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The evolution of modern applications and storage technologies has created

new challenges for file systems. Applications store persistent state across multiple

files and storage abstractions which must maintain crash consistency. New storage

devices such as NAND flash memory has lower IO latency and higher bandwidth

compared to spinning disks, especially for random memory accesses. Non-volatile

memory (NVM) further decreases read and write latency for persistent storage, with

access times on the order of DRAM. Decreased device latencies makes it more im-

portant to eliminate CPU overhead and system call overhead than to reduce accesses

to the storage device.

We first introduce TXFS, a transactional file system that builds general-

purpose transactions upon an existing file system’s atomic-update mechanism such

as journaling. Though prior work has explored a number of transactional file sys-

tems, TXFS has a unique set of properties: a simple API, portability across dif-

ferent hardware, high performance, low complexity (by building on the file-system

journal), and full ACID transactions. We port SQLite, OpenLDAP, and Git to use
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TXFS, and experimentally show that TXFS provides strong crash consistency while

providing equal or better performance.

We then introduce NVMKVFS, a user-space file-system prototype focusing

on metadata operations. We examine ext4-dax and NOVA scalability, finding nu-

merous bottlenecks in the VFS. NVM’s low memory access latency makes it more

important to eliminate CPU overhead than to reduce accesses to the NVM device,

so we eliminate the VFS caches while maintaining performance on standard work-

loads and increasing scalability. We propose a file system based on two global

indexes on NVM, one for metadata and the other for data. Because of NVM’s

asymmetric bandwidth on read and write accesses, We focus on optimizing read-

heavy workloads and metadata-heavy workloads in which write sizes are small.
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Chapter 1

Introduction

File systems provide abstractions for data stored on physical media; main-

taining metadata structures and providing methods to operate on the data and meta-

data. File systems must provide certain guarantees to applications, including crash

consistency. Crash consistency requires a file system to recover to a consistent state

after a crash. Consistency can be a complex invariant that must hold across differ-

ent data structures, and sometimes across different files. For example, file creation

requires consistency between the metadata of the created file and the data blocks of

its parent directory that link the newly created file into the file system’s name space.

The evolution of application requirements and hardware capabilities intro-

duces new challenges as well as optimization opportunities for the problem of file-

system crash-consistency. Many application-level storage systems, including em-

bedded databases and key-value stores, are built on top of file systems. Regardless

of the crash consistency provided by the file system, they are required to provide

application-specific guarantees, such as atomicity and isolation. Many applications

store data across multiple abstractions. For example, Android’s default mail ap-

plication uses both file system APIs and queries to a SQLite [SQL] database. It

implements an ad hoc application-level protocol to maintain consistency across the

files that store an email’s attachments and the SQLite database, which stores meta-
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data about the attachments.

Low-latency storage devices such as non-volatile memory (NVM) intro-

duce new challenges to current file system designs, while bringing opportunities

for the file systems to optimize metadata indexing and multicore scalability. We

run experiments on existing file systems with NVM support, including ext4 and

NOVA [XS16], and expose several scalability bottlenecks in metadata indexing due

to locks in the Virtual File System (VFS). The VFS provides useful services like

system call abstraction, metadata caches and concurrency control, but for NVM de-

vices, the VFS increases the metadata lookup latency and decreases the scalability

of the file system. The VFS caches can decrease the overhead of slow IO devices,

like block-oriented hard disk drives (HDDs) and solid-state drives (SSDs). But

for modern, low-latency, byte-addressable persistent memory, the CPU overhead

incurred by the VFS can be more important than the device latencies.

The rest of this section introduces two works. TXFS is a transactional file

system built on top of the crash consistency mechanisms of existing file systems.

It provides user applications with stronger crash semantics, better performance and

easy-to-use APIs. NVMKVFS is a user-space file system prototype for demonstrat-

ing a scalable data structure design whose goal is to improve file system metadata

performance on persistent memory devices.

1.1 From crash consistency to transactions

Modern applications store persistent state across multiple files [PCA+14],

sometimes splitting their state among embedded databases, key-value stores, and

2



file systems [SBL+14]. Such applications need to ensure that their data is not cor-

rupted or lost in the event of a crash. Unfortunately, existing techniques for crash

consistency result in complex protocols and subtle bugs [PCA+14]. For example,

Android’s default mail application stores messages in a SQLite database and attach-

ments as files. The database also keeps pointers to the attachment files. Without

crash consistency protocols, a crash between file and database updates can lead to

a dangling pointer where the file name of an attachment is valid, but the file itself is

missing. To resolve the issue, the mail application uses a set of carefully arranged

fsync() calls, leading to low performance and an error-prone implementation.

Transactions present an intuitive way to atomically update persistent state [Gra81].

Unfortunately, building transactional systems is complex and error-prone. The first

part of this proposal introduces a novel approach to building a transactional file

system. We take advantage of a mature, well-tested piece of functionality in the op-

erating system: the file-system journal, which is used to ensure atomic updates to

the internal state of the file system. We use the atomicity and durability provided by

journal transactions and leverage it to build user-space ACID transactions. Our ap-

proach greatly reduces the development effort and complexity involved in building

a transactional file system.

We propose TXFS: a transactional file system that builds on the ext4 file

system’s journaling mechanism. We designed TXFS to be practical to implement

and to use. TXFS has a unique set of properties: it has a small implementa-

tion (5,200 LOC) by building on the journal (for example, TXFS has 25% the

LOC of the TxOS transactional operating system [PHR+09]); it provides high

3



performance unlike various solutions which built a transactional file system us-

ing a user-space database [Geh94, Ols93, MTV02, Wri07]; it has a simple API

(just wrap code in fs tx begin()and fs tx commit()) compared to solu-

tions like Valor [SGC+09] or TxF [Rus05] which require multiple system calls per

transaction and can require the developer to understand implementation details like

logging; it provides all ACID guarantees unlike solutions such as CFS [Min15] and

AdvFS [VMP+15] which only offer some of the guarantees; it provides transactions

at the file level instead of at the block level unlike Isotope [Shi16], making several

optimizations easier to implement; finally, TXFS does not depend upon specific

properties of the underlying storage unlike solutions such as MARS [Cob13] and

TxFlash [PRZ08]. We test TXFS on SSDs and show performance boost of 1.6×

on the SQLite TPC-C benchmark, and up to 12.5× on the LDIF backend of the

Berkeley DB (BDB) with little porting effort.

1.2 Fast metadata indexes for NVM file system

Low-latency storage devices such as non-volatile memory (NVM) challenge

current file system designs, requiring a rethink of metadata indexing and multicore

scalability. File systems in the Linux kernel rely on the VFS layer for caching and

concurrency control. Caching in the VFS is helpful for slow storage devices. But a

recent study shows that it is less efficient on persistent memory (PMEM) with low

latency, high throughput and byte-addressability[WJX18, VNP+14]. On the other

hand, the concurrency control mechanism in the VFS layer, including locks such

as the global hash lock and inode locks, limits file system scalability when run-
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ning metadata-heavy workloads. NVM-optimized file systems such as Ext4-dax,

XFS-dax and NOVA rely on the VFS layer for caching and concurrency control.

As a result, their scalability is bottlenecked by VFS synchronization. Other re-

search [WJX18, VNP+14] shows that the performance overhead in the VFS layer

is more significant on persistent memory than on traditional block-based devices.

Lower device latency removes the bottleneck caused by IO overhead. CPU over-

head, such as indexing and synchronization, has become the new bottleneck.

We design a set of scalable data structures as key components for future

NVM file system design, and build NVMKVFS, a user-space file system prototype

that supports POSIX APIs, to demonstrate the throughput and scalability improve-

ment brought by the data structures. We prioritize scalable multicore performance

in the prototype file system design. The low memory access latency of persis-

tent memory makes it possible to eliminate the VFS caches while maintaining per-

formance. We build NVMKVFS on top of two global indexes on NVM, one for

metadata and the other for data indexing. By implementing file system opera-

tions with the APIs provided by the underlying persistent and highly parallel in-

dexes, NVMKVFS maximizes concurrency by removing the scalability bottlenecks

caused by locking in the VFS layer. Because NVM’s read bandwidth can be nearly

two times higher than its write bandwidth[IYZ+19], we focus on optimizing read-

heavy workloads and metadata-heavy workloads in which write sizes are small. We

test NVMKVFS on both Intel Optane DC persistent memory and DRAM-emulated

PMEM. On PMEM hardware, when running file creation workload in a shared di-

rectory, NVMKVFS gets a 7.45× speedup over 28 cores compared to ext4-dax’s

5



1.23× speedup.
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Chapter 2

Background and motivation

Crash consistency is an important guarantee when people design storage

systems. A system is defined as crash-consistent if it can recover to a consistent

state after a system crash or a power failure. File systems maintain metadata for

the information on the whole file system, extra information on files and structural

information such as data page indexes. In order to maintain crash consistency, such

as the integrity and consistency of the superblocks, inode and data block allocation

bitmaps, inodes and data page indexing structures, file systems use mechanisms

such as logging and copy-on-write (COW). User space applications built on file

systems further introduce needs for the crash consistency across persistent state,

sometimes in different files or even different storage abstractions.

Persistent memory is a new type of storage hardware that brings novel chal-

lenge and opportunities to novel file system design. It provides data persistence

and affordable large capacity with throughput and latency on the level of DRAM.

To take full advantage of the hardware’s performance, NVM file systems need to

factor PMEM’s memory characteristics and byte-addressability into their design.

This chapter discusses how modern applications provide crash consistency,

how file systems index the metadata in a crash-consistent way and how the emer-

gence of the persistent memory is potentially affecting modern file system design.
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2.1 Application-level crash consistency

We first describe the protocols used by current applications to update state in

a crash-consistent manner. We then present a study of different applications and the

challenges they face in maintaining crash consistency across persistent state stored

in different abstractions. We describe the file-system optimizations enabled by

transactions and finally summarize why we think transactional file systems should

be revisited.

2.1.1 How applications update state today

Given that applications today do not have access to transactions, how do

they consistently update state to multiple storage locations? Even if the system

crashes or power fails, applications need to maintain invariants across state in dif-

ferent files (e.g., an image file should match the thumbnail in a picture gallery).

Applications achieve this by using ad hoc protocols that are complex and error-

prone [PCA+14].

In this section, we show how difficult it is to implement seemingly simple

protocols for consistent updates to storage. There are many details that are often

overlooked, like the persistence of directory contents. These protocols are complex,

error prone, and inefficient. With current storage technologies, these protocols must

sacrifice performance to be correct because there is no efficient way to order storage

updates.

Currently, applications use the fsync() system call to order updates to

storage [CPADAD13]; since fsync() forces durability of data, the latency of

8



open(/dir/tmp) 
write(/dir/tmp) 
fsync(/dir/tmp) 
fsync(/dir) 
rename(/dir/tmp, /dir/orig) 
fsync(/dir/)

(a) Atomic Update via Rename

open(/dir/log) 
write(/dir/log) 
fsync(/dir/log) 
fsync(/dir/) 
write(/dir/orig) 
fsync(/dir/orig) 
unlink(/dir/log) 
fsync(/dir/)

(b) Atomic Update via Logging

// Write attachment 
open(/dir/attachment) 
write(/dir/attachment) 
fsync(/dir/attachment) 
fsync(/dir/) 

// Writing SQLite Database 
open(/dir/journal)     
write(/dir/journal) 
fsync(/dir/journal) 
fsync(/dir/) 
write(/dir/db) 
fsync(/dir/db) 
unlink(/dir/journal) 
fsync(/dir/)

(c) Atomically adding a email  
message with attachments  

in Android Mail

Figure 2.1: Different protocols used by applications to make consistent updates to
persistent data.

a fsync() call varies from a few milliseconds to several seconds. As a result,

applications do not call fsync() at all the places in the update protocol where it

is necessary, leading to severe data loss and corruption bugs [PCA+14].

We now describe two common techniques used by applications to consis-

tently update stable storage. Figure 2.1 illustrates these protocols.

Atomic rename. Protocol (a) shows how a file can be updated via atomic rename.

The atomic rename approach is widely used by editors, such as Emacs and Vim,

and by GNOME applications that need to atomically update dot configuration files.
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The application writes new data to a temporary file, persists it with an fsync()

call, updates the parent directory with another fsync() call, and then renames the

temporary file over the original file, effectively causing the directory entry of the

original file to point to the temporary file instead. The old contents of the original

file are unlinked and deleted. Finally, to ensure that the temporary file has been

unlinked properly, the application calls fsync() on the parent directory.

Logging. Protocol (b) shows another popular technique for atomic updates, log-

ging [Hag87] (either write-ahead-logging or undo logging). The log file is written

with new contents, and both the log file and the parent directory (with the new

pointer to log file) are persisted. The application then updates the original file and

persists the original file; the parent directory does not change during this step. Fi-

nally, the log is unlinked, and the parent directory is persisted.

The situation becomes more complex when applications store state across

multiple files. Protocol (c) illustrates how the Android Mail application adds a new

email with an attachment. The attachment is stored on the file system, while the

email message (along with metadata) is stored in the database (which for SQLite,

also resides on the file system). Since the database has a pointer to the attachment

(i.e., a file name), the attachment must be persisted first. Persisting the attachment

requires two fsync() calls (to the file and its containing directory) [PCA+14, fsy].

SQLite’s most performant mode uses write-ahead-logging to atomically update the

database. It then follows a protocol similar to Protocol (b).

Removing fsync() calls in any of the presented protocols will lead to

data loss or corruption. For instance, in Protocol (b), if the parent directory is not

10



persisted with an fsync() call, the following scenario could occur: the applica-

tion writes the log file, and then starts overwriting the original file in place. The

system crashes at this point. Upon reboot, the log file does not exist, since the

directory entry pointing to the log file was not persisted. Thus, the application file

has been irreversibly partially edited, and cannot be restored to a consistent version.

Many application developers avoid fsync() calls due to the resulting decrease in

performance, leading to severe bugs that cause loss of data.

Safe update protocols for stable storage are complex and low performance

(e.g., Android Mail uses six fsync() calls to persist a single email with an at-

tachment). System support for transactions will provide high performance for these

applications.

Double journaling. Figure 2.2 presents an example of how application ad hoc

protocols reduce performance. SQLite uses write-ahead logging to provide atomic

updates. To implement write-ahead logging, SQLite needs two synchronous writes:

one to write data to the log and one to write data in-place to the file1. SQLite runs

on top of a file system such as ext4, which also implements write-ahead logging for

metadata updates. As a result, updates to the SQLite write-ahead log are journaled

by the file system (metadata in ordered mode, both data and metadata in journal

mode). This leads to extra writes and cache flushes to storage. This is termed the

double journaling problem: maintaining an application-level journal suffers extra

writes to the file system’s journal. If the transaction is implemented inside the file

1With batched checkpointing, the second write can be done in the background
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Figure 2.2: SQLite’s double-journaling effect on ext4 with ordered journal mode.
In ordered mode, data writes precede metadata writes. Block writes happen in the
followed sequence. (1) Data write in write ahead log (WAL); (2) Metadata jour-
nal for the WAL write; (3) Data write in database file; (4) Metadata journal for the
database write; (5) Asynchronous write back for the metadata for WAL; (6) Asyn-
chronous write back for the metadata for database file. Data that resides in memory
when asynchronously written back from the journal is written from memory (not
read from the journal).

system, only two synchronous writes are required.

2.1.2 Application case studies

We present four examples of applications that struggle with obtaining crash

consistency using primitives available today. Several applications store data across

the file system, key-value stores, and embedded databases such as SQLite [SBL+14].

While all of this data ultimately resides in the file system, their APIs and perfor-

mance constraints are different and consistently updating state across these systems
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is complex and error-prone.

Android mail. Android’s default mail application stores mail messages using the

SQLite embedded database [SQL]. Mail attachments are stored separately as a file,

and the database stores a pointer to the file. The user requires both the file and

the database to be updated atomically; SQLite only ensures the database is updated

correctly. For example, a crash could leave the database consistent, but with a dan-

gling pointer to a missing attachment file. The mail application handles this by first

persisting the attachment and the directory file which contains the attachment (via

fsync()), and then persisting a database transaction. A transaction that spans

both the database and the file system has a single commit point, simplifying seman-

tics and possibly simplifying recovery. A single transaction would also eliminate

the fsync() for the attachment, which can increase performance.

Mobile Photosharing Applications. Android Gallery stores metadata about photos

(including a thumbnail) in a SQLite database while storing the files themselves

directly on the file system. Thus a crash could leave the database updated with file

information and a thumbnail (so it looks as if the file is there), but when the file is

accessed, the user gets an error.

Apple iWork and iLife. Analysis of the storage behavior of Apple’s home-user,

desktop applications [HDV+12] finds that applications use a combination of the

file system, key-value stores, and SQLite to store data. iTunes uses SQLite to

store metadata similar to the Android Mail application. When you download a

new song via iTunes, the sound file is transferred and the database updated with the
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song’s metadata. Apple’s Pages application uses a combination of SQLite and key-

value stores for user preferences and other metadata (two SQLite databases and 128

.plist key-value store files). Similar to Android Mail, Apple uses fsync() to

order updates correctly.

Browsers. Mozilla Firefox stores user data in multiple SQLite databases. For

example, addons, cookies, and download history are each stored in their separate

SQLite database. Since downloads and other files are stored on the file system, a

crash could leave a database with a dangling pointer to a missing file.

Synchronization services. Dropbox, Seafile, and Box allow users to keep their

files synchronized across desktop and mobile systems and the cloud. The desktop

clients for both services use SQLite to store file metadata such as when the file was

last modified and synchronized. The desktop client of Box uses a key-value store

in addition to SQLite and the file system. When a file is added to a synchronized

folder, all these storage abstractions need to be updated atomically.

Version control systems. Git and Mercurial are widely-used version control sys-

tems. The git commit command requires two file-system operations to be atomic:

a file append (logs/HEAD) and a file rename (to a lock file). Failure to achieve

atomicity results in data loss and a corrupted repository [PCA+14]. Mercurial uses a

combination of different files (journal, filelog, manifest) to consistently

update state. Mercurial’s commit requires a long sequence of file-system opera-

tions including file creations, appends, and renames be atomic; if not, the repository

is corrupted [PCA+14].
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For these applications, transactional support would lead directly to more

understandable and more efficient idioms. It is difficult for a user-level program

to provide crash-consistent transactional updates using the POSIX file-system in-

terface. A transactional file-system interface will also enable high-performance

idioms like editors grouping updates into transactions rather than the less efficient

process they currently use of making temporary file copies that are committed via

rename.

Note that applications techniques like atomic rename over temporary files

do achieve crash consistency; however, a crash may lead to temporary files which

need to be cleaned up. After a crash, the application runs a recovery procedure and

returns to a consistent state. Often, the “recovery procedure” forces a human user

to look for and manually delete stale files. Transactional file systems do not pro-

vide new crash-consistency guarantees for these applications; rather, they remove

the burden of recovery and cleanup, simplifying the application and eliminating

bugs [PCA+14].

2.2 File system indexes

File systems need to maintain indexes for metadata and data in order to

search for the target data structures for the system calls to work on. The metadata

indexes help look up metadata structures such as inodes and directory entries (den-

tries). The data indexes help look up file data blocks. This dissertation focuses on

improving the metadata indexes. In this section, we introduce the implementation

of metadata and data indexes in existing file systems, and discuss why the Virtual
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File System (VFS) layer can become a performance and scalability bottleneck for

metadata operations.

2.2.1 File system metadata indexes

File systems rely on multiple data structures for metadata maintenance and

lookup. All file systems in the linux kernel are built on top of the VFS. The VFS

layer defines the system call interfaces to the user space, and works as an abstract

layer on top of the underlying file systems. It supports file table management, which

tracks open files per kernel thread, and the files’ read/write offsets. It also provides

caching and concurrency control, enabling parallel accesses to the shared resources

in a file system. VFS maintains DRAM caches for its internal data structures, in-

cluding inodes, dentries, buffer heads and data pages. The VFS layer helps system

calls look up file inodes with the following steps.

(1) The VFS pathname lookup starts by searching the VFS dentry cache (dcache)

for the file dentry. It decomposes the file path into directories and file name

components, and searches the dentries component by component, starting

from the root directory if provided with an absolute path; or from the current

directory ‘.’ or the parent directory ‘..’ if provided with a relative path.

This step is called a path walk. If the target dentry is found after the path

walk, and that dentry points to an inode, the dentry is called a positive dentry

and the lookup procedure returns;

(2) If the dentry retrieved from the previous step keeps a NULL pointer to the

associated inode, it is called a negative dentry. This leads to step (4);
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(3) If the target dentry does not exist in the dentry cache, a new dentry is allocated

for the file. The dentry at this point is a negative dentry;

(4) The VFS searches its inode cache to check if the target file inode is already

cached. If it is, the inode is associated with the dentry for the convenience

of later pathname lookup. The dentry turns into a positive dentry and gets

returned. Otherwise, the inode is not cached and it goes to step (5);

(5) The VFS queries the underlying concrete file system to lookup the inode from

storage devices. If the inode exists on disk, the file system loads the inode

and caches it in the DRAM inode cache. The inode is then pointed by the

dentry and the dentry becomes positive. Otherwise, if the file inode does not

exist in the on-disk file system, the file system will try to allocate a new file

inode. This leads to the next step;

(6) When creating the new file, the VFS layer first checks the system call flags. If

the O CREAT flag is not provided, the system call is returned with a -ENOENT

error code. Otherwise, it requires the underlying file system to create the in-

ode on disk. The new inode is then cached in the inode cache and pointed by

the file’s dentry. So the dentry becomes positive and can be utilized for future

path lookups.

There are several performance and scalability bottlenecks caused by the

metadata lookup and concurrency control mechanisms in the VFS. The VFS layer

uses a dentry hash table and an inode hash table to index the two caches. A global
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Figure 2.3: Ext4-dax and NOVA file creation scalability with FxMark MWCL
workload. Multiple threads create files in their private directories.

inode hash lock is used to protect the inode hash table and it serializes each inode

insertion and deletion. During a file creation, the file’s directory entry needs to be

inserted into its parent directory’s dentry data page. This operation requires it to

hold the reader-writer lock of the dentry data page. The lock further decreases the

file system metadata scalability in related workloads.

We measured the scalability of metadata-related file system calls for both

Ext4-dax and NOVA on a machine with 76GB DRAM, 2934 MT/s and an AMD

Ryzen Threadripper 299WX processor, with 32 physical cores, no hyperthreading.

File create, unlink and rename operations in a shared directory only scale up to 2
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Figure 2.4: Ext4-dax and NOVA file creation scalability with FxMark MWCM
workload. Threads create files in a shared directory.

cores. Operation throughput starts dropping with ≥2 cores.

We then port FxMark [MKMK16] to run tests on Ext4-dax and NOVA. Fx-

Mark’s MWCL workload allows each thread to create files in a private directory.

With MWCL, Ext4-dax scales up to 4 cores and NOVA scales up to 20 cores.

FxMark’s MWCM workload creates files in a shared directory. With MWCM,

Ext4-dax scales up to 2 cores and NOVA scales to 4 cores. Figure 2.3 shows the

results for the MWCL benchmark while Figure 2.4 shows the results for MWCM.
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2.2.2 File system data indexes

Data indexes help file systems look up data blocks for both directories and

non-directory files. The page cache is a in-DRAM cache for data pages. File sys-

tems built on the page cache rely on the per-file red-black trees to index DRAM-

cached data pages. DAX file systems like ext4-dax, xfs-dax and NOVA bypasses

the page cache. They rely on the Direct Access (DAX) mechanism supported by

some storage devices to perform reads and writes directly, without creating extra

copies in DRAM.

A file system’s on-disk data indexes depend on the file system specific im-

plementation. For example, ext4 uses per-file extent trees to index on-disk data

blocks. NOVA [XS16] is a log-structured file system with per-inode logs on disk.

Since logs are not efficient data structures for indexing. NOVA maintains in-DRAM

red-black trees for data page indexing.

2.3 Persistent memory

Persistent Memory is a non-volatile storage device. Its performance char-

acteristics lie between DRAM and block devices. Compared to HDDs and NAND

flash devices, PMEM provides orders of magnitude higher bandwidth and lower

latency. It is slower than DRAM, but provides affordable large memory capac-

ity [IYZ+19]. Persistent memory brings new opportunities and challenges to the file

system design. PMEM devices enable byte-addressable memory accesses, which

allows loads and stores with byte-level granularity and eliminates the need for
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DRAM caches that are so helpful for traditional block devices.

While PMEM is high performance, it does have certain performance quirks.

Its bandwidth is asymmetric with respect to access type. The read bandwidth for

NVM can be nearly two times higher than its write bandwidth. We focus on opti-

mizing read-heavy workloads and metadata-heavy workloads in which write sizes

are small because we are primarily interested in multi-core scalability.

Intel Optane DC persistent memory module [Int] is a commercially avail-

able PMEM. It can be installed and configured into two modes, Memory Mode and

App Direct mode. In Memory Mode, the Optane DC PMEM acts as the volatile

main memory, and the DRAM works as an extra layer of the memory cache. In App

Direct mode, the Optane DC PMEM acts as byte-addressable persistent memory,

and can be viewed by applications and the operating system as a direct accessible

storage module. In our case, we configure the Optane DC PMEM module in App

Direct mode.

Research [WJX18, VNP+14] shows that the performance overhead in the

VFS layer becomes more significant when moving from block-based devices to

persistent memory. PMEM’s decreased device latency reduces the IO overhead,

making the CPU overhead a new bottleneck. As a result, our work tries to eliminate

the VFS layer and substitute the metadata indexing with other more scalable data

structures that rely on low-level memory ordering primitives.

Similar to DRAM, the store instructions in PMEM are ordered by the mem-

ory fences in x86 architecture. CLFLUSH, CLFLUSHOPT and CLWB instructions

21



flush a cache line to the persistent memory controller write pending queue (WPQ),

where data is guaranteed to be power-fail safe (called the power-fail safe persistence

domain). Compared to CLFLUSH, CLFLUSHOPT and CLWB are new optimized

cache flushing instructions without serialization. The latter two instructions need

to be serialized by a SFENCE instruction. A CLWB instruction invokes a cache line

write-back. While both CLFLUSHOPT and CLWB followed by a SFENCE flush the

cache line and clear its dirty bit, CLWB does not invalidates the cache line, mak-

ing future accesses more likely to get a hit. Hence, a combination of CLWB and

SFENCE achieves durability with low latency and is used in our proposed system.

2.4 Persistent hash tables

Our system design for file system metadata indexes is based on the P-

CLHT [LMK+19] hash table. P-CLHT is a high performance persistent hash ta-

ble with crash consistency guarantees. It is the persistent version of the Cache

Line Hash Table (CLHT) [DGT15]. CLHT is a DRAM hash table that focuses

on optimizing cache line operations. It allocates data buckets with the size of a

cache line, so that most hash table operations lead to at most one cache line trans-

fer, which is the granularity of the cache-coherence protocols, CLHT implements

lockless searches and lock-protected updates. P-CLHT adds crash consistency to

CLHT by inserting memory fences for ordering and cache line flushes to persist

the store instructions. P-CLHT hash table maintains crash consistency with high

performance by following the followed rules [LMK+19].

(1) Reads are non-blocking;
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(2) Writes can be blocking or non-blocking;

(3) Updates to the hash table are made visible to other threads with a single

hardware-atomic store;

(4) The atomic store is followed by a cache line flush and a memory fence, which

flushes dirty data to PMEM in the same order as the writes to the CPU cache.

P-CLHT’s write operation is synchronized by a per-bin lock. Its read oper-

ations are non-blocking, and are guaranteed to be consistent by snapshot checking.

When a read operation finds a key in the hash table, it first creates a snapshot of

the value before checking the key. If the key matches, it returns the snapshot value.

The write operations also need to insert a MFENCE after writing a value and before

inserting its key. This guarantees the consistency of the read operations. P-CLHT

resizes its hash table when the number buckets exceeds a threshold. The resize op-

eration creates a new hash table with an increased number of buckets, copies all the

buckets to the new hash table and finally performs a atomic pointer swap to switch

to the new table. Resize also holds the per-bin lock. It serializes with write opera-

tions, but can run in parallel with reads, since reads can still work on the old table.

When a writer thread tries to write to a P-CLHT hash table which is under resize,

the writer thread helps the resize procedure before acquiring the writer lock.

P-CLHT hash table serves as a good starting point for the NVMKVFS proto-

typical file system design because of its high throughput, lightweight implementa-

tion and simple crash consistency mechanism.
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Chapter 3

TXFS: Leveraging File-System Crash Consistency to Provide
ACID Transactions

TXFS is a transactional file system built from Linux’s ext4 code base that

uses ext4’s journal to provide user-level transactions. TXFS’s approach is practi-

cal; it tries to provide the greatest performance and scalability benefits to user-level

transactions while minimizing implementation complexity by reusing the file sys-

tem’s journal. In ext4, the journal provides crash recovery, but TXFS extends the

functionality to full ACID semantics.

Many modern applications must store structured data and perform rich,

complex queries on that data. Many of these applications have turned to new ab-

stractions such as embedded databases (e.g., SQLite [SQL]) and key-value stores

(e.g., LevelDB [Goo]) to meet their data processing needs. The traditional file sys-

tem API is not a good fit for these systems, which must resort to complex protocols

that are inefficient and difficult to make correct (see §2.1.1). A transactional file-

system interface makes these applications easier to write and makes them perform

better on today’s and tomorrow’s hardware.

Another emerging feature of modern applications is their need to store data

across different abstractions. For example, the Android Mail client stores email

messages in SQLite, attachments as files, and the backup of mailbox information in
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a key-value store [SBL+14]. For such applications, a single logical update from the

user’s point of view may require writes across different abstractions that all need

to be performed atomically. Accomplishing this with user-level logs results in poor

performance and added complexity (see §2.1.1).

The advantage to building TXFS on the file-system journal is that TXFS

transactions obtain atomicity, consistency, and durability by placing each TXFS

transaction entirely within a single file-system journal transaction, which is applied

atomically to the file system. Using well-tested journal code to obtain ACD re-

duces the implementation complexity of TXFS, while limiting the maximum size

of transactions to the size of the journal.

The main challenge of building TXFS is providing isolation. Isolation for

TXFS transactions requires that in-progress TXFS transactions are not visible to

other processes until the transaction commits. At a high level, TXFS achieves iso-

lation by making private copies of all data that is read or written, and updating

global data during commit. However, the naive implementation of this approach

would be extremely inefficient: global data structures such as bitmaps would cause

conflicts for every transaction, causing high abort rates and excessive transaction

retries. TXFS makes concurrent transactions efficient by collecting logical updates

to global structures, and applying the updates at commit time. TXFS includes a

number of other optimizations such as eager conflict detection that are tailored to

the current implementation of file-system data structures in ext4.

We find that the transactional framework allows us to easily implement a

number of file-system optimizations. For example, one of the core techniques from
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our earlier work, separating ordering from durability [CPADAD13], is easily ac-

complished in TXFS. Similarly, we find TXFS transactions allow us to identify

and eliminate redundant application IO where temporary files or logs are used to

atomically update a file: when the sequence is simply enclosed in a transaction

(and without any other changes), TXFS atomically updates the file (maintaining

functionality) while eliminating the IO to logs or temporary files (provided the tem-

porary files and logs are deleted inside the transaction). As a result, TXFS improves

performance while simultaneously providing better crash-consistency semantics: a

crash does not leave ugly temporary files or logs that need to be cleaned up.

To demonstrate the power and ease of use of TXFS transactions, we mod-

ify SQLite, OpenLDAP and Git to incorporate TXFS transactions. We show that

when using TXFS transactions, SQLite performance on the TPC-C benchmark im-

proves by 1.6× and a micro-benchmark which mimics Android Mail obtains 2.3×

better throughput. By porting OpenLDAP’s LDIF backend to utilize TXFS trans-

actions, OpenLDAP queries obtain crash consistency without losing performance.

The TxFS version of LDIF provides the same guarantees as the Berkeley DB (BDB)

backend, while introducing a performance boost up to 12.5×. Using TXFS trans-

actions greatly simplifies Git’s code while providing crash consistency without per-

formance overhead. Thus, TXFS transactions provide crash consistency, reduce

complexity, and increase performance.

We have made the following contributions.

• We present the design and implementation of TXFS, a transactional file sys-

tem for modern applications built by leveraging the file-system journal (§3.1).

26



We have made TXFS publicly available at https://github.com/ut-osa/

txfs.

• We show that existing file systems optimizations, such as separating ordering

from durability, can be effectively implemented for TXFS transactions (§3.2).

• We show that real applications can be easily modified to use TXFS, resulting

in better crash semantics and significantly increased performance (§3.3).

3.1 TXFS design and implementation

We now present the design and implementation of TXFS. TXFS avoids the

pitfalls of earlier transactional file systems (§5): it has a simple API; provides com-

plete ACID guarantees; does not depend on specific hardware; and takes advantage

of the file-system journal and how the kernel is implemented to achieve a small

implementation (≈5,200 LOC).

3.1.1 API

A simple API was one of the key goals of TXFS. Thus, TxFS provides de-

velopers with only three system calls: fs tx begin(), which begins a transac-

tion; fs tx commit(), which ends a transaction and attempts to commit it; and

fs tx abort(), which discards all file-system updates contained in the current

transaction. On commit, all file-system updates in an application-level transaction

are persisted in an atomic fashion – after a crash, users see all of the transaction

updates, or none of them. This API significantly simplifies application code and

provides clean crash semantics, since temporary files or partially written logs will

27

https://github.com/ut-osa/txfs
https://github.com/ut-osa/txfs


not need to be cleaned up after a crash.

fs tx commit() returns a value indicating whether the transaction was

committed successfully, or if it failed, why it failed. A transaction can fail for three

reasons: there was a conflict with another concurrent transaction, there is no journal

space for the transaction, or the file system does not have enough resources for the

transaction to complete (e.g., no space or inodes). Depending upon the error code,

the application can choose to retry the transaction. Nested TxFS transactions are

flattened into a single transaction, which succeed or fail as a unit. Flat nesting is a

common choice in transactional systems [PHR+09, SGC+09].

A user can surround any sequence of file-system related system calls with

fs tx begin() and fs tx commit() and the system will execute those sys-

tem calls in a single transaction. This interface is easy for programmers to use and

makes it simple to incrementally deploy file-system transactions into existing appli-

cations. In contrast, some transactional file systems (e.g., Window’s TxF [Rus05]

and Valor [SGC+09]) have far more complex, difficult-to-use interfaces. TxF as-

signs a handle to each transaction, and requires users to explicitly call the transac-

tional APIs with the handle. Valor exposes operations on the kernel log to user-level

code.

TxFS isolates file-system updates only. The application is still responsible

for synchronizing access to its own user-level data structures. A transactional file

system is not intended to be an application’s sole concurrency control mechanism;

it only coordinates file-system updates which are difficult to coordinate without

transactions.
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Figure 3.1: TxFS relies on ext4’s own journal for atomic updates and maintains
local copies of in-memory data structures, such as inodes, dentries, and pages to
provide isolation guarantees. At commit time, the local operations are made global
and durable.

3.1.2 Atomicity and durability

Most modern Linux file systems have an internal mechanism for atomi-

cally updating multiple blocks on storage such as journaling [Twe98] or copy-on-

write [HLM94]. These mechanisms are crucial for maintaining file-system crash

consistency, and thus have well-tested and mature implementations. TXFS takes

advantage of these mechanisms to obtain three of the ACID properties: atomicity,

consistency, and durability. This is the key insight which allows TXFS to have a

small implementation.

TXFS builds upon the ext4 file system’s journal. The journal provides the

guarantee that each journal transaction is applied to the file system in an atomic

fashion. We could have instead used a different mechanism such as copy-on-write

which provides atomic updates in btrfs and F2FS. TXFS can be built upon any file
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system with a mechanism for atomic updates.

For each TXFS transaction, TXFS maintains a private jbd2 transaction,

and at commit, merges the private transaction into the global jbd2 transaction.

While the global jbd2 transaction contains only metadata by default, TXFS also

adds data blocks to the transaction to ensure atomic updates. If, by chance, a block

added to the private jbd2 transaction is also being committed by a previous global

jbd2 transaction, TXFS creates a shadow block. Ext4 also creates a shadow block

when a block is shared between a running and a committing transaction.

To reduce the amount of data written to the journal, TXFS employs selective

data journaling [CPADAD13]. Selective data journaling only journals data blocks

that were already allocated (i.e., data blocks that are being updated), and avoids

journaling newly allocated data blocks (because it can write them directly). Selec-

tive data journaling provides the same guarantees as full data journaling at a fraction

of the cost.

TXFS ensures that an entire transaction can be merged into a single journal

transaction; otherwise, an error is returned to the user. As long as a TXFS trans-

action is added to a single journal transaction, the journal will ensure it is applied

to the file system atomically. After merging a user’s transaction into the journal

transaction, TXFS can persist the journal transaction, which ensures the durability

of the TXFS transaction.
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3.1.3 Isolation and conflict detection

Although the ext4 journal provides atomicity and durability, it does not pro-

vide isolation. Adding isolation for file-system data structures in the Linux kernel

is challenging because a large number of functions all over the kernel modify file-

system data structures without using a common interface. In TXFS, we tailor our

approach to isolation for each data structure to simplify the implementation.

To provide isolation, TXFS has to ensure that all operations performed in-

side a transaction are not visible to other transactions or the rest of the system until

commit time. TXFS achieves the isolation level of repeatable reads [GLPT76]

using a combination of different techniques.

Split file-system functions. System calls such as write() and open() execute

file-system functions which often result in allocation of file-system resources such

as data blocks and inodes. TXFS splits such functions into two parts: one part

which does file-system allocation, and one part which operates on in-memory struc-

tures. The part doing file-system allocation is moved to the commit point. The other

part is executed as part of the system call, and the in-memory changes are kept pri-

vate to the transaction.

Transaction-private copies. TXFS makes transaction-private copies of all kernel

data structures modified during the transaction. File-system related system calls in-

side a transaction operate on these private copies, allowing transactions to read their

own writes. In case of abort, these private copies are discarded; in case of commit,

these private copies are carefully applied to the global state of the file system in an
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atomic fashion. During a transaction, file-system operations are redirected to the

local in-memory versions of the data structures. For example, dentries updated by

the transaction are modified to point to a local inode which maintains a local radix

tree which has locally modified pages.

Two phase commit. TXFS transactions are committed using a two-phase commit

protocol. TXFS first obtains a lock on all relevant file-system data structures using

a total order. The following order prevents deadlock: inode mutexes, page locks, in-

ode buffer head locks, the global inode hash lock, the global inode sb list lock,

inode locks, and dentry locks. The Linux kernel orders the acquiring of inode mu-

texes based on the pointer addresses of their inodes; we adopt this locking discipline

in TXFS. Similarly, page locks are acquired in order of page address. Acquiring the

locks on buffers for directory data blocks and inode metadata is ordered by inode

number.

After obtaining the locks, all allocation decisions are checked to see if they

would succeed; for example, if the transaction creates inodes, TXFS checks if there

are enough free inodes. Next, TXFS checks the journal to ensure there is enough

space in the global jbd2 transaction to allow the transaction to be merged. Finally,

TXFS checks for conflicts with other transactions (as described below). If any of

these checks fail, all locks are released, and the commit returns an error to the user.

Otherwise, the in-memory data structures are updated, all file-system allocation

is performed, and the private jbd2 transaction is merged with the global jbd2

transaction. At this point, the transaction is committed, locks are released and the

changes are persisted to storage in a crash-consistent manner.
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Conflict detection. Conflict detection is a key part of providing isolation. Since al-

location structures such as bitmaps are not modified until commit time, they cannot

be modified by multiple transactions at the same time, and do not give rise to con-

flicts; as a result, TXFS avoids false conflicts involving global allocation structures.

Conflict detection is challenging as file-system data structures are modified

all over the Linux kernel without a standard interface. TXFS takes advantage of

how file-system data structures are implemented to detect conflicts efficiently.

Conflict detection for pages. The struct page data structure holds the data for

cached files. TXFS adds two fields to this structure: write flag and reader count.

The write flag indicates if there is another transaction that has written this page.

The reader count field indicates the number of other transaction that have read

this page. Non-transactional threads will never see the in-flight un-committed data

in transactions, and thus can always safely read data. TXFS does eager conflict de-

tection for pages since there is a single interface to read and write pages that TXFS

interposes. The following rules are followed on a page read or write:

1. When a transaction reads a page, it increments reader count by one. If

the page has the write flag set, it must have been written by a currently

executing transaction (which is now a conflict), so this transaction aborts.

2. If a transaction attempts to write a page that has either the write flag

set or reader count greater than zero, it aborts. Otherwise, it sets the

write flag.

3. If a non-transactional thread attempts to write to a page with reader count

or write flag set, it is put to sleep until the transaction commits or aborts.
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4. When the transaction commits or aborts, write flag is reset and reader count

is decremented.

Aborting transactions in this manner can lead to livelock, but we have not found

it a problem with our benchmarks and the policy can be easily changed to resolve

conflicts in favor of the oldest transaction (which does not livelock). TXFS favors

transactional throughput, but for greater fairness between transactional and non-

transactional threads, TXFS could allow a non-transactional thread to proceed by

aborting all transactions conflicted by its operation [PHR+09].

Conflict detection for dentries and inodes. Apart from pages, TXFS must detect

conflicts on two other data structures: dentries (directory entries) and inodes. Un-

fortunately, unlike pages, inodes and dentries do not have a standard interface and

are modified throughout kernel code. Therefore, TXFS uses lazy conflict detec-

tion for inodes and dentries, detecting conflicts at commit time. At commit time,

TXFS needs to detect if the global copy of the data structure has changed since

it was copied into the local transaction. Doing a byte-by-byte comparison of each

modified data structure would significantly increase commit latency; instead, TXFS

takes advantage of the inode’s i ctime field that is changed whenever the inode is

changed; TXFS simply has to check that the i ctime has not changed for each in-

ode that TXFS has read or written (writes are performed to a transaction-local copy

of the inode). TXFS similarly adds a new d ctime field to the dentry data structure

to track its last modified time, and updates d ctime whenever a dentry is changed.

Creating different named entries within a directory does not create a conflict be-

cause the names are checked at commit time. By taking advantage of i ctime and
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d ctime, TXFS is able to perform conflict detection for these structures without

radically changing the Linux kernel.

Summary. Figure 3.1 shows how TXFS uses ext4’s journal for atomically updat-

ing operations inside a transaction, and maintaining local state to provide isolation

guarantees. File operations inside a TXFS transaction are redirected to the transac-

tion’s local copied data structures, hence they do not affect the file system’s global

state, while being observable by subsequent operations in the same transaction.

Only after a TXFS transaction finishes its commit by calling fs tx commit()

will its modifications be globally visible.

3.1.4 Implementation

We modified Linux version 3.18 and the ext4 file system. The implementa-

tion requires a total of 5,200 lines of code, with 1,300 in TXFS internal bookkeep-

ing, 1,600 in the VFS layer, 900 in the journal (JBD2) layer, 1,200 for ext4 and 200

for memory management (all measurements with SLOCCount [Dav]). Except for

the ext4 and jbd2 extensions, all other code could be reused to port TXFS to other

file systems, such as ZFS, in the future.

3.1.5 Limitations

TXFS has two main limitations. First, the maximum size of a TXFS trans-

action is limited to one fourth the size of the journal (the maximum journal trans-

action size allowed by ext4). We note that the journal can be configured to be as

large as required. Multi-gigabyte journals are common today. Second, although
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parallel transactions can proceed with ACID guarantees, each transaction can only

contain operations from a single process. Transactions spanning multiple processes

are future work.

3.2 Accelerating program idioms with TXFS

We now explore a number of programming idioms where a transactional

API can improve performance because transactions provide the file system a se-

quence of operations which can be optimized as a group (§2.1). Whole-transaction

optimization can result in dramatic performance gains because the file system can

eliminate temporary durable writes (such as the creation, use, and deletion of a log

file). In some cases, we show that benefits previously obtained by new interfaces

(such as osync [CPADAD13]) can be obtained easily with transactions.

3.2.1 Eliminating file creation

When an application creates a temporary file, syncs it, uses it, and then

unlinks it (e.g., logging shown in Figure 2.1b), enclosing the entire sequence in a

transaction allows the file system to optimize out the file creation and all writes

while maintaining crash consistency.

The create/unlink/sync workload spawns six threads (one per core) where

each thread repeatedly creates a file, unlinks it, and syncs the parent directory. Ta-

ble 3.1 shows that placing the operation within a transaction increases performance

by 133× because the transaction completely eliminates the workload’s IO. While

this test is an extreme case, we next look at using transactions to automatically
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Workload FS TX
Create/unlink/sync 37.35s 0.28s (133×)
Logging 5.09s 4.23s (1.20×)
Ordering work 2.86 it/s 3.96 it/s (1.38×)

Table 3.1: Programming idioms sped up by TXFS transactions. Performance is
measured in seconds (s), and iterations per second (it/s). Speedups for the transac-
tion case are reported in parentheses.

convert a logging protocol into a more efficient update protocol.

3.2.2 Eliminating logging IO

Figure 2.1b shows the logging idiom used by modern applications to achieve

crash consistency. Enclosing the entire protocol within a transaction allows the file

system to transparently optimize this protocol into a more efficient direct modifica-

tion. During a TXFS transaction, all sync-family calls are functional nops. Because

the log file is created and deleted within the transaction, it does not need to be made

persistent on transaction commit. Eliminating the persistence of the log file greatly

reduces the amount of user data but also file system metadata (e.g., block and inode

bitmaps) that must be persisted.

Table 3.1 shows execution time for a microbenchmark that writes and syncs

a log, and a version that encloses the entire protocol in a single TXFS transaction.

Enclosing the logging protocol within a transaction increases performance by 20%

and cuts the amount of IO performed in half because the log file is never persisted.

Rewriting the code increases performance by 55% (3.28s, not shown in the table).

In this case getting the most performance out of transactions requires rewriting
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the code to eliminate work that transactions make redundant. But even without a

programmer rewrite, just adding two lines of code to wrap a protocol in a transaction

achieves 47% of the performance of doing a complete rewrite.

Optimizing SQLite logging with TXFS. Table 3.3 reports results for SQLite.

“Rollback with TXFS” represents SQLite’s default logging mode encased within

a TXFS transaction. Just enclosing the logging activity with a transaction increases

performance for updates by 14%. Modifying the code to eliminate the logging work

that transactions make redundant increases the performance for updates to 31%, in

part by reducing the number of system calls by 2.5×.

3.2.3 Separating ordering and durability

Table 3.1 shows throughput for a workload that creates three 10MB files

and then updates 10MB of a separate 40MB file. The user would like to create the

files first, then update the data file. This type of ordering constraint often occurs in

systems like Git that create log files and other files that hold intermediate state.

The first version uses fsync() to order the operations, while the second

uses transactions that allow the first three file create operations to execute in any

order, but they are all serialized behind the final data update transaction (using flags

to fs tx begin()and fs tx commit()). The transactional approach has 38%

higher throughput because the ordering constraints are decoupled from the persis-

tence constraints. The work that first distinguished ordering from persistence sug-

gests adding different flavor sync system calls [CPADAD13], but TXFS can achieve

the same result with transactions.
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Experiment TXFS benefit

Perfor-
mance

Improve-
ment

Single-threaded SQLite Faster IO path, Less sync 1.3×
TPC-C Faster IO path, Less sync 1.6×
Android Mail Cross abstraction 2.3×
OpenLDAP Crash consistency,

Scalability
12.5×

Git Crash consistency 1.0×

Table 3.2: The table summarizes the micro- and macro-benchmarks used to evaluate
TXFS, and the performance improvement (relative to ext4 in ordered journaling
mode) obtained in each experiment.

3.3 Evaluation

We evaluate the performance and durability guarantees of TXFS on a va-

riety of micro-benchmarks and real workloads. The micro-benchmarks help point

out how TXFS achieves specific design goals while the larger benchmarks validate

that transactions provide stronger crash semantics and improved performance to a

variety of large applications with minimal porting effort.

Testbed. Our experimental testbed consists of a machine with a 4 core Intel Xeon

E3-1220 CPU and 32 GB DDR3 RAM and a machine with a 6 core Intel Xeon

E5-2620 CPU and 8 GB DDR3 RAM. All experiments are performed on Ubuntu

16.04 LTS (Linux kernel 3.18.22). The kernel is installed on a Samsung 850 (512

GB) SSD and all experiments are done on a Samsung 850 (250 GB) SSD. The

experimental SSD is run at low utilization (around 20%) to prevent confounding

factors from wear-leveling firmware.
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Table 3.2 presents a summary of the different experiments used to evaluate

TXFS and the performance improvement obtained in each experiment. In the Git

experiment, TXFS provides strong crash-consistency guarantees without degrading

performance. Note that if not explicitly mentioned, all our baselines run on ext4

with its default journaling mode, the ordered journaling mode.

3.3.1 Crash consistency

TXFS’s ACID transactions should be recoverable after a system crash. In

order to verify this crucial correctness property, we boot a virtual machine and

run a script that creates many types of transactions in multiple threads with random

amounts of contained work and conflict probabilities. We crash the VM at a random

time and make sure the file-system journal is recoverable and that the file system

passes all fsck checks. We have run over 100 random crashes and can recover the

file system in all cases. An alternate way to test crash consistency would be to use

a testing framework such as CrashMonkey [MC17, MMP+18].

3.3.2 Stress testing TXFS

We performed stress testing on TXFS to ensure its correctness in the face of

conflicts and multi-threaded operations. Our stress tests had two main workloads.

Our first workload was a micro-benchmark with six threads starting TXFS transac-

tions and performing file-system operations picked at random across two files be-

fore committing. These threads generate a lot of conflicts, stressing TXFS conflict

detection and isolation mechanisms. Our second workload uses the SQLite embed-
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ded database, performing a number of database operations with multiple threads.

We were able to run both workloads for over 24 hours on TXFS without a kernel

crash or our unit tests failing, giving us a measure of confidence in the correctness

and stability of the codebase.

3.3.3 SQLite

We modified SQLite to use TXFS transactions. SQLite parameters which

control fsync frequency and checkpointing mode have a large impact on per-

formance [PMC17]. We use PRAGMA synchronous=NORMAL (default) for all

modes, and PRAGMA wal checkpoint(FULL) for WAL mode to guarantee all

ACID properties.

When SQLite uses TXFS transactions, crashes do not leave any residual

files on storage. Currently, users often must remove these residual files by hand

which is tedious and error-prone. TXFS transactions eliminate user-visible log files;

user-level code sees only the before and after state of the database, not messy in-

flight data.

Single-threaded SQLite. Table 3.3 shows that TXFS is the best performing op-

tion for SQLite updates. Data is the average of five trials with standard deviations

below 2.2% of the mean. For the update workload, TXFS is 31% faster than the

default. We report IO totals as part of our validation that TXFS correctly writes

all data in a crash-consistent manner. Several choices for SQLite logging mode,

including TXFS, result in similar levels of IO that resemble the no-journal lower

bound. Write-ahead logging mode (WAL) writes more data for the insert workload,
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Performance (kOps/s) IO (GB) Sync/tx
Journal mode Insert Update Insert UpdateInsert Update

Rollback (default) 53.9 28.0 1.9 3.9 4 10
Truncate 53.5 (0.99×) 28.9 (1.03×) 1.9 3.9 4 10

WAL 39.8 (0.74×) 34.6 (1.23×) 3.9 3.8 3 3
TxFS 51.4 (0.95×) 36.7 (1.31×) 1.9 3.8 1 1

Rollback with
TxFS

52.1 (0.97×) 31.9 (1.14×) 1.9 3.8 1 1

No journal
(unsafe)

54.9 (1.02×) 50.6 (1.81×) 1.9 1.9 1 1

Table 3.3: The table compares operations per second (larger is better) and total
amount of IO for SQLite executing 1.5M 1KB operations grouping 10K operations
in a transaction using different journaling modes (including TXFS). The database
is pre-populated with 15M rows. All experiments use SQLite’s synchronous mode
(its default).

which harms its performance. Note that TXFS does not suffer WAL’s performance

shortfall on insert, and TXFS surpasses WAL’s performance on update, making it

a better alternative. Although the file-system journal shares similarity with a WAL

log, TXFS does not generate redundant IO on insert because of its selective data

journaling.

We run similar experiments with small updates (16 bytes) and find that there

is little difference in performance between SQLite’s different modes and TXFS.

This shows that small transactions do not have significant overhead in TXFS.

TXFS’s improves performance for the update workload due to several fac-

tors. TXFS reduces the number of data syncs from 10 (in Rollback and Truncate

mode) or 3 (in WAL mode) to only 1, which leads to better batching and re-ordering

of writes inside a single transaction. It performs half of its IO to the journal, which
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is written sequentially. The remaining IO is done asynchronously via a periodic file-

system checkpoint that writes the journaled blocks to in-place files. Since TXFS

uses the file-system journal instead of an application-level journal for logging the

transaction, it avoids the double journaling problem [SPZ14], where the journaling

of the application-level log causes a significant slowdown. Even in realistic settings

where performance is at a premium, transactions provide a simple, clean interface to

get significantly increased file-system performance, while maintaining crash safety.

3.3.4 TPC-C

We run a version of the TPC-C benchmark [NPM+13] ported to use single-

threaded SQLite1. TPC-C is a standard online transaction processing benchmark

for an order-entry environment.

Table 3.4 shows that TXFS outperforms SQLite’s default mode by 1.61×.

The performance advantage comes from two sources. First, TXFS writes less data

and batches its writes. TXFS writes much of its data sequentially to the file sys-

tem journal on fs tx commit()and writes back the journal data asynchronously.

SQLite’s default mode must write data to the SQLite journal and to the database file

on fsync(). Therefore, TXFS writes only once in the critical path (to the jour-

nal), while SQLite (as configured in Section 3.3.3) must write to the journal plus

database in the critical path. Second, TXFS decreases the number of system calls,

especially sync-family calls. Table 3.4 shows that TXFS reduces the number of

sync-family calls per transaction by 3×. By reducing the sync-familly calls, TXFS

1https://github.com/apavlo/py-tpcc/wiki/SQLite-Driver
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Rollback
(default)

Truncate WAL TxFS
No journal

(unsafe)
Delivery 110.5 123.3 157.0 188.0 300.4

New Order 142.4 165.2 216.8 240.3 445.1
Order
Status

1998.5 2067.3 2279.8 2489.9 3141.1

Payment 198.4 240.2 367.3 300.6 909.9
Stock level 575.0 602.3 765.4 684.1 1079.8

Total 173.0
(1.18×)

203.3
(1.62×)

280.0
(1.61×)

279.0
(3.47×)

600.1
Syscall/tx 208.0 207.95 138.26 100.35 146.9
Sync/tx 2.76 2.75 2.76 0.92 0.92
R KB/tx 18 17 13 13 7
W KB/tx 174 161 134 132 67
T KB/tx 192 (0.93×) 178 (0.77×) 148 (0.76×) 145 (0.39×) 74

Table 3.4: Rates (in transactions per second) for the TPC-C workload using differ-
ent SQLite journaling modes. Each workload runs continuously for a fixed amount
of time. Speedups (or, if less than 1.0, slowdowns) relative to Rollback mode are
shown in parentheses. R MB/tx is the amount of read IO per transaction, W is
written IO and T is total.
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Journal mode Throughput IO(MB)
Rollback (default) 45.7 3269

Truncate 45.5 (0.99×) 3154
WAL 53.4 (1.17×) 3539
TxFS 105.7 (2.31×) 6797

TxFS Small Tx 60.9 (1.33×) 4052
No journal
(unsafe)

61.9 (1.35×) 3995

Table 3.5: TXFS supports transactions across storage abstractions for a workload
based on Android’s mail application. Performance is measured in iterations per
second.

can batch writes in a transaction, reducing the amount of writes by 31.7% compared

to default mode.

The performance of TXFS and WAL is similar. When transactions con-

tain writes, TXFS has better performance than WAL, but it has worse performance

for read-only transactions: WAL is 28% faster than TXFS for read-only transac-

tions. “Order status” and “Stock level” consist of three select queries and two select

queries respectively, resulting in lower throughput for TXFS compared with WAL.

However, “Delivery” consists of three select, three update, and one delete queries,

so TXFS outperforms WAL by 20%.

3.3.5 Abstractions built on files

Modern file systems support storage of not only files but databases (e.g.,

SQLite) and key-value stores (e.g., LevelDB and RocksDB). These abstractions are

built on the file system and generally are easier to set up and maintain (although

lower-performing) than their dedicated counterparts.
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TXFS supports transactions that span storage abstractions. Table 3.5 shows

the throughput for a workload that models the core activity of Android mail, storing

an image file and recording the path to that file in a SQLite database along with

other metadata. The database is pre-populated with 100,000 1KB rows, image files

are 1 MB. The workload creates the database record in one transaction, creates a

uniquely named file where it stores the file data, syncs the data, and then updates

the database record in a second transaction.

TXFS outperforms default SQLite by 2.31× and the best alternative (WAL

mode) by 1.98×. It is essential to TXFS’s performance that both database transac-

tions as well as the file system operation are all contained in a single transaction.

When they are separate transactions (TXFS Small tx), performance is bounded by

SQLite (i.e., it is close to no journaling). IO is not a bottleneck for this workload.

The amount of IO performed is proportional to the amount of work done: TXFS

has higher throughput, so it performs more IO.

3.3.6 OpenLDAP

OpenLDAP [Sym] is a widely-used, well-optimized implementation of the

Lightweight Directory Access Protocol, used to provide authentication and auxil-

iary information about users. We used OpenLDAP version 2.4.44 and the LDIF

backend which stores user records in plain text, one file per user, within a single

directory. We modified approximately 155 LOC of the LDIF backend to use TXFS.

We altered the LDIF backend to wrap transactions around the main backend calls

(the ldif back * and ldif tool entry * family of functions).
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Ext4-BDB Ext4-LDIF (unsafe) TXFS-LDIF
1-thread 4-thread 1-thread 4-thread 1-thread 4-thread

AddJob 597.9 304.8
2124.8
(3.6×)

3353.3
(11.0×)

2109.7
(3.5×)

3804.7
(12.5×)

ModifyJob 402.1 454.0
1063.2
(2.6×)

1402.5
(3.1×)

944.6
(2.4×)

2504.8
(5.5×)

DeleteJob 405.9 515.8
1972.8
(4.9×)

3861.1
(7.5×)

1701.1
(4.2×)

3893.1
(7.6×)

Table 3.6: Operations per second for OpenLDAP workloads of different operation
types (larger is better). The base directory starts out with pre-populated entries.
AddJob inserts 1,000 4KB entries. ModifyJob then modifies 1,000 disjoint entries.
DeleteJob then deletes 1,000 entries.

Table 3.6 compares OpenLDAP using Berkeley DB (BDB) on Ext4 (Ext4-

BDB), OpenLDAP using LDIF storage backend based on flat files on Ext4 (Ext4-

LDIF), and a modified version of LDIF that uses TXFS transactions (TXFS-LDIF).

We gather data using a modified version of the lb [Ham] benchmarking tool. After

receiving a job request, Ext4-LDIF makes a temporary copy for the LDIF file stor-

ing the user information, modifies it, and replaces the original file with an atomic

rename. This process is slow for large files. Also, it requires global locks to

prevent race conditions from multiple slapd threads, which limits scalability. Both

Ext4-BDB and TXFS-LDIF provide much stronger guarantees than Ext4-LDIF. A

single job request is protected by an ACID transaction.

TXFS-LDIF always outperfoms Ext4-BDB with the same level of consis-

tency guarantees. The throughput of TXFS-LDIF can be up to 4.2× the throughput

of Ext4-BDB in single-threaded workloads and 12.5× in multi-threaded workloads.

TXFS-LDIF provides comparable performance with Ext4-LDIF, while supporting
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stronger consistency guarantees. Compared to Ext4-LDIF, TXFS-LDIF perfor-

mance trails slightly in some of the workloads due to transaction overhead and

the system call overhead to begin and end transactions. For multi-threaded bench-

marks, TXFS transactions replace a global lock in the LDIF backend. The default

implementation of OpenLDAP uses a single reader-writer lock for the whole back-

end directory, which limits concurrency by serializing writes. There are cases where

concurrent writes are safe (e.g., to two separate entries in two separate files), and

TXFS allows these writes to occur concurrently, giving TXFS-LDIF higher multi-

threaded write performance (5.5× BDB instead of 3.1× on ModifyJob).

3.3.7 Git

Git is a widely-used version control system. Git commands such as git

add and git commit result in a large number of file-system operations. Git up-

dates files by creating a temporary file, writing the desired data to it, and renaming

it over the old file. To enable high performance, Git does not order its operations

via fsync() [PCA+14], leaving it vulnerable to garbage files and outright data

corruption on a system crash.

In our experiment, we run Git inside a virtual machine. We instrument the

Git code to crash the virtual machine at vulnerable points (such as after the temp

file rename, but before the file is persistent). The workload first initializes a Git

repository, populates it with 20,000 empty files, then adds all files at once.

After a virtual machine restart, we find that the .git/index file has been

truncated to zero bytes, resulting in a loss of the working tree. Running the Git re-
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covery command git fsck simply reports a fatal error. Recovery is not possible

unless the data has been backed up in another location. In contrast, when we change

Git to use TXFS transactions, we find that crashes no longer produce such catas-

trophic errors. Furthermore, we do not find a significant difference in performance

between the code that use TXFS transactions, and the code that does not. Thus, us-

ing TXFS transactions provides crash consistency for Git without any performance

overhead.
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Hash table Key Value
metadata file path name inode structure

data <file ino, block id> data page

Table 4.1: The table lists NVMKVFS’s key and value types in the metadata and data
hash tables.

Chapter 4

Fast metadata indexes for NVM file system

NVMKVFS is a user-space NVM file system prototype. Its goal is to demon-

strate a set of key data structures we built for improving the metadata scalability

for NVM file systems. It represents the whole file system as two global hash tables

in persistent memory, one for metadata and the other for data indexing. Table 4.1

shows the keys and values in the two hash tables. The metadata hash table trans-

lates a full path name into an inode struct. The data page hash table translates the

tuple of a file inode and a page number into a 4KB data page. NVMKVFS provides

many POSIX APIs for file system system calls with crash consistency, including

getdents, stat, open with file creation, close and unlink.

VFS for caching, path walk and concurrency control File systems in the Linux

kernel rely on the VFS layer for caching and concurrency control. Most of the

existing kernel file systems are designed for block devices such as hard drives and
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Figure 4.1: The VFS helps file systems to do path lookup with the help of the
dcache. A path walk starts from the root directory for an absolute path or the cur-
rent or parent directory for a relative path. It then walks the path component by
component and searches for the dentries for the directories and files along the path,
or loads the dentries if they are not in the dcache. The path walk ends when it
reaches the target file.

NAND flash devices. Data on block devices needs to be retrieved and stored in

block-sized granularity. In order to efficiently access file system metadata, which is

generally much smaller than the block size, file systems pack metadata into blocks

for storage and cache it in DRAM using the VFS. The inode cache helps look up the

VFS inodes by indexing the inodes with their inode numbers. It is implemented as a

hash table, in which each hash value is calculated from an inode number and the file

system’s physical device identifier. The hash table entries are pointers to the VFS

inodes, which are contained in the file-system-specific DRAM-cached inodes. The

VFS inodes can be referenced by dentry data structures, which are used in directory

entry lookup during path resolution. VFS maintains a dentry cache in the DRAM to

cache the translation from a path component to a dentry data structure. The dentry

cache is also implemented as a hash table, while the hash value is a combination of
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file or directory name with its parent directory’s dentry virtual address. Figure 4.1

shows how the VFS and its dcache helps file systems do a path walk in order to find

or create the dentry for a file. By resolving the path name component by component

and traversing the dentry cache, a file system can find or create the dentry needed

by a file that a system call needs to operate on. The VFS and its caches also provide

concurrency control. Using multiple locks in the inodes, dentries and the per-file-

system hash tables, processes can concurrently access a file system’s in-memory

and on-disk data structures in a safe way.

NVM challenges and opportunities NVM devices have byte-addressability, low

access latency and high throughput, making the multiple caches in the file systems

no longer necessary or efficient. It brings new challenges and opportunities to the

file system design. DAX file systems, including ext4-dax, xfs-dax and NOVA, are

designed for NVM devices. They bypass the page cache and instead use the di-

rect access mechanism and load and store instructions to retrieve or access data

in the NVM data pages. DAX file systems are built using the VFS layer and

rely on its multiple caches for concurrency control. NVM’s byte-addressability

and low access latency, however, makes VFS metadata caching much less effi-

cient [WJX18, VNP+14]. Furthermore, the concurrency mechanisms in the VFS re-

stricts the parallelism for metadata-related operations. The global hash table locks,

the per-superblock linked list for inodes and the multiple locks in the inode and

dentry data structures all create serializing points in the file system operations.

As a result, we built NVMKVFS, a user-space file system protocol that by-
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passes the VFS and provides its own mechanisms for metadata and data indexing

and concurrency control. NVMKVFS targets improved scalability and performance

of metadata-heavy workloads. On PMEM hardware, when running file creation

workload in a shared directory, NVMKVFS gets a 7.45× speedup over 28 cores com-

pared to ext4-dax’s 1.23× speedup. On DRAM-emulated PMEM, the workload

shows a 8.84× 14-core speedup for NVMKVFS, compared to the 0.84× speedup for

ext4-dax and the 1.23× speedup for NOVA.

4.1 NVMKVFS design and implementation

NVMKVFS maintains two persistent hash tables for metadata and data in-

dexing. Both of the hash tables are variants of the p-CLHT [LMK+19] persistent

hash table. NVMKVFS implements file system operations inside p-CLHT hash ta-

ble operations. Based on the types of file system operations, we rewrite hash table

GET method to get read-only operations and operations that only change an atomic

value of an inode, and PUT method to get file system write operations. We follow

the cache line write policy in the p-CLHT design, so that writes to the hash tables

are the sizes of one or multiple cache lines. This resolves the cache coherence prob-

lem. We follow the locks and the orders of MFENCE and CLWB instructions in the

p-CLHT hash table design to guarantee crash consistency for a single hash table

read or write operation. For system calls that involve modifications on multiple

key-value pairs in one or both hash tables, we use status bits in the inodes to help

the recovery process after a crash. NVMKVFS does not cache inodes or directory

entries in DRAM, so there is no caching layer for the file system data structures in
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“/” inode0

“/dir0/file0” inode1

“/dir0/dir1” Inode2

“/dir0/dir1/
file1”

inode3

…. ….

Metadata hash table

i_ino: 1 /*inode number*/
i_mode: I_FILE
i_links_count: 1
i_flags
i_refs
i_size
i_uid
…...

struct inode

…. ….

<ino 0, block0> Directory 
data block

…. ….

<ino 1, block0> File data 
block

<ino 1, block1> File data 
block

…. ….

Data hash table

Figure 4.2: NVMKVFS represents the file system prototype with two hash tables, a
metadata hash table which translates file paths to inode structures, and a data hash
table which helps look up the file and directory data blocks. Both hash tables are
variants of the p-CLHT persistent hash tables.

DRAM as in the VFS. To recover from a crash, NVMKVFS calls fsck on unclean

reboots. Finally, metadata and data page hash table operations form the file sys-

tem calls and provide POSIX-like APIs. NVMKVFS is currently only implementing

metadata system calls. The implementation on the data-related system calls remains

future work.

4.1.1 Data structures

Figure 4.2 shows the NVMKVFS storage layout and the data structures it uses

to represent the prototype file system. The storage layout is mainly composed of

two hash tables, one for metadata indexing and another for data indexing. Both of

the hash tables are variants of the P-CLHT hash tables. File inodes are embedded

as hash table values in the metadata table. Both file and directory data pages are

stored as values in the data hash table.
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Metadata index is a per file system hash table that translates a full path name into

an inode structure. It is key to the performance of the metadata-heavy operations,

such as getdents, stat, open with file creation, unlink, etc. The direct

translation from a path name to an inode helps achieve fast metadata lookup but

is not compliant with POSIX permission checking. In order to increase the meta-

data operation scalability, NVMKVFS’s hash table implementation is based on the

p-CLHT [LMK+19] persistent hash table, which implements lock-protected writes

and lockless reads. We use djb2 hash function [djb] for string hashing. The update

to a p-CLHT hash table usually occupies one cache line, so that it resolve the cache

coherence problem. We follow these rules in the metadata hash table design, en-

suring that write operations on file system metadata are protected by locks, while

read-only operations are lockless. We also introduce a semi-read-only operation

based on the read operations but updates a recoverable integer field with a hardware

atomic operation. The crash consistency of metadata operations is guaranteed by

following p-CLHT hash table recovery protocols. The buckets in the metadata hash

table are all aligned to the cache line size during allocation.

Data index TXFS uses another hash table to index and allocate data pages. The

data page hash table is also implemented based on the p-CLHT persistent hash

table. A key in the data page hash table is a 64-bit integer formed by combining

a file inode number (a 32-bit integer) and a page ID (a 32-bit integer). A value

in the table is a fixed size data page. We use Jenkins’ hash function [jen] for the

64-bit integer hashing. TXFS’s current implementation uses 4kB data pages, while
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the size of the data pages can be configured according to the file system’s most

frequent workloads. Since the data page hash table represents a 1:1 mapping from a

key <file ino, block id> to a bucket containing a data page, it is also used

as a block allocator. When allocating a new data block, the process queries the hash

table to see if the block with a certain inode number and block ID exists. If the

block does not exist in the hash table, the process allocates the page by creating a

bucket with the key in the hash table. An offset in a file can then be translated into

an offset in a data page in a hash table bucket. The bucket allocation in the hash

table is protected by a per-bin readers-writer lock, which protects concurrent data

block allocations with the same hash value. The buckets in the data hash table are

all aligned to the cache line size during allocation.

Inode structure An inode is stored as the value field of a <pathname, struct

inode> pair in the metadata indexing table. A NVMKVFS inode also records the

followed properties to maintain correctness and crash consistency for metadata op-

erations.

• Each file is allocated with an inode number; the inode number remains the

same throughout the file’s life span. It is unique to the file and serves partially

as the key in the data index. NVMKVFS’s current implementation allocates the

inode number by atomically incrementing a global integer counter.

• A reference counter (refcount) records the number of processes opening a

file, and are embedded in the inode structure in the metadata index.
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• Each file entry’s inode has an obsolete bit. When it is set to 1, it means

it has already been removed by another process. This is to avoid the race

condition between unlink and system calls involving metadata update when a

file’s refcount is not 0. The bit is also used in combination with a non-empty

rename log for rename consistency.

• A creation bit is used to guarantee the crash consistency between the meta-

data and data indexes during a file creation. Although operations in each

hash table are atomic due to the p-CLHT design, operations involving mod-

ifications on two hash tables cannot be guaranteed consistent without crash

recovery. Before inserting a newly created inode into the metadata hash ta-

ble, the inode’s creation bit is set as 1. It is cleared after inserting the inode

into the metadata table and writing the file name into its parent directory’s

data page. The inode insertion into the metadata table itself is atomic. So

the inode creation bit indicates that a dentry re-insertion is necessary during

a crash recovery.

• A per-file state lock enables parallel metadata operations. The lock is imple-

mented with a hardware compare and swap operation. It has three possible

states: free, update and resize. The resize state means that there is an ongo-

ing hash table resize, and process updating the hash table needs to be either

blocked or made to assist the resize procedure. The update state means that

the hash table has an ongoing bucket update including bucket value updates

and new bucket creation, and resize made by other processes needs to be

blocked.

57



Data page The buckets in the data index contain data pages. Each data page

contains a 64-bit integer metadata field. This integer is used as an offset counter

during a directory entry insertion if the data page belongs to a directory.

DRAM file table TXFS maintains file tables in DRAM for file structure and de-

scriptor allocation. During file system loading time, the file tables are allocated per

each CPU in order to increase parallelism in file creation.

4.1.2 Directory layout

In NVMKVFS, directories and non-directory files share a single, global data

page hash table. Directories have the same metadata and data format with non-

directory files, except that they are indicated as directory types in their property

fields and have different access permissions.

A directory data page contains dentries as a list of strings representing files

in the directory. Each dentry string is a file name that occupies the size of a cache

line, so that the cache coherence problem is resolved. Concurrent writes to a di-

rectory data page are protected by an atomic integer as the current write offset.

Processes competing to write to the same directory data page will atomically incre-

ment the offset variable to get its own offset to write. If the offset reaches the size

of a data page, a new directory data page is allocated and inserted into the data page

index.

File metadata lookup in NVMKVFS is independent of the directory layout,

since we rely on the global metadata index for path lookup. NVMKVFS implements
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getdents by iterating over all the file dentries in the directory data pages, con-

catenating the file names with the directory path name to get the files’ full path

name, and looking up from the metadata index for the information of each individ-

ual file.

4.1.3 Metadata system calls

The metadata system calls are implemented as variants of p-CLHT GET

and PUT operations. Read-only file system calls are implemented based on the

hash table GET operation and are lockless. Updates are implemented based on the

hash table PUT operation and holds a per-bin state lock, which protects the buckets

with the same hash value. The per-bin locks protect concurrent update operations

as well as concurrent update and hash table re-size operations.

open A non-creating open() first looks up the path name from the metadata

store. If there is no such an entry with obsolete=0, -ENOENT is returned. Other-

wise, it allocates a file structure and a descriptor in DRAM and holds a pointer to

the metadata hash table entry. It then increments the inode’s refcount to indicate

that there is an active open.

close close() decrements and checks the file’s refcount. If the refcount is

greater than 1, it means some other process has opened the same file, so it returns.

If the refcount is 1 and the inode’s obsolete bit is on, it means some other process

has already unlink-ed the file before. To finish up the incomplete unlink, it calls
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Figure 4.3: NVMKVFS creates a new file with the following steps: 1© a hash ta-
ble bucket containing the new inode is created with the I CREATING flag on; 2©
the new file name is inserted into the parent directory’s dentry data page; 3© the
bucket containing the new inode is inserted into the metadata hash table with a
single atomic pointer update; 4© the I CREATING flag of the inode is cleared.

unlink to remove the file inode entry from the metadata index, Finally, it cleans

up the file descriptor and frees the file struct.

access Performs the same operations as open, except for allocating file descrip-

tors and incrementing the refcounts. It returns F OK if the file exists and can be

accessed.

create A open() system call with O CREAT first looks up the inode structure from

the metadata store.

(a) If there is no entry with the same path name, create and insert an entry;
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(b) If there is an entry with the same path name and obsolete=0, open and return

a file descriptor without creation;

(c) If there is an entry with the same path name and obsolete=1, keep on scanning

the bucket until finding an entry with obsolete=0. Then, open and return a file

handler without creation;

(d) If all entries in the bucket are with obsolete=1, create and insert a new entry.

Figure 4.3 shows how NVMKVFS creates and inserts a new file entry in the meta-

data hash table and inserts its dentry into its parent directory’s dentry data page.

NVMKVFS creates an inode by allocating a new metadata hash table bucket. NVMKVFS

then looks up the file’s parent directory data page in the data hash table and appends

the new file’s dentry at the end of the page. It then inserts the bucket containing the

inode into the metadata hash table with a 64-bit pointer update, which is the unit of

an atomic memory store for aligned data. An I CREATING flag is used to maintain

the crash consistency between the entries in the two hash tables. The details on the

NVMKVFS crash consistency will be discussed in Section 4.1.4.

unlink It first looks up the inode structure from the metadata store. The metadata

table supports multiple inodes with the same path name as long as only ¡=1 entry is

with a non-zero obsolete bit.

(a) If a file entry is looked up with obsolete=0 and refcount=0, unlink() first

removes the file path from the parent directory’s dentry data page. Then the
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file entry can be removed from the metadata store. A file unlink bit is set

during the unlink operation so that if there is a crash during file creation, the

recovery process can help finish the unlink.

(b) If a file entry is looked up with obsolete=0, and the refcount¿0, it sets the

obsolete=1 so that the last process that closes the file will do the clean up;

(c) If a file entry is looked up with obsolete=1, the process continues to search

until finding a entry with obsolete=0, and does step (a) if refcount=0 or step

(b) if refcount¿0;

(d) If all file entries with the path name have obsolete=1, do nothing.

stat The stat system call looks up an inode in the metadata hash table according

to its path name, and then fills up the stat structure to be returned.

getdents A directory file’s data pages contain lists of file names for the files inside

that directory. When getdents traverses a directory, the process first looks up the

parent directory’s inode from the metadata store. Then it transverses the directory

by iterating over dentries in all its data pages, and looks up the file entries from the

metadata store.

4.1.4 Crash consistency in NVMKVFS

Section 2.4 lists several rules for the p-CLHT hash table to maintain crash

consistency. By following those rules, a p-CLHT hash table allows its entries to
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change from an initial state to a final state with a single atomic step, so that a crash

at any point leaves the hash table consistent. This eliminates the needs for crash

recovery in the original p-CLHT design.

NVMKVFS follows the p-CLHT rules for crash consistency by constructing

file system operations based on the p-CLHT hash table operations. The basic file

system operations in the NVMKVFS hash tables can be placed into three categories:

read-only, update and hybrid. Read-only operations are built from p-CLHT hash

table GET operation and are lockless; update operations are built from p-CLHT hash

table PUT operations; hybrid operations only modify a single 64-bit field, which can

be achieved by updating the field with a single atomic store and building the rest of

this file operation. For file system operations requiring crash consistency between

multiple metadata entries, or even between metadata and data entries, NVMKVFS

relies on status bits to assist the crash recovery after a power failure or crash.

Similar to ext4’s default crash consistent mode, write-back mode, NVMKVFS

guarantees only metadata consistency. It has no guarantee on data consistency.

NVMKVFS follows the p-CLHT rules for crash consistency to implement file sys-

tem calls. Updates to the metadata and data hash tables are all implemented with

single hardware-atomic stores. For example, when NVMKVFS allocates or deallo-

cates an inode, the updates to the metadata hash tables are implemented with an

atomic pointer swap. This is the same for data page allocation and deallocation.

For inode field updates that involve single atomic stores, NVMKVFS inserts a mem-

ory fence followed by a cache line flush to guarantee the write ordering. Since data

pages in a directory file also contain metadata information such as dentries, it also

63



requires consistency between inodes in the metadata table and the dentry informa-

tion stored in the directory data pages. In this case, NVMKVFS utilizes status bits to

assist the recovery process if there is a crash during the file creation. For example,

when creating a file, NVMKVFS first allocates an inode with I CREATING bit on.

After initializing all the inode fields, NVMKVFS creates and inserts the file’s data

pages into the data hash table before inserting the inode into the metadata hash ta-

ble. The insertion of an inode into the metadata table is a single atomic store that

writes a 64-bit address of the inode. Finally, NVMKVFS removes the I CREATING

bit from the inode.

NVMKVFS relies on fsck for crash recovery. fsck is invoked on recovery

after an unclean umount or crash. It scans all the entries in the metadata hash table,

and sets the entry’s reference counter to 0. For each inode, it recovers inconsistent

metadata updates.

• If a file inode has its creation bit on, it means a crash happened during a

file creation and after the newly allocated inode is inserted into the metadata

index. In this case, fsck checks and re-inserts the file’s name into its parent

directory’s data page;

• If a file entry has obsolete=1, fsck checks whether it has been removed from

the parent directory’s dentry data pages. If not, it removes the file dentry;

• If a file inode has obsolete=1 and has a non-empty rename log, fsck finishes

the rename and removes the obsolete entry;

• For each inode structure, clear its refcount and stale lock.
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4.1.5 Discussions

4.1.5.1 Block allocators

Similar to P-CLHT and other persistent indexes designed for PMEM, NVMKVFS

currently uses the libvmmalloc allocator from the Persistent Memory Devel-

opment Kit (PMDK) [pmd]. The library is preloaded using LD PRELOAD, and

translates malloc, memalign and other memory allocation functions into the

correspondent PMEM version in the libvmmalloc library. It allocates memory

from a preallocated file on the PMEM device as a memory pool. The mapping

from a PMEM virtual address to a file offset can change after the libvmmalloc

library reload. This problem can be solved by either porting NVMKVFS from vir-

tual address-based to offset-based programming, by substituting PMEM virtual ad-

dresses into the offsets in the memory pool file on the PMEM device. libpmemobj

in PMDK is also a good substitute, since it allocates memory objects with a desig-

nated ID. We can also consider using a PMEM allocator such as Makalu [BCB16].

However, there is currently no standard and stable PMEM allocator implementa-

tion.

4.1.5.2 Trade-off between performance and POSIX-compliance

Compared to hash tables, tree data structures used in the traditional file sys-

tems can decrease the throughput and scalability of indexing. In order to look up a

leaf node, search operations need to iterate over the tree nodes from the root to the

leaf, leading to higher computational complexity. In each iterating step, read and

write operations may acquire locks to protect concurrent access to the tree, which
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Machine PMEM CPU DRAM
PMEM 931GB Intel Optane

DC, 4 nodes
Intel(R) Xeon(R) Platinum 8280 CPU
@ 2.70GHz, 4 sockets × 28 cores, no

hyperthreading

2.1TB

Emulated
PMEM

50G emulated
PMEM

Intel(R) Xeon(R) CPU E5-2680 v4 @
2.40GHz, 1 socket × 14 cores, 2

hyperthreads/core

64GB DDR4

Table 4.2: The table lists the configurations for the machines used in our testbed.

can introduce scalability bottlenecks. Regular hash tables, on the other hand, have

O(1) amortized time complexity for searching. By constructing hash table keys as

file path names, NVMKVFS gets O(1) amortized time complexity for path lookup.

However, by using full path names as keys, NVMKVFS loses its compliance with the

POSIX permission checking. In the POSIX standard, permission checking is done

component-by-component on each directory or file along a path walk. The tree

representation for paths by nature supports such a permission checking with search

operations. This is due to the tree-analogous nature of the Unix-style file paths. To

summarize, there exists a trade-off between performance and POSIX-compliance

when choosing between trees and hash tables for the file system path lookup.

4.2 Evaluation

We evaluate the throughput and scalability of NVMKVFS on metadata-heavy

micro-benchmarks. The micro-benchmarks help us understand how NVMKVFS per-

forms in our target workloads as well as how it compares to other VFS-based file

systems. NVMKVFS achieves better scalability by removing the caching layers like
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VFS, so that the synchronization points and scalability bottlenecks are eliminated.

NVMKVFS is currently a file system prototype that focuses on metadata op-

erations. The current implementation supports system calls including access,

stat, creat, open, close, unlink and getdents. The system calls are

supported by the POSIX system call interfaces. The following sections evaluate

the throughput and scalability of NVMKVFS with file creation under different con-

ditions, file open-close and file stat workloads. The result shows that NVMKVFS

outperforms ext4-dax and NOVA in most of the cases. NVMKVFS has better scala-

bility in file creation and file open-close workloads compared to the other two file

systems.

Testbed. Our experimental testbed consists of two machines, one with PMEM

hardware and the other with root access for DRAM-emulation tests. We do not have

root access to the machine with PMEM, which is necessary for the NOVA [XS16]

kernel installation. So we only run NVMKVFS and NOVA comparison on this ma-

chine, and run NOVA comparison on the latter machine. Table 4.2 shows the ma-

chine configuration of the two.

4.2.1 Evaluation on PMEM hardware

This section describes the experiments run on the machine with Intel Optane

DC. As shown in Table 4.2, the machine has 4 CPU sockets, each with 28 cores,

and is installed with four Intel Optane DC persistent memory nodes. In order to

avoid the impact of the NUMA effect, we run experiments with only 28 cores on

the same socket, and use a single PMEM node that is local to that CPU socket. In
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Figure 4.4: Throughput and speedup comparison between NVMKVFS and ext4-dax
on the workload of file creation in a shared directory. Measured on Optane DC
persistent memory.

this section, we only compare NVMKVFS with ext4-dax, since we do not have sudo

access to this machine and cannot install the NOVA kernel.

4.2.1.1 File creation

Shared directory Figure 4.4 shows the performance comparison between NVMKVFS

and ext4-dax with a file creation workload. The files are created in a single shared

directory. NVMKVFS scales up to 20 cores, with a 7.45× throughput increase, while

ext4-dax scales poorly, with a 1.23× speedup over 28 CPU cores. This is because in

ext4-dax, the file creation is serialized by both locks in the VFS and locks specific to

ext4. The locks in the VFS layer include the per-superblock inode hash lock and the

parent directory’s read-write semaphore. The ext4-related locks include per-block-

group spinlocks for inode allocation and JBD2 journal-related locks. In the VFS,

the inode hash lock is a per-superblock spinlock that protects the file system inode

hash table. The parent directory’s read-write semaphore is used to protect concur-

68



#threads

th
ro

ug
hp

ut
 (k

 fi
le

s/
s)

0

2000

4000

6000

8000

5 10 15 20 25

nvmkvfs ext4-dax

File creation throughput (k files/s) in 
thread-local directories, NVM

#threads

sp
ee

du
p 

(x
)

0
2
4
6
8

10

5 10 15 20 25

nvmkvfs ext4-dax

File creation speedup (x) in thread-local 
directories, NVM

Figure 4.5: Throughput and speedup comparison between NVMKVFS and ext4-dax
on the workload of file creation in thread-local directories. Measured on Optane
DC persistent memory.

rent writes to the directory data page. These two locks are all parts of the VFS

layer. Hence, all file systems built with the VFS should have the same performance

bottleneck. NVMKVFS, on the other hand, relies on two persistent hash tables. It

minimizes the sharing between sibling files. Threads performing file creation in the

same directory are only serialized by a single atomic operation that increments the

offset of the parent directory’s dentry data page.

Thread-local directories Figure 4.5 shows the performance comparison between

NVMKVFS and ext4-dax with the file creation workload, where each thread tries to

create files in its thread-local directories. NVMKVFS scales up to 16 cores, with a

9.68× speedup and 768 MB/s write throughput, while ext4-dax scales up to 6 cores,

with a 1.65× speedup. Though there is no contention on the parent directory’s read-

write semaphore, ext4-dax is still bottlenecked by the other locks, including the per-

superblock inode hash lock in the VFS, and ext4-specific locks such as per-block-
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group spinlocks for inode allocation and JBD2 journal-related locks. We are still

investigating why NVMKVFS’s throughput is saturated after 16 cores. This could

be caused by the PMEM bandwidth, since the maximum write bandwidth of the

Optane DC is 2.3 GB/s [IYZ+19]. We also tried tuning the hash table configuration,

and were able to get better scalability with decreased throughput.
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4.2.1.2 Random file open and close

Figure 4.6 compares the performance between NVMKVFS and ext4-dax with

the random file open and close workload. The workload starts by initializing a di-

rectory with a designated number of files. Then, multiple pthreads are allocated and
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compete to open files that are randomly chosen from the directory. In NVMKVFS,

file open is an operation implemented based on the P-CLHT hash table GET oper-

ation, which is a read-only operation with no locks being held, NVMKVFS’s open

operation also needs to increment an embedded reference counter in the NVMKVFS

inodes in order to avoid the unlink operation deleting inodes that are currently

held open by other threads. The reference counter is incremented with x86 hardware

atomic instructions. As a result, this creates serialization on the atomic counters in

the inodes, especially when multiple threads are competing to open the same file.

As illustrated in Figure 4.6, with different sizes of the shared directory, ext-

dax scales up to 4 8 cores, while NVMKVFS scales to the maximum number of cores

used in the tests. For example, with 128 files being shared, NVMKVFS gets a 11.36x

speedup over 28 cores, while ext4-dax gets a 2.26× speedup. NVMKVFS open-

close scalability deprecates with decreased number of shared files. When using

a pool of 100k, 1k, 128 and 4 files, NVMKVFS gets 28-core speedups of 17.33×,

13.21×, 12.36× and 3.17× respectively, while ext4-dax gets 3.94×, 2.47×, 2.26×

and 2.29×.

Figure 4.7 illustrates how NVMKVFS scalability changes with different sizes

of the shared file pool. The single-thread open-close throughput decreases with in-

creased number of shared files. In fact, the more files are initialized in the shared

file pool, the higher the hash table’s load factor. This increases the hash table bucket

search time in read-heavy workloads. On the other hand, fewer files in the shared

pool leads to higher probability of multiple threads competing on the same file,

trying to increment the same atomic reference counter. This decreases the scalabil-
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Figure 4.8: Throughput and speedup comparison between NVMKVFS and ext4-dax
on the workload of retrieving status from files randomly picked in a pool of 128
files. Measured on Optane DC persistent memory.

ity. With 100k files being shared, NVMKVFS gets a 17.33× speedup over 28 cores,

while with 4 shared files, it gets a 3.17× speedup.

4.2.1.3 Random file status retrieval

Figure 4.8 shows the performance comparison between NVMKVFS and ext4-

dax with random stat operations. This is a workload on which NVMKVFS and

ext4-dax both perform with high scalability, since it is a read-only workload. With

128 shared access files, NVMKVFS gets a 22.23× speedup over 28 cores, while

ext4-dax gets a 16.79× speedup.

4.2.2 Evaluation on emulated PMEM

This section describes the experiments run on the machine with emulated

PMEM. The machine does not have PMEM hardware. But the root access to the

machine allows us to install and compare with the NOVA kernel file system. As

73



#threads

th
ro

ug
hp

ut
 (k

 fi
le

s/
s)

0
250
500
750

1000

2 4 6 8 10 12 14

nvmkvfs ext4-dax NOVA

File creation throughput (k files/s) in a 
shared directory, emulated NVM

#threads

sp
ee

du
p 

(x
)

0
2
4
6
8

10

2 4 6 8 10 12 14

nvmkvfs ext4-dax NOVA

File creation speedup (x) in a shared 
directory, emulated NVM

Figure 4.9: Throughput and speedup comparison between NVMKVFS, ext4-dax and
NOVA on the workload of file creation in a shared directory. Measured on DRAM-
emulated PMEM.

shown in Table 4.2, the machine has one CPU socket with 14 cores; each runs with

two hyperthreads. We run experiments with the CPU ID-s on different physical

cores to avoid the performance degradation with the hyperthreads. In this section,

we compare NVMKVFS with ext4-dax and NOVA. The results do not show how the

three file systems interact with the storage hardware; instead, it shows their CPU

usage.

4.2.2.1 File creation

Shared directory Figure 4.9 shows the performance comparison between NVMKVFS,

ext4-dax and NOVA with the file creation workload in a shared directory. NVMKVFS

scales almost linearly to 14 cores, with a 8.84× throughput increase, while ext4-dax

does not scale, and NOVA scales up to 2 cores with a maximum of 1.34× speedup.

This is because both ext4-dax and NOVA are kernel file systems built under the

VFS layer, with which file creation is serialized by the per-superblock inode hash
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Figure 4.10: Throughput and speedup comparison between NVMKVFS, ext4-dax
and NOVA on the workload of file creation in thread-local directories. directories.
Measured on DRAM-emulated PMEM.

lock and the parent directory’s read-write semaphore. All the file systems built with

the VFS suffer from this bottleneck. NOVA’s scalability is better than ext4-dax be-

cause of its per-inode metadata logging for crash consistency, per-CPU journal for

across-inode logging and per-CPU inode table for inode allocation. These designs

help NOVA avoid lock contention in journaling and inode allocation. NVMKVFS,

on the other hand, relies on two persistent hash tables and avoids all the above-

mentioned lock contention. In NVMKVFS, file creation in a shared directory is only

serialized by the atomic increment operation on the write offset in the parent direc-

tory’s dentry data pages.

Thread-local directories Figure 4.10 shows the performance comparison be-

tween NVMKVFS, ext4-dax and NOVA with the file creation workload in thread-

local directories. All three file systems scale almost linearly. NVMKVFS, ext4-dax

and NOVA respectively get a 14-core speedup of 9.15×, 7.23× and 7.80×. Com-
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Figure 4.11: Throughput and speedup comparison between NVMKVFS, ext4-dax
and NOVA on the workload of opening and closing files randomly picked in a pool
of 128 files. Measured on DRAM-emulated PMEM.

pared to NVMKVFS and NOVA, ext4-dax is still bottlenecked by the ext4-specific

locks such as per-block-group spinlocks for inode allocation and JBD2 journal-

related locks. The scalability degradation in ext4-dax is not as obvious as in Sec-

tion 4.2.1, because the experiment is run on the DRAM-emulated PMEM, which

shortens the scopes of the critical sessions of the allocation and journal locks.

4.2.2.2 Random file open and close

Figure 4.11 compares the performance between NVMKVFS, ext4-dax and

NOVA with the random file open and close workload. Both ext-dax and NOVA

scales up to 8 cores, while NVMKVFS achieves a close-to-linear scalability over the

14 cores. This is because in NVMKVFS, the only serialization point in the workload

happens when threads compete to increment the reference counter for the same

file, while ext4-dax and NOVA are still bottlenecked by the VFS locks for shared

resources. The 14-core speedups for NVMKVFS, ext4-dax and NOVA are 5.31×,
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and NOVA on the workload of retrieving status from files randomly picked in a
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3.20× and 2.99× respectively.

4.2.2.3 Random file status retrieval

Figure 4.12 shows the performance comparison between NVMKVFS, ext4-

dax and NOVA with random stat operations. The three file systems get an almost

linear and equally high scalability, since it is a read-only workload. With 128 shared

access files, NVMKVFS, ext4-dax and NOVA get a 10.70×, a 11.49× and a 11.53×

speedup over 14 cores.
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Chapter 5

Related work

5.1 File system transactions

There have been a number of efforts over the years to provide systems sup-

port for file-system transactions. Each of these systems failed to gain adoption

due to one of the following reasons: they had severe restrictions on what could be

placed inside a transaction, they were complicated to use, they added complexity

to the kernel, or they caused significant performance degradation. Learning from

prior systems, TXFS avoids all of these mistakes. Table 5.1 summarizes related

work and demonstrates that TXFS is unique among transactional file systems.

Building file systems on top of user-space databases. One way to provide trans-

actional updates for applications is to build a file system over a user-space trans-

actional database. OdeFS [Geh94], Inversion [Ols93], and DBFS [MTV02] use a

database (such as Berkeley DB [OBS99]) to provide ACID transactions to applica-

tions via NFS. Amino [Wri07] tracks all user updates via ptrace and employs a

user-level database to provide transactional updates. Such systems come with sig-

nificant performance cost (e.g., 50-80% for large operations in DBFS [MTV02]).

In-kernel transactional file systems. An approach that leads to higher perfor-

mance is adding transactions to in-kernel file systems. Valor [SGC+09] provides
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kernel support for file-system transactions. However, Valor does not provide a sim-

ple begin/end transaction interface, and it forces programmers to use seven new

system calls to manage the transaction log. Valor also adds significant complexity

into the kernel.

Microsoft introduced Transactional NTFS (TxF), Transaction Registry (TxR),

and the kernel transaction manager (KTM) in Windows Vista [Rus05]. Using TxF

requires all transactional operations be explicit (i.e., instead of using read() in

a transaction, the programmer must add an explicit transactional read). Therefore

TxF had a high barrier to entry and code that used it required separate maintenance.

TxF also had significant limitations, like no transactions on the root file system.

Transactional operating systems. A third, somewhat heavyweight, approach is

modifying the entire operating system to provide transactions. Our prior work,

TxOS [PHR+09], is an operating system that provides transactions. This approach

adds significant complexity to the kernel. For example, TxOS modified tens of

thousands of lines of code and changed core OS data structures like the inode.

Maintaining such a kernel is tricky – Windows abandoned its transactional file sys-

tem and kernel transaction manager [Mic].

The transactional capabilities of the file system supported by TxOS is simi-

lar in approach to TXFS. It also uses the file-system journal and modifies the virtual

file system (VFS) code to provide isolation. One could view TXFS as specializing

TxOS to the file system, achieving a transactional file system at significantly lower

cost, while adding file-system specific optimizations like selective journaling and

eliminating redundant work within transactions.
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Transactional storage systems. Similar to our work, CFS [Min15] provides a

lightweight mechanism for atomic updates of multiple files, building on top of

transactional flash storage. MARS [Cob13] builds on hardware-provided atomicity

to build a transactional system. TxFlash [PRZ08] uses the copy-on-write nature of

Flash SSDs to provide transactions at low cost. In contrast to these systems, TXFS

provides transactions without assuming any hardware support (beside device cache

flush and atomic sector updates). Isotope [Shi16] uses multi-version concurrency

control to provide isolation, significantly increasing its complexity. Isotope builds

a user-space transactional file system using FUSE, which limits its performance

for certain workloads. The higher abstraction level of TXFS makes implementing

transactional optimizations and tailored isolation significantly easier than the lower

level of Isotope.

Failure atomicity. Failure-atomic msync [PKS13] is similar to TxFS in that it re-

uses the journal for providing atomicity to application updates; in contrast, TxFS

provides full ACID transactions at significantly higher complexity. AdvFS [VMP+15]

is also limited in the same way, is specific to the Tru64 file system, and is not avail-

able as open-source (latest version available was from 2008). The principles behind

TXFS could be used in any file system that has an internal mechanism for atomic

updates.

We previewed the ideas behind TXFS at HotOS [HKCW17], and reported

on our complete system at ATC [HZN+18]. This paper contains additional experi-

ments and background, along with more details about our design and implementa-

tion.
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In-kernel transactional
FS

TXFS 3 3 3 3 H L
Valor 3 3 7 3 H L
TxF 3 3 7 3 H H

Transactional OS TxOS 3 3 3 3 H H

FS over userspace
databases

OdeFS
Relying

on
databases

7 3 L L
Inversion

DBFS
Amino

Transactional storage
CFS 7 3 3 7 H L

MARS 3 3 7 7 H H
Isotope 3 3 3 3 H H

Failure atomicity
msync 7 3 3 3 H L
AdvFS 7 3 3 3 H L

Table 5.1: The table compares prior work providing ACID transactions or failure
atomicity in a local file system. Legend: 3- supported, 7- unsupported, L - Low, H -
High. Note that only TxFS provides isolation and durability with high performance
and low implementation complexity without restrictions or hardware modifications.

5.2 Optimizing metadata and data paths

Research [WJX18, VNP+14] shows that after moving from block-based de-

vices to persistent memory, the overhead of the VFS becomes more of an issue.

Compared to block-based storage devices, persistent memory has higher throughput

in small, random reads/writes. The reduced latency in I/O leads to more observable

CPU time. This, along with byte-addressable reads and writes, makes the DRAM
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caches less efficient, especially the dentry caches [WJX18]. ByVFS [WJX18] im-

plements a simplified VFS layer with dcache removed. It still keeps the inode

cache since it helps achieve higher write throughput. ByVFS does not support con-

currency, which is provided by dcache in VFS.

Some previous systems have also explored the idea of more efficient meta-

data operations. TableFS [RG13] is a FUSE-based file system relying on a user-

space LevelDB [Goo] for path name lookup. Although FUSE introduced high sys-

tem call and kernel-user communication overhead, TableFS still beats Ext4, XFS

and Btrfs in many workloads. It does not support kernel bypass on read and write

system calls. Since TableFS is FUSE-based, it still relies on the underlying kernel

file systems to provide many file-related functionalities. As a result, its scalability,

latency and throughput are still restricted by the file systems upon which it builds.

To reduce overhead on context switching and data movement, several file

systems choose to bypass the kernel. For example, FLEX and SplitFS bypass the

kernel by implementing read and write system calls using mmap. Strata [KFH+17]

allows the user space library file system to write to an operation log shared with the

kernel file system, and relies on the kernel FS to digest the log.

5.3 Persistent data structures

Multiple attempts have been made to develop persistent data structures with

crash consistency, such as NV-Tree [YWC+15], wB+ tree [CJ15], FPTree [OLN+16],

WOART [LLS+17]. FAST and FAIR [HKWN18], Level Hashing [ZHW18] and

CCEH [NCrC+19]. RECIPE [LMK+19] categorizes existing concurrent DRAM
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indexes with their ways to guarantee atomicity, and provides a guidance for con-

verting them into persistent indexes with crash consistency.

While prior work focuses on reducing flushes, Zuriel et al. proposed two

algorithms on lock-free durable sets [ZFS+19]. Link-free avoids persisting any

pointer in the persistent data structures. It maintains in-DRAM data structures with

pointers to support fast access to the set nodes, and reconstruct the volatile data

structures from the persistent set after a crash. SOFT attempts to further reduce the

number of memory fences.
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Chapter 6

Conclusion

We present TXFS, a transactional file system built with less development

effort than previous systems by leveraging the file-system journal. TXFS is easy to

develop, it is easy to use, and it does not have significant overhead for transactions.

We show that using TXFS transactions increases performance significantly for a

number of different workloads.

Transactional file systems have not been successful for a variety of rea-

sons. TXFS shows that it is possible to avoid the mistakes of the past, and build

a transactional file system with low complexity. Given the power and flexibility of

file-system transactions, we believe they should be examined again by file-system

researchers and developers. Adopting a transactional interface would allow us to

borrow decades of research on optimizations from the database community while

greatly simplifying the development of crash-consistent applications.

We then propose NVMKVFS, a scalable user-space file system prototype on

persistent memory. NVM’s low memory access latency makes it possible to elim-

inate the VFS caches while maintaining performance. NVMKVFS builds its meta-

data and data indexing from two persistent indexes. The highly parallel metadata

and data indexes also handle the concurrent accesses in the file system operations,

such as lookups and inode updates. They provide opportunities to implement scal-
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able file system calls by removing the scalability bottlenecks introduced by multiple

locks in the VFS layer.
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