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This dissertation presents a theory for acoustic radiation force on a spherical

scatterer embedded in a soft elastic medium that supports the propagation

of shear waves. Existing theories for acoustic radiation force on a sphere are

restricted to a fluid surrounding the sphere. Potential applications reside in

biology and medicine. For example, the mechanical properties of soft tissue, in

particular its shear stiffness, are a useful proxy for tissue health and can be used

for non-invasive tissue characterization. The present work investigates the ef-

fect that shear elasticity in the surrounding medium has on the radiation force

on an embedded spherical scatterer. The theory is developed in Lagrangian co-

ordinates, instead of Eulerian coordinates that are traditionally used for a fluid

surrounding the sphere. It is assumed that a compressional wave is incident

on the sphere. Coefficients in the spherical harmonic expansions describing the

incident compressional wave field, and the scattered compressional and shear

wave fields, are examined in detail. The radiation force is separated into two
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contributions, one that corresponds to the scattered compressional waves and

the other to the scattered shear waves, both of which displace the sphere from

its initial position. The compressional wave contribution can be determined

analytically, and a variety of material properties for the sphere and incident

beam patterns are examined for this contribution. The shear wave contribu-

tion has yet to be determined analytically, and is investigated numerically. A

third contribution, corresponding to the static deformation of the surround-

ing medium due to the scattered shear wave, is also investigated numerically.

A finite element method is used to determine the full effect of the scattered

shear wave on the sphere displacement, and it is found that effects due to the

scattered shear wave may be of the same order as those due to the scattered

compressional wave.
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Chapter 1

Introduction

This dissertation presents a theory for acoustic radiation force on an

elastic sphere surrounded by an infinite fluid to include the effects of shear

forces exerted by a soft elastic medium surrounding the sphere. While for

many years radiation force has been investigated for scatterers in ideal fluid

media [1–10], viscous fluids [3, 11–16], and heat-conducting fluids [14, 17–19],

until recently [20] a theory had not been developed for the case of scatterers

embedded in soft elastic media that support the propagation of shear waves,

which has important applications in biology and medicine. Improving the the-

oretical understanding of this last case is the main focus of this dissertation.

The primary application of acoustic radiation force on scatterers in

soft elastic media is remote assessment of soft tissue health. Soft tissues have

acoustic properties (density ρ and bulk modulus K) very similar to those of

water, but they also have a nonzero shear modulus µ that is many orders of

magnitude smaller than the bulk modulus [21]. The shear modulus correlates

with tissue health and may be dramatically different for normal and abnormal

tissues [22]. Since tissue health is frequently assessed through invasive surgical

techniques such as biopsy, the past few decades have seen a strong push to

1



improve measurements of shear modulus in soft tissue through non-invasive

means [23–25]. These methods typically make use of acoustic radiation force

produced by the absorption of an incident beam in, and momentum transfer

into, the surrounding soft tissue medium, then measuring the resulting dis-

placements at a number of different locations within the tissue. Another goal

of this dissertation is therefore to examine the practicality of investigating soft

tissue health with acoustic radiation force due to scattering from a spherical

inhomogeneity embedded within the tissue instead of that due to absorption

of the incident beam. By determining the radiation force from a focused beam

and measuring the resulting displacement of the scatterer within the tissue, one

may expect to evaluate the shear stiffness of the tissue and draw conclusions

about its health.

1.1 Brief History of Radiation Force Theory

Originally referred to as radiation pressure when proposed by Leonhard

Euler in 1746 to explain why the tail of a comet points away from the sun [26],

radiation force enjoys a long history that is often confusing and controversial

in its subtler principles [9]. In his 1978 review, Beyer writes the following [27]:

“It might be said that radiation pressure is a phenomenon that the observer

thinks he understands—for short intervals, and only every now and then.”

Bearing this propensity for confusion in mind, we shall begin by discussing

the history of the theory of radiation force in fluids to prepare the reader

for the extension to soft elastic media described in this dissertation. Several
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equations are provided where necessary to facilitate the discussion of certain

key concepts, but for the most part this section is meant to provide a physical

overview.

As with many topics that are investigated in acoustics, a description

of radiation pressure first appeared in optics. In 1874, James Clerk Maxwell

published his treatise on electromagnetism [28] where he claimed that electro-

magnetic waves carry momentum and that they can exert a directional force

on a scatterer. This claim was confirmed experimentally in 1901 by Lebedev

[29] and in 1903 by Nichols and Hull [30]. Applications of optical radiation

force have exploded in number since that time, and while they are far too

numerous to list in detail here, it is worth mentioning that Arthur Ashkin

received the 2018 Nobel Prize in Physics “for the optical tweezers and their

application to biological systems” [31–33]. Optical tweezers were also used by

Steven Chu, Claude Cohen-Tannoudji, and William D. Phillips in their work

on laser cooling of neutral atoms, for which they received the 1997 Nobel Prize

in Physics. Even over a hundred years after its initial mathematical descrip-

tion and experimental confirmation, radiation force remains relevant in applied

physics.

Lord Rayleigh was the first to propose an analogous phenomenon in

acoustics [34, 35], and an alternative definition was proposed by Langevin [36,

37], both of which were described for sound waves normally incident on a

plane interface. According to Lee and Wang [9], the difference between the

two can be described (and generalized to two and three dimensions) as follows:
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the radiation force is of the Langevin type if it depends only on the waves

themselves, and it is of the Rayleigh type if it depends on both the waves

and a constraint. For example, the force due to reflection from the interior

of the end of a closed tube, where the fluid in the tube is not allowed to

interact with the fluid outside the tube, is of the Rayleigh type, whereas the

force on a spherical scatterer surrounded by an infinite medium—the focus of

this dissertation—is of the Langevin type because the infinite medium does

not impose any additional constraints. In practice, Langevin radiation force is

usually the more relevant quantity.

Another description of the radiation force, which was developed by

Brillouin, is especially useful to mathematically describe the radiation force

in an arbitrary volume or on an arbitrary scatterer. Brillouin first defined a

quantity called the acoustic radiation stress tensor as [38]

Sij = 〈σ̃ij〉 − 〈ρvivj〉 , (1.1)

where ρ represents density, vi denotes particle velocity, σ̃ij is the Cauchy stress

tensor—equal to Pδij in an ideal fluid, where P is the total pressure and δij is

the Kronecker delta—and angled brackets indicate a time average. From this

quantity, the force per unit volume in a fluid is found to be

F V
i =

∂Sij
∂x̃j

, (1.2)

where x̃j denotes Eulerian position, and the force per unit area is found to be

F S
i = Sijñj , (1.3)
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where ñj denotes the outward unit vector normal to an Eulerian surface.

Whether explicitly or through less direct means, historical descriptions of ra-

diation force on a scatterer in a fluid medium make use of the quantity in

Eq. (1.1).

The first such calculation of radiation force on a scatterer, though not

making explicit use of Brillouin’s reasoning, was performed by King, who ex-

amined radiation force on rigid spheres [1]. King noted that the force tends

to push rigid spheres toward pressure nodes or antinodes depending on their

size and density. He also noted that for spheres much smaller than an acoustic

wavelength (kR � 1, where k is the compressional wavenumber and R is the

sphere radius), the force is proportional to (kR)6 in plane traveling waves and

proportional to (kR)3 in plane standing waves, indicating dramatic differences

depending on the incident field and suggesting a much higher force on small

particles in a standing wave. (Ergo, it is little wonder that in 1874, Kundt and

Lehmann first experimentally demonstrated acoustic radiation force acting on

particles in a standing wave [39], before any mathematical description of the

phenomenon.) Gor’kov extended the analysis to arbitrary (but small) parti-

cles through a simpler method based in fluid dynamics, corroborating King’s

conclusions for traveling and standing waves [7]. King’s results have been con-

firmed experimentally in a number of works [5, 40–42], two examples of which

are shown in Fig. 1.1.

Westervelt applied Brillouin’s reasoning to scatterers of arbitrary size

and shape [2, 3], though he did not analytically evaluate the force on non-
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(a) Rudnick [41] (b) Leung et al. [42]

Figure 1.1: Experimental confirmation of King’s predictions for radiation force
on spheres that are rigid compared with the surrounding air. (a) Measured
acoustic pressure (plus signs) and acoustic radiation force divided by cork
sphere weight (filled circles) compared with curves from King’s theory (from
Rudnick [41]). (b) Acoustic force per weight of a polyethylene sphere for several
sound pressure levels (from Leung et al. [42]).

spherical scatterers. Of particular importance is his recognition that in order to

calculate the radiation force on the scatterer, it is not necessary to integrate the

acoustic radiation stress tensor over the surface of the scatterer itself. Instead,

a more convenient surface enclosing the scatterer can be chosen to yield a

mathematically equivalent result. The process, as summarized by Lee and

Wang [8, 9], is as follows. In Eulerian coordinates, conservation of momentum,

which is written as

ρ

(
∂vn
∂t

+ vk
∂vn
∂x̃n

)
=
∂σ̃nk
∂xk

, (1.4)
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and conservation of mass, which is written as

∂ρ

∂t
+
∂(ρvk)

∂x̃k
= 0 , (1.5)

can be combined to obtain

∂(ρvn)

∂t
=
∂σ̃nk
∂xk

− ∂(ρvnvk)

∂x̃k
. (1.6)

For time-harmonic quantities, time averaging Eq. (1.6) eliminates the time

derivative term and gives, in terms of the acoustic radiation stress tensor de-

fined in Eq. (1.1),

∂Snk
∂x̃k

= 0 , (1.7)

which describes that force per unit volume due to the radiation stress tensor

is zero in the region surrounding the sphere. By integrating over a volume

surrounding the sphere and using the divergence theorem, we can find the

radiation force Fn to be

Fn = −
∫
S̃

(〈σ̃nk〉 − 〈ρvnvk〉) ñk dS̃

=

∫
S̃0

(〈σ̃nk〉 − 〈ρvnvk〉) ñk dS̃0 , (1.8)

where S̃ is the surface of the sphere and S̃0 is a (possibly much larger) surface

that encloses the sphere. (The difference in sign occurs because ñk points

away from the volume bounded by S̃ and S̃0, meaning it points inward from

S̃ and outward from S̃0.) Though not often used in early derivations of the

radiation force on spherical scatterers, this technique allows for the use of far-

field expressions of pressure and particle velocity, which simplifies the analysis
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compared with integrating at the scatterer surface itself. This same property

will be noted in Chapter 2 in the derivation of the radiation force due to

compressional wave fields, and its implications for the force associated with

shear wave fields are briefly discussed in Chapter 5.

For spherical scatterers of arbitrary size, Yosioka and Kawasima inte-

grated the acoustic radiation stress tensor over the equilibrium sphere radius to

provide relations for the force on compressible spheres subject to plane waves

[4]. In addition to confirming several of King’s results, they noted several in-

teresting effects for gas bubbles. First, they observed that the magnitude of

the radiation force increases rapidly near the bubble resonance, and second,

for standing wave fields, they observed that the bubble is pushed toward either

pressure nodes or antinodes depending on whether the frequency is above or

below the bubble resonance, respectively; both of these effects are discussed

further in Chapter 4. The results obtained by Yosioka and Kawasima have

repeatedly been verified experimentally [43, 44].

Hasegawa and Yosioka extended the analysis of Yosioka and Kawasima

to solid elastic spheres of arbitrary size [5] and found several interesting results

when comparing with King’s theory. In particular, they found that there are

noticeable deviations from King’s theory around resonances associated with

normal modes of the free vibration of the sphere. As with the results pre-

sented by Yosioka and Kawasima for compressible spheres [4], Hasegawa and

Yosioka noted that the elastic properties of a hard scatterer have a significant

effect on the radiation force on the scatterer. Since Hasegawa and Yosioka
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were investigating the use of radiation force for measuring acoustic intensity

in a wave, they concluded that these sphere resonances must be considered for

accurate determination of the intensity—and that they should be avoided, if

possible, so as to not confound the measurement. The analytical results ob-

tained by Hasegawa and Yosioka were experimentally confirmed in the same

work [5] as well as by a number of other works [6, 45–48], and as their the-

ory allows for spheres with arbitrary material properties, it has become an

important benchmark, and it will be used as such in Chapter 2.

While most early works focused their discussions on simple plane waves

or converging/diverging spherical waves [49] incident on the sphere, there have

since been many investigations of sound beams incident on spheres. For reasons

of analytical simplicity, axisymmetric beams were considered first [50–52], but

advances in computing and numerical techniques have recently allowed for

simulations of radiation force due to more complicated beam geometries [10,

53–56]. Several peculiar results can arise from more complicated incident fields,

including direction reversal of the force such that the scatterer is pushed in a

direction opposite the propagation direction of the beam [52–54], so incident

sound beams have received greater attention as of late. The present work

therefore considers arbitrary fields incident on the sphere and compares the

resulting changes in amplitude and direction of the predicted radiation force

for several different cases.

In addition to the work cited above describing the force on a sphere in

an ideal fluid, there have been a number of discussions of the effects of viscosity
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in the fluid. Westervelt first noted [2] that for spheres that are small compared

to a wavelength (kR � 1), viscous forces at the sphere surface can cause

the radiation force to be several orders of magnitude higher than predicted

by King. The effect of viscosity on the radiation force on small spheres was

further examined by Doinikov to include effects related to acoustic streaming

[11–14], and he noted several interesting effects depending on the viscous wave

penetration depth δ, written as [57]

δ =

√
2η

ωρ
(1.9)

where η is the dynamic viscosity and ω is angular frequency. In particular, for

R/δ � 1, the force on the sphere may be opposite the direction of propagation

of the incident wave, and he posited that good theoretical agreement with

inviscid fluid predictions in previous experiments could be attributed to large

R/δ. For example, Rudnick’s experiments use spheres with R/δ between 9.2

and 69.4 and show good agreement with King’s theory [41]. However, as noted

by Danilov and Mironov [15], even for R/δ � 1 the magnitude of the force

can be much greater in viscous fluid than in inviscid fluid for small spheres

(kR� 1) in traveling waves. Danilov and Mironov also consider more general

incident fields and simplify the analysis, and later work by Settnes and Bruus

[16] contains a discussion of the more experimentally relevant parameter range

characterized by R/δ = O(1), which is useful for microchannel acoustophoresis

of compressible particles in liquids.

Still, to the present author’s knowledge, previous analyses related to vis-

cosity have only addressed sphere sizes much smaller than an acoustic wave-
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length. Additionally, while there are several authors who discuss radiation

force in elastic solids due to traveling waves [58, 59] and perform experiments

confirming the resulting predictions of acoustic-radiation induced static strain

[60], in existing literature there are few analyses of acoustic radiation force on

scatterers embedded in elastic media. This dissertation will therefore address

effects related to shear modulus in soft elastic media. The choice of “soft”

elastic media allows for several useful approximations to be made to the Piola-

Kirchhoff stress tensor (discussed in Chapter 2) and is especially applicable to

soft tissue surrounding a scatterer. Also, though effects due to heat conduction

and streaming will be ignored as a result of the aforementioned approximation,

effects related to viscosity will be examined as well so as to both compare with

effects due to shear modulus and also offer qualitative comparisons with the

results mentioned previously.

1.2 Applications of Acoustic Radiation Force

In order to appreciate the relevance of acoustic radiation force on scat-

terers in soft elastic media, it is useful to discuss existing applications of acous-

tic radiation force. The phenomenon has a wide variety of applications in bi-

ology and medicine [61], including acoustic tweezers [50], cell trapping [62]

and nonintrusive manipulation of microparticles [63], acoustomicrofluidics for

particle sorting [64], repositioning kidney stones [65], targeting nanodroplets

and microbubbles for imaging and therapy [66, 67], etc. These are just a few

of the many applications, so in this section there will only be a discussion of

11



those most relevant to soft tissue elastography.

While the primary focus of this dissertation is acoustic radiation force

on a sphere, many existing applications of acoustic radiation force in soft

tissue elastography make use of a different physical mechanism: absorption

in the medium. The force per unit volume due to absorption of an incident

acoustic field is described by the relation [68, 69]

F V =
2α〈I〉
cl

, (1.10)

where α is the attenuation coefficient in the medium [Np/m], I is the intensity

of the incident field, and cl is the compressional (longitudinal) wave speed in

the medium. This mechanism differs from that discussed in the remainder of

this dissertation, but it is important to discuss as a comparison because of

its existing clinical applications and because in a medium without scatterers

of contrasting material properties, absorption is the primary mechanism of

attenuation instead of scattering [70]. In particular, the techniques that will

be discussed in the present section are shear wave elasticity imaging, acous-

tic radiation force impulse imaging, supersonic shear imaging, and harmonic

motion imaging.

In shear wave elasticity imaging (SWEI) [23], an ultrasound transducer

is used to produce a beam focused in a localized region of excitation (ROE)

within the tissue. The higher acoustic intensity in this focused region causes a

higher radiation force due to absorption per Eq. (1.10), and this radiation force

causes the region to displace. This displacement results in the propagation

12



Figure 1.2: Schematic of shear wave elasticity imaging with multiple imaging
transducers and detection sensors (from Sarvazyan et al. [23]).

of shear waves from the ROE through the surrounding tissue. These shear

waves are then detected by a variety of possible techniques, including the

use of the same excitation transducer or other ultrasound pulse-echo imaging

transducers, magnetic resonance imaging, or detection of shear waves at the

surface of the tissue. (See Fig. 1.2 for a diagram of such a setup, reproduced

from Sarvazyan et al. [23].) SWEI has been used extensively since its inception

because it allows for quantitative analysis of the tissue (e.g., evaluating liver

tissue [71]), and it plays a central role in supersonic shear imaging [25]. Axial

elasticity (i.e., stiffness in the direction of propagation of the incident field) in

the ROE itself is not assessed in this method.

In acoustic radiation force impulse (ARFI) imaging [24, 72, 73], the

mechanism of inducing displacement in the tissue is the same, but the mea-
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surement is different. With ARFI imaging, the axial displacement of the tissue

is tracked in the focal region itself. By probing multiple locations and track-

ing the axial displacement at each, a two-dimensional B-mode type image can

be constructed, giving a comprehensive relational map of shear stiffness in

different parts of the tissue. Axial elasticity is assessed in this modality, and

the spatial resolution is typically higher than in SWEI [73], but the effect of

the propagating shear waves is not considered and the analysis is of the rela-

tive shear stiffness in the medium as opposed to the absolute shear stiffness.

The ARFI imaging method is therefore a more qualitative method of tissue

assessment.

Supersonic shear imaging (SSI) [25, 74, 75] makes use of SWEI to create

a real-time map of tissue stiffness. This technique involves focusing a beam at

different depths in rapid succession, such that the movement of the focus is

faster than the shear wave speed in the medium to be imaged. An example

of this process is shown in Fig. 1.3 (from Bercoff et al. [25]). The resulting

displacements are imaged through the use of an ultrafast imaging system to

capture results at several thousand frames per second, giving a real-time look

at a relatively large region even in strongly viscous media. The shear elasticity

in the medium can then be determined quantitatively through inversion and

comparison with the wave propagation data. This approach has been demon-

strated to be clinically useful for a number of different tissues, including breast

[76, 77], muscle [78], thyroid [79, 80], and liver tissues [81, 82], as well as ther-

mally induced lesions [83].
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Figure 1.3: Diagram of supersonic shear imaging with the source being moved
along the beam axis three times as fast as the shear waves propagating away
from the region (from Bercoff et al. [25]).

Finally, harmonic motion imaging (HMI) [84] creates an oscillating

acoustic radiation force in the tissue through the use of focused, amplitude-

modulated incident wave fields. This oscillating force results in an oscillating

displacement within the tissue, and unlike the other methods described above,

HMI involves tracking the displacement during the excitation instead of after.

Displacements produced via HMI have been shown to correlate with Young’s

modulus in tissue-mimicking gel phantoms [85], and since the imaging occurs

during excitation, Suomi et al. have also identified it as a useful candidate for

real-time monitoring of high intensity focused ultrasound (HIFU) and other

such therapies [86–88].

For acoustic radiation force due to scattering—the mechanism of in-

terest in this dissertation—instead of absorption, there have also been several

recent attempts at quantifying shear modulus of a soft elastic medium. Based
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Figure 1.4: Experimental setup (left, from Karpiouk et al. [89]) and results
(right, from Aglyamov et al. [90]) for examining transient displacement of a
sphere in a viscoelastic gel phantom due a short pulses of various durations.
On the right, (a) shows the theoretical prediction of sphere displacement and
(b) shows experimental measurement.

on theory by Ilinskii et al. [91] for displacement of gas bubbles and solid spheres

in soft elastic media, Aglyamov et al. [90] and Karpiouk et al. [89] studied tran-

sient sphere motion as a result of radiation force due to a short burst of ultra-

sound. As shown in Fig. 1.4, they found excellent agreement between theory

and experiment in the temporal characteristics of the displacement curve for

various spheres, and they noted that the shape of the displacement waveform
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was only dependent on shear modulus and pulse length, not on the intensity of

the incident field (or, correspondingly, the magnitude of the radiation force).

While they did not know the magnitude of the radiation force that would

be induced on the sphere beforehand, they were still able to determine shear

modulus in the gel phantom and later determine the magnitude of the radi-

ation force by matching their measured transient responses with theoretical

predictions of the time waveforms.

The method of determining shear modulus from sphere displacement

due to radiation force has also been used in ex vivo tissue measurements as

well, such as by Yoon et al. [92, 93], who created a microbubble by focus-

ing a laser in various animal crystalline lenses and then pushed the bubble

with compressional waves radiated by an ultrasound transducer, finding simi-

larly strong agreement between experiment and theory. The method may also

be useful in other tissues where microbubbles can be delivered via the blood

stream. Since microbubbles are often used as contrast agents to enhance re-

flectivity in regions of interest within the tissue or as mechanisms for drug

delivery [66, 94–96], they might also be useful as scattering targets for acous-

tic radiation force measurements. Furthermore, to assist magnetic resonance

imaging of tissue for the purpose of identifying a region, metallic markers are

often placed in the tissue [97–100], so these could also be used as scattering

targets to probe with a focused ultrasound beam.

However, in determining soft tissue characteristics from the acoustic

radiation force on a sphere and its resulting displacement, there is a an im-
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portant missing piece of information that currently limits the utility of this

method in vivo: the actual radiation force on the scatterer. As discussed in

Sec. 1.1, existing literature has examined spheres in fluid media, and while the

radiation force in soft tissue might reasonably be expected to be similar to that

in water due to its similar density and compressional wave speed, we will see in

this dissertation that even weak shear effects can cause the predicted force to

deviate noticeably from what would be expected in water. Furthermore, while

absorption is the dominant mechanism for attenuation of an incident beam

in tissue due to the similarity with water, there are useful applications where

scatterers are added intentionally to the tissue. For scatterers that are suffi-

ciently large and that have mechanical properties that are sufficiently different

from those of the surrounding tissue, the scattering mechanism of radiation

force becomes dominant, and is therefore useful to investigate further. Im-

proved understanding of the radiation force in soft elastic media due to this

scattering mechanism is the primary goal of this dissertation.

1.3 Dissertation Overview

The dissertation proceeds as follows. In Chapter 2, a theoretical frame-

work is presented for modeling acoustic radiation force on a sphere in a soft

elastic medium. The relevant elastodynamic equations, stress tensors, body

forces, and displacement field equations are defined, and instead of Eulerian

coordinates, the analysis is performed in Lagrangian coordinates, which are

more often used in elasticity. The expressions for radiation force obtained in
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Chapter 2 are found to recover existing analytical results for the special case

of radiation force on a sphere in fluid, and they are used throughout the dis-

sertation.

In Chapter 3, mathematical descriptions of the incident and scattered

wave fields are presented in greater detail. Since the incident field is described

by a spherical harmonic expansion, a process for finding the coefficients in this

expansion is described. Instead of the usual two-dimensional angular spec-

trum method used in acoustics [101], a three-dimensional angular spectrum

description is used because a) it lends itself to a convenient expression for the

coefficients of a focused sound beam, and b) a two-dimensional angular spec-

trum description can be reformulated in three dimensions without tremendous

difficulty [102]. The scattered field coefficients are examined for a variety of dif-

ferent scatterers and soft tissue-like medium properties, with special emphasis

on scattering resonances and the effects of elasticity that become important

for the calculation of the acoustic radiation force.

Results for acoustic radiation force due to incident and scattered com-

pressional wave fields in a soft elastic medium are presented in Chapter 4.

While this does not present a complete description of the radiation force on a

scatterer in a soft tissue-like medium, which is the subject of Chapter 5, it is

useful as a preliminary investigation of the types of phenomena that we may

expect to be important when shear wave effects must be taken into account. In

particular, results associated with shifting resonance frequencies and reversals

in the direction of the force provide specific parameter ranges that might be
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interesting to investigate experimentally. Though the main focus of Chapter 4

is the effect of shear modulus, since that is the parameter of interest in actual

soft tissue, effects due to viscosity are also considered to compare quantita-

tively with shear modulus and qualitatively with existing work on radiation

force in viscous fluids.

Results for acoustic radiation force associated with the scattered shear

wave are presented in Chapter 5. As this contribution to the radiation force

does not appear to lend itself to a purely analytical approach, several alterna-

tive methods are explored: an approximation to the body force due to shear

wave fields in the surrounding medium that may allow for an analytical re-

sult for some special cases, a semi-analytical description involving a numerical

Helmholtz decomposition of this body force and integration of the resulting ir-

rotational potential, and a fully numerical finite element method (FEM) result

to compare expected displacements of a hard sphere in an elastic medium.

Finally, in Chapter 6, the key results of the dissertation are summarized

and possible avenues for future work are recommended.

20



Chapter 2

Theoretical Framework for Acoustic Radiation

Force on an Elastic Sphere in a Soft Elastic

Medium

The purpose of this chapter is to develop the general theoretical frame-

work for acoustic radiation force on a spherical scatterer in a soft elastic

medium. As this is meant to introduce the reader to the concept of radia-

tion force on a spherical scatterer, it includes a discussion of the basic physical

principles and mathematics required, but it does not include exhaustive treat-

ment of the mathematical steps. The expressions for radiation force obtained

herein are used throughout the dissertation. The main results presented in this

chapter appear in a recently published paper [20], with several of the results

also appearing in prior conference proceedings [103, 104]. The present chapter

provides additional details and discussion.

Several assumptions are made to simplify the analysis. First, the inci-

dent field is assumed to be represented via purely compressional waves in an

Yu. A. Ilinskii, E. A. Zabolotskaya, B. C. Treweek, and M. F. Hamilton, “Acoustic radia-
tion force on an elastic sphere in a soft elastic medium,” J. Acoust. Soc. Am., vol. 144, no. 2,
pp. 568–576, 2018. The author of the present work verified the force Fn due to compressional
wave fields by analytical comparison with Sapozhnikov and Bailey [10], elaborated on the
force Gn due to the scattered shear wave and its physical significance, and discussed the
Wigner D-matrix transformation of incident field coefficients amn .
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infinite medium. Radiation force due to incident shear waves may be found

using comparable analysis, but due to the prevalent use of compressional wave

transducers in assessment of soft tissue, incident shear waves are not consid-

ered here. Shear waves only arise due to mode conversion from the incident

compressional wave field to the fields scattered from, and transmitted into, the

scatterer. Second, the wave amplitudes are assumed to be such that nonlinear

propagation effects (e.g., waveform steepening and the formation of shocks)

can be ignored. Third, momentum transfer from the incident beam to the

medium via absorption is assumed to be negligible. If this were included, then

the deformation of the medium due to absorption of the incident field would

need to be taken into account, which causes both radiation of shear waves

from the compressional wave beam prior to interaction with the sphere, and

displacement of the sphere due to deformation of the medium associated with

absorption. Neither of these effects is addressed here. Fourth, effects related to

acoustic streaming (addressed in Refs. [11, 12]) and heat conduction (addressed

in Refs. [17–19]) are also ignored here.

Finally, to exploit basic symmetry, the scattering target embedded in

the medium is assumed to be spherical with radius R. Therefore, much of

the analysis is performed in spherical coordinates (r, θ, φ), where r is the dis-

tance from the origin, θ is the polar angle, and φ is the azimuthal angle. A

brief discussion of relevant definitions and notation conventions is included in

Appendix A.

Section 2.1 begins with an introduction of the relevant elastodynamic
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equations and radiation force terms. The distinct contributions to the radi-

ation force on a sphere are described in Sec. 2.2, and the use of Lagrangian

coordinates instead of the more classical Eulerian coordinates is explained and

justified in Sec. 2.3. Then in Sec. 2.4 an expression for radiation force on a

sphere due to compressional wave fields, which is complete for a sphere in fluid,

is obtained. In Sec. 2.5 this expression is compared with previously obtained

results to demonstrate its validity. Finally, in Sec. 2.6, the analytic portion of

the radiation force due to scattered shear wave fields is obtained.

2.1 Elastodynamic Equations

Though much of the analysis in this chapter will be performed in La-

grangian coordinates, classical derivations of acoustic radiation force on a scat-

terer in a fluid usually employ Eulerian coordinates [4, 5]; see also the review

by Wang and Lee [105]. In Eulerian coordinates, the elastodynamic equations

of motion are [106]

ρ

(
∂vn
∂t

+ vk
∂vn
∂x̃k

)
=
∂σ̃nk
∂x̃k

, (2.1)

∂ρ

∂t
+
∂(ρvk)

∂x̃k
= 0 , (2.2)

where x̃k denotes Eulerian position, ρ is the density in the deformed configura-

tion, vn denotes particle velocity, and σ̃nk represents the Cauchy stress tensor.

For a fluid, the Cauchy stress tensor is σ̃nk = −Pδnk, where P is the pressure

and δnk is the Kronecker delta. In Lagrangian coordinates, the equations of
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motion are [106]

ρ0
∂2un
∂t2

=
∂σnm
∂xm

, (2.3)

where xm denotes Lagrangian position, ρ0 is the density in the reference con-

figuration, un = x̃n − xn denotes particle displacement, and σnm is the first

Piola-Kirchhoff pseudostress tensor. Here, σnm is not symmetric, and the quan-

tity σnmnm represents the force in the deformed configuration acting on a unit

area with normal nm in the reference configuration.

The Eulerian and Lagrangian descriptions are equivalent because the

Cauchy stress tensor and Piola-Kirchhoff psuedostress tensor are connected

via

ρσnm = ρ0σ̃nk
∂xm
∂x̃k

, (2.4)

ρ0σ̃nk = ρσnm
∂x̃k
∂xm

, (2.5)

where ∂x̃k/∂xm is the deformation gradient, which ultimately allows for either

formulation to be used. However, for calculation of the acoustic radiation force

on a scatterer in a soft elastic medium, Eq. (2.3) is more convenient for several

reasons. First, the position of the scatterer is fixed in the reference frame of

interest—that is, the integration of the first Piola-Kirchhoff pseudostress tensor

can be performed over fixed Lagrangian coordinates—which is especially useful

in problems pertaining to elasticity. Second, nonlinearity arises only in σnm,

which simplifies the analysis. Except for a brief comparison with results in

Eulerian coordinates in Sec. 2.3, the remainder of the analysis is therefore

performed in Lagrangian coordinates.
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2.1.1 Stress Tensor and Body Force

The first Piola-Kirchhoff pseudostress tensor (hereafter referred to as

simply the “stress tensor” for convenience) can be expressed through the strain

energy density E as

σnm =
∂E

∂(∂un/∂xm)
. (2.6)

To third order in the particle displacement, the energy density is, based on the

expansion of Landau and Lifshitz [107],

E =
µ

4

(
∂ui
∂xk

+
∂uk
∂xi

)2

+
1

2

(
K − 2µ

3

)(
∂ul
∂xl

)2

+

(
µ+

A

4

)
∂ui
∂xk

∂ul
∂xi

∂ul
∂xk

+
1

2

(
K +B − 2µ

3

)
∂ul
∂xl

(
∂ui
∂xk

)2

+
A

12

∂ui
∂xk

∂uk
∂xl

∂ul
∂xi

+
B

2

∂ui
∂xk

∂uk
∂xi

∂ul
∂xl

+
C

3

(
∂ul
∂xl

)3

, (2.7)

where K is bulk modulus, µ is shear modulus, and A, B, and C are nonlinear

elastic constants (also referred to as the third-order elastic constants). The

stress tensor can be written to second order as

σ = σ(1)
nm + σ(2)

nm , (2.8)

where σ
(1)
nm and σ

(2)
nm are linear and nonlinear parts of the tensor, respectively.

From Eqs. (2.6)–(2.7), these are found to be

σ(1)
nm = µ

(
∂un
∂xm

+
∂um
∂xn

)
+

(
K − 2µ

3

)(
∂ul
∂xl

)
δnm , (2.9)

25



and

σ(2)
nm =

(
µ+

A

4

)(
∂ul
∂xn

∂ul
∂xm

+
∂um
∂xl

∂un
∂xl

+
∂ul
∂xm

∂un
∂xl

)
+

1

2

(
K +B − 2µ

3

)[(
∂ui
∂xk

)2

δnm + 2
∂ul
∂xl

∂un
∂xm

]

+
A

4

∂um
∂xl

∂ul
∂xn

+B

(
∂ul
∂xl

∂um
∂xn

+
1

2

∂ui
∂xk

∂uk
∂xi

δnm

)
+ C

(
∂ul
∂xl

)2

δnm .

(2.10)

When calculating the radiation force on a sphere, the first step will be to

directly integrate the stress tensor σ
(2)
nm over the surface of the sphere.

The stress tensor also gives rise to the body force

fn = f (1)
n + f (2)

n =
∂σ

(1)
nm

∂xm
+
∂σ

(2)
nm

∂xm
, (2.11)

and from Helmholtz’s theorem, this force can be separated into conservative

(or potential) and non-conservative parts as

f = ∇Φ + ∇×A , (2.12)

where Φ is a scalar and A is a vector. Potential forces produced by the time-

averaged stress tensor do not contribute to the net radiation force acting on

the sphere and are instead offset by equal and opposite reaction forces due to

the static deformation of the medium. Mathematically, this manifests as an

additional stress tensor,

σPnm = −Φδnm , (2.13)

where superscript P indicates that this involves purely potential forces. When

calculating the radiation force on a sphere, the second step will be to integrate

this derived stress tensor over the surface of the sphere.
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According to measurements by Catheline et al. [21], the elastic con-

stants µ, A, and the combination (K + B) are several orders of magnitude

less than K, B, and C for soft elastic media like tissue. Hamilton et al. [108]

subsequently proved that the first term in Eq. (2.9) and the first three terms

in Eq. (2.10) can be ignored, and that since K +B = O(µ/K), we can replace

B with −K. Also note that when the body force is calculated from Eq. (2.11),

all terms including δnm will be potential, and may therefore be removed. This

removes the second term in Eq. (2.9) and all but one term in Eq. (2.10),

σBnm = −K∂ul
∂xl

∂um
∂xn

, (2.14)

with corresponding body force

fBn = −K ∂

∂xm

(
∂ul
∂xl

∂um
∂xn

)
. (2.15)

The superscript B indicates the relevant third-order elastic constant in the full

stress tensor that remains after simplification. This is the only term that must

be considered in the Lagrangian description of radiation force on a sphere in

a soft elastic medium.

The additional stress tensor in Eq. (2.13) and the removal of terms

in σ
(2)
nm that are proportional to δnm follow from the lack of constraints on

the medium. In the case of, say, a medium enclosed by a tube, then terms

proportional to δnm may need to be retained due to external forces imposed

by the tube walls. This may result in a dependence of the radiation force

on third-order elastic constant C as well, but this case is not treated here.
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As a result, Eqs. (2.14) and (2.15) are independent of any third-order elastic

constants.

2.1.2 Displacement Field Equations

Next, in order to evaluate the stress tensor, it is necessary to calculate

the particle displacement u. This vector can be decomposed in several ways.

First, it can be separated into compressional and shear components, which are

assigned superscripts l for “longitudinal” and t for “transverse”, respectively,

after Landau and Lifshitz [107]:

u = ul + ut . (2.16)

Second, each of these components can be decomposed into linear (first order)

and nonlinear (second order) parts as

ul = ul1 + ul2 , (2.17)

ut = ut1 + ut2 . (2.18)

Substitution of un into σnm, both into Eq. (2.3), and subsequent manipulation

yield linear equations for ul1 and ut1,

∇2ul1 − 1

c2l

∂2ul1

∂t2
= 0 , (2.19)

∇2ut1 − 1

c2t

∂2ut1

∂t2
= 0 , (2.20)
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and linear equations for ul2 and ut2,

∇2ul2 − 1

c2l

∂2ul2

∂t2
= ∇ · σ|ul1 , (2.21)

∇2ut2 − 1

c2t

∂2ut2

∂t2
= ∇ · σ|ut1 . (2.22)

The linear parts are now defined in terms of displacement potentials ϕ and Θ

as [109]

ul1 = ∇ϕ , (2.23)

ut1 = ∇×∇× (rΘ) , (2.24)

which obey the same wave equations as their respective displacements. For

time-harmonic particle displacement with angular frequency ω, Eqs. (2.19)

and (2.20) can be written as Helmholtz equations in terms of the displacement

potentials,

∇2ϕ+ k2ϕ = 0 , (2.25)

∇2Θ + κ2Θ = 0 , (2.26)

where k = ω/cl is the compressional wavenumber and κ = ω/ct is the shear

wavenumber.

The displacement potentials can be expressed as

ϕ =
1

2

(
ψe−iωt + ψ∗eiωt

)
=

1

2
ψe−iωt + c.c. , (2.27)

Θ =
1

2

(
Πe−iωt + Π∗eiωt

)
=

1

2
Πe−iωt + c.c. , (2.28)
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where c.c. denotes complex conjugate. Spatial dependence of ϕ and Θ ap-

pears only in the functions ψ and Π, which are described through spherical

harmonic expansions. The function ψ contains incident, scattered, and trans-

mitted compressional fields ψi, ψs, and ψt, respectively, and the function Π

contains scattered and transmitted shear fields Πs and Πt, respectively. For an

arbitrary incident compressional wave, the expansions are

ψi =
∞∑
n=0

n∑
m=−n

amn jn(kr)Pm
n (cos θ)eimφ , (2.29)

ψs =
∞∑
n=0

n∑
m=−n

Ana
m
n h

(1)
n (kr)Pm

n (cos θ)eimφ , (2.30)

ψt =
∞∑
n=0

n∑
m=−n

Cna
m
n jn(kpr)P

m
n (cos θ)eimφ , (2.31)

Πs =
∞∑
n=1

n∑
m=−n

Bna
m
n h

(1)
n (κr)Pm

n (cos θ)eimφ , (2.32)

Πt =
∞∑
n=1

n∑
m=−n

Dna
m
n jn(κpr)P

m
n (cos θ)eimφ . (2.33)

The incident compressional wave field is characterized by coefficients amn , and

scattered and transmitted field coefficients are respectively described by An

and Cn for compressional waves and by Bn and Dn for shear waves. (Note

that due to the spherical symmetry of the scatterer, the scattered and trans-

mitted field coefficients have no dependence on m. The computation of these

coefficients is discussed in Sec. 3.3.) The medium has compressional wavenum-

ber k and shear wavenumber κ, and the sphere has compressional wavenumber

kt and shear wavenumber κt. Finally, Pm
n (cos θ) are the associated Legendre

functions, jn(z) are the spherical Bessel functions, and h
(1)
n (z) are the spherical
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Hankel functions of the first kind corresponding to outgoing waves. Hereafter

h
(1)
n (z) will be written hn(z) with no superscript for notational convenience.

The special case of an axisymmetric incident field is represented by setting

m = 0.

Another simplification involving the stress tensor that proves useful is

obtained by noting that since ul is irrotational and ut is solenoidal, then

∇ · u = ∇ · ul = ∇2ϕ = −k2ϕ , (2.34)

substitution of which into Eq. (2.14) yields

σBnm = Kk2ϕ
∂um
∂xn

. (2.35)

2.2 Acoustic Radiation Force Terms

The total acoustic radiation force F total
n will be discussed as a sum of

four distinct terms:

F total
n = FB

n + F P
n +GB

n +GP
n , (2.36)

where FB
n and F P

n correspond to the scattered compressional wave, and GB
n

and GP
n correspond to the scattered shear wave. The subscript n here identifies

the vector component (i.e., the x-, y-, or z-component). For example, we will

frequently be interested in the axial force F total
z in the direction of the incident

field. The meaning of each of these terms is now discussed in detail.

The terms FB
n and GB

n are considered first. Both terms are calculated

via direct integration of the stress tensor over the surface of the sphere. We
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begin with Eq. (2.35) by separating the displacement into its compressional

and shear components,

σBnm = σlnm + σltnm , (2.37)

where

σlnm = Kk2ϕ
∂ulm
∂xn

, (2.38)

σltnm = Kk2ϕ
∂utm
∂xn

. (2.39)

Note that the superscript l is used in the first term because it involves only the

compressional field, whereas lt is used in the second term because it involves

both the compressional field and the shear field. Each of these is time averaged

and integrated over the surface of the sphere to obtain two of the terms in the

radiation force,

FB
n =

∫
S

〈
σlnm

〉 xm
R
dS , (2.40)

GB
n =

∫
S

〈
σltnm

〉 xm
R
dS , (2.41)

where R is the radius of the sphere and S is its surface. As shown in Secs. 2.4

and 2.6, and in greater depth in Appendix B, both terms can be calculated

analytically.

Next, the terms F P
n and GP

n are addressed. These arise from the reaction

force in the medium due to the body force fBn . As with the stress tensor, this

body force can be separated as

fBn = fn + gn , (2.42)
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where

fn =
∂σlnm
∂xm

, (2.43)

gn =
∂σltnm
∂xm

. (2.44)

From Helmholtz’s theorem, both fn and gn can be written as a sum of irrota-

tional and solenoidal parts, expressed here for brevity in vector (rather than

index) form,

f = ∇P + ∇×R , (2.45)

g = ∇Q+ ∇× S , (2.46)

where P and Q are scalar potentials, and R and S are vector potentials.

Finally, F P
n and GP

n are written as

F P
n = −

∫
S

〈P 〉xn
R
dS , (2.47)

GP
n = −

∫
S

〈Q〉xn
R
dS . (2.48)

To better understand why Eqs. (2.47) and (2.48) are necessary, consider a

simple analog: the uniform body force due to gravity acting on a volume of

fluid that is not allowed to accelerate (e.g., a large body of water such as a

lake). In order for the fluid to remain in place despite the body force, the fluid

must deform to produce a compensating force. This deformation manifests as

a pressure that increases with depth below the surface of the fluid, resulting

in the well-known buoyancy force. While the body force fBn is not spatially
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uniform and is considerably more complicated, it can be thought of in similar

terms.

The force F P
n in Eq. (2.47) can be calculated analytically, but this is not

generally true for GP
n in Eq. (2.48). To calculate the former, we can substitute

the relation from Eq. (2.23) into Eq. (2.45) and manipulate to obtain

fn
Kk2

=
∂

∂xm

(
ϕ

∂2ϕ

∂xm∂xn

)
=

∂ϕ

∂xm

∂2ϕ

∂xm∂xn
+ ϕ

∂3ϕ

∂x2m∂xn

=
∂ϕ

∂xm

∂2ϕ

∂xm∂xn
− k2ϕ ∂ϕ

∂xn
=

1

2

[
∂

∂xn

(
∂ϕ

∂xm

)2

− k2∂ϕ
2

∂xn

]

=
1

2

∂

∂xn

[(
∂ϕ

∂xm

)2

− k2ϕ2

]
. (2.49)

The final form of the expression is clearly a gradient of a scalar function, which

is therefore expressed as

fn =
∂P

∂xn
, (2.50)

where

P =
Kk2

2

[(
∂ϕ

∂xm

)2

− k2ϕ2

]
(2.51)

is an effective pressure and the vector potential A in Eq. (2.45) is zero. How-

ever, no such simplification appears to be possible for gn in Eq. (2.46). Both

its gradient component and its curl component must be retained, and these

components may not be analytically separable. Furthermore, while the scalar

potential Q is addressed with the surface integral in Eq. (2.48), the vector

potential S corresponds to a bulk displacement of the medium surrounding

the sphere. Therefore, to compute the true effect of gn on the displacement
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of the sphere, integration over a volume enclosing the sphere is necessary, not

just over the surface of the sphere.

2.3 Eulerian Description of Acoustic Radiation Force

Before proceeding, we briefly reconsider the use of Eulerian coordinates

instead of Lagrangian coordinates to derive the radiation force as summarized

by Lee and Wang [8, 9]. First, Eqs. (2.1) and (2.2) can be combined to obtain

∂(ρvn)

∂t
=
∂σ̃nk
∂x̃k

− ∂(ρvnvk)

∂x̃k
, (2.52)

where the term on the left-hand side is a rate of change of momentum within

a fixed control volume and the terms on the right-hand side correspond the

net exterior force on a control volume and the momentum inflow through the

surface of the control volume, respectively [110]. For a time-harmonic quantity,

the time average of its time derivative is zero. This gives

∂Snk
∂x̃k

= 0 , (2.53)

where Snk is referred to as the acoustic radiation stress tensor, first derived by

Brillouin [38] and defined as

Snk = 〈σ̃nk〉 − 〈ρvnvk〉 . (2.54)

Then, integration of Eq. (2.53) over the space between the equilibrium surface

S̃ of the sphere and a much larger surface S̃0, followed by use of the divergence

theorem, yields

Fn = −
∫
S̃

(〈σ̃nk〉 − 〈ρvnvk〉) ñk dS̃ =

∫
S̃0

(〈σ̃nk〉 − 〈ρvnvk〉) ñk dS̃0 , (2.55)
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where ñk points away from the enclosed volume, meaning that it points inward

on S̃ and outward on S̃0. Equation (2.55) can be simplified further by acknowl-

edging that ρvnvk contains third-order terms, and therefore ρ can be replaced

with its equilibrium value ρ0 to obtain the following second-order expression

for the force:

Fn = −
∫
S̃

(〈σ̃nk〉 − ρ0 〈vnvk〉) ñk dS̃ =

∫
S̃0

(〈σ̃nk〉 − ρ0 〈vnvk〉) ñk dS̃0 . (2.56)

The idea of moving the surface of integration off the scatterer and out to an

arbitrary distance, typically in the far field, is attributed to Westervelt [2, 3].

See, for example, Wang and Lee [105] for a review of work in which integration

over S̃0 is performed in the far field to simplify the expressions for the scattered

pressure and particle velocity fields.

What inhibits the use of the Eulerian formulation for our problem?

It is a complete description of the force on the sphere, and it appears to be

simpler than that described in previous sections because it does not require the

removal of the irrotational part of the body force from σnm. However, while an

analysis in Eulerian coordinates is effective for a sphere surrounded by a fluid

medium (for which σ̃nk = −Pδnk), it becomes considerably more complicated

when elasticity is involved. Of particular importance is how the Cauchy stress

tensor is expressed in the case of nonlinear elasticity. From Eq. (2.5), the

Cauchy stress tensor is written as

σ̃nk =
ρ

ρ0
σnm

∂x̃k
∂xm

. (2.57)
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Note that the Jacobian J (the determinant of the deformation gradient) can

be written as J = ρ0/ρ. Substitution of ρ/ρ0 = 1/J and x̃k = xk + uk yields

the following second-order expression after simplifications:

σ̃nk = σnk − σnk
∂ul
∂xl

+ σnm
∂uk
∂xm

. (2.58)

The second and third terms can ordinarily be handled without too much dif-

ficulty because only first-order components of the stress tensor and the dis-

placement are required. However, the first term presents a problem because

σnk contains another second-order component besides σ
(2)
nk : the first-order com-

ponent σ
(1)
nk into which the second-order displacement u

(2)
n is substituted. Prior

knowledge of u
(2)
n would obviate calculation of the radiation force altogether

because displacement is what is measured experimentally, but it must be found

numerically from Eqs. (2.21) and (2.22). In general, time-intensive numerical

simulations (which will be addressed in Chapter 5) are required for this.

2.4 Radiation Force Due to Compressional Wave Fields

We now return to the Lagrangian description of radiation force and

consider first Fn, the acoustic radiation force due to the displacement potential

ϕ only. This is the sole contribution for a sphere in fluid, and it is expected to

be the dominant contribution to acoustic radiation force on a sphere in soft

tissue. The force Fn is written as the sum of the first two terms in Eq. (2.36)

as

Fn = FB
n + F P

n . (2.59)
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The two contributions on the right-hand side are now discussed separately.

After substitution of Eq. (2.23) into Eq. (2.40), FB
n can be written as

FB
n = Kk2

∫
S

〈
ϕ

∂2ϕ

∂xm∂xn

〉
xm
R
dS . (2.60)

Manipulation of the integrand gives

FB
n =

Kk2

R

∫
S

〈
ϕ

[
xm

∂2ϕ

∂xm∂xn

]〉
dS

=
Kk2

R

∫
S

〈
ϕ

[
∂

∂xn

(
xm

∂ϕ

∂xm

)
− ∂ϕ

∂xm
δnm

]〉
dS

=
Kk2

R

∫
S

〈
ϕ

[
∂

∂xn

(
r
∂ϕ

∂r

)
− ∂ϕ

∂xn

]〉
dS

=
Kk2

R

∫
S

〈
ϕ
∂

∂xn

(
r
∂ϕ

∂r
− ϕ

)〉
dS . (2.61)

Next, it is necessary to substitute the expression for ϕ from Eq. (2.27) and

time average. The result is

FB
n =

Kk2

4R

∫
S

[
ψ∗

∂

∂xn

(
r
∂ψ

∂r
− ψ

)]
dS + c.c. (2.62)

In the z-direction, this result becomes

FB
z =

Kk2

4R

∫
S

[
ψ∗

∂

∂z

(
r
∂ψ

∂r
− ψ

)]
dS + c.c. (2.63)

Then, ∂/∂z can be expressed in spherical coordinates as

∂

∂z
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
. (2.64)

The same can be done for x and y, but only the partial derivative in z is nec-

essary, even for fields that are not axisymmetric. This is because the incident
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field coefficients amn , despite being defined about the z-axis, can be converted

via a Wigner D-matrix transformation such that they are defined about the

x-axis or y-axis instead. This manipulation is more convenient than deriving

a different formula for each Cartesian direction, and it is briefly discussed at

the end of this section and more thoroughly treated in Sec. 3.1.4.

For F P
n , substitution of Eq. (2.51) into Eq. (2.47) gives

F P
n = −Kk

2

2R

∫
S

〈(
∂ϕ

∂xm

)2

− k2ϕ2

〉
xn dS . (2.65)

Then, substitution of ϕ from Eq. (2.27), time averaging, and replacement of

xn with z = R cos θ gives

F P
z = −Kk

2

4

∫
S

(
∂ψ∗

∂xm

∂ψ

∂xm
− k2ψ∗ψ

)
cos θ dS . (2.66)

Note that, unlike in Eq. (2.63), no complex conjugate is added in Eq. (2.66).

Both FB
z and F P

z are real quantities.

Finally, the total radiation force Fz can be calculated from the sum of

Eq. (2.63) and Eq. (2.66). This is a laborious process; it is briefly outlined in

Appendix B. The result for a non-axisymmetric incident field is [20]

Fz = iπKk2
N∑
n=0

n∑
m=−n

(n+m+ 1)!

(2n+ 1)(2n+ 3)(n−m)!

× (A∗n + An+1 + 2A∗nAn+1)a
m∗
n amn+1 + c.c. , (2.67)

and the result for an axisymmetric incident field is

Fz = iπKk2
N∑
n=0

n+ 1

(2n+ 1)(2n+ 3)
(A∗n+An+1+2A∗nAn+1)a

∗
nan+1+c.c. , (2.68)
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which follows from setting m = 0 in Eq. (2.67). In both equations, the sum-

mation limit N is chosen such that the force has converged. Note that there

is no explicit dependence on the sphere radius R in either equation, which

further confirms Westervelt’s reasoning that the surface of integration may be

any surface containing the scatterer [2, 3].

As an alternative, it is often useful to expand the incident field in terms

of normalized spherical harmonics Ynm(θ, φ),

ψi =
∞∑
n=0

n∑
m=−n

ãmn jn(kr)Ynm(θ, φ) , (2.69)

where

Ynm(θ, φ) =

√
(2n+ 1)(n−m)!

4π(n+m)!
Pm
n (cos θ)eimφ . (2.70)

The normalization is such that the orthogonality integral assumes the form∫ π

0

∫ 2π

0

YnmY
∗
n′m′ sin θ dφ dθ = δnn′δmm′ . (2.71)

The incident field coefficients are then related via the expression

ãmn =

√
4π(n+m)!

(2n+ 1)(n−m)!
amn , (2.72)

and the radiation force equations become

Fz = i
Kk2

4

N∑
n=0

n∑
m=−n

√
(n+m+ 1)(n−m+ 1)

(2n+ 1)(2n+ 3)

× (ãmn )∗ãmn+1(A
∗
n + An+1 + 2A∗nAn+1) + c.c. (2.73)

for non-axisymmetric incident fields, and

Fz = i
Kk2

4

N∑
n=0

n+ 1√
(2n+ 1)(2n+ 3)

× ã∗nãn+1(A
∗
n + An+1 + 2A∗nAn+1) + c.c. (2.74)
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for axisymmetric incident fields. The modified non-axisymmetric relation is

especially convenient because it allows for more straightforward calculation of

Fx and Fy through a Wigner D-matrix transformation of the incident field

coefficients (Sec. 3.1.4). This results in coefficients [ãmn ]x about the x-axis and

[ãmn ]y about the y-axis, which can be expressed in terms of ãmn (≡ [ãmn ]z) and

used to find Fx and Fy, respectively:

Fx =
i

4
Kk2

N∑
n=0

n∑
m=−n

√
(n+m+ 1)(n−m+ 1)

(2n+ 1)(2n+ 3)

× [ãmn ]∗x[ã
m
n+1]x(A

∗
n + An+1 + 2A∗nAn+1) + c.c. , (2.75)

Fy =
i

4
Kk2

N∑
n=0

n∑
m=−n

√
(n+m+ 1)(n−m+ 1)

(2n+ 1)(2n+ 3)

× [ãmn ]∗y[ã
m
n+1]y(A

∗
n + An+1 + 2A∗nAn+1) + c.c. (2.76)

2.5 Comparison with Existing Theory

Classical results for radiation force on a sphere in fluid have all been

obtained using Eulerian coordinates, whereas the result presented in the pre-

vious section was found using Lagrangian coordinates. Since there has been

some controversy regarding radiation force predictions over the years [9, 27],

it is useful to compare the theory in the previous section to other published

results.

First, we consider results from Gor’kov for small spheres in liquid [7].

For sufficiently small spheres, two simplifications can be made. First, the field

can be assumed to be axisymmetric, which allows for the use of Eq. (2.68).

41



Second, only scattered field coefficients for n = 0 (monopole) and n = 1

(dipole) in the expansion are significant; this yields

Fz = iπKk2
[

1

3
(A∗0 + A1 + 2A∗0A1)a

∗
0a1 +

2

15
A∗1a

∗
1a2

]
+ c.c. (2.77)

To compare the above relation with the results obtained by Gor’kov, we first

define the quantities

f1 =
Ks −K
Ks

, (2.78)

f2 =
2(ρs − ρ)

2ρs + ρ
, (2.79)

where Ks and ρs are the bulk modulus and density of the sphere, respectively,

and K and ρ without subscripts denote the same quantities in the surrounding

medium. Ignoring shear forces in both the sphere and the medium, we can

determine the scattered field coefficients A0 and A1 for compressional waves

from Eqs. (3.82) and (3.83). After the use of small-argument approximations

for the spherical Bessel and Hankel functions, the coefficients become

A0 = −i1
3

(kR)3f1 −
1

9
(kR)6f2 , (2.80)

A1 = i
1

6
(kR)3f2 −

1

36
(kR)6f2 . (2.81)

Next, because Gor’kov presents relations for the force due to both plane stand-

ing and plane traveling waves, we need to determine the incident field coeffi-

cients an for each case. For a plane traveling wave described by

ψi = ψ0e
ikz , (2.82)
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the incident field coefficients are [111]

an = in(2n+ 1)ψ0 . (2.83)

Substitution of Eqs. (2.80)–(2.83) into Eq. (2.77) yields, at leading order in

kR [20],

Fz =
2

9
πKk2(kR)6|ψ0|2

(
f 2
1 +

3

4
f 2
2 + f1f2

)
, (2.84)

which agrees with Eq. (10) of Gor’kov [7]. For a plane standing wave described

by

ψi = ψ0 cos[k(z + z0)] , (2.85)

representing a shift in the field by moving the sphere in the +z-direction by

the quantity z0, the incident field coefficients are

an = (2n+ 1)ψ0 cos(kz0 + nπ/2) . (2.86)

Equivalently, this can be thought of as moving the standing wave profile

cos(kz) by z0 in the opposite direction. Substitution of Eqs. (2.80), (2.81),

and (2.86) into Eq. (2.77) yields, at leading order in kR [20],

Fz = πKk2(kR)3ψ2
0

(
1

3
f1 +

1

2
f2

)
sin(2kz0) , (2.87)

which agrees with Eq. (13) of Gorkov [7]. The relation given by Eq. (2.68) is

therefore verified for small spheres.

The relation given by Eq. (2.67) can also be shown to recover results

for spheres of arbitrary size from Sapozhnikov and Bailey [10]. First, consider
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their Eq. (16) for force due to an axisymmetric incident field:

Fz =
2π

ρ0c2l k
2

∑
n

n+ 1

(2n+ 1)(2n+ 3)
Im{QnQ

∗
n+1(An + A∗n+1 + 2AnA

∗
n+1)} ,

(2.88)

where Qn are expansion coefficients for incident pressure instead of incident

displacement potential and can be written as Qn = ρ0ω
2an. Substituting this

expression and noting that Im{z} = Re{iz} then gives

Fz =
2πρ0ω

4

c2l k
2

∑
n

n+ 1

(2n+ 1)(2n+ 3)
Re{iana∗n+1(An + A∗n+1 + 2AnA

∗
n+1)}

= 2πKk2
∑
n

n+ 1

(2n+ 1)(2n+ 3)
Re{iana∗n+1(An + A∗n+1 + 2AnA

∗
n+1)}

= iπKk2
N∑
n=0

n+ 1

(2n+ 1)(2n+ 3)
(An + A∗n+1 + 2AnA

∗
n+1)ana

∗
n+1 + c.c. ,

(2.89)

which is identical to Eq. (2.68). Next, consider their Eq. (48) for force due to

a non-axisymmetric incident field:

Fz = − 1

4π2ρ0c2l k
2

Re

{∑
n

Ψn

∑
m

BnmHnmH
∗
n+1,m

}
, (2.90)

where

Bnm =

√
(n+m+ 1)(n−m+ 1)

(2n+ 1)(2n+ 3)
, (2.91)

Ψn = 2(An + An+1 + 2AnA
∗
n+1) , (2.92)

and Hnm are expansion coefficients for incident pressure in terms of normalized

spherical harmonics Ynm. These can be written via amn as

Hnm =

√
4π(n+m)!

(2n+ 1)(n−m)!

π

in
ρ0ω

2amn . (2.93)
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Substituting these expressions gives

Fz = 2πKk2 Re

{
i
∑
n

∑
m

(n+m+ 1)!

(2n+ 1)(2n+ 3)(n−m)!

× (An + A∗n+1 + 2AnA
∗
n+1)a

m
n a

m∗
n+1

}

= iπKk2
N∑
n=0

n∑
m=−n

(n+m+ 1)!

(2n+ 1)(2n+ 3)(n−m)!

× (An + A∗n+1 + 2AnA
∗
n+1)a

m
n a

m∗
n+1 + c.c. , (2.94)

which is identical to Eq. (2.67).

Finally, results can be compared graphically for a sphere of arbitrary

size in liquid subject to plane traveling waves. Yosioka and Kawasima [4] first

obtained results for a compressible sphere, but the comparison in this section

will be for the more general case of an elastic sphere (i.e., including shear

stiffness), the results for which were derived later by Hasegawa and Yosioka

[5]. A plane traveling wave incident in the z-direction is described through

displacement potential ϕi by

ϕi(z, t) = ϕ0e
i(kz−ωt) . (2.95)

The z-component of particle velocity and the pressure are then given by

vi =
∂

∂z

(
∂ϕi
∂t

)
= ωkϕi , (2.96)

pi = ρ0
∂2ϕi
∂t2

= ρ0ω
2ϕi . (2.97)

The time-averaged intensity is found to be

Ii =
1

2
Re{piv∗i } =

1

2
ρ0ω

3k|ϕ0|2 , (2.98)
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ρ0 (kg/m3) cl (m/s) ct (m/s)
Water 1000 1500 —
Steel 7810 5945 3252
Stainless steel 7900 5240 2978
Brass 8100 3830 2050
Fused silica 2214 5950 3750

Table 2.1: Medium and scatterer properties for comparison with Hasegawa and
Yosioka [5, 6].

from which the energy density is Ei = Ii/cl. Following Hasegawa and Yosioka

[5], we define the dimensionless acoustic radiation force function Yp as the

radiation force per unit cross section and unit mean energy density,

Yp =
〈F 〉
πR2Ei

. (2.99)

This is the quantity that will be plotted to compare most easily with results

by Hasegawa and Yosioka [5, 6], and it will be used later in this dissertation

as well as a convenient normalization, often with an additional subscript z or

x to indicate direction.

We consider four different spheres embedded in water for comparison:

steel, stainless steel (which is quite similar, but has shifted scattering reso-

nances), brass, and fused silica. Properties of both water and the spheres are

listed in Table 2.1, and results for each of the spheres are displayed in Fig. 2.1.

In all four cases, both the plot and an examination of the underlying data sug-

gest that the results agree to numerical precision. The peaks and minima in Yp

are of particular interest, as they indicate elastic scattering resonances unique
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(c) Brass
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(d) Fused silica
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Figure 2.1: Comparison of Eq. (2.68) with results of Hasegawa and Yosioka [5]
for the acoustic radiation force function Yp versus dimensionless sphere size
kR for various spheres in water. Note that the two curves, calculated with
different equations, lie directly on top of each other.

to the material. Such resonances, which do not occur in King’s theory for force

on rigid spheres [1], will be discussed further in Sec. 3.4 and Chapter 4.

Since the equation for Fn is shown to be valid for the well-known case

of a spherical scatterer in an ideal liquid medium, we must examine the effects

of both shear elasticity and shear viscosity of the medium. As will be shown
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in later chapters, these effects are important because even very small shear

modulus and shear viscosity can introduce substantial changes in both the

magnitude and direction of the radiation force compared to those in liquid.

These effects are strongly dependent on the size of the scatterer.

2.6 Radiation Force Associated with the Scattered
Shear Wave

If the medium is elastic, then GB
n and GP

n (the radiation force contri-

butions due to the scattered shear wave field) must be computed as well. As

with Eq. (2.59) , the radiation force Gn due to the scattered shear wave field

can be written as

Gn = GB
n +GP

n . (2.100)

First, we find GB
n from Eq. (2.41). Substitution of σltnm from Eq. (2.37) gives

GB
n = Kk2

∫
S

〈
ϕ
∂utm
∂xn

〉
xm
R
dS , (2.101)

and manipulation of the integrand, which is comparable to that in Eq. (2.61),

gives

GB
n =

Kk2

R

∫
S

〈
ϕ

[
xm

∂utm
∂xn

]〉
dS

=
Kk2

R

∫
S

〈
ϕ

[
∂

∂xn

(
xmu

t
m

)
− utmδnm

]〉
dS

=
Kk2

R

∫
S

〈
ϕ

[
∂

∂xn

(
rutr
)
− utn

]〉
dS . (2.102)

Time averaging yields

GB
n =

Kk2

4R

∫
S

[
ψ∗
(

∂

∂xn

(
rũtr
)
− ũtn

)]
dS + c.c. . (2.103)
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The tilde denotes that only the spatial part of utn is retained in this equation.

In the z-direction, Eq. (2.103) becomes

GB
z =

Kk2

4R

∫
S

[
ψ∗
(
∂

∂z

(
rũtr
)
− ũtz

)]
dS + c.c. , (2.104)

with ũtz = ũtr cos θ − ũtθ sin θ and, from Ying and Truell [109],

ũtr = −1

r
ΩΠ , (2.105)

ũtθ =
1

r

∂2

∂r∂θ
(rΠ) , (2.106)

where Ω is a differential operator:

Ω =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2
. (2.107)

As with Fz, the rest of the process is somewhat tedious, and it is outlined in

Appendix B. The result for a non-axisymmetric incident field is [20]

GB
z = πKk2(κR)

N∑
n=0

n(n+ 2)

(2n+ 1)(2n+ 3)

n∑
m=−n

(n+m+ 1)!

(n−m)!

× {am∗n amn+1Bn+1[j
∗
n(kR) + A∗nh

∗
n(kR)]hn(κR)

− am∗n+1a
m
n Bn[j∗n+1(kR) + A∗n+1h

∗
n+1(kR)]hn+1(kR)}+ c.c. , (2.108)

and the result for an axisymmetric incident field is

GB
z = πKk2

N∑
n=1

(κR)hn(κR)

2n+ 1
[jn(kR) + A∗nh

∗
n(kR)]a∗n

×
[
n(n+ 1)(n+ 2)

2n+ 3
Bn+1an+1 −

(n− 1)n(n+ 1)

2n− 1
Bn−1an−1

]
+ c.c.

(2.109)
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Note that in addition to the presence of the coefficients Bn for the scattered

shear wave, there is another key difference between Eqs. (2.108) and (2.109)

and Eqs. (2.67) and (2.68): the explicit presence of oscillatory functions de-

pending on kR and κR in Eqs. (2.108) and (2.109). In the force Fz due to

compressional wave fields, these oscillatory terms are shown to balance one

another (see Appendix B), resulting in an equation for the radiation force that

is smoothly varying in kR.

In order to determine whether the same is true of the force Gz, it is

necessary to find GP
z . However, as discussed previously in Sec. 2.2, the body

force gn may not be analytically separable into irrotational and solenoidal

parts, so the potential Q in Eq. (2.46) must be computed numerically. Since

this potential is needed at the surface of a sphere of radius R, the domain

is chosen to be a spherical shell with an inner radius slightly less than R

and an outer radius slightly greater than R. The domain is then discretized

with a triangular mesh (for axisymmetric fields, allowing for the reduction of

the problem to two dimensions) or a tetrahedral mesh (for non-axisymmetric

fields, requiring the problem to be formulated in three dimensions), and gn

is computed at each node in the mesh. Finally, a least-squares finite element

method is used to solve for the potential at each node, and the potential is

integrated over the surface of the sphere. This process is described by Tong et

al. [112], and an overview of its implementation in the present work is discussed

in Sec. 5.3.

Finally, once GP
z has been found from the gradient part of gn, there
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remains the question of the effect due to the solenoidal part of gn. From

Eq. (2.46), the term ∇ × S causes a bulk deformation of the surrounding

medium, which results in a displacement of the scatterer that is not due to

a radiation force pushing the scatterer relative to the medium but rather a

displacement of the medium itself. This effect must ultimately be determined

by integrating over the volume surrounding the scatterer instead of just the

surface of the scatterer, and it is briefly discussed in Sec. 5.4 but not treated

as thoroughly due to the difficulty in calculating it.

2.7 Summary

The fundamental elastodynamic equations and the resulting expres-

sions for acoustic radiation force presented in this chapter are important for

understanding the results in the chapters to follow. The choice of Lagrangian

coordinates instead of the usual Eulerian coordinates (as used for calculating

the force in fluids) facilitates the incorporation of elasticity without requir-

ing a full solution for the nonlinear contribution to the displacement, and the

approximations discussed in Sec. 2.1 allow for a description of the problem

that is analytically tractable. Furthermore, separating the radiation force into

compressional wave and shear wave contributions Fn and Gn provides a means

to decouple compressional and shear effects in analyzing the radiation force.

Finally, the recovery of known results for acoustic radiation force in fluid ob-

tained previously [5–7, 10] serves as a useful verification of this novel approach.
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Chapter 3

Incident and Scattered Fields

In this chapter, the procedures for computing incident field coefficients

(an for axisymmetric fields and amn for non-axisymmetric fields) and scattered

field coefficients in the surrounding medium (An for compressional waves and

Bn for shear waves) are discussed. Incident field coefficients are discussed in

Secs. 3.1 and 3.2, and scattered field coefficients are discussed in Secs. 3.3 and

3.4.

For incident field coefficients, the starting point is a description of the

field in terms of its three-dimensional angular spectrum. The more traditional

approach involves a two-dimensional angular spectrum that is propagated away

from a source plane, a technique commonly referred to as Fourier acoustics

[101]. Applications of this approach to focused sound beams often encoun-

tered in medical ultrasound applications have been developed by Sapozhnikov

and Bailey [10]. The three-dimensional angular spectrum description is used

in the present chapter because it lends itself to a convenient analytic expres-

sion for the coefficients of a focused incident field that is symmetric about

the focal plane (Sec. 3.2.1), which facilitates the investigation of radiation

force effects without complications related to a specific beam profile. Also, a
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two-dimensional angular spectrum can be reformulated as a three-dimensional

angular spectrum without great difficulty [102]. As shown with several ex-

amples, arbitrary incident fields may be represented by the three-dimensional

angular spectrum.

The scattered field coefficients are examined for a variety of cases. Re-

sults for a rigid sphere versus a steel sphere and for a spherical void versus an

air bubble are presented to demonstrate effects of scattering resonances. Also,

various values for shear modulus in the surrounding medium are considered to

investigate the effect of elasticity.

3.1 Incident Field Coefficients

In this section, the procedure for finding the incident field coefficients is

detailed. The most general case of a non-axisymmetric field is treated first, fol-

lowed by a simplification for axisymmetric fields. Coefficients for an expansion

about a point other than the origin are addressed next. Finally, a description

of the coefficients about axes other than the z-axis (required for forces other

than Fz) is given.

3.1.1 Non-axisymmetric Incident Field

From Eq. (2.27), recall that a time-harmonic displacement potential

that satisfies the Helmholtz equation can be written with spatial and temporal
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dependence separated as

ϕ(r, t) =
1

2
ψ(r)e−iωt + c.c. , (3.1)

where particle displacement components are given by un = ∂ϕ/∂xn. The spa-

tial component can be expanded as a superposition of plane waves via the

relation

ψ(r, θ, φ) =

∫
eik·rΨ(k) dΩk =

∫ π

0

∫ 2π

0

eik·rΨ(θk, φk) sin θk dφk dθk , (3.2)

where |k| = k = ω/cl is the compressional wavenumber, Ψ is the angular

spectrum of the field, and θk, φk are polar and azimuthal angles, respectively,

indicating the direction of wave vector k. Also recall that, from Eq. (2.29), ψ

can be expanded in spherical coordinates with respect to spherical harmonics

as

ψ(r, θ, φ) =
∞∑
n=0

n∑
m=−n

amn jn(kr)Pm
n (cos θ)eimφ , (3.3)

and that the normalized spherical harmonics Ynm(θ, φ) from Eq. (2.70) are

Ynm(θ, φ) =

√
(2n+ 1)(n−m)!

4π(n+m)!
Pm
n (cos θ)eimφ . (3.4)

It is also useful to introduce the spherical harmonic expansion of a plane

traveling wave [111]:

eikz = eikr cos θ =
∞∑
n=0

(2n+ 1)injn(kr)Pn(cos θ) . (3.5)

Combining Eqs. (3.4) and (3.5) yields

eikz = eikr cos θ =
∞∑
n=0

√
4π(2n+ 1)injn(kr)Yn0(θ) . (3.6)
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Any plane wave with wave vector k forming angle θk with the z-axis can be

expanded with respect to spherical Bessel functions in the coordinate system

(x′, y′, z′) with the z′-axis aligned with k. This allows us to rewrite Eq. (3.2)

as

ψ(r, θ, φ) =

∫ π

0

∫ 2π

0

eikz
′
Ψ(θk, φk) sin θk dφk dθk . (3.7)

Next, we employ a Wigner D-matrix transformation that allows us to

rewrite a spherical harmonic expansion in a rotated coordinate system. Its

importance in this section is that it allows us to rewrite the exponential eikz
′

in terms of the original (x, y, z) coordinate system. According to Wigner [113],

under an arbitrary rotation from coordinate system (x, y, z) to (x′, y′, z′) via

the Euler angles (α, β, γ), spherical harmonics Ynm′(θ′, φ′) in the rotated system

can be expressed as a linear combination of spherical harmonics Ynm(θ, φ) in

the original coordinate system via the relation

Ynm′(θ′, φ′) =
n∑

m=−n

Dn
mm′(α, β, γ)Ynm(θ, φ) , (3.8)

where the Wigner D-matrix is given by

Dn
mm′(α, β, γ) = e−imαdnmm′(β)e−im

′γ . (3.9)

The Wigner (small) d-matrix is given by, among other possible definitions

[114],

dnmm′(β) = (−1)m−m
′√

(n+m)!(n−m)!(n+m′)!(n−m′)!

×
∑
s

(−1)s
(
cos β

2

)2n−2s−m+m′ (
sin β

2

)2s+m−m′

s!(n−m− s)!(n+m′ − s)!(m−m′ + s)!
, (3.10)
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where the summation limits are defined such that the factorials are non-

negative. This particular definition is chosen so that dnmm′ is real-valued, and

it requires the z-y-z convention for Euler angle rotations: rotation about the

z-axis by the angle α, then rotation about the new y-axis by the angle β, and

finally rotation about the newest z-axis by the angle γ.

The expression for the exponential eikz
′

in Eq. (3.6) is now substituted

into Eq. (3.7), and the function Yn0(θ
′) is transformed into the original coor-

dinate system using Eq. (3.8) with m′ = 0, α = φk, and β = θk to obtain

Yn0(θ
′) =

n∑
m=−n

Dn
m0(φk, θk, γ)Ynm(θ, φ) =

n∑
m=−n

e−imφkdnm0(θk)Ynm(θ, φ) .

(3.11)

Substitution of Eq. (3.11) into Eq. (3.7) yields

ψ(r, θ, φ) =
∞∑
n=0

n∑
m=−n

√
4π(2n+ 1)injn(kr)Ynm(θ, φ)

×
∫ π

0

∫ 2π

0

e−imφkdnm0(θk)Ψ(θk, φk) sin θk dφk dθk ,

(3.12)

and substitution of Eq. (3.4) gives

ψ(r, θ, φ) =
∞∑
n=0

n∑
m=−n

(2n+ 1)injn(kr)

√
(n−m)!

(n+m)!
Pm
n (cos θ)eimφ

×
∫ π

0

∫ 2π

0

e−imφkdnm0(θk)Ψ(θk, φk) sin θk dφk dθk .

(3.13)

Finally, comparison with Eq. (3.3) yields the incident coefficients:

amn = in(2n+ 1)

√
(n−m)!

(n+m)!

∫ π

0

∫ 2π

0

e−imφkdnm0(θk)Ψ(θk, φk) sin θk dφk dθk .

(3.14)
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The coefficients in Eq. (3.3) allow for the description of any incident

field represented via Ψ(θk, φk) in k-space, and they can be used along with

the scattering coefficients to calculate Fz, the acoustic radiation force in the z-

direction, from Eq. (2.67) or Eq. (2.73). They are discussed for various focused

beams in Sec. 3.2. Note that this is only one possible method of computing

incident field coefficients for a spherical harmonic expansion. For example,

Sapozhnikov and Bailey [10] use the more traditional approach based on the

two-dimensional angular spectrum in their description of focused sound beams

exerting radiation force on a sphere.

3.1.2 Axisymmetric Incident Field

In the case where ψ is axisymmetric, the function Ψ depends on polar

angle θk only, which gives

amn = in(2n+1)

√
(n−m)!

(n+m)!

∫ π

0

∫ 2π

0

e−imφkdnm0(θk)Ψ(θk) sin θk dφk dθk . (3.15)

Integrating over φk eliminates all but the m = 0 term to yield

an = in2π(2n+ 1)

∫ π

0

dn00(θk)Ψ(θk) sin θk dθk , (3.16)

and since dn00(β) = Pn(cos β), the expression for an can finally be written as

an = in2π(2n+ 1)

∫ π

0

Pn(cos θk)Ψ(θk) sin θk dθk . (3.17)

These coefficients can then be used along with the scattering coefficients to

calculate Fz from Eq. (2.68) or Eq. (2.74).
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3.1.3 Off-Origin Field Expansion

Sections 3.1.1 and 3.1.2 describe the coefficients for an incident field

defined about the origin. More specific to the purpose of calculating radiation

force on a sphere, they apply when the sphere is centered at the same point

about which Ψ(θk, φk) is defined. However, the sphere is not always centered at

this point, so it is also useful to describe a transformation of the incident field

coefficients that avoids the need to alter Ψ(θk, φk) itself. This transformation

is especially useful for axisymmetric incident fields, so they will be considered

here.

Figure 3.1: Diagram of a focused transducer (left) projecting a sound beam
with a focus at the origin and the scatterer located away from the focus.
Scattered waves are illustrated departing the scatterer.

Let the center of the sphere be located at r0 = (x0, y0, z0) as in Fig. 3.1,

and let the position vector relative to the new sphere center be r1. Then,

r = r0 + r1 and

eik·r = eik·r0eik·r1 . (3.18)

For an axisymmetric incident field, y0 can be set to zero without loss of gen-
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erality. Since r0 is fixed but r1 varies, Eq. (3.2) becomes

ψ(r1) =

∫ π

0

∫ 2π

0

eik·r1eik(x0 sin θk cosφk+z0 cos θk)Ψ(θk) sin θk dφk dθk . (3.19)

Other than the removal of the dependence on φk, the only difference between

Eq. (3.19) and Eq. (3.2) is the second exponential in the integrand. Therefore,

we can compare with Eq. (3.14) and write, by inspection,

amn = in(2n+ 1)

√
(n−m)!

(n+m)!

∫ π

0

∫ 2π

0

e−imφkeikx0 sin θk cosφkeikz0 cos θk

× dnm0(θk)Ψ(θk) sin θk dφk dθk .

(3.20)

From the integral representation of a Bessel function given by

Jm(z) =
e−im

2π

∫ 2π

0

eiz cosφe±imφ dφ , (3.21)

integration over φk can be performed to obtain

amn = inim2π(2n+ 1)

√
(n−m)!

(n+m)!

×
∫ π

0

dnm0(θk)Jm(kx0 sin θk)e
ikz0 cos θkΨ(θk) sin θk dθk .

(3.22)

Note that the dependence on m has returned since the sphere has been moved

off the symmetry axis. These coefficients can be used to find Fz from Eq. (2.67)

or Eq. (2.73).

3.1.4 Incident Field Coefficients for Transverse Radiation Forces

For the acoustic radiation force components Fx and Fy, different in-

cident field coefficients must be obtained. Since the coefficients ãmn (≡ [ãmn ]z)

59



pertain to an expansion about the z-axis to describe Fz, expansions about

the x-axis and y-axis are necessary to describe Fx and Fy, respectively. To

obtain these expansions, the Wigner D-matrix transformation is again quite

useful. Combining a general spherical harmonic expansion, as in Eq. (2.69),

with Eq. (3.8) gives

n∑
m′=−n

ãm
′

n Ynm′(θ, φ) =
n∑

m′=−n

ãm
′

n

n∑
m=−n

Dn
mm′(α, β, γ)Ynm(θ, φ)

=
n∑

m=−n

Ynm(θ, φ)
n∑

m′=−n

ãm
′

n D
n
mm′(α, β, γ)

=
n∑

m=−n

ãmn Ynm(θ, φ) , (3.23)

where

ãmn =
n∑

m′=−n

ãm
′

n D
n
mm′(α, β, γ) . (3.24)

Equivalently, ãm
′

n can be written via an inverse transformation as

ãm
′

n =
n∑

m=−n

ãmn [D−1(α, β, γ)]nm′m =
n∑

m=−n

ãmnD
n
m′m(−γ,−β,−α) . (3.25)

The Euler angles (α, β, γ) will have different values depending on whether z′ is

aligned with x or with y. For expansion about the x-axis—required for Fx—the

Euler angles are (0, π/2, π/2), and for expansion about the y-axis—required

for Fy—the Euler angles are (−π/2,−π/2, 0). The resulting coefficients for

expansion about the x- and y-axes are, respectively,

[ãm
′

n ]x =
n∑

m=−n

[ãmn ]zD
n
m′m(−π/2,−π/2, 0) , (3.26)

[ãm
′

n ]y =
n∑

m=−n

[ãmn ]zD
n
m′m(0, π/2, π/2) . (3.27)
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3.2 Modeling the Incident Beam

Incident field coefficients are computed here for several specific cases

to illustrate the practicality of this method. The following cases are treated

in this section: a “simple” focused beam in k-space (so-called because of its

convenient mathematical definition), a focused Gaussian beam, and a focused

circular transducer. While this section includes discussion of only traveling

wave incident fields, standing waves are easily constructed by adding appro-

priate counter-propagating traveling waves.

3.2.1 Simple Focused Beam

The most simple description of an axisymmetric beam in k-space is

Ψ(θk) =

{
Ψ0 , 0 ≤ θk < θ0

0 , θ0 ≤ θk ≤ π
, (3.28)

which corresponds to a beam with a focus at z = 0. Examples of this descrip-

tion are shown for frequency f = 1 MHz and various values of θ0 in Fig. 3.2.

In Fig. 3.2(a) for θ0 = 5◦, the narrow confinement angle results in a beam that

appears non-diffracting in the focal region. In Fig. 3.2(b) and (c), however,

the beam is considerably narrower in the focal region, and as can be seen in

Fig. 3.2(d), it appears to have a Bessel-like shape in the focal plane. Also, note

that due to the idealized nature of the definition in Eq. (3.28), the focusing

occurs at exactly z = 0 and the axial profile shown in Fig. 3.2(e) is symmetric

about z = 0.
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Figure 3.2: Beam amplitude profiles for Ψ(θk) defined as in Eq. (3.28) for
various confinement angles θ0 at frequency f = 1 MHz. For θ0 = 30◦, a focal
profile (where dashed lines indicate the half-power beamwidth) is shown in (d)
and an axial profile is shown in (e). The colors in (a), (b), and (c) correspond
to the vertical axes in (d) and (e), with yellow equal to unity and dark blue
equal to zero.
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Substitution of Eq. (3.28) into Eq. (3.17) gives the expression

an = in2π(2n+ 1)Ψ0

∫ θ0

0

Pn(cos θk) sin θk dθk , (3.29)

which can be evaluated with the following integral property of Legendre poly-

nomials:(
n+

1

2

)∫ θ0

0

Pn(cos θk) sin θk dθk =
1

2
[Pn−1(cos θ0)− Pn+1(cos θ0)] . (3.30)

Equation (3.29) then becomes

an = in4πΨ0

(
n+

1

2

)∫ θ0

0

Pn(cos θk) sin θk dθk

= in2πΨ0 [Pn−1(cos θ0)− Pn+1(cos θ0)] , (3.31)

which can be easily used along with scattering coefficients to compute the

radiation force. Equation (3.28) can be substituted into Eq. (3.22) to obtain

coefficients describing a non-axisymmetric field,

amn = inim2π(2n+ 1)Ψ0

√
(n−m)!

(n+m)!

×
∫ θ0

0

dnm0(θk)Jm(kx0 sin θk)e
ikz0 cos θk sin θk dθk ,

(3.32)

but the integral cannot be evaluated analytically for arbitrary x0 and z0, so it

must be computed numerically.

In choosing the constant Ψ0 in Eq. (3.28), it is helpful to consider

two possibilities. The first is to choose Ψ0 such that the amplitude of the

potential field at the origin is equal to the value for a given plane wave. For

a time-harmonic traveling plane wave with spatial dependence ψ(z) = ψ0e
ikz
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as described in Eq. (2.82), this can be accomplished by choosing the following

normalization:

Ψ0 = ψ0

[∫ θ0

0

∫ 2π

0

sin θk dφk dθk

]−1
=

ψ0

2π(1− cos θ0)
. (3.33)

This choice is useful when examining the effect of scatterer size on radiation

force for a particular beam shape. However, its utility is diminished when

comparing radiation force calculations between an incident plane wave and an

incident sound beam. For this purpose, a different value of Ψ0 is chosen such

that the power incident on a sphere of a given size is equal to the value for

a plane wave. This second choice requires both the pressure and the particle

velocity in the z = 0 plane.

For an acoustic displacement potential described by Eq. (3.1), the pres-

sure is

p(r, t) = −ρ0
∂2ϕ

∂t2
=

1

2
ρ0ω

2e−iωtψ(r) + c.c. , (3.34)

where ρ0 is the density of the medium, and the particle velocity is

v(r, t) = ∇∂ϕ

∂t
= −1

2
iωe−iωt∇ψ(r) + c.c. (3.35)

For a plane wave with spatial dependence given by Eq. (2.82), the pressure

and particle velocity amplitudes are

p̃(z) = ρ0ω
2ψ0e

ikz , (3.36)

ṽz(z) = ωkψ0e
ikz =

ω2

cl
ψ0e

ikz , (3.37)
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where

p(z, t) =
1

2
p̃(z)e−iωt + c.c. , (3.38)

v(z, t) =
1

2
ṽ(z)e−iωt + c.c. (3.39)

Since the time-averaged intensity is given by

I =
1

2
Re {p̃ṽ∗} , (3.40)

the power through a circular area of radius R contained in the plane wave

described by Eqs. (3.36) and (3.37) is

Wz,plane = πR2ρ0ω
4

2cl
|ψ0|2 . (3.41)

The pressure, particle velocity, and power over a circular area must also

be calculated for the beam defined by Ψ(θk). Substitution into Eq. (3.2) gives

the following result:

ψ(r, θ) = 2πΨ0

∫ θ0

0

eikr cos θ cos θkJ0(kr sin θ sin θk) sin θk dθk , (3.42)

which does not appear to be integrable analytically. Since the power incident

on the cross-sectional area of a sphere is of interest, we need the value of ψ in

the plane z = 0 (i.e., θ = π/2), which is

ψ
(
r,
π

2

)
= 2πΨ0

∫ θ0

0

J0(kr sin θk) sin θk dθk . (3.43)

From this, the pressure amplitude is found to be

p̃
(
r,
π

2

)
= ρ0ω

2ψ
(
r,
π

2

)
= 2πΨ0ρ0ω

2

∫ θ0

0

J0(kr sin θk) sin θk dθk , (3.44)
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and the particle velocity ṽz, which is equivalent to −ṽθ for θ = π/2, is

ṽz

(
r,
π

2

)
= −iω ∂ψ

∂z

∣∣∣∣
z=0

=
iω

r

∂ψ

∂θ

∣∣∣∣
θ=π

2

= 2πΨ0
ω2

cl

∫ θ0

0

J0(kr sin θk) cos θk sin θk dθk . (3.45)

The power through the region occupied by the sphere is then found by inte-

grating the z-component of Eq. (3.40) over a circular area of radius R. This

result is

Wz,beam =

∫ R

0

2πrIz dr = π

∫ R

0

Re
{
p̃
(
r,
π

2

)
ṽ∗z

(
r,
π

2

)}
r dr . (3.46)

Equations (3.41) and (3.46) can be set equal to each other and reorganized

such that Ψ0 for the focused beam is written in terms of ψ0 for the plane

traveling wave, resulting in the same power incident on the sphere for either

wave field. Equation (3.46) may also be used for two different types of focused

beams to hold the incident power constant while varying the incident beam

shape alone, isolating the effect of incident beam shape on the radiation force

exerted on the sphere.

3.2.2 Focused Gaussian Beam

Expression of a focused Gaussian beam in terms of its angular spectrum

lacks the analytic simplicity of Eq. (3.28), but it can still be accomplished nu-

merically. The basic method requires the two-dimensional Fourier transform

to obtain the angular spectrum of the incident field [101]. However, since our

field description requires a three-dimensional angular spectrum, a few modi-
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fications are made to map this angular spectrum onto a hemispherical cap in

wavenumber space [102].

Consider a field ψ(x, y, 0), where z = 0 is the source plane. The two-

dimensional angular spectrum can be found through

Ψ2(kx, ky, 0) = F2{ψ(x, y, 0)} , (3.47)

where F2 represents a Fourier transform in two dimensions. The field at (x, y, z)

can be found by propagating this angular spectrum in the z-direction and

computing an inverse Fourier transform:

ψ(x, y, z) = F−12 {Ψ2(kx, ky, 0)eikzz} , (3.48)

where F−12 represents an inverse Fourier transform in two dimensions. Equa-

tion (3.48) can easily be used to find the field at any point in space, but for

the purpose of computing the incident field coefficients needed for the radia-

tion force, a three-dimensional angular spectrum of the field is needed about

the center of the spherical scatterer. From the convolution theorem, the above

equation can be rewritten as

ψ(x, y, z) = ψ(x, y, 0) ∗ ∗ F−12 {eikzz}

= ψ(x, y, 0) ∗ ∗
[
− 1

2π

∂

∂z

(
eikr

r

)]
= − 1

2π

∫ ∞
−∞

∫ ∞
−∞

ψ(x0, y0, 0)
∂

∂z

(
eikR

R

)
dx0 dy0 , (3.49)

where ∗∗ denotes a two-dimensional convolution and

R =
√

(x− x0)2 + (y − y0)2 + (z − z0)2 . (3.50)
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Equation (3.49) can be rewritten via a three-dimensional integral as

ψ(x, y, z) = − 1

2π

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ψ(x0, y0, z0)δ(z0)
∂

∂z

(
eikR

R

)
dx0 dy0 dz0

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ψ(x0, y0, z0)δ(z0)
∂

∂z0

(
eikR

R

)
dx0 dy0 dz0 ,

(3.51)

where the minus sign is dropped because of the switch to differentiation in z0

instead of in z. The convolution theorem can be applied again to obtain

ψ(x, y, z) =
1

2π
F−13

{
F3{ψ(x0, y0, z0)δ(z0)}F3

{
∂

∂z0

(
eikR

R

)}}
=

1

2π
F−13

{
F2{ψ(x0, y0, 0)}F3

{
∂

∂z0

(
eikR

R

)}}
, (3.52)

where F3 and F−13 represent Fourier and inverse Fourier transforms, respec-

tively, in three dimensions. Equation (3.52) has the form needed for the com-

putation of incident field coefficients since it is written as an inverse Fourier

transform in three dimensions. Assuming that only propagating waves reach

the scatterer—a reasonable assumption for practical applications—allows the

second Fourier transform in brackets to be written as [102]

F3

{
∂

∂z0

(
eikR

R

)}
=

4π2kz
k

δ(kr − k) . (3.53)

So, for a scatterer located at a distance z from the source plane where the

two-dimensional angular spectrum is Ψ2(kx, ky, 0) (where kx = kr sin θk cosφk

and ky = kr sin θk sinφk), the function Ψ(θk, φk) in Eq. (3.2) is found to be

Ψ(θk, φk) =
k2

4π2
cos θke

ikz cos θkΨ2(θk, φk) , (3.54)

and the same operations as mentioned in the previous sections apply.
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In the paraxial approximation for ka � 1 and small aperture angle, a

focused Gaussian beam defined in the source plane in polar coordinates (ρ, z)

can be described by the equation

ψ(ρ, 0) = ψ0e
−ρ2/a2e−ikρ

2/2d , (3.55)

where a is the characteristic source radius and d is the focal distance. Equa-

tion (3.55) can be rewritten as

ψ(ρ, 0) = ψ0e
−(1+ika2/2d)ρ2/a2 = ψ0e

−(1+iG)ρ2/a2 = ψ0e
−ρ2ã2 , (3.56)

where G = ka2/2d is the focusing gain [115] and ã2 = a2/(1 + iG). The two-

dimensional Fourier transform of Eq. (3.56) is

Ψ2(θk) = πã2ψ0e
−k2ã2 sin2 θk/4 . (3.57)

Then, the incident coefficients for a sphere located at the focus can be found

from the result in Eq. (3.17) and the transformation in Eq. (3.54):

an =
in(2n+ 1)k2ã2ψ0

2

∫ π

0

Pn(cos θk)e
ikd cos θke−k

2ã2 sin2 θk/4 sin θk cos θk dθk .

(3.58)

3.2.3 Focused Circular Transducer

The description of the field radiated by a focused circular transducer in

terms of its angular spectrum also lacks the analytic simplicity of Eq. (3.28),

but it can also still be obtained numerically through the same method de-

scribed for the focused Gaussian beam. A focused circular transducer defined
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in the source plane can be described approximately for directional radiation

by the equation

ψ(ρ, 0) =

{
ψ0e

−ikρ2/2d , 0 ≤ ρ ≤ a

0 , ρ > a
, (3.59)

where a is now the exact radius of the transducer. The two-dimensional Fourier

transform is

Ψ2(θk) = 2πψ0

∫ a

0

e−ikρ
2/2dJ0 (k sin θkρ) ρ dρ . (3.60)

This integral can be computed analytically for θk = 0, but in general it cannot

be simplified. The incident coefficients for a sphere located at the focus can be

found from the result in Eq. (3.17) and the transformation in Eq. (3.54):

an = in(2n+ 1)k2ψ0

∫ π

0

cos θke
ik cos θkd

[∫ a

0

eikρ
2/2dJ0 (k sin θkρ) ρ dρ

]
dθk .

(3.61)

Results for a focused Gaussian beam and a focused circular transducer

are presented in Fig. 3.3. Note that z = 0 corresponds to the plane of the

geometric focus (absent diffraction effects); for both the Gaussian and the

circular transducer, the source plane is z = −d. Both the Gaussian and the

circular transducer focus early due to diffraction, and the circular transducer

focuses still earlier because it requires a larger radius such that acirc/
√

2 =

aGauss (and hence a larger gain) to achieve the same half-power beamwidth as

a focused Gaussian. Recall from Fig. 3.2 that the simple beam focuses exactly

at z = 0 because of its k-space definition. The idealized nature of the Gaussian

source also gives it a smoother spatial profile, whereas the abrupt cutoff of the
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Figure 3.3: Plots of beam amplitude for a focused Gaussian beam and circular
transducer with a = 1 cm and d = 4 cm (G = 5.2) at f = 1 MHz. The first
row shows color plots of the beam amplitude in the z-x plane, and the second
and third rows show focal and axial profiles, respectively. The colors in the
first row correspond to the vertical axes in the second and third rows, with
yellow equal to the maximum value and dark blue equal to zero.
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circular transducer and the abrupt cutoff in k-space for the simple beam both

result in side lobes.

3.3 Elastic Scattering Coefficients

We now discuss the calculation of the elastic scattering coefficients.

Several cases are treated in this section, all of which are related to the most

general case of an elastic sphere embedded in an elastic medium. These cases

have been previously discussed in several other works [109, 116], but they are

included in this section both to consolidate them for the reader and to present

them in the format and notation required for the radiation force equations

presented in Sec. 2.1.2. Additionally, to the author’s knowledge, the limit of

zero shear modulus in the medium surrounding the sphere—discussed at the

end of Sec. 3.4.2—has not been addressed explicitly in the literature.

For an elastic sphere embedded in an elastic medium, boundary con-

ditions at the surface of the sphere are continuity of normal and tangential

displacement and continuity of normal and tangential stress:

uin + usn = utn , (3.62)

σinr + σsnr = σtnr , (3.63)

where n refers to coordinate r, θ, or φ. Normal and tangential displacements
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and stresses are calculated via

ur =
∂ψ

∂r
− 1

r
ΩΠ , (3.64)

uθ =
1

r

∂

∂θ

[
ψ +

∂(rΠ)

∂r

]
, (3.65)

uφ =
1

r sin θ

∂

∂φ

[
ψ +

∂(rΠ)

∂r

]
, (3.66)

σrr = −ρω2

{
ψ +

2

κ2

[
2

r

∂ψ

∂r
+

1

r2
Ωψ +

∂

∂r

(
1

r
ΩΠ

)]}
, (3.67)

σθr =
2ρω2

κ2r2
∂

∂θ

[
r
∂ψ

∂r
− ψ − r∂Π

∂r
−
(

1 +
1

2
κ2r2

)
Π− ΩΠ

]
, (3.68)

σφr =
2ρω2

κ2r2 sin θ

∂

∂φ

[
r
∂ψ

∂r
− ψ − r∂Π

∂r
−
(

1 +
1

2
κ2r2

)
Π− ΩΠ

]
. (3.69)

From Eq. (2.107), recall that Ω is the differential operator

Ω =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2
. (3.70)

Next, note that except for the angle derivative and the factor of 1/ sin θ, the

relations for uφ and σφr are identical to those for uθ and σθr, respectively. The

result is that for a spherical scatterer, boundary conditions for uφ and σφr

will be equivalent to those for uθ and σθr, so they may therefore be ignored

along with Eqs. (3.66) and (3.69) for uφ and σφr. Also, recall from Eqs. (2.29)–

(2.33) that the potentials ψ and Π are defined as infinite sums of spherical

wave functions, and note that spherical harmonics Y m
n = Pm

n (cos θ)eimφ are

eigenfunctions of the differential operator Ω:

ΩY m
n = −n(n+ 1)Y m

n . (3.71)

Equation (3.71) allows Ω to be replaced with −n(n + 1) Eqs. (3.64), (3.65),

(3.67), and (3.68), removing all dependence on the index m. Therefore, the
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scattering coefficients in the spherical harmonic expansions of ψ and Π will

only depend on index n.

3.3.1 Elastic Sphere in Elastic Medium

In the most general case, potentials from Eqs. (2.29)–(2.33) are substi-

tuted into Eqs. (3.64)–(3.68) and then boundary conditions from Eqs. (3.62)

and (3.63) are enforced. Continuity of radial displacement, tangential displace-

ment, radial stress, and tangential stress yield the following four relations for

the four coefficients An, Bn, Cn, Dn:

− njn(kR) + kRjn+1(kR) = An[nhn(kR)− kRhn+1]

+Bnn(n+ 1)hn(κR)

− Cn[njn(ktR)− ktRjn+1(ktR)]

−Dnn(n+ 1)jn(κtR) , (3.72)

− jn(kR) = Anhn(kR)

+Bn[(n+ 1)hn(κR)− κRhn+1(κR)]

− Cnjn(ktR)

−Dn[(n+ 1)jn(κtR)− κtRjn+1(κtR)] , (3.73)
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− 2n(n− 1)jn(kR)− 4kRjn+1(kR) + (κR)2jn(kR)

= An[2n(n− 1)hn(kR) + 4kRhn+1(kR)− (κR)2hn(kR)]

+ 2Bn(n+ 1)[(n− 1)hn(κR)− κRhn+1(κR)]

− Cn
ρtκ

2

ρκ2t
[2n(n− 1)jn(ktR) + 4ktRjn+1(ktR)− (κtR)2jn(ktR)]

−Dn
ρtκ

2

ρκ2t
(n+ 1)[(n− 1)jn(κtR)− κtRjn+1(κtR)] , (3.74)

− (n− 1)jn(kR) + kRjn+1(kR)

= An[(n− 1)hn(kR)− kRhn+1(kR)]

+Bn

[
(n2 − 1)hn(κR)− 1

2
(κR)2hn(κR) + κRhn+1(κR)

]
− Cn

ρtκ
2

ρκ2t
[(n− 1)jn(ktR)− ktRjn+1(ktR)]

−Dn
ρtκ

2

ρκ2t

[
(n2 − 1)jn(κtR)− 1

2
(κtR)2jn(κtR) + κtRjn+1(κtR)

]
,

(3.75)

respectively. These are the equations for the elastic scattering coefficients in

their most general form, and they can be solved using Cramer’s rule. For n = 0,

both B0 and D0 are equal to zero and only Eq. (3.72) and Eq. (3.74) are needed

to find A0 and C0. For all other n, the system is solved for all four scattering

coefficients.

3.3.2 Elastic Sphere in Fluid Medium

An elastic sphere in a fluid medium is now considered. In this case,

continuity of tangential displacement is no longer enforced because the fluid

can flow along the spherical interface. Also, since there is no scattered shear

wave, the remaining equations are modified by setting all Bn to zero and taking
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the limit µ → 0, and therefore κ, the shear wavenumber in the medium,

becomes infinite [116]. The result corresponding to Eq. (3.72) is the same

except for the lack of Bn, but Eqs. (3.74) and (3.75) must be further modified

by noting that since κ → ∞, only terms with κ2 will survive, since this is

the largest order of κ present. This further reduces the number of terms in

Eq. (3.74) and completely eliminates An from Eq. (3.75). The results are then,

for continuity of radial displacement, radial stress, and tangential stress,

− njn(kR) + kRjn+1(kR) = An[nhn(kR)− kRhn+1(kR)]

− Cn[njn(ktR)− ktRjn+1(ktR)]

−Dnn(n+ 1)jn(κtR) , (3.76)

− jn(kR) = Anhn(kR)

+ Cn
ρt

ρ(κtR)2
[2(n+ 2)ktRjn+1(ktR)− (κtR)2jn(ktR)]

+Dn
ρt

ρ(κtR)2
n[2(n+ 2)ktRjn+1(κtR)− (κtR)2jn(κtR)] , (3.77)

0 = Cn[(n− 1)jn(ktR)− ktRhn+1(ktR)]

+Dn

[
(n2 − 1)hn(κtR)− 1

2
(κtR)2hn(κtR) + κtRhn+1(κtR)

]
, (3.78)

respectively. Note that An does not appear in the last equation because the

fluid medium does not support shear stresses, so the tangential stress due to

the transmitted field in the scatterer must be zero at the sphere surface.

3.3.3 Fluid Sphere in Elastic Medium

Next, for a fluid sphere in an elastic medium, a similar set of operations

can be performed. Again, continuity of tangential displacement no longer ap-
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plies. The scattered shear wave is retained, but there is no transmitted shear

wave into the scatterer, so the equations are modified by setting Dn to zero

and taking the limit µt → 0, and therefore κt, the shear wavenumber in the

scatterer, becomes infinite [116]. This again leaves Eq. (3.72) unaltered except

for the absence of Dn, and Eqs. (3.74) and (3.75) are further modified by not-

ing that all terms including κt in the denominator are eliminated. The results

are then, for continuity of radial displacement, radial stress, and tangential

stress,

− njn(kR) + kRjn+1(kR)

= An[nhn(kR)− kRhn+1(kR)] +Bnn(n+ 1)hn(κR)

− Cn[njn(ktR)− ktRjn+1(ktR)] , (3.79)

− 2(n+ 2)kRjn+1(kR) + (κR)2jn(kR)

= An[2(n+ 2)kRhn+1(kR)− (κR)2hn(kR)]

−Bnn[2(n+ 2)κRhn+1(κR)− (κR)2hn(κR)]

+ Cn
ρt
ρ

(κR)2jn(ktR) , (3.80)

− (n− 1)jn(kR) + kRjn+1(kR)

= An[(n− 1)hn(kR)− kRhn+1(kR)]

+Bn

[
(n2 − 1)hn(κR)− 1

2
(κR)2hn(κR) + κRhn+1(κR)

]
, (3.81)

respectively. Note that Cn does not appear in the last equation because the

fluid scatterer does not support shear stresses, so the tangential stress due to

the scattered field must be opposite the tangential stress due to the incident

field at the sphere surface.
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3.3.4 Fluid Sphere in Fluid Medium

Results for a fluid sphere in a fluid medium can be obtained from ei-

ther of the results in the previous two subsections by setting the other shear

coefficients equal to zero and taking the corresponding shear wavenumber to

infinity. The equation for continuity of tangential stress is also removed since

neither the medium nor the scatterer can support shear waves. Either way,

the only two equations that result are for An and Cn. For continuity of radial

displacement and radial stress, the results are

−njn(kR) + kRjn+1(kR) = An[nhn(kR)− kRhn+1(kR)]

− Cn[njn(ktR)− ktRjn+1(ktR)] , (3.82)

−jn(kR) = Anhn(kR)− Cn
ρt
ρ
jn(ktR) , (3.83)

respectively. In contrast with the previous systems of equations, these are

relatively simple to solve without Cramer’s rule.

3.3.5 Spherical Void or Rigid Sphere in Elastic Medium

To conclude the discussion of computing elastic scattering coefficients,

two final cases are considered. The first is a spherical void in an elastic medium,

and the second is a movable rigid sphere in an elastic medium.

For a spherical void, continuity of displacement is no longer enforced,

and both the radial and tangential stresses at the surface of the sphere must be

zero since the surface is free. This amounts to simply eliminating coefficients
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Cn and Dn from Eqs. (3.74) and (3.75) to obtain, respectively,

− 2(n+ 2)kRjn+1(kR) + (κR)2jn(kR)

= An[2(n+ 2)kRhn+1(kR)− (κR)2hn(kR)]

−Bnn[2(n+ 2)κRhn+1(κR)− (κR)2hn(κR)] , (3.84)

− (n− 1)jn(kR) + kRjn+1(kR)

= An[(n− 1)hn(kR)− kRhn+1(kR)]

+Bn

[
(n2 − 1)hn(κR)− 1

2
(κR)2hn(κR) + κRhn+1(κR)

]
. (3.85)

For a rigid sphere, continuity of stress is no longer enforced, leaving

only continuity of radial and tangential displacements. If the sphere is not

allowed to move, then the displacements are set to zero at the sphere surface.

Then, Eqs. (3.72) and (3.73) become

−kRjn+1(kR) = AnkRhn+1(kR)−BnnκRhn+1(κR) , (3.86)

−jn(kR) = Anhn(kR) +Bn[(n+ 1)hn(κR)− κRhn+1(κR)] , (3.87)

respectively. However, for a movable rigid sphere, another modification must

be made. Suppose that the sphere is moving along the z-axis with displacement

Uz. Conditions for ur and uθ then become [116]

uir + usr = Uz cos θ = UzP1(cos θ) , (3.88)

uiθ + usθ = −Uz sin θ = Uz
dP1(cos θ)

dθ
, (3.89)

with Uz derived from the equation of motion,

M
∂2Uz
∂t2

=

∫
S

(σrr cos θ − σθr sin θ)R2 sin θ dθ dφ , (3.90)
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where M = (4/3)πR3ρt is the mass of the sphere. Since only P1(cos θ) and

dP1(cos θ)/dθ appear above, only the equations with n = 1 must be modified.

After solving Eq. (3.90) for Uz and substituting into Eqs. (3.88) and (3.89),

we obtain Eq. (3.86) for continuity of radial displacement and

−
(

1− ρ

ρt

)
j1(kR) = A1

(
1− ρ

ρt

)
h1(kR)

−B1

[
2

(
1− ρ

ρt

)
h1(κR)− κRh2(κR)

]
(3.91)

for continuity of tangential displacement. Note that this equation is identical

to Eq. (3.87) for n = 1 except for the coefficient (1− ρ/ρt) multiplying j1 and

h1.

3.4 Discussion of Scattering Coefficients

Before proceeding with a discussion of radiation force computations

in Chapter 4, consideration is given to the elastic scattering coefficients and

scattered displacement fields for several different scatterers in soft tissue and

fluid media. This is useful to facilitate understanding of later radiation force

results, and as will be shown, it is necessary for the discussion of some non-

intuitive results for limiting cases.

3.4.1 Compressional Wave Scattering Coefficients

First, the lowest-order compressional scattering coefficients An in water

are compared for hard elastic spheres and movable rigid spheres, then for gas

bubbles and spherical voids. The elastic sphere is chosen to be steel, and the
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ρ0 (kg/m3) cl (m/s) ct (m/s)
Water 1000 1500 —
Steel 7810 5945 3252
Rigid 7810 ∞ ∞
Air 1.21 343 —
Void 0 — —

Table 3.1: Medium and scatterer properties for rigid/void comparisons

rigid sphere is chosen to have equivalent density to facilitate this comparison.

The gas bubble is chosen to be filled with air at room temperature. Material

parameters are provided in Table 3.1.

The comparison between a steel sphere and a rigid movable sphere

is shown in Fig. 3.4. For smaller spheres, the lowest order scattering coeffi-

cients dominate and there is no discernible difference between the scattering

coefficients in a steel sphere and a movable rigid sphere of the same density.

However, for larger spheres, some differences can be observed as effects of elas-

ticity become significant. Most notably, in Fig. 3.4(b), a null in A1 appears

at kR ≈ 7.6, and for Fig. 3.4(c), a null in A2 appears at kR ≈ 5.7. Also, in

Fig. 3.4(d), the A3 null at kR ≈ 8.6 disappears. These changes are consistent

with the minima in the radiation force observed in Fig. 2.1(a). Note that the

other nulls are not resonances due to sphere material properties but correspond

instead with zeros of j′n(kR).

Similar phenomena can be seen in the coefficients for an air bubble and

a spherical void, as shown in Fig. 3.5. As observed in Fig. 3.5(c), for smaller

kR, the monopole scattering coefficient A0 differs near the Minnaert resonance
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Figure 3.4: Compressional wave scattering coefficients for a steel sphere and a
rigid movable sphere of equivalent density in water.

[117] for an air bubble of equilibrium radius R0,

f0 =
1

2πR0

√
3Kair

ρhost
, (3.92)

and the coefficients are identical otherwise. As shown in Fig. 3.5(a) and (b),

other resonances appear for larger kR, but the scattering coefficients are again

identical off the resonances. The Minnaert resonance will be of particular im-

portance in future radiation force calculations for air bubbles in fluid and soft

elastic media (Chapter 4).
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(b) Air bubble
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(c) A0 for air bubble and void
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Figure 3.5: Compressional wave scattering coefficients for an air bubble and a
spherical void in water.

A further comparison between the steel sphere and the air bubble is also

useful. For small kR, note that from Fig. 3.4 for a steel sphere, the monopole

and dipole scattering coefficients A0 and A1 are of the same order for the

steel sphere, whereas from Fig. 3.5 for an air bubble, the monopole coefficient

is much larger. This difference is due to the reaction force that the heavier

and stiffer steel sphere exerts on the soft surrounding medium which is forced

to move around it, whereas the lighter and softer air bubble exerts no such
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Figure 3.6: Compressional wave scattering coefficients in water and soft tissue
(µ = 100 kPa) for a steel sphere.

reaction.

Considered next is the effect of nonzero shear modulus of the surround-

ing medium on the compressional wave scattering coefficients An. Recall from

Sec. 2.1.1 that the shear modulus in the medium is very small compared to the

bulk modulus, but note there are still clear effects on the scattering coefficients.

For a hard elastic sphere, the coefficients corresponding to a medium with and
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Figure 3.7: Compressional wave scattering coefficients in water and soft tissue
for a steel sphere.

without shear are nearly identical for larger kR, resulting in an equivalent com-

pressional contribution Fn to the radiation force (see Fig. 3.6). However, for

smaller kR, differences can be observed for n > 0 (see Fig. 3.7). In particular,

the difference in the dipole scattering coefficients A1—Fig. 3.7(b)—results in

a substantial change in the radiation force components Fn (discussed in Chap-

ter 4). While the coefficients A2 and A3—Fig. 3.7(c) and (d), respectively—also
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Figure 3.8: Monopole scattering coefficient magnitude for an air bubble in
water and soft tissue-like media.

change substantially, their effect on Fn is much less because they are orders of

magnitude smaller than A1. Also note that the coefficients tend toward those

for water with decreasing shear modulus, as expected.

For a gas bubble surrounded by a medium with and without shear

modulus (see Fig. 3.8), the coefficients are nearly identical except at bubble

resonances. Of greatest interest is the peak in A0 at the Minnaert resonance.

The added shear stiffness in the medium results in an increase in the resonance

frequency, which is written as [118]

f0 =
1

2πR0

√
3Kair + 4µhost

ρhost
. (3.93)

This shift in the resonance can be seen in Fig. 3.8, which shows a plot of the

86



(a) B1

0 2 4 6 8 10

kR

10−3

10−2

10−1

100

|B
1
|

Steel

Rigid, ρsteel

(b) B2

0 2 4 6 8 10

kR

10−5

10−4

10−3

10−2

10−1

|B
2
|

Steel

Rigid, ρsteel

(c) B3

0 2 4 6 8 10

kR

10−7

10−5

10−3

10−1

|B
3
|

Steel

Rigid, ρsteel

Figure 3.9: Scattering coefficients for the shear wave in a soft tissue-like
medium (µ = 4 kPa) surrounding a steel sphere and a rigid movable sphere of
equivalent density.

monopole scattering coefficient for small kR. The values of |A0| are nearly

indistinguishable for larger kR, and for other An, the values are nearly the

same for any kR.

3.4.2 Shear Wave Scattering Coefficients

The coefficients Bn for the scattered shear wave are now considered.

These coefficients are all equal to zero in the case of an inviscid fluid medium,
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so they need only be examined for nonzero shear modulus. The comparison

between a steel sphere and a rigid movable sphere embedded in a medium

resembling soft tissue (µ = 4 kPa) is shown in Fig. 3.9. There is no discernible

difference for kR < 1, but for larger spheres, scattering resonances become

important. In Fig. 3.9(a), a null appears at kR ≈ 7.2 and a peak appears at

kR ≈ 7.6 for B1; in (b), a null appears at kR ≈ 5.9 for B2; in (c), a null

appears at kR ≈ 8.6 for B3. As expected from scattering resonances, these

peaks and nulls are at nearly the same values of kR as the peaks and nulls in

An shown in the previous section.

Similar phenomena can be observed in the coefficients for an air bubble

and a spherical void, as shown in Fig. 3.10. Unlike with An, no coefficients ap-

pear different for small kR, which is partly due to the lack of B0, the monopole

scattering coefficient for the shear wave. For larger kR, scattering resonances

appear, but the coefficients are again equivalent away from these resonances.

Next, we consider a more continuous range of shear modulus in the

surrounding medium. Results for air bubbles and hard elastic spheres of various

sizes are presented in Fig. 3.11. For air bubbles in Fig. 3.11(a), (c), and (e), the

coefficients steadily decrease as µ → 0 except for some deviations that occur

due to shifting resonances. This behavior is expected because an inviscid fluid

medium does not support a scattered shear wave. However, this does not occur

for a steel sphere, as seen in Fig. 3.11(b), (d), and (f). Instead, the coefficients

tend toward a finite value as µ → 0. This paradox may be investigated by
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Figure 3.10: Scattering coefficients for the shear wave in a soft tissue-like
medium (µ = 4 kPa) surrounding an air bubble and a spherical void.

considering the shear displacement components from Eqs. (2.24) and (2.28):

ũtr = −1

r

(
∂2Π

∂θ2
+

cos θ

sin θ

∂Π

∂θ
+

1

sin2 θ

∂2Π

∂φ2

)
, (3.94)

ũtθ =
1

r

(
∂Π

∂θ
+ r

∂2Π

∂r∂θ

)
, (3.95)

ũtφ =
1

r sin θ

(
∂Π

∂φ
+ r

∂2Π

∂r∂φ

)
. (3.96)

The potential Π is represented by an infinite series, each term of which has
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Figure 3.11: Scattering coefficients for the shear wave versus shear modulus
for an air bubble (left column) and a steel sphere (right column).
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the following form:

Πm
n = Bna

m
n hn(κr)Pm

n (cos θ)eimφ . (3.97)

Taking care to calculate the θ derivatives in a way that facilitates numerical

computation [119], we can write Eqs. (3.94)–(3.96) for given n,m as

umn,r =
n(n+ 1)

r
Bna

m
n hn(κr)Pm

n (cos θ)eimφ , (3.98)

umn,θ = − 1

2r
Bna

m
n [(n+ 1)hn(κr)− κrhn+1(κr)]

× [(n+m)(n−m+ 1)Pm−1
n (cos θ)− Pm+1

n (cos θ)]eimφ ,

(3.99)

umn,φ =
im

r sin θ
Bna

m
n [(n+ 1)hn(κr)− κrhn+1(κr)]P

m
n (cos θ)eimφ . (3.100)

Since µ → 0 implies that κ → ∞, it is necessary to know hn(z) as z → ∞,

which may be determined from the asymptotic relation [120]

hn(z) ∼ i−n−1eiz

z
(3.101)

and which oscillates about zero and decays in magnitude. When Eq. (3.101)

is substituted into Eq. (3.98), we can see that umn,r → 0 for µ→ 0 as expected.

However, when Eq. (3.101) is substituted into Eqs. (3.99) and (3.100), there is

a term which oscillates about zero but does not approach zero in magnitude:

κrhn+1(κr) ∼ i−n−2eiκr . (3.102)

A contradiction seems to appear here: how can a shear wave persist in a

medium with vanishing shear modulus? The reason for this peculiarity lies in

the comparison with the results for an air bubble, where Bn → 0 as µ→ 0 in
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the medium as expected. In the case of a fluid scatterer, continuity of tangen-

tial displacement is not enforced regardless of the properties of the medium,

whereas in the case of an elastic scatterer, continuity of tangential displace-

ment is still enforced even for infinitesimal shear modulus in the medium. It is

the discrete nature of this no-slip condition that is responsible for this appar-

ent discrepancy, and because of this, we cannot generally use the limit µ→ 0

as a check of the shear contribution to the radiation force. That is, the radi-

ation force Gn due to shear wave fields will not necessarily approach zero as

the shear modulus in the medium approaches zero.

3.5 Summary

The coefficients for the incident and scattered wave fields discussed in

this chapter are important for producing the radiation force results in Chap-

ters 4 and 5, especially for providing physical insight into certain radiation

force effects. The incident field coefficients presented in Secs. 3.1 and 3.2 al-

low for the computation of the radiation force due to arbitrary incident fields,

and while not commonly used in acoustics, the framework for rotating the

coordinate system of a spherical harmonic expansion discussed in Sec. 3.1.4

is advantageous in that it avoids the need to use a separate force equation

for each component of the force, instead requiring that the incident field co-

efficients simply be transformed. The scattered field coefficients presented in

Secs. 3.3 and 3.4 aid in understanding several important radiation force ef-

fects related to increases in the magnitudes of the coefficients and shifting
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resonances, and they help to illustrate that even a small change in the shear

modulus in the surrounding medium can have substantial effects on the force.
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Chapter 4

Radiation Force Due to Compressional Wave

Fields

Presented in this chapter is a study of acoustic radiation force on a

spherical scatterer due to compressional wave fields only. That is, the con-

tribution Gn in Eq. (2.100) due to the scattered shear wave is ignored; only

Fn in Eq. (2.59) due to the scattered compressional wave is considered. The

radiation force is compared for various media, including soft tissue-like media,

viscous liquid, and ideal liquid. Viscosity is introduced to model a viscoelastic

host medium through a complex shear modulus µ̃ written as

µ̃ = µ− iωη , (4.1)

where µ is the shear modulus and η is the shear viscosity. Bulk viscosity ζ is

ignored in this analysis due to practical difficulties in measuring it accurately

[121, 122], so the bulk modulus is purely real (K̃ = K) and the complex

B. C. Treweek, Yu. A. Ilinskii, E. A. Zabolotskaya, and M. F. Hamilton, “Acoustic
radiation force due to arbitrary incident fields on spherical particles in soft tissue,” AIP
Conf. Proc., vol. 1685, no. 1, p. 040008, 2015. The author of the present work implemented
transformations of incident field coefficients amn for a scatterer located off the beam axis and
investigated direction reversals of the transverse force Fx.
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ρ0 (kg/m3) cl (m/s) ct (m/s) η (Pa·s)
Water 1000 1500 — —
Soft tissue 1000 1500 0–10 0–5
Stainless steel sphere 7900 5240 2978 —
Air bubble 1.21 343 — —
Polystyrene sphere 1000 2400 1089 —
Aluminum sphere 2700 6374 3111 —

Table 4.1: Medium and spherical scatterer properties for radiation force com-
parisons.

compressional wave speed c̃l is calculated via

ρc̃2l = K̃ +
4

3
µ̃ = K +

4

3
µ− i4

3
ωη . (4.2)

The liquid used for comparison is water because soft tissue has similar

acoustic properties. The shear wave speed ct in the medium spans the range

of values encountered in soft tissue [21], and shear viscosity spans a compa-

rable range [89, 90, 123–125]. Four different spheres are examined: a stainless

steel sphere (a representative hard scatterer), an aluminum sphere (another

representative hard scatterer with different density and elastic moduli), an air

bubble (a representative soft scatterer), and a polystyrene sphere (a solid scat-

terer with acoustic impedance much closer to that of the medium than the two

metals considered). Properties of these media are listed in Table 4.1.

In all cases, the incident field is chosen to be time-harmonic with fre-

quency f = 1 MHz, and it is either a plane wave or a simple focused beam with

confinement angle θ0 = 30◦ as described in Sec. 3.2.1. A plane traveling wave

is defined via Eq. (2.82) as ψ(z) = ψ0e
ikz, which yields the incident coefficients
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Figure 4.1: Axial profile of a plane standing wave at frequency f = 1 MHz in
a medium with compressional wave speed cl = 1500 m/s. The filled red circle
marks an example sphere positioned at z = z0.

described by Eq. (2.83):

an = ψ0i
n(2n+ 1) . (4.3)

A plane standing wave is defined via two counter-propagating plane waves to

yield ψ(z) = 1
2
ψ0(e

ikz + e−ikz) = ψ0 cos(kz), and for a sphere moved to a posi-

tion z = z0 as described in Sec. 3.1.3, this results in incident field coefficients

described by Eq. (2.86):

an = ψ0(2n+ 1) cos(kz0 + nπ/2) . (4.4)

An axial profile for the plane standing wave amplitude is shown in Fig. 4.1,

and we can refer to Fig. 3.2(d) and (e) for axial and focal profiles, respectively,

of a simple focused beam.

While results are presented for nonzero shear viscosity in the surround-

ing medium, they are not extensively compared with results for viscous fluid
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media obtained by others [11–16] because when the surrounding fluid is vis-

cous, effects due to acoustic streaming must also be considered. The result is

that additional terms are needed beyond those described in Eq. (2.36) and elab-

orated upon in the rest of Chapter 2. Also, the radiation force Gn associated

with the scattered shear wave is necessary to provide a complete description

even without streaming effects. Therefore, except for brief comments on qual-

itative similarities, results for nonzero shear viscosity are instead included as

a comparison with results for nonzero shear modulus to demonstrate that in

some cases, it may be difficult to ascertain whether an effect is due to the

viscosity or the elasticity in the medium.

4.1 Numerical Convergence

First, it is important to briefly address the computational demands of

calculating Fz using Eq. (2.67) or (2.68). Since the radiation force is written

as an infinite sum, we must determine how many terms N are required for

a solution to have converged. In practice, as few terms as possible should be

used so that results can be computed quickly, but for a field described by an

infinite sum of spherical wave functions in free space, more terms are needed

to resolve the field as the distance from the origin increases. We may therefore

expect the required value of N to increase as the scatterer size increases.

As shown in Figs. 4.2 and 4.3, this expectation is accurate. In these

figures, plots show the ratio of FN (the force computed for a given value of

N) to F∞ (the force computed for a very large value of N) versus kR, with
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(c) Polystyrene
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Figure 4.2: Number of terms N required for convergence of radiation force Fz
given by Eq. (2.68) due to a traveling plane wave incident on spheres of various
sizes kR in water.

convergence occurring when this ratio reaches unity. For a traveling plane

wave, as shown in Fig. 4.2, sphere sizes up to kR = 3, 10, and 30 require

approximately 5, 15, and 35 terms, respectively, with no strong dependence on

the properties of the scatterer. Also, as shown in Fig. 4.3, the required value of

N for a given scatterer size when the scatterer is moved off the axis of a simple

focused beam is somewhat decreased for Fz and approximately the same for

Fx. In experiments on radiation force due to ultrasound, scatterers are often
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(a) Stainless steel, Fz
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(b) Stainless steel, Fx
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(c) Air, Fz
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(d) Air, Fx
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(e) Polystyrene, Fz
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(f) Polystyrene, Fx
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Figure 4.3: Terms required for convergence of axial (Fz) and transverse (Fx)
radiation force due to a simple focused beam incident on spheres of various sizes
kR in water. Both Fz and Fx are calculated using Eq. (2.67) with respective
incident field coefficients. The sphere is located at (z0, x0) = (0, 0.5 mm).
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less than two wavelengths in diameter [89, 90], so it should be sufficient to use

10–15 terms in most practical cases.

4.2 Scatterer Position

We next examine the effect of varying the scatterer position within a

sound field. In the cases considered, the incident field is either a plane standing

wave or a beam. For a plane traveling wave, the time-averaged intensity has

no spatial variation, and therefore a change in the scatterer position has no

effect on the force. In order to focus on the effect of scatterer position, we

choose only a few values for scatterer size and shear modulus or viscosity

in the surrounding medium (i.e., water with either shear modulus or shear

viscosity added).

4.2.1 Scatterer Located On Axis

Considered first is the variation of the position z = z0 of the scatterer

along the axis of an incident plane standing wave. Scatterers in water are

pushed toward either pressure nodes or pressure antinodes depending on the

excitation frequency and their stiffness relative to the surrounding medium.

Mathematically, this can be seen by considering the force on a small body of

volume V due to a pressure gradient ∇P , which is written as [126]

F = −〈V∇P 〉 . (4.5)
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For a plane standing wave described by p = p0 cos(kz) sin(ωt), the above rela-

tion yields

Fz =
2πkp20R

3

3ρ0c2l
sin(2kz) (4.6)

for a rigid sphere (which underestimates results from King [1] by approximately

20%) and

Fz =
πV0p

2
0

2γλP0

sin(2kz)

1− ω2/ω2
0

(4.7)

for a gas bubble, where V0 is the equilibrium bubble radius, γ is the ratio

of specific heats in an ideal gas, λ is the wavelength, P0 is the equilibrium

pressure in the bubble, and ω0 is the resonance frequency of the bubble.

Plots of the radiation force on a stainless steel sphere subject to a

plane standing wave in water are shown in Fig. 4.4. The stainless steel sphere

is pushed toward a pressure node; for example, when the sphere is moved just

to the right of z = 0.375 mm, which is a pressure node (see Fig. 4.1), the

force is negative, indicating that the sphere is pushed toward the node. This

physical effect remains the same even with a nonzero shear modulus or shear

viscosity. However, as seen in Fig. 4.4(a)–(d), there are noticeable differences

in magnitude for small scatterers. As discussed in Sec. 3.4, this is primarily

because of the dipole scattering coefficient A1. For larger spheres (kR & 0.1),

as shown in Fig. 4.4(e) and (f), the axial forces are nearly indistinguishable.

For a gas bubble, the effect is different. Since gas is much softer than

a surrounding tissue-like (i.e., liquid-like) medium, the bubble is pushed to-

ward pressure antinodes for frequencies below the bubble resonance and to-

ward pressure nodes for frequencies above the bubble resonance [126], which
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−1.0 −0.5 0.0 0.5 1.0

z0 [mm]

−0.1

0.0

0.1
Y
p,
z

η = 0.1 Pa·s
η = 0.01 Pa·s
Water (µ = 0)

(e) kR = 0.1, µ 6= 0

−1.0 −0.5 0.0 0.5 1.0

z0 [mm]

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Y
p,
z

µ = 100 kPa

µ = 25 kPa

Water (µ = 0)

(f) kR = 0.1, η 6= 0
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Figure 4.4: Acoustic radiation force function Yp,z versus axial position z0 of a
stainless steel sphere embedded in various media with a plane standing wave
incident on the sphere. A dashed line is included at Yp,z = 0 for visual clarity.
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(a) P > P0 (b) P < P0

Figure 4.5: Force on a bubble in a standing wave at two different moments in
the cycle.

corresponds to kR = 0.0138 for an air bubble in water. This effect can be

seen mathematically in Eq. (4.7) and physically in Fig. 4.5. For frequencies

less than the bubble resonance, fluctuations in the pressure and the radius of

the bubble are out of phase—the bubble is smaller when it is pushed away

from an antinode, which results in a lower value of the force in Eq. (4.5), and

the bubble is larger when it is pushed toward the antinode, which results in

a larger value of the force and hence an average force toward the antinode

per cycle. The effect reverses for frequencies above the bubble resonance. As

discussed in Sec. 3.4, the important consideration in determining differences

between various media is therefore the shift in the resonance frequency of the

bubble with increasing shear stiffness in the surrounding medium.

Figure 4.6 shows results for radiation force on an air bubble in media

with nonzero shear modulus or viscosity. In Fig. 4.6(a), the bubble is pushed

toward pressure antinodes for all three choices of surrounding medium. That

is, when the bubble is moved just to the right of a pressure antinode (e.g.,

z = 0), the force is to the left (negative), and vice versa for a bubble moved
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(d) kR = 0.016, η 6= 0
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(f) kR = 0.02, η 6= 0
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Figure 4.6: Acoustic radiation force function Yp,z versus axial position z0 of an
air bubble embedded in various media with a plane standing wave incident on
the bubble. A dashed line is included at Yp,z = 0 for visual clarity.
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just to the left. In Fig. 4.6(c), the direction of the force has reversed in water

and the softer tissue-like medium; in these media, this larger bubble has a

resonance below the excitation frequency, whereas in the stiffest medium, the

bubble resonance is still above the excitation frequency. In Fig. 4.6(e), the

direction has reversed in all three media. In Fig. 4.6(b), (d), and (f), which

show results for nonzero shear viscosity, the direction of the force is the same

in all three media. There is still a reversal in the direction above the bubble

resonance—i.e., Fig. 4.6(b) and (d) are out of phase—but shear viscosity does

not have a strong effect on where this resonance occurs. The only difference in

radiation force among the various media is the diminished magnitude of the

force, which is expected when loss is involved, especially in the neighborhood

of a resonance.

Next, we consider a simple focused beam. Results for an aluminum

sphere that is small compared to a compressional wavelength in the medium

are shown in Fig. 4.7. (Note that in this figure as well as several others, a

logarithmic y-axis is used in order to better show results on a single plot. Yp > 0

is indicated with solid lines, Yp < 0 with dashed lines.) In Fig. 4.7(a) and (b)

showing results very small spheres in elastic media, it is observed that the

direction of the force is not necessarily the same as the propagation direction.

Instead, the direction depends on the axial position of the sphere within the

sound beam—from Fig. 3.2(e), recall that z0 = 0 indicates that the sphere is

precisely at the beam focus—and the point at which the direction reverses is

dependent on the shear modulus in the surrounding medium. In Fig. 4.7(c)–(f)

105



(a) kR = 0.001, µ 6= 0

−5 0 5

z0 [mm]

10−7

10−6

10−5

10−4

10−3

Y
p,
z

µ = 100 kPa

µ = 25 kPa

Water (µ = 0)

(b) kR = 0.001, η 6= 0

−5 0 5

z0 [mm]

10−7

10−6

10−5

10−4

10−3

Y
p,
z

η = 0.1 Pa·s
η = 0.01 Pa·s
Water (µ = 0)

(c) kR = 0.01, µ 6= 0

−5 0 5

z0 [mm]

10−6

10−5

10−4

10−3

10−2

Y
p,
z

µ = 100 kPa

µ = 25 kPa

Water (µ = 0)

(d) kR = 0.01, η 6= 0

−5 0 5

z0 [mm]

10−6

10−5

10−4

10−3

10−2

Y
p,
z

η = 0.1 Pa·s
η = 0.01 Pa·s
Water (µ = 0)

(e) kR = 0.1, µ 6= 0

−5 0 5

z0 [mm]

10−5

10−4

10−3

10−2

Y
p,
z

µ = 100 kPa

µ = 25 kPa

Water (µ = 0)

(f) kR = 0.1, η 6= 0
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Figure 4.7: Acoustic radiation force function Yp,z versus axial position z0 of
an aluminum sphere embedded in various media with a simple focused beam
incident on the sphere. Solid lines indicate Yp,z > 0 and dashed lines indicate
Yp,z < 0.
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(a) µ 6= 0
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Figure 4.8: Acoustic radiation force function Yp,z versus axial position z0 of an
aluminum sphere (kR = 1) embedded in various media with a simple focused
beam incident on the sphere.

showing results for larger spheres that are still small relative to a compressional

wavelength, the force direction coincides with the propagation direction when

the sphere is embedded in a medium with nonzero shear modulus, but the

force still depends on axial position for a sphere in water. The magnitude of the

force is substantially increased when the medium has nonzero shear modulus—

or, in qualitative agreement with existing literature, nonzero shear viscosity

[12, 15, 16]—but it is considerably lower than the magnitude of the force due to

plane standing wave incidence. For even larger spheres approaching the order

of a compressional wavelength, as shown in Fig. 4.8, the sphere is pushed in

the propagation direction regardless of the medium, and the magnitude of the

radiation force is similar in all media.

For an air bubble, as shown in Fig. 4.9, the effect again depends on the

bubble resonance. As expected, the most important effect is the significant
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(f) kR = 0.02, η 6= 0
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Figure 4.9: Acoustic radiation force function Yp,z versus axial position z0 of an
air bubble embedded in various media with a simple focused beam incident on
the sphere. Solid lines indicate Yp,z > 0 and dashed lines indicate Yp,z < 0.
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(a) Stainless steel, kR = 1
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(b) Air bubble, kR = 0.012
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Figure 4.10: Acoustic radiation force function Yp,z versus transverse position
x0 of a stainless steel sphere and a gas bubble embedded in various media
with a simple focused beam incident on the sphere. Compare with Fig. 3.2(d),
which shows that the first null is approximately 2 mm from the axis in the
focal plane.

increase in the magnitude of the force for frequencies near resonance. For

frequencies below resonance, as shown in Fig. 4.9(a) and (b), the direction of

the force reverses at a point in front of the beam focus (z > 0). For frequencies

above resonance, as shown in Fig. 4.9(c)–(f), the direction reverses at a point

behind the beam focus (z < 0). However, as the magnitude of the force in the

neighborhood of the direction reversal is low, it may be difficult to observe

a precise location for the direction reversal in practice. For nonzero shear

viscosity, the resonance is not prominent and the force is positive regardless

of axial position of the scatterer.
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4.2.2 Scatterer Located Off Axis

For examination of the radiation force on a scatterer located at posi-

tion x0 off the propagation axis, a field with transverse variation as shown in

Fig. 3.2 is necessary. Therefore, plane waves are no longer used in this section,

only simple focused beams. Also, only the transverse direction of the force

is examined in depth here because the force in the axial direction generally

behaves as expected. As shown in Fig. 4.10, force in the axial direction follows

results in the previous section, but its magnitude is decreased as the sphere is

moved off the beam axis.

Results for a steel sphere are presented in Fig. 4.11. Depending on

sphere size and shear modulus in the medium, the sphere may be pushed either

toward the beam axis or away from it. For the smaller spheres in Fig. 4.11(a)

and (c), the direction of the force may differ. Smaller spheres in tissue-like

media are pushed toward the beam axis, whereas smaller spheres in water are

pushed (albeit much more weakly) toward a point off the beam axis but still

within the main lobe of the beam. When sphere size increases to kR = 0.1 in

Fig. 4.11(e), the force in the transverse direction is nearly equivalent in both

water and tissue-like media. For nonzero shear viscosity in Fig. 4.11(b), (d),

and (f), the effect is more consistent across sphere size: viscosity causes the

sphere to be pushed toward the beam axis.

For a different metal sphere with different elastic properties, the effects

may differ. As seen in Fig. 4.12 for aluminum, for instance, the sphere is

consistently pushed away from the beam axis in water, but it may be pushed
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Figure 4.11: Acoustic radiation force function Yp,x versus transverse position
x0 of a stainless steel sphere embedded in various media with a simple focused
beam incident on the sphere. Solid lines indicate Yp,x > 0 and dashed lines
indicate Yp,x < 0.
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Figure 4.12: Acoustic radiation force function Yp,x versus transverse position
x0 of an aluminum sphere embedded in various media with a simple focused
beam incident on the sphere. A dashed line is included at Yp,x = 0 for visual
clarity.
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in either direction depending on its size and the shear modulus or viscosity in

the surrounding medium. Furthermore, unlike for the stainless steel sphere, the

effect of shear viscosity in the medium is less distinct from the effect of shear

modulus. Such observations will be further developed in following sections.

Results for an air bubble are presented in Fig. 4.13. Again, the bubble

resonance is clearly responsible for the observed effects. As in the standing wave

(recall Fig. 4.6), the bubble is pushed toward the beam axis (i.e., the pressure

antinodes) for frequencies below the shifted resonance, and it is pushed away

from the beam axis for frequencies above the shifted resonance. In Fig. 4.13(a),

the three solid curves for x0 < 0 indicate a positive force in the x-direction,

and the three dashed curves for x0 > 0 indicate a negative force in the x-

direction. In Fig. 4.13(c), two of the pairs of solid and dashed curves have

switched, indicating that the bubble is pushed away from the beam axis for

the two softer media and toward the beam axis in the stiffest medium. Finally,

in Fig. 4.13(e), the bubble is pushed away from the beam axis in all three

media. When shear viscosity is included in Fig. 4.13(b), (d), and (f), there is a

clear effect on the magnitude. A direction reversal occurs as well, but it always

appears to occur at the bubble resonance in water regardless of the viscosity.

4.3 Scatterer Size

We now consider a more continuous range of scatterer size. In this

section, functional dependence on kR is investigated by fixing the frequency of

the incident field and varying the radius of the scatterer. (In an experiment, it
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Figure 4.13: Acoustic radiation force function Yp,x versus transverse position
x0 of an air bubble embedded in various media with a simple focused beam
incident on the bubble. Solid lines indicate Yp,x > 0 and dashed lines indicate
Yp,x < 0.
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(a) kR < 1, µ 6= 0
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Figure 4.14: Acoustic radiation force function Yp,z versus scatterer size kR of a
stainless steel sphere embedded in various media with a plane traveling wave
incident on the sphere.

may be easier to sweep the frequency of the incident wave, but the effect is the

same for theoretical purposes.) In order to emphasize the effect of scatterer

size, the shear modulus and shear viscosity in the surrounding medium are

again set to specific values, and the scatterer is either at the origin or at a

location off the axis of a simple focused beam.

Results for axial force on a stainless steel sphere in a plane traveling
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wave are presented in Fig. 4.14. For the larger spheres in Fig. 4.14(a) and

(b), the difference between liquid and soft tissue-like or viscous liquid media

is relatively small, but for smaller spheres in Fig. 4.14(c) and (d), the dipole

scattering coefficient (discussed in Sec. 3.4.1) initially causes a rapid increase

in the radiation force with increasing kR. Larger values for either shear mod-

ulus or shear viscosity produce a more pronounced effect, and the effect is

more abrupt for shear modulus than for shear viscosity due to loss. Again,

the increase in the magnitude of the radiation force due to viscosity in the

surrounding medium is corroborated by other works [12, 15, 16]. Other metals

(e.g., aluminum) tend to exhibit similar properties.

The transverse force associated with a sphere off axis in a traveling wave

beam is shown in Fig. 4.15. In this case the sphere is centered at x0 = 0.5 mm

in the focal plane, so a positive force (solid line) indicates that it is pushed

away from the beam axis and a negative force (dashed line) indicates that

it is pushed toward the beam axis. Since the differences are negligible for

kR = O(1), only results for smaller kR are shown. For a stainless steel sphere

in Fig. 4.15(a) and (b), the sphere is pushed in the same direction (toward

the beam axis) regardless of scatterer size for nonzero shear viscosity, but for

nonzero shear modulus there is a narrow range of kR for which the direction

is reversed. For an aluminum sphere in Fig. 4.15(c) and (d), however, there

is a similar reversal in direction for both nonzero shear modulus and nonzero

shear viscosity: very small scatterers are pushed toward the beam axis, whereas

larger scatterers are pushed away.
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Figure 4.15: Acoustic radiation force function Yp,x versus scatterer size kR of
a stainless steel sphere and an aluminum sphere embedded in various media
with a simple focused beam incident on the sphere, located at x0 = 0.5 mm in
the focal plane. Solid lines indicate Yp,x > 0 and dashed lines indicate Yp,x < 0.

For an air bubble in a traveling plane wave, as shown in Fig. 4.16(a) and

(b), the axial force is nearly indistinguishable for larger bubbles regardless of

shear properties in the medium. For smaller bubbles, however, the differences

are substantial. The resonance frequency shift is clearly visible for nonzero

shear modulus in Fig. 4.16(c) and the resonance peak is characteristically

broadened for nonzero shear viscosity in Fig. 4.16(d). When the bubble is
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Figure 4.16: Acoustic radiation force function Yp,z versus scatterer size kR of
an air bubble embedded in various media with a plane traveling wave incident
on the bubble.

moved off the axis of a traveling wave beam, as shown in Fig. 4.17, we can

see the effect of the resonance in greater detail. Clearly, for frequencies below

resonance, the bubble is pushed toward the beam axis, and for frequencies

below resonace, the bubble is pushed away from it. As shown in Fig. 4.17(a),

the resonance frequency shifts for nonzero shear modulus, and as shown in

Fig. (b), the shift is negligible for nonzero shear viscosity in the surrounding

medium. Also, according to the zoomed in plots Fig. 4.17(c) and (d), a peak
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Figure 4.17: Acoustic radiation force function Yp,x versus scatterer size kR of
an air bubble embedded in various media with a simple focused beam incident
on the sphere, located at x0 = 0.5 mm in the focal plane. Solid lines indicate
Yp,x > 0 and dashed lines indicate Yp,x < 0.

clearly occurs before the direction reversal at kR = 0.0137 in all inviscid

media, but in viscous liquid there is a smoother transition between positive

and negative force without a resonance peak because of damping. A final

observation worth noting is that the magnitude of the transverse force appears

to be greater than the magnitude of the axial force, making it potentially easier

to measure in practice with appropriate placement of imaging transducers.
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Figure 4.18: Ratio of axial radiation force in various media to that in inviscid
water for air bubbles of various sizes located at (z0, x0) = (0.2 mm, 0.5 mm) off
the focus of a beam incident on the bubble.

4.4 Elasticity in Surrounding Medium

Finally, we consider a more continuous range of shear modulus and

shear viscosity in the surrounding medium. For this analysis, a simple focused

beam incident on the sphere is used, the scatterer is located off the beam axis

at (z0, x0) = (0.2 mm, 0.5 mm), and the ratio of force in soft tissue or viscous

liquid to that in inviscid water is presented.

Results for axial and transverse force on air bubbles are shown in

Figs. 4.18 and 4.19, respectively. These figures simply offer another perspective

on previous discussions. Nonzero shear modulus causes a shift in the resonance

frequency, causing an increase in the axial force, as shown in Fig. 4.18(a), or a

reversal in direction of the transverse force, as shown in Fig. 4.19(a). Nonzero

shear viscosity broadens the resonance, which causes a decrease of the force

near resonance and an increase in the force off the resonance, as shown in
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Figure 4.19: Ratio of transverse radiation force in various media to that in
inviscid water versus shear modulus µ or shear viscosity η for air bubbles of
various sizes located at (z0, x0) = (0.2 mm, 0.5 mm) off the focus of a beam
incident on the bubble. A solid line indicates a positive ratio and a dashed line
indicates a negative ratio.

Figs. 4.18(b) and 4.19(b).

Results for axial and transverse force on aluminum spheres are shown

in Figs. 4.20 and 4.21, respectively. Both nonzero shear modulus and nonzero

shear viscosity cause an increase in the axial force on the sphere until kR ' 1,

where it levels out to unity as shown in Fig. 4.20(c) and (d), with the greatest

increase occurring at different values of µ or η at different values for smaller

spheres as shown in Fig. 4.20(a) and (b). In Fig. 4.21(a) and (b), the trans-

verse force exhibits direction reversals for smaller spheres at shear modulus

or viscosity values that appear to approximately coincide with maxima in the

axial radiation force. Also, as shown in Fig. 4.21(c) and (d), the transverse

force is nearly indistinguishable between water and soft tissue-like or viscous

liquid media for all but the very smallest spheres.
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Figure 4.20: Ratio of axial radiation force in various media to that in in-
viscid water for aluminum spheres of various sizes located at (z0, x0) =
(0.2 mm, 0.5 mm) off the focus of a beam incident on the sphere.

A final look at the transverse radiation force on small scatterers in a

focused sound beam is presented in Fig. 4.22, which shows color plots of the

aforementioned force ratio versus both scatterer size and shear modulus or

shear viscosity. In these plots, red regions indicate that the forces are in the

same direction, and blue regions indicate that the forces are in the opposite

direction. Because direction reversals would be easier to observe in practice

than changes in magnitude of the force, these plots suggest regions in pa-

122



(a) kR ≤ 0.03, µ 6= 0

10−1 100 101 102

µ [kPa]

10−2

10−1

100

F
x
/F

x
,w

at
er

kR

0.001

0.003

0.01

0.03

(b) kR ≤ 0.03, η 6= 0
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(d) kR ≤ 1, η 6= 0
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Figure 4.21: Ratio of transverse radiation force in various media to that in
inviscid water versus shear modulus µ or shear viscosity η for aluminum spheres
of various sizes located at (z0, x0) = (0.2 mm, 0.5 mm) off the focus of a beam
incident on the sphere. A solid line indicates a positive ratio and a dashed line
indicates a negative ratio.

rameter space that may provide useful information about the medium. For

aluminum spheres in Fig. 4.22(a) and (b), the effects of nonzero shear modu-

lus and nonzero shear viscosity are difficult to distinguish. Either property can

cause a reversal in the direction of the force, so determining which is respon-

sible for this change may required additional rheological tests. For air bubbles
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(d) Air bubble, η 6= 0
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Figure 4.22: Ratio of transverse radiation force in various media to that in
inviscid water versus scatterer size kR and shear modulus µ or shear viscosity
η for air bubbles and aluminum spheres in a simple focused beam, located at
(z0, x0) = (0, 0.5 mm). Black lines have been added as visual aids to identify
direction reversals [127].

in Fig. 4.22(c) and (d), there is a narrow range of bubble size that causes a

reversal in the force direction, and this range is different for nonzero shear

modulus and nonzero shear viscosity. This result suggests that if a range of

bubble sizes is introduced in a soft tissue to be examined, it may be possible

to determine the tissue properties based on which bubble sizes are pushed in
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opposite directions. However, the narrowness of the range and possible chal-

lenges associated with transducer placement may still make this phenomenon

difficult to investigate in practice.

4.5 Summary

The radiation force results discussed in this chapter cover a variety of

variables: size, position, and mechanical properties of the spherical scatterer,

and both elasticity and viscosity in the surrounding medium. By determining

sets of parameters where the force is especially sensitive to a change in the elas-

ticity in the medium, we can develop experiments to test the practical utility

of this theory. The results presented here suggest that small scatterers, though

subject to a correspondingly smaller radiation force, are especially worth in-

vestigating as they exhibit the most different behavior between liquid and soft

elastic media. Nonzero shear modulus and nonzero shear viscosity in the sur-

rounding medium often produce similar effects, but there are some instances

where they differ enough that these effects may be examined separately.

For viscosity, previous results showed a large increase in the radiation

force on small, rigid scatterers [12, 15, 16], and this effect is qualitatively cor-

roborated by the results shown in this chapter. However, direction reversal of

the force due to a traveling plane wave was also observed [12], but this effect

is not observed from our force. There are several reasons for this. First, the

approximation we made to the stress tensor removed all terms that would have

included explicit dependence on shear viscosity; by leaving only σBnm, which
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only has elastic constant B = −K as its coefficient in a fluid, we have re-

moved any term that could have been important as regards shear viscosity in

a fluid. Second, in neglecting effects due to absorption, we have ignored acous-

tic streaming, which seems to be important when the sphere radius is smaller

than the viscous wave penetration depth δ as defined in Eq. (1.9).

Finally, while several of the results presented in this chapter may be use-

ful, an important point must be reemphasized here: these results only include

effects due to the scattered compressional wave field and the accompanying

scattering coefficients An. Although the coefficients An do exhibit dependence

on the shear modulus of the medium surrounding the sphere, the scattered

shear wave field itself (along with the accompanying scattering coefficients Bn)

must also be considered. This discussion is the subject of Chapter 5, though

Gn is not examined as extensively as Fn in this chapter due to the difficulty

in obtaining analytical—and even semi-analytical or numerical—results.
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Chapter 5

Acoustic Radiation Force Associated with the

Scattered Shear Wave

In this chapter, consideration is given to the radiation force Gn on

a spherical scatterer due to the scattered shear wave field in a soft elastic

medium. Viscous liquid media have been examined by others [11, 12, 15–19,

128], and these studies have revealed some non-intuitive results due to the

viscous boundary layer and acoustic streaming. However, surrounding media

with nonzero shear moduli have not been considered despite their relevance

to soft tissue. The purpose of this chapter is to examine the force term Gn in

greater detail and compare it to the force Fn due to the scattered compressional

wave field.

All numerical comparisons making use of the full expression Gn =

GB
n +GP

n in Eq. (2.100) for the contribution associated with the scattered shear

wave are limited in this chapter to the z-component of the radiation force. The

quantity GB
n is the component of the radiation force due to direct integration

of the stress tensor over the surface of the scatterer, and the quantity GP
n is the

reaction force due to the body force gn in Eq. (2.46) associated with shear stress

in the surrounding medium. The limitation to the z-component of the force
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is necessary due to the heavy computational burden resulting from the large

discrepancy between shear wave speed and compressional wave speed in soft

tissue-like media, which requires body forces and particle displacements to be

very finely discretized. Therefore, the problem considered here is the axisym-

metric case, which allows for discretization in two dimensions instead of three

to numerically compute GP
z . Additionally, we will see that analytic approxi-

mations for GP
n , which would allow for easy calculation of the x-component of

the force, are unsatisfactory for the types of scatterers that would be useful as

targets in soft tissue. That is, an analytic approximation for GP
n appears to be

possible only for scatterers so acoustically similar to the surrounding medium

that they would be almost acoustically transparent.

Furthermore, in order to obtain a full solution of the time-averaged

second-order equations of motion, the shear wave speed in the medium is

increased by a factor of ten from what has been considered previously (100 m/s

instead of 10 m/s). This increase in the shear wave speed is also necessary to

reduce the discretization and thus facilitate computation.

In Sec. 5.1, the term GB
n , which has been calculated analytically in

Sec. 2.6, is examined in comparison with the force Fn due to the scattered

compressional wave to determine whether effects due to the scattered shear

wave field are likely to present a significant correction to Fn. Next, in Sec. 5.2,

an approximation to the body force gn in Eq. (2.44) due to shear wave fields is

proposed such that an analytical result for GP
n might be obtained. The validity

of this approximation is examined for several different scatterer materials. In
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Sec. 5.3, a least-squares finite element method (FEM) is presented to com-

pute GP
z numerically for axisymmetric incident fields, which is added to the

analytic calculations for GB
z and Fz to provide the net contribution Fz + Gz

to the radiation force on the sphere. Finally, in Sec. 5.4, a full FEM solution

based on the time-averaged second-order equations of motion is obtained with

the FEniCS open-source computing platform to include effects related to the

deformation of the surrounding medium. That is, in the full FEM solution,

the displacement of the sphere is due to Fz, Gz, and the solenoidal component

of gn written as ∇×S from Eq. (2.46); this final computation is important to

determine whether the solenoidal component of gn also has a significant effect

on the predicted sphere displacement.

5.1 Comparison of Fn and GB
n

SinceGB
n can easily be determined analytically from Eq. (2.108) for non-

axisymmetric fields or from Eq. (2.109) for axisymmetric fields, it is useful to

consider in order to estimate the magnitude of Gn relative to Fn. While a large

value of GB
n may not strictly correspond to a large value of Gn compared with

Fn since GP
n is unknown, this comparison is an appropriate first step because

GB
n and GP

n may be expected to be of the same order, since FB
n and F P

n are

observed to be the same order in Fig. 5.2.

The ratio of force terms GB
n /Fn for various spheres in different soft

tissue-like media is presented in Fig. 5.1. In these plots, a simple focused

beam with confinement angle θ0 = 30◦ is used, and the sphere is located off
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(a) Aluminum sphere, z-direction
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(b) Aluminum sphere, x-direction
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(c) Air bubble, z-direction
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(d) Air bubble, x-direction

10−3 10−2 10−1 100

kR

10−8

10−6

10−4

10−2

G
B x
/F

x

µ = 100 kPa

µ = 25 kPa

µ = 4 kPa

(e) Polystyrene sphere, z-direction
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(f) Polystyrene sphere, x-direction
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Figure 5.1: Ratio of force terms GB
n /Fn for various spheres embedded in soft

tissue-like media subject to a simple focused beam with confinement angle
θ0 = 30◦ located off the beam axis at (z0, x0) = (0, 0.5 mm). A positive ratio is
indicated with solid lines, and a negative ratio is indicated with dashed lines.
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the beam axis at (z0, x0) = (0, 0.5 mm). A positive GB
n /Fn ratio is indicated

with solid lines, and a negative ratio is indicated with dashed lines.

The ratio GB
n /Fn is shown for an aluminum sphere in Fig. 5.1(a) and

(b). For the axial direction shown in Fig. 5.1(a), it is clear that GB
z is large

compared with Fz for small spheres (kR . 0.01) but levels off to approximately

−0.1 as the sphere size increases. However, for the transverse direction shown

in Fig. 5.1(b), |GB
x | is an order of magnitude greater than |Fx| for nearly all

sphere sizes, with several reversals in direction, suggesting that shear effects

may be especially important for the transverse force on a hard sphere in a soft

tissue-like medium.

The ratio GB
n /Fn for an air bubble is shown in Fig. 5.1(c) and (d). For

the force in the axial direction shown in Fig. 5.1(c), GB
z is small compared

with Fz for kR & 0.005, and for the force in the transverse direction shown

in Fig. 5.1(d), GB
x is always small in comparison with Fx. Because GB

n and

GP
n may be expected to be of the same order as is often the case with FB

n

and F P
n , this suggests that for most bubble sizes of interest, especially those

near the resonance kR = 0.0137 in water, the correction Gn associated with

the scattered shear wave may not be too large compared with Fn for very soft

scatterers in soft tissue-like media.

Finally, the ratio GB
n /Fn for a polystyrene sphere is shown in Fig. 5.1(e)

and (f). For both the axial and the transverse directions of the force, GB
n

appears to be of the same order as Fn. This suggests that Gn may be of the

same order as Fn and must be considered for such scatterers. From the three
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comparisons in Fig. 5.1, it therefore appears to be necessary to consider Gn.

5.2 Approximation of GP
n

Since the previous section suggests a significant effect due to Gn for

several scatterer properties and sizes, it is necessary to find a way to calculate

GP
n . Ideally, this could be done analytically, which would considerably ease

computational requirements for determining the radiation force on a sphere in

a soft elastic medium.

First, it is useful to consider a special property of Fn and examine

whether it may apply to Gn as well. Specifically, Fn is the same for any sur-

face of integration chosen to enclose the sphere. Though FB
n and F P

n both

oscillate with kr outside the sphere—as shown in Appendix B by Eqs. (B.9)

and (B.17)—the sum FB
n + F P

n has no explicit dependence on kr. We thus

consider whether this feature could help predict Fn just from FB
n , and if so,

whether this could be applied to GB
n .

As can be seen in Fig. 5.2, there are several issues that prevent this.

First, depending on the type of scatterer, FB
z and F P

z have different relative

importance depending on kR. For example, in Fig. 5.2(a) for the stainless steel

sphere, FB
z is greater than the total force Fz at kr = kR, whereas for the air

bubble in Fig. 5.2(b), F P
z makes up the entirety of the force at the bubble

radius. Second, even for the same scatterer type, the relative importance of

FB
z and F P

z at kr = kR may be different. In Fig. 5.2(a) for a small stainless

steel sphere, FB
z appears to be nearly equivalent to Fz, whereas for a larger
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(a) Stainless steel, kR = 0.3
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(b) Air bubble, kR = 0.3
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(c) Stainless steel, kR = 1
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(d) Air bubble, kR = 1

2.5 5.0 7.5 10.0 12.5 15.0

kr

−0.4

−0.2

0.0

0.2

0.4

0.6
F
z

[m
N

]

Fz = FB
z + F P

z

FB
z

F P
z

(e) Stainless steel, kR = 3
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Figure 5.2: Plots of the two force terms FB
z and F P

z due to compressional wave
fields for a traveling plane wave incident on various spheres in a soft tissue-like
medium (µ = 100 kPa). A dashed line is included at Fz = 0 for visual clarity.
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sphere in Fig. 5.2(c) or (e), F P
z represents a large correction. Finally, while

at large kr the value of FB
z appears to oscillate about Fz and F P

z appears to

oscillate about zero, especially in Fig. 5.2(d)–(f), this may not be the case for

GB
z and GP

z because the body force gn in Eq. (2.46) cannot be written purely

as a gradient, whereas fn in Eqs. (2.50) and (2.51) can. So, the behavior of

FB
z and F P

z for kr � 1 may not generalize to GB
z and GP

z .

Since it does not appear to be possible to draw rigorous conclusions

about Gn from GB
n alone, we therefore proceed by determining whether there

are any scenarios for which GP
n can be found analytically. To begin, recall

several relations for the shear field from Secs. 2.1–2.2. First, from Eq. (2.24),

we have the shear wave field utn in terms of the potential Θ written in vector

notation as

ut = ∇×∇× (rΘ) . (5.1)

Next, from Eq. (2.37), σltnm can be written as

σltnm = Kk2ϕ
∂utm
∂xn

, (5.2)

where ϕ is the displacement potential for the compressional wave field uln.

Finally, σltnm can be used to find gn from Eq. (2.44):

gn =
∂σltnm
∂xm

. (5.3)

Substitution of Eq. (5.1) into Eq. (5.2) and then the result into Eq. (5.3) gives,

after some manipulation,

gn = Kk2
∂ϕ

∂xm

(
3

∂2Θ

∂xm∂xn
+ κ2Θδnm + r

∂3Θ

∂r∂xm∂xn
+ κ2r

∂Θ

∂r

)
. (5.4)
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Now recall from Eq. (2.46) that we seek a scalar potential Q and a vector

potential S such that

g = ∇Q+ ∇× S . (5.5)

In deriving Eq. (5.5), one obtains the following integral expressions for the

potentials Q and S [129]:

Q(r) = − 1

4π

∫
V

∇′ · g(r′)

|r− r′| dV ′ +
1

4π

∫
S

n̂′ · g(r′)

|r− r′| dS
′ , (5.6)

S(r) =
1

4π

∫
V

∇′ × g(r′)

|r− r′| dV ′ − 1

4π

∫
S

n̂′ × g(r′)

|r− r′| dS
′ , (5.7)

where V is a volume enclosing the position r with surface S, n̂′ represents the

unit vector normal to S, and ∇′ represents either divergence or curl in the

primed coordinate system.

While it is tempting to directly evaluate the integrals presented in

Eqs. (5.6) and (5.7), we encounter several practical difficulties with the vol-

ume integrals. In their existing form, both volume integrals have a singularity

at r′ = r since g(r′) is neither divergence-free nor curl-free at that point. The

volume integrals must therefore be transformed to remove the singularity. This

can be accomplished with the change of variables r0 = r− r′, after which the

volume integrals in Eqs. (5.6) and (5.7) become∫
V

∇0 · g(r− r0)

r0
dV0 =

∫
V

∇0 · g(r− r0)r0 sin θ0 dφ0 dθ0 dr0 , (5.8)∫
V

∇0 × g(r− r0)

r0
dV0 =

∫
V

∇0 × g(r− r0)r0 sin θ0 dφ0 dθ0 dr0 , (5.9)

where ∇0 represents either divergence or curl in the transformed coordinate

system. The point r0 = 0 is no longer a problem after this transformation, but
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the new expression for the body force requires

r′ =
√
r2 + r20 − 2rr0 [cos θ cos θ0 + sin θ sin θ0 cos (φ− φ0)] , (5.10)

θ′ = arccos

(
r cos θ − r0 cos θ0

r′

)
, (5.11)

φ′ = arctan

(
r sin θ sinφ− r0 sin θ0 sinφ0

r sin θ cosφ− r0 sin θ0 cosφ0

)
, (5.12)

resulting in a substantially more complicated expression for gn even before the

divergence and curl are calculated. Also, since the potential Q is sought at

radius R on the surface of the sphere and gn is both singular at the origin

and rapidly varying with r, the region of integration must be a thin spherical

shell with inner radius slightly less than R and outer radius slightly greater

than R, which is difficult to express in the transformed (r0, θ0, φ0) coordinates.

With the further complication that gn is itself expressed in terms of prod-

ucts of infinite sums of spherical Bessel or Hankel functions and associated

Legendre functions, this transformation clearly makes the volume integrals

intractable from an analytical standpoint. A sufficiently clever numerical inte-

gration should be possible, but another method discussed in Sec. 5.3.1 is used

instead for its simplicity.

To attempt further progress in analyzing the effect of gn without an

analytic expression for Q, we will consider a possible approximation whereby

gn can be written entirely as a gradient:

gn ≈
∂Q

∂xn
. (5.13)

Recalling Eq. (2.48), we can find the force term GP
n by integrating Q over the
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surface of the sphere,

GP
n = −

∫
S

〈Q〉xn
R
dS , (5.14)

in a similar manner as for the other three force terms FB
n , F P

n , and GB
n . Like

the body force gn, the potential Q is complicated even with the approximation

in Eq. (5.13). However, unlike the integrals in Eqs. (5.6) and (5.7), the integral

in Eq. (5.14) can be calculated numerically by truncating the infinite series

expressions in Q.

To reorganize gn into a form that permits the use of the approximation

in Eq. (5.13), we can separate each term on the right-hand side of Eq. (5.4)

into two parts, a gradient and a remainder. The result of this procedure is

gn = g(1)n + g(2)n + g(3)n + g(4)n , (5.15)

where

g
(1)
n

Kk2
= 3

∂ϕ

∂xm

∂2Θ

∂xm∂xn
=

∂

∂xn

(
3
∂ϕ

∂xm

∂Θ

∂xm

)
− 3

∂2ϕ

∂xn∂xm

∂Θ

∂xm
, (5.16)

g
(2)
n

Kk2
= κ2

∂ϕ

∂xn
Θ =

∂

∂xn

(
κ2ϕΘ

)
− κ2ϕ ∂Θ

∂xn
, (5.17)

g
(3)
n

Kk2
= r

∂ϕ

∂xm

∂3Θ

∂r∂xm∂xn
=

∂

∂xn

(
r
∂ϕ

∂xm

∂2Θ

∂r∂xm

)
− ∂ϕ

∂xm

∂2Θ

∂xm∂xn
− r ∂2ϕ

∂xm∂xn

∂2Θ

∂r∂xm
, (5.18)

g
(4)
n

Kk2
= κ2r

∂ϕ

∂r

∂Θ

∂xn
=

∂

∂xn

(
κ2r

∂ϕ

∂r
Θ

)
− κ2 ∂ϕ

∂xn
Θ− κ2r ∂2ϕ

∂r∂xn
Θ . (5.19)

There are now four terms that are explicitly gradients, appearing first on

the right-hand side of each expression. If some combination of these terms
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comprises the dominant contribution to gn—that is, if the other terms are small

comparison—then gn may by written as a gradient of these terms. Combining

Eqs. (5.16)–(5.19) yields

gn = gQn + gSn , (5.20)

where

gQn
Kk2

=
∂

∂xn

(
2
∂ϕ

∂xm

∂Θ

∂xm
+ r

∂ϕ

∂xm

∂2Θ

∂r∂xm
+ κ2r

∂ϕ

∂r
Θ

)
, (5.21)

gSn
Kk2

= −2
∂2ϕ

∂xn∂xm

∂Θ

∂xm
− r ∂2ϕ

∂xm∂xn

∂2Θ

∂r∂xm
− κ2r ∂2ϕ

∂r∂xn
Θ . (5.22)

Since the right-hand side of Eq. (5.21) is exclusively the gradient of a scalar

function, we will investigate parameter ranges for which gQn is much larger than

gSn so that Eq. (5.13) may be used.

Results for various scatterers are shown in Fig. 5.3. The plots show the

ratio |gSn |/|gQn | as a function of kR and θ. A small value of |gSn |/|gQn | (indicating

that gSn may be discarded) is visualized with blue shading, whereas a large ratio

is visualized with red shading. (Note that in order to better visualize parameter

regions with large values, the plot is saturated at a ratio of 5.) This ratio should

be small for all θ in order for the approximation given by Eq. (5.13) to be valid

for a given scatterer size. Also, depending on the direction of radiation force

sought, a low ratio is more important for some values of θ than for others. For

example, if force in the z-direction is to be calculated, then the accuracy of the

approximation is more important for θ → 0 and θ → π because xn = R cos θ

appears in the integration of the potential from Eq. (5.14).
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(b) Aluminum sphere
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(c) Polystyrene sphere
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(d) Air bubble
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Figure 5.3: Ratio of terms |gSn |/|gQn | in Eqs. (5.21)–(5.22) for various spheres
in a soft tissue-like medium (µ = 100 kPa) subject to a simple focused beam
with confinement angle θ0 = 30◦. Small ratio is indicated with blue shading,
large ratio with red shading.

Unfortunately, it appears to be difficult to meet the criterion of a small

|gSn |/|gQn | ratio. Results for the steel sphere, the aluminum sphere, and the

air bubble in Fig. 5.3(a), (b), and (d), respectively, all show large regions

where the ratio may not be small. For steel and aluminum spheres, the ratio

is almost always large for kR < 1, as indicated by the red regions on the left

of Fig. 5.3(a) and (b). For air bubbles, the ratio is small only for kR > 0.1 at
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angles near zero and π, as indicated by the blue regions at the top and bottom

of Fig. 5.3(d). Even for the polystyrene sphere in Fig. 5.3(c), for which there

are large regions where the ratio may be small, the features near θ = 0 and

θ = π for 0.05 . kR . 1 are problematic for this approximation.
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Figure 5.4: Ratio of terms |gSn |/|gQn | in Eqs. (5.21)–(5.22) for a spherical mass
of castor oil in a soft tissue-like medium (µ = 100 kPa) subject to a simple
focused beam with confinement angle θ0 = 30◦. Small ratio is indicated with
blue shading, large ratio with red shading.

What sphere materials may actually allow for this approximation? Con-

sider castor oil, which has density 950 kg/m3 and sound speed 1540 m/s, mak-

ing it very acoustically similar to water and therefore, likewise, a surrounding

soft tissue-like medium. A plot of the ratio |gSn |/|gQn | for castor oil embed-

ded in a soft tissue-like medium (µ = 100 kPa) is shown in Fig. 5.4. In the
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case of castor oil, there appears to be a range 0.05 . kR . 1 where |gSn |

is sufficiently small for all angles, which would allow for the approximation

gn ≈ ∂Q/∂xn. However, it is necessary to consider the acoustic impedance of

castor oil relative to the surrounding water-like medium: Zoil = 1.463 MRayl

versus Zwater = 1.5 MRayl. These values differ by only 2.5%, which makes

castor oil a poor choice for a spherical scatterer whose displacement is to be

measured in soft tissue. It would not only result in a minimal radiation force

due to the weak scattering interaction, but would also be very difficult to image

for the same reason.

While the approximation gn ≈ ∂Q/∂xm in Eq. (5.13) is tempting to

explore due to the dramatic analytical simplification that would be possible,

it does not appear to be valid for the types of scatterers that would be use-

ful in practice. Therefore, it is necessary to pursue a numerical method of

determining Q and the radiation force on the scatterer that results.

5.3 Numerical Solution for GP
z

In this section, a numerical technique is used to perform a Helmholtz

decomposition of the body force gn. The choice is a least-squares finite element

method (FEM) to find Q by minimizing the following energy functional:

F (Q) =
1

2

∫
T

|∇Q− g|2 dV , (5.23)

where T refers to the triangulation or the tetrahedralization (for two- or three-

dimensional discretizations for axisymmetric or non-axisymmetric fields inci-
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dent on the sphere, respectively) describing the domain. This method is de-

scribed in detail for three-dimensional vector fields by Tong et al. [112] and

for two-dimensional vector fields by Polthier and Preuß [130, 131]; the basics

will be summarized here. Once the scalar potential Q is found, it must be in-

tegrated per Eq. (5.14) to find the force term GP
n , completing the computation

of the radiation force per Eq. (2.36).

5.3.1 Description of Numerical Helmholtz Decomposition

First, it is necessary to discretize the domain. Depending on whether

the problem requires two dimensions or three dimensions, a triangulation and

a tetrahedralization are used in two and three dimensions, respectively; both

are given the label T . A given triangular or tetrahedral element with index j

within the discretized domain is then given the label Tj. Two function spaces

must then be defined. The first function space is a space of piecewise-linear

potential fields and allows us to define a field Φ(x) as

Φ(x) =
∑
i

φi(x)Φi , (5.24)

where Φi is the value of the field at the node with index i (which is located at

position xi) and φi(x) is a piecewise-linear shape function equal to unity at xi

and equal to zero at every other node in the domain. The second function space

is a space of piecewise-constant vector fields which allows for the definition of

a vector field Ψ(x) as

Ψ(x) =
∑
j

ψj(x)Ψj , (5.25)
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where Ψj is the value of the field in a given tetrahedron or triangle Tj and

ψj(x) is a basis function that is equal to unity inside Tj and equal to zero

everywhere else. These two function spaces are necessary because the gradient

of a potential defined in the first function space gives a vector field defined in

the second function space [112].

Next, to find a piecewise-linear function Q such that ∇Q is equal to

the irrotational part of g, it is necessary to minimize the following quadratic

functional defined in Eq. (5.23) as first specified by Polthier and Preuß [131].

The integral is minimized if the quantity ∂F/∂Qi is equal to zero for each node

i, which gives the following expressions:

∀i,
∫
T

∇φi ·∇QdV =

∫
T

∇φi · g dV . (5.26)

The solution of this system of linear equations then gives the value of Q at

each node, which must be numerically integrated over the surface of the sphere

to compute GP
n .

An artificial two-dimensional field with a source at (−1/2,−3/4), a

sink at (−1/2, 0), and two rotations centered at (−1/4,−1/2) and (1/2, 0)

is shown in Fig. 5.5, and color plots are shown in Fig. 5.6 for the reference

potential (used to synthesize the irrotational field) and the potential computed

from numerical Helmholtz decomposition. The vector components due to the

sources/sinks are specified by the relation

ul = −∇Φ , Φ = Φ0e
−r2 , (5.27)
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(a) Total field
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Figure 5.5: Synthesized test field comprised of irrotational and solenoidal parts.
Red dots mark a source of strength 0.9 at (−1/2,−3/4), a sink of strength 0.5
at (−1/2, 0), and two rotations of strength 0.7 and 1 centered at (−1/4,−1/2)
and (1/2, 0), respectively. Note that the deviation between the red dots and
apparent centers of source, sink, and rotation is due to their being spatially
near each other and of different strengths.
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Figure 5.6: Irrotational potential for synthesized test field in Fig. 5.5 (left) and
computed from numerical Helmholtz decomposition (right).

where Φ0 is the strength of the source or sink (for positive or negative Φ0,

respectively) and r denotes the distance from the source or sink. The rotations

are specified by the relation

ut = A0e
−r2(−yex + xey) , (5.28)
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where A0 denotes the strength of the rotation and (x, y) denotes the coordi-

nates of the field point relative to the rotation center. The recovered potential

is nearly indistinguishable from the reference potential except for a small static

offset, as can be seen by the different numbers on the color bar in Fig. 5.6. Al-

though the offset may be larger depending on the field, this offset does not alter

the integral of the potential Q per Eq. (5.14). That is, since xn = z = R cos θ

at the surface of integration and cos θ varies from −1 to 1, any static offset in

Q cancels out in Eq. (5.14), and since computation of this integral is ultimately

the goal of this technique, such an offset need not cause concern here.

Note that the hole at the center of the domain in Figs. 5.5 and 5.6 is

included for this field because it is necessary for our particular problem. The

shear body force gn becomes infinite at the origin because it contains spherical

Hankel functions that are proportional to 1/r as r → 0, so the domain must

not include the origin. The choice to limit the domain in this way is further

explained in Sec. 5.4.1.

5.3.2 Results for GP
z

There are several important considerations for computing the force term

GP
z using the method described in Sec. 5.3.1. First, in order to properly resolve

the field, a sufficiently fine mesh is necessary. Whereas the example in Figs. 5.5

and 5.6 only has a few slowly-varying features, the body force gn due to shear

wave fields is spatially oscillatory with a characteristic wavelength equal to

that for shear waves in the medium. The mesh must therefore be chosen to
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have a characteristic length of at most one tenth the shear wavelength in the

medium, a guideline often used in acoustic scattering problems [132]. Second,

since the incident field is purely compressional, the size of the scatterer relative

to a compressional wavelength is important. For example, recall from Sec. 3.4

that a scatterer that is small compared to a compressional wavelength will

cause much less scattering than a larger scatterer. Since the shear wave speed

in soft tissue tends to be below 10 m/s compared with a compressional wave

speed of 1500 m/s, the result is a characteristic length scale for the mesh that

is much smaller than the overall domain. Therefore, the domain is chosen to

extend only slightly inside and slightly outside the surface of the sphere (no

more than a few shear wavelengths) so that the problem remains numerically

tractable. (Section 5.4.1 includes more detail on this point.)

Radiation force results for various spheres embedded in soft tissue-like

media due to a simple focused beam incident on the sphere (θ0 = 30◦) are

shown in Fig. 5.7. In all plots, solid lines represent Fz + Gz, whereas dashed

lines represent Fz only. Again, the effect of shear modulus in the medium on

Fz alone is not necessarily very large, but including Gz causes a substantial

change in the force. For the steel sphere in Fig. 5.7(a), Fz has a significant effect

for small scatterers by itself (due to the dipole scattering coefficient), but Gz

amplifies this effect and increases the force on larger scatterers as well. Results

for the aluminum sphere in Fig. 5.7(b) are similar. For the polystyrene sphere

in Fig. 5.7(c), the change appears to be of the same order as the change due in

Fz alone due to shear modulus. Finally, for the air bubble in Fig. 5.7(d), the
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(c) Polystyrene sphere
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Figure 5.7: Acoustic radiation force function Yp,z on various spheres embedded
in soft tissue-like media due to a simple focused beam with confinement angle
θ0 = 30◦. Solid lines indicate that both Fz and Gz force terms are included,
whereas dashed lines show only Fz.

Minnaert resonance is again the most prominent effect, but it too is amplified

by the addition of Gz.

Having computed GP
z , which includes the effect of the potential Q in the

body force gn, we can now calculate the force F total
z = FB

z +F P
z +GB

z +GP
z on

the sphere, from which the displacement of the sphere in a given soft tissue-like

medium can be predicted. However, there is another component of the body
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force gn that must be considered in order to calculate the true displacement of

the sphere: the solenoidal term ∇ × S. The solenoidal term results in a bulk

deformation of the medium, which results in an additional contribution to the

sphere displacement beyond that due to the radiation force. The comparison

of the displacement predicted from F total
z and the true displacement of the

sphere is the subject of the next section.

5.4 Full Solution for u
(2)
n with Finite Element Method

In this section, the full FEM solution for the nonlinear displacement

component u
(2)
n is detailed. This is done to assess the accuracy of the predicted

displacement due to the force F total
z numerically computed in the previous

section.

We begin with the full elastodynamic equation, which is obtained by

combining Eqs. (2.3), (2.9), and (2.10). After some manipulation, first-order

equations for the linear displacement u
(1)
n and the nonlinear displacement u

(2)
n

can be written as

ρ0
∂2u

(1)
n

∂t2
− ∂σ

(1)
nm

∂xm

∣∣∣∣∣
u
(1)
n

= 0 , (5.29)

ρ0
∂2u

(2)
n

∂t2
− ∂σ

(1)
nm

∂xm

∣∣∣∣∣
u
(2)
n

=
∂σ

(2)
nm

∂xm

∣∣∣∣∣
u
(1)
n

. (5.30)

The linear displacement field in Eq. (5.29) has already been found through

Eqs. (2.19)–(2.20) and the associated potentials and scattered field coefficients.

The result is then substituted into the right-hand side of Eq. (5.30), which
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becomes, after some simplification,

ρ0
∂2u

(2)
n

∂t2
− µ∂

2u
(2)
n

∂x2m
−
(
K +

µ

3

) ∂2u
(2)
m

∂xn∂xm
=
∂σ

(2)
nm

∂xm

∣∣∣∣∣
u
(1)
n

. (5.31)

Since u
(1)
n oscillates about zero with angular frequency ω, u

(2)
n is expected to

be oscillatory, but with a nonzero time average. Therefore, time averaging

Eq. (5.31) eliminates the time derivative and yields

−µ∂
2Un
∂x2m

−
(
K +

µ

3

) ∂2Um
∂xn∂xm

=
∂Σnm

∂xm
, (5.32)

where

Un =
〈
u(2)n
〉
, (5.33)

Σnm =

〈
∂σ

(2)
nm

∂xm

〉
. (5.34)

Equation (5.32) represents an elastostatic equation that may then be solved

via FEM.

5.4.1 Weak Form and Simplifications

The problem represented by Eq. (5.32) is continuous, and once bound-

ary conditions and forcing functions are specified, it is referred to as the dif-

ferential “strong form” because it is satisfied everywhere within the domain

of interest. However, since Eq. (5.32) is not known to have an exact analytic

solution, especially considering the complexity of the right-hand side (to be

described later in this subsection), it is useful to determine a corresponding

integral “weak form” to proceed [133]. The “weak form” is so called because
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Eq. (5.32) is no longer required to hold everywhere within the domain of in-

terest; it is only satisfied in a weighted average manner.

We first form a dot product of Eq. (5.32) with the arbitrary vector test

function Wn and integrate over the volume V of the domain to get

−µ
∫
V

Wn
∂2Un
∂x2m

dV −
(
K +

µ

3

)∫
V

Wn
∂2Um
∂xn∂xm

dV =

∫
V

Wn
∂Σnm

∂xm
dV . (5.35)

Next, we integrate by parts and use the divergence theorem to obtain, for the

first integral on the left-hand side,

−
∫
V

Wn
∂2Un
∂x2m

dV = −
∫
S

∂Un
∂xm

Wnnm dS +

∫
V

∂Un
∂xm

∂Wn

∂xm
dV , (5.36)

and, for the second integral on the left-hand side,

−
∫
V

Wn
∂2Um
∂xn∂xm

dV = −
∫
S

∂Um
∂xm

Wnnm dS +

∫
V

∂Um
∂xm

∂Wn

∂xn
dV . (5.37)

Finally, we note that for an infinite domain, the displacement Un must tend

toward zero. Therefore, assuming a sufficiently large domain, we set Un = 0

at the boundary, which necessarily requires Wn = 0 as well. This allows us to

eliminate the surface integrals above to obtain the following weak form:

µ

∫
V

∂Un
∂xm

∂Wn

∂xm
dV +

(
K +

µ

3

)∫
V

∂Um
∂xm

∂Wn

∂xn
dV =

∫
V

Wn
∂Σnm

∂xm
dV . (5.38)

Note that this weak form is symmetric. That is, exchanging Un and Wn with

each other gives an equivalent relation. Therefore, after discretization, the

result will be a symmetric matrix system, making the weak form especially

well-suited to this problem.
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While in principle the weak form in Eq. (5.38) may be solved numer-

ically for any discretized domain, several simplifications are needed for the

problem to be tractable in practice. First, for the same reason as in Sec. 5.3.2,

we consider axisymmetric incident fields and restrict the problem again here

to two dimensions. In spherical coordinates, the differential volume element is

dV = r2 sin θ dφ dθ dr, and for an axisymmetric problem with no φ-dependence,

we can integrate over φ to obtain dV = 2πr2 sin θ dθ dr. The weak form is then

µ

∫
A

∂Un
∂xm

∂Wn

∂xm
x dA+

(
K +

µ

3

)∫
A

∂Um
∂xm

∂Wn

∂xn
x dA =

∫
A

Wn
∂Σnm

∂xm
x dA ,

(5.39)

where x = r sin θ is the distance from the symmetry axis and dA = r dr dθ

is the differential area element. The weak form represented by Eq. (5.39) will

ultimately be represented by a matrix equation when the domain is discretized,

from which the sphere displacement—as well as the displacement at every other

point in the discretized domain—will be determined.

Next, as in Sec. 5.3.2, a very fine mesh is needed to accurately discretize

the body force gn in the domain. However, where the problem could previously

be restricted to a small region including the surface of the sphere, the same

restriction is not possible when computing the full solution. A much larger

domain is therefore required, which leads to an enormous number of nodes in

the discretization. For example, consider a sphere of dimensionless size kR = 1

embedded in a soft tissue-like medium with shear wave speed ct = 10 m/s, and

consider a domain that extends only one compressional wavelength outside

the sphere. In the axisymmetric case, for which the domain is a plane with a

151



semicircle as a boundary, such a problem contains approximately 6.3 million

nodes. As is shown later in this section, a boundary at one compressional

wavelength from the sphere is too close, affecting the computed displacement

of the sphere; for a boundary at ten compressional wavelengths (which is still

too close), the number of nodes increases to approximately 500 million, and

for a boundary at 50 wavelengths (which appears to be sufficient for several

of the cases treated later), the number of nodes increases to approximately

12 billion. Furthermore, as ct = 10 m/s is a reasonable upper bound for soft

tissue, these values represent the best-case scenario; for lower, more typical

shear wave speeds, the number of nodes increases even further. In addition

to being challenging to solve numerically, this problem is even difficult to

set up because the nonlinear body force represented by 〈gn〉 = ∂Σnm/∂xm

is distributed continuously throughout the medium and must therefore be

calculated at each one of the nodes.

For the above reasons, several approximations are required to reduce the

computational burden. First, the shear wave speed in the medium is increased

to 100 m/s. This choice allows for a coarser mesh while keeping the shear

wave speed in the medium less than one tenth of the compressional wave

speed, which still ensures that µ/K � 1 and is thus consistent with the

approximations to the body force discussed in Sec. 2.1.1.

Second, the body force gn due to shear wave fields is only computed

over a limited portion of the domain. That is, for large enough kr outside the

sphere, gn is assumed to be negligible to the sphere displacement and is set to
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Figure 5.8: Plots of the body force gn due to shear wave fields versus kr at
various angles outside a steel scatterer (kR = 1) in a soft tissue-like medium
with shear wave speed ct = 100 m/s. The incident field is a simple focused
beam with confinement angle θ0 = 30◦. Note the logarithmic x-axis so that
oscillatory properties of gn may be seen for kr just outside the sphere.

zero. For instance, Fig. 5.8 shows plots of gn versus position kr outside a steel

sphere (kR = 1) at four different angles when the incident field is a simple

focused beam (θ0 = 30◦). The rapid decay in the magnitude of gn suggests

that gn may be ignored for large enough values of kr, so we choose to compute

it out to only kr ≈ 20. Furthermore, since the effect of gn on the sphere
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displacement is separate from the effect of fn, which is already captured by

the full solution Fn for the radiation force due to compressional wave fields,

we need only consider the magnitude of gn relative to itself when determining

what should be retained and what may be discarded.

Finally, for gn defined only within a given source region as described

in the previous paragraph, the displacement induced away from the source

diminishes with distance from the source. As this distance becomes greater,

effects due to rapid variations in gn are expected to smooth out, resulting in

less need for a very fine mesh outside the region in which gn is computed.

Therefore, we allow a smooth transition in the characteristic length of the

mesh from one tenth of the shear wavelength to half of the shear wavelength

at the edge of the domain.

5.4.2 Displacement Results

We first consider how large the domain must be for the solution for the

displacement of the sphere to converge. In Fig. 5.9, computed displacement is

shown for a steel sphere (kR = 1) embedded in a soft elastic medium with

shear wave speed ct = 100 m/s subject to a simple focused beam (θ0 = 30◦).

Clearly, a domain that only includes one or two wavelengths outside the scat-

terer is not sufficient for the displacement to converge, indicating that the zero

boundary condition at the edge of the domain is affecting the problem. It is

not until approximately 40 wavelengths outside the scatterer that the com-

puted displacement appears to level off. Given the approximations mentioned
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Figure 5.9: Displacement of a steel sphere (kR = 1) versus domain size in a
soft tissue-like medium with shear wave speed ct = 100 m/s. The incident field
is a simple focused beam with confinement angle θ0 = 30◦.

at the end of Sec. 5.4.1, the number of nodes in the mesh when the domain

extends 64 wavelengths outside the scatterer—the value ultimately chosen to

ensure convergence—is approximately 8.3 million. As previously discussed,

this number of nodes would increase massively for a soft elastic medium with

ct = 10 m/s and a sufficiently fine mesh.

Finally, we compare the FEM computation for the displacement of the

steel sphere with predictions from Fz given by Eq. (2.68) and from Fz + Gz

given by the sum of Eqs. (2.68), (2.109), and (2.48). The sphere displacement

d predicted from a static radiation force F—which is chosen to be either Fz

or Fz + Gz depending on the comparison of interest—is calculated from the
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relation [91]

d =
F

6πµR
. (5.40)

This relation, which is comparable to the result due to Stokes for the velocity

of a sphere in a viscous liquid, does not include the displacement expected due

to the bulk deformation of the medium caused by the solenoidal component

of gn, so we expect discrepancies in the displacement computed from the full

FEM computation and from Fz+Gz to reflect the significance of the curl term.
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Figure 5.10: FEM calculation of the displacement (blue dots) of a steel sphere
embedded in a soft tissue-like medium (ct = 100 m/s) due to the body force
fn + gn. The incident field is a simple focused beam with confinement angle
θ0 = 30◦.

Figure 5.10 shows the comparison of FEM computations for the dis-

placement of a steel sphere versus corresponding predictions for Fz and Fz+Gz.

The surrounding medium is again a soft elastic medium with ct = 100 m/s,

156



and the incident field is a simple focused beam (θ0 = 30◦), with the sphere

located at the focus. The displacement predicted from Fz +Gz as computed in

Sec. 5.3.2 does not match the full FEM result, so it appears that the solenoidal

component ∇ × S in gn decreases the displacement relative to the expected

value based on Fz+Gz (solid green curve). However, including gn still increases

the displacement from what would be expected from Fz alone. For instance,

the displacement computed from FEM for a steel sphere of size kR = 1 exceeds

that predicted using Fz alone by approximately 20%, so even for larger scat-

terers where Fz is not too different for ideal fluid and soft tissue-like media, the

radiation force in a fluid is not sufficient to predict the sphere displacement;

shear effects must also be considered.

It is also important to note that due to the increase in the shear wave

speed in the surrounding medium by an order of magnitude, gn has been

changed in such a way that might either increase or decrease the solenoidal

component ∇× S relative to the irrotational component ∇Q. This may alter

the effect of the curl term from what would occur in a tissue-like medium

with more realistic parameters, but this cannot be conclusively determined

without more computational power. At any rate, the sphere displacements

predicted from Fz and Fz + Gz may be reasonably considered to bound the

true displacement of the sphere.
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5.5 Summary

Due to analytical and numerical challenges, the results presented in this

chapter are necessarily less comprehensive than those presented in Chapter 4.

Nonetheless, they serve as an important step toward further understanding of

acoustic radiation force in a soft elastic medium.

The analysis presented in Sec. 5.1 for the radiation force due to the

scattered compressional field does not appear to be applicable to the radia-

tion force associated with the scattered shear wave, and the approximation

gn ≈ ∂Q/∂xm presented in Sec. 5.2, while tempting, appears to be valid

only for scatterers very acoustically similar to a surrounding soft tissue-like

medium, which severely limits its effectiveness in practice. However, the nu-

merical results for Helmholtz decomposition presented in Sec. 5.3, though cur-

rently limited in their application to axisymmetric fields and the z-direction of

the radiation force Fz +Gz, correspond to a significant correction to the force

even for larger scatterers. This is in contrast with the results in Chapter 4,

where Fz appeared noticeably different for water and soft tissue-like media

only for small scatterers (steel, aluminum, or polystyrene spheres) or frequen-

cies near resonance (air bubbles). Finally, FEM results in Sec. 5.4 suggest that

the solenoidal component ∇ × S in gn may further alter the displacement of

the sphere.

The main result of this chapter is that despite the large difference in

bulk modulus and shear modulus in soft tissue-like media, effects due to the

scattered shear wave must be considered for radiation force calculations to be
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accurate. However, considerable work remains to be done in fully simulating

the displacement of a sphere in an elastic medium with mechanical properties

more representative of those in soft tissue.
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Chapter 6

Conclusions and Future Work

The primary purpose of this dissertation was to improve the theoreti-

cal understanding of acoustic radiation force due to scattering from a sphere

with arbitrary material properties embedded in a soft elastic medium. This

phenomenon may have important applications in the assessment of soft tissue

health, but since existing literature pertaining to radiation force on scatterers

is limited to surrounding media comprised of fluid, whether ideal [1–10] or

viscous [3, 11–16] or heat-conducting [14, 17–19], it is important to consider an

extension of existing theory that apples to the more general case of soft elastic

media surrounding the scatterer.

After a brief discussion in Chapter 1 of historical developments in acous-

tic radiation force and descriptions of several existing clinical applications of

radiation force to soft tissue elastography, in Chapter 2 the fundamental equa-

tions of elastodynamics and the theoretical framework for acoustic radiation

force on an elastic sphere in a soft elastic medium were derived. The choice

of Lagrangian coordinates, instead of the more conventional Eulerian coordi-

nates used for fluid media surrounding the scatterer, was found to facilitate the

incorporation of elasticity without requiring a full solution for the nonlinear
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portion of the displacement field. Several approximations were made to arrive

at an analytically tractable problem. It was shown the force can be separated

into contributions from the compressional wave field and the shear wave field,

labeled Fn and Gn, respectively, to decouple these two contributions. To sup-

port this approach, it was demonstrated that the result for Fn in the limit of

zero shear modulus in the surrounding medium recovers previously obtained

results for a fluid surrounding the sphere [5–7, 10].

In Chapter 3, the incident and scattered wave fields were presented in

greater mathematical detail. A three-dimensional angular spectrum descrip-

tion was used to find the incident field coefficients instead of the more tradi-

tional two-dimensional angular spectrum method [101] because it permits a

convenient description of a focused sound beam in spherical coordinates. With

radiation from a focused Gaussian source and a focused circular piston being

presented as examples, it was also shown to be relatively straightforward to

transform between one method and the other [102]. The Wigner D-matrix was

then introduced to determine the radiation force in directions other than the

propagation direction of the beam merely by transforming the incident field

coefficients [113]. The scattered field coefficients were examined to better un-

derstand effects such as dipole scattering and shifts in resonance frequencies

on the radiation force.

In Chapter 4, the radiation force due to the incident and scattered com-

pressional waves alone acting on an elastic sphere in a soft elastic medium was

presented in greater depth. The radiation force Gn in Eq. (2.100) due to the
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scattered shear wave was ignored in this chapter because only the force Fn due

to the scattered compressional wave is known analytically from Eqs. (2.67)

and (2.68). Nonetheless, a variety of variables were examined to determine

their effect on the radiation force: size, position, and mechanical properties

of the spherical scatterer, and both elasticity and viscosity in the surround-

ing medium. The results suggest that small scatterers may be especially worth

investigating due to their different behavior in liquid and in soft tissue-like me-

dia. For hard scatterers like steel or aluminum, small scatterers were observed

to experience much greater axial radiation force in soft tissue-like media than

in liquid. For soft scatterers like an air bubble, the shift in the Minnaert res-

onance frequency caused by the addition of shear stiffness to the surrounding

medium was seen to correspond to dramatic changes in both magnitude and

direction of the radiation force.

In Chapter 5, the radiation force Gn = GB
n + GP

n on a spherical scat-

terer due to the scattered shear wave was considered. From Eqs. (2.108) and

(2.109) for nonaxisymmetric and axisymmetric incident fields, respectively, an

analytical expression was obtained for GB
n , the component of radiation force

due to direct integration of the stress tensor σltnm over the surface of the sphere.

However, since no analytical expression was found for GP
n , the component of ra-

diation force that arises from the reaction force in the medium due to the body

force gn = ∂σltnm/∂xm, several approximations were examined. The approxi-

mations were found not to be fruitful for problems of practical interest—one

property relating FB
n and F P

n did not appear to be applicable to GB
n and GP

n ,
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and it was found that the approximation gn ≈ ∂Q/∂xn might only apply for

scatterers very acoustically similar to the surrounding soft tissue-like medium.

Therefore, numerical methods were required to calculate the potential Q in the

relation g = ∇Q+∇× S, which then permits calculation of GP
n . Using these

methods, Gz was computed and added to Fz to calculate the total radiation

force on the scatterer, and it was found that Gz could contribute significantly

to the radiation force even for larger scatterers. While Fz + Gz includes both

the direct integration of the stress tensor over the surface of the sphere and

the irrotational potentials P and Q corresponding to the reaction force in the

medium, it was also necessary to determine the additional static displacement

of the surrounding medium due to the solenoidal component ∇×S in gn. The

obtained FEM results suggest that this solenoidal component may further alter

the displacement of the sphere, somewhat counteracting Gz for the particu-

lar set of parameters considered in Sec. 5.4 but still resulting in a significant

deviation from Fz alone (approximately 20% for kR = 1).

There are several questions that warrant further investigation in order

to better apply the analysis presented in this dissertation. The first avenue

for further inquiry is experimental in nature. Several groups have had some

success determining the shear stiffness of gel phantoms and ex vivo tissues

by examining the transient displacement of an embedded spherical scatterer

in response to acoustic radiation force [89, 90, 92, 93], but as described in this

dissertation, the actual radiation force from a given time-harmonic incident

field is still difficult to ascertain analytically. It would be especially useful to
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examine the radiation force on spherical scatterers with a variety of different

sizes and elastic properties in actual gel phantoms to test some of the predic-

tions made in Chapters 4 and 5, especially those relating to resonance shifts

and direction reversals of the radiation force.

The second, and likely more challenging, avenue for further inquiry is

numerical in nature. Numerical calculation of the effect of the scattered shear

wave field was necessarily simplified in this work. As described in Chapter 5,

the enormous difference in characteristic length scales for compressional waves

(around 1500 m/s) and shear waves (up to 10 m/s) in soft tissue presents

significant numerical challenges because of how finely the domain must be

discretized to accurately capture effects due to the shear wave. Therefore,

numerical calculations of both the radiation force on the sphere and the re-

sulting static displacement of the sphere were restricted to the special case

of axisymmetric incident fields, which allowed the problem to be formulated

in two dimensions instead of three. The shear wave speed was also increased

by a factor of ten from the approximate upper limit found in soft tissue in

order to make discretization more tractable. However, it is necessary to de-

termine whether the computations in Chapter 5 for the sphere displacement

in a medium with increased shear wave speed are indicative of similar effects

for the lower shear wave speeds corresponding to actual soft tissue. It is also

necessary to determine whether the effects suggested by the observations in

Chapter 4 such as resonance shifts and direction reversals of the force when

the sphere is moved off the axis of a focused beam might still apply when the
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full effect of the scattered shear wave is included. A sufficiently large domain

with physical properties representative of actual soft tissue might contain bil-

lions of nodes even for the two-dimensional axisymmetric formulation of the

problem, so much more powerful computational infrastructure will be required

to address this problem further.
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Appendix A

Mathematical Conventions

For simplification due to symmetry, the target scatterer in the liquid or

tissue medium is assumed to be a sphere. Much of the analysis is therefore per-

formed in spherical coordinates. Cartesian coordinates (x, y, z) are expressed

through spherical coordinates (r, θ, φ) via the transformations

x = r sin θ cosφ ,

y = r sin θ sinφ ,

z = r cos θ ,

(A.1)

where r represents the radial distance, θ the polar angle, and φ the azimuthal

angle. The Cartesian differentials are expressed as

dx = sin θ cosφ dr + r cos θ cosφ dθ − r sin θ sinφ dφ ,

dy = sin θ cosφ dr + r cos θ sinφ dθ + r sin θ cosφ dφ ,

dz = cos θ dr − r sin θ dθ ,

(A.2)

and the spherical differentials are written as

dr = sin θ cosϕdx+ sin θ sinφ dy + cos θ dz ,

r dθ = cos θ cosφ dx+ cos θ sinφ dy − sin θ dz ,

r sin θ dφ = − sinφ dx+ cosφ dy .

(A.3)

In spherical coordinates, the differential area element on a spherical surface

is dS = R2 sin θ dθ dφ and the different volume element is dV = dR dS. The
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derivative ∂/∂z is also important for the computation of Fz, and it can be

calculated from Eqs. (A.1)–(A.3):

∂

∂z
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
. (A.4)

Descriptions of vectors and differential operators are also needed in

spherical coordinates. A vector A can be represented in spherical coordinates

as

A = Ar(r, θ, φ)er + Aθ(r, θ, φ)eθ + Aφ(r, θ, φ)eφ , (A.5)

and a scalar function ψ is simply written as

ψ = ψ(r, θ, φ) . (A.6)

The gradient, divergence, curl, scalar Laplacian, and vector Laplacian are writ-

ten as

∇ψ =
∂ψ

∂r
er +

1

r

∂ψ

∂θ
eθ +

1

r sin θ

∂ψ

∂φ
eφ , (A.7)

∇ ·A =
1

r2
∂

∂r
(r2Ar) +

1

r sin θ

∂

∂θ
(sin θAθ) +

1

r sin θ

∂Aφ
∂φ

, (A.8)

∇×A =
1

r sin θ

[
∂(sin θAφ)

∂θ
− ∂Aθ

∂φ

]
er

+

[
1

r sin θ

∂Ar
∂φ
− 1

r

∂(rAφ)

∂r

]
eθ

+

[
1

r

∂(rAθ)

∂r
− 1

r

∂Ar
∂θ

]
eφ , (A.9)

∇2ψ =
1

r2
∂

∂r

(
r2
∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂φ2
, (A.10)

∇2A = ∇(∇ ·A)−∇× (∇×A) . (A.11)
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It is often convenient to use Einstein notation (i.e., the summation

convention) to express vector equations more compactly. In this scheme, a

repeated index in a term indicates summation over all values of the index. In

Cartesian coordinates, common vector operations are expressed as follows:

u · v = u1v1 + u2v2 + u3v3 =
3∑
i=1

uivi ≡ uivi , (A.12)

∇ · u =
∂u1
∂x1

+
∂u2
∂x2

+
∂u3
∂x3

=
3∑
i=1

∂ui
∂xi
≡ ∂ui
∂xi

, (A.13)

u× v = (u2v3 − u3v2)e1 − (u1v3 − u3v1)e2 + (u1v2 − u2v1)e3

=
3∑
j=1

3∑
k=1

ujvkεijkei ≡ ujvkεijkei , (A.14)

∇× u =

(
∂u2
∂x3
− ∂u3
∂x2

)
e1 −

(
∂u1
∂x3
− ∂u3
∂x1

)
e2 +

(
∂u1
∂x2
− ∂u2
∂x1

)
e3

=
3∑
j=1

3∑
k=1

∂uj
∂xk

εijkei ≡
∂uj
∂xk

εijkei , (A.15)

where δil is the Kronecker delta, equal to 1 for i = l and zero otherwise, and

εijk is the Levi-Civita symbol, equal to 1 if (i, j, k) is an even permutation of

(1, 2, 3), equal to −1 if (i, j, k) is an odd permutation of (1, 2, 3), and equal

to zero if an index is repeated. These compact relations are especially useful

in equations for elastodynamics, which can otherwise appear unwieldy if the

summation symbol is retained.
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Appendix B

Acoustic Radiation Force Integrals

B.1 Radiation Force Due to Compressional Wave Fields

Recall, from Eq. (2.63),

FB
z =

Kk2

4R

∫
S

[
ψ∗

∂

∂z

(
r
∂ψ

∂r
− ψ

)]
dS + c.c. (B.1)

For compactness, define

Ln(kr) = jn(kr) + Anhn(kr) . (B.2)

Substitution into Eq. (B.1) and rewriting ∂/∂z in terms of spherical coordi-

nates from Eq. (A.4) yields

FB
z =

Kk2

4

∑
n,n′,m

am∗n amn′

[
I
(1)
n,n′,m + I

(2)
n,n′,m

]
+ c.c. , (B.3)

where I
(1)
n,n′,m and I

(2)
n,n′,m are written as

I
(1)
n,n′,m =

1

R

∫
S

L∗n(kr)
∂

∂r

[
r
∂Ln′(kr)

∂r
− Ln′(kr)

]
× Pm

n (cos θ)Pm
n′ (cos θ) cos θ dS ,

(B.4)

I
(2)
n,n′,m =

1

R2

∫
S

L∗n(kr)
∂

∂r

[
r
∂Ln′(kr)

∂r
− Ln′(kr)

]
× Pm

n (cos θ)
dPm

n′ (cos θ)

d(cos θ)
sin2 θ dS .

(B.5)
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The rest of the process used to determine FB
z is cumbersome and will only

be summarized here. A function Fn′(kr) is introduced to be equal to the

term in square brackets in Eqs. (B.4) and (B.5), and a function Gn′(kr) =

r∂[Fn′(kr)]/∂r is defined for further compactness. Recurrence relations [134]

are then used to calculate the derivative P ′n′(cos θ), after which orthogonal-

ity of Legendre polynomials is employed to obtain simplified expressions for

In,n′,m. It is found that In,n′,m = I
(1)
n,n′,m + I

(2)
n,n′,m 6= 0 only for n′ = n± 1, where

In,n+1,m =
4π(n+m+ 1)(n+m)!

(2n+ 1)(2n+ 3)(n−m)!
L∗n(kR) [Gn+1(kR) + (n+ 2)Fn+1(kR)] ,

(B.6)

In,n−1,m =
4π(n−m)(n+m)!

(2n− 1)(2n+ 1)(n−m)!
L∗n(kR) [Gn−1(kR)− (n− 1)Fn−1(kR)] .

(B.7)

Now define a two-index version of Ln:

L
(n)
n′ (kR) = jn′(kR) + Anhn′(kR) ,

L
(n)∗
n′ (kR) = j∗n′(kR) + A∗nh

∗
n′(kR) .

(B.8)

Then, the expressions can be substituted into Eq. (B.3) and reorganized as

FB
z = Kk2

N∑
n=0

n∑
m=−m

(
In,n+1,m + I∗n+1,n,m

)
(amn )∗amn+1 + c.c. , (B.9)

where

In,n+1,m =
(n+m+ 1)(n+m)!

(2n+ 1)2(2n+ 3)(n−m)!
(kR)2L(n)∗

n (kR)

×
[
nL

(n+1)
n−1 (kR)− (n+ 1)L

(n+1)
n+1 (kR)

]
,

(B.10)

I∗n+1,n,m = − (n+m+ 1)(n+m)!

(2n+ 1)(2n+ 3)2(n−m)!
(kR)2L

(n+1)
n+1 (kR)

×
[
(n+ 1)L(n)∗

n (kR)− (n+ 2)L
(n)∗
n+2(kR)

]
.

(B.11)
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Next, from Eq. (2.66),

F P
z = −Kk

2

4

∫
S

[
∂ψ∗

∂xm

∂ψ

∂xm
− k2ψ∗ψ

]
cos θ dS . (B.12)

Substitution of Eq. (B.2) gives

F P
z = −Kk

2

4

∑
n,n′,m

am∗n amn′IPn,n′,m , (B.13)

where

IPn,n′,m =

∫
S

∇[L∗n(kr)Pm
n (cos θ)e−imφ] ·∇[Ln′(kr)Pm

n′ (cos θ)eimφ] cos θ dS

− k2
∫
S

L∗n(kr)Ln′(kr)Pm
n (cos θ)Pm

n′ (cos θ) cos θ dS . (B.14)

Again, the rest of the process is laborious, so it will be summarized here. We

proceed with a gradient formula [135],

Γ ≡∇ [f(r)Ynm(θ, φ)] = −
√

n+ 1

2n+ 1

(
df

dr
− nf

r

)
Tn+1
nm

+

√
n

2n+ 1

[
df

dr
+ (n+ 1)

f

r

]
Tn−1
nm , (B.15)

where Tl
nm are vector spherical harmonics [114]. We can then find the scalar

product of vector spherical harmonics in terms of Wigner 6j symbols and

Clebsch-Gordan coefficients [114]. Finally, substitution of recurrence relations

for spherical Bessel functions [134], use of orthogonality relations, and use of
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the two-index notation for Ln lead to

IPn,n+1,m =
4π(n+m+ 1)(n+m)!

(2n+ 1)2(2n+ 3)2(n−m)!
(kR)2

×
[
(2n+ 1)(n+ 2)L

(n)∗
n+1(kR)L

(n+1)
n+2 (kR)

− L(n)∗
n+1(kR)L(n+1)

n (kR)

+ n(2n+ 3)L
(n)∗
n−1(kR)L(n+1)

n (kR)

−(2n+ 1)(2n+ 3)L(n)∗
n (kR)L

(n+1)
n+1 (kR)

]
. (B.16)

Note that In,n−1,m is also nonzero, but it is omitted here because it can be

expressed through recurrence relations as (IPn,n+1,m)∗, which allows for

F P
z = −Kk2

N∑
n=0

n∑
m=−m

IPn,n+1,m(amn )∗amn+1 + c.c. . (B.17)

Now that FB
z and F P

z have been obtained separately, they can be added

together to produce Fz. Adding Eqs. (B.9) and (B.17) and subsequently ma-

nipulating them produces

Fz = iπKk2
N∑
n=0

n∑
m=−n

(n+m+ 1)(n+m)!

(2n+ 1)(2n+ 3)(n−m)!

× (A∗n + An+1 + 2A∗nAn+1)(a
m
n )∗amn+1 + c.c. , (B.18)

which is the same as Eq. (2.67).

B.2 Radiation Force Associated with the Scattered
Shear Wave

From Eq. (2.104), recall

GB
z =

Kk2

4R

∫
S

[
ψ∗
(
∂

∂z
(rũr)− ũz

)]
dS + c.c. . (B.19)
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Then, from Eq. (A.4) for ∂/∂z and Eqs. (3.98)–(3.100) for a given ũmn , obtain

∂(rũmn,r)

∂z
− ũmn,z =

κ

2n+ 1

[
(n+m)(n2 − 1)hn−1(κr)P

m
n−1(cos θ)

−n(n+ 2)(n−m+ 1)hn+1(κr)P
m
n+1(cos θ)

]
amn Bne

imφ .
(B.20)

Substitution of Eq. (B.20) into the integrand of Eq. (B.19) gives

GB
z =

πKk2

2R

∫
S

∑
n,n′

Jn,n′,m dS + c.c. , (B.21)

where

Jn,n′,m =
κ

2n′ + 1
(amn )∗amn′L∗n(kR)Bn′Pm

n (cos θ)

×
[
(n′ +m)(n′2 − 1)hn′−1(κR)Pn′−1(cos θ)

−n′(n′ + 2)(n′ −m+ 1)hn′+1(κR)Pm
n′+1(cos θ)

]
. (B.22)

Note that ei(m−m
′)φ is not included because integration over φ requires that

m′ = m. From orthogonality of Legendre polynomials, integration over θ elim-

inates all terms but n′ = n± 1, resulting in∫ π

0

∑
n,n′

Jn,n+1,m cos θ dθ =
N∑
n=1

2κn(n+ 2)(n+m+ 1)!

(2n+ 3)(2n+ 1)(n−m)!

×
[
(amn )∗amn+1L

∗
n(kR)Bn+1hn(κR)

−(amn+1)
∗amn L

∗
n+1(kR)Bnhn+1(κR)

]
. (B.23)

Finally, we recover Eq. (2.108) and obtain

GB
z = πKk2(κR)

N∑
n=0

n(n+ 2)

(2n+ 1)(2n+ 3)

n∑
m=−n

(n+m+ 1)!

(n−m)!

× {am∗n amn+1Bn+1[j
∗
n(kR) + A∗nh

∗
n(kR)]hn(κR)

− am∗n+1a
m
n Bn[j∗n+1(kR) + A∗n+1h

∗
n+1(kR)]hn+1(kR)}+ c.c. (B.24)
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