaneous demand for a utility. If the fraction

of air-conditioning systems operating during the peak hour increased from 70% to

100%, the peak savings would be reduced to 86 MW. However, it is not expected that

air-conditioners will all operate continuously at peak times because other HPwES

retrofits would also decrease cooling loads. The aggregation of air-conditioning units

drawing less power because of their decreased size, increased efficiency, and reduced

cooling loads from improvements to the efficiency of the home, should still enable

substantial reductions in peak power demand [22].

2.7 Discussion

Several common design and installation issues that have been found in pre-

vious studies were also found in the homes in the audit database. For example,

air-conditioning units were inefficient overall, with an average EER of 9.9 (COP 2.9),

compared to the ENERGY STAR minimum requirement of EER 12 (COP 3.5), in-

creases peak power demand and overall cooling energy consumption. Additionally,

approximately 31% of the units are estimated to be oversized by at least 120% rela-

tive to Manual J calculations. The analysis finds that over 75% of the systems in the

audit database had excessive duct leakage and that the average home could reduce

cooling energy consumption by up to 18% by repairing ducts. The average system

was operating at approximately 77% of rated sensible capacity, suggesting widespread

problems with low airflow rates, fouled cooling coils, or suboptimal refrigerant charge

and over 97% of homes would benefit from energy efficiency upgrades. Because less

than 0.2% of the homes in the original data set (N = 4971 homes) did not have

42



air-conditioning, all of these issues are likely widespread across Austin.

It is a common misconception that “bigger” air-conditioners will perform “bet-

ter” and many air-conditioning contractors have an incentive to oversize residential

HVAC units because they will make more money. In a survey of HVAC contractors,

over 75% reported that customers wanted larger size units, that the homes they de-

signed for required oversizing, or that bigger was “simply better” [86]. One of the

main concerns of HVAC contractors is that if they do not oversize units, the customer

will not feel as if the unit cools the space in a timely manner. If this is the case, the

contractor might receive a callback and be required to install a larger unit. However,

Rudd et al. [79] showed that even systems as low as 73% of Manual J suggested ca-

pacity were able to meet the cooling load and maintain temperatures in homes during

the summer of 1999 in Tucson, AZ. Austin typically has a larger latent load than Tuc-

son, so units may not be able to be undersized to this extent, but the analysis shows

that significant peak power savings may be achieved by correctly sizing residential

air-conditioning systems in Austin.

2.7.1 Comparison of the costs of efficiency upgrades to the costs of peak-
ing power plant acquisitions

This analysis suggests that 200 MW of peak demand can potentially be avoided

with aggressive investments in home energy efficiency improvements. Reducing peak

demand in Austin might offset the need for Austin Energy to obtain additional peak

generation units. A generic 160 MW conventional natural gas combustion turbine

is estimated to cost $685 per kW (CAPEX, overnight costs), or approximately $110

million, with $2 million in fixed O&M costs per year [87]. Assuming that fuel costs

are $75.60 per MWh, depending on the generating unit and prevailing market prices

for natural gas [88], 200 hours per year of operation, and a 5% yearly rise in fuel
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prices, the total fuel cost for 20 years would be about $80 million. Thus, considering

a 20-year life span, the total cost associated with a 160 MW natural gas peaking unit

could be approximately $230 million (or $1438 per kW of generation).

The maximum rebate from Austin Energy to homeowners enrolled in HPwES

is currently $1575. Considering an average peak power reduction of 1.8 kW per home,

the cost per kW (savings) to Austin Energy is approximately $865 per kW, or only

60% of the cost of a new peaking generation plant. With these assumptions, Austin

Energy could even increase the maximum rebate to approximately $2600 per home

and the cost of savings would still be at parity with the cost per kW of generation.

This increased maximum rebate is over half the average cost (approximately $5000)

to homeowners for enrolling in the program [89]. Although there are other more

cost-effective methods to reduce peak demand on electric utilities, such as direct load

control and critical peak pricing [83], this analysis is limited to building retrofits using

HPwES, which are more cost-effective than new plant acquisitions while simultane-

ously benefiting homeowners by reducing their energy bills.

2.7.2 Energy audit recommendations

Although the energy audit procedures detailed herein provide a unique dataset

for study, steps can be taken to improve the quality of information provided by the

audits. To aid future analysis, it is recommend that detailed window characteristics,

such as the area and orientation, be included in the audits. This practice would not

add a significant burden to the auditor and would provide an improved character-

ization of the audit homes. Additionally, air leakage testing using calibrated fans

(e.g. blower doors) should be required to establish a baseline value for air infiltra-

tion. Airflow rates and duct leakage were not measured using the most accurate and

informative methods [90], and given the importance of air-conditioning in a cooling
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climate like Austin, they could be improved to provide for better home characteri-

zations overall. These measurements would be a helpful addition to the audits and

would possibly allow for a better and more accurate understanding of the link be-

tween the typical system issues described herein and overall energy performance [68].

Finally, because energy audits have been shown to be highly variable between audit

companies [91], steps should be taken to fully detail audit procedures in order to

minimize uncertainty.

2.8 Conclusions

This section of work analyzed a database of 4971 energy audits on single-

family homes in Austin, Texas. The analysis led to a conclusion similar to previous

studies: residential air-conditioning systems are generally operating in poor condi-

tion. The inefficiencies associated with poor residential air-conditioning performance

aggregated across a city can be significant, especially during peak periods. Mitigation

of typical design and installation issues could result in significantly decreased peak

power demands on utilities, and because air-conditioning often constitutes the largest

single residential energy demand, the reductions in overall energy consumption for

individual homeowners could be significant. Single-family residential air-conditioning

systems are estimated to account for approximately 17-18% of peak summer electricity

demand in Austin. Furthermore, the analysis concludes that efficiency improvements

alone (upgrading all systems to EER 14, COP 4.1) could reduce peak power demand

by as much as 205 MW, which would achieve almost 26% of Austin’s Climate Pro-

tection Plan’s goal of an 800 MW peak reduction by 2020. Similarly, this analysis

suggests that accurately sizing residential air-conditioning equipment could displace

as much as 41 MW of peak demand, or nearly the equivalent of one natural gas peak-

ing plant. Additionally, replacing oversized units with higher efficiency units (EER
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14, COP 4.1) could increase those peak savings to 81 MW. This research also indi-

cates that Austin Energy could substantially increase energy efficiency rebate levels

for home energy retrofits and still be at parity with the cost of building new generating

capacity.

While this analysis relies on data from Austin the approach can be applied to

other cities. Implementation of initiatives similar to Austin’s ECAD ordinance would

produce valuable information and the methods used herein can be applied to analyze

other databases in other climates. This information would lead to better-informed

decisions when assessing energy efficiency programs and climate protection plans.
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Chapter 3

Clustering analysis of residential electricity

demand profiles

3.1 Introduction

Electricity generation is responsible for 40% of primary energy use in the

US [92], and while significant information is available about its generation, much less

is known about its end use, particularly on an inter-daily temporal scale. Current

smart meter and smart grid deployments are vastly increasing the amount of energy

use information being created, curated, and analyzed. These deployments, which

typically have 15-minute or 1-hour granularity, increase the amount of available energy

use information by orders of magnitude over once-per-month reads. This recently

available abundance of data allows for analyses not previously possible. In particular,

it allows for temporal assessment of electricity use, which is important because it holds

the potential to reveal non-obvious insights about electricity consumption and the

behavioral and technological drivers of that consumption. Also, the temporal aspect

of electricity use is significant because electricity is hard to store and thus must be

produced at the rate of consumption. This balance that must occur in the wholesale

market can cause the price for electricity to be volatile, especially during peak demand

times typically due to lack of excess capacity and transmission congestion.

Residential power demand can range in magnitudes from a few hundred watts

(W) to the low tens of kilowatts (kW), especially in regions where residential air-

conditioning units are ubiquitous. Inter-season differences for residential total grid
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power demand in cooling climates can change by over 400% from non-cooling to

cooling periods [7]. Residential electrical use patterns fluctuate differently during the

day due to space-conditioning set points, time of year, weather, occupant behavior

and schedules. In a similar way, the electric grid load and net carbon emissions change

temporally due to changes in demand, temperatures, and generation mixes, which are

also dynamic with daily and seasonal timescales [93,94].

The drivers of macro-level, aggregate energy use are current topics of study [28],

but the factors affecting residential energy use at finely-resolved timescales are poorly

understood. This work seeks to fill part of that knowledge gap by identifying correla-

tions between electric customer survey data and electricity use profiles. Understand-

ing electricity consumption patterns and their influencing factors could potentially

lead to more robust energy modeling, more precise demand forecasts, and more ef-

fective energy conservation and peak reduction campaigns. While beyond the scope

of this paper, these results might also inform analysis of behavior-related tradeoff

calculations such as the environmental impacts of telecommuting [95].

Clustering analysis of temporally-resolved electricity use has currently been

limited to generating typical load profiles, grouping like customers, or finding outliers.

This analysis seeks to take the analysis a step further by leveraging the comprehensive

data set available from a local smart grid demonstration project [36] and explore the

drivers behind the derived groups of electricity customers∗.

3.2 Background

Clustering is an effective tool for analyzing static data or time series data,

such as electricity usage [29,30]. For example, Chicco [31] used a variety of clustering

∗This chapter has been submitted as an original research article to the journal Energy Policy.
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techniques to analyze 400 load patterns of non-residential, medium voltage consumers

during a weekday in Italy. The electricity data were in 15-minute intervals and were

normalized by the minimum and maximum value of the daily load pattern so that

all normalized load profiles were between 0 and 1. He found that choosing the best

clustering algorithms depended on whether or not the purpose was to identify the

outliers or to assign all the load profiles to a specific category.

Kim et al. [32] performed a similar analysis by clustering electricity usage from

high voltage consumers in South Korea to determine typical load profiles using 15-

minute data. They had 3,183 high voltage customers from the Korea Electric Power

Corporation (KEPCO) whose meter data were used for this study. They found the

hierarchical clustering technique to be the most effective in determining typical load

profiles.

Räsänen et al. [33] performed clustering of hourly electricity usage over a

more diverse consumer base in Finland. The study included 3,989 consumers in the

following categories: 80% residential, 8% public sector, 6% services, 5% agriculture,

and 1% industry. To perform the clustering, they reduced the size of the dataset, so

they performed the clustering based on 489 randomly chosen time points throughout

the year (489 represents 5% of the year). Their data-driven clustering technique

provided more accurate load forecasts than the current methods used by the utility.

Zhou et al. [34] and Panapakidis et al. [35] used smaller datasets for their clus-

tering analyses of electricity loads. Zhou et al. used 72 load profiles from six different

consumers in China and Panapakidis et al. used a mix of 150 residential, commer-

cial, and industrial consumers in Greece. Panapakidis et al. notes that a consumer’s

electricity costs might also be helpful to consider when performing clustering.
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3.3 Methods

This analysis employed a data-driven approach to 1) create average seasonal

curves for each home in the analysis, 2) determine the number of representative

residential electricity demand profiles within their respective seasons, and 3) attempt

to draw correlations to the different profiles based on data from the same homes.

Initial data averaging, grouping, and home curve derivations were performed using

the Texas Advanced Computer Center’s data applications resource Corral [96]. Corral

is a collection of storage and data management resources available to researchers at

the University of Texas at Austin. Data analytics and clustering were performed

using the statistical program R (version 3.0.2). Figure 3.1 provides a flowchart of the

analysis progression.

Figure 3.1: This flowchart shows the datasets and sequence of steps for the analysis.
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3.3.1 Creating average seasonal curves

The data used in this analysis are collected as part of a smart grid demon-

stration project located in Austin, TX and operated by the Pecan Street Research

Institute [36]. The subset of data analyzed was power consumption in watts measured

every 1 minute for 103 homes in Austin from November 2012 to October 2013. The

1 minute data were used to create a representative electricity use profile for each home

for every season of the year. The data were first averaged over each hour to create

hourly profiles. For example, electricity use data from 14:01 – 15:00 were averaged

and assigned to the value 15:00 (interval ending). This yielded a 24-element vector

for each day of the year. Figure 3.2 shows a 10 day sample of 1 minute data for a

single home. The left plot shows the raw 1 minute data and the right plot shows the

same data averaged to 1 hour profiles, with the average of the hourly profiles (for all

the days of this month – May 2013) in bold.

This bold curve, which is a home’s representative electricity use profile for

a season is the curve or profile referred to throughout this analysis. This curve is

described in Equation 3.1:

curvej =



wj0

wj2
...
wjh

...
wj23


, (3.1)

where curvej is the representative curve for home j and wjh is described in Equa-

tion 3.2:

wjh =
∑
m,h

Pjm/60 (3.2)
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Figure 3.2: Figure showing a sample (10 days worth, May 01, 2013 – May 10, 2013)
of the initial, raw 1 minute data from a single home on the left, averaged 1 hour
profiles (same days) on the right with the bold line showing the average of the hourly
curves for the entire month of May 2013. The raw data (left panel) show the great
variability in the demand profiles, whereas the hourly averages and averaged profile
(right panel) show the general diurnal variation for consumption.
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where Pjm is the measured average power draw for home j over minute m of hour h.

The primary focus of this research was temporal variation in electricity use

(i.e., profile shape), rather than magnitude, which has been considered in other anal-

yses [36]. When profiles were clustered with magnitude still included, magnitude, not

shape dominated the cluster arrangement. Therefore each raw, hourly usage curve

was then normalized by its largest value so that all home profiles would be on a

fractional 0 to 1 scale. The minimum value was not subtracted from the curve so

as not to exacerbate the difference between minimum and maximum electricity use.

For example, some homes, on average reduced their usage to almost zero during cer-

tain parts of the day while others never dropped their average usage below 40% of

their average peak usage. Normalization of the curves could introduce some bias in

that even if a home is using less normalized electricity during peak times, it might

be using much more (in absolute terms) that others that are using more normalized

electricity during peak times. However, homes that are “high users” are likely to

be larger [28, 36, 97] and will likely have a larger base load as well as a larger space

conditioning load.

The normalized seasonal curves are then used as inputs to the optimal clus-

tering algorithm discussed in the next section.

3.3.2 Determining distinctive clusters within seasons

After creating average curves for each home for each season, the curves were

put into groups via a k-means clustering analysis. K-means is an iterative process that

attempts to partition each curve (the seasonal average curve – a 24-valued vector) into

groups such that the sum of squares (Euclidean distance) from each group member

to its group center is minimized [98]. After each step, the centers are recalculated

and the curves are redistributed until the process converges. In this approach, as in
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most clustering analyses, the number of clusters is pre-specified, so prior knowledge

of the number of groups is required. There are tests that attempt to determine the

optimal number of clusters in the complete dataset, but different tests can give slightly

different results. In this analysis, the R function NbClust was used to determine the

optimal number of clusters. The function NbClust performs 30 tests for determining

the optimal number of clusters in the complete group of data. The function returns

each of the tests optimal number of clusters, and the most-picked number of clusters

was chosen as the number to use in the k-means clustering analysis. The test of the

number of optimal clusters was performed for each season separately.

The temporal shape of the electricity use profile is important because even

though residential customers typically pay a constant rate per kWh for electricity,

the wholesale electric market price can fluctuate orders of magnitude in less than

an hour. These dynamics are particularly observed during the summer peak in the

Electric Reliability Council of Texas (ERCOT) grid – the electric grid that services

most of Texas, including Austin. For a given season, the average value of the cluster’s

electricity use can be defined by Equation 3.3:

Evalue,z =

h∑
(Cz,h × SPPh)

kWhz
, (3.3)

where Evalue,z is the average value of cluster z’s electricity use ($/kWh), Cz,h is the

average (non-normalized) electricity use for cluster z at hour h, SPPh is the average

price of wholesale market electricity at hour h, and kWhz is the average total kWh

of electricity used per day by cluster z.
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3.3.3 Binary regression analysis of clustering results

Once clusters of profiles were created for each season, survey data from the

homes were used to see if there were any significant correlations between survey

responses and cluster identification. A probit regression model (R, probitmfx [99])

was chosen to test the significance of any marginal effects of explanatory variables on

cluster identification. A marginal effect of an explanatory variable, x, is the partial

derivative, with respect to x, of the prediction function (in this case the normal

cumulative probability density function) with all the other explanatory variables at

their average value. Because this method is based on the partial derivative, the

marginal effect can be greater than one even though the probability is between 0

and 1. The probit model is a binary classification model where the dependent variable

(yj) can only take on a value of 0 or 1. In this case, the model attempted to estimate

the inclusion in a certain cluster (1 if included and 0 if not). The model is given by

Equation 3.4:

Pr(yj = 1) = Φ(Xjβ), (3.4)

where Pr is the probability, yj is the outcome (response) variable (0 or 1 for home j), Φ

is the normal cumulative distribution function with mean 0 and standard deviation 1,

Xj is the set of explanatory variables, and β is the set of fit coefficients (usually decided

by maximum likelihood) [100].

The R function probitmfx, with robust standard errors, was chosen to build

the model. This function is convenient because the coefficients (β) returned are the

marginal effects of the explanatory variables (Xi) on the probability of yi being equal

to 1. Each β is interpreted as the effect of each variable at the average value of the

others.

55



Explanatory variables in the model included: workday (whether or not some-

one worked from home for more than 20 hours per week during the day time); males

(the number of males living in the home); females (the number of females living in the

home); num kids (the number of children under 18 living in the home); education (the

highest education level of the occupants); income (the income bracket of the home);

hours tv (the number of hours spent watching television per week); num computers

(the number of desktop computers, laptops, tablets, and other computing devices in

the home); vehicles (the number of vehicles in the home); quiz total (the number

of questions correctly answered in the survey that referred to general energy and

water knowledge); pv (wether or not a home had a solar PV system); bayes (how

the homeowner answered a question on happiness [36]); ev (wether or not the home

has an electric vehicle (EV)); greenbuilt (whether the home was a new green-built

home); retrofit (wether or not the home has had any major retrofits); smart therm

(wether or not the home has a smart thermostat); pv:greenbuilt (the interaction term

of being a new green-built home and having a solar PV system – most homes with

solar PV systems were also green-built); and ev:in greenbuilt (the interaction term of

being a new green-built home and having an EV – most homes with EVs were also

green-built).

The model was validated by the Wald χ2 statistic [101] and by checking the

percentage of times that it could correctly predict the inclusion in a given cluster.

The Wald χ2 statistic checks if at least one of the explanatory variables (β) in the

model is non-zero.
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3.4 Results and Discussions

3.4.1 Creating average seasonal curves

Seasonal curves were created for each home for each of the four seasons. Fig-

ures 3.3 – 3.6 show box plots of the pre-normalized curves for all the homes with

a distribution for each hour of the day. The graphs provide distributions of electric

power demand for every hour of the day in each season for all the homes in this analy-

sis. The seasons have varying levels of magnitude with the difference likely driven by

residential air-conditioning use [8, 9], which is a function of climate and homeowner

preference.

In all four figures, the solid line in the middle of the box plot refers to the

median value for that hour for all the curves. The length from the median to the

bottom of the box is the second quartile (25% of values) and the distance from the

median to the top of the box is the third quartile. The length to the bottom of the

box to the bottom whisker is the shorter of 1.5 times the inter-quartile range (top of

the box to the bottom) or the distance from the bottom of the box to the lowest data

point for that hour and the length to the top of the box to the top whisker is the

shorter of 1.5 times the inter-quartile range or the distance from the top of the box to

the highest data point for that hour. Any circles are data points that are beyond 1.5

times the inter-quartile range from the bottom or top of the box.

These results highlight the difference in residential inter-seasonal electricity

use caused by weather-driven space conditioning loads. The seasons were then used

to dissect the data further in search of inter-seasonal variations between homes’ usage

profiles.
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Figure 3.3: Box-and-whisker plot of the raw (pre-normalization) curves for all homes
for the summer (June 2013 – August 2013) season. The box-and-whisker shows the 4
quartiles of the data and the circles are data points above or below 1.5 times the
interquartile range from either the top or bottom of the box.
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Figure 3.4: Box-and-whisker plot of the raw (pre-normalization) curves for all homes
for the fall (September 2013 – October 2013 + November 2012) season. The box-
and-whisker shows the 4 quartiles of the data and the circles are data points above
or below 1.5 times the interquartile range from either the top or bottom of the box.
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Figure 3.5: Box-and-whisker plot of the raw (pre-normalization) curves for all homes
for the winter (December 2012 – February 2013) season. The box-and-whisker shows
the 4 quartiles of the data and the circles are data points above or below 1.5 times
the interquartile range from either the top or bottom of the box.
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Figure 3.6: Box-and-whisker plot of the raw (pre-normalization) curves for all homes
for the spring (March 2013 – May 2013) season. The box-and-whisker shows the 4
quartiles of the data and the circles are data points above or below 1.5 times the
interquartile range from either the top or bottom of the box.
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3.4.2 Determining optimal distinctive clusters within seasons

It was determined that each season has two definitive clusters that represent

seasonal household electricity demand. Figures 3.7 – Figure 3.10 show the normalized

profiles clustered into groups as well as the cluster mean.
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Figure 3.7: Plot showing (left and center) the breakout of summer clusters including
the cluster averages in red and (on the right) both cluster averages in the same plot
with the normalized ERCOT SPP for the same time period.

Summer cluster 1 (Figure 3.7 left) included homes that (on average) tended

to have a wide range of early morning usage that reduces until about 07:00 and then

increases to an afternoon peak around 19:00, and then reduces. Summer cluster 2

(Figure 3.7 center) included homes that (on average) start with high usage which

decreases until about 10:00 and then increases until about 19:00 at which the homes
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maintained an average level of power draw for the rest of the day. Summer cluster 1 is

tighter than cluster 2 with an average within cluster sum of squares of 0.31 and 0.50,

respectfully. Figure 3.7 (right) also includes the average summer cluster profiles on the

same plot as the normalized average ERCOT SPP. The normalized summer average

ERCOT SPP curve peaked at 17:00. The ERCOT SPP peaks at relatively high prices

in the afternoon summer hours with 16 of 24 hours at a price less than 25% of the peak

price. Even though individual homes could be peaking coincident with the ERCOT

peak, when the summer ERCOT SPP peaks, the cluster 1 average is at 91% of its

maximum and the cluster 2 average is at 68% of its maximum. Based on ERCOT’s

SPP, the average summer value (Equation 3.3) of cluster 1’s electricity use is about

10% higher than from cluster 2 (0.0528 verses 0.0480 $/kWh).

Fall cluster 1 (Figure 3.8 left) included homes that (on average) tended to have

a wide range of early morning usage that reduces until about 04:00 and then increases

to an afternoon peak around 18:00, and then reduces. Fall cluster 2 (Figure 3.8 center)

included homes that (on average) start with high usage which decreases until about

06:00, increases for 2 hours, reduces again, and then increases until about 21:00 at

which the homes maintained a roughly average level of power draw before dipping

the last hour of the day. Fall cluster 1 is tighter than cluster 2 with an average within

cluster sum of squares of 0.35 and 0.46, respectfully. Figure 3.8 (right) also includes

the average fall cluster profiles on the same plot as the normalized average ERCOT

SPP. The normalized fall average ERCOT SPP curve peaked at 17:00. The ERCOT

SPP peaks is less severe than the summer time peak probably due to less residential

air-conditioning demand and the greater availability of low-cost wind generation on

the grid [102]. Similar to the the summer clusters, when the fall ERCOT SPP peaks,

the cluster 1 average is at 88% of its maximum and the cluster 2 average is at 55%

of its maximum. Based on ERCOT’s SPP, the average fall value (Equation 3.3) of
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Figure 3.8: Plot showing (left and center) the breakout of fall clusters including the
cluster averages in red and (on the right) both cluster averages in the same plot with
the normalized ERCOT SPP for the same time period.
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cluster 1’s electricity use is about 5% higher than from cluster 2 (0.0333 verses 0.0317

$/kWh).
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Figure 3.9: Plot showing (left and center) the breakout of winter clusters including
the cluster averages in red and (on the right) both cluster averages in the same plot
with the normalized ERCOT SPP for the same time period.

Winter cluster 1 (Figure 3.9 left) included homes that (on average) tended

to have a wide range of early morning usage that reduces until about 04:00 and

then increases to around 08:00, levels off until 18:00, increases until 20:00 before

reducing. Cluster 2 (Figure 3.9 center) included homes have a wide range of usage

that (on average) roughly follows that of cluster 1. However, cluster 2 included homes

that had higher peaks than homes in cluster 1, thus the lower relative usage during

most of the day – this will be further discussed in the next section. The curves are

similar except for less of a dip in the early morning. Winter cluster 1 is tighter than
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cluster 2 with an average within cluster sum of squares of 0.49 and 0.81, respectfully.

Figure 3.9 (right) also includes the average winter cluster profiles on the same plot as

the normalized average ERCOT SPP. The normalized winter average ERCOT SPP

has a double peak with the higher at 07:00 and the lower at 19:00. The ERCOT SPP

peaks is again less severe than the summer time peak and the early morning peak

is probably explained by electric resistance heating or electric heat pumps in many

homes in ERCOT [6], and the fact that the relative difference between the morning

and evening usage is much less in the winter. Because the mild differences in the

winter ERCOT SPP, the average value of cluster 1 and cluster 2’s electricity use was

essentially the same.
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Figure 3.10: Plot showing (left and center) the breakout of spring clusters including
the cluster averages in red and (on the right) both cluster averages in the same plot
with the normalized ERCOT SPP for the same time period.
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Spring cluster 1 (Figure 3.10 left) included homes that (on average) tended to

have a wide range of early morning usage that reduces until about 06:00, increases

rapidly until 09:00 then increases at a slower rate until peaking around 19:00 and then

reducing at 22:00. Cluster 2 (Figure 3.10 center) included homes that (on average)

start with higher usage which decreases until about 02:00 and then holds steady until

about 18:00 then continues increasing throughout the day peaking at 23:00. Spring

cluster 1 is tighter than cluster 2 with an average within cluster sum of squares of 0.52

and 0.74, respectfully. Figure 3.10 (right) also includes the average spring cluster

profiles on the same plot as the normalized average ERCOT SPP. The normalized

spring average ERCOT SPP has a double peak with the lower at 07:00 and the higher

at 17:00. The peaks are probably a result of a combination of heating and cooling

putting stress on the grid as the season transitions from winter to summer. Based on

ERCOT’s SPP, the average summer value (Equation 3.3) of cluster 1’s electricity use

is about 4% higher than from cluster 2 (0.0296 verses 0.0286 $/kWh). The results

from the clustering analysis are summarized in Table 3.1.

Table 3.1: Clustering analysis results showing tightness of clus-
ters and the average seasonal value of electricity used by each
cluster.

Season Cluster Tightness Cost($/kWh) Hour of Peak

Summer 1 0.31 0.0528 19:00
2 0.5 0.0480 19:00

Fall 1 0.35 0.0333 18:00
2 0.46 0.0317 21:00

Winter 1 0.49 0.0274 20:00
2 0.81 0.0275 21:00

Spring 1 0.52 0.0296 19:00
2 0.74 0.0286 23:00
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3.4.3 Binary regression analysis of clustering results

Binomial probit regression was used to determine if there were any significant

correlations affecting the probability of a home being in a certain cluster. The output

from the analysis of the effect of survey variables on the prediction of a home being

in cluster 1 during the summer season is given in Table 3.2. Because there are only

two outcomes (cluster 1 or cluster 2) the regression output is the same for the effect

of variables prediction of a home being in cluster 2 except the signs on the coefficient

estimates are reversed and interpreted as having the opposite effect.

Table 3.2: Probit regression results for summer profiles showing marginal ef-
fects (dF/dx) of each explanatory variable (β) on the probability of being in
cluster 1, at the average of all the others. Summer cluster 1 is the left box of
Figure 3.7.

Explanatory Coefficient Robust
z-value

Two-tailed 95% Confidence
Variable (dF/dx) Std. Error P-test Interval

workday 0.552 0.105 5.257 0.000 ( 0.342 , 0.763 ) ***
males –0.243 0.193 –1.259 0.212 ( –0.629 , 0.143 )
females –0.366 0.207 –1.770 0.080 ( –0.779 , 0.048 ) .
num kids 0.187 0.205 0.913 0.364 ( –0.223 , 0.597 )
education –0.230 0.121 –1.906 0.060 ( –0.471 , 0.011 ) .
income –0.107 0.056 –1.904 0.060 ( –0.219 , 0.005 ) .
hours tv 0.100 0.029 3.407 0.001 ( 0.041 , 0.159 ) **
computers 0.132 0.047 2.809 0.006 ( 0.038 , 0.226 ) **
vehicles 0.132 0.121 1.088 0.280 ( -0.110 , 0.374 )
quiz total –0.017 0.034 –0.493 0.624 ( –0.085 , 0.051 )
pv –0.430 0.398 –1.081 0.283 ( –1.225 , 0.365 )
bayes 0.249 0.193 1.294 0.199 ( –0.136 , 0.635 )
ev –0.502 0.368 –1.364 0.176 ( –1.238 , 0.234 )
greenbuilt 0.266 0.227 1.174 0.244 ( –0.187 , 0.720 )
retrofit 0.427 0.113 3.764 0.000 ( 0.200 , 0.654 ) ***
smart therm 0.156 0.188 0.829 0.409 ( –0.220 , 0.533 )
pv:greenbuilt 0.649 0.326 1.992 0.050 ( –0.003 , 1.300 ) *
ev:greenbuilt 0.017 0.547 0.030 0.976 ( –1.078 , 1.111 )

χ2 = 30.3, n = 103, Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The variables workday, hours tv, computers, retrofit, and the interaction term

pv:greenbuilt are all significant using a confidence interval of 95% and the variables
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females, education, and income are significant using a confidence interval of 90%.

The coefficient estimates are calculated as the direct marginal effect (dF/dx) of the

explanatory variable on the probability of a home being in cluster 1 with all other

explanatory variables at their average value. Thus, if a home contains a person

that regularly works from home (workday), that home is 55% more likely to be in

cluster 1. Each additional hour of television watched per week (hours tv) corresponds

to a 10% greater chance of being in cluster 1 (this variable has also been shown to be

significant in macro-level studies of electricity use [28]). Each additional computing

device (computers) in the home leads to a 13% increase in the probability of being

in cluster 1. Also, if the home has had recent energy retrofits, it is 42% more likely

to be in cluster 1. Lastly, if the home has solar PV and is green-built it is 64%

more likely to be in cluster 1. The variables females, education, and income were

negatively correlated with being in cluster 1, although with less certainty. The χ2

value of 30.3 indicates that the model is significant compared to the null model (all

β = 0). Because cluster 1 consumes relatively more electricity when prices are higher

(see Figure 3.7), the regression results indicate that people who work from home are

more likely to be negatively impacted by time-of-use or real-time pricing schemes (all

else equal), which are often more prevalent in the summer season.

The model was able to predict the correct summer cluster about 77% of the

time. Regression texts typically suggest methods for removing explanatory variables

based on the expected sign of the coefficient, significance (z or t-scores), and knowl-

edge of the underlying data and population [100]. Little was known about how certain

variables would intuitively affect which cluster a home was likely to be in with the

exception of the variable workday. Thus, all variables were left in the model.

The results for the fall probit regression are given in Table 3.3.
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Table 3.3: Probit regression results for fall profiles showing marginal ef-
fects (dF/dx) of each explanatory variable (β) on the probability of being
in cluster 1, at the average of all the others. Fall cluster 1 is the left box of
Figure 3.8.

Explanatory Coefficient Robust
z-value

Two-tailed 95% Confidence
Variable (dF/dx) Std. Error P-test Interval

workday 0.35 0.12 2.89 0.00 ( 0.11 , 0.59 ) **
males –0.14 0.16 –0.91 0.37 ( –0.45 , 0.17 )
females –0.17 0.16 –1.05 0.30 ( –0.49 , 0.15 )
num kids 0.05 0.16 0.33 0.74 ( –0.27 , 0.38 )
education –0.07 0.10 –0.65 0.52 ( –0.28 , 0.14 )
income –0.06 0.05 –1.36 0.18 ( –0.16 , 0.03 )
hours tv 0.05 0.02 1.95 0.05 ( 0.00 , 0.10 ) .
computers 0.07 0.04 1.73 0.09 ( –0.01 , 0.15 ) .
vehicles 0.08 0.12 0.67 0.51 ( –0.16 , 0.32 )
quiz total –0.02 0.03 –0.62 0.53 ( –0.08 , 0.04 )
pv 0.09 0.40 0.22 0.83 ( –0.71 , 0.89 )
bayes 0.10 0.16 0.61 0.55 ( –0.23 , 0.43 )
ev –0.37 0.41 –0.91 0.37 ( –1.18 , 0.44 )
greenbuilt 0.19 0.21 0.89 0.37 ( –0.23 , 0.60 )
retrofit 0.22 0.15 1.43 0.16 ( –0.09 , 0.52 )
smart therm 0.14 0.17 0.86 0.39 ( –0.19 , 0.48 )
pv:greenbuilt 0.25 0.42 0.60 0.55 ( –0.59 , 1.10 )
ev:greenbuilt –0.14 0.47 –0.31 0.76 ( –1.08 , 0.80 )

χ2 = 29.1, n = 103, Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

70



For the fall clusters, the variable workday was significant using a confidence

interval of 95% and the variables hours tv and computers were significant using a

confidence interval of 90%. Thus, if a home contains a person that regularly works

from home (workday), that home is 35% more likely to be in cluster 1. The variables

hours tv and computers were positively correlated with being in cluster 1, although

with less certainty. The χ2 value of 29.1 indicates that the model is significant com-

pared to the null model (all β = 0). Overall, the model was able to predict the correct

summer cluster only about 65% of the time.

The results for the winter probit regression are given in Table 3.4.

Table 3.4: Probit regression results for winter profiles showing marginal ef-
fects (dF/dx) of each explanatory variable (β) on the probability of being in
cluster 1, at the average of all the others. Winter cluster 1 is the left box of
Figure 3.9.

Explanatory Coefficient Robust
z-value

Two-tailed 95% Confidence
Variable (dF/dx) Std. Error P-test Interval

workday 0.14 0.08 1.67 0.10 ( –0.03 , 0.30 ) .
males 0.11 0.11 0.97 0.33 ( –0.12 , 0.34 )
females 0.12 0.09 1.31 0.19 ( –0.06 , 0.29 )
num kids –0.09 0.13 –0.69 0.49 ( –0.34 , 0.17 )
education –0.15 0.08 –1.80 0.08 ( –0.32 , 0.02 ) .
income –0.04 0.04 –1.02 0.31 ( –0.11 , 0.04 )
hours tv 0.00 0.01 –0.20 0.84 ( –0.03 , 0.03 )
computers 0.01 0.03 0.41 0.69 ( –0.05 , 0.08 )
vehicles –0.08 0.08 –1.09 0.28 ( –0.24 , 0.07 )
quiz total 0.03 0.03 1.23 0.22 ( –0.02 , 0.09 )
pv 0.94 0.06 16.33 < 2.20E-16 ( 0.83 , 1.06 ) ***
bayes –0.10 0.08 –1.22 0.22 ( –0.27 , 0.06 )
ev –1.00 0.00 –574.48 < 2.20E-16 ( –1.00 , -0.99 ) ***
greenbuilt 0.00 0.09 –0.01 0.99 ( –0.18 , 0.18 )
retrofit –0.01 0.12 –0.12 0.91 ( –0.25 , 0.22 )
smart therm –0.38 0.18 –2.10 0.04 ( –0.75 , -0.02 ) *
pv:greenbuilt –0.84 0.11 –7.93 0.00 ( –1.06 , -0.63 ) ***
ev:greenbuilt 0.51 0.15 3.50 0.00 ( 0.22 , 0.80 ) ***

χ2 = 32.98, n = 103, Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

For the winter clusters, the variables pv, ev, smart therm, and the interaction
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terms pv:greenbuilt and ev:greenbuilt were significant using a confidence interval of

95% and the variables workday and education were significant using a confidence

interval of 90%. In the winter profiles, the shape is less driven by thermal loads than

in other seasons and more driven by appliances and, in this case, electric vehicles.

Home with solar PV were highly correlated with being in cluster 1 (94%) while homes

with electric vehicles were highly correlated with not being in cluster 1 (~100%).

However, both interaction terms associated with the homes being green-built were also

significant and thus reduced (pv:greenbuilt) or increased (ev:greenbuilt) the chances of

being in cluster 1. Also, homes with a learning thermostat (smart therm) were 38%

less likely to be in cluster 1. The variable workday was positively associated with

being in cluster 1, while the variable education was negatively associated with being

in cluster 1. The model was able to correctly predict cluster identification about 82%

of the time and has a χ2 value of 32.98.

The results for the spring probit regression are given in Table 3.5.

For the spring clusters, the variables workday, education, and income were

significant using a confidence interval of 95% and the variables hours tv, bayes, and

retrofit were significant using a confidence interval of 90%. Thus, if a home contains

a person that regularly works from home (workday), that home is 28% more likely

to be in cluster 1, each additional level of education and income were negatively

correlated with cluster 1 with a 23% and 11% reduction in probability, respectively.

The variables hours tv, bayes, and retrofit were all positively correlated with being in

cluster 1, again with less certainty. The model was able to correctly predict cluster

identification about 79% of the time and has a χ2 value of 31.9.

All of the models found workday to be significant, at least to the 90% confi-

dence interval and associated with cluster 1 of each season. Cluster 1 for the summer,
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Table 3.5: Probit regression results for spring profiles showing marginal
effects (dF/dx) of each explanatory variable (β) on the probability of being
in cluster 1, at the average of all the others. Spring cluster 1 is the left box
of Figure 3.10.

Explanatory Coefficient Robust
z-value

Two-tailed 95% Confidence
Variable (dF/dx) Std. Error P-test Interval

workday 0.28 0.12 2.40 0.02 ( 0.05 , 0.51 ) *
males 0.14 0.16 0.90 0.37 ( –0.18 , 0.47 )
females 0.21 0.17 1.26 0.21 ( –0.12 , 0.55 )
num kids –0.15 0.18 –0.82 0.41 ( –0.51 , 0.21 )
education –0.23 0.11 –2.10 0.04 ( –0.45 , -0.01 ) *
income –0.11 0.05 –2.26 0.03 ( –0.21 , -0.01 ) *
hours tv 0.05 0.03 1.99 0.05 ( 0.00 , 0.10 ) .
computers 0.04 0.05 0.76 0.45 ( –0.07 , 0.14 )
vehicles 0.00 0.11 –0.03 0.98 ( –0.23 , 0.22 )
quiz total –0.05 0.04 –1.28 0.20 ( –0.12 , 0.03 )
pv –0.40 0.27 –1.47 0.15 ( –0.94 , 0.14 )
bayes 0.28 0.16 1.70 0.09 ( –0.05 , 0.60 ) .
ev –0.40 0.37 –1.09 0.28 ( –1.14 , 0.34 )
greenbuilt 0.28 0.22 1.25 0.21 ( –0.17 , 0.73 )
retrofit 0.24 0.13 1.84 0.07 ( –0.02 , 0.49 ) .
smart therm –0.01 0.25 –0.02 0.98 ( –0.50 , 0.49 )
pv:greenbuilt 0.51 0.35 1.46 0.15 ( –0.19 , 1.21 )
ev:greenbuilt –0.22 0.44 –0.49 0.62 ( –1.10 , 0.66 )

χ2 = 31.9, n = 103, Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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fall, and spring seasons is marked with an earlier daily rise in energy use than clus-

ter 2. The variable hours tv was positively correlated with the summer, fall, and

spring season’s cluster 1 and education was negatively correlated with the same three

seasons’ cluster 1. The variables retrofit and computers were positively associated

with summer and spring’s cluster 1 while income was negatively correlated with the

same season’s cluster 1.

Variables such as workday, hours tv, and computers are likely associated with

higher relative electricity use during the day based on the behavioral impacts of being

at home and the use of multiple pieces of technology. Plug loads are increasing as a

share of the total energy use in the home [103], and these results indicate that this

extra electricity draw might be during times of higher wholesale electricity prices. As

expected, the variable workday was strongest during the summer as space cooling

during the day would be desired by someone at home during the hot summers.

Surprisingly, the variable retrofit was positively associated with cluster 1 in

both the summer and spring seasons, this might indicate either some sort of rebound

effect in not only magnitude of energy use, but in the temporal aspect of that energy

use as well. More study is needed in both the classical rebound effect and the temporal

aspect that this analysis might have observed.

Residential customers typically pay a flat fee, on a $/kWh basis, for electricity.

While some pricing structures are tiered based on total consumption and some utilities

offer time-of-use rates, currently most rates in Texas are not dynamically tied to

market conditions. Electric utilities act as a buffer for the market and attempt to

charge a price that, over a fiscal year, will account for market fluctuations. There

seems to be a distinct group of customers that typically use electricity when the price is

higher, possibly narrowing the utilities’ profit margins. However, homeowners do not
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typically have a financial reason to care about this situation as they are not subject to

the temporal fluctuations in price, but might indirectly be so when utilities consider

rates cases (changing electric pricing structures). This analysis shows that there are

markers of homes that typically use higher priced (normalized) electricity and thus

utilities might be able to target such customers with incentives that would reduce or

shift electricity usage to less expensive times, possibly increasing profit margins and

keeping rates lower overall. However, this could raise some equity issues associated

with giving larger rebates to some households than others, but also give insights as

to how the introduction of time-of-use or real-time electricity price structures might

disproportionately affect lower income homes. These results could inform policies

that could be put into place to correct for possible equity imbalances.

3.5 Conclusions

This analysis employed a data-driven approach to 1) determine the shape of

seasonally-resolved residential demand profiles, 2) determine the optimal number of

normalized representative residential electricity use profiles within each season, and

3) draw correlations to the different profiles based on survey data for over 100 homes

in Austin, TX. This analysis determined that, for homes in a southern U.S. location,

there are two main groups of temporal profiles, representing residential electricity de-

mand in each season. Temporal and magnitude differences in the summer profiles are

significant with one group typically demanding more power during higher wholesale

electricity price times than the other. Finally, probit regression analysis determined

that explanatory variables such as whether someone worked at home, the number of

hours of television watched per week, and education were significant determiners of

inclusion in a given cluster. These results point to markers of households that might

be more impacted by time-of-use or real-time pricing electricity rates and can act as

75



predictors as to how evolving demographics can change electricity demand patterns.

This analysis could also serve as a starting point for utilities looking to reduce

electricity use during peak times. The drivers of the temporal shape of residential

use could allow for policies that target load shifting and efficiency upgrade rebates

to homes that would benefit the utility the most, such as homes with persons who

work from home. This work and the methods herein could be used to predict how

changing demographics of neighborhoods could influence local distribution grid con-

ditions. Also, further work is needed to assess the possible temporal rebound effect

of residential energy retrofits. Policy interventions (or exceptions) for lower income

households in areas that switch to time-of-use or real-time electricity price structures

might be necessary to ensure that lower income household’s electricity bills are not

disproportionately increased. These results might also inform local or regional plan-

ning organization’s policies on incentives for likely household demographic targets

or changes with a focus towards reducing volatility in an aggregate electric demand

curve, which have implications for distribution and transmission line planning.
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Chapter 4

A multi-objective assessment of the effect of solar

placement on energy production and system

economics

4.1 Introduction

This analysis considers the effect of the placement (azimuth and tilt) of fixed

solar PV systems on their total energy production, peak power production, and the

economic value of that energy production. Solar energy production is important

for a multitude of reasons, these include reduced carbon emissions; a fuel source

that is free, renewable, domestic and distributed; its contributions for energy equity,

and because the prices of solar panels are falling. While solar energy production is

zero carbon at time of generation, lifecycle analyses indicate that over the energy

production lifetime, solar power emits 50 – 100 g CO2−eq/kWh while natural gas and

coal fired generation emit at about 550 and 850 g CO2−eq/kWh, respectively [51].

This reduction in CO2−eq emissions is substantial because electric power generation

accounts for 40% of US CO2−eq emissions [104], which is a significant contributor to

global climate change [105]. Once the capital investment is made into solar power,

the fuel cost is free and the operations and maintenance costs can be significantly

lower [52]. Solar energy has the potential to bring a distributed energy source to

many people in regions that lack significant economic capital and investment – much

the same way that cellular phone technology has brought communications to many

remote parts of the world that have never had any landline investment. In many ways
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solar energy can provide energy at remote locations without significant investment in

transmission infrastructure [53]. Although the implementation of solar PV systems

is not without its own set of challenges, the actual equipment price has fallen two

orders of magnitude in the past 35 years [54], almost to parity with some other

forms of generation [52]. Also, because the fuel source for solar energy is sunlight, the

resource is distributed, albeit at different levels, throughout the world and investments

in solar energy might reduce a region’s need to import fuel for power generation. As

a consequence of all these factors, in the US, solar installations are expected to grow

significantly and outpace new fossil fuel power plants in the mid-future [106]. Thus,

analytical methods – such as the one developed herein – that optimize the usefulness

of those installations might offer value to developers

4.2 Background

There have been a many investigations into the optimal tilt for solar PV sys-

tems. These investigations were summarized in a recent review by Yadav and Chan-

del [58] and therefore will not be reproduced here. However, it is important to note

that many of these analyses consider solar energy production assuming that a south-

ern azimuth (in the northern hemisphere) is optimal for energy production. While the

south-orientated rule-of-thumb might be best for completely clear skies, non-uniform,

temporal meteorological conditions such as fog or clouds, environmental conditions

such as smog, and geographic features such as mountains can block solar radiation and

reduce solar panel output at different times of the day thereby changing the optimal

orientation of the panels [57, 107]. Additionally, solar PV power output is a func-

tion of panel temperature [108], so dry bulb temperature fluctuations and wind speed

(because of convective heating or cooling) alter PV electricity production. Lave and

Kleissl [57] determined the optimal tilt and azimuth angles for the continental United
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States using a high resolution grid (0.1◦ by 0.1◦). They considered solar radiation

effects, such as cloud cover, but not temperature effects.

Another consideration for optimal PV orientation is the value of the electricity

generated. Because solar energy production does not always precisely align with

maximum electricity grid load, even placements that might be non-optimal from an

energy production basis might be optimal on an economic or peak power production

basis [55, 56, 109]. Luoma et al. [110] used day-ahead market electricity prices to

determine optimal solar PV orientations in California. Their work found that the

market electricity prices shifted the optimal orientation of arrays further west of

south.

This analysis extends this body of knowledge by estimating optimal solar orien-

tations for 1,020 U.S. locations while considering the effects of dry bulb temperature,

wind speed, and actual (i.e., not clear-sky) solar radiation. This analysis also con-

siders the value of solar energy produced by using time-of-use rates throughout the

continental US as a proxy for average local grid conditions.

4.3 Methods

This analysis uses available solar insolation and electricity price data to 1)

determine the insolation on a given plane (with available solar radiation tools), 2)

build a residential system-based solar PV production model, 3) estimate the total

energy, power, and economic impacts of system azimuth and tilt (placement) for

Austin, TX, 4) extend the analysis to other locations across the US, and 5) explore the

peak power production and solar ramp rate implications of varying solar placements

using the aforementioned datasets. The workflow is given in Figure 4.1.
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Figure 4.1: This diagram shows the process of modeling the energy and the value of
energy produced from various solar placements.

4.3.1 Determining incident solar insolation on a plane

Because the goal of this analysis is to determine the value of various solar

placements, it was necessary to calculate the incident solar radiation for multiple

azimuths and tilts. This process requires the application of trigonometry and daily

correction factors for the sun’s path relative to one’s location on the Earth (see Equa-

tions 4.1 and 4.2). Global horizontal, diffuse horizontal, and direct normal radiation

were all directly measured, or taken from TMY weather files. These measurements

allow for the calculation of solar radiation on any arbitrary plane and the basic equa-

tions for calculating the incident radiation on such a plane are given by Equations 4.1

and 4.2 [111,112],

IT i = IB,iRB,i + ID,i + Vi (4.1)

RB,i =
cos θi
cos θz,i

(4.2)

where IT,i is the incident radiation on the tilted plane, IB,i is the beam radiation on

the horizontal plane, RB,i is the ratio of beam radiation on the tilted plane (defined
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by tilt, azimuth, and the relative location of the sun) to that on a horizontal surface,

ID,i is the measured diffuse radiation, Vi is the reflected ground radiation, θi is the

angle between the beam radiation on a surface and the normal to that surface, and

θz,i is the angle of incidence of beam radiation on the horizontal surface, all at time

i.

4.3.2 Solar PV system energy production model

To estimate AC solar PV electricity production from solar radiation on a

plane, a solar PV energy production model was built. The overall model is given in

Equations 4.3 – 4.4:

Pout,i = ηpv,i × ηinv,i × IT,i (4.3)

ηpv,i = ηref

[
1− βref

[
Ta,i − Tref + (TNOCT − Ta,i)

IT,i
INOCT

]]
(4.4)

where Pout,i is the power output of the system in W/m2 of PV array, ηpv,i is the ef-

ficiency of the solar PV panels, ηinv,i is the efficiency of the (DC–AC) solar inverter,

IT,i is the incident radiation on the tilted plane (Equation 4.1), ηref is the efficacy

of the PV panels (taken to be 12%), βref is the temperature coefficient of the PV

panels (taken to be 0.0045 K−1), Ta is the ambient temperature, Tref is the reference

temperature of the PV panels (25 ◦C), TNOCT is the nominal operating cell tempera-

ture at operating test conditions, and INOCT is the incident radiation for the NOCT

test, which is 800 W/m2, for an overview of the NOCT equations, see Skoplaki and

Palyvos, [113], all (besides constants) at time i. The efficiency of the modeled in-

verter ηinv,i was modeled as a 6th degree polynomial fit of a commercially available
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solar inverter (Power-One PVI-5000 [114]), scaled from a nominal 5 kW PV array of

commercially available solar PV panels (Lumos LS250 [115]) to a per m2 of array.

4.3.3 Calculating the value and effect of solar placement

After construction of the solar PV model based on meteorological, astronom-

ical conditions, and assumed PV characteristics, a second model was developed to

calculate the solar PV electricity produced from a solar PV system for any given

placement, accommodating different tilts and azimuths. This model consisted of

three steps. First, given a placement and the horizontal solar radiation values, it cal-

culated the solar radiation on a plane. Second, using the solar PV model developed in

Section 4.3.2 and weather data, it calculated the energy produced at that placement.

The last step calculated the value of the energy produced using either local market

conditions (ERCOT SPP) or local utility rates.

All possible combinations of azimuths ranging from 90◦ (due east) to 270◦

(due west) and tilts from 0◦ (horizontal) to 45◦ were used to calculate the solar

insolation on their respective plane. These data were fed into the Solar PV Energy

Production Model (Section 4.3.2), along with weather data to quantify the amount of

energy produced over one year for that particular configuration. These data were then

multiplied by the temporally corresponding ERCOT electricity market price (for the

Austin specific analysis) or TOU rate data (for the national analysis) and summed

to calculate the value of the solar energy produced as per Equation 4.5:

V alue =

1year∑
i

Pout,i ×∆t× Price1,i + Pout,i × Price2,i (4.5)

where Pout,i is the power output of the solar PV system in W, ∆t is the time-step,

Price1,i is the economic price (ERCOT SPP or TOU rate, $/kWh), and Price2,i is
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the price associated with reduction in overall demand charges for a commercial or

industrial consumer that has the solar PV system behind the meter, all at time i. For

industrial solar power plants, Price2,i could also be used to estimate ancillary service

value or a capacity payment. For this analysis Price2,i was considered to be fixed at

0 (because Texas has an energy-only market), but it could be considered in another

analysis that looked at markets with capacity payments or the ability of solar PV to

reduce demand changes for arrays behind the meter (many commercial and industrial

customers have demand changes in addition to energy charges). This price would be

appropriate to consider on a case by case basis, but is beyond the scope of this more

general analysis. This calculation was then completed for multiple radiation inputs

(measured, TMY, and clear-sky), weather inputs (measured and TMY), and pricing

inputs (market and electric rate) for Austin.

4.3.4 Optimal solar placement on a national level

The analysis was then generalized to a national level. TMY data were gathered

and processed in the same way as described in Section 4.3.3 for 1020 locations across

the US [116]. The data were run through the solar placement value (Section 4.3.3)

program in a similar fashion. However, to speed up the process, an optimization

routine (R function optim, with method of Byrd et. al. [117]) was used so that each

location’s placements of both energy and value did not have to be directly computed.

The expanded model considered both total energy produced, power produced,

and the value of that energy. The energy-only model is the same as for the more

Austin-specific data. However, the value of energy model was somewhat different.

In order to consider the regional differences in electricity markets, local TOU energy

rates were used as a proxy for the temporal value of energy, as it was assumed that

these rates would be designed such that times of higher costs would be typically
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associated with times of higher grid stress/demand. An attempt was made to obtain

an electric utility TOU rate for each state from the OpenEI database [118]. Of the

50 US states, at least 37 states had TOU rates for at least one customer class. When

each simulation was run, the amount of energy produced during a given interval was

multiplied by the rate for that hour. For all locations within a given state, a single

representative rate from a large city in that state was used, for states without TOU

rates, the closest (shortest Euclidian distance) to the nearest rate (by the latitude

and longitude of the largest city in each state) was used.

4.3.5 Optimal Placement for Summer Peak Reduction

The last step of the analysis was to explore the effects of solar placement on

summer peak power reduction and the solar ramp rate. The summer peak times are

defined as June – August, from 14:00 – 20:00 CST for Austin, TX [119]. These times

are typically associated with high wholesale electricity prices and grid stress, mainly

due to residential air-conditioning load [7]. For this analysis the same approach was

taken as with Equation 4.5, except the Price1,i was given a value of 1 during summer

peak hours and 0 otherwise.

4.4 Results and Discussion

The following section discusses the results of the model and presents a discus-

sion of the results and implications of this analysis for solar energy production.

4.4.1 Calculating the value and effect of solar placement

The model was used to calculate both the total amount of energy (kWh)

produced per m2 of panel, the economic value of that energy produced, and when the

power (kW) was produced. The value of the placement was determined by summing

84



each minute’s value of solar production for the entire year as discussed in Section 4.3.3

(Equation 4.5).

To verify that the entire process was running correctly, the model was first

executed with clear-sky radiation. Clear-sky radiation is the solar radiation that

would reach the earth’s surface if there were not any clouds or other objects to block

or amplify it. Clear-sky radiation curves are similar everyday, except taller and wider

during the summer. Because there is no clear-sky equivalent weather information

available, TMY weather data (temperature, wind speed) were used. Using clear-sky

as the radiation input should cancel out all weather effects to solar panel production

and should indicate an optimal energy azimuth of due south and a tilt related to

(in this case slightly less than) the local latitude (about 28◦ for Austin). The model

provided just that result, shown in Figure 4.2. Figure 4.2 shows the total number

of kWh per year produced (normalized for 1 m2 of array) for every combination

of azimuth and tilt, 90◦–270◦ and 0◦–45◦, respectfully using clear-sky radiation and

TMY weather data.

Figure 4.3 shows the effect of using TMY radiation and weather on optimal

placement. The number of kilowatt-hours overall are reduced compared to Figure 4.2

because this data include the effect of clouds on the amount of solar radiation that

reaches the earth’s surface. It is interesting to note that using ‘typical meteorological’

data for Austin indicates that shifting the array west 11◦ and 5◦ towards the horizontal

(from the 180◦/28◦ rule-of-thumb) produces the most amount of energy, about 0.5%

more than the rule-of-thumb. These results would suggest that meteorological events

such as cloud cover in the mornings and winter typically block the sun more than in

the afternoon and summer.

Figures 4.4 and 4.5 show the optimal azimuth for the value ($/m2/year) of
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kWh per m2 array 
Clear-sky data

Figure 4.2: Heat map of model results for clear-sky radiation and TMY weather
showing an optimal energy azimuth of 180◦ and 30◦ tilt, as expected for Austin, TX.
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kWh per m2 array 
TMY data

Figure 4.3: Heat map of model results for TMY radiation and TMY weather showing
an optimal energy azimuth of 188◦ and 28◦ tilt, indicating the due south azimuth
might not be optimal for total energy generation in Austin, TX when typical meteo-
rological conditions are considered.
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electricity produced (Equation 4.5) for the 2012-2013 measured data and coincident

ERCOT prices and the TMY data with average ERCOT prices, respectfully. Both

figures show that placement is shifted west when optimizing based on market value.

Figure 4.6 shows the values associated with Austin TMY solar radiation and

weather with Austin Energy’s residential TOU rate and also shows shows how az-

imuth and tilt are related under the TOU rate. For example, if a solar PV array’s

azimuth were constrained to 150◦, its optimal tilt is not the 25◦ associated with the

unconstrained array, but 18◦, a 0.5% ($/m2/year) difference.

Table 4.1 summarizes the results of the various cases for both total energy

production and the value of the energy produced in Austin, TX. For the cases where

the placement was optimized for maximum total energy generated, the TMY and

measured case seemed to shift the arrays about 7◦ west of south. For the cases where

the placement was optimized for maximum total economic value of the energy gener-

ated, the cases seemed to shift the arrays about 20 to 50◦ west of south, depending

on the price considered. While the increase in the amount of energy generated in

the optimal cases was negligible, the increased values for shifting the solar PV arrays

west of south were on the order of 1–7%.

In general, higher summer electricity prices drive azimuth west and tilt towards

the horizontal [57], as is seen in the Austin + TOU rate case. However, the later and

the higher the electricity prices, the further the sun has dipped in the sky and the

steeper the tilt will need to be to capture the incident radiation as seen in the TMY

+ ERCOT AVG and TMY + ERCOT 2011 cases. The TMY + ERCOT 2011 case

is taken to be a scarcity pricing scenario as that year the price cap ($3000/MWh) in

ERCOT was hit for 54 15-minute periods, most after 16:00 local time, versus just once

in 2012 and twice in 2013. However, the current price cap in ERCOT has been raised
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Value ($) of energy 
produced per m2 array 
Data: Measured + 
Actual ERCOT

6.0

5.3

4.6

Figure 4.4: Heat map of model results for measured 2012-2013 radiation and weather
with coincident ERCOT prices showing an optimal value ($/m2/year) azimuth of 204◦

and 25◦ tilt for Austin, TX.
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Value ($) of energy 
per m2 array                          
Data: TMY + AVG 
ERCOT

Figure 4.5: Heat map of model results for TMY radiation and weather with average
ERCOT prices showing an optimal value ($/m2/year) azimuth of 219◦ and 29◦ tilt
for Austin, TX.
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Value ($) of energy 
produced per m2 array 
Data: TMY + AE TOU 
rate

Figure 4.6: Heat map of model results for TMY radiation and weather with Austin
Energy Residential TOU rate showing an optimal value ($/m2/year) azimuth of 200◦

and 25◦ tilt for Austin, TX.
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Table 4.1: Cases for for analysis of multiple radiation, weather, and economic data inputs
for Austin, TX.

Radiation Weather Pricing Optimal
Units

Optimal Value at Percent
Inputs Inputs Data Placement Value 180◦/30◦ Change

Clear Sky TMY – 180◦/30◦ kWh/m2/year 264.3 264.3 0.0
TMY TMY – 188◦/28◦ kWh/m2/year 171.4 171.1 0.2
Measured Measured – 186◦/27◦ kWh/m2/year 194.6 194.3 0.2

TMY TMY ERCOT 2011 231◦/30◦ $/m2/year 11.28 10.53 7.1
TMY TMY ERCOT AVG 219◦/29◦ $/m2/year 7.97 7.67 3.9
TMY TMY AE TOU Rate∗ 200◦/25◦ $/m2/year 11.07 10.96 1.0
Measured Measured ERCOT AUCT 204◦/25◦ $/m2/year 6.53 6.43 1.7

*Austin Energy residential time-of-use rate

to $5000/MWh with plans to further raise to $9000/MWh. A high price cap and more

instances of scarcity pricing (during historically consistent times of the day) could

have an impact on the optimal placements of fixed solar PV installations, namely

further west with a steeper tilt. Utilities could incentivize these solar placements as

a hedge towards a more volatile wholesale electricity market.

These results have the potential to be significant for solar PV installations.

Large ground-mounted and flat roof arrays that require fixtures can take advantage

of an optimal placement (or perceived future optimal placement) at little to no ad-

ditional cost than due south installations. For a building of fixed orientation, a

cost-benefit analysis would have to consider possibly less capacity (due to solar PV

installations not being aligned with the building lines) verses temporal generation

revenue. Utilities can encourage this optimal placement (which could be further west

than arrays designed to maximize energy production) by structuring rates that offset

their highest wholesale cost times and net-metering. Also, these results could be used

to influence roof azimuth and pitch in new construction or retrofits to maximize the

ability of installed solar PV systems to generate energy. Further, these results could
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also be useful for calculating the true cost/value of solar in non-optimal placements.

4.4.2 Optimal solar placement on a national level

4.4.2.1 Optimal azimuth

The same analysis was performed on data from 1020 locations in the US that

have TMY data. The model was extended to consider both the total amount of

energy produced, as well as the value of that energy produced. Figure 4.7 shows the

results of the energy-only analysis.
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Figure 4.7: Map of continental US showing the energetically optimal azimuth of of
solar PV systems. The red points indicate optimal solar azimuths east of south (less
than 160◦), orange points indicate slightly east of south optimal solar azimuths (160◦

– 170◦), green points indicate southerly optimal solar azimuths (170◦ – 190◦), purple
points indicate slightly west of south optimal solar azimuths (190◦ – 200◦) and blue
points indicate optimal azimuths west of south (greater than 200◦).

Most of the locations in the US fall within the south-facing band (170◦ – 190◦)

indicating that the rule-of-thumb approach might work for most of the country. How-
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ever there are some notable exceptions. The results indicate that a band of locations

from Wyoming, through Colorado, and into New Mexico have optimal azimuths that

face slightly east of south. This result is probably explained in that these locations

are along the Rocky Mountains and the mountains block the sun as it sets to the

west, along with prevailing summer afternoon thunderstorms. Another location of

interest the US west coast, where the model indicates an optimal slightly west-facing

azimuth for almost the entire length of the coast. This effect is probably explained

by persistent cloudiness in the early part of the day, higher morning humidity ratios,

or additional shading from west coast mountain ranges.

These findings are significant because Colorado ranks 10th (130 MW) in the

US for installed solar capacity and California ranks 1st at 2,051 MW (Texas ranks

7th at 174 MW) [120]. While data on the actual placements of solar PV systems are

not readily available, if roughly half of California’s small scale (< 25 kW capacity)

solar output could be improved 1% via an optimal placement, the result would be

an additional production of approximately 15 million kWh/year at current capacity

levels – about the total annual electricity consumption of 2,200 California homes [121].

Figure 4.8 shows the results when considering the maximum economic value

of the solar energy produced for all considered solar placements. Again, the value of

the electricity produced is approximated by the structure of a utility TOU pricing

structure that is either in the state of the TMY data location, or if the state doesn’t

have a TOU rate available, the closest location with a TOU rate was chosen.

Overall the economic consideration shifts the number of optimally south-facing

(170◦–190◦) array locations from 921 (pure energy analysis) to 476 locations. The

number of optimally west-facing (>190◦) array locations increased from 63 to 499

and the number of optimally east-facing (<170◦) array locations increased from 36 to
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Figure 4.8: Map of continental US showing optimal azimuth of solar PV systems
when considering the value of the solar energy produced. The red points indicate
optimal solar azimuths east of south (less than 160◦), orange points indicate slightly
east of south optimal solar azimuths (160◦ – 170◦), green points indicate southerly
optimal solar azimuths (170◦ – 190◦), purple points indicate slightly west of south
optimal solar azimuths (190◦ – 200◦) and blue points indicate optimal azimuths west
of south (greater than 200◦).
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45. However, because the rates were not the same, the change of optimal economic

placement is different for different locations. A significant portion of the western half

of the US, including Texas shifted varying degrees west of south. Even some arrays

that had an optimal energy placement east of south in Colorado trended west. The

eastern half of the US, which for energy only was almost all south-facing is more

mixed. For example, the TOU rates of Virginia and South Carolina, while they have

higher summer afternoon prices, also have high morning prices in the winter months,

presumably due to a morning grid peak from electrical heating or activity demand.

Other states, such as New York, had rate structures that reflect higher afternoon grid

demand.

4.4.2.2 Optimal tilt

While best practices would have tilts of solar systems determined by local

solar data as is attempted in this analysis, many times the tilt is decided based on

the local latitude alone [58]. Figure 4.9 shows the band of rule-of-thumb tilts for solar

PV systems in the US for comparisons purposes. Figure 4.10 shows a map of optimal

solar placement tilts as determined by maximum total energy produced.

Figure 4.10 suggests that while accurate for parts of the southwest US, the

optimal energy tilt is typically lower than the local latitude, especially in the states

surrounding Tennessee and Kentucky. Lower optimal tilts would indicate the preva-

lence of more sunny days when the sun is higher in the summer sky. Figure 4.11

shows a map of optimal solar placement tilts as determined by the maximum value

($/m2/year based on local TOU electric rates) of the solar energy produced.

Figures 4.10 and 4.11 are very similar, except in situations where the local rates

incentivize either more summer or winter production. For example, in California,

high summer afternoon electricity prices force the optimal tilt lower to produce more
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Figure 4.9: Map of continental US showing the approximate tilt for rule-of-thumb
solar placements in US based on latitude alone.
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Figure 4.10: Map of continental US showing the optimal tilt for solar placements
based on total energy production.
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Figure 4.11: Map of continental US showing the optimal tilt for solar placements
based on the value of solar energy production.

during the summer peak.

While the solar tilt rule-of-thumb for total energy production might be a good

approximation for most of the US, it does not apply everywhere. Notable examples

include some locations east of the front range (Rocky Mountains) and the majority of

the west coast. Using local TOU electricity rates as a proxy for local grid conditions

further changes the optimal tilt. In many locations, the optimal tilt is shifted down,

particularly in locations that have TOU rates with higher summer afternoon prices.

Although in some cases, rates shift the tilt steeper – particularly in places where TOU

rates are high in winter times.
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4.4.3 Optimal Azimuth and Tilt to Align with Summer Peak Demand

To understand how solar PV systems should be placed if the goal were to

generate as many kWh during summer peak hours as possible, the analysis was run

again where the value of solar was only considered during the afternoon summer hours.

This portion of the analysis restricted the time of interest to June through August,

and between 14:00 to 20:00 – a time period typically associated with high electric grid

stress times and higher wholesale electricity prices. For Austin, as well as for most of

the US, the optimal peak array placement was shifted due west. The average peak

optimal azimuth was 266◦ with a standard deviation of 6.4◦ and the average optimal

peak tilt was 51◦ with a standard deviation of 4.6◦. Figure 4.12 shows the average

generation curves for various solar placements in Austin using TMY data, including

optimal peak placement. The top part of Figure 4.12 shows the generation curves

for the entire year and the lower part shows the curves for only the summer months

(June – August).

Table 4.2 summarizes the differences in energy produced (area under the

curves) from the placements shown in Figure 4.12.

Table 4.2: Percent change in amount of energy generated by various solar
PV placements as compared to a south facing (180◦/30◦) array for an
entire year, only the summer months (July – August), and for just the
peak hours during the summer months (14:00 – 20:00) for Austin, TX.

Placement Full Year Summer Only
Summer Peak

Hours Only

South-Facing (180◦/30◦) 0.00 0.00 0.00
Optimal Energy (188◦/28◦) 0.32 1.30 5.56
Optimal Value Placement (219◦/29◦) -1.28 1.53 21.16
West-Facing Placement (270◦/30◦) -10.68 0.52 33.25
Optimal Peak Placement (270◦/40◦) -14.68 -4.87 35.19

For Austin, the optimal energy and optimal value placements do not differ
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Figure 4.12: Plot showing the average generation profiles of solar PV systems at
various placements in Austin, TX and the average ERCOT SPP for the same time
period.
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much from south placements in terms of energy use. However, west-facing and optimal

peak placement generate about 11 and 15% less energy throughout the year. In the

summer, the optimal energy, optimal value, and the west-facing array generate about

the same amount of energy as the south-facing array with the optimal peak array

generating less. During the summer peak demand hours, all placements generate more

energy than south-facing arrays with west and optimal peak placements generate 33

and 35% more energy during peak hours, respectfully.

4.5 Conclusions

This analysis considers the the effect of various placements (azimuth and tilt)

of solar PV systems on energy generation and value of that energy generation for a

yearly period with various environmental and economic inputs in Austin, TX. Using

clear-sky, typical meteorological year (TMY), and real, measured solar radiation data

we find that the rule-of-thumb placement (due south and a tilt slightly less than the

local latitude) might not be optimal for total energy production. Both TMY and

measured data indicate a 7-8◦ shift west (187-188◦) and a few degrees towards the

horizontal (from the rule-of-thumb 30◦) might be a better azimuth and tilt for energy

production. Clear sky radiation data reinforce the energy rule-of-thumb as expected.

Considering the value of energy produced, the optimal azimuth was pushed further

west (≈ 20-50◦) based on wholesale electricity market prices that are typically higher

in the mid to late afternoon hours. While the resulting improvements might might

seem small, (< 1 – 7% difference), the improvement is free to implement during

construction, and over the 25 year lifespan the excess energy produced and revenue

earned could be significant.

For most of the US, the rule-of-thumb for total energy production might be a
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good approximation, but it does not apply everywhere. In many locations, the optimal

economic placement is shifted west, particularly in locations that have TOU rates

with higher afternoon prices. Although in some cases, rates shift the placement east.

Placements that maximize generation during peak times shift placements further west

and energy might incentivize otherwise non-optimal placements. However, shifting

solar placements to maximize revenue as opposed to energy produced could have some

tradeoffs in terms of possible forgone carbon reductions – if all else were held the same.

On the other hand, it is reasonable to expect that if revenue were maximized, more

capacity might get built and thus offset more carbon emissions. Though beyond

the scope of this analysis, temporal carbon emissions could be considered either as

an objective or tax and the model could optimize for maximum carbon reductions

or maximum value with the tax. The same analysis could also be considered with

minimizing water use for thermal generation as well.

This analysis complements the direction of the smart grid towards a more lo-

calized, temporal understanding of how energy is created and consumed. Ubiquitous

computing power and localized data allow for smarter systems, including stationary

systems such as solar PV installations. Just like energy use, the optimal solar place-

ment might not be the same for all locations and the efficiencies that stand to be

gained from smarter local placements should not be ignored.
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Chapter 5

Other residential energy studies – residential

natural gas fuel cells and residential energy use

regression analysis

This chapter includes two smaller preliminary analyses that 1) consider the

impacts of using small scale fuel cells on end point electric and thermal energy use

in residential buildings in Austin and 2) regression results detailing the explanatory

variables for total energy use within the home and the effect of energy retrofits on

daily energy use∗.

∗Part of the analysis in this chapter has been published as a journal article [36]:

Rhodes, J.D., Charles R. Upshaw, Colin M. Meehan, David A. Walling, Paul A. Navratil,
Ariane L. Beck, Chioke B. Harris, Kazunori Nagasawa, Robert L. Fares, Wesley J. Cole, Harsha
Kumar, Roger D. Duncan, Chris L. Holcomb, Thomas F. Edgar, Alexis Kwasinski, Michael E.
Webber, ”Experimental and Data Collection Methods for a Large-Scale Smart Grid Deployment:
Methods and First Results,” Energy 65 (2014) 462471, DOI: 10.1016/j.energy.2013.11.004

and part as a conference paper [84]:

Rhodes, J.D., Kazunori Nagasawa, Charles R. Upshaw, and Michael E. Webber, The role of
small distributed natural gas fuel cell technologies in the smart grid, ASME 2012 6th International
Conference on Energy Sustainability, July 23-26, 2012, San Diego, CA, USA.

Co-authors included Charles R. Upshaw, Colin M. Meehan, David A. Walling, Paul A. Navratil,
Ariane L. Beck, Chioke B. Harris, Kazunori Nagasawa, Robert L. Fares, Wesley J. Cole, Harsha
Kumar, Roger D. Duncan, Chris L. Holcomb, Thomas F. Edgar, Alexis Kwasinski, Michael E.
Webber (supervisor) – their contributions included editing the manuscript.
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5.1 The role of small distributed natural gas fuel cell tech-
nologies in the smart energy grid

5.1.1 Introduction

Recent concerns about the stability and carbon intensity of the electricity grid

have lead to the development of various scenarios for the grid of the future, often

bundled under one vague umbrella coined as the ‘smart grid’. Roughly speaking, the

smart grid includes resource flow, such as electricity, natural gas, and water, from

the provider to the end user, along with flows of information. The smart grid allows

for otherwise passive parties to play a more active role in their resource use. One

example of this type of active role is end-user owned generation, sometimes also called

distributed generation. Distributed generation does not have to be end-user owned,

but this type is considered in this analysis. Common types of distributed generation

include rooftop solar PV and small wind electric power generation. These types of

generation, while carbon friendly, are not dispatchable, meaning that the amount of

power they produce is not controllable like a typical power plant. Therefore, a grid

that relies more on distributed generation of these types would benefit from electricity

storage or firming power (such as from dispatchable generating units on stand-by), to

provide continuous service even with the added variability. This paper analyzes one

type of distributed firming power: home-level natural gas fuel cells.

5.1.2 Background

Micro-grids and homes with local energy production, such as rooftop solar

PV, have traditionally relied on the macro-grid for stabilization in the event of local

interruptions in generation. These interruptions can last from just a few minutes, in

the event of a passing cloud, to weeks in the event of extended cloudy skies. Fuel

cells can be desirable as distributed firming power to local renewables because of
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their availability/reliability, relatively high efficiency, low emissions, and low noise

[59]. Numerous computer models and prototype units have been built to test the

ability of small-scale fuel cells to perform in residential-specific situations [59–63].

While simulations and prototypes have demonstrated the utility of small-scale fuel

cell systems to operate in residential environments, a range of efficiencies has been

reported. Electrical efficiencies range from 18% [63] to 56% [122], however, fuel cells

also produce waste heat that can increase the total efficiency to over 90% when used

in a combined heat and power (CHP) mode [60]. When operated in a CHP mode,

small-scale fuel cells can produce heat for other uses such as domestic hot water, space

heating, thermoelectric generation, or absorption refrigeration. Figure 5.1 presents a

schematic of a possible residential fuel cell setup.

!"#$%
&#$$%

'()#%

*($+,%-.%/$#01,20%3,24%

5+1",+$%3+6%!$(7%
/$#01,20218%!$(7%
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/$#01,20218%
!$(7%<-.=%

Figure 5.1: Schematic of a residential building interacting with multiple energy
sources, including small-scale fuel cells.

Figure 5.1 demonstrates the possibilities of a home that is connected to more

than one source of energy. The home can interact with the electric grid by buying and

selling electricity. The home can produce electric power from solar when available and

use that power, or sell it to the grid. The home can use natural gas directly, or could

convert the natural gas to electricity and heat using the fuel cell. This electricity
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could be used by the home or sold to the grid and the heat, since local to the home,

could be used for the purposes mentioned above.

5.1.3 Pecan Street smart grid demonstration project data

The data considered for this analysis are from the Pecan Street Smart Grid

Demonstration Project [36]. The dataset used in this analysis consists of fourteen

single-family detached homes that have solar PV generation installed on site. These

homes were constructed to Austin Energy’s Green Building standard [123]. The

homes range in size from 116 m2 to 281 m2, averaging 214 m2. The data acquisition

equipment reports whole home consumption, total solar generation, and total demand

from the grid. The data are aggregated to the average power draw for each minute

for each home.

The time span chosen for this analysis is from Sunday August 28, 2011 to

Saturday September 3, 2011. This span of data was chosen because it included the

summer peak power demand for Austin, which was registered at 2,714 MW between

15:00 and 16:00 on Monday August 29, 2011 (during this hour the temperature spiked

to 41.2 ◦C). This dataset allows for an analysis of one of the most demanding weeks

for the grid in Austin. Figure 5.2 shows the average values for all the homes for

Sunday August 28, 2011.

In Figure 5.2, the blue solid line represents the whole home demand, the red

dashed line represents the solar power generation, the green dotted line represents the

power drawn from the grid, and the purple dash-dot line is the outdoor temperature.

The green dotted “Power from Grid” line is the difference between the blue solid whole

home demand line and the red dashed solar production line. When the green dotted

line is negative, the home is producing more power than it is consuming. The blue,

red, and green lines correspond with the left axis and the dashed purple temperature
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Figure 5.2: Average whole home power demand, solar generation, grid demand, and
outdoor temperature for all 14 homes in the database for Sunday, August 28, 2011.
The demand and grid lines are indicative of homes demand fluctuating independently
and the smooth solar curve is indicative of a clear, cloudless day.
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line corresponds with the right axis.

5.1.4 Methods and results

Over this entire time period, August 28 to September 3, the average maximum

demand for the homes is about 5.5 kWe (electrical power), while the average maximum

power draw from the grid was 5.1 kWe. The actual demand for a single home can

be much higher; the maximum demand realized in the dataset was 13.6 kWe for a

period of two minutes. Of the 141,134 data points collected, only 9.7% were above

5.5 kWe. During the grid peak hours of 15:00 to 19:00, 21.4% of 23,618 data points

collected were greater than 5.5 kWe. Homes may individually peak outside of the

“peak hours” but the aggregate peak for the homes in the dataset also fell between

15:00 to 19:00. The maximum average solar production for the homes was 5.0 kWe

with a maximum generation value of about 6.2 kWe. Homes in the dataset generated

solar power from about 7:00 to about 19:30. During this timespan (08/28 – 09/04),

the average home consumed 467 kWhe (electrical energy), produced 189 kWhe, and

consumed an average of 278 kWhe from the grid.

5.1.4.1 Air-conditioner run times

Air-conditioning is one of the greatest energy consuming appliances in build-

ings, particularly so in residences in hot and humid climates such as Austin, Texas [8].

The air-conditioning circuit was not explicitly monitored in the dataset, so the amount

of time that the air-conditioner was operating was estimated. Each home’s demand

profile was examined for the entirety of the week monitored. Figure 5.3 shows an

example of one house, for one day.

Similar to Figure 5.2, in Figure 5.3 the blue solid line represents the whole

home demand, the red dashed line represents the solar power generation, the green
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Figure 5.3: Example of whole home demand, solar generation, grid demand, and
temperature for one home for Sunday, August 28, 2011.
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dotted line represents the power drawn from the grid, and the purple dash-dot line is

the outdoor temperature. The green dotted “Power from Grid” line is the difference

between the blue solid whole home demand line and the red dashed solar production

line. When the green dotted line is negative, the home is producing more power than

it is consuming. The blue, red, and green lines correspond with the left axis and the

dashed purple temperature line corresponds with the right axis.

Using the highly granular data and knowledge of the cycling electrical power

signal of air-conditioners, combined with inspection of the data for each house for

each day, it was estimated that, on average, air-conditioners were operating 54% of

the time. Similarly for the peak hours between 15:00 and 19:00, air-conditioners

were estimated to be operating about 85% of the time. For non-peak hours, air-

conditioning runtimes averaged about 48% of the time.

Given that the average home is about 214 m2 in size, and using an air-

conditioner sizing method of about 1 kWc (capacity) per 18.9 m2 of flooring area [8]

for a well-built home in Austin, Texas, it was estimated that the average home could

use an air-conditioning system with a capacity of about 11.3 kWc. Equipped with a

standard vapor compression air-conditioner with a Coefficient Of Performance (COP

is kWc/kWe) of 3.5, the estimated power draw would be about 3.2 kWe, which aligns

well with inspected values. The homes in this database, as part of the Austin Green

Built building codes, were required to install cooling equipment with a minimum effi-

ciency of COP 3.5. Using the average air-conditioner runtime of 54%, and the average

air-conditioner power draw of 3.2 kWe, 290 kWhe of electricity was estimated to be

used for air-conditioning during the entire week, or 62% of total use. Similarly for

on-peak hours it was estimated that the air conditioner consumed approximately 76

kWhe, or 66% of total peak use, for off-peak times air-conditioners are estimated to
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be operating for 213 kWhe or 61% of off peak times.

5.1.4.2 Using the fuel cell in a combined heat and power (CHP) mode to
match cooling demand

Because the fuel cell would nominally be local to the home (for this analysis),

the opportunity arises to not only use the local electricity produced, but the waste

heat as well. This would increase overall efficiency of the unit. Considering an

absorption air-conditioner system with a COP of 0.65 [124], the system would require

a thermal input of about 17.4 kWt (heat) in order to provide the necessary amount

(11.3 kWc) of cooling capacity. Using the mid-range electrical (0.3) and thermal

efficiencies (0.9) for fuel cells given above, and using the equations given in [60]:

ηelectric =
Ẇe

Ẇnatgas

(5.1)

ηCHP =
Ẇe + Ẇthermal

Ẇnatgas

(5.2)

where ηelectric is the electrical efficiency of the fuel cell, We is the electrical output of

the fuel cell, Wnatgas is the power delivered to the fuel cell from the natural gas, ηCHP

is the efficiency of the fuel cell in combined heat and power mode, and Wthermal is

the heat produced by the fuel cell during operation. To produce 17.4 kWt of thermal

output, the electrical output of the fuel cell would be 8.7 kWe. This value is above

the average maximum power draw for the homes even when the air-conditioning load

is included. This is further exacerbated by the fact that the cooling demand of the

home is now met with a mostly non-electrical device. Typically, electric pumps are

incorporated into absorption chillers, but the power draw is minimal when compared

to the power demand of a compressor in a vapor compression refrigeration system.
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This thermal and electrical output corresponds to a power input from the natural

gas of about 29 kWch (chemical) of continuous input, or about 3.0 m3 (LHV of 34.6

MJ/m3) of natural gas per hour. Thus, sizing the fuel cell to meet the thermal

demand of the home directly might be a sub-optimal approach.

5.1.4.3 Fuel cells as distributed power in the smart grid

Major market barriers to the use of residential fuel cells include high capital

cost and the current residential electricity pricing structures. Current residential

electric pricing structures do not typically incentivize a net producing home, i.e. one

that produces more energy than it consumes. Net producing homes are sometimes

given a credit towards future electricity use, but are not typically paid if they are

overall net producers. This section will consider some fuel cell size and electricity

pricing scenarios.

Without fuel cells. At $0.12/kWhe [125] the average home in Austin without

solar would have paid about $56.04 for electricity for this period; with solar production

the cost is reduced to about $33.36. Considering a simple residential time of use

(TOU) pricing scheme consisting of $0.20/kWhe for electricity use during peak hours

of 15:00 to 19:00, and $0.05/kWhe for all other times, the average home without solar

would pay $40.75 for electricity during this week, and homes with solar would pay an

average of $20.20.

Fuel cells meeting average building maximum load. If the average house, with

solar PV, were fitted with a 5.5 kWe fuel cell running at full load over this week, the

fuel cell would have produced 924 kWhe of electricity, almost double the consumption

of the home and over triple the average consumption from the grid. For this time

period, there would be a net production of about 646 kWhe. Using Equation 5.1,

the fuel cell would require 18.3 kWch of continuous power input from natural gas,
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or about 1.9 m3/hr. If the utility were to buy the electricity at the retail price of

$0.12/kWhe and assuming that natural gas cost $0.38/m3 [126] the energy cost (gas

and electric) for the time period would be about $43.78. This is comparable to the

electricity bill without any fuel cells, however this does not take into consideration

the capital cost of the fuel cells.

At home demand. If the fuel cell were to operate at more or less the demand

of the average home, the fuel cell would produce about 278 kWhe of electricity, or the

same amount that is currently pulled from the grid. The cost of producing electricity

solely from natural gas to bring the home to a net zero pull from grid would cost

about $36.14 for this time period, as compared to $33.36 for buying electricity from

the grid. In this analysis, the cost of electricity produced from the natural gas fuel

cell, considering only fuel costs, is approximately $0.13/kWhe, which is close to the

retail cost of electricity. However, this cost would be higher if maintenance, financing,

and estimated capital cost (approximately 4,000 $/kW [127]) were considered.

Fuel cells meeting building cooling load at flat rate electricity pricing. Imple-

menting a strategy to couple the home cooling demand and fuel cell power and heat

production as described above would result in the over production of electricity dur-

ing the time period. When combined with solar production, the home would produce

about 801 kWhe of excess energy for the week. This over production is large because

the electricity consumption of the air-conditioner has been eliminated and replaced

with the absorption chiller, which requires far less electricity to operate. The natural

gas required to produce the required thermal output over this time would be about

253 m3 and would cost about $103.42. If the electric utility did not pay net producing

homes for their excess electricity production, the homes electric bill would be $0, but

would result in a gas bill of $103.42 for the week. If the electric utility bought electric-
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ity produced from homeowners at retail prices, the value of the electricity produced

would be $96.15.

Fuel cells meeting building cooling load at TOU pricing. If fuel cells were

allowed to operate only during the peak demand period, and considering the same

simple TOU pricing scheme as given above, the result could be quite different. In

this case the fuel cell only operates during the hours of 15:00 to 19:00 meeting the

building cooling load with the absorption chiller and producing electricity, and during

the off-peak time, a standard air-conditioner meets the cooling demand with the

traditional grid meeting the electrical demand. This scenario may even allow the

air-conditioner to be sized smaller, as the cooling loads could possibly be less outside

of the peak times. This scenario finds that the average home over this time period

is a net producer during peak, producing about 241 kWhe. During the off-peak, the

average home consumes 236 kWhe. Allowing power to be bought at retail TOU prices

during peak, which may be more agreeable to utilities especially during peak demand

events, thus the average home would get paid about $37.12 for electricity production

and would pay about $27.13 in natural gas cost, resulting in a net profit of about

$9.99 for the entire period.

Optimal sizing of fuel cells to meet building cooling load and have the house

at net-zero electric energy. Optimization can be used to find the size of the fuel

cell and absorption chiller combination with a small traditional air-conditioner such

that the home is net zero electric energy over the time period. Not considering solar

production, the optimal system consists of a 3.85 kWe fuel cell in conjunction with a

5 kWc absorption chiller aided by a 6.3 kWc traditional air-conditioner or heat pump.

Over this time period, the system is capable of meeting the cooling demand of the

home while having the home be net zero in terms of electricity use. However, the cost
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of natural gas for this time period would be about $47.55. An interesting result of

this scenario is that even when the absorption chiller and the air-conditioner (COP

3.5) are running at full capacity, the fuel cell is still able to produce an extra 1.5–2

kWe of excess power to feed to the grid, presumably when the grid needs the extra

power the most.

Considering the energy produced by the solar panels and setting the same

objective function as above, the optimal configuration includes a 2.35 kWe fuel cell,

a 3.1 kWc absorption chiller, and a 8.2 kWc standard air conditioner or heat pump.

The size of the fuel cell decreases because the energy demand for the time period

is lower, but the combined capacity of the cooling system must remain the same, so

the air-conditioner size increases. With increased air-conditioner size comes increased

energy use, and the optimization routine finds the balance. The cost of natural gas

for this time period would be about $29.14. In this case, the fuel cell electrical output

would be approximately the power demand of the air-conditioner.

One major advantage of this dual setup is that the systems, if smart, would

have the ability to operate independently. For example, the systems could choose to

produce as much power as possible and only meet part of the cooling load if user

input allowed and pricing structures produced proper incentives.

5.1.5 System efficiency

Distributed generation, including fuel cells at the home level, has the poten-

tial to increase the entire energy delivery system efficiency [128]. The end goal of

energy delivery to the home or any building is for energy services, not the energy

itself. While the efficiency of the grid varies somewhat from time of day and year, the

average efficiency is around 27% [129]. While there is room for efficiency improve-

ments, such as use of the waste heat at centralized generation facilities, the Carnot
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efficiency of heat engines will always limit the plant’s electrical generation efficiency.

Transmission losses can vary as well, but can be on the order of about 10% [128].

While the true efficiency of distributed fuel cell generation should include natural gas

transmission losses, these data are not readily available. Considering the ability to

use local generation in a CHP mode, the energy delivery efficiency to the home could

possibly more than double. While beyond the scope of this analysis, other offsetting

uses of local waste heat certainly include domestic hot water heating, local space

heating, and even thermoelectric generation.

5.1.6 Conclusions

This work presents the possible use of distributed natural gas fuel cells, espe-

cially in cooling climates. This analysis revealed that local electricity utility policies

will play a role in the financial incentive to switch to this type of local electric gener-

ation and waste heat utilization. At this point, the capital cost associated with a fuel

cell-absorption chiller system for residential applications would most likely be cost

prohibitive [127]. However, the major utility of such a system lies in its flexibility of

outputs. The economics of the decisions would also be directly tied to the prices of

two energy sources, electricity and natural gas, and dual smart systems may play an

active role in this future.

This analysis found that given certain electric utility policies, distributed gen-

eration by natural gas fuel cells running in a CHP mode could be at parity or better

with the traditional grid acquisition of electricity during high grid stress times. Mul-

tiple scenarios of fuel cell use were analyzed and it was determined that the structure

of TOU pricing possibly allows for the best economic outcome.

Future work should include a robust model that could be optimized for indi-

vidual homes. Also capital cost should be included in the economic analysis, but since
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fuel cell technology is just now becoming available in a scale suitable for residential

use, these costs were not easily obtainable for this first iteration of analysis. Future

iterations will include estimated costs or actual costs if available. Overall, this type

of distributed generation technology could play a prominent role in the grid of the

future.

5.2 Residential energy use regression analysis

5.2.1 Introduction

Two different regression analyses are presented that explore both the factors

driving total energy use and the effectiveness of residential energy retrofits. In the first

part of this section, data from this project are used to assess the relationship between

survey and audit results and yearly residential energy use. While there are studies

that have analyzed macro-level data from the Energy Information Administration

(EIA) [6] to understand residential energy use [130–132], there is little analysis that

has had this level of detail, particularly on homes in a hot and humid climate such

as Austin, TX. This preliminary work seeks to fill this knowledge gap. The second

analysis seeks to quantify the benefit of energy retrofits on homes in the study. There

have been studies that have looked at the effect of residential energy retrofits on total

energy use, but they have typically been limited to the billing (month) level or utilized

building energy simulation software [133–136]. Most past studies have lacked the data

to quantify the effect of retrofits on measured energy use at a finer granularity (daily

kWh).

5.2.2 Background

Garbacz (1983) [130] examined the National Interim Energy Consumption

Survey (NIECS) and found that the total price elasticity for electricity demand was
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lower than previous studies and that total income elasticity was also lower than pre-

vious studies. However, he cautioned against using direct comparisons because of

differences in model specification. Hirst et al. (1982) [131] also summarized and ana-

lyzed the NIECS dataset finding that multivariate regression equations that contain

less than 10 variables could account for roughly half of energy usage. They found

that fuel price, year built, size, and heating degree days to the the most important

variables. Kaza (2010) [132] used the 2005 Residential Energy Consumption Survey

(RECS) dataset to preform a quantile regression for explore how different groups of

energy consumers respond to changes in other explanatory variables. The analysis

indicated, among many findings, that housing type (own vs. rent) matters more than

size and that effects at the tails of the distributions can differ from the average by

factors as large as 6.

Guiterman and Krarti (2011) [133] analyzed 30 low income Colorado housing

units that received energy retrofits including new furnaces, tankless DHW heaters,

programable thermostats, insulation, mechanical equipment tuning, CFL lighting,

and air-sealing. They found about a 20% reduction in natural gas use using two years

worth (pre/post) of utility billing data. Xu et al. (2013) [134] used a calibrated energy

model of an apartment building and tenant surveys in northern China to estimate the

savings associated with energy retrofits. They found that monetary incentives and

metering technologies would not lead to the necessary behavior changes for sizable

energy reductions. Ma et al. (2012) [135] in a review of current literature provides a

systematic pathway for the analysis of energy retrofit technologies in buildings. Guler

et al. (2001) [136] found that retrofits to residential façdes could reduce heating energy

use by 8% in Canadian homes, but that many retrofit payback periods were beyond

a reasonable time frame for the average homeowner.
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5.2.3 Project data used in these analyses

The data used in the total energy use analysis consist of survey, audit, and

measured energy use data [36]. Total energy use data used were gathered from a

subset of 41 homes for the year 2011. The survey and audit data fields used as

explanatory variables (regressors) included the home-specific data: number of levels,

number of bedrooms, year built, home size, number of children and adults, thermostat

set points, energy and water quiz scores, education level and income.

The data used in the retrofit analysis consist of daily electricity use (kWh) data

for 28 homes for the period from January 02, 2010 to November 07, 2012 (27,532 total

observations). Half of these homes received various energy retrofits during those three

years. Care was taken to make sure that there was enough data (at least a spring-

summer or summer-fall time period) before and after the retrofit(s) to support analysis

consisting of adequate seasonal variation. Not all homes received the same mix of

retrofits, nor did homes receive them at the same time. The retrofits performed were

part of a municipal electric utility (Austin Energy) residential retrofit rebate program

and some of the homes involved happened to be monitored by the Pecan Street Smart

Grid Demonstration Project [137].

The retrofit analysis data are panel data, which consist of multiple individuals

(in this case homes) where each individual also contains its own time series data [138].

Dummy variables (0 = no retrofit, 1 = received retrofit) were introduced to indicate

when a home received a retrofit and weather effects were normalized by the inclusion

of cooling degree days (CDD) and heating degree days (HDD) [139,140].
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5.2.4 Methods

Indicators of Total Energy Use. Multiple linear regression is “a method that

summarizes how the average values of a numerical outcome variable vary over sub-

populations defined by linear functions of predictors” [100]. This analysis seeks to

determine how total yearly energy use is related to static values found in the surveys

and audits. This model used the lm linear model package of the statistical analysis

tool R [141]. The basic multiple linear regression model is given in Equation 5.3:

Yi = βXi + α + εi, (5.3)

where Yi is the amount of yearly energy used (kWh) for a given home, β is the vector

of fit regression coefficients, Xi is the set of explanatory variables, α is a constant or

intercept, and εi is the error associated with the estimation of the energy use for that

home.

Residential Energy Retrofit Analysis. Panel regression allows one to estimate

the effect of explanatory variables on multiple individuals. This analysis used the plm

panel data estimators package in R. Typically, panel regression analysis must check

if the estimation method used is consistent with the data. Results of Hausman tests

indicated that a fixed-effects estimator was the best option [142]. The fixed effects

model is similar to a multiple linear regression for each home — the set of regression

coefficients β will be the same, but each will have its own constant, or intercept. The

basic panel regression model is given in Equation 5.4:

Yit = βXit + αi + εit, (5.4)

where Yit is the amount of energy used (kWh) for a given home i on a given day t, β
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is the vector of fit regression coefficients, Xit is the set of explanatory variables, αi is

a constant associated with home i, and εit is the error associated with the estimation

of the energy use for that home and day.

5.2.5 Results

The output from the first multiple linear regression model estimating the effect

of explanatory variables on total yearly energy use is given in Table 5.1.

Table 5.1: Multiple regression output for the relationship between survey and
audit data and total yearly energy use.

Explanatory Coefficient
Std. Error t-value

Two-tailed Significance
Variable Estimate P-test Level

Intercept 273,641 77209 3.54 0.001 **
Year Built -136 38.9 -3.51 0.001 **
Condition Sqft 7.6 0.86 8.80 4.69E-10 ***
Number Kids 1096 748 1.47 0.153
Number Adults 2083 920 2.26 0.031 *
Income -1115 776 -1.44 0.160
Water Knowledge Score -1858 783 -2.38 0.024 *
Energy Knowledge Score -1540 673 -2.29 0.029 *

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Adjusted R2: 0.7874 n = 41

In Table 5.1 Intercept is the constant term of the regression, however in this

model its interpretation is of no real value (the “energy use” associated with zeros for

all other coefficients, i.e. a home built in year 0, of 0 square foot, etc.), the Year Built

coefficient estimate is the effect of increasing the construction date of the home by

one year, all else held constant, the Condition Sqft coefficient estimate is the effect

of increasing the size of the home by 1 square foot, Number Kids is the effect of

increasing the number of children in the home by 1, Number Adults is the effect of

increasing the number of adults in the home by 1, Income is the effect of increasing an

income bracket, Water Knowledge Score is the effect of a 1 point increase in the score

on the water knowledge quiz included in the survey, and Energy Knowledge Score is
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the effect of a 1 point increase in the score on the energy knowledge quiz included in

the survey (see the [36] for a copy of the survey).

The model was built using best practices from regression texts [100]. All the

regression coefficients in the final model had the expected signs even if they were

not significant (Number Kids and Income). The coefficient Year Built indicates that

newer homes (those built in more recent years), on average consume less energy than

older homes. Home size (Condition Sqft) also has a positive relationship with energy

use, as do the number of children and adults (Number Kids and Number Adults).

Interestingly, higher scores (Water Knowledge Score and Energy Knowledge Score)

on the water and energy quiz in the survey (indicating more knowledgeable partici-

pants) were correlated with reduced energy use. This finding suggests that education

might be effective in reducing in residential energy usage, however there is not enough

information to deduce causality.

The output from the residential energy retrofit panel regression model is given

in Table 5.2.

Table 5.2: Panel regression output for fixed-effects model showing the
estimated impact of energy use retrofits on daily energy use using the
whole time period.

Explanatory Coefficient
Std. Error t-value

Two-tailed Significance
Variable Estimate P-test Level

HDD 1.57 0.03 51.66 < 2.2E-16 ***
CDD 2.68 0.02 156.61 < 2.2E-16 ***
Solar.Shading -0.53 1.02 -0.52 0.602
Air.Seal -1.56 0.63 -2.46 0.014 *
Attic.Insul -1.70 0.66 -2.57 0.010 *
HVAC -4.09 1.02 -4.02 5.91E-05 ***
Other.System 3.78 1.19 3.19 0.001 **

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Adjusted R2: 0.5099 n = 28

In Table 5.2, the coefficient estimate of HDD is the estimated effect of an
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additional heating degree day on daily energy use, CDD is the estimated effect of an

additional cooling degree day on daily energy use, Solar.Shading is the estimated effect

of upgrading solar shading of windows, Air.Seal is the estimated effect of reducing

the outdoor air infiltration rate of the home (weatherstripping and sealing cracks

in the façade), Attic.Insul is the estimated effect of increasing the amount of attic

insulation, HVAC is the estimated effect of upgrading the home’s HVAC equipment,

and Other.System is the estimated effect of upgrading some non-HVAC appliances to

Energy Star versions or acquiring new Energy Star appliances.

All the coefficient estimates have the expected sign with the exception of

Other.System. The data did not indicate if the appliance in question was an up-

grade or a new addition to the home. The data simply stated when an Energy Star

appliance was purchased. Since the coefficient is positive and significant, it would

seem to imply that the purchases, on average, were for new additions to the homes’

set of appliances. A possible scenario being that as an older, less efficient refriger-

ator was replaced by a new Energy Star unit, the former was moved to the garage

where it continued to be used as a ‘beer fridge’ [143]. The energy efficiency rebate

might have offset a larger increase in energy use associated with the purchase of a

less efficient appliance, but the data do not allow us to test this hypothesis. The only

variable that was not significant was Solar.Shading. The sign of the coefficient is as

expected and according to regression texts, it is convention to leave such variables in

the model [100].

There were three retrofits that showed significant energy reductions: Air.Seal,

Attic.Insul, and HVAC. Holding all else constant, the retrofits showed, on average,

daily reductions of 1.56, 1.70, and 4.09 kWh, respectively. These retrofits are expected

to last 30, 40, and 15 years, respectively [144].
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Data from Austin Energy’s rebate program [137] indicate that the average

rebate associated with air sealing is $241 for an estimated rebate-cost to the utility

of $0.014/kWh (over the expected lifetime of the retrofit). This rebate-cost was

calculated using Equation 5.5:

Crebate =
Ravg

βretrofit × 365× Lretrofit

, (5.5)

where Crebate is the “rebate-cost” to the utility ($/kWh), Ravg is the average rebate

of the retrofit ($), βretrofit is the coefficient of the retrofit given in the panel regres-

sion (kWh/day), and Lretrofit is the lifetime of the retrofit (years). Data from Austin

Energy also revealed that the average capital cost of the retrofit Air.Seal was ap-

proximately $744 for a final (to-homeowner) capital costs of $503. This final capital

cost leads to a homeowner-cost of $0.029/kWh. This homeowner-cost was calculated

using Equation 5.6:

Chomeowner =
FCavg

βretrofit × 365× Lretrofit

, (5.6)

where Chomeowner is the “homeowner-cost” ($/kWh), FCavg is the average final capital

cost to the homeowner ($), βretrofit is the coefficient of the retrofit given in the panel

regression (kWh/day), and Lretrofit is the lifetime of the retrofit (years).

Austin Energy also offers rebates for increasing attic insulation up to R-38.

Data from Austin Energy indicate that the average rebate associated with increasing

attic insulation is $163 for an estimated rebate-cost to the utility of $0.007/kWh. The

average capital cost of the retrofit was $1,037 leading to a final homeowner capital

cost of $874 and a homeowner-cost of $0.035/kWh.

The highest reduction in daily energy use came from upgrading the HVAC
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system, which is not surprising given the local cooling dominated climate. Austin

Energy has a tiered rebate system with increasing rebates for higher efficiency HVAC

units. Data from Austin Energy’s rebate program indicate that the average rebate

associated with upgrading HVAC equipment is $450 for an estimated rebate-cost to

the utility of $0.020/kWh. The average capital cost of the retrofit was $6,517 leading

to a final homeowner capital cost of $6,067 and a homeowner-cost of $0.271/kWh.

However, this result might not be fully accurate if the HVAC unit were in need of

replacement and code required a unit of higher efficiency than the unit being replaced.

Table 5.3: Summary of costs and rebates associated with residential
energy retrofits and Austin Energy’s retrofit rebate program.

Retrofit
Average Average Average Energy Rebate Homeowner
Capital Rebate Final Saved Cost Cost

Cost Cost (kWh) ($/kWh) ($/kWh)

Air.Seal $744 $241 $503 17,082 $0.014 $0.029
Attic.Insul $1,037 $163 $874 24,820 $0.007 $0.035
HVAC $6,517 $450 $6,067 22,393 $0.020 $0.271

5.2.6 Conclusions

Results from both regression analyses reveal some interesting results. While

most of the results from the first regression are somewhat intuitive, the significant

correlation of reduced energy use with increased energy and water knowledge is in-

teresting and worthy of further investigation. Survey questions about residential and

national resource use were deployed to assess the homeowner’s knowledge with the

hypothesis that it would significantly effect choices and behavior related to energy

use [36]. This result might lend some support for increased energy and water educa-

tion campaigns.

The retrofit analysis provided results that utilities can use to assess the value
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of residential retrofit rebates as compared to the cost of acquiring energy on the

wholesale market. Average yearly wholesale electricity costs for 2011–2012 were

$0.037/kWh. The model indicates that the current level of rebates is cost effec-

tive for the utility for all three retrofits, and could possibly be increased. Austin

Energy has a five-tiered residential electricity rate structure based on consumption,

partitioned by summer and non-summer seasons [145]. The realized residential rate

(per kWh costs) increases as one uses more energy in a month from $0.065/kWh for

winter use less than 500 kWh to $0.161/kWh for all use in excess of 2500 kWh in

the summer. Considering an average of $0.113/kWh for residential electric service,

both the air-sealing (Air.Seal) and added attic insulation (Attic.Insul) seem to make

economic sense for the homeowner. It is difficult to infer much about the value of the

homeowner cost associated with HVAC replacements as it is not known if the HVAC

system was at its end of life at the time of the upgrade.
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Chapter 6

Summary

This dissertation addressed the following four objectives:

1. Explore the residential electricity consumption and common air-conditioner de-

sign and installation issues of homes in Austin, Texas,

2. Determine the key correlations between homeowners and their temporal energy

use in Austin, Texas,

3. Determine the optimal placement of residential-based solar PV systems for Austin

and the greater US, and

4. Explore the efficiencies associated with firm distributed generation and residen-

tial energy retrofits.

The following sections summarize the major conclusions from these studies.

6.1 Using energy audits to investigate the impacts of com-
mon air-conditioning design and installation issues on
peak power demand and energy consumption in Austin,
Texas

Chapter 2 analyzed a database of 4971 energy audits on single-family homes

in Austin, Texas. The analysis led to a conclusion similar to previous studies: res-

idential air-conditioning systems are generally operating in poor condition. The in-

efficiencies associated with poor residential air-conditioning performance aggregated
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across a city can be significant, especially during peak periods. Single-family residen-

tial air-conditioning systems are estimated to account for approximately 17–18% of

peak summer electricity demand in Austin. Furthermore, the analysis concludes that

efficiency improvements alone (upgrading all systems to EER 14, COP 4.1) could re-

duce peak power demand by as much as 205 MW, which would achieve almost 26% of

Austin’s Climate Protection Plan’s goal of an 800 MW peak reduction by 2020. Sim-

ilarly, this analysis suggests that accurately sizing residential air-conditioning equip-

ment could displace as much as 41 MW of peak demand, or nearly the equivalent

of one natural gas peaking plant. Additionally, replacing oversized units with higher

efficiency units (EER 14, COP 4.1) could increase those peak savings to 81 MW.

This research also indicates that Austin Energy could substantially increase energy

efficiency rebate levels for home energy retrofits and still be at parity with the cost

of building new generating capacity.

6.2 Clustering analysis of residential electricity demand pro-
files

Chapter 3 employed a data-driven approach to 1) determine the shape of

seasonally-resolved residential demand profiles, 2) determine the optimal number of

normalized representative residential electricity use profiles within each season, and

3) draw correlations to the different profiles based on survey data for over 100 homes

in Austin, TX. This analysis determined that, for homes in a southern U.S. location,

there are two main groups of temporal profiles, representing residential electricity de-

mand in each season. Temporal and magnitude differences in the summer profiles are

significant with one group typically demanding more power during higher wholesale

electricity price times than the other. Finally, probit regression analysis determined

that explanatory variables such as whether someone worked at home, the number of
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hours of television watched per week, and education were significant determiners of

inclusion in a given cluster. These results point to markers of households that might

be more impacted by time-of-use or real-time pricing electricity rates and can act as

predictors as to how changing demographics can change electricity demand patterns.

6.3 A multi-objective assessment of the effect of solar place-
ment on energy production and system economics

Chapter 4 considered the the effect of various placements (azimuth and tilt)

of solar PV systems on energy generation and value of that energy generation for a

yearly period with various environmental and economic inputs in Austin, TX. Using

clear-sky, typical meteorological year (TMY), and real, measured solar radiation data

the analysis finds that the rule-of-thumb placement (due south and a tilt slightly less

than the local latitude) might not be optimal for total energy production. Both TMY

and measured data indicate a 7–8◦ shift west (187–188◦) and a few degrees towards

the horizontal (from the rule-of-thumb 30◦) might be a better azimuth and tilt for

energy production. Clear sky radiation data reinforce the energy rule-of-thumb as ex-

pected. Considering the value of energy produced, the optimal azimuth was pushed

further west (≈ 20–50◦) based on wholesale electricity market prices that are typically

higher in the mid to late afternoon hours. While the resulting improvements might

might seem small, (< 1–7% difference), the improvement is free to implement during

construction, and over the 25 year lifespan the excess energy produced and revenue

earned could be significant. For most of the US, the rule-of-thumb for total energy pro-

duction might be a good approximation, but it does not apply everywhere. In many

locations, the optimal economic placement is shifted west, particularly in locations

that have TOU rates with higher afternoon prices. Although in some cases, rates

shift the placement east. Placements that maximize generation during peak times
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shift placements further west and energy might incentivize otherwise non-optimal

placements.

6.4 Other residential energy studies – residential natural gas
fuel cells and residential energy use regression analysis

Chapter 5 considered the possible use of distributed natural gas fuel cells to

increase the primary energy efficiency of residential buildings, residential predictors of

total electricity use, and the the observed electricity use reduction effect of residential

energy retrofits.

The analysis indicates that given certain electric utility policies, distributed

generation by natural gas fuel cells running in a CHP mode could be at parity or

better with the traditional grid acquisition of electricity during high grid stress times.

Multiple economic scenarios of fuel cell use were analyzed and it was determined that

the structure of TOU pricing allows for the best economic outcome.

Results from both regression analyses reveal some interesting results. While

most of the results from the first regression are intuitive, the significant correlation of

reduced energy use with increased energy and water knowledge is interesting. Survey

questions about residential and national resource use were deployed to assess the

homeowner’s knowledge with the hypothesis that it would significantly effect choices

and behavior related to energy use. This result might lend some support for increased

energy and water education campaigns.

The retrofit analysis provided results that utilities can use to assess the value

of residential retrofit rebates as compared to the cost of acquiring energy on the

wholesale market. Average yearly wholesale electricity costs for 2011–2012 were

$0.037/kWh. The model indicates that the current level of rebates is cost effec-
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tive for the utility for all three retrofits, and could possibly be increased. Considering

an average of $0.113/kWh for residential electric service, both the air-sealing and

added attic insulation make economic sense for the homeowner given current rebate

structures, while all studied retrofit rebate costs are economical to Austin Energy.

6.5 Overall considerations of the work in this dissertation

The lessons learned in the analyses within this dissertation could be used to-

gether in the following succinct way: Chapter 3 provides insights to which homes

use more expensive electricity than others and whose energy reductions from energy

retrofits might be worth more to utilities than others. Utilities could use this infor-

mation to provide more rebates to those from whom they then receive the greatest

benefit. Chapter 2 gives insights as to how much energy reductions could be achiev-

able in Austin from increasing energy retrofits to residential buildings and Chapter 5

provides insights as to the value of the energy retrofits to both the utility and the

homeowner. Chapter 2 also concludes that rebates could be increased and still be at

parity with acquiring more generation capacity. Chapter 4 extends the idea of addi-

tional generation capacity by optimizing the placement of fixed solar PV systems in

response to prices and grid stress versus the total amount of energy produced. Chap-

ter 5 provides optimal sizing and analysis for distributed firm generation that could

also be used to reduce distributed demand by producing energy but also utilizing

waste heat for space conditioning services.

Taken together, this body of work points towards a holistic approach to op-

timizing residential energy use. Intelligent efficiency measures coupled with smart

generation, control, and prediction could produce a more versatile and cleaner future.
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6.6 Future work

Recommended future work includes extended analysis on many of the aspects

of this dissertation. Recent interactions with Austin Energy (AE) have resulted in AE

providing a dataset of over 1,700 homes that have participated in their energy retrofit

programs. These data include basic home characteristics, what retrofits occurred and

when, and at least a year of daily energy use data before and after the retrofit. Costs,

including total retrofit costs, rebate cost, and total costs paid by homeowners are

also included. Using techniques from Chapter 2, 5 and Appendix A these data could

be used to better predict the effect of energy efficiency retrofits on energy use and

compare the parity of rebates per reduction in energy use to acquisitions on wholesale

markets. These data will also allow for the comparisons of engineering calculations

of energy use reductions to actual reductions for an assessment of rebound effects.

In the future, a set of 12,000 energy audits recently supplied by AE for the

purpose of increasing the effectiveness of the audits to spur investment in energy

efficiency retrofits could be analyzed. Currently, less than 10% of persons who receive

these audits act on the recommendations. Using the lessons learned in Chapter 2, 3, 5,

and Appendix A, building energy models could be built (directed by results from the

above analysis) that will enable an energy retrofit optimization for individual homes

and recommend retrofits that will reduce overall energy costs. The percentage of

households that act on the recommendations could then be tested against the base of

10%. Before and after energy use data could be compared for feedback to the ability

of the models to make recommendations.

Also, analysis from Chapter 4 could be extended to consider the ability of var-

ious solar placements and other renewable energy systems geographically distributed

throughout Texas to offset fossil fuel generation in ERCOT. Optimal solar and wind
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deployments could be then used in unit commitment models of the ERCOT grid

to assess their feasibility and impacts on price, grid stability, carbon emissions, and

water use for electricity production.
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Appendix A

Comparison of Simulated and Measured Energy

Use using Energy Audits

A.1 Introduction

Many different building energy simulation models have been developed over

the last 50 years to help users predict specific building performance characteris-

tics [146]. Recently, residential energy use modeling has become popular to provide

homeowners feedback about their homes energy performance [147]. One platform

for building energy simulation, EnergyPlus was developed by the US Department of

Energy (DOE) and was released in 2001, with a focus on commercial buildings. Re-

cently, a residential front-end to EnergyPlus, BEopt, was developed by the National

Renewable Energy Laboratory to provide easier and better modeling of residential

homes [148]. However, modeling residential buildings can lead to systematic errors

that need to be understood to evaluate the applicability of the models results in the

real world [147,149–152]. Thus, it is valuable to assess the accuracy of modeling pro-

grams. This work seeks to do that by use of 1) a database of residential home energy

audits, and 2) data from a smart grid demonstration project. Understanding how

these models predict actual energy usage in Austins hot and humid climate under

different design considerations can lead to better simulations and retrofit recommen-

dations.
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A.2 Datasources Used in this Analysis

In this analysis, a sample of 57 single-family homes with energy audits and

metered electricity use data, provided by Pecan Street Inc., a smart grid demonstra-

tion project that is based in Austin, was used to test the accuracy of home energy

profiles generated by the EnergyPlus simulation software [36]. These audits are sim-

ilar to a citywide program, The Energy Conservation Audit and Disclosure (ECAD)

ordinance in Austin, which mandates that an energy audit be performed on a home

before it can be sold [74]. Table A.1 summarizes the key audit data that were used

to build the models in BEopt.

Table A.1: Residential Home Characteristics Utilized for Energy Simulation

Parameter Unit Mean Standard Deviation Median

Year Built – 1965 18.2 1964
Conditioned Area ft2 [m2] 1,780.6 [165.4] 904.9 [84.1] 1,617.5 [150.2]
House Volume ft3 [m3] 15,062.8 [426.3] 8,829.6 [250] 12,960 [367]
Total Window Area ft2 [m2] 218.1 [20.3] 130.2 [12.1] 206.0 [19.1]
Attic R Value hr-ft2-◦F/BTU [RSI] 23.3 [4.1] 10.7 [1.9] 22.5 [4]
Home Duct Leakage % 14.3 9.6 12
Duct R Value hr-ft2-◦F/BTU [RSI] 4.3 [0.76] 1.9 [0.34] 4.0 [0.71]
Conditioner Capacity BTU [kW] 36,766.7 [10.7] 11,492.6 [3.4] 36,000 [10.5]
System Efficiency EER [COP] 10.2 [3] 2.3 [0.67] 10.0 [2.9]
Furnace Capacity BTU [kW] 66,388.9 [19.5] 21,560.3 [6.3] 66,000 [19.3]
Furnace AFUE 80.3 1.7 80
ACH50 – 11.7 5.2 10.8

In addition to the data on residential home characteristics, electricity use data

were retrieved from two sources: 1) Austin Energy and 2) Pecan Street Inc. Austin

Energy provided daily kWh smart meter reads from the homes electricity meter, and

Pecan Street provided energy demand data (1-min) for each home which allowed for

temporal comparisons between modeled and measured values. Finally, demographic

data on the occupants of each of the 57 single-family homes were also available and

were used in the BEopt simulations to adjust the thermostat set points of the air
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conditioning systems in each of the respective models. The BEopt simulations used

for this work do not account for behavioral patterns that might arise due to spe-

cific demographic information such as miscellaneous large loads. This issue will be

discussed further in the results section of this report. Recent upgrades to BEopt

(version 2.1), released after this analysis, accommodate a better characterization of

homeowner behavior but were not considered in this analysis.

A.3 Methods

A.3.1 Construction of the BEopt models.

In this analysis, 4 different scenarios, utilizing 57 home energy models, were

constructed. The main performance criterion used in this analysis is a comparison

of the models predicted yearly electricity use to measured utility and smart metered

electricity data. The process for developing the 57 home models for the four scenarios

is shown in Figure A.1. The home models were constructed using BEopt, a graphic

user interface that provides functionality to build a residential homes geometry and

indicate specific features of each individual home (e.g. home insulation values, duct

leakage, AC efficiency, etc). The BEopt software can use either the DOE2/TRNSYS

or the EnergyPlus simulation engine, and for this analysis, we utilized the Energy-

Plus engine because it includes more flexibility in simulations. Furthermore, BEopt

contains three main interface screens to enter information that will be used by the sim-

ulation engine to calculate a homes energy profile: the geometry screen, the options

screen (insulation levels, window types, etc.), and the site screen (location, weather

files, utility rate structures, etc.).

Information on the specific functionality for each screen can be found in prior

literature [148]. The BEopt default values were used in cases where the energy audit

did not provide specific details of the building (e.g. wall insulation, miscellaneous
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Figure A.1: Flowchart for creating and analyzing the 57 residential homes using
BEopt and EnergyPlus.

electric load, floor insulation, refrigerator, cooking range, dishwasher, and lighting

information). The data that were updated due to availability of audit data were

building orientation, neighbor spacing, exterior finish, unfinished attic type and insu-

lation, roof material, radiant barrier, window areas, window type, home air leakage,

clothes dryer and water heater fuel, central AC and furnace efficiency and size, duct

insulation, and duct leakage.

In part of our analysis, we compare the outputs of models run with TMY3

weather data along with real measured weather data for Austin in 2011, a partic-

ularly hot year for Austin. The 2011 weather file was created by modifying the

TMY3 weather file used by BEopt for energy simulation. All fields for which local,

temporally-resolved weather data, including temperature, humidity, wind speed, wind

direction, etc., were available were modified. However, solar radiation data for 2011

were not available, so the TMY values were used instead.

137



A.3.2 Scenarios Considered for Analysis

In total, four different model scenarios (Figure A.1) were developed in order to

compare the 57 homes in different situations to monitor the effect of certain changes

on the output of the EnergyPlus simulation. The first scenario involved the utilization

of a TMY3 weather file and the second scenario involved the utilization of an Austin

2011 weather file. No home properties were changed between these two scenarios. The

third scenario involved the application of thermostat set-point information that was

obtained from the surveys given out to the homeowners. This scenario was developed

to observe the effect of thermostat behavior on the models overall performance. The

fourth scenario simplified the geometry of the homes to test the effect of geometry

on the home electricity use. In total, nine generalized geometries existed before mod-

ification for the 57 modeled homes. These geometries are shown in Figure A.2. To

determine the extent to which complicated geometries influence electricity consump-

tion, each complex home geometry was simplified to geometry A. For comparison

purposes, special attention was given to ensure that the percent change of the new

square footage to the square footage of the original model remained within 1%.

Figure A.2: Depiction of the main floor geometries used to estimate energy consump-
tion of the residential homes.

To observe the effect of the different scenarios, the model output was compared
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to actual electricity use data (daily kWh reads from smart meters). First, electricity

use measured by the local utility was compared to simulated electricity consumption

from the model over an entire year. Error was calculated for each individual BEopt

model by Equation A.1:

Percent Error =
EBEopt − EUtility

EUtility

× 100 (A.1)

where Percent Error is the percent difference between the BEopt-modeled and

utility-measured consumption data, EBEopt is the electricity consumption predicted

by the BEopt model for one home (kWh), and EUtility is the electricity consumption

provided by Austin Energy, the local utility company (kWh). To compute aggregate

BEopt model error for the entire group of 57 homes, each model’s electricity consump-

tion in kWh over the entire year was summed and compared with the summation of

each individual homes utility data in kWh over the entire year via Equation A.2:

Aggregated Percent Error =

∑
EBEopt −

∑
EUtility∑

EUtility

× 100 (A.2)

where Aggregated Percent Error is the error when all 57 homes model values are

summed and compared with the sum of the utility data for the 57 homes.

Finally, hourly temporal profiles produced by the BEopt model were compared

with hourly electricity use data to determine whether certain time periods throughout

the day or seasons throughout the year affected the performance of the BEopt model.

To generate the temporal profiles in BEopt, modeled electricity demand data for

August 30th 2011 were averaged for 5 modeled homes. This modeled average daily

profile was compared to an average profile generated from the same homes actual

usage on August 30th 2013. These days were compared because the temperature
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data for August 30th 2011 was similar to temperature data for August 30th 2013 (the

high-fidelity data were only available for 2013). The same procedure was followed to

produce a winter temporal profile comparison.

A.4 Results

During the construction of the models, the pool of available homes for each

scenario changed due to availability of data. Fifteen homes did not have thermostat

set-point data, and therefore, only 42 homes of the available pool of 57 homes were

modified with temperature set-back information for scenario 3. Furthermore, 12 of

the 57 homes were initially modeled with a simplified geometry, and therefore, only

45 homes of the available pool of 57 homes could be analyzed for scenario 4.

A.4.1 BEopt Simulation Results

Figure A.3 presents the histograms of the 57 individual homes percent error

values for scenarios 1, 2 and 3. Scenario 4 was not included in this analysis since it

was not being compared to measured electricity data but rather to its deviation from

an original model due to a modification of geometry parameters. The average percent

error for the individual homes was 6.78% (s.d. 37%), 22.3% (s.d. 42%), and 19.1%

(s.d. 36%) for scenario 1, 2, and 3 respectively. While a decrease from scenario 2 to 3

is expected due to the improved data quality with temperature set-back information,

the increase from scenario 1 to 2 is unexpected. We hypothesize that the BEopt

model tends to over predict energy usage. For this reason, when the 2011 weather

file was used for Austin, the model increased its over-prediction because 2011 was a

much hotter year than the average TMY3 data.

To explore the hypothesis that BEopt over predicts electricity consumption for
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Figure A.3: Histograms of Percent Errors for scenarios 1–3 of model construction
showing changes in predictability of model with TMY3 weather data for Austin (Sce-
nario 1), Austin 2011 weather data (Scenario 2), and Austin 2011 weather data in-
cluding temperature set-back data for 42 homes (Scenario 3) with one outlier (the
same home) removed for each scenario for clarity.

certain homes, we looked at Energy Information Agency (EIA) data on residential

homes energy consumption normalized over square footage. The EIA data indicate

that the average value is 12.9 kWh/ft2/year for Texas [6]. However, a number of the

homes modeled in this study exhibited much smaller values for their site energy con-

sumption per square foot with an average value of 6.85 kWh/ft2/year. This analysis

might suggest either that some of the utility data may be missing some values, the

homes are more efficient than the average Texas home, or that BEopt has difficulty

modeling homes that consume less energy on average per square foot. For example,

31 homes had average utility consumption values below 7 kWh/ft2, and when these

homes are removed from the calculation, the percent error for each individual home

drops significantly to -16.1% (s.d. 22%), -3.7% (s.d. 24%), and -2.6% (s.d. 23%)

for scenarios 1, 2, and 3 respectively. These results follow the expected progression

from scenario 1-3 as data quality improved, and this analysis is graphically depicted

in Figure A.4.

However, analysis involving simple percent error calculations on individual

homes might unjustifiably put more weight on the percent errors of smaller homes

that consume less electricity compared to the aggregate electricity consumption of
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Figure A.4: Graph comparing percent errors for scenarios 1-3 to their energy con-
sumption per square foot showing that the BEopt models perform worse over certain
bounds (below 5 kWh/ft2/year and above 10 kWh/ft2/year) and that in general per-
cent error has an inverse relationship with energy consumed per ft2.
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the 57 homes. For this reason, to assess the BEopts ability to predict electricity

consumption in a community, an aggregated percent error for the 57 homes was

calculated using Equation 2 that is explained above. This type of aggregated error

is an appropriate tool to use for studies where modeled communities are used for

analysis rather than individual homes [153]. For the 57 homes, the aggregate errors

were -11.0%, 2.6%, and 1.7% for scenario 1, 2 and 3, respectively. As the input data

quality increased from scenarios 1 to 3 so did the models performance. Including the

accurate weather file in scenario 2 led to overall improvements in aggregate model

performance and including behavioral data in scenario 3 led to further improvements

in model performance, though smaller relative to the improvement from scenario 1

to 2. These results are summarized in Table A.2. Further improvements could most

likely be made by more information about the behavioral patterns of homeowners.

The effect of the lack of behavioral data on BEopt model performance is best observed

by analysis of the temporal consumption profiles in the next section.

Table A.2: Summary of Results from Scenarios 1 – 4

Calculations Scenario 1 Scenario 2 Scenario 3 Scenario 4

Percent Error (%) 6.78 22.29 19.07 –
w/ homes > 5 kWh/ft2 –4.81 9.07 8.18 –
w/ homes > 7 kWh/ft2 –16.17 -3.69 –2.6 –
Absolute Percent Error (%) 28.24 34.39 30.24 1.22
w/ homes > 5 kWh/ft2 21.77 24 22 –
w/ homes > 7 kWh/ft2 21.79 18.45 18.11 –
Aggregated Percent Error (%) –11 2.56 1.74 –

A.4.2 Temporal Electricity Profile Comparison: Modeled vs. Measured

In this analysis, hourly consumption data were taken from the BEopt output

file and compared with hourly data taken from a smart grid demonstration project in

143



Austin, TX. Figure A.5 shows the differences between the metered data that and the

BEopt generated daily consumption profile for the summer and winter seasons. In

the summer month (Figure A.5, left side), this analysis shows that the BEopt model

over predicted average electricity demand fairly significantly between 6 AM and 2 PM

for these five homes. Even though BEopt was running with the thermostat set-point

data provided by the surveys, it did not reduce the energy demand enough during

the peak time in the middle of the day. There might be a number of reasons for this,

but potentially, homeowners did not provide accurate temperature set-back data,

which limited the prediction ability of the BEopt model in this analysis. Also, other

behavioral patterns, such as times of leaving/returning home, that were not reported

by homeowners could be driving the homes’ lower energy consumption compared to

the model. It also could be the case that the model has trouble simulating home

performance in a hot and humid climate such as that of Austin.

Figure A.5: Temporal graph comparing hourly consumption patterns between simula-
tion and measurement for an August day and a February day showing that the model
is over predicting electricity use most of the day in the summer time and slightly
over predicts electricity consumption most of the day in the winter but follows trends
relatively well.

The winter graph shows that the BEopt model did a fairly good job following

the consumption profile for the 5 smart metered homes selected for analysis. While it

does appear that the model over predicts consumption between 6 AM and 6 PM, the
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overall trends aligns quite well. Nevertheless, spikes and offsets are still present and

suggest that BEopt will continue to have difficulty predicting temporal profiles due to

the fact that behavior becomes such an important factor once the model is analyzed

at the daily time scale. For this reason, maybe these models, in their current form,

ought to be used sparingly to predict daily electricity demand profiles for individual

homes.

A.4.3 BEopt Geometry Modification Analysis.

Scenario 4 involved the modification of home geometry of the scenario 2 mod-

els in order to determine whether home geometry characteristics drive energy con-

sumption profiles in BEopt. Overall, the analysis showed that a simplified geometry

does not change model performance significantly. In total, 32 home geometries were

changed from a complex geometry (B-I in Figure A.3) to the A geometry type, and 13

of the homes were modified from a combination of complex two-storied construction

to a two storied construction with different A geometry shapes placed on top of each

other. Twelve of the models already were constructed with the A geometry shape and

therefore were excluded from this portion of the analysis. Overall, for the one-story

changes, the homes only deviated by 1.31% from the original model values, and the

two story changes only deviated by 1.07% from their original models. Furthermore,

since square footage could not be maintained precisely when the simplified geometries

were created, some of these differences could be explained simply by the change in

ft2. On average, the one-storied models in scenario 4 changed by less than 5 ft2,

and the two-storied models changed by 7.4 ft2. Results indicate that even without

accurate geometry information for a real home, the BEopt simulation can produce

plausible results. This result might become more important if home modeling is au-

tomated and extended to a large number of homes and complex home geometries

145



need to be simplified for the automated process. Confirming that model output is

not affected significantly should allow energy modelers to simplify their geometries or

select geometries from a pre-defined list.

A.5 Conclusions

Given the integration and close comparison of two unique data sets including

information about single-family homes and their hourly and yearly consumption data,

we were able to quantify the performance of the BEopt simulation software under

various conditions. While model results for an individual home can have a wide

range of significant absolute error values, when considered in aggregate, the model

performed much better. Furthermore, the analysis indicates that models of small

homes or homes that have low values of energy consumed per square foot, do not

perform as well, especially for homes well below the EIA average. Comparisons of

temporal patterns of energy consumption showed that the model might be able to

predict temporal energy use trends in the summer and winter times, though it has

difficulty predicting exact values at specific times of the day. Finally, we determined

that geometry adjustments do not significantly contribute ( 1%) to a homes overall

energy results, at least within the BEopt model.
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