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This paper is the first part of a trilogy dedicated to the role of triple encounters in the evolution of stellar systems.
It shows how a symmetric triple collision may be perturbed to obtain a family of asymmetric triple close
approaches with arbitrary high escape velocities and with the formation of binaries. The main result is that as
the perturbation approaches zero, the product of the semimajor axis of the binary and the square of the escape
velocity approach a value dependent only on the participating masses. The second part will describe results
of the extensive numerical integrations, will offer detailed information on the one-parameter family of orbits
generated, and will outline the intricate numerical techniques and controls used, without which no reliable
numerical results may be obtained regarding the dynamic behavior of multicomponent stellar systems. The third
and last part offers applications in stellar and galactic dynamics. In a parametric presentation it gives actual
sizes of binaries formed and values of escape-velocities generated for triplets formed of Sun-like stars, of white
dwarfs, of neutron stars, and of triple systems of galaxies.

INTRODUCTION

HE conjecture that sufficiently close simultaneous
asymmetric approaches occurring in the problem
of three bodies result in a binary formation and in an
escaping third star has been recently supported by
numerical evidence (Agekian 1967 and Szebehely
1967). This conjecture first mentioned by Birkhoff
(1922, 1927) and later reformulated by Szebehely
(1971, 1973) seems to be of fundamental importance
in the global behavior of three gravitationally inter-
acting stars. If orbits which are periodic even in the
most general sense dominate the system, then the
above conjecture is clearly an erroneous attempt to
generalize the behavior of systems with low-angular
momenta (c¢) to the global situation. In fact, the
principal problem is the partition of the phase-space
of the initial conditions. The regions of the phase space
with bounded motions will probably be mixed with
escape regions according to Hénon’s (1974) recent
conjecture of islands. Some of the large number of
periodic orbits, recently discovered in the general
problem of three bodies by Hénon (1974), Brouke
(1974), Hadjidemetriou (1973), Standish (1970), and
Szebehely (1970) show linear stability, some are un-
stable. These periodic orbits may be periodic only in a
rotating coordinate system (relative periodicity), but
from the point of view of boundedness, this kind of
periodicity in a general sense is of great importance.
Since Sundman (1912) has shown that simultaneous
close approaches occur only with small values of the
total angular momentum, ¢ (in fact for a triple collision
¢=0 is a necessary condition), the study of systems
with low values of ¢ favors escape. Consider the equi-
lateral Lagrangian solution which is a symmetric
rotating configuration. If the mean motion is such that
the virial coefficient is unity, the distances between
the bodies is constant. If the velocity is reduced, the
pulsating Lagrangian solution appears, and when the

initial velocities of the participating bodies is zero (and
consequently ¢=0), a total collapse occurs. It is
important to note that the symmetry is never destroyed
in the Lagrangian solution, therefore, escape does not
occur and all motions are periodic, even when ¢ is
small. It might be equally important to recall that in
the general problem, when all three masses are of the
same order of magnitude, the Lagrangian solutions are
all unstable.

If asymmetric changes of the initial conditions are
introduced and c¢ is small, the equilateral configuration
leads to escapes instead of periodic orbits. The existence
of these motions are along the previously mentioned
Birkhoff-Szebehely conjecture and this is the raison
d’étre of this paper. The instability of the unperturbed
Lagrangian solutions, together with the escapes
occurring in the associated perturbed system seem to
offer an example, if not support, to the Laplacian
instability as the dominant behavior.

THE MODEL

The unit masses occupy initially the apices of an
equilateral triangle with unit sides. All initial velocities
are parallel with one of the sides, say mm,. The
velocities of m; and m. along the side mm, are v,/2
and the velocity of m; is v, in the opposite direction.
Placing the center of mass of the system at the origin,
it will stay there. The initial conditions are x,,==3%;
y1=yp=—9y/2==3742; d1=ds=—0s/2=0/2; 1=Y:
=3 =13=0.

The complex vector

2= rkei‘#k

represents the location of the k-t¢ body in the above
system with 7;(0)=3"* and ¢:(0)=7/2—2wk/3. Ini-
tially, therefore,

21,(0) = 3~ big2wiki3,
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The equations of motion are

3 2i—2k

The case of triple collision corresponds to zero initial

velocities or to ¢i(f) =¢x(0)=constant, and r,=r,

=r3=r(t). These conditions give, with G=1,

d*
= — =3

ar

the integral of which is
(7)?2/2=3H"1-1.

Note that the (regularizable) triple collision is
described by the solution of the above two-body
equations:

r=2"13"4(14cos V27),

where rdr=dt, or t=2"13"%(7+ 2% sin 2}r), which latter
is a simple version of Kepler’s equation. The time to
collision is 7,=72"% or #,= (24)~*r.

The nonzero initial velocities introduce an asym-
metry. The three distances are not equal any more,
in fact up to order two, at the beginning of the motion
(t=0) we have ri;=1—af, ry3=1+bt+c? and 7y
=1—0bt+c?, where a=3%, b= 3v0/4 and c—g(wvo 1).
The coefficients a, b, and ¢ follow from the series expan-
sions for the position vectors 2;. For instance, x;
=vgi+ - -+, y3=93(0)— (V3/2)#+ - - -, etc. Note that
for small ¢, the inequality stands : 733 <712 <73, therefore,
at the beginning of the motion an asymmetry is estab-
lished which is controlled by the initial velocity through
the coefficient b, and which results in the escape of m,.

The following dynamical parameters may be ob-
tained by using their conventional definitions [see for
instance Szebehely (1973)]. Initially, the moment of
inertia of the system is I(0)=} mz2(0)=1, with
1(0)=0, and J(0)=3u2—6. At =0 the kinetic energy
is T7'(0)=3 X mr2(0)=3n2/4 and the potential energy
is

Gm;m,-
V=—F=— Y} =-3

1<i<<3 7y

The angular momentum is |¢|=V3v/2 and the
virial coefficient at =0 is a=192/2. The total energy
is given by E,= —3(1—uv2/4).

ANALYSIS

(1) The motion begins with a contraction as long
as 1(0)<0 or 9<V2. In this study the initial condition
(v=0) is slightly disturbed, so v is arbitrarily small
(v<1), 1(0)<0, and E,<0. The initial collapse results
in a minimum value of the moment of inertia,

SZEBEHELY

IminZ 7)04/64;

which bound is obtained as follows.
As originally shown by Sundman (1912), the function

1.
L= (—};(I +4¢t) —8E(I)}

has the property that if I increases, L does not decrease,
and if 7 decreases, L does .not increase. Variations of
this function play important roles in the works of
Birkhoff (1927), Siegel (1956), and Szebehely (1973).

Estimating the value of Imin occurring at the first
collapse we have Iy=1Iy, I,=0, Iy=Ini,, I,=0, and
Ly> L, since I1>I,. Consequently,

4¢? 4¢?
; +8|E;| ()} > ——— +8| Ei|(ID)mint= L,

0 min

L=

and substituting the appropriate values, we have the
desired result.

(2) The asymmetric triple close approach results
in a binary and in an escaper. The (asymptotic) hy-
perbolic escape velocity relative to the center of mass
of the three bodies, v, and the asymptotic value of
of the semimajor axis of the binary ¢., depend on the
perturbation measured by vo. As vo— 0%, the product
ol — 2.

To show this, first, attention is directed to the double
limit-process involved 'in the above result. After the
binary is formed, the distance between the escaper
and the binary, r —, the velocity of the escaper,
v— 7, and the semimajor axis of the binary a ap-
proaches asymptotically the value a,. In this limit
process the original three-body problem approaches
its partition into two two-body problems. The escaper
and the center of mass of the binary form a hyperbolic
two-body problem and the members of the binary form
an elliptic two-body problem.

The second limit process refers to the behavior of
the members of the one-parameter (vy) family as the
perturbing initial velocity v, approaches zero.

After the binary was formed, the total energy, E,
may be written as

E,=EAEtE.,

where E, is the escape energy, Ej is the energy stored
in the binary, and E,; is the correction due to three-
body effects. Equations for E, and E; may be written
from two-body consideration as follows:

Mm, Gma(my+ms)
¢ 2(m1+m3)v r ’
GM1M3
Ey=— ,
20
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where m, and m; form the binary and M is the total
mass.

Several escape conditions exist in the literature. For
instance, Standish (1971) has shown that it is sufficient
for escape that

Gmymaems  d? Mms
E.> + 22 sin’a,
mit+ms ri(r—d)  2(mit-ms)
and that
G
r>d=—— Y, mm;

|E;| 1<4<i<s

where « is the angle between v and r.

These conditions are satisfied and escape does occur
for sufficiently small perturbations. This follows from
the fact that as v9— 0%, Inmin— 0. The asymmetric
triple close approach, after reaching Imi. generates
sufficiently large values of I and I for escape. For an
indication of this process see Birkhoff (1927) and for
its detailed analysis, Szebehely (1973). Note that high-
precision numerical integrations also verify the ana-
lytical expectations. In fact, escape of m, occurs in the
region of 0<2,<0.186.

In the first limit process E. is fixed,

Gmlrng
Eeb - 0, Eb —r— y
2a.,
and
mew?
Eo—> ——,
2(m1+m3)
or
Mm, Gmams
E¢= Voo~ — .
2(my4-ms) 2a,,

In the second limit process we consider the general
form of the total energy
3Gm?

—3
E,=3mve®— ,

where m=m=m;=m; and [ is the length of the side
of the equilateral triangle at the beginning of the
motion. Equating the two forms of the total energy
we have

mams/mi+ms m [ mi+ms Gm
M M l

me me

AoV =

As vy — 0%, the following limiting values are obtained:
Inin— 0F, ¢ — 0+, E,— —3Gm?™}, a,— 0%, v,—,

and consequently
mams (m1+ms
G— .
ma M

QopVo? —
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which limit for my=ms=m3;=1 and G=1 become %
as stated.

Note that if the above simplifying substitution is
made prior to the second limit process, we have
@0 (V2 —10*+4) =2, allowing an orderly presentation of
numerically established members of the family.

ASTRONOMICAL CONSEQUENCES AND REMARKS

The not unpleasing result, a.%.2— § may be put
in other forms, utilizing the minimum of inertia
(Imin¥!>4/9), or other parameters of the family.

It is essential to point out that in the second limit
process, representing the members of the family of close
approaches, the angular momentum approaches zero
and the total energy approaches —3. The process
allows the generation of arbitrary high-escape velocities
with arbitrary close binaries.

The sizes of the participating bodies determine in
physical and astronomical problems the meaningful
minimum values of ¢, and, consequently, the maximum
obtainable value of the escape velocity. The details of
such computations as well as the results of the extensive
numerical integrations will be presented in the sequel.
An example, however, might clarify the process.
Consider three white dwarfs of solar masses M =M o
and of radii R=0.005Rp located initially at =1 pc
distances. If the perturbing velocity is such that the
semimajor axis of the binary formed is a,=100R,
then the escape velocity is 524 km/sec. If the pertur-
bation is reduced and a closer binary is formed
(a,=10R), then the escape velocity increases to 1440
km/sec. It may be shown that high-density neutron
stars produce escapers with relativistic velocities.
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