
Copyright

by

Jessica Hélène Hoffmann

2020

The Dissertation Committee for Jessica Hélène Hoffmann
certifies that this is the approved version of the following dissertation:

Epidemics on Graphs under Uncertainty

Committee:

Constantine Caramanis, Supervisor

Alexandros Dimakis

Adam Klivans

Sanjay Shakkottai

Epidemics on Graphs under Uncertainty

by

Jessica Hélène Hoffmann

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2020

Dedicated to Işıl Dillig, and to the women in science who left due to lack of

support.

Acknowledgments

First and foremost, I would like to thank my advisor Constantine Cara-

manis for teaching, mentoring, guiding, and showing me by example what it

means to be a researcher. There is not one aspect of my research life which

hasn’t been influenced by his style: my general technical skills, a curiosity for

the unexpected, a taste for challenge, and an unending quest for meaningful

and impactful work. He demonstrated to me what it means to make brave

choices, especially within the context of the Black Lives Matter movement. I

will never forget the personal support he provided me at difficult times, be it

after the 2016 election, the coronavirus crisis, or my job search. He has shown

me how to have a successful work relationship without neglecting the human

side of it. For this, and for everything, I am forever grateful.

I would also like to thank the other members of my committee, who

shaped my experience in WNCG and in the CS department. Attending Alex’s

group meeting was invaluable at the beginning of my PhD, and helped me un-

derstand how to come up with a research problem. His energy and cheerfulness

were always inspiring. I spent countless hours working in Adam’s lab, where

the entire group was vibrant with ideas and research energy. It was always a

pleasure when Adam would come by, and maybe one day I will win one of his

challenges. Finally, Sanjay’s unending energy and passion has always been a

v

source of motivation for me and my coworkers.

Research would not be half as interesting without the collaborations

I’ve made along the way. I would like to thank all my co-authors: Con-

stantine, Ashish, Surbhi, Soumya, Moein, Ahmad, Reza, Mahdi, Adrian, and

(hopefully) Matt, it has been exciting and a beautiful learning experience to

work with all of you. I also want to thank my lab, past and present, for their

ideas and support: Tianyang, for all the up-to-date articles; Kiyeon, for in-

depth discussions about American slang; Eirini, for hours of work and fun; Liu,

for showing me what persistence and determination is; Ashish, for unending

support and good collaborations; Jiacheng, for his motorbike knowledge and

incredible research productivity; Jeong Yeol, for his quiet but brilliant and

incisive mind; Orestis and Isidoros for sharing my love of combinatorics; and

finally Matthew and Liam for giving me an occasion to act as a senior student.

I am particularly grateful to Manuel Gomez-Rodriguez, for the incredibly ex-

citing research discussions when I was invited to visit his lab. I would also

like to thank everyone who worked with me outside of my lab, in WNCG and

beyond: Taylor, Eftychia, Brooke, Sushi, Aravind, Surbhi, Matt, Sepideh and

Josh. A big shoutout to Katie, my administrative savior, as well as Karen

and Jaymie, and of course Apipol, my favorite bocce partner. Finally, I just

want to add one more thank-you to Constantine for fostering such a friendly

atmosphere in our group, which led to so many fruitful collaborations.

None of this would have been possible without my friends, my husband,

my sister, and the rest of my family, who were by my side during the ups and

vi

downs of this thrilling adventure. This is not the medium to tell you how

much you mean to me, but you should hear from me individually soon.

vii

Epidemics on Graphs under Uncertainty

Publication No.

Jessica Hélène Hoffmann, Ph.D.

The University of Texas at Austin, 2020

Supervisor: Constantine Caramanis

Epidemic processes can model anything that spreads. As such, they

are a useful tool for studying not only human diseases, but also network at-

tacks, spikes in the brain, the propagation of real or fake news, the spread of

viral tweets, and other processes. This proposed thesis focuses on epidemics

spreading on an underlying graph.

Currently, most state-of-the-art research in this field assumes some

form of perfect observation of the epidemic process. This is an unrealistic

assumption for many real-life applications, as the recent COVID-19 pandemic

tragically demonstrated: data is scarce, delayed, and/or imprecise for human

epidemics, and symptoms may appear in a non-deterministic fashion - if they

appear at all. We show in this work not only that the algorithms developed

previously are not robust to adding noise into the observation, but that some

theoretical results cannot be adapted to this setting. In other words, uncer-

tainty fundamentally changes how we must approach epidemics on graphs.

viii

Table of Contents

Acknowledgments v

Abstract viii

List of Tables xiv

List of Figures xv

Chapter 1. Introduction 1

1.1 Overview of results . 3

1.1.1 Uncertainty about who is infected 3

1.1.2 Uncertainty about when nodes are infected 3

1.1.3 Uncertainty about what is infecting nodes 3

1.2 Published work . 4

Chapter 2. Preliminaries 5

2.1 Notations . 5

2.2 Relevant background . 5

2.2.1 Epidemic models . 5

2.2.1.1 SIR model . 6

2.2.1.2 SI model . 7

2.2.1.3 SIS model . 8

2.2.2 Epidemics on graphs . 8

2.2.2.1 Modeling choices 8

2.2.2.2 The independent cascade model 10

2.2.3 Cutwidth and curing budget 10

ix

Chapter 3. Uncertainty About Who Is Infected 12

3.1 Introduction . 12

3.1.1 Setting . 13

3.1.2 Related Work and Background 15

3.2 Model and main contributions 18

3.2.1 The SI + curing model 18

3.2.2 Partial Information/Blind Curing 21

3.2.3 Main contributions . 23

3.3 Proof sketch . 26

3.3.1 Blind Curing setting . 27

3.3.2 Partial Information setting 28

3.4 Proof for Blind Curing . 29

3.4.1 The infection cannot be controlled when the cut is too high 29

3.4.2 There exists an infected node close to the root 36

3.4.3 Low-cut case . 38

3.4.4 A Blind Curing result 43

3.5 Proof for Partial Information 45

3.5.1 Quantity of information available before the cut reaches 3r 46

3.5.2 Distinguishing between infected and not infected 49

3.6 Conclusion . 54

Chapter 4. Uncertainty about When Nodes Are Infected 56

4.1 Introduction . 56

4.1.1 Relevant work . 57

4.1.2 Model . 58

4.1.3 Why is it a hard problem? 62

4.1.3.1 Counting approaches 62

4.1.3.2 Max-likelihood approaches 65

4.1.4 Contributions . 67

4.2 Learning bidirectional trees . 68

4.2.1 Tree structure . 69

4.2.2 Lower bound . 76

x

4.2.3 Tree weights . 77

4.3 Bounded-degree graphs . 83

4.3.1 Bounded-degree structure 85

4.3.2 Bounded-degree weights 92

4.3.3 Estimators . 93

4.3.4 Solving the system . 94

4.3.5 Sample complexity . 96

4.4 General graphs . 99

4.5 Discussion . 99

Chapter 5. Uncertainty about what is infecting nodes 101

5.1 Introduction . 101

5.1.1 Relevant work . 103

5.1.2 Contributions . 104

5.2 Preliminaries . 105

5.2.1 Mixture Model . 105

5.2.2 Dynamics of the Spreading Process 106

5.2.3 Observation Model . 107

5.2.4 Learning Objective . 108

5.2.5 When is this problem solvable? 108

5.3 Main Results . 110

5.3.1 Balanced Mixture of Undirected Graphs 110

5.3.2 Extensions . 111

5.3.3 Lower Bounds . 112

5.4 Balanced Mixture of Undirected Graphs 113

5.4.1 Overview of Algorithm 3 114

5.4.2 Learning Edges, Star Vertices, and Line Vertices 115

5.4.2.1 Learning the Edges in E1 ∪ E2 115

5.4.2.2 Star vertex . 116

5.4.2.3 Line vertex . 118

5.4.3 Correctness of Algorithm 3 121

5.4.4 Finite Sample Complexity 122

xi

5.5 Extensions . 123

5.5.1 Extension to Directed Graphs 123

5.5.2 Extension to Unbalanced/Unknown Priors 124

5.5.3 Extension to Mixtures of K > 2 Graphs 125

5.6 Experiments . 125

5.7 Conclusion . 126

Appendices 128

Appendix A. Uncertainty about who is infected 129

A.0.1 Properties of the binary tree 129

A.0.2 Some probabilities . 130

A.0.2.1 Geometric variables 130

A.0.2.2 Some curing probabilities 131

A.0.2.3 Moment generating function of the random walk 135

A.0.3 Some calculus . 137

A.0.3.1 monotonicity results 137

A.1 A policy achieving the upper bound 137

A.1.1 Description of the policy 138

A.1.2 Properties of the policy 139

A.1.3 Analysis . 140

A.1.3.1 Case 1: One node was not cured when it entered
the buffer zone, and then proceeds to make its
way to Asus. 141

A.1.3.2 Case 2: There was a path of infection from a
node of Ainf to a node of Asus. 141

A.1.4 Combining the results for all time steps 144

A.2 Numerical experiments . 145

A.2.1 Impact of the lack of information 146

A.2.2 Impact of size of the graph 147

xii

Appendix B. Uncertainty about when nodes are infected 148

B.1 Bidirectional tree . 148

B.2 Bounded-degree graphs . 152

B.2.1 Solving the system . 152

B.2.2 Sample complexity . 156

Appendix C. Uncertainty about what is infecting nodes 162

C.1 Necessary Conditions . 162

C.1.1 We need at least three edges 162

C.1.2 We need ∆-separation 163

C.1.3 Dealing with mixtures which are not ∆-separated 164

C.2 Proofs for unbalanced mixtures 166

C.2.1 Estimators - proofs . 166

C.2.2 Resolving Sign Ambiguity across Base Estimators 167

C.2.3 Main algorithm - proofs 168

C.2.4 Finite sample complexity - proofs 173

C.2.5 Complete graph on three nodes 178

C.3 Lower Bounds . 179

C.3.1 Directed lower bound 179

C.3.2 Undirected lower bound 182

C.4 Directed graphs . 183

C.4.1 Structures . 183

C.5 Unbalanced/Unknown Mixtures 185

C.5.1 Star Graph . 186

C.5.2 Line Graph . 188

C.5.3 Finite Sample Complexity 191

Bibliography 194

Vita 208

xiii

List of Tables

2.1 Global notations . 5

3.1 Summary of noations for this chapter 19

4.1 Notations . 59

xiv

List of Figures

2.1 SIR model. 6

2.2 SI model. 7

2.3 SIS model. 8

3.1 Visual representation of the different parameters. 20

3.2 Visual representation of the main steps of the proof: when only
N
r4 nodes remain infected, no strategy can prevent the reinfection

of N
r4 new nodes in some other part of the graph. The graph can

only be cured if the cycle is broken, a rare event which takes
superpolynomial time in expectation. 26

3.3 Visual representation of Proot(t1), Pmintree(t2), and P3r(t3). . . . 39

4.1 A complete cascade. 59

4.2 Possible scenarios which could have led to T
′
i = 2, T

′
j = 3 and

T
′

k = 4. In the no-noise setting, this implies Ti = 2, Tj = 3, Tk =
4, and there is only one possible infection pattern. 63

4.3 Possible scenarios which could have led to T
′
i = 2, T

′
j = 3 and

T
′

k = 4. We have T
′

l = Tl + nl. In the limited-noise setting,
there are nine possible infection patterns (many more scenarios
with the same infection pattern, but different noise values, are
not shown). 64

4.4 Two nodes can be co-infected frequently without sharing an edge. 84

5.1 Unsolvable structures . 107

5.2 Solvable local structure . 109

5.3 A star vertex u, with edges (u, a), (u, b) and (u, c) in E1 ∪ E2. . 116

5.4 A line vertex u, with edges (u, a), (u, b) and (b, c) in E1 ∪ E2. . 116

5.5 Experimental sample complexity, error distribution, and depen-
dency in the degree. 123

A.1 Time to cure as a function of the probability of error for the
Naive Curing strategy. 146

xv

A.2 Time to cure as a function of the number of nodes for the Blind
Protection strategy. The plots are the average of 20 runs. . . . 147

C.1 Lower-bound directed graph 180

C.2 Structures for directed graphs of minimum out-degree three. . 183

xvi

Chapter 1

Introduction

Epidemic models are used widely across biological and social sciences,

engineering, and computer science. They have made an important impact on

the study of the dynamics of human disease and computer viruses as well as

trends, rumors, viral videos, and (most recently) the spread of fake news on

social networks. In this work, we focus on epidemics propagating on a graph,

as introduced by the seminal paper [65]. In this setting, an infected node

can only propagate the infection to its susceptible neighbors, as opposed to

the fully mixed models considered in the early literature. This graph-based

approach provides a more realistic model in which the spread of the epidemic

is determined by the connectivity of the graph, and, accordingly, some nodes

may play a larger role than others in the spread of the infection. This work

therefore leverages concepts and results from graph theory.

Most state-of-the-art research on epidemic processes on graphs assumes

we have perfect information. However, this is often not the case. In the midst

of the COVID-19 crisis, it is painfully evident that it is unrealistic to assume we

know exactly who is infected at any given time, as people do not constantly re-

port their infection state. Similarly, it is unrealistic to assume we know exactly

1

when someone became infected: official diagnosis (and hence recording by any

tracking entity such as the Centers for Disease Control and Prevention) may

come days, weeks, or – in important examples such as HIV – years after the ac-

tual moment of infection. Moreover, this delay can vary widely from person to

person, hence the infector is often diagnosed after the infectee. Similar issues

arise with biological networks: we only know the expression of a gene when

we perform an experiment, which can happen after a typically arbitrary delay.

Finally, even in the realm of online epidemics (e.g. viral tweets), for which

perfect information is often taken for granted, there can be uncertainty about

what really infected the nodes. Indeed, posts are shared differently based on

their topic, which may be unclear (e.g. someone sharing ”We won!!!” could

indistinguishably be talking about sports or politics). This implies epidemics

might not spread on graphs, but on hidden mixtures of graphs.

Accordingly, this thesis aims to answer the following question: How can

we tackle the problems of curing and network inference for epidemics spreading

on graphs under various forms of uncertainty in the observation model? To

do so, we draw on results from graph theory, probability, random walks, com-

binatorics, convex optimization, and information theory to prove our results.

In particular, we make use of Wald’s inequality, Sanov’s theorem, and Fano’s

lemma.

2

1.1 Overview of results

1.1.1 Uncertainty about who is infected

In Chapter 3, we consider the problem of curing a graph under a re-

stricted budget when there is uncertainty about which nodes are infected. We

show that this uncertainty dramatically changes the landscape: we exhibit

graphs which cannot be cured in polynomial time for a given curing budget in

the uncertain setting, despite being curable in sublinear time for a fraction of

the same budget in the perfect information setting.

1.1.2 Uncertainty about when nodes are infected

In Chapter 4, we consider the inverse problem of graph inference from

epidemic cascades, specifically from noisy times of infection. We prove we can

reliably learn the edges of graphs from a very weak observation model, and

learn the weights for any known noise distribution. For trees and bounded-

degree graphs, our methods are sample-optimal (up to log factors).

1.1.3 Uncertainty about what is infecting nodes

In Chapter 5, we still consider graph inference from epidemic cascades,

but this time we consider the case in which the cascades spread on an (un-

known) mixture of two graphs.We show this problem is not always identifi-

able, and we give necessary and sufficient conditions for the problem to be

identifiable with polynomial samples. In the identifiable case, we provide a

sample-optimal (up to log factors) algorithm which reconstructs both graphs.

3

1.2 Published work

The work presented in this thesis is based on joint work with collabo-

rators, as described below.

Chapter 3 and Chapter 4 are based on joint research with Constantine

Caramanis and appeared in SIGMETRICS 2018 [40] and 2019 [41] respectively.

The latter paper won 2nd place in the 2019 INFORMS George E. Nicholson

Student Paper Competition.

Chapter 5 features joint work with Soumya Basu, Surbhi Goel, and

Constantine Caramanis and appeared at ICML 2020 [39].

4

Chapter 2

Preliminaries

2.1 Notations

G = (V,E) Graph G, V set of nodes, E set of edges.
N Number of nodes in the graph
pij Weight of edge (i, j), corresponding to the probability

that i infects j.
It Number of infected nodes at time t
St Number of susceptible nodes at time t

Table 2.1: Global notations

2.2 Relevant background

2.2.1 Epidemic models

The study of epidemics dates to 1760, when Bernoulli [8] introduced

what would later be called compartment models. In this model, we assume

that every individual belongs to a state, which could be:

Infected: Infected individuals have the spreading agent, and spread it.

Susceptible: Susceptible individuals can become infected.

Removed: Removed individuals no longer interact with the spreading agent,

and in particular cannot become infected.

5

The crucial assumption of compartment models is that everyone can

infect everyone, which is why this type of model is sometimes called a fully

mixed model. There exist other extensively studied states: for instance, the

exposed state, in which individuals already have the spreading agent in them,

but are not infectious yet. While this thesis does not consider fully mixed

models, we still make use of the same terminology, and we will focus on the

susceptible, infected, and removed states.

2.2.1.1 SIR model

Figure 2.1: SIR model.

In the SIR (Susceptible → Infected → Removed) model, susceptible

individuals can become infected. Infected individuals infect other susceptible

nodes until they become removed, and stop interacting with the spreading

process. The SIR model is the model of choice for many human epidemics,

as humans usually develop immunity to a disease (or die, in which case they

also are removed). Chickenpox is one of the most well-known examples of SIR

epidemics.

The SIR model is also useful for representing online epidemics, and

in particular the spread of viral content on social networks. Indeed, people

usually interact (e.g. share, like, tag other people) with new content (video,

6

article, meme, etc.) only once: the first time they see it.

It is possible for a SIR epidemic to never reach the status of an out-

break. Indeed, if it is hard to infect new individuals, but easy to transition to

the removed state once infected, a SIR epidemic can die out quickly. If it does

not, however, then the outbreak will develop in two phases: an exponential ex-

plosion of the number of infected individuals at the start, when every infected

node can easily spread the agent to many susceptible nodes, and an expo-

nential decrease, when susceptible individuals become rarer and most infected

individuals transition to the removed state without infecting new people. At

the end of an outbreak, not everyone will have been infected, and the expected

number of people in the removed state can be calculated from the parameters

of the epidemic.

2.2.1.2 SI model

Figure 2.2: SI model.

In the SI (Susceptible → Infected) model, susceptible individuals be-

come infected, and stay infected. As a result, without outside intervention,

everyone will be infected at the end of the process.

Noteworthy examples of SI epidemics include the spread of news (e.g.

the election of a new president) or a zombie apocalypse.

7

2.2.1.3 SIS model

Figure 2.3: SIS model.

In the SIS (Susceptible → Infected → Susceptible) model, susceptible

individuals become infected, and can then become susceptible again. Contrary

to the two examples above, in which the process dies out quickly (when people

are all susceptible or removed in the SIR model, or when they are all infected

in the SI model), an SIS epidemic can live indefinitely, as new individuals be-

come infected continuously, and previously infected individuals become future

potential targets when they revert to the susceptible state. In this case, a

constant fraction of the population is continuously infected, and we say the

epidemic is endemic.

SIS epidemics are particularly useful for modeling the spread of com-

puter viruses. They are also useful models for diseases caused by viruses that

mutate (e.g. the cold, the flu, or AIDS).

2.2.2 Epidemics on graphs

2.2.2.1 Modeling choices

In this thesis, we focus on epidemics propagating on a graph. In con-

trast to the fully mixed models, in which every infected node can infect every

8

susceptible node, here the spread is restricted by the topology of the graph:

infected nodes can only infect their (susceptible) neighbors in the graph. Like-

lihood of transmission can then be represented by the weights of the edges in

the graph.

Epidemics on graphs provide the highest level of granularity for the

study of epidemics. As such, a large body of work has focused on this setting,

spanning numerous applications: modeling epidemics [13, 17, 36, 55, 81, 88],

detecting them [4, 6, 46, 53, 58, 60, 62], detecting communities [69, 82], finding

their source [20, 71, 72, 74, 76, 77, 80], obfuscating the source, [26–28], or con-

trolling their spread [22, 23, 30, 49, 67, 79, 84]. We choose to focus on this model

for our theoretical results as it guarantees the highest level of generalization

for diseases. We briefly mention other commonly adopted models for studying

epidemics:

• Epidemiologists need computationally efficient models for their simulation-

intensive predictive tasks. This is why they sometimes prefer meta-

population [38, 42, 54, 66, 78] or agent-based [3, 68] models when studying

real diseases.

• In the case of social network epidemics, the fresher and more popular

the content already is, the more likely it will be to become even more

popular. This community might therefore prefer to employ self-exciting

processes (e.g. Hawkes processes [14, 25, 31, 48, 57, 89]).

9

2.2.2.2 The independent cascade model

One central definition in the field of epidemics on graphs is the follow-

ing:

Definition 2.2.1 (Cascade). One instance of a spreading process, from the

moment one or multiple nodes are chosen as sources (i.e. first infected nodes)

to the moment when there exist no infected nodes, is called a cascade.

When we observe multiple cascades, for instance in Chapters 4 and 5,

we assume cascade are independent. This is a variant of the model introduced

by [34] and further studied by [45].

A cascade can represent one viral article spreading on social networks

or one disease spreading in a city. In the independent cascade model, we

assume that how previous cascade spread does not affect how future cascades

will spread.

2.2.3 Cutwidth and curing budget

We now present a result which will be used in Chapter 3. The problem

of curing an epidemic with a limited budget but with perfect observation (i.e.,

perfect knowledge of the state of nodes at each point in time) has been recently

considered in [22, 24]. Their budget is a bound on the curing effort they can

expend at a given time (as opposed to the total curing effort over time). In

this setting, the problem is to optimize the allocation of the curing budget

across nodes at every point in time. They characterize the budget required

10

for fast curing as a function of a combinatorial property of the graph – its

CutWidth:

Definition 2.2.2 (CutWidth). Given a graph G = G(V,E), and any subset

of the nodes, S ⊆ V , the Cut of S is the number of edges crossing from S

to Sc. Given any sequence of |V | + 1 subsets S0, . . . , S|V | such that S0 = ∅,

S|V | = V , and Sk and Sk+1 differ by the addition of a single node (called a

crusade in [22, 23]), the cut of the sequence is the largest cut of any of the sets

Sk. The CutWidth of a graph is the minimum cut of any sequence satisfying

the above properties.

We now present the main results of [22, 24]:

Theorem 2.2.1. Consider an epidemic spreading on a graph with bounded

degree. Suppose the epidemic spreads from infected nodes to their neighbors

following an exponential clock of parameter 1, and we can probabilistically cure

nodes one by one at speed following an exponential clock of parameter r. Let

W be the CutWidth of the graph, N be the number of nodes, and ε > 0 be a

constant. Then:

• If r ≥ (1+ ε) ·max(W, log(N)), there exists a curing strategy which cures

the entire graph in sublinear (in N) expected time.

• If r ≤ (1− ε) ·max(W, log(N)), no curing strategy can guarantee we can

cure the graph in less than exponential (in N) expected time.

11

Chapter 3

Uncertainty About Who Is Infected

3.1 Introduction

In this chapter1, we challenge a commonly accepted assumption in epi-

demic studies, which is that we know whether or not someone is infected.

As the COVID-19 pandemic (ongoing as of this writing) has vividly demon-

strated, this assumption is far from true in real-life scenarios. Individuals can

be infectious before showing symptoms, or even without ever showing symp-

toms (asymptomatic individuals)2. To emphasize the impact of uncertainty,

we consider an optimistic observation model: every node reports its status at

every time step, but this report is corrupted with probability (1 − p) if the

node is infected, and with probability q if the node is susceptible. Note that we

obtain information from every individual at every time step, which is already

a strong model of observation. However, we show that introducing even this

level of uncertainty radically changes the results proven with perfect informa-

tion: there exist graphs which cannot be cured in polynomial time for a given

curing budget in the uncertain setting, despite being curable in sublinear time

1This chapter covers the material prebiously published in The Cost of Uncertainty in
Curing Epidemics. My main contribution was solving the theoretical challenges.

2Worse, they can be showing symptoms but choosing to not report them.

12

for a fraction of the same budget in the perfect information setting.

3.1.1 Setting

We focus on curing SI models, where infected nodes probabilistically

propagate the infection to their non-infected neighbor, while we can choose

nodes to attempt to cure, which corresponds to probabilistically transitioning

them back to the susceptible state.

At any point in time, the state of an SI-type epidemic on a graph is

given by the list of nodes on the graph that are infected, and their relative

topology (position) in the graph. Having a good estimate of the state is critical,

as it determines the dynamics of the spread of the epidemic into the future.

As a simple example, we can ask what the spreading rate is on an N -node line

graph of an infection with N/2 infected nodes. If those nodes are contiguous,

then it will take O(N) time for the epidemic to spread to the entire graph. If

every other node is infected, it will take O(1) time.

If we have access to the status of each node (infected or not), then

we know the state exactly. Much work has focused on the state estimation

problem, in the setting where only noisy information is available. Indeed,

work in [59, 61, 62], [4–6], and elsewhere, considers a setting where only

noisy observations of the status of each node are possible, and even answering

whether there is an epidemic or not is a challenge. Those and related works, as

we discuss in more detail below, focus on the problems related to epidemic state

estimation, and do not consider the control problem of curing the epidemic.

13

On the other side, the problem of curing an epidemic with a limited

budget, but with perfect observation (i.e., perfect knowledge of the state at

each point in time), has been recently considered in [22, 24]. Their budget, as

we explain more precisely further below, is essentially a bound on the curing

effort they can expend at a given time (as opposed to total curing effort over

time). In this setting, the problem is to optimize the allocation of the curing

budget across nodes at every point in time. They characterize the budget

required for fast curing, as a function of a combinatorial property of the graph

– its CutWidth (we define this below).

However, as metioned before, knowing the state of every node in the

graph is often impraticable, or even impossible for some disease (e.g. asymp-

tomatic individuals for COVID-19). The problem of curing an epidemic with

a limited budget and partial observation of the state of the epidemic (i.e.,

which nodes are infected and which are not) introduces a fundamentally new

element to the problem. Indeed, this interaction represents a fundamental

tension: our estimate of the state of a node improves the longer we observe it,

and so the longer we wait to cure a node, the less likely we are to waste pre-

cious curing resources on non-infected nodes. On the other hand, the longer

an infected node remains untreated, the more the epidemic spreads. To the

best of our knowledge, no work has successfully attacked the problem of cur-

ing an epidemic with a limited budget and partial observation of the state of

the epidemic (i.e., which nodes are infected and which are not). Our work

considers precisely this problem, and therefore, broadly speaking, is about the

14

interaction of – specifically, simultaneous – learning and control.

By considering learning the state and controlling the epidemic simulta-

neously, we prove a lower bound that shows (see Section 3.5 for precise result)

that partial information can have a dramatic impact on the resources (either

time or budget) required to cure an infection: even with slightly imperfec-

t/incomplete information, the time to cure a particular graph may increase

exponentially, unless the budget is also significantly increased. Concretely,

we show that if instead of receiving the state of each node at each point in

time, we receive a slightly noisy (e.g., only 99% accurate) guess of the state,

then there is no constant factor of the CutWidth which is sufficient for any

algorithm to cure the epidemic in linear (expected) time.

3.1.2 Related Work and Background

Detecting an epidemic, as well as its location, under noisy data, has

been well-studied in [4], in the context of detecting a multidimensional anoma-

lous cluster, with time playing the same role as any other dimension. Graph-

specific epidemic detection has been further studied by [75], with constraints

based on the cut of this anomalous cluster. [62] study the detection of

epidemic-specific clusters by detecting the shapes which arise specifically when

there is an epidemic. The focus in those works has been to understand the

limit of information required in order to detect the epidemic. More gener-

ally, inverse problems have also been of interest, especially source detection

[71, 73, 74, 76, 80] or obfuscation [26, 29].

15

In our work, we adopt a much stronger observation model than in the

papers listed above; our negative result establishes, however, that controlling

the epidemic is impossible with weaker information than the threshold we

characterize.

In [22, 23], the authors tackle the problem of curing graphs with perfect

knowledge of the state of each node, constrained by a budget which corresponds

to the speed at which the nodes are cured. Their results show that there exists

a threshold phenomenon: for any given graph, if the curing budget is lower

than a combinatorial quantity of the graph called the CutWidth, the curing

time is exponential; if it is higher, they exhibit a strategy to cure any graph

in sublinear time. The CutWidth captures a key bottleneck in curing, and

is important in our work as well. Therefore it is useful to define this precisely

now.

Definition 3.1.1. Given a graph G = G(V,E), and any subset of the nodes,

S ⊆ V , the Cut of S is the number of edges crossing from S to Sc. Given any

sequence of |V |+1 subsets S0, . . . , S|V | such that S0 = ∅, S|V | = V , and Sk and

Sk+1 differ by the addition of a single node (called a crusade in [22, 23]), the

cut of the sequence is the largest cut of any of the sets Sk. The CutWidth of

a graph is the minimum cut of any sequence satisfying the above properties.

Intuitively, the CutWidth of a graph is the largest cut one would be

forced to encounter when curing a graph. The cut of a subset is critical, because

for an infected set of nodes S, its cut is the number of non-infected nodes

16

adjacent to infected nodes, and hence is the instantaneous rate of infection

of the epidemic at that moment (in that configuration). For an illustration,

consider again an N -node line graph. Its CutWidth is equal to one, since

when curing the graph from one end to the other, we have only one single

non-infected node adjacent to an infected node at any time. Note that this is

the best case, because if we were to start curing nodes in the middle of the

infection, the cut between the infected nodes and the non-infected nodes could

be made as large as O(N).

Their strategy is based on two main ideas. The nodes are cured fol-

lowing an ordering which keeps the cut between the infected set and the non-

infected set as low as possible. Then, as soon as there is a new infection, the

strategy switches to damage control, and focuses on returning to the ordering

previously mentioned.

Our result hinges on the fact that the damage-control part of the strat-

egy is exactly the part which is hard to accomplish with partial information.

If the number of k-hop neighbors of a node grows exponentially, as is the case

for the binary tree, detecting where the infection can have spread becomes a

difficult task. Moreover, if we can detect such an escape path, but the infection

has spread to a high number of nodes by the time we have enough information

to try to prevent it, detection was useless. It is the tension between waiting

less time and wasting budget on false alerts, or waiting too long and being

unable to prevent the spread, which makes the problem of curing with partial

information challenging.

17

3.2 Model and main contributions

The key elements that define our model are the dynamics of the spread-

ing process and the controlled curing process, and then the stochastic process

that defines the degradation from perfect information. We describe these in

detail, in this order. We then provide a few basic definitions that appear

repeatedly throughout the chapter, and then finally outline the main contri-

butions of this work.

3.2.1 The SI + curing model

In a standard SI (susceptible → infected) model, an epidemic spreads

along edges from infected nodes to their neighbors according to an exponen-

tial spreading model: when a node becomes infected, it infects each uninfected

neighbor according to an exponential random variable. SIS models are SI mod-

els where infected nodes also transition to susceptible, again at an exponential

rate. Here, we consider the setting where the rate at which nodes transition

from infected to susceptible is under our control, subject to a budget. How to

optimally use this budget is the main question at hand. We prefer to call this

a controlled SI process rather than a SIS process, because we are interested

in the regime where our total curing budget is o(N), where N is the number

of nodes. A SIS process typically has transitions from susceptible to infected

of the same order as the infection rates; in our setting, this would correspond

to a budget of at least O(N). We note that much work has considered this

setting, and has characterized the absorption time (into the ”all cured’” state)

18

N Number of nodes in the graph
It Number of infected nodes at time t
τ Size of a time step
rti Budget spent on node i at time t

r =
∑N

i=1 r
t
i Total budget for each time step

µ = 1− e−τ Probability of an infection along an edge between a
susceptible and an infected node

δti = 1− e−rti ·τ Probability that infected node i gets cured at time t
δ = 1− e−r·τ Maximum probability of being cured for a node

p P(node i raises a flag at time t | node i is infected)
q P(node i raises a flag at time t | node i is susceptible)

Table 3.1: Summary of noations for this chapter

as a function of the topology of the network [33].

In the sequel, we consider a discrete, Bernoulli approximation to these

exponential rate models, by considering the dynamics evolving with discrete

time steps τ ; we then take the time step τ to zero, hence recovering the con-

tinuous time dynamics. In particular, this model is a discretization of the

exponential model of [24]. As τ → 0, the models become equivalent. This

discretization and the subsequent limit as τ → 0 facilitate our quantification

of uncertainty, i.e., how much information we receive about the state of each

node, in a given time interval. This is defined precisely below.

The dynamics of this controlled stochastic process evolve as follows. At

each time t, for all N nodes of the graph, the decision-maker assigns a budget

rti , subject to the constraints
∑N

i=1 r
t
i = r. During a time step of length τ , each

node i is cured with probability δti = 1− e−rtiτ if it was infected, and nothing

happens otherwise – the budget is wasted. Then, for every edge between

19

i j

Probability
of infection
µ = 1 − e−τ .

Node i,
infected.

Node j,
susceptible.

Budget rti , node
i will be cured
with probability
δti = 1 − e−rti ·τ . Budget rtj , wasted.

Figure 3.1: Visual representation of the different parameters.

an infected and a susceptible node, an infection occurs with probability µ =

1− e−τ . The number of infected nodes at time t is given by It. In particular,

since the graph is completely infected at the beginning, we have I0 = N .

We now give a few definitions related to the above quantities, that we

use throughout this chapter.

Definition 3.2.1. We call curing process the stochastic process of cures and

infections according to the model described in section 3.2.1. This process has

a deterministic part (how much of the budget is assigned to which nodes at

each time step), and a stochastic part (curing and infection follow geometric

laws).

Definition 3.2.2. We call a strategy the set of budgets assigned for each

node at each time: {rti , i ∈ [N], t = k · τ, k ∈ N}. We note that in the Partial

Information setting that we introduce below, the actions taken at time t1 may

depend on the information accumulated until time t1 − τ .

In the rest of the chapter, we refer to the set of infected nodes (resp.

susceptible nodes) as the infected set (resp. susceptible set). We may also

20

refer to the cut between the infected set and the susceptible set as the cut.

When we use the word distance between two nodes in a graph, we refer to the

number of nodes in the shortest path between these two nodes. The distance

between a node and a set is the shortest distance between this node and any

node of the set.

3.2.2 Partial Information/Blind Curing

In the Complete Information setting, we assume that the status (in-

fected or susceptible) of each node is known at each point in time. In what we

call the Blind Curing model, we never have any information about the status

of each node. The Blind Curing model is a technical tool we use en route

to the final result. We introduce a Partial Information model that interpo-

lates between these two extremes, and indeed is our main object of interest.

Our model of partial information provides a stark tradeoff for the decision-

maker: allocate resources to nodes whose status is very uncertain, and thus

significantly raise the probability of wasting curing resources, or wait to collect

more information and hence more certainty about the status of a node, running

the risk that an infected node was allowed to infect neighbors unfettered.

Our motivation for our partial information model comes from zero-day

behavioral malware detectors, often called Local Detectors [9, 44], where anti-

malware software raises alerts of “suspicious behavior” that are then related

to a central authority. We refer to these alerts as “flags.” Thus, in the Com-

plete Information model, an infected node would raise a flag at each instant

21

with probability 1, and an uninfected node would never raise a flag. In the

Partial Information model, at each time step, each node, independently of

all others, raises a flag with some probability. The probability of getting a

flag is p if the node is infected, q if the node is susceptible, with p > q. By

aggregating the information about a node over multiple time steps, we can use

basic concentration inequalities to deduce its state, and thus more observation

time corresponds to higher certainty about a node’s state.

As noted above, p = 1, q = 0 recovers the Complete Information

setting, and p = q the Blind Curing setting.

In order to recover the continuous time dynamics, we let τ → 0. The

key quantity that measures the amount of information per fixed unit time, is

given by the rate function from Sanov’s theorem, normalized by the time step:

D(p||q)
τ

, where D(p||q) is the Kullback-Leibler distance between p and q [15]. To

understand this intuitively, this says that when D(p||q)
τ

is a constant, observing

a node for a fixed period of time corresponds to administering a test with a

nonzero false positive and false negative probability. That is, we can know the

state of a node with constant probability of error by observing this node over

a constant amount of time, which is what one expects from a real-world source

of information. Note that as τ → 0, if p − q is constant (or, more generally,

if D(p||q) goes to zero sublinearly) then we recover the Complete Information

setting. Hence, the setting of interest is where (p− q)→ 0 as τ → 0, and the

critical scaling is controlled by D(p||q)/τ .

22

3.2.3 Main contributions

Our main result consists of two parts. First, we show that there exist

graphs that cannot be cured in polynomial time in the Blind Curing model.

We then use this result to get a lower bound for the cost of lack of information

in the Partial Information model. We obtain an expression for the lower bound

that shows the required tradeoff between D(p||q)
τ

(the information available per

unit of time), and the budget, r.

Theorem 3.2.1. A Partial Information impossibility result.

We consider the task of curing a fully infected complete balanced binary tree

with N nodes. Let D(p||q)
τ

be a measure of the amount of information we get

per time step, and r be the budget (curing rate) of our curing process. If

D(p||q)
τ

≤ O

(
log(N)

√
log(r)

r

)
, (3.1)

as τ → 0, then it is fundamentally impossible for any algorithm (of any com-

putational complexity) to cure the complete binary tree in polynomial expected

time with budget r = O(Wα), where W is the CutWidth of the graph and α

is any constant.

For the Blind Curing case, we also have the following upper bound.

Theorem 3.2.2. For all c > 0, we can always cure the binary tree in expected

linear time with budget O(e4/cN c). In particular, our strategy does not require

any information about the state of the nodes.

23

Interpreting the result. Suppose that if a node is observed for a fixed

period of time, we can estimate its state (infected or not) with probability 1−δ

for δ some constant. Our results say that regardless of what this constant

is, e.g., even if we have a test that takes 1 minute (or other time unit) to

implement and returns a result that is 99% (or any other constant quantity)

accurate, then polynomial time curing is impossible, for budget any multiple

of the CutWidth. Indeed, as explained above, a constant-error estimate in a

fixed unit of time corresponds to D(p||q)/τ , the left-hand side of (3.1), being a

constant. On the other hand, if the budget is any multiple of the CutWidth,

the right-hand side of (3.1) grows like
√

log log(N), and in particular is larger

than any constant. In contrast, with complete (and instantaneous) certainty

of the state of each node (here the left-hand side of (3.1) can be infinite),

[22] proves that every graph can be cured in linear expected time with budget

higher than the CutWidth.

For the blind setting, Theorem 3.5.7 says that for budget of any poly-

nomial of log(N), curing takes superpolynomial time. Theorem 3.2.2 gives an

upper bound that shows that this lower bound is not too far off; it says that

a budget of N c is sufficient, for any c > 0. This can be proved by adding a

buffer of size O(log(N)) between the supposedly cured nodes, and the known

infected nodes.

Our result focuses on the binary tree. Since our main result is a lower

bound, this specific example is sufficient to resolve the question of whether the

CutWidth (or something proportional to it) is the right quantity to focus on

24

to build a curing strategy robust to noise in our node estimates. In addition

to this, we note that many graphs contain trees as subgraphs. Since adding

nodes and edges only makes curing more difficult, our results can be seen to

apply to any graph structure with a binary tree as a subgraph (as long as

adding edges does not dramatically change the CutWidth of the graph).

Proof Idea. Our proof focuses on bottlenecks of the curing process:

events that must happen with high probability, regardless of the policy used,

en route to curing an infection. Specifically, our proof hinges on showing two

such bottlenecks. First, we show that regardless of the policy, regardless of

the stochastics of the curing and infection process, with high probability the

last nodes to be cured cannot all be far from the root node. As we discuss

below, the intuitive reason for this relies on our graph topology, and the fact

that the cut between the set of infected nodes and the set of uninfected nodes

must remain low if we hope to control the infection. On a binary tree, a

simple calculation (Proposition 3.4.9) shows that any N
r4 -node set with low cut

must contain nodes close to the root. The significance of this result is that

at all times that matter (namely, at all points where the curing policy might

be close to succeeding), there will be infected nodes that are not far from

(exponentially) many uninfected nodes. Next, we show that in any interval of

time, there must be many uninfected nodes that are also unprotected by the

curing policy, regardless of what the curing policy is doing (Lemma 3.4.12). In

Theorem 3.4.17, we combine these results to show that the probability that an

infection begins, travels through the root to the unprotected subset of nodes

25

Figure 3.2: Visual representation of the main steps of the proof: when only N
r4

nodes remain infected, no strategy can prevent the reinfection of N
r4 new nodes

in some other part of the graph. The graph can only be cured if the cycle is
broken, a rare event which takes superpolynomial time in expectation.

and infects them before the remaining nodes are cured, is very close to 1.

3.3 Proof sketch

We first prove that polynomial curing is impossible in the Blind Curing

setting if the budget is polynomial in the CutWidth. We then show that

in the Partial Information setting, we do not obtain enough information to

detect threats of reinfection, and thus cannot prevent them: we are ”blind” to

the threats until it is too late.

Our proof in the Blind Curing setting focuses on a subprocess which

is bound to happen for any curing strategy. We consider the last N
r4 infected

nodes. We show that by the time we cure these last remaining infected nodes,

26

a new set of N
r4 nodes becomes infected with high probability. Trying to cure

the whole graph is then similar to playing a very long game of whack-a-mole

with superpolynomial expected end time.

3.3.1 Blind Curing setting

Step 1 (Section 3.4.1): We first show that if a strategy allows the cut be-

tween the infected and susceptible set to be much higher than the avail-

able budget r, the infection becomes uncontrollable. In this case, the

infection rate exceeds the curing rate, and the reinfection would be in-

evitable even if we had complete knowledge about the infection state of

each node at each time (i.e. this happens even in the Complete Informa-

tion setting). In particular, if N
r4 nodes are infected and the cut is above

r4, the drift of the curing process is dominated by the infections. We

can then use random walks results, such as Wald’s Inequality, to prove

that after a few time steps, we end up with at least as many infected

nodes, but a cut below r3 (we actually end up with many more infected

nodes, but as many is enough for the proof). We can therefore focus

on analyzing the situation in which N
r4 nodes remain infected with a cut

lower than r4.

Step 2 (Section 3.4.2): Due to the topology of the binary tree, a cut below

r4 implies that there exists an infected node which is close to the root.

This makes it easy for the infection to escape through the root, and reach

a large number of susceptible nodes. One key point of the proof is that

27

this node will remain infected (and therefore potentially infecting) for a

very long time, and an infection can start at any time step during this

period.

Step 3 (Section 3.4.3): Since the infection escapes through the root, the

number of uninfected nodes easily accessible is very large, and specifi-

cally, larger than the budget. This makes it impossible to cover all the

potential escape routes. Notice that this is very specific to the Blind

Curing setting: if we knew in which direction the infection was escaping,

we could prevent it as in [24]. It is because the number of potential

infected nodes is exponentially higher than the number of actual nodes

infected, and because we do not know where the infection actually is,

that we end up wasting considerable curing budget on uninfected nodes.

Therefore, the infection is very likely to escape, and a new set of N
r4 nodes

becomes infected again.

3.3.2 Partial Information setting

To extend this result to the Partial Information setting, we notice that

as soon as the cut of the new infection reaches 3r, we can use Gambler’s

Ruin results to show that at least N
r4 nodes will become infected with constant

probability. If we cannot detect the infection escaping until a cut of 3r is

reached, we therefore cannot prevent the reinfection with constant probability.

Using Sanov’s Theorem, we show that the uncertainty in our state estimation

for any node does not resolve itself quickly enough (in particular, with respect

28

to how fast the neighborhoods of the binary tree grow). Specifically, the

infection remains undetectable with constant probability until a cut of 3r is

attained. This allows us to extend the result from the Blind Curing Setting

to the Partial Information setting.

3.4 Proof for Blind Curing

In this section, we prove that in the Blind Curing setting, we cannot

cure a complete binary tree in polynomial time with budget O(Wα), where

W is the CutWidth, and α is any constant. A complete binary tree has

CutWidth smaller than log(N). Therefore, in the rest of the chapter, we set

r = logα(N).

We focus on the last moments of the curing, when only N
r4 nodes remain

infected. The proof relies on the fact that by the time we cure these last N
r4

nodes, a new set of N
r4 nodes will have become infected in another part of the

graph with probability superpolynomially close to 1.

3.4.1 The infection cannot be controlled when the cut is too high

We start by proving that without loss of generality, we can suppose the

cut between the infected set and the susceptible set is less than r4 when N
r4

nodes remain infected. If the cut is above r4, the infection becomes uncon-

trollable with high probability, and we end up with at least as many nodes

29

infected 3, but a cut below r3 after some time steps. Therefore, supposing the

cut is below r4 only reduces the expected time of curing.

Intuitively, if the budget is much smaller than the cut, the leading term

in the drift of the infection process will be driven by the new infections taking

place, regardless of the policy in use. Trying to eradicate, or even contain,

an epidemic in these conditions would be like fighting an avalanche with a

flamethrower: some snow will melt, but it will not stop the avalanche - which

will only stop by itself. Similarly, we can only hope to regain some control

over the infection process when the budget is at least of the same order of

magnitude as the cut.

To prove this result, we introduce a random walk Gt which stochasti-

cally dominates the curing process (Lemma 3.4.1). We define a stopping time,

TSmallCut, which corresponds to the first time the cut reaches r3. We prove

that by the time we reach this stopping point, many infections must have

taken place (Lemma 3.4.4 and 3.4.6), which implies that many time steps

must have gone by. We can then use concentration inequalities to prove there

are at least as many infected nodes at TSmallCut as there were at the beginning

of the random walk (Lemma 3.4.8).

Definition 3.4.1. Let At ∼ B(r, δ), a binomial random variable with r trials

and probability δ, and Bt ∼ B(r
3

3
, µ), a binomial with r3

3
trials and probability

3It is actually more likely that a large number of new nodes will become infected. How-
ever, our proof only requires the total number of infected nodes to not decrease, so this is
what we prove.

30

µ.

We define the random walk Gt:

Gt =
t∑

t′=t0

At′ −Bt′ .

We are especially interested in the sign of the random variableGTSmallCut
=

TSmallCut∑
t′=t0

At′ −Bt′ .

Definition 3.4.2. We call the increase in susceptible (uninfected) nodes

since t0 the random variable It0 − It, for t > t0. This is the difference between

the total number of infected nodes at time t0, and the total number of infected

nodes at time t > t0. In other words, it corresponds to the difference between

the number of nodes we successfully cured and the number of newly infected

nodes between the times t0 and t. Note that if more infections than curings

have happened since t0, the increase in susceptible nodes is negative.

Definition 3.4.3. A random variable X1 is stochastically dominated by a

random variable X2, if P[X1 ≥ x] ≤ P[X2 ≥ x] for all x.

Lemma 3.4.1. Let t0 be the first time such that It0 = N
r4 and the cut is above

r4. The random walk Gt, defined above, stochastically dominates the quantity

It0 − It (the increase in susceptible nodes since t0) for any t ≤ TSmallCut, for

every strategy.

Proof. At each time step t, each node i is assigned a budget rti , with rti ≤ r,

and gets cured with probability δi = 1− e−rti ·τ ≤ δ = 1− e−r·τ . By assumption

31

of our model, there are at most r nodes being cured, among which at most r

are infected (we do not know for sure if the nodes we are curing are infected or

not since we are in the Blind Curing setting). Each of these infected nodes can

therefore return to the susceptible state with probability at best δ. In other

words, the number of cured nodes is stochastically dominated by a binomial

variable with r trials and probability δ, i.e., it is stochastically dominated by

At.

Before the stopping time, the cut is at least as big as r3. The maximum

degree in a tree is 3, so 3 of these edges could lead to the same node. Therefore,

there are at least r3

3
potential infections happening with probability µ. Bt is

therefore stochastically dominated by the number of new infections in the

curing process, for any strategy.

Thus, Gt stochastically dominates It0 − It, for any t ≤ TSmallCut, for

every strategy.

We use random walks properties to exponentially bound the probability

that GTSmallCut
is positive, which correponds to more cures than infections. We

recall Wald’s Inequality for random walks, whose proof appears in Section 9.4

of [32].

Theorem 3.4.2. Wald’s identity for 2 thresholds

Let Xi, i ≥ 1 be i.i.d. and let γ(r) = log(E[erX]) be the Moment Generating

Function (MGF) of X1. Let Int(X) be the interval of r over which γ(r) exists.

For each n ≥ 1, let Sn = X1 + · · · + Xn. Let ε > 0 and β < 0 be arbitrary,

32

and let J be the smallest n for which either Sn ≥ ε or Sn ≤ β. Then for each

r ∈ Int(X):

E[exp(rSJ − Jγ(r))] = 1.

Corollary 3.4.3. Under the conditions of Theorem 3.4.2, assume that E[X] <

0 and that r∗ > 0 exists such that γ(r∗) = 0. Then:

P[SJ ≥ ε] ≤ exp(−r∗ε).

We now use Wald’s Inequality to prove It0 − It cannot be very large.

Lemma 3.4.4. If the cut is above r3, the probability that the increase in sus-

ceptible nodes It0 − It is higher than K is exponentially small in K.

Proof. The curing process is stochastically dominated by the random walk

described above. Let PcuringK be the probability that Gt reaches the value K

before stopping. Using Wald’s Inequality (Corollary 3.4.3):

PcuringK ≤ e−x
∗·K .

where x∗ is a value for which the MGF of Gt is 1. Through careful but standard

analysis, we can prove that there exists such a x∗ > 0, and that x∗ converges

to log(r
3
) when τ → 0.

Corollary 3.4.5. The increase in susceptible nodes It0 − It is bounded above

by log2(N)
x∗

with probability at least 1− e− log2(N).

Proof. Using Lemma 3.4.4, we have: e−x
∗·K ≥ e− log2(N) =⇒ K ≤ log2(N)

x∗
. We

conclude with setting K = It0 − It.

33

We deduce from the previous result that many infections must have

taken place.

Proposition 3.4.6. At TSmallCut (when the cut reaches r3), at least r4

7
infec-

tions will have taken place.

Proof. Let C be the number of nodes cured between t0 and TSmallCut , and I be

the number of new infections in the same time period. Any curing or infection

reduces the cut by at most 3, since the graph is a binary tree. Therefore:

3C + 3I ≥ r4 − r3.

On the other hand, using Corollary 3.4.5, we can bound the increase in sus-

ceptible nodes:

C − I ≤ log2(N)

x∗
.

Combining the two inequalities:

I ≥ r4 − r3

6
− log2(N)

x∗
≥N�1

r4

7
.

The previous Proposition proved that many infections happened. We

now show this implies that many time steps must have passed by, which allows

us to use concentration inequalities. To prove the next Lemma, we recall

Hoeffding’s Inequality:

Theorem 3.4.7. (Hoeffding’s Inequality for general bounded random vari-

ables).

34

Let X1, . . . , Xk be independent random variables. Assume that Xt ∈

[mt,Mt] almost surely for every i. Then, for any ε > 0, we have

P

(
k∑
t=1

(Xt − E[Xt]) ≥ ε

)
≤ e

− 2ε2∑k
t=1(Mt−mt)2 .

Lemma 3.4.8. The probability that the random walk reaches the stopping time

with It0 − It < 0 tends to 0 as τ → 0.

Proof. Using Hoeffding’s Inequality:

P

(
k∑
t=1

At −Bt ≥ 0

)
= P (

k∑
t=1

At −Bt − E[At −Bt] ≥ −kE[At −Bt])

≤ exp

(
2 · (kE[At −Bt])

2∑k
t=1(r − (− r3

3
))2

)
≤ e

−k 2(rδ− r
3

3 µ)2

(r+ r3
3)2 .

Let MoreCuring be the event that the increase in susceptible nodes at time

TSmallCut (It0 − ITSmallCut
) is non-negative. We use Hoeffding’s Inequality to

bound P
(∑k

t=1At −Bt ≥ 0
)

. Then, b Proposition 3.4.6, we know that at

least I = r4

7
infections must have taken place. To simplify the notations for this

proof, we introduce two new stopping times, TManyInfections and TNegBinomialRW.

TSmallCut stochastically dominates TManyInfections, the number of time steps it

takes for the random walk to infect I new nodes. Since the infection rate

is at least r3

3
, TManyInfections in turn stochastically dominates TNegBinomialRW, a

negative binomial distribution of parameter 3I
r3 and probability of failure µ.

We can therefore replace TSmallCut by the simpler quantity TNegBinomialRW in

35

the following calculations:

P(MoreCuring) = P

(
TSmallCut∑
t=1

At −Bt ≥ 0

)

=
∞∑
k=0

P

(
k∑
t=1

At −Bt ≥ 0

)
· P (TSmallCut = k)

≤
∞∑
k=0

e
−k 2(r3µ−rδ)2

(r3+r)2 · P (TNegBinomialRW = k)

≤ e
− I
r3

6(r3µ−rδ)2

(r3+r)2

∞∑
k=0

e
−k 2(r3µ−rδ)2

(r3+r)2 · P
(
TNegBinomialRW =

3I

r3
+ k

)

≤ e
− I
r3

6(r3µ−rδ)2

(r3+r)2

 µ

1− µe−
2(r3µ−rδ)2

(r3+r)2

 3I
r3

→τ→0 0,

where we have used that the MGF of a negative binomial of parameter M,

probability of success p, evaluated at u, is
(

1−p
1−eup

)M
.

3.4.2 There exists an infected node close to the root

From the moment we start curing the last N
r4 nodes, to the moment we

have cured half of them and only N
2r4 of these nodes remain infected, we show

in this section that there exists an infected node at distance O(log log(N))

from the root (Proposition 3.4.9). This node stays infected for a high number

of steps (Proposition 3.4.10).

Proposition 3.4.9. If we select a set of N
2r4 nodes in a tree such that the cut

of this set is lower than r4, then there is at least one node from this set at

distance 9 log(r) = 9α log log(N) = O(log log(N)) from the root.

36

Proof. We prove the contrapositive: if all the nodes of this set are at distance

greater than 9α log log(N) from the root, then the cut is higher than r4.

Any subtree rooted at distance 9α log log(N) from the root contains N
r9

nodes, and has a cut of at least 1. Suppose all the N
2r4 nodes of the selected

set are at distance 9α log log(N) or more from the root. We therefore need

at least N
2r4/

N
r9 = r5

2
such subtrees, for a total cut of at least r5

2
> r4. Hence,

the closest node is at distance at most 9α log log(N) = O(log log(N)) from the

root.

We now show it takes many time steps to cure N
2r4 nodes, regardless of

the policy.

Proposition 3.4.10. Curing half of the last N
r4 nodes requires more than N

2r4 · 1δ
time steps in expectation.

Proof. If we ignore any potential infections, the time needed to cure N
2r4 nodes

is at least the sum of N
2r4 geometric random variables of parameter δ. The

result follows by linearity of expectation.

Proposition 3.4.11. Let T N
2r4

be the random variable representing the time

to cure half of the N
r4 last nodes. Then:

P

(
T N

2r4
≤ N

4r5δ

)
≤ e−

N
8r5 .

Proof. This follows from representing geometric random variables as the sum

of Bernoulli random variable, which allows us to use Chernoff bounds.

37

Therefore, there exists an infected node close to exponentially many

uninfected nodes, during at least N
4r5δ

time steps. We now establish a lower

bound on the probability of reinfecting N
r4 new nodes in some other part of the

graph, starting from this node.

3.4.3 Low-cut case

We prove in this section that the probability of infecting N
r4 new nodes

in some other part of the graph, by the time it takes to cure half of the N
r4

last infected nodes, is superpolynomially close to 1 for every strategy (Lemma

3.4.15). The graph can only be cured if this does not happen.

The following Lemma is key to understanding why no strategy can

prevent the reinfection. In the Blind Curing setting, we do not know which

nodes are infected. Since there are exponentially many infection routes from

the root of the tree, spreading the budget means there will always be a subtree

on which very small budget is allocated. If the infection reaches this tree,

reinfecting a lot of nodes becomes very likely.

Lemma 3.4.12. For every time t0, there exist r subtrees containing N
r3 nodes

for which less than t3
r

budget is used in the interval [t0, t0 + t3]. We call any

of these trees a minimal tree for [t0, t0 + t3].

Proof. By the pigeonhole principle, since the total budget during this interval

is t3 ·r, and there are at least r3 disjoint subtrees containing N
r3 nodes, there are

at least r subtrees that contain less than r · t3·r
r3 = t3

r
budget on this interval.

38

Figure 3.3: Visual representation of Proot(t1), Pmintree(t2), and P3r(t3).

Definition 3.4.4. From Proposition 3.4.9, we know there exists an infected

node close to the root. We call an Escape(t0, t1, t2, t3) the conjunction of the

following events:

1. At time t0, this node infects its parent.

2. The infection propagates from the parent node to the root in time t1,

without any node being cured.

3. The infection propagates from the root of the tree to the root of a min-

imal tree for [t0 + t1 + t2, t0 + t1 + t2 + t3] in time t2, without any node

being cured.

4. 3r new nodes are infected in a minimal tree for [t0 +t1 +t2, t0 +t1 +t2 +t3]

in time t3, without any node in a minimal tree being cured.

5. The number of newly infected nodes reaches N
r4 before it reaches r.

39

We notice that if an Escape happens, then N
r4 new nodes in some other

part of the graph were reinfected. However, it is possible to reinfect N
r4 new

nodes without any Escape happening.

If {t0, t1, t2, t3} 6= {t′0, t′1, t′2, t′3}, then Escape(t0, t1, t2, t3) and

Escape(t′0, t
′
1, t
′
2, t
′
3) are disjoint events.

We notice that the probability of all the events defined above is inde-

pendent of t0. To simplify notations, we set t0 = 0 for the following definitions.

• Proot(t1), the probability that the infection reaches the root in time ex-

actly t1.

• Pmintree(t2), the probability that the infection reaches a minimal tree for

[t1 + t2, t1 + t2 + t3] in time t2, conditioned on the fact that the root of

the tree is infected. Interestingly, by symmetry of the binary tree (all

potential minimal trees are at the same distance from the root of the

tree), this quantity does not depend on t1 or t3.

• P3r(t3), the probability that 3 · r nodes are reinfected in a minimal tree

in time t3, conditioned on the fact that the root of a minimal tree is

infected.

• Pspread, the probability that the increase in susceptible nodes since time

t1 + t2 + t3 reaches −N
r4 + 3 · r before it reaches 2r, conditioned on the

fact that 3r new nodes are infected at time t1 + t2 + t3.

40

The proof relies on the fact that no strategy can adapt to the infection

moving towards a minimal tree. In the Blind Curing setting, most of the budget

is wasted covering nodes which are not infected or about to be infected, while

most of the graph is left unprotected.

We now bound the probabilities defined above.

Proposition 3.4.13.

• Proot(t1) ≥
(

t1
9α log log(N)

)
· µ9α log log(N)+1(1− µ)t1−9α log log(N)(1− δ)t1 ,

• Pmintree(t2) ≥
(

t2
3α log log(N)

)
· µ3α log log(N)+1(1− µ)t2−3α log log(N)(1− δ)t2 ,

• P3r(t3) ≥
(
t3
3r

)
e−

t3
r
·τ · µ3r+1(1− µ)t3−3re−

t3
r
·τ .

Proof. These are straightforward combinatorics calculations.

Proposition 3.4.14. Conditioned on the cut of the infected set being at least

3r, the probability that the increase in susceptible nodes since time t1 + t2 + t3

reaches −N
r4 + 3 · r before it reaches 2r, is at least

1− 1
2

3·r

1− 1
2

N
r4
≥ 1

2
.

Proof. This is a classic Gambler’s Ruin problem, with low boundary 2r and

high boundary N
r4 . During the infection process, which starts with 3r infected

nodes, the cut is always higher than 2r, so the infection rate is always higher

than 2r, while the curing rate is r. The proof can be found in [37].

We now combine the previous results to bound the probability of es-

caping in one time step.

41

Lemma 3.4.15. Let PescapeOneStep be the probability that an Escape starts at

a given time step. Then:

PescapeOneStep ≥ µ

(
µ(1− δ)

δ + µ(1− δ)

)9α log log(N)

·
(

µe−
1
r

(1− e− 1
r) + µ(e−

1
r)

)3r

· 1

2
.

Therefore, for τ sufficiently small (and in particular, as τ → 0),

PescapeOneStep ≥
τ

2e3e12α2 log2 log(N)
+ o(τ).

Proof. We notice Proot(t1) only depends on t1, Pmintree(t2) only depends on t2,

P3r(t3) only depends on t3, while Pspread is independent of t1, t2, and t3. We

obtain the values of P startPath and P path through standard combinatorics:

PescapeOneStep =
∞∑

t1,t2,t3=0

Proot(t1) · Pmintree(t2) · P3r(t3) · Pspread

=
∞∑
t1=0

Proot(t1) ·
∞∑
t2=0

Pmintree(t2) ·
∞∑
t3=0

P3r(t3) · (Pspread)

≥ P startPath
9α log log(N) · P path

3α log log(N) ·
(

µe−
τ
r

(1− e− τr) + µ(e−
τ
r)

)3r

· Pspread

≥ µ

(
µ(1− δ)

δ + µ(1− δ)

)12α log log(N)

·
(

µe−
τ
r

(1− e− τr) + µ(e−
τ
r)

)3r

· 1

2
.

As τ → 0:

PescapeOneStep ∼τ→0 τ

(
τ

(r + 1)τ

)12α log log(N)

·
(

τ

(1
r

+ 1)τ

)3r

· 1

2

≥τ→0 τ
(
e−12α2 log2 log(N)

)
· e
− log(1+ 1

r
)·3r

2
+ o(τ)

≥τ→0 τ
(
e−12α2 log2 log(N)

)
· e
−3

2
+ o(τ)

≥τ→0
τ

2e3e12α2 log2 log(N)
+ o(τ).

42

We therefore deduce the probability that no Escape happens by the

time we cure half of the N
r4 infected nodes.

Lemma 3.4.16. Let NoEscape be the event that no Escape happens by the

time we cure half of the N
r4 infected nodes.

P (NoEscape) ≤N�1 e
− N

e24α2 log2 log(N) .

Proof. Since there are always more than N
2r4 nodes infected, there is at least one

infected node at distance 9α log log(N) from the root (Lemma 3.4.9), which

means the bound for PescapeOneStep established in Lemma 3.4.15 holds. We split

the analysis into two cases: whether we can cure N
2r4 in less than N

4r5δ
time steps

or not. The probability of one Escape starting at time t being independent

from the probability of an Escape starting at any other time step t′:

P (NoEscape) ≤ (1− PescapeOneStep)
T N

2r4

≤ P(T N
2r4
≤ N

4r5δ
) · 1 + P(T N

2r4

≥ N

4r5δ
) · (1− PescapeOneStep)

N
4r5δ

≤ e−
N

8r5 + (1− PescapeOneStep)
N

4r5δ

≤ e−
N

8r5 +

(
1−

(
µ

µ(1− δ)
δ + µ(1− δ)

)12α log log(N)
) N

4r5δ

≤τ→0,N�1 e
− N

e24α2 log2 log(N) .

3.4.4 A Blind Curing result

From Sections 3.4.1 and 3.4.3, we know the graph can only be cured if

we are in one of these two cases:

43

1. The cut was above r4, but we cured the whole graph anyway, which

happens with probability less than e− log2(N) (Proposition 3.4.5)

2. The cut was below r4, but no Escape happens by the time it takes to

cure half of N
r4 infected nodes, which happens with probability less than

e
− N

e24α2 log2 log(N) (Lemma 3.4.16).

We can therefore obtain a bound on the expected time it takes to cure

the whole graph.

Theorem 3.4.17. In the Blind Curing setting, curing a complete binary

tree takes Ω
(
elog2(N)

)
time in expectation with any budget polynomial in the

CutWidth. Therefore, no polynomial expected time curing strategy exists for

budget r = O(Wα) = O(logα(N)), for all α constant.

Proof. Let CureLastNodes be the event that we are in case (1) or (2) de-

scribed above. By union bound:

P (CureLastNodes) ≤ e− log2(N) + e
− N

e24α2 log2 log(N)

≤ 2e− log2(N).

We have 1
r
≤ τ

δ
. The number of times we try to cure the last N

r4 is stochastically

bounded below by a geometric variable of parameter P (CureLastNodes). Fol-

lowing Proposition 3.4.10, curing N
2r4 lasts at least N

2r4 · 1
δ

time steps, so N
2r4 · τδ

time. Therefore, the expectation of the length of the curing process is the

number of times we try to cure the last infected nodes, multiplied by the time

it takes to cure them.

44

E(Length) ≥ 1

P (CureLastNodes)︸ ︷︷ ︸
expected number
of times we try

to cure N
r4

nodes

· N

2r4δ︸︷︷︸
minimal number of

time steps to

cure N
r4

nodes

· τ︸︷︷︸
size of a
time step

≥ elog2(N)

2
· N

2r4
· 1

r
= Ω

(
elog2(N)

)
.

Hence, it is not curable in polynomial time for budget r = O(Wα) = O(logα(N)),

for all α constant.

3.5 Proof for Partial Information

Definition 3.5.1. We call sample the information given by one node at a

given time step (i.e., whether a flag was raised or not). We call an infected-

sample a sample from an infected node.

When an Escape happens, we show that with constant probability, not

too many infected-samples are produced. In particular, by the time reinfect-

ing N
r4 new nodes becomes inevitable with constant probability, not enough

infected-samples are produced to determine if one of the minimal trees’ nodes

is infected with better than constant error probability. In other words, no

strategy can utilize the information available without making mistakes a con-

stant fraction Pconfuse of the time.

If we cannot recognize that an infection has happened before it is too

late to prevent it, everything is as if we were in the Blind Curing model. We

can therefore extend the results from the previous section.

45

3.5.1 Quantity of information available before the cut reaches 3r

If we reuse the terms introduced in Section 3.4.3, the Escapes we con-

sider are composed of four phases:

1. reaching the root

2. reaching the root of a minimal tree. There are r possible such minimal

trees.

3. infecting 3r nodes in this minimal tree

4. spreading the infection from 3r to N
r4 nodes

Since the spreading phase (4) happens with constant probability even in the

Complete Information setting, we focus on the number of samples created by

the first three phases. We focus in particular on the number of samples created

by phase (3) in Lemma 3.5.1. We show in the proof of Lemma 3.5.2 that the

number of samples produced by phases (1) and (2) is negligible compared to

the number of samples produced by phase (3). To make sure that no other

infected-samples can be gathered, we forbid infections from happening outside

of an Escape.

Let us notice that every time a new infection takes place, the cut in-

creases by 1 (every new node infected gives access to 2 new nodes, but the

edge leading to it is not part of the cut any longer).

The next lemma says that in the event of an infection in a minimal

tree, it is likely that the number of infected-samples we obtain is small.

46

Lemma 3.5.1. In the event that the root of the minimal tree becomes infected,

then conditioned on the event that 3r new nodes of this minimal tree become

infected, we gather at most 6r
τ

samples from the newly infected nodes, with

probability at least 1
2
.

Proof. Let Nsamples be the number of samples produced by infected nodes from

the time one node was infected to the moment the 3rth node was infected. The

time to infect one more node when i nodes are infected is given by a geometric

variable Geo(i, µ) of parameter 1 − (1 − µ)i. Therefore, the jth node to be

infected produces
∑3r−1

i=j Geo(i, µ) samples. Thus, conditioned on the event

that 3r nodes become infected:

Nsamples =
3r−1∑
j=1

3r−1∑
i=j

Geo(i, µ) =
3r−1∑
j=1

j ·Geo(j, µ).

Therefore, again conditioned on 3r nodes becoming infected, the expected

number of samples is:

E(Nsamples | 3r infected) =
3r−1∑
j=1

j · E(Geo(j, µ)) =
3r−1∑
j=1

j · 1

1− (1− µ)j

=τ→0

3r−1∑
j=1

j · 1

jτ
≤τ→0

3r

τ
.

We conclude by using Markov’s Inequality.

We now count the number of samples available from phases (1), (2) and

(3) of an Escape.

47

Lemma 3.5.2. Conditioned on the event that an Escape happened, we gather

at most 6r
τ

infected-samples from phase (3), and 360 log2(r)
τ

infected-samples from

phases (1) and (2), with probability at least 1
4
.

Proof. Using Proposition 3.4.9, there are at most 9 log(r) nodes from one in-

fected node to the root. Using Proposition 3.4.12, the minimal tree is at dis-

tance 3 log(r) from the root. We then need 3r additional infections to get to a

point where the infection is unstoppable (Proposition 3.4.14). Using Markov’s

Inequality, we can infect these 9 log(r) + 3 log(r) = 12 log(r) nodes in 24 log(r)
τ

time steps with probability 1
2
. Using standard concentration inequalities, we

can infect the 3r nodes in 2 log(3r)
τ

≤ 6 log(r)
τ

time steps with probability 1
2
.

Therefore, we can infect all these nodes in 30 log(r)
τ

time steps with probability

1
4
, which gives at most 30 log(r)

τ
· 12 log(r) samples for the first 12 log(r) nodes,

and 2 · 3r
τ

= 6r
τ

samples for the last 3r nodes, which concludes the proof.

Conditioned on reaching a cut of 3r in a minimal tree in less than

30 log(r)
τ

time steps, we now bound the probability of not infecting any nodes

which are not part of the Escape. This ensures that the only infected samples

we could get come from the nodes in the Escape.

Proposition 3.5.3. Conditioned on reaching a cut of 3r in a minimal tree in

less than 30 log(r)
τ

time steps, the probability PNoOtherInfections of not infecting any

nodes outside of the Escape is bounded by:

PNoOtherInfections ≤ e−
360 log2(r)µ

τ ≤τ→0 e
−360 log2(r).

48

Proof. The proof is similar to the other calculations so far.

3.5.2 Distinguishing between infected and not infected

The proof relies on this idea: any strategy attempting to prevent an

Escape needs to shift its budget towards the minimal tree in which the infec-

tion is progressing. For this to happen, it is necessary to realize that one of the

minimal trees is threatened. Determining which one amounts to distinguishing

between the following hypotheses:

• H0: In the null hypothesis, none of the r minimal trees have any infected

nodes.

• H1: One of the r minimal trees has at least one infected node, while the

others do not.

We use the results in Lemma 3.5.4 to show that there are not enough

infected-samples created by nodes on the path from the node close to the root

to the root of a minimal tree to realize that even one node is infected. This

implies that the nodes from phase (1) and (2) cannot help detect a threat to a

minimal tree. Lemma 3.5.4 is also used to show that we do not gather enough

infected-samples from phase (3) to distinguish between H0 and H1 defined

above, which means we cannot know if there is at least one infected node in

one minimal tree.

Thus, we combine all these results to calculate P(NoEscapePI), the

probability that an Escape happens, that not too many samples are produced

49

during this Escape, that no other nodes are infected outside of the Escape,

that the samples from phase (1) and (2) do not allow the identification of the

infected minimal tree, and that the samples from phase (3) are not enough to

reveal whether or not one minimal tree is indeed infected.

We finally use these results to extend the Blind Curing theorem to the

Partial Information setting (Theorem 3.5.7).

Lemma 3.5.4. 1. We need Ω

(
log(1

ε)
D(p||q)

)
samples to decide if a node is in-

fected or not with probability at least Ω (1− ε).

2. We need Ω

(
log(1

ε)
√

log(r)

D(p||q)

)
samples to distinguish between hypothesis H0

and H1, and detect if one minimal tree has at least one node infected

among r minimal trees.

Proof. 1. Using Sanov’s Theorem [70], following the proof in Proposition

5.6 of [56], we know that we need Ω
(

1
D(p||q)

)
samples to distinguish

between two coins of parameters p and q with probability Ω(1). We can

boost this probability to show that we need Ω

(
log(1

ε)
D(p||q)

)
to distinguish

between p and q with probability Ω (1− ε).

2. This follows by considering the maximum of r B(n, q) binomial random

variables. Using a Gaussian approximation to the binomial, and the fact

that the maximum of r standard Gaussian random variables is
√

2 log(r),

we obtain the desired result.

50

Corollary 3.5.5. The probability Pconfuse of not being able to detect which

minimal tree is infected during phase (3) is bounded away from 0.

In particular, we have:

Pconfuse =N�1 Ω

(
e
−D(p||q)

τ
· r√

log(r)

)
.

Proof. We separate the samples in two groups:

• The sample from phase (1) and (2) are used to detect if one node was

infected on the path from the node close to the root to the root of

a minimal tree. We get 360 log2(r)
τ

=
log

(
e
D(p||q)
τ ·360 log2(r)

)
D(p||q) samples from

phase (1) and (2) (Lemma 3.5.1), so the probability of confusing coins of

parameters p and q is at least Ω
(
e−

D(p||q)
τ
·360 log2(r)

)
according to Lemma

3.5.4.

• The samples from all phases are used to distinguish between H0 and H1.

We get 6r
τ

=

log

eD(p||q)
τ · 6r√

log(r)

√log(r)

D(p||q) samples from phase (1) and (2)

(Lemma 3.5.1), so the probability of confusing coins of parameters p and

q is at least Ω

(
e
−D(p||q)

τ
· 6r√

log(r)

)
according to Lemma 3.5.4.

Combining the two, the probability of not detecting the threat is at least:

Pconfuse = Ω

(
e
−D(p||q)

τ
·(6r√

log(r)
+360 log2(r))

)
=N�1 Ω

(
e
−D(p||q)

τ
· r√

log(r)

)
.

We now consider the time needed to cure the graph for Pconfuse > 0.

51

Lemma 3.5.6. Let EscapePI be the event that by the time it takes to cure

half of N
r4 infected nodes, an Escape happens but remains undetectable (i.e.,

the samples produced by the newly infected nodes during phases (1), (2), and

(3) are not enough to deduce that there exists an infected minimal tree), and

no node outside of the Escape becomes infected. We provide a bound for

NoEscapePI, the complementary of this event.

P(NoEscapePI) ≤ e
−PNoOtherInfections·Pconfuse·N

e96α2 log2 log(N) .

Proof. Let EscapeOneStepPI be the conjunction of all the following events:

• An Escape happens at a given time step, which happens with probability

at least PEscapeOneStep (Lemma 3.4.15).

• Conditioned on an Escape happening, less than 6r
τ

samples are produced

by the newly infected nodes during phase (3), and less than 360 log2(r)
τ

infected-samples are produced during phase (1)-(2), which happens with

probability at least 1
4

(Lemma 3.5.1).

• Conditioned on an Escape happening in less than 30 log(r)
τ

time steps,

no node outside of the Escape becomes infected, which happens with

probability PNoOtherInfections.

• Conditioned on all the above, the samples from phase (3) are not enough

to reveal whether or not one minimal tree is indeed infected, which hap-

pens with probability Pconfuse.

52

We notice that if we cannot tell whether or not a minimal tree is infected

by the time it takes to reach phase (4) of an Escape, the situation is al-

most equivalent to the Blind Curing model. We can therefore apply exactly

the same reasoning as in Theorem 3.4.17 if we replace P(EscapeOneStep) by

P(EscapeOneStepPI).

P(EscapeOneStepPI) ≥PEscapeOneStep ·
1

4
· PNoOtherInfections · Pconfuse,

Following the exact same reasoning as in Lemma 3.4.15, we get:

P(NoEscapePI) ≤ e
−PNoOtherInfections·Pconfuse·N

e96α2 log2 log(N) .

Theorem 3.5.7. A Partial Information impossibility result

Let D(p||q)
τ

be a measure of the amount of information we get by time step. If:

D(p||q)
τ

≤ O

((
log

(
N

e456α2 log2 log(N)

)
− 2 log log(N)

) √
log(r)

r

)

= O

(
log(N)

√
log(r)

r

)
,

we cannot cure the complete binary tree in polynomial expected time with budget

r = Wα, for any α constant.

Proof. From Lemma 3.5.6, we know:

P(NoEscapePI) ≤ e
−Pconfuse·PNoOtherInfections·N

e96α2 log2 log(N) .

From Corollary 3.5.5, we know:

Pconfuse ≥ Ω

(
e
−D(p||q)

τ
· r√

log(r)

)
.

53

P(NoEscapePI) ≥ e
−PNoOtherInfections·Pconfuse·N

e96α2 log2 log(N)

≥ e
−O

 e
−D(p||q)

τ · r
log(r) ·N

e96α2 log2 log(N)+12 log2(r)



≥ e

−O

 e

−·
(

log

(
N

e456α2 log2 log(N)

)
−2 log log(N)

)
· r
√

log(r)√
log(r)r ·N

e456α2 log2 log(N)



≥ e−O(log2(N)).

Following the same reasoning as in Theorem 3.4.17, we conclude it takes at

least e
Ω(log2(N))·N
2 log4α(N)

≥ eΩ(log2(N)) time to cure the graph, so more than any poly-

nomial expected time.

In particular, this holds for α = 1. If we remember that the CutWidth

of a tree is smaller than log(N) , we obtain:

Corollary 3.5.8. If the quantity of information by time step measured by

D(p||q)
τ

is constant, no strategy can achieve polynomial time curing for the com-

plete binary tree in the Partial Information setting, for budget O(log(N)).

3.6 Conclusion

We have shown that unless we know the state of each node with perfect

accuracy, and instantaneously, then the CutWidth of the graph is no longer

the sole quantity which determines the budget required to cure an infection

in polynomial time. Practically, this means that quickly obtaining signature-

based diagnostic tools, even if expensive, is critical. On the theoretical side,

54

our work shows that the interplay between stochastic processes and combina-

torial properties of graphs needs to be better understood. Indeed, resolving

the gap between our upper and lower bounds as a function of general topo-

logical graph quantities remains an important question. Similarly, extending

our understanding of upper and lower bounds to other infection models is im-

portant. This work demonstrates the important connection between budget

for control, and budget for estimation, as for many interesting problems, these

two are inextricably intertwined.

55

Chapter 4

Uncertainty about When Nodes Are Infected

4.1 Introduction

After focusing on curing in the previous chapter, we turn to another

important problem in the field of epidemics: the problem of graph inference

from epidemic cascades1. If curing relies on the knowledge of who exactly is

infected, in the case of graph inference, the crucial information is the time

of infection, as this is what state-of-the-art algorithms use to reconstruct the

graph. once again, as the COVID-19 pandemic has demonstrated, we rarely

have access to the real time of infection, as individuals show symptoms af-

ter a non-deterministic time, and then opt to get tested after another non-

deterministic time. Previous algorithms cannot handle such a noise in the

time of infection. We therefore develop completely new algorithms to tackle

this problem, in two settings: when we only know who was infected at the

end of the cascade, and when we know the noisy times of infection and some

parameter of the noise distribution. Our algorithms are sample-optimal up to

log factors.

1This chapter covers the material prebiously published in Learning graphs from noisy epi-
demic cascades. My main contributions were defining the setting, and solving the theoretical
challenges.

56

4.1.1 Relevant work

The early works on this subject proposed a few heuristics and experi-

mentally proved their effectiveness [35, 43]. Netrapalli et al. [63] established

the first theoretical guarantees for this problem for discrete-time infections.

They proved one can recover the edges of any graph with correlation decay,

with access to the times of infection for multiple cascades spreading on the

graph. They introduced a likelihood, proved it decouples into convex sub-

problems, and demonstrated that the edges of the graph can therefore be

obtained efficiently. They also proved a sample complexity lower bound and

showed their method is within a log factor of it. Abrahao et al. [2] also

introduced a method of solving this problem, this time for a more realistic,

continuous-time infection model, through learning only the first edge of each

cascade. Zarezade et al. [87] proposed a first experimental attempt to tackle

the case of correlated cascades using Hawkes processes. Khim et al. [47] ex-

tended the theoretical results to the case where the the cascades spreading

on the graph are not independent, which required completely new machinery

involving martingales and weighted Pólya urns.

All the results above assume we have perfect knowledge of the proper-

ties of the spread we use to reconstruct the graph. For most of the literature,

those are the times of infection for all nodes for each cascade. This assumption

may hold for online epidemics, as information is usually dated (for instance,

posts or retweets on social networks have time stamps). For human networks,

however, this assumption is often unrealistic: official diagnosis (and hence

57

recording by any tracking entity such as the CDC) may come days, weeks, or

in important examples such as HIV, years after the actual moment of infec-

tion. Moreover, this can be highly variable from person to person, hence the

infector is often diagnosed after the infectee. Similar issues arise with biologi-

cal networks: we only know the expression of a gene when a measure is taken,

which can happen after a typically arbitrary delay.

We therefore develop a method for learning the graph of epidemics with

noisy times of infection. We demonstrate that past approaches are unusable,

due to the fact that even small levels of noise are typically enough to cause

order-of-diagnosis to differ from order-of-infection. We develop new techniques

to deal with this setting, and prove our algorithm can reliably learn the edges

of a tree in the limited-noise setting, for any noise distribution. We also

show we can learn the structure of any bounded degree graph from a very

weak observation model, in an sample-optimal fashion (up to log-factors). We

finally provide an algorithm which learns the weights of any bounded-degree

graph in the limited-noise setting.

4.1.2 Model

We observe epidemics spreading on a graph, and aim to reconstruct the

graph structure from noisy estimates of the times of infection. In this section,

we specify the exact propagation model, the noisy observation model, and the

two learning tasks this work tackles.

Propagation model: We consider a particular variant of the inde-

58

Table 4.1: Notations

G = (V,E) Graph G, V set of nodes, E set of edges.
N Number of nodes in the graph.
Tmi Random variable for the actual time of infection of

node i during cascade m.
nmi Noise of node i during cascade m.

T
′m
i = Tmi + nmi Random variable for the noisy time of infection of

node i during cascade m.
Imi Random boolean variable: I

′m
i = True⇔ node i

was infected during cascade m
pij Weight of edge (i, j), corresponding to the probability

that i infects j.

(a) At t=0, node
1 is the source,
in the infected
state. It can pos-
sibly infect node
2, 3 and 4, all
in the susceptible
state.

(b) At t=1, nodes
3 and 4 are in-
fected. Node
3 can infect sus-
ceptible node 5.
Node 4 can infect
susceptible node
2 but not re-
moved node 1.

(c) At t=2, node
2 is infected. All
its neighbors are
in the removed
state, so new
node can be
infected.

(d) At t=3, the
cascade stops,
even if node 5
remains in the
susceptible state.

Figure 4.1: A complete cascade.

59

pendent cascade model, close to the one-step model introduced by [34] and

further studied by [45]. The epidemic spreads in discrete time on a weighted

directed graph G = (V,E), where parents can infect their children with proba-

bility equal to the weight of the edge between them, but children cannot infect

their parents. We allow bidirectional edges: it is possible that both (i, j) ∈ E

and (j, i) ∈ E, possibly with different weights. For each edge (i, j) ∈ E, the

corresponding weight pij is such that 0 < pmin ≤ pij ≤ pmax < 1.

This process is an instance of a Susceptible → Infected → Removed

(SIR) process. Each node starts out in the susceptible state. As in [2], each

cascade m starts at a positive time 2 on a unique node source node, picked

uniformly among the nodes of the graph. Once the source becomes infected, it

is removed from the graph, and if it has children, each is infected at the next

time step independently according to a probability specified by the weight of

the edge shared with the source.

The process ends when there are no newly infected nodes (either be-

cause no infection happened during the previous time step, in which case

some nodes may never be infected, or because all the nodes of the graph are

removed). One realization of this process from start to finish is called a cas-

cade. If two nodes are infected during the same cascade, we say that they are

co-infected for this cascade. This process is illustrated in Figure 4.1.

2Most of the literature considers the initial time of infection to be 0. This is because
when we have access to the exact times of infection, we can make this assumption without
loss of generality. In our case, it would imply we know exactly when an outbreak started,
which is usually not the case.

60

Observation model: Let Tmi be a random variable corresponding to

the time of infection of node i during cascade m, and let tmi be its realization

(if i stays in the susceptible state during cascade m, we have tmi = ∞). We

introduce three observation models.

In the no-noise setting, we have access to the exact times of infection

Tmi .

In the limited-noise setting, we never get to observe the exact times

of infection Tmi , but only a noisy version T
′m
i = Tmi + nmi (with realization

t
′m
i), where all the nmi are i.i.d., and represent the noise added to the Tmi . We

assume nmi follows a known distribution D. The only restriction we put on D

is that it cannot have infinite value (i.e., t
′m
i = ∞ ⇔ tmi = ∞, and we know

for a fact when nodes have been infected or not).

In the extreme-noise setting, we take the previous setting to the

extreme, and we assume that instead of having access to the noisy times of

infection T
′m
i , we only have access to the infection status of the nodes Imi .

We know Imi = True if i was infected during cascade m, and Imi = False

otherwise. Note that T
′m
i < ∞ ⇔ Imi = True, so we can always deduce the

infection status from the noisy times of infection. However, we cannot guess

the noisy times of infection from the infection status: the (noisy) times of

infections contain strictly more information than the infection status.

For these three settings, we call a sample the vector of all observations

for the cascade m. In the no-noise setting, this is the extended-integer vec-

61

tor {tmi }i∈V . In the limited-noise setting, this is the extended-integer vector

{t′mi }i∈V . In the extreme-noise setting, this is the boolean vector corresponding

to the realization of {Imi }i∈V . We also use the notation T ′ = {T ′mi }m=1...M
i∈V (re-

spectively t′ = {t′mi }m=1...M
i∈V) for the matrix representing the random variable

(respectively the realizations) of all the samples.

Learning tasks: We focus on two different learning tasks. When we

learn the structure of a graph, it means that for any two nodes i and j,

we can decide whether or not there exists an edge between these two nodes

(whatever its direction). When we learn the weights of the graph, it means

that for every two nodes i and j, we learn the exact value3 of both pij and pji

up to precision ε.

4.1.3 Why is it a hard problem?

4.1.3.1 Counting approaches

Most approaches in the no-noise setting relate to counting. In our

setting, for instance, a natural (and consistent) estimator for pij is to count

how often an infection occurred along an edge, and divide it by how often such

an infection could have happened:

p̂ij =
Number of times j becomes infected one time step after i

Number of times i was infected before j
.

In the no-noise setting, j could only have been infected by a node

signaling exactly one time step before j. However, in the limited-noise setting,

3When (i, j) /∈ E, we have pij = 0.

62

Figure 4.2: Possible scenarios which could have led to T
′
i = 2, T

′
j = 3 and

T
′

k = 4. In the no-noise setting, this implies Ti = 2, Tj = 3, Tk = 4, and there
is only one possible infection pattern.

j signaling its infection one time step after i could stem from a variety of

scenarios:

• i could have indeed infected j: cases a), b) and c) of Figure ?? above.

• j could have infected i, but the noise flipped the order of signaling: cases

d), e) and f).

• No infection happen between i and j, and the probability of infectin

depends mainly on another node k: cases g), e) and f). This could

happen for any other node k in the graph.

The natural estimator introduced earlier is therefore not consistent anymore;

instead, it tends to a quantity which depends on pij, but also pji, and pik, pki, pjk, pkj

as well, for all the other nodes k in the graph. By counting the number of

times j became infected one time step after i, we are not counting the number

of infections along the edge (i, j) anymore, but instead a mixture of all the

scenarios described above, which not only include the cases where j infected i,

but also events in which the cascade spread through another node k, and the

63

(a)

T n
i 0 2
j 1 2
k 2 2

(b)

T n
i 0 2
j 1 2
k 1 3

(c)

T n
i 1 1
j 2 1
k 0 4

(d)

T n
i 1 1
j 0 3
k 2 2

(e)

T n
i 1 1
j 0 3
k 1 3

(f)

T n
i 2 0
j 1 2
k 0 4

(g)

T n
i 0 2
j 2 1
k 1 3

(h)

T n
i 1 1
j 1 2
k 0 4

(i)

T n
i 2 0
j 0 3
k 1 3

Figure 4.3: Possible scenarios which could have led to T
′
i = 2, T

′
j = 3 and T

′

k =

4. We have T
′

l = Tl + nl. In the limited-noise setting, there are nine possible
infection patterns (many more scenarios with the same infection pattern, but
different noise values, are not shown).

64

edge (i, j) was irrelevant to the process. Using this estimator, or any obvious

(to us) extension of it, would not only imply learning the wrong weights for the

edges, but also learning edges when there are no edges. Our first contribution

is therefore to design a new set of estimators, from which we can deduce the

value of pij (Sections 4.2.3 and 4.3.2).

Adding noise in the time of infection not only reverses the cascade

chronology, it also exponentially increased the number of possible infection

patterns that could have happened. Bounding the realm of possibilities is

therefore our second step towards solving the problem (Section 4.2.1).

4.1.3.2 Max-likelihood approaches

Another common approach is to use likelihood-based methods. For

instance, in [63], the authors develop a max-likelihood-based approach to learn

the edges of the graph. They prove the log-likelihood has desirable properties:

it decouples into only one local problem for each node, and this local problem

is convex (up to the change of variable θij = − log(1− pij)):

L(T, Pij) = log


1

N
·
∏

1≤i≤N

 ∏
j;tj<ti−1

(1− pji)


︸ ︷︷ ︸
Probability that i was not

infected before t′i.

·

1−
∏

j;tj=ti−1

(1− pji)


︸ ︷︷ ︸

Probability that i was
infected at t′i.


L(T, Pij) = log

(
1

N

)
+

N∑
i=1

∑
j;tj<ti−1

log(1− pji) +
∑

j;t′j=t
′
i−1

log(1− pji)

65

In our setting, the log-likelihood has none of these properties. It is not

convex, and it is unclear any method other than brute force could find its

maximum. Moreover, it does not decouple anymore, and even computing the

log-likelihood itself takes exponential time.

L(T, Pij) = log


1

N
·

∑
(t1,...,tN)≤(t′1−1,...,t′N−1)︸ ︷︷ ︸

This is the root
of the difficulty.

·
∏

1≤i≤N

(
n(t′i − ti)

)
︸ ︷︷ ︸

Noise at node
i is t′i − ti.

·

 ∏
j;tj<ti−1

(1− pji)


︸ ︷︷ ︸
Probability that i was not

infected before t′i.

·

1−
∏

j;tj=ti−1

(1− pji)


︸ ︷︷ ︸

Probability that i was
infected at t′i.


When dealing with hidden variables, a common technique would be to

use the Expectation-Maximization algorithm [18]. However, in our setting,

the number of hidden states is
N∏
i=1

t′i, which can be as large as (N − 1)N .

This prohibits any realistic use of the Expectation-Maximization algorithm

for networks with more than twelve nodes. Moreover, except for the recent

contributions [51], very little is known about the theoretical convergence of

the Expectation-Maximization algorithm.

66

4.1.4 Contributions

The contributions of this chapter are:

• To the best of our knowledge, we are the first to tackle the problem of

learning the edges of a graph from noisy times of infection, a simple but

natural extension of a well-known problem.

• We provide the first efficient algorithm for learning the structure and

weights of a bidirectional tree in this setting. We also establish a tree-

specific lower bound which shows that our algorithm is sample-optimal

(up to log-factors) for learning the structure of the tree (Section 4.2).

• We prove it is possible to learn the structure of any bounded-degree graph

in the extreme setting for which we only have access to the infection

status (i.e., whether or not a node was infected). Moreover, we can

do so with almost optimal sample complexity, according to the bound

established in [63].

• We provide polynomial algorithms for learning the weights of bounded

degree graphs.

• Finally, we extend the results from bounded-degree graphs to general

graphs. This proves the problem is solvable under any noise distribution,

although the exponential sample complexity and running time prohibits

any use of this algorithm in practice (Section 4.3.2).

67

4.2 Learning bidirectional trees

The bidirectional tree is the simplest example which illustrates some

of the difficulties of the noisy setting. Indeed, for a directed tree, the true

sequence of infections can be reconstructed, and we can use techniques from the

no-noise setting. For a bidirectional tree, those techniques cannot be extended.

However, the uniqueness of paths in the bidirectional tree still makes this

problem considerably easier than the general setting. We therefore start by

presenting a solution for the bidirectional tree. The key ideas here generalize

to the neighborhood-based decomposition we introduce below, which forms

our key conceptual approach for the general problem.

This section contains three contributions. First, we show how to learn

the structure of a tree using only the infection status, i.e., what we call the

extreme-noise setting (Section 4.2.1). For each cascade, we only know which

nodes were infected. We show this contains enough information to learn the

structure of bidirectional tree. Second, we establish a lower bound for the

no-noise setting, and show our algorithm has the same dependency in the

number of nodes N as this lower bound (up to log-factors). In other words,

for the task of learning the structure of any tree, an optimal algorithm in the

no-noise setting would need as many cascades as our algorithm needs in the

extreme-noise setting (up to log-factors).

Finally, we show how we can leverage this learned structure to learn

the weights of the tree, this time when we have noisy access to the times of

infection, i.e., the limited-noise setting (Section 4.2.3). We provide sample

68

complexity for this task.

4.2.1 Tree structure

As illustrated in Section 4.1.3, the number of edges that could exist is

much higher in the limited-noise setting than the number of actual edges in

the tree. Our first key contribution is therefore to introduce a new estimator,

ĥij, which keeps track of the fraction of cascades for which i and j were both

infected. This estimator can therefore be computed only with the infection

status in the extreme-noise setting. Using this estimator, we show that in the

specific case where the graph is a tree, we learn the structure of this tree, i.e.

whether or not both pij = pij = 0.

Our algorithm for learning the edges of the tree relies on one central

observation: hi,j achieves a kind of local maximum if there is an edge between

i and j (Lemma 4.2.1). This observation relies heavily on the fact that there

is uniqueness of paths on a tree. Let us now dive into the proof.

Definition 4.2.1. Let ĥi,j be the fraction of cascades in which both i and j

became infected. We have:

ĥi,j →M→∞ P(Imi & Imj) := hi,j.

We now show that the limit hi,j of the estimator ĥi,j satisfies a local

maximum property on the edges of the tree:

Lemma 4.2.1. If i and j are not neighbors, let (u0, u1, . . . , ud) be the path

69

between them, with u0 = i, ud = j, and d > 1. Then:

∀r ∈ {0, d− 1}, hi,j < hur,ur+1.

Proof. We consider the case in which both i and j have been infected. There

is a unique source of infection and a unique path between i and j. Therefore,

all the nodes on the path from i to j must have been infected as well. In par-

ticular, both ur and ur+1 were infected. This shows Imi & Imj ⇒ Imur & Imur+1
,

so P(Imi & Imj) ≤ P(Imur & Imur+1
), and therefore hi,j ≤ hur,ur+1 .

What’s more, every time ur and ur+1 became infected, at least one

more infection along an edge must have occurred in order for j to become

infected as well. This occurred with probability at most pmax < 1. Therefore,

hi,j = P(Imi & Imj) ≤ pmax · P(Imur & Imur+1
) = pmax · hur,ur+1 . We conclude

hi,j < hur,ur+1 .

This simple lemma allows us to design Algorithm 1. Indeed, suppose

we have access to all the limits hi,j. By ordering them in decreasing order, we

can deduce the structure of the tree by greedily adding every edge unless it

forms a cycle4.

4This algorithm is very similar in spirit to Kruskal’s algorithm for finding the maximum
spanning tree []

70

Algorithm 1 Learn the undirected edges of the tree.

1: procedure LearnTree({hi,j}i,j∈V) . hi,j limit of ĥi,j.
2: pairs h edge← [(hi,j, (i, j)) for 1 ≤ i ≤ j ≤ nnodes]
3: Sort(pairs h edge) by decreasing order
4: edges tree← []
5: for (∼ , potential edge) ∈ pairs h edge do
6: if Adding potential edge to edges tree does not create a cycle then
7: Add potential edge to edges tree

return edges tree

We show that if we have access to the limits hi,j of the estimators ĥi,j,

the algorithm above correctly find the structure of the tree.

Lemma 4.2.2. Algorithm 1 correctly finds all the N − 1 pairs (i, j) such that

there exists at least one directed edge between i and j.

Proof. We show that in the for-loop at line 5, we add an edge to edges tree

if and only if this edge was a real edge in the original tree. We prove it by

induction on the elements of the sorted list pairs h edge.

When no element has been selected, the proposition is trivially true.

Suppose now that t elements of pairs h edge have been examined so far. Let

(∼, (i, j)) be the t+ 1th element. Two cases arise:

1. i and j are not neighbors. Let (u0, . . . , ud) be the path between them,

with u0 = i and ud = j. In this case, using Lemma 4.2.1, ∀r, hur,ur+1 >

hi,j. In other words, all the pairs (ur, ur+1) have already been considered

by the algorithm. By induction, we have kept all of them in edges tree.

71

Therefore, adding the pair (i, j) would form a cycle. This pair is not

kept in edges tree, which is what we wanted since it is not an edge in

the original tree.

2. i and j are neighbors. Suppose that adding this pair forms a cycle. Then

there is a sequence (v0 = i, . . . , vd = j) of nodes such that hvk,vk+1
were

all bigger than hi,j, and the pairs (vk, vk+1) were kept by the algorithm

for all k. However, by uniqueness of paths in a tree, there exists a pair

(va, va+1) such that the path connecting va and va+1 in the original tree

goes through (i, j). Using Lemma 4.2.1, this means hi,j > hva,va+1 , which

is a contradiction. Therefore, adding this pair in edges tree does not

form a cycle. This pair is kept in edges tree.

Therefore, this algorithm keeps all the edges, and only the edges of the tree,

so it recovers the tree structure.

We next quantify how many cascades M are needed for Algorithm 1 to

be correct if we replace the {hi,j}i,j∈V by their estimates {ĥi,j}i,j∈V . We note

that we do not require ĥi,j to be close to their limit, but only need the order

of the ĥi,j to be the same as the order of the hi,j. We identify events which

guarantee that the order is the same (Corollary 4.2.4):

Definition 4.2.2. Let H3 := {(i, j, k) ∈ {1, . . . , N}3, pij + pji > 0 & pjk +

pjk > 0} be the set of triplets of nodes such that at least one directed edge

72

exists between the first and the second node, as well as between the second

and the third node.

Proposition 4.2.3. If:

∀(i, j, k) ∈ H3, ĥi,j > ĥi,k and ĥj,k > ĥi,k,

then for all paths (u0, . . . , ud) in the tree, with d > 1, we have:

∀r ∈ {0, . . . , d− 1}, ĥur,ur+1 > ĥu0,ud .

Proof. For r ∈ {0, . . . , d− 2}, we have by hypothesis ĥur,ur+1 > ĥur,ur+2 . Now,

we recall that ĥu0,ud is the number of cascades for which both u0 and ud

were infected. By uniqueness of paths in the tree, every time both u0 and ud

were infected, both ur and ur+2 must have been infected as well. This shows

that ĥu0,ud ≤ ĥur,ur+2 . Notice that this is a deterministic property, not an

asymptotic property. Therefore, ĥur,ur+1 > ĥur,ur+2 ≥ ĥu0,ud .

For r = d − 1, we follow an identical reasoning, but with ĥur,ur+1 >

ĥur−1,ur+1 .

Corollary 4.2.4. If:

∀(i, j, k) ∈ H3, ĥi,j > ĥi,k and ĥj,k > ĥi,k,

then the correctness of Algorithm 1 is preserved when given ĥ as input instead

of h.

In other words, Algorithm 1 outputs a correct set of undirected edges

with finite samples.

73

Proof. According to Proposition 4.2.3, for all paths (u0, . . . , ud) in the tree,

with d > 1, we have that ∀r ∈ {0, . . . , d − 1}, ĥur,ur+1 > ĥu0,ud . As shown

in the proof of Lemma 4.2.2, this is the only property of the input needed in

order to yield the correct output.

Proposition 4.2.5. With M =
N(log(1

δ)+2 log(N))
pmin(1−pmax)

cascades, with probability at

least 1− δ, we have:

∀(i, j, k) ∈ H3, ĥi,j > ĥi,k and ĥj,k > ĥi,k.

Proof. Let us consider one triplet (i, j, k) in H3. We recall that ĥi,k is the

number of cascades for which both i and k were infected. Since the only path

from i to k is through j, we always have that ĥi,j ≥ ĥi,k and ĥj,k ≥ ĥi,k. We

notice that to obtain ĥi,j > ĥi,k, we only need one cascade for which both i

and j got infected, but not k. We lower bound the probability Ptriplet identified

of this cascade happening. For each cascade m, we have:

Ptriplet identified = P(Imi & Imj & Not(Imk))

≥ P(i was a source, i infected j, j did not infect k)

+ P(j was a source, j infected i, j did not infect k)

≥ 1

N
· pij · (1− pjk) +

1

N
· pji · (1− pjk)

≥ 1

N
pmin(1− pmax).

The probability that this event never occurs during the M cascades is upper

74

bounded by:

P(ĥi,j = ĥi,k) ≤
(

1− 1

N
pmin(1− pmax)

)M
≤ e−

M
N
pmin(1−pmax)

≤ δ

N2
.

Now, there are N − 1 edges in a tree, therefore |H3| ≤ (N − 1)2 < N2. By

union bound:

P

 ⋃
(i,j,k)∈H3

ĥi,j = ĥi,k

 ≤ ∑
(i,j,k)∈H3)

P(ĥi,j = ĥi,k)

< N2 · δ
N2

≤ δ.

Notice that H3 contains both (i, j, k) and (k, j, i). We have therefore proven

that with probability at least 1 − δ, when considering M =
N(log(1

δ)+2 log(N))
pmin(1−pmax)

cascades, we have ∀(i, j, k) ∈ H3, ĥi,j > ĥi,k and ĥj,k > ĥi,k.

Putting together Proposition 4.2.5 and Corollary 4.2.4, we obtain our

first theorem for learning the undirected edges with finite samples:

Theorem 4.2.6. With M =
N(log(1

δ)+2 log(N))
pmin(1−pmax)

cascades, with probability at

least 1−δ, we can learn the structure of a any bidirectional tree in the extreme-

noise setting, i.e., when we only have access to the infection status of the nodes.

75

4.2.2 Lower bound

In this section, we prove a lower bound for trees in the no-noise setting.

With very minor adjustments, we adapt the lower bound of [63]. Since for a

general tree, the max degree can be up to N − 1, we design a lower bound

which is independent from the max-degree. Let G be a tree drawn uniformly

from G, the set of all possible trees on N nodes, and Ĝ be the reconstructed

graph from the times of infection. G ↔ T ↔ Ĝ therefore forms a Markov

chain. We have:

H(G) = I(G; Ĝ) +H(G|Ĝ)

(data processing inequality) ≤ I(G;T) +H(G|Ĝ)

(independent cascades) ≤M · I(T 1;T
′1) +H(G|Ĝ)

(I(X, Y) ≤ H(X)) = M ·
N∑
i=1

H(T 1
i) +H(G|Ĝ)

(Fano’s inequality) ≤M ·
N∑
i=1

H(T 1
i) + (1 + Pe log(|G|))

Since G is drawn uniformly from G, H(G) = log(|G|). There are NN−2

trees on N nodes, according to Cayley’s formula [11], so H(G) = (N − 2) ·

log(N).

In conclusion:

M ≥ (1− Pe)(N − 2) log(N)− 1

N ·H(T 1
i)

= Ω

(
log(N)

H(T 1
i)

)
Using the same kind of techniques as in [63], we can assume H(T 1

i) ∼
log(N)
N

. Therefore:

76

Theorem 4.2.7. In the no-noise setting, we need M = Ω (N) cascades to

learn the tree structure.

In our extreme-noise setting, when we have only access to the infection

status of the nodes, we can learn the tree structure with the same sample

complexity (up to log-factors) as the no-noise setting!

4.2.3 Tree weights

In this section, we assume we are in the limited-noise setting, and we

have access to the times of infection. We also assume we have already learned

the structure of the tree.

Once we have reduced the set of possible edges by learning the structure

of the bidirectional tree, learning the weights of the edges is still non-trivial.

Indeed, from T
′m
i and T

′m
j , it is still impossible to know whether this sample

is useful for estimating pij (case when i infected j), or whether we should use

this sample for estimating pji instead (case when j infected i). What is more,

we only get one sample per node and per cascade, so it is impossible to know

what really happened during that cascade. However, knowing the distribution

of the noise, it is possible to compute the probability that the noise maintained

the order of infections. Using this information and the reduced set of known

undirected edges, we can compute two sets of N(N−1) estimators, from which

it is possible to infer the weights of all edges in the tree.

We introduce these two sets of N(N−1) estimators, or, in other words,

77

two estimators for each directed edge. These estimators tend to multivariate

polynomials of the weights of most edges of the tree. Thus in general these

polynomials have exponentially many terms; however, when i and j are neigh-

bors, it is possible to express them concisely using a quantity P
Cj
(→ i), which

we define formally below. This succinct representation is the key idea we

exploit to solve the resulting system of equations.

Once we know the structure of the bidirectional tree, we can consider

the four estimators for each undirected edge (two estimators for each directed

edge). They form a system of four equations and four unknowns, which we

solve to obtain the weights of the edges.

Definition 4.2.3. P
Ci
(→ j) is the probability that j became infected before

any node on the path from j to i, including i, became infected.

We now introduce the estimators:

Definition 4.2.4. We introduce 2 sets of N(N − 1) estimators:

f̂i<j = Fraction of infections for which i and j got infected, and i reported before j.

ĝi,Cj = Fraction of infections for which i got infected, but j did not.

By the law of large numbers, as the number of cascades scales, f̂i<j

tends to fi<j and ĝi,Cj to gi,Cj, where

fi<j := P(T
′m
i < T

′m
j <∞),

gi,Cj := P(T
′m
i <∞, T ′mj =∞).

78

We now compute the exact values of these two quantities. Let us assume the

(unique) path between i and j has length d. We call (u0, . . . , ud) the set of

nodes on the path from i to j, with u0 = i and ud = j. We then have:

Lemma 4.2.8. Recall fi<j and gi,Cj are the expectation of the estimators defined

above. We have:

fi<j = P
Cj
(→ i) · pi→j · s−d+1 + P

Ci
(→ j) · pj→i · sd+1

+
d−1∑
l=1

P
Ci,Cj

(→ ul) · pul→i · pul→j · s2l−d+1.

ĝi,Cj = P
Cj
(→ i) · (1− pi→j) +

d−1∑
l=1

P
Ci,Cj

(→ ul) · pul→i · (1− pul→j).

What’s more, when i and j are neighbors (which implies d = 1), the expressions

simplify to:

fi<j = P
Cj
(→ i) · pij · s0 + P

Ci
(→ j) · pji · s2

gi,Cj = P
Cj
(→ i) · (1− pij).

79

Proof.

fi<j = P(T
′m
i < T

′m
j <∞)

= P(i got infected before any nodes on the path from i to j,

then infected j, and the noise did not flip the times of infection)

+ P(j got infected before any nodes on the path from i to j,

then infected i, and the noise flipped the times of infection)

+ P(One node on the path from i to j got infected before i and j,

then infected both i and j, but i reported before j)

= P
Cj
(→ i) · pi→j · s−d+1

+ P
Ci
(→ j) · pj→i · sd+1

+
d−1∑
l=1

P
Ci,Cj

(→ ul) · pul→i · pul→j · s2l−d+1.

This expression is involved in general. However, if i and j are neighbors,

then there are no nodes ul on the path between i and j, other than i and j

themselves. What’s more, pi→j = pij, and d = 1. Therefore:

fi<j = P
Cj
(→ i) · pij · s0 + P

Ci
(→ j) · pji · s2.

80

Let us now focus on gi,Cj:

gi,Cj = P(T
′m
i <∞, T ′mj =∞)

= P(i got infected before any nodes on the path from i to j, but j did not get infected)

+ P(One node on the path from i to j got infected before i and j, then infected i but not j)

= P
Cj
(→ i) · (1− pi→j)

+
d−1∑
l=1

P
Ci,Cj

(→ ul) · pul→i · (1− pul→j).

As before, this expression is complex in general, but simplifies if i and j are

neighbors, in which case:

gi,Cj = P
Cj
(→ i) · (1− pij).

Using the simplified expression only for when i and j are neighbors, we

obtain:

Proposition 4.2.9. If we know (i, j) is an edge in the original tree, then the

probability of infection along this edge is given by:

pij =
fi<j · s0 − fj<i · s2

gi,Cj · (s
2
0 − s2

2) + fi<j · s0 − fj<i · s2

.

Proof. According to Lemma 4.2.8, we had four second-order equations, with 4

unknowns: pij, pji, PCj
(→ i) and P

Ci
(→ j). We solve it, and obtain the wanted

result. See Appendix B.1 for details.

81

Combining all the pieces, we obtain our first theorem for infinite sam-

ples:

Theorem 4.2.10. It is possible to learn the weights of a bidirectional tree in

the limited-noise setting.

Now that we have proven the problem is solvable, we establish the

number of samples needed to learn the weights with the method above.

Lemma 4.2.11. With M = N2

ε2
log
(

6
δ

) ((s20−s22+s0+s2)pmax+s0+s2)
2

(s20−s22)2 samples, with

probability at least 1− δ, we have:

|p̂ij − pij| ≤ ε.

Proof. Using Hoeffding’s inequality:

P(|f̂i<j − fi<j| > ε1) ≤ 2e−2Mε21 ,

P(|f̂j<i − fj<i| > ε1) ≤ 2e−2Mε21 ,

P(|ĝi,Cj − gi,Cj| > ε1) ≤ 2e−2Mε21 .

Choosing M = 1
ε21

log
(

6
δ

)
, we have that with probability at least 1− δ, all the

following hold:

|f̂i<j − fi<j| ≤ ε1,

|f̂j<i − fj<i| ≤ ε1,

|ĝi,Cj − gi,Cj| ≤ ε1.

82

Hence, with probability at least 1− δ, we have (see Appendix B.1 for details):

p̂ij − pij ≤ ε1
(s2

0 − s2
2 + s0 + s2)pmax

gi,Cj · (s
2
0 − s2

2) + fi<j · s0 − fj<i · s2

+ ε1
s0 + s2

gi,Cj · (s
2
0 − s2

2) + fi<j · s0 − fj<i · s2

+ o(ε1).

We use the results from Lemma 4.2.8 to bound the denominator by
s20−s22
N

. In

the end, we obtain:

|p̂ij − pij| ≤ ε1N
(s2

0 − s2
2 + s0 + s2)pmax + s0 + s2

s2
0 − s2

2

+ o(ε1).

We choose ε1 = ε
N

s20−s22
(s20−s22+s0+s2)pmax+s0+s2

. Therefore:

With M = N2

ε2
log
(

6
δ

) ((s20−s22+s0+s2)pmax+s0+s2)
2

(s20−s22)2 samples, with probability at

least 1− δ, we have |p̂ij − pij| ≤ ε.

By a union bound on all the weights of the tree, knowing there are

at most 2N(N − 1) < 2N2 directed edges in a directed tree, we obtain the

following sample complexity:

Theorem 4.2.12. With M = N2

ε2
log
(

12N2

δ

)
((s20−s22+s0+s2)pmax+s0+s2)

2

(s20−s22)2 cascades,

with probability 1−δ, we can learn all the weights of the edges of a bidirectional

tree in the limited-noise setting, i.e., when we only have access to the noisy

times of infection.

4.3 Bounded-degree graphs

In the previous section, the algorithm presented relies heavily on the

uniqueness of paths. This property implies that we can deduce the edges from

83

Figure 4.4: Two nodes can be co-infected frequently without sharing an edge.

the nodes which are co-infected the most often. However, this is not true for

a general bounded-degree graph. In Figure 4.4, we can see that the two nodes

i and j would be co-infected frequently despite not sharing an edge. This

makes the task of finding the structure much more challenging than for the

bidirectional tree.

In this section, we show how the main ideas for learning the structure

of the bidirectional tree can be extended for learning the structure of gen-

eral bounded-degree graphs, in the extreme-noise setting, with almost optimal

sample complexity. The framework for learning the weights of the edges in

the limited-noise setting is - to the best of our knowledge - not extendable to

general bounded-degree graphs; we therefore develop a new algorithm to learn

the weights for general bounded-degree graphs.

84

4.3.1 Bounded-degree structure

In the previous section, we introduced the estimator ĥi,j, which records

the fraction of cascades for which both i and j are infected. From a local

maximum property of this estimator, we deduced the structure of the tree, in

a sample efficient fashion. Indeed, if there exists a path between i and k, and

the first edge on this path is (i, j), then if i and k are infected, j must have

been infected as well.

We want to build on this idea for a bounded-degree graph of maximum

degree d. However, for such a graph, there may be multiple paths leading

from i to j, and we cannot guarantee a single node will be infected each time.

However, if i is a node, Ni is its neighborhood, and k /∈ Ni is another node of

the graph, we can guarantee that if both i and k are infected, there exists a

node in Ni which is infected. Moreover, Ni is the set of smallest size for which

at least one node is infected at the same time as i the most frequently. This

leads us to a new set of estimators:

Definition 4.3.1. Let i be a node of the graph, and let S be a set such that

|S| < d and i /∈ S. We define a new set of estimators:

ĥi,S = Fraction of cascades for which i is infected, and at least one node of S is infected.

Let us assume that for each pair (i, S), we have access to the limit hi,S

of ĥi,S. We now introduce an algorithm showing how to leverage these limits

to learn the structure of any bounded-degree graph.

85

Algorithm 2 Learn the undirected edges of any graph of maximum degree d.

1: procedure LearnGraph({hi,S}|S|≤di∈V)
2: edges← []
3: for i = 1 . . . nnodes do
4: S max i ← set such that hi,S max i is maximal, and such that

Size(S max i) is minimal.
5: for nj in S max i do
6: Add edge (i, nj) to edges

return edges

We show this algorithm is correct.

Lemma 4.3.1. Algorithm 3 correctly finds the neighborhood of each node.

Proof. Let us recall that hi,S is the probability that node i and at least one

node of S are co-infected. To prove the correctness of this algorithm, it suffices

to prove:

∀i ∈ V, ∀S s.t. |S| ≤ d, hi,S ≥ hi,Ni =⇒ Ni ⊆ S

Let pick a set S such that Ni \ S 6= ∅, and let k be a node in Ni \ S. We

know hi,S∪{k} ≥ hi,S + P(i and k are the only infected nodes). Since i and

k are neighbors, P(i and k are the only infected nodes) > 0, and therefore

hi,S∪{k} > hi,S. Following this line of reasoning, if Ni \ S 6= ∅, S we can

always increase the value of hi,S by adding a node of Ni.

However, it is impossible to increase the value of hi,Ni , because if i and

any other node of the graph are co-infected, we know one node of Ni is also

86

infected. Therefore, the algorithm is correct.

Unfortunately, we do not have direct access to hi,S. We therefore study

how many samples are needed to replace hi,S by its estimate ĥi,S while pre-

serving the correctness of the algorithm. Just like in Section 4.2.1, we notice

that we do not need the {ĥi,S}|S|≤di∈V to be close to their limit, we only need the

indexes of their ordering to be the same. We notice that the neighborhood

Ni of i is the set of smallest size which is the most often infected at the same

time as i is (Ni = arg max
|R|≤d

hi,R). Therefore, we must have that for every set S,

ĥi,S ≤ ĥi,Ni . However, some other sets might achieve the same value if we do

not observe enough cascades. This could happen in two cases:

• Not all the nodes of the neighborhood were infected, and therefore a

subset T1 ⊂ Ni of the neighborhood is such that ĥi,T1 = ĥi,Ni . Since

|T1| < |Ni|, the algorithm would return T1 and not Ni, which would be

a failure case.

• Some other node k is always infected every time a specific node j ∈ Ni

is infected. The set T2 = Ni \ {j} ∪ {k} will therefore be such that

ĥi,T2 = ĥi,Ni , and the algorithm would not know which maximum to

pick. This is a failure case as well.

We identify events which guarantee that the failure cases above cannot arise.

Let Em
i,j be the event that i and j were the only infected nodes during cascade

87

m. Ei,j =
⋃

1≤m≤M

Em
i,j is therefore the event that there exists a cascade for which

only i and j were infected. If such a cascade exists, the set Smax = arg max
|R|≤d

ĥi,R

must contain j. If the event Ei,j happens for every node j in the neighborhood

of i, we can therefore guarantee Algorithm 3 is correct. We characterize the

sample complexity needed for this below.

Proposition 4.3.2. Let i be a node, and let j be one of its neighbors. Let S

be a set of size |S| ≤ d, such that i /∈ S and j /∈ S. With probability at least

1 − δ
d·Nd+2 , among M =

(d+2)·N log(N)+N log(dδ)
pmin(1−pmax)2(d−1) cascades, there exists a cascade

in which i and j are infected, but no nodes of S are infected.

Proof. We notice that if, during cascade m, the only infected nodes are i and

j, no nodes of S are infected. This is exactly the event Em
i,j defined above.

P(Em
i,j) = P(i and j infected and ∀s ∈ S, s is not infected)

= P(i and j are the only infected nodes during cascade m)

≥ P(cascade started at i, j was the only infected neighbor of i,

and j did not infect any nodes)

≥ 1

N
· pmin · (1− pmax)2(d−1).

The probability that this never happens during M cascade is exactly the com-

88

plement of the event Ei,j defined above:

P(Not(Ei,j)) ≤
(

1− 1

N
· pmin · (1− pmax)2(d−1)

)M
≤ e−M ·

pmin
N
·(1−pmax)2(d−1)

≤ δ

d ·Nd+2
.

Lemma 4.3.3. With probability at least 1−δ, if we observe M =
(d+2)·N log(N)+N log(dδ)
pmin(1−pmax)2(d−1)

cascades, Algorithm 3 is correct, and has running time O(M · Nd+2) = O(d ·

Nd+3 log(N)).

Proof. Let S = {S ∈ P(V), |S| ≤ d} be the set of sets of nodes of size at most

d, let S
Ci

= {S ∈ S, i /∈ S} be the set of sets of S which do not contain i, and

let Ni = {j, (i, j) ∈ E} be the neighborhood of i. We pick a set S ∈ S, such

that S 6= Ni.

We first prove that ĥi,S ≤ ĥi,Ni . Since the neighborhood of i separates i

from the rest of the graph, and infected nodes are connected, we can conclude

that every time i and another node of S are infected, one node in the neighbor-

hood Ni of i is infected as well. Therefore, we cannot increase ĥi,S without also

increasing ĥi,Ni . In particular, this means that even if |S| > |Ni| (for instance

if Ni ⊂ S), we have ĥi,S ≤ ĥi,Ni . We therefore know that Ni ∈ arg max
R∈S

Ci

ĥi,R.

We now prove that with probability at least 1 − δ, Ni is the set of

arg max
R∈S

Ci

ĥi,R of minimal size. To do so, we notice that if there exists a cascade

89

such that i and j ∈ Ni are infected, but no node of S is infected, then this

implies ĥi,S < ĥi,Ni . Indeed, as shown above, every time we increase ĥi,S, we

also increase ĥi,Ni , and we know there exists one cascade for which we increased

ĥi,Ni without increasing ĥi,S. We now calculate the probability Pfailure that

such a cascade does not exist for all nodes i in the graph, all nodes j in their

neighborhood, and all sets S which do not include i or j.

Pfailure ≤ P(∃i ∈ V, ∃j ∈ Ni,∃S ∈ S
Ci,Cj
, every time i and j infected,

a node of S is also infected)

≤
∑
i∈V

∑
j∈Ni

∑
S∈S

Ci,Cj

P(every time i and j infected, a node of S is also infected).

We use Proposition 4.3.2 to bound this quantity:

Pfailure ≤
∑
i∈V

∑
j∈Ni

∑
S∈S

Ci,Cj

δ

d ·Nd+2

≤ N · d ·Nd+1 · δ

d ·Nd+2

≤ δ.

We now know that with probability at least 1− δ:

∀R ∈
⋃
j∈Ni

S
Ci,Cj
, ĥi,R < ĥi,Ni .

This implies that no set of
⋃
j∈Ni SCi,Cj

can belong in arg max
R∈S

Ci

ĥi,R. However, we

have:

S
Ci
\
⋃
j∈Ni

S
Ci,Cj

= {S ∈ S,Ni ⊆ S}.

90

In particular, this means that Ni is the only set of S
Ci
\⋃j∈Ni SCi,Cj

of minimal size.

This shows that with probability at least 1− δ, Ni is the set of arg max
R∈S

Ci

ĥi,R of

minimal size. This proves Algorithm 3 is correct, and that we can learn the

structure of any graph of maximum degree d with M =
(d+2)·N log(N)+N log(dδ)
pmin(1−pmax)2(d−1)

cascades.

Since we do at most one operation by pair of (node, set) and by cascade,

the running time is O(N ·Nd+1 ·M), which is what we wanted to prove.

This leads to our theorem for learning the structure of any bounded-

degree graph.

Theorem 4.3.4. With probability at least 1 − δ, in the extreme-noise set-

ting, we can learn the structure of any graph of maximum degree d with

M = O

(
d·N log(Nδ)

pmin(1−pmax)2d

)
cascades in polynomial time.

Let us now assume that pmax ∼ 1
d
. This assumption is reasonable when

you expect a constant number of infections by time step. For instance, it

makes sense for real diseases, for which carriers have to meet to transmit it

(we can only meet a constant number of people each day). It would not make

sense for social networks, in which it is possible to reach many followers with

each post.

Corollary 4.3.5. With probability at least 1−δ, in the extreme-noise setting, if

we assume pmax ∼ 1
d

and pmin constant, we can learn the structure of any graph

91

of maximum degree d with M = O
(
d ·N log

(
N
δ

))
. This sample complexity is

optimal up to log-factors, and almost matches the lower bound established in

the no-noise setting.

Proof. We need at least O (d ·N log (N)) samples to learn the structure of a

bounded-degree graph with maximum degree d, according to the lower bound

in [63].

4.3.2 Bounded-degree weights

For the remainder of this chapter, we state results in the limited-noise

setting.

If we consider cascades of size k, the exact probability of infection

between two nodes is a multivariate polynomial of degree N on N(N − 1)

variables (the variables here would be the weights of the graph), with a sum

of up to 2 ·
k∑
l=1

(N − 2)!

(N − k)!
terms. If the graph has more than five nodes, the

resulting polynomial is of degree more than five.

For our algorithm, we therefore only use cascades of size 1 or 2. This is

a waste of the data, since we simply discard cascades of larger size. However,

we are not aware of techniques on how to utilize larger cascades in the limited-

noise setting. Cascades of size 1 or 2 are simple enough that we can write

explicitly their probability. This allows use to:

1. Design estimators for which we can calculate the exact limit.

92

2. Combine these estimators to transform a polynomial system of degree

N to a polynomial system of degree 2.

3. Solve this system exactly and obtain the probabilities of infection.

4.3.3 Estimators

We start by designing a few estimators:

Definition 4.3.2. We introduce two sets of N(N − 1) estimators and one

set of N estimators. These estimators can be computed even if we only have

access to the noisy times of infection.

ĥ2
i,j = Fraction of cascades for which only i and j are infected.

f̂ 2
i<j = Fraction of cascades for which only i and j are infected, and t′i < t′j.

ê1
i = Fraction of cascades for which only i is infected.

To simplify the coming notations, let us introduce sk, which is the

probability that the noise on j has delay at least k relative to the noise on i.

Since the noise is i.i.d., this value is independent from i and j: sk = P(nj−ni ≥

k)5. For instance, if i infected j during cascade m, the probability that the

noise did not flip the order of infection (i.e. T
′m
i < Tmj) is P(nj ≥ ni) = s0. In

5For instance, for geometric noise of parameter q, we have: sk =

∞∑
tj=max(0,k)

tj−k∑
ti=0

(1 −

q)ti+tj = (1− q)max(0,k)

(
1− (1− q)1−min(0,k)

2− q

)
.

93

the reverse case, the probability that the noise flipped the order of infection is

P(Tmj + nj < T
′m
i + ni) = P(1 + nj < ni) = P(ni − nj ≥ 2) = s2.

We now compute the limits of those estimators.

Proposition 4.3.6. As the number of cascades M goes to infinity, the esti-

mators introduced above tend to the following limit:

ĥ2
i,j →M→∞

1

N
(pij + pji)

∏
k 6=i,j

(1− pik)(1− pjk),

f̂ 2
i<j →M→∞

1

N
(pij · s0 + pji · s2)

∏
k 6=i,j

(1− pik)(1− pjk),

ê1
i →M→∞

1

N
(1− pij)

∏
k 6=i,j

(1− pik).

Proof. The proof is very similar to 4.2.8. See details in Appendix B.2.2.

4.3.4 Solving the system

The limit of these estimators, as seen as a function of the probabilities

of infection, is a complex polynomial on up to 2(N − 1) variables. The crux

of our algorithm is to combine those estimators in order to cancel out most

of these variables, and create N − 1 systems of two equations of degree 2 and

two unknowns, which we then solve.

Proposition 4.3.7. Let V̂ij =
f̂2
i<j

ĥ2
i,j+N ·ê1i ·ê1j

. Then the limit of V̂ij as the number

of cascades M goes to infinity only depends on the variables pij and pji :

V̂ij →M→∞
pij · s0 + pji · s2

1 + pij · pji
.

94

Proof. Since all the estimators converge towards a constant, we can use Slut-

sky’s lemma to find the limit of V̂ij. Let Vij be the limit of V̂ij as M goes to

infinity. We notice that the
∏
k 6=i,j

(1− pik)(1− pjk) parts cancel each other out:

Vij =
f 2
i<j

h2
i,j +N · e1

i · e1
j

=

1
N

(pij · s0 + pji · s2)

[∏
k 6=i,j

(1− pik)(1− pjk)
]

(
1
N

(pij + pji) +N
(1−pij)(1−pji)

N2

)[∏
k 6=i,j

(1− pjk)(1− pjk)
]

=
(pij · s0 + pji · s2)

1 + pij · pji
.

We can therefore use this equality to deduce the weights of all the edges

of the graph:

Theorem 4.3.8. For any graph, for any noise distribution having finite values,

we can learn the weights of all the edges of the graph. In particular, we can

compute a quantity which converges to the true weight of each edge:

p̂ij =
2(V̂jis2 − V̂ijs0)

(s2
0 − s2

2) +
√

(s2
0 − s2

2)
2 − 4(V̂jis2 − V̂ijs0)(V̂ijs2 − V̂jis0)

.

Proof. We present a sketch of the proof here. The details can be found in

Appendix B.2.1. We know V̂ij tends to Vij =
pij ·s0+pji·s2

1+pij ·pji . Using both Vij and

Vji, we can establish this second-degree equation:

Vjis2 − Vijs0 +
(
s2

0 − s2
2

)
pij + (Vijs2 − Vjis0) p2

ij = 0

95

We recall that by definition, s0 ≥ s2. We also notice that if pij = q1 and

pji = q2 is a pair of solutions of this system, then pij = 1
q2

and pji = 1
q1

forms

the other pair of solution, which implies there is uniqueness of solutions in

[0, pmax]. Since the real probabilities of infection satisfy this system, we also

know the solution exists. Let ∆ = (s2
0 − s2

2)
2 − 4(Vjis2 − Vijs0)(Vijs2 − Vjis0).

The only solution of this system in [0, pmax] is then:

pij =
2(Vjis2 − Vijs0)

(s2
0 − s2

2) +
√

∆
.

4.3.5 Sample complexity

We establish the sample complexity needed to estimate pij with preci-

sion ε. To do so, we start by estimating Vij. Note that we only consider the

pair of nodes i and j if, among the M samples, there exists a cascade of size 2

in which i and j are the only infected nodes (i.e. h2
i,j > 0). Otherwise, we set

p̂ij = p̂ji = 0 as our estimate for pij.

Proposition 4.3.9. With probability 1 − δ
N2 , with M = samples, we can

estimate Vij with precision εV .

Proof. We present a sketch of the proof; the details can be found in Appendix

96

B.2.2. As in Proposition 4.2.11, we use Hoeffding’s inequality:

P(|f̂ 2
i<j − f 2

i<j| > ε1) ≤ 2e−2Mε21 ,

P(|ĥ2
i,j − h2

i,j| > ε1) ≤ 2e−2Mε21 ,

P(|ê1
i − e1

i | > ε1) ≤ 2e−2Mε21 ,

P(|ê1
j − e1

j | > ε1) ≤ 2e−2Mε21 .

We use this to bound above Vij:

V̂ij ≤ Vij

[
1 +

ε1
f 2
i<j

+ ε1
1 +N(e1

i + e1
j)

h2
i,j +Ne1

i e
1
j

+ o(ε1)

]
By bounding below the denominators and bounding above the numerator, we

finally obtain:

|V̂ij − Vij| ≤ ε1
4N

pmins2(1− pmax)2d
+ o(ε1).

Therefore, by union bound, and by choosing ε1
4N

pmins2(1−pmax)2d = εV , and setting

2e−2Mε21 = δ
3N2 , we obtain:

With M = 1
ε2V

16N2

p2
mins

2
2(1−pmax)4d

2 log(3N)−log(δ)
2

samples, we can guarantee |V̂ij −

Vij| ≤ εV with probability at least 1− δ
N2 .

Once we have estimated Vij with precision εV , estimating pij is un-

fortunately still not an easy task. Indeed, let ∆ = (s2
0 − s2

2)
2 − 4(Vjis2 −

Vijs0)(Vijs2 − Vjis0). We have pij =
−(s20−s22)+

√
∆

2(Vijs2−Vjis0)
, which means that ∆ has to

be positive for this quantity to be defined. However, for general values of Vij

and Vji, ∆ can be negative. We therefore use the framework of constrained

optimization to bound ∆ away from 0.

97

Lemma 4.3.10. Let ∆ = (s2
0 − s2

2)
2−4(Vjis2−Vijs0)(Vijs2−Vjis0). We have:

∆ ≥ (s2
0 − s2

2)2 (1− pmax)2

1 + p2
max

.

Proof. We find the lower bound on ∆ by reformulating the problem as a con-

strained optimization problem, and introducing the corresponding Lagrangian

multipliers. The details can be found in Appendix B.2.1.

Now that we have established this bound on ∆, we can give the sample

complexity needed to estimate pij.

Proposition 4.3.11. Assuming we can estimate Vij within precision εV , then

we can estimate pij within precision ε = 6εV (1+p2
max)

(s20−s22)2(1−pmax)2 .

Proof. This is a simple derivation which can be found in Appendix B.2.2.

We finally piece everything together, and use a union bound on all the

pij to obtain the final sample complexity of our algorithm for learning the

weights of general bounded-degree graphs.

Theorem 4.3.12. In the limited-noise setting, with probability at least 1− δ,

with M = O
(

e4pmax(d+1)

p2
mins

2
2(s20−s22)4

N2

ε2
log
(
N
δ

))
samples, we can learn the weights of

any bounded-degree graph up to precision epsilon.

98

Proof. We obtain the desired bound by combining Proposition 4.3.9 and Propo-

sition 4.3.11. See details in Appendix B.2.2.

Once again, if we assume pmax ∼ 1
d

and pmin constant, we obtain the

following sample complexity:

Corollary 4.3.13. In the limited-noise setting, with probability at least 1− δ,

if pmax ∼ 1
d

and pmin constant, we can learn the weights of any bounded-degree

graph up to precision epsilon with M = O
(

1
s22(s20−s22)4

N2

ε2
log
(
N
δ

))
samples.

4.4 General graphs

In the limited-noise setting, we notice that nothing prevents us from

using the algorithm for learning bounded-degree weights for general graph.

This proves this problem is solvable for any graph, and any noise distribution.

As explained in Section 4.1.3, this is not an obvious result. However, if we do

not assume pmax ∼ 1
N

, the sample complexity is now exponential.

Theorem 4.4.1. In the limited-noise setting, with probability at least 1 − δ,

it is possible to learn all the weights of any graph, for any noise distribution,

with finite (but potentially exponential) sample complexity.

4.5 Discussion

In this chapter, we presented the first results to learn the edges of a

graph from noisy times of infection. We showed we learn the structure of any

99

bidirectional tree or any bounded-degree graph (note that not all trees are

bounded-degree graphs) with optimal sample complexity (up to log-factors).

However, for learning the weights of a general bounded-degree graph,

we only use cascades of size 1 or 2. If we are given an infinite number of

cascades of size bigger than 2, our current algorithm cannot learn the weights

of the graph. Future work could develop an algorithm without such a weakness.

All our results for learning the weights of the edges are in the limited-

noise setting. Whether or not it is possible to learn the noise in the extreme-

noise setting is an other question of interest for future work.

Finally, we have made no restriction on the distribution of the noise

we add, other than it is finite. It would be interesting to study whether

stronger restrictions on the noise (for instance Gaussian noise) would lead

to stronger results. It would also be interesting to allow infinite noise, and

develop algorithms which are robust to errors in the infection status of a

node (our current algorithms can return wrong graph structure with only one

adversarially chosen false positive).

100

Chapter 5

Uncertainty about what is infecting nodes

5.1 Introduction

In this chapter1, we follow the research direction introduced in the pre-

vious chapter and continue to study graph inference. This time we introduce

uncertainty about what is infecting the nodes. Specifically, we assume that

there exist two spreading mechanisms which produce similar symptoms. The-

oretically, we model this as epidemics spreading on a mixture of two different

graphs (induced by the spreading mechanisms), and we aim to reconstruct

both graphs from epidemic cascades.

It turns out that this problem is not always identifiable. Our first con-

tribution is therefore to establish the first necessary and sufficient conditions

for this problem to be solvable in polynomial time on edge-separated graphs.

When the conditions are met, i.e., when the graphs are connected with at least

three edges, we provide an efficient algorithm for learning the weights of both

graphs with optimal sample complexity (up to log factors). We give comple-

mentary results and provide sample-optimal (up to log factors) algorithms for

1This chapter covers the material prebiously published in Learning Mixtures of Graphs
from Epidemic Cascades. My main contributions were defining the setting, and solving part
of theoretical challenges.

101

mixtures of directed graphs of out-degree at least three, and for mixtures of

undirected graphs of unbalanced and/or unknown priors.

As described in the previous chapter, learning the graph from times of

infection during multiple epidemics has been extensively studied. However,

this line of research always assumes that the epidemic cascades are all of the

same kind, and spread on one unique graph which entirely captures the dynam-

ics of the spread. In reality, our observations of cascades are far more granular:

different kinds of epidemics spread on the same nodes but through different

mechanisms, i.e., different spreading graphs. Epidemic cascades we observe

are often a mixture of different kinds of epidemics. Without knowledge of the

label of the epidemic, can we recover the individual spreading graphs? For a

concrete example, let us consider the ubiquitous Twitter graph. Individuals

usually have multiple interests, and will share tweets differently according to

the underlying topics of the tweets. For instance, two users may have aligned

views on football and diametrically opposed political views, and hence may

retweet each others’ football tweets but not political posts. Interesting settings

are those where the epidemic labels (in this simple case, football and politics) is

not observable. While football and politics may be easy to distinguish via basic

NLP, the majority of settings will not enjoy this property (e.g., she retweets

football posts relating to certain teams, outcomes, or special plays). In fact,

the focus on recovering the spreading graph stems precisely from the desire to

study very poorly-understood epidemics whose spreading mechanisms, symp-

toms, etc. remain elusive. Examples outside the Twitter realm (e.g., human

102

epidemics with multiple spreading vectors) abound.

In such cases, applying existing techniques for estimating the spreading

graph would recover the union of graphs in the mixture. For Twitter and

other social networks, this is essentially already available. However, this union

is typically not informative enough to predict the spread of tweets, and may

even be misleading.

We address precisely this problem. We consider a mixture of epidemics

that spread on two unknown weighted graphs when, for each cascade, the

kind of epidemic (and hence the spreading graph) remains hidden. We aim to

accurately recover the weights of both the graphs from such cascades.

5.1.1 Relevant work

Mixture models in general have attracted significant focus. Even for the

most basic models, e.g., Gaussian mixture models, or mixed regression, rigor-

ous recovery results have proved elusive, and only recently has there been sig-

nificant progress (e.g., [7, 12, 16, 19, 50, 52, 83, 85, 86]). This work reveals some

similarities to prior work. For example, here too, moment-based approaches

play a critical role; moreover, here too, there are conditions on separation of

the two classes needed for recovery. Interestingly, however, the technical key

to our work is much more combinatorial in nature, rather than appealing to

more general-purpose tools (like tensor decomposition or EM). As we outline

below, the crux of the proof of correctness of our algorithm is a combina-

tion of a characterization of forbidden graphs that cannot be learned, and a

103

decomposition-reduction of a general graph to smaller subgraphs that can be

learned and later patched to produce a globally consistent solution.

5.1.2 Contributions

To the best of our knowledge, this is the first chapter to study the

inverse problem of learning mixtures of weighted undirected graphs from epi-

demic cascades. We address the following questions:

Recovery: Under the assumption that the underlying graphs are connected,

have at least three edges and under some separability condition (detailed in the

next section), we prove the problem is solvable and give an efficient algorithm

to recover the weights of any mixture of connected graphs with equal priors

on the same set of vertices.

Identifiability: We show the problem is not solvable in polynomial time of

one if the condition mentioned above is violated. The problem is unidentifi-

able when one of the graphs of the mixture has a connected component with

less than three edges. Moreover, there exist (many) graphs which violate the

separability condition, and for which any algorithm would require at least

exponential (in the number of nodes) sample complexity.

Sample Complexity: We prove a lower bound on the sample complexity of

the problem, and show that our algorithm always matches the lower bound

up to log factors in terms of the number of nodes N . It also matches the

bound exactly in terms of the dependency in the separation parameter 1
∆

if

the graphs have min-degree at least 3.

104

Extensions: We give similar guarantees for the case of directed graphs of min-

degree at least 3, and of undirected graphs with unbalanced and/or unknown

mixtures priors. Finally, we discuss how to obtain numerical solutions for

K > 2 mixtures.

5.2 Preliminaries

We consider an instance of the independent cascade model [34, ?]. We

observe independent epidemics spreading on a mixture of two graphs. In this

section, we specify the dynamics of the spreading process, the observation

model, and the learning task.

5.2.1 Mixture Model

We consider two weighted graphs G1 = (V,E1) and G2 = (V,E2) on

the same set of vertices V . Unless specified otherwise, the graphs considered

are undirected: pij = pji and qij = qji. Note that pij (qij) is 0 if there is no

edge between i and j in G1 (G2).

We say that the mixture is ∆-separated if:

min
(i,j)∈E1∩E2

|pij − qij| ≥ ∆ > 0.

We denote the minimum edge weight by pmin := min
(i,j)∈E1

min
(k,l)∈E2

min(pij, qkl).

Note that pmin is positive.

105

5.2.2 Dynamics of the Spreading Process

We observe M independent identically distributed epidemic cascades,

which come from the following generative model.

Component Selection: At the start of a cascade, an i.i.d. Bernoulli random

variable b ∈ {1, 2} with parameter α (Pr[b = 1] = α) decides the component of

the mixture, i.e., the epidemic spreads on graph Gb. We say that the mixture

is balanced if α = 0.5, and we call α and 1 − α the priors of the mixture.

Unless specified otherwise, the results presented are for balanced mixtures.

Epidemic Spreading: Once the component of the mixture Gb is fixed, the

epidemic spreads in discrete time on graph Gb according to a regular one-

step Susceptible → Infected → Removed (SIR) process [63, ?]. At t = 0, the

epidemic starts on a unique source, chosen uniformly at random among the

nodes of V . The source is in the Infected state, while all the other nodes are in

the Susceptible state. Let It (resp. Rt) be the set of nodes in the Infected (resp.

Removed) state at time t. At each time step t ∈ N, all nodes in the Infected

state try to infect their neighbors in the Susceptible state, before transitioning

to the Removed state during this same time step (i.e., Rt+1 = Rt ∪ It) 2. If i

is in the Infected state at time t, and j is in the Susceptible state at the same

time (i.e i ∈ It, j ∈ St), then i infects j with probability pij if b = 1, and qij

2Once a node is in the Removed state, the spread of the epidemic proceeds as if this
node were no longer on the graph.

106

j i

(a) One edge

j i

k

(b) Two
edges

A B

(c) Discon-
nected com-
ponents

Figure 5.1: Unsolvable structures

if b = 2, with 0 ≤ pij ≤ 1. Note that multiple nodes in the Infected state can

infect the same node in the Susceptible state. The process ends at the first

time step such that all nodes are in the Susceptible or Removed state (i.e., no

node is in the Infected state).

One realization of such a process, from randomly picking the component

of the mixture and the source at t = 0 to the end of the process, is called a

cascade.

5.2.3 Observation Model

For each cascade we do not have the knowledge of the underlying com-

ponent, that is, we do not observe b and we treat this as a missing label. For

each cascade, we have access to the complete list of infections: we know which

node infected which node at which time (one node can have been infected by

multiple nodes). This list constitutes a sample from the underlying mixture

model.

107

5.2.4 Learning Objective

Our goal is to learn the weights of all the edges of the underlying graphs

of the mixture, up to precision ε < min(∆, pmin). Specifically, we want to

provide p̂ij and q̂ij for all vertex pairs i, j ∈ V such that maxi,j∈V 2 max(|pij −

p̂ij|, |qij − q̂ij|) < ε.

5.2.5 When is this problem solvable?

Prior to presenting our main results, we offer some intuition. We show

that it is not always possible to learn the weights of both components of the

mixture, even for settings that appear deceptively easy.

Indeed, it is impossible to learn the graph on two nodes i and j, with

only one directed edge from i to j (see Figure 5.1a). To see this, consider

a balanced mixture, for which edge (i, j) has weight β in G1, and weight

1 − β in G2. Node i will infect node j half of the time, independently of

the value of β. This shows that we cannot recover the original weights, and

the mixture problem is not solvable. If we add another edge, and i is now

connected to a new node k (see Figure 5.1b), the problem is still not solvable

(see Supplementary Material).

Surprisingly, if i has a third neighbor l (see Figure 5.2a), it becomes

possible to learn the weights of the mixture. Learning this local structure is

one of the main building blocks of our algorithm.

One might think that four nodes are needed for this problem to be

108

j i

k

l

(a) Star

j

k

l

(b) Triangle

l
k

j

i

(c) Line

Figure 5.2: Solvable local structure

solvable. However, we can learn the edges of a triangle (see Figure C.2c).

Similarly, the intuition that nodes need to be of degree at least three is mis-

leading. If a line has more than three nodes (see Figure 5.2c), it is solvable.

The line on four nodes is the other local structure which forms the foundation

of our algorithm.

On the other end, the setting for which there exists (at least) two parts

of the graph A and B for which cascades never overlap is a general unsolvable

setting (see Figure 5.1c). We write Ai = A∩Ei, Bi = B∩Ei. Let E ′1 = A1∪B2,

E ′2 = A2 ∪B1. We notice that a mixture spreading on edges E1 and E2 yields

the same cascade distribution as a mixture on E ′1 and E ′2. Therefore, the

solution is not unique.

The three simple shapes in Figure 5.2 form the core of this chapter. Our

key insight is in showing that any graph that can be built up using these three

building blocks (i.e., each node belongs in at least one of these structures) is

solvable. This effective decomposition succeeds in reducing a general problem

to a small number of sub-problems, for which we provide a solution.

109

5.3 Main Results

In this section we present our main results on the impossibility and

recoverability of edge weights for a balanced mixture.

5.3.1 Balanced Mixture of Undirected Graphs

Below, we say it is impossible to recover the edge weights if two or more

mixtures of graphs could have produced the same cascades distribution.

Impossibility Result Under Infinite Samples

Condition 1. The graph G = (V,E1 ∪E2) is connected and has at least three

edges: |E1 ∪ E2| ≥ 3.

Claim 1. Suppose Condition 1 is violated. Then it is impossible to recover

the edge weights corresponding to each graph (even with infinite samples).

Impossibility Result Under Polynomial Samples

Condition 2. The mixture is ∆-separated: for every edge (i, j) ∈ E1 ∪ E2,

pij 6= qij.

Claim 2. Suppose Condition 2 is violated. Then there exist (many) graphs

for which we need at least exponential (in the number of nodes N) samples to

recover the edge weights.

110

Recoverability Result with Finite Samples

Theorem 5.3.1. Suppose Conditions 1 and 2 are true. Then there exists

an algorithm that runs on epidemic cascades over a balanced mixture of two

undirected, weighted graphs G1 = (V,E1) and G2 = (V,E2), and recovers the

edge weights corresponding to each graph up to precision ε with probability

at least 1 − δ, in time O(N2) and sample complexity O
(

N
ε2·∆4 log(N

δ
)
)
, where

N = |V |.

Remark on Partial Recovery: An important element of our results is that

if Conditions 1 and 2 are not satisfied for the entire graph we can still recover

the biggest subgraph which follows these conditions. In particular, if the graph

we obtain by removing all non ∆-separated edges is still connected, we can

detect and learn all the edges of the graph (see Supplementary Material for

more details). This is important, as it effectively means that we are able to

learn the mixtures in the parts of the graph that matter most. On a practical

note, this also means that our algorithm is resistant to the presence of bots in

the network that would repost everything indifferently.

5.3.2 Extensions

Extension to Directed Graphs Interestingly, the techniques used to prove

the theorem above can be immediately applied to learn mixtures of directed

graphs of out-degree at least three (see Supplementary Material for complete

proof). Note that the better dependency in 1
∆

comes from the assumption on

111

the degree 3. Since many applications on social networks can ignore nodes

of out-degree less than three, as thoses nodes have very little impact on any

diffusion phenomena, this result is of independent interest:

Theorem 5.3.2. Suppose Conditions 1 and 2 are true. Then there exists an

algorithm that runs on epidemic cascades over a balanced mixture of two di-

rected, weighted graphs of minimum out-degree three G1 = (V,E1) and G2 =

(V,E2), and recovers the edge weights of each graph up to precision ε with prob-

ability at least 1 − δ, in time O(N2) and sample complexity O
(

N
ε2·∆2 log(N

δ
)
)
,

where N = |V |.

Extension to Unbalanced/Unknown Priors If the mixture is unbal-

anced, but the priors are known, we can adapt our algorithm to learn the mix-

ture under the same conditions as above, at the price of a higher dependency

in 1
∆

. If the priors are unknown, we can only recover graphs of min-degree at

least three.

5.3.3 Lower Bounds

We provide two lower bounds for mixtures of two graphs, one for undi-

rected graphs, one for directed graphs.

Theorem 5.3.3. When learning the edge weights of a balanced mixture on two

∆-separated graphs on N nodes up to precision ε < ∆, we need:

3This immediately implies a better dependency in 1
∆ for learning undirected graphs of

minimum degree three.

112

1. Ω
(
N
∆2

)
samples for undirected graphs, which proves our algorithm is op-

timal in N up to log factors in this setting.

2. Ω
(
N log(N) + N log log(N)

∆2

)
samples for directed graphs of minimum out-

degree three, which proves our algorithm has optimal dependency in N

and in 1
∆2 in this setting.

5.4 Balanced Mixture of Undirected Graphs

In this section, we provide our main algorithm (Algorithm 3) that recov-

ers the edge weights of the graphs under the conditions presented in Theorem

5.3.1.

Algorithm 3 Learn the weights of undirected edges
Input Vertex set V
Output Edge weights for the two epidemics graphs

1: E ← LearnEdges(V) . Learn the edges
2: S,W ← Learn2Nodes(V,E) . Initialize
3: while S 6= V do
4: Select u ∈ S, v ∈ V \S such that (u, v) ∈ E
5: if deg(v) ≥ 3 then . Use star primitive
6: W ← W ∪ LearnStar(v, E,W)

7: if deg(v) = 2 then . Use line primitive
8: Set w ∈ S such that (u,w) ∈ E
9: Set t ∈ V such that (v, t) ∈ E and t 6= u

10: if t 6∈ S then
11: W ← W ∪ LearnLine(t, v, u, w, S,W)

12: S ← S ∪ {v}
13: Return W

113

5.4.1 Overview of Algorithm 3

First, the algorithm learns the edges of the underlying graph using the

procedure LearnEdges. To detect whether an edge (u, v) exists in E1 ∪ E2,

we use a simple estimator (Section 5.4.2.1). This also provides us with the

degree of each node with respect to E1 ∪ E2.

With the knowledge of the structure of the graph, to learn the edge

weights adjacent to a node, our algorithm uses two main procedures, Learn-

Star and LearnLine. If a node is of degree at least three (e.g., node u

in Figure 5.3), procedure LearnStar recovers all the edge weights (i.e., the

weights of the two mixtures for these edges) adjacent to this node indepen-

dently of the rest of the graph. Otherwise, if a node is of degree two (e.g., node

u in Figure 5.4), procedure LearnLine learns all the edge weights adjacent

to this node independently. Both procedures use carefully designed estimators

that exploit the respective structures. We present the above estimators for

balanced mixtures in Section 5.4.2. We require Condition 2 for the existence

of the proposed estimators.

Our main algorithm maintains a set of learned nodes. A node is a

learned node if the weights for all the edges adjacent to it have been learned.

The algorithm begins with learning two connected nodes (two nodes with an

edge in between) using procedure Learn2Nodes. Next it proceeds iteratively,

by learning the weights of the edges connected to one unlearned neighbor of

the learned nodes using the two procedures discussed above. The algorithm

terminates when all the nodes in V are learned.

114

5.4.2 Learning Edges, Star Vertices, and Line Vertices

In this section, we show how we recover the weights for local structures

using moment matching methods. Our proof relies on a few crucial ideas. First,

we introduce local estimators, which can be computed from observable events

in the cascade and are polynomials of the weights of the mixture. General

systems of polynomial equations are hard to solve. However, we found ways

of combining these specific estimators to decouple the problem, and obtain

O(|E|) systems of six polynomial equations of maximum degree three, with

six unknowns. Finally, we show how to elegantly obtain a closed-form solution

for these systems.

5.4.2.1 Learning the Edges in E1 ∪ E2

We recall that I0 is the random variable indicating the set containing

the unique source of the epidemic for a cascade. If an epidemic cascade starts

from node u, then for any node a that is infected in time step 1 there is an

edge (u, a) ∈ E1 ∪ E2. This provides us with the average weight of the edge

(u, a) as Xua,

Claim 3. If u and a are two distinct nodes of V such that (u, a) ∈ E1 ∪ E2,

then:

Xua := Pr(u→ a | u ∈ I0) =
pua + qua

2
≥ pmin

2
.

Furthermore, there exists an edge between u and a in E1 ∪ E2, if and only if

Xua ≥ pmin
2

> 0.

115

a u

b

c

Figure 5.3: A star vertex u, with edges (u, a), (u, b)
and (u, c) in E1 ∪ E2.

a u b c

Figure 5.4: A line vertex u, with edges (u, a), (u, b) and (b, c) in E1 ∪ E2.

The above claim can be leveraged to design algorithm LearnEdges,

which takes as inputs all the Xua for all pairs (u, a), and returns all the edges

of E1 ∪ E2 (see Supplementary Materials).

Conditioning on Source Node: We notice that the expression of

Xua is a function of weights of edges (u, a). Here, conditioning on the event

”u ∈ I0” is crucial. Indeed, if the source had been any node other than u,

the probability that a was in the Susceptible state when u was infected would

have depended on the (unknown) weights of the paths connecting the source

and node a. We could not have obtained the simple expression above.

5.4.2.2 Star vertex

A star vertex is a vertex u ∈ V of degree at least three in E1 ∪ E2

(Figure 5.3). We consider:

Yua,ub: the probability the star vertex u infects neighbors a and b, conditioned

on u being the source vertex.

116

Claim 4. For u and a, b and c as in Figure 5.3:

Yua,ub = Pr(u→ a, u→ b | u ∈ I0) =
puapub + quaqub

2
.

We emphasize that the conditioning is once again crucial to obtain

such a simple form for Yua,ub. Further, we make a key observation that for

i 6= j ∈ {a, b, c},

Yui,uj −XuiXuj =
(pui − qui)(puj − quj)

4
. (5.1)

This directly leads to the closed-form expressions for the weights of the edges

adjacent to the star vertex u.

Lemma 5.4.1. Suppose Conditions 1 and 2 are true and α = 1/2. Let sua ∈

{−1, 1}. The weight of any edge (u, a) connected to a star vertex u, with

distinct neighbors a, b and c in E1 ∪ E2, is given by:

pua = Xua + sua

√
(Yua,ub −XuaXub)(Yua,uc −XuaXuc)

Yub,uc −XubXuc

,

qua = Xua − sua
√

(Yua,ub −XuaXub)(Yua,uc −XuaXuc)

Yub,uc −XubXuc

.

Furthermore, any two signs sui and suj, for i 6= j and i, j ∈ {a, b, c}, satisfy

suisuj = sgn(Yui,uj −XuiXuj).

Resolving Mixture Ambiguity: Separating the weights of both

graphs in the mixture is not enough to learn the mixture: we also have to

assign the two weights to the right component of the mixture. The identity

suisuj = sgn(Yui,uj −XuiXuj) allows us to identify three weights belonging to

117

the same mixture component: pua, pub and puc. If one of these weights had

been learned before, it is immediate to assign the two new weights to the same

component. This leads to the following algorithm:

LearnStar: This algorithm takes as input a star vertex u, the set of edges

of E1 ∪E2, and all the Xui and Yui,uj for all (i, j) distinct neighbors of u, and

returns all the weights of the edges connected to u in both mixtures using the

above closed-form expressions (see Supplementary Materials).

5.4.2.3 Line vertex

We now consider a node u that has degree exactly two in E1 ∪ E2 and

forms a line structure. Specifically, let u, a, b and c be four distinct nodes of

V, such that (a, u), (u, b) and (b, c) belong in E1 ∪ E2. We call such a node u

a line vertex (see Figure 5.4).

To recover the weights of the edges adjacent to a line vertex, only

considering events in the first two timesteps is insufficient. Contrary to a star

vertex, for a line vertex we have only one second moment.

We circumvent the problem by considering:

1) Yub,bc: the probability of the event when (in Figure 5.4) u infects only b,

and in turn b infects c, conditioned on u being the source.

2) Zua,ub,bc: the probability of the event when (in Figure 5.4) u infects both a

and b, and in turn b infects c, conditioned on u being the source.

118

Claim 5. For a line vertex u and nodes a, b and c as in Figure 5.4:

• Y |ua,ub = Pr(u→ a, u→ b | u ∈ I0) = puapub+quaqub
2

,

• Y |ub,bc = Pr(u→ b, b→ c | u ∈ I0) = pubpbc+qubqbc
2

,

• Z |ua,ub,bc = Pr(u→ a, u→ b, b→ c | u ∈ I0)

= puapubpbc+quaqubqbc
2

.

The result for Y
|
ua,ub is similar to Claim 4. However, the proof for Y

|
ub,bc

and Z
|
ub,bc,bc not only requires u to be the source, but also relies on the fact

that u is of degree 2, which implies puc = quc = 0.

We note that Y
|
bc,ua does not exist, as c cannot be infected if b is not.

So we cannot immediately replicate the star vertex proof. Let us define R| :=

XuaXbc +
Z
|
ua,ub,bc−XuaY

|
ub,bc−XbcY

|
ua,ub

Xub
. However, we prove the following equality,

which acts as a surrogate for (Y
|
ua,bc −XuaXbc):

R| =
1

4
(pua − qua)(pbc − qbc). (5.2)

As in Lemma 5.4.1, we now obtain the closed-form expressions for the weights

associated with the line vertex u. For the sake of notation consistency, we

define Y
|
bc,ua := (R| +XbcXua) (it has no probabilistic interpretation).

Lemma 5.4.2. Suppose Conditions 1 and 2 hold and α = 1/2, then for

sua, sub, and sbc in {−1, 1}, the weights of the edges for a line structure are

119

given by:

∀(e1, e2, e3) ∈ {(ua, ub, bc), (ub, bc, ua), (bc, ua, ub)},

pe1 = Xe1 + se1

√√√√(Y
|
e1,e2 −Xe1Xe2)(Y

|
e3,e1 −Xe3Xe1)

Y
|
e2,e3 −Xe2Xe3

,

qe1 = Xe1 − se1

√√√√(Y
|
e1,e2 −Xe1Xe2)(Y

|
e3,e1 −Xe3Xe1)

Y
|
e2,e3 −Xe2Xe3

.

Furthermore, for all e1, e2 ∈ {ua, ub, uc} and e1 6= e2, se1se2 = sgn(Ye1,e2 −

Xe1Xe2).

LearnLine: In the same fashion as for the star vertex, we can use the ex-

pression in Lemma 5.4.2 to design an algorithm LearnLine, which takes as

input a line vertex u, the set of the edges of E1 ∪ E2, and the limit of the

estimators Xua, Xub, Xbc, Y
|
ua,ub, Y

|
ub,bc, Z

|
ua,ub,bc for a, b and c as in Figure 5.4,

and returns the weights of the edges (u, a), (u, b) and (b, c) in both mixtures

(see Supplementary Materials).

Learn2Nodes Our main algorithm is initialized by learning weights associ-

ated with edges connected to two nodes using subroutine Learn2Nodes. As

this algorithm is very similar in spirit to our general algorithm, we leave the

details to the Supplementary Materials.

120

5.4.3 Correctness of Algorithm 3

To prove the correctness of the main algorithm, we show the following

invariant:

Lemma 5.4.3. At any point in the algorithm, the entire neighborhood of any

node of S has been learned and recorded in W :

∀u ∈ S, ∀v ∈ V, (u, v) ∈ E =⇒ (u, v) ∈ W.

Proof. We prove the above by induction on the iteration of the while loop.

Due to the correctness of Learn2Nodes (proven in Supplementary material),

after calling this function, W contains all edges adjacent to the two vertices

in S. Hence the base case is true. Let us assume that after k iterations of the

loop, the induction hypothesis holds.

We consider three cases in the (k + 1)-th iteration:

• deg(v) ≥ 3: We recover all edges adjacent to the star vertex v by using

LearnStar (correct due to Lemma 5.4.1). Sign consistency is ensured using

edge (u, v) ∈ W since u ∈ S.

• deg(v) = 2: There exists w ∈ S such that (u,w) ∈ E since |S| ≥ 2 and is

connected. Since deg(v) = 2, there exists t 6= u such that (t, v) ∈ E. Now if

t ∈ S then (t, v) ∈ W and we are done. If t 6∈ S then v is a line vertex for

t− v − u− w. By using LearnLine we recover all edges on the line (correct

due to Lemma 5.4.2). Sign consistency is ensured through edge (v, u).

• deg(v) = 1: Since u ∈ S, we have (u, v) ∈ W , so we are done.

121

Thus by induction, after every iteration of the for loop, the invariant is

maintained.

Theorem 5.4.4. Suppose Conditions 1 and 2 are true; Algorithm 3 learns the

edge weights of the two balanced mixtures in the setting of infinite samples.

Proof. Since at every iteration, the size of S increases by 1, after at most |V |

iterations, we have S = V . Using Lemma 5.4.3, we also have W = E1∪E2.

5.4.4 Finite Sample Complexity

In this section, we investigate the error in estimating the quantities Xui,

Yui,uj for i, j ∈ {a, b, c} in the case of a star vertex, and Xe1, Y
|
e1,e2 and Zua,ub,bc

for e1, e2 ∈ {ua, ub, bc} in the case of a line vertex, using a finite number of

cascades. We further investigate the effect of the error in these quantities on

the accuracy of the recovered weights.

We use a simple count-based estimator. Specifically, for events E1 and

E2, we estimate the probability Pr(E1|E2) =
∑M
m=1 1E1∩E2∑M
m=1 1E2

. As a concrete exam-

ple, we have the estimator for Xua as X̂ua :=
∑M
m=1 1u→a,u∈Im0∑M
m=1 1u∈Im0

. Here Im0 denotes

the source of the m-th cascade and u → a denotes that u infects a. We can

argue, using the law of large numbers and Slutsky’s Lemma, that the above

approach provides us with balanced estimators.

We first establish high probability error bounds for the base estimators

with a finite number of cascades, for both the star vertex and the line vertex.

Finally, using the above guarantees, we provide our main sample complexity

122

25000 50000 75000 100000 125000 150000 175000 200000

Number of Samples: 100 vertices
0.0

0.2

0.4

0.6

0.8

1.0
Er

ro
r

Max error
Avg Edge error
Avg Non-Edge error

(a) Maximum and aver-
age absolute error as a
function of the number
of cascades on G(N, p)
graphs, with N = 100
vertices, p =

√
N .

The first graph has 1044
edges, the second one
1026.

0.00 0.02 0.04 0.06 0.08 0.10
Error on Edge: 100 vertices

0.000

0.002

0.004

0.006

0.008

0.010

0.012

Pr
ob

ab
ilit

y

(b) Normalized his-
togram of absolute error
after 200000 cascades on
the same G(N, p) graphs,
with N = 100 vertices,
p =

√
N , and 100 bins.

The first graph has 1044
edges, the second one
1026.

16 20 24 28 32 36 40 44 48
Degree

200000

300000

400000

500000

600000

700000

Nu
m

be
r o

f s
am

pl
es error 0.4

error 0.3
error 0.2

(c) Number of cascades
needed to reach given
precision, as a function
of the degree. All ex-
periments are on random
d-regular graphs on 50
nodes, with 375 to 1225
undirected edges.

Figure 5.5: Experimental sample complexity, error distribution, and depen-
dency in the degree.

result for the balanced mixture problem. See Supplementary Material for

proofs.

Theorem 5.4.5. Suppose Condition 1 and 2 hold. With M = O
(

1
p6
min∆4

N
ε2

log
(
N
δ

))
samples, Algorithm 3 learns the edge weights of a balanced mixture on two

graphs within precision ε with probability at least 1− δ.

5.5 Extensions

5.5.1 Extension to Directed Graphs

We notice that in the case of directed graphs of minimum out-degree

three, we can simply use the star structure to learn all the directed edges. This,

however, would not be enough to ensure mixture consistency; we therefore need

123

to also use two new structures to solve the problem. The algorithm is very

similar to Algorithm 3, and the structures are very similar to the structures

encountered so far. Precise details are left for the Supplementary Material.

5.5.2 Extension to Unbalanced/Unknown Priors

While previous results only considered balanced mixtures, i.e. with

parameter α = 0.5, we focus here on unbalanced mixtures (α 6= 0.5 known)

and on mixtures of unknown priors (α unknown).

We first note that the main algorithm for recovering the graph does not

depend on the prior once the correct LearnStar and LearnLine primitives

are provided. Therefore, we show how to design these primitives.

Unbalanced Mixtures We can easily extend Equation 5.1 for star vertices

in the case of unbalanced mixtures. Specifically, we have for all i 6= j ∈

{a, b, c}:

Yui,uj −XuiXuj = α(1− α)(pui − qui)(puj − quj).

However, Equation 5.2 does not extend easily (see Supplementary Material for

details) in the general case:

Theorem 5.5.1. Suppose Conditions 1 and 2 are true. Then there exists an

algorithm that runs on epidemic cascades over an unbalanced mixture of two

undirected, weighted graphs G1 = (V,E1) and G2 = (V,E2), with |V | = N ,

and recovers the edge weights corresponding to each graph up to precision ε in

time O(N2) and sample complexity:

124

• O
(
N logN
ε2

poly(1
∆

)poly(1
min(α,1−α)

)
)

in general.

• O
(
N logN
ε2∆2 poly(1

min(α,1−α)
)
)

for graphs of minimum degree three.

Mixtures of Unknown Priors If the graph has at least one star vertex,

we can learn the entire mixture by learning the parameter α from this node,

and use the results from above to learn the rest of the graph once α has been

recovered. Details can be found in Supplementary Material.

5.5.3 Extension to Mixtures of K > 2 Graphs

For graphs of minimum degree 2K − 1, writing the equations using

first and second moments (i.e. the Xua and Yua,ub) as above yields at least as

many equations as unknowns. Using Quadratic Constraints Quadratic Pro-

gramming, we can obtain numerical solutions. Note that the constraints are

not convex, so there is no guarantee this problem is solvable in polynomial

time. As there is also no immediate reduction to a NP-hard problem, we do

not know the complexity of learning mixtures of K > 2 graphs.

5.6 Experiments

We validate our results on synthetic data. We first draw random graphs

from a distribution (specified below), and each sample is a simulation of a

cascade spreading on it. Once the graphs are drawn, the experiments are run

10 times. The shaded area represents the 25th to 75th percentiles.

125

Our first two experiments are on Erdös-Renyi G(N, p) graphs. In Figure

5.5a, we investigate the maximum error on learned edges and compare it with

the average error. We find that the ”Max error” curve follows the dependence

predicted by our theory, of ε = O
(

1/
√
N log(N)

)
. It is also worth noting that

the average error on the existing edges is one order of magnitude smaller than

the max error. By plotting the normalized histogram of the absolute value of

the errors (Figure 5.5b), we confirm that only a few edges keep the maximum

error high. Finally, by varying the degree on random d-regular graphs with

a fixed number of vertices (Figure 5.5c), we see that the sample complexity

is multiplied by 2 as the number of edges grows from Θ(N) to Θ(N2), as

predicted since the dependence in the degree is logarithmic. Therefore, our

algorithm is as sample-efficient (up to small constants) on dense graphs as on

sparse graphs.

5.7 Conclusion

We provided an efficient algorithm for learning the edge weights of a

balanced mixture of two undirected graphs from epidemic cascades, as well

as matching lower bounds (up to log factors). We extended our results to

directed graphs of min-degree three, and unbalanced/unknown mixtures.

Our algorithm is robust, in the sense that it has partial recovery guar-

antees, and it is unaffected by adversarial examples which would consist of

adding nodes/edges. Due to its local structure, it is also easily parallelizable.

Learning mixtures of more than two graphs, or mixtures of directed

126

graphs without restriction on the minimum degree, are still open problems,

and are left for future work.

127

Appendices

128

Appendix A

Uncertainty about who is infected

A.0.1 Properties of the binary tree

We first establish a few properties of the complete binary tree.

Proposition A.0.1. The CutWidth of the complete binary tree is smaller

than log(N).

Proof. Consider the crusade [23] implied by a Deep First Search over the

tree. This crusade has a maximal cut of log(N)− 1. Thus, by definition, the

CutWidth is lower than log(N)− 1.

Proposition A.0.2. There are r3 subtrees containing N
r3 nodes, and they are

at distance O(log log(N)) from the root.

Proof. In the complete binary tree, there are 2k subtrees at distance k from

the root that contain N
2k

nodes. The results follows for k = 3 log(r)
log(2)

.

129

A.0.2 Some probabilities

A.0.2.1 Geometric variables

Proposition A.0.3. The minimum of i independent geometric random vari-

ables of parameter µ is a geometric random variable of parameter 1− (1−µ)i.

Proof. Let Geo(i, µ) be the minimum of i independent geometric random vari-

ables. Then:

P(Geo(i, µ) ≥ k) = ((1− µ)k−1)i

= ((1− µ)i)k−1

We recognize the probability distribution of a geometric variable with param-

eter 1− (1− µ)i.

Lemma A.0.4. As τ → 0, it takes less than log(k)
τ

time steps in expectation

to infect k new nodes.

Proof. Every new infection increases the cut by 1. Let Geo(i, µ) be the mini-

mum of i geometric random variables of parameter µ, and let Tk be the time

it takes to infect the k new nodes. We have:

Tk =
k−1∑
i=1

Geo(i, µ)

Using Claim A.0.3, Geo(i, µ) is a geometric variable of parameter 1− (1−µ)i.

130

Therefore:

E(Tk) = E

(
k−1∑
i=1

Geo(i, µ)

)

=
k−1∑
i=1

1

1− (1− µ)i

=τ→0

k−1∑
i=1

1

iτ

≤τ→0
log(k)

τ

A.0.2.2 Some curing probabilities

Proposition A.0.5. If all the budget at a given time step is spent, the prob-

ability that no nodes are cured in this time step is 1− δ.

Proof. Let ri be the budget attributed to the node i. Then:

PNoCuring =
N∏
i=1

1− δi =
N∏
i=1

e−riτ

= e

−


N∑
i=1

ri

τ
= e−rτ

= 1− δ.

131

Lemma A.0.6. The probability P path
m that m nodes are reinfected along a path,

such that no node on the m-length path is cured before they all become infected,

is lower bounded by
(

µ(1−δ)
δ+µ(1−δ)

)m+1

.

Proof. Using Proposition A.0.5,

P path
m ≥

∞∑
t=0

(
m+ t

m

)
µm+1(1− µ)t(1− δ)m+t

≥ (µ(1− δ))m · µ ·
∞∑
t=0

(
m+ t

m

)
((1− µ)(1− δ))t

≥ (µ(1− δ))m · µ · 1

(1− (1− µ)(1− δ)))m+1

≥
(

µ(1− δ)
δ + µ(1− δ)

)m+1

.

Corollary A.0.7. The probability P startPath
m that m nodes are reinfected along

a path, such that no node on the m-length path is cured before they all become

infected, and such that there is an infection on the first time step, is lower

bounded by µ ·
(

µ(1−δ)
δ+µ(1−δ)

)m
.

Proof. Taking into account that the first time step is an infection:

P startPath
m ≥

∞∑
t=0

(
m− 1 + t

m− 1

)
µm+1(1− µ)t(1− δ)m+t

≥ µ ·
(

µ(1− δ)
δ + µ(1− δ)

)m
.

132

Proposition A.0.8. Let T N
2r4

be the random variable representing the time to

cure half of the N
r4 last nodes. Then:

P

(
T N

2r4
≤ N

4r5δ

)
≤ e−

N
8r5 .

Proof. The difficulty here lies in the fact that we want to obtain exponen-

tial concentration inequalities on a sum of geometric variables, which are un-

bounded. Therefore, we cannot directly use a Chernoff’s bound. Following

an idea from [10], we represent geometric variables as the sum of Bernoulli

variables. Each variable is then bounded, which makes the analysis possible.

Let X t
i be 1 if node i was cured at time t, and 0 otherwise. Let X t

be r with probability δ, and 0 otherwise. We notice P(X t
i = 1) ≤ δ, and

∀t,∑N
i=1X

t
i ≤ r. By using Chernoff’s bound on a sum of N

4r5δ
Bernoulli vari-

ables of parameter δ, we can therefore bound the probability that curing N
2r4

133

nodes happens in a short time (here less than N
4r5δ

time):

P(T N
2r4
≤ N

4r5δ
) = P(

N
4r5δ∑
t=1

N∑
i=1

X t
i ≥

N

2r4
)

≤ P(

N
4r5δ∑
t=1

X t ≥ N

2r4
)

≤ P(

N
4r5δ∑
t=1

X t

r
≥ N

2r5
)

≤ P

 N
4r5δ∑
t=1

X t

r
≥ N

4r5δ
· δ · (1 + 1)


≤ P

 N
4r5δ∑
t=1

X t

r
≥ E

 N
4r5δ∑
t=1

X t

r

 · (1 + 1)


≤ e−

N
4r5
·12

3

≤ e−
N

12r5 .

Proposition A.0.9. Conditioned on reaching a cut of 3r in a minimal tree in

less than 30 log(r)
τ

time steps, the probability of not infecting any nodes outside

of the escape PNoOtherInfections is bounded by:

PNoOtherInfections ≤ e−
360 log2(r)µ

τ

≤τ→0 e
−360 log2(r).

Proof. For an infection to not be part of the Escape, it has to happen because

of a node which is either on the path to the root, or on the path to a minimal

134

tree. As calculated before, there are 12 log(r) such nodes, which all have at

most one edge not on the path (the two others were used either to get infected,

or to infect the next node on the path). What’s more, each of these nodes was

infected for at most 30 log(r)
τ

time steps. The probability of not infecting any

node along those edges during all these time steps is therefore:

PNoOtherInfections ≤
(
(1− µ)12 log(r)

) 30 log(r)
τ

≤ (1− µ)
360 log2(r)

τ

≤ e−
360 log2(r)µ

τ .

As τ goes to 0:

PNoOtherInfections ≤ e−
360 log2(r)µ

τ

≤τ→0 e
−360 log2(r).

A.0.2.3 Moment generating function of the random walk

Proposition A.0.10. There exists x∗ > 0 such that the Moment Generating

Function (MGF) of Gt evaluated at x∗ is 1.

Proof. Since Gt is a sum of independent random variables, and since the MGF

of a Bernouilli random variable of parameter p is equal to MGF (x) = pex +

(1− p):

MGFGt(x) = MGFCt(x) ·MGFIt(x)

= (δex + (1− δ))r · (µe−x + (1− µ))
r3

3

135

We can see that:

MGF (0) = 1, MGF ′(0) < 0, MGF (r)→r→∞ ∞

Therefore, by the Intermediate Value Theorem:

∃x∗ > 0,MGF (x∗) = 0

There is no closed form solution for x∗, but we can get an approximation when

τ → 0.

Proposition A.0.11. When τ → 0, we have a closed form solution: x∗ =

log(r)− log(3).

Proof. When τ → 0:

1 = MGFGt(x
∗) = (δex

∗
+ (1− δ))r · (µe−x∗ + (1− µ))

r3

3

=τ→0 (rτex
∗

+ (1− rτ))r · (τe−x∗ + (1− τ))
r3

3

=τ→0 (1 + rτ(ex
∗ − 1))r(1 + τ(e−x

∗ − 1))
r3

3

=τ→0 (1 + r2τ(ex
∗ − 1))(1 + τ

r3

3
(e−x

∗ − 1))

=τ→0 1 + τ

(
r2(ex

∗ − 1)− r3

3
(1− e−x∗)

)
=τ→0 1 + τ

(
r2 · e−x∗(e2x∗ − ex∗ − r · ex∗

3
+
r

3
)

)
If we want to nullify the first order in τ , we need:

136

(ex
∗
)2 − (1 +

r

3
)(ex

∗
) +

r

3
= 0

This is a second order polynomial, which gives us the solution ex
∗

= 1 (trivial

solution for x∗ = 0), and ex
∗

= r
3
, which gives us a non-trivial solution:

x∗ = log(r)− log(3) > 0

A.0.3 Some calculus

A.0.3.1 monotonicity results

Proposition A.0.12. The function k(x) = x
1−e−rx is increasing in x. In

particular, for all x ≤ 0, we have k(x) ≥ k(0) = 1
r
.

Proof. x → x and x → 1
1−e−rx are both increasing functions of x, so k(x) is

also increasing.

A.1 A policy achieving the upper bound

The main contribution of Chapter 3 proves a lower bound on the budget

in the Partial information setting. We prove that for budget r = O(log(N)),

there exists no strategy which allows polynomial expected curing time, unless

D(p||q)/τ goes to infinity. Moreover, our result implies that if D(p||q)/τ = 0,

137

then for budget r = O(poly(log(N))), there exists no strategy which allows

polynomial expected curing time.

We now study the converse problem. In this section we exhibit a policy which:

• Does not require any knowledge of the state (works even in the Blind

Curing setting);

• Achieves linear expected curing time;

• Needs r ∼ O(e
4
c ·N c) budget, for any c > 0.

A.1.1 Description of the policy

We consider the ordering O of the nodes given by a Depth First Search

on a binary tree. We split the graph into 3 sets: Asus, Ainf and Abuff . In-

tuitively, these sets respectively represent the set of the nodes we believe are

cured, the set of nodes we believe are infected, and the buffer zone in the

middle.

We run through the following algorithm. As we show in Section A.1.4,

the probability that we fail to cure the graph in one pass of the algorithm

below (what we call one iteration), is at most 2/N , and hence the expected

time to cure, given our budget, is linear.

To initialize each pass of the algorithm, we set t = 0, and also initialize

the sets A0
sus = A0

buff = ∅, A0
inf = V .

Every 1
τ

time steps, we:

138

• move a node from Ainf to Abuff , following the ordering O

• remove all the nodes from Abuff which are at distance greater than

c log(N) from any node of Ainf , and place them in Asus

Then, during 1
τ

time steps, we:

• cure all the nodes of Abuff with constant budget c1;

• cure the new node with budget (1 + c2) log(N), where c2 constant.

This gives a total budget of 2c log(N) · c1 + c2 log(N) = N c log(2) · c1 +

c2 log(N).

At time step t = N
τ

, when A
N
τ
inf = ∅, we keep curing A

N
τ
buff for an addi-

tional c log(N)
τ

time steps.

One pass through the set of actions described above is called an iter-

ation. We show below that the probability of failing to cure the entire graph

in one iteration is bounded by 2/N , and hence we can cure the graph in linear

expected time. Equivalently, in time γ · N , one can get a (1 − ε)-probability

guarantee that the graph is cured, for any ε > 0.

A.1.2 Properties of the policy

Proposition A.1.1. Every node of the graph spends at least c log(N)
τ

time steps

in Abuff .

139

Proof. We notice Ainf is connected at all time. Therefore, when a node i is

removed from Ainf and added to Abuff , it is at distance 1 from a node of Ainf .

Every subsequent node transferred from Ainf to Abuff can only increase the

distance between i and Ainf by 1. Since a new node is transferred every 1
τ

time

steps, and all the nodes at distance no greater than c log(N) from Ainf are kept

in Abuff , every node i of the graph spends at least c log(N)
τ

time steps in Abuff .

Proposition A.1.2. Let Tcured be the time it takes to cure the graph, and

POneIteration be an lower bound on the probability that the graph is cured in one

iteration. Then:

E[Tcured] ≤ N + c log(N)

POneIteration

.

Proof. Tcured is stochastically dominated by an exponential variable with pa-

rameter POneIteration, which in turn has expectation 1
POneIteration

. One iteration

lasts exactly N
τ

+ c log(N)
τ

time steps, and one time step lasts τ time, so an

iteration lasts N + c log(N) time.

A.1.3 Analysis

Definition A.1.1. We call an epoch 1
τ

consecutive time steps.

If there is at least one infected node at the end of the policy, then either

one of the following events must have happen:

140

1. One node was not cured when it entered the buffer zone, and then pro-

ceeds to make its way to Asus.

2. There was a path of infection from a node of Ainf to a node of Asus.

We calculate the probability of the two events above happening during one

epoch:

A.1.3.1 Case 1: One node was not cured when it entered the buffer
zone, and then proceeds to make its way to Asus.

The probability of this event is lower than the probability that one node

was not cured during one epoch when it entered the buffer zone:

P(Case1) ≤ (1− (1− e−(1+c2) log(N)τ))
1
τ

≤ e−(1+c2) log(N)

≤ 1

N1+c2
.

A.1.3.2 Case 2: There was a path of infection from a node of Ainf

to a node of Asus.

In the case 2:

1. One node ns of At0buf needs to become infected at time step t0.

2. One node ne of At0+t
sus becomes infected after t time steps.

3. Every 1
τ

time steps, the nodes of Asus can become closer to where the

infected node by a distance 1. Therefore, c log(N)−bτ · tc−1 additional

infections need to happen along the unique path between ns and ne.

141

Let us calculate the probability p1 that b becomes infected at time t0, and then

proceed to infect c log(N) − bτ · tc additional nodes along a cured path in t

time steps, with the head of the infection not being cured:

p1 = µ ·
(

t

max(0, c log(N)− bτ · tc − 1)

)
µc log(N)−bτ ·tc(1− β)t.

Let us now sum over all time steps t, to get the probability p2 that an infection

reaches Asus with exactly d infections, starting from one time step:

142

p2 = µ ·
∞∑

t=
c log(N)

1+τ

(
t

max(0, c log(N)− bτ · tc − 1)

)
µc log(N)−bτ ·tc(1− β)t

≤ µ ·
∞∑

t=
c log(N)

1+τ

(
t

c log(N)− 1

)
(c log(N))!

(c log(N)− bτ · tc)!
t!

(t+ τt)!

· µc log(N)−bτ ·tc(1− β)t

≤ µ ·
∞∑

t=
c log(N)

1+τ

(
t

c log(N)− 1

)(
c log(N)

t+ bτtc

)bτtc
µc log(N)−bτ ·tc(1− β)t

≤ µ ·
∞∑

t=c log(N)

(
t

c log(N)− 1

)
µc log(N)−τ ·t(1− β)t

= µ ·
∞∑
t′=0

(
c log(N)− 1 + t′

c log(N)− 1

)
µc log(N)

(
1− β
µτ

)c log(N)−1+t′

= µc log(N)+1 ·
(

1− β
µτ

)c log(N)−1
1(

1−
(

1−β
µτ

))c log(N)+1

∼τ→0 τ
c log(N)+1 · 1c log(N)−1 1(

1−
(

1−c1·τ
ττ

))c log(N)
+ o(τ)

∼τ→0
τ c log(N)+1

(c1τ)c log(N)
+ o(τ)

∼τ→0
τ

c
c log(N)
1

+ o(τ)

∼τ→0
τ

N c·log(c1)
+ o(τ),

where we have used that
(
c log(N)
t+bτtc

)
< 1, that µ < 1, so µ−bτ ·tc ≤ µ−τ ·t, that

∞∑
k=0

(
m+ k

k

)
ak =

1

(1− a)m+1
when |a| < 1, and that τ τ →τ→0 1.

Now, if we select a starting node ns and an end node ne, there is only

one path between them in a tree. Such an infection can start 1
τ

times during

143

one epoch. We can therefore apply a union bound:

P(Case2) ≤
1
τ∑

t0=1

∑
ns,ne

p2

≤ N2

τ
· p2

≤ 1

N c·log(c1)−2
.

A.1.4 Combining the results for all time steps

At each epoch, the probability of failure is upper bounded by P(Case1)+

P(Case2). The probability of failing during one iteration, which lasts N +

c log(N) epochs, is therefore:

P(OneIterationFail) ≤ (N + c log(N)) · (P(Case1) + P(Case2))

≤ 2N · (1

N c·log(c1)−2
+

1

N1+c2
).

Therefore, if we choose c2 = 1, and c1 = e
4
c , we have:

P(OneIterationFail) ≤ 2N · (1

N4−2
+

1

N1+1
)

≤ 2

N
.

We have, therefore, an upper bound, as stated in Theorem 3.2.2. We

repeat here, and complete the proof.

Theorem 3.2.2. In the Blind Curing setting, for all c > 0, we can cure the

binary tree in expected linear time with budget O(e
4
c ·N c).

144

Proof. If we choose c2 = 1, and c1 = e
4
c , we have:

P(OneIterationFail) ≤ 2N · (1

N4−2
+

1

N1+1
)

≤ 2

N
.

Therefore, with budget e
4
c ·N c + log(N), for all c > 0:

E[Tcured] ≤ N + c log(N)

1− 2
N

≤ 4N.

A.2 Numerical experiments

In this section, we add some numerical experiments to illustrate the

difficulty of the problem. We introduce two curing strategies: Naive Curing,

which cures randomly a subset of nodes which signal themselves as infected

(they raise a flag), and the strategy from Section A.1, Blind Protection, which

prevents the infection from spreading by curing every node near the infected

set. We hope these two strategies can provide insight into the difficulty of

curing the complete binary tree in our model.

It is important to understand that the results we present are strategy-

specific, which means better results could possibly be achieved with better

strategies. Devising optimal strategies is however outside of the scope of this

work.

145

A.2.1 Impact of the lack of information

In this section, we illustrate the dramatic impact of the lack of informa-

tion on the Naive Curing strategy. In the following experiment, we consider a

binary tree on 31 nodes. We use a budget r = 16 > N
2

. If pε is the probability

of error, at each time step, an infected node raises a flag with probability 1−pε,

and a susceptible node raises a flag with probability pε. We set the size of a

time step to be τ = 0.1.

Figure A.1: Time to cure as a function of the probability of error for the Naive
Curing strategy.

The results can be seen in Figure A.1. The time to cure increases faster

than exponentially with the probability of error. We can see that even with

10% of error, it takes more than 3500 time steps with budget r = N
2

on 31

nodes.

146

A.2.2 Impact of size of the graph

We now consider the strategy described in Appendix A.1. For the pur-

pose of these experiments, keeping the same notation as the previous section,

we set c1 = 10 (this is the budget for every node which we ”protect”), and

c2 = 1 (we cure any new node with budget (1 + c2) log(N)). We still have

τ = 0.1. For this experiment, we investigate the time it takes to cure the

graph for a budget equal to different exponents of the number of nodes.

Figure A.2: Time to cure as a function of the number of nodes for the Blind
Protection strategy. The plots are the average of 20 runs.

The results are shown in Figure A.2. As theory predicts, the time to

cure increases more slowly than 4 · N , where N is the number of nodes for

budget r = O(N c), for all c > 0 constant.

As a reminder, in the Blind Curing setting, it is impossible to cure

the complete binary tree in less than superpolynomial time for budget r =

O(logα(N)), for all α > 0 constant.

147

Appendix B

Uncertainty about when nodes are infected

B.1 Bidirectional tree

We include here the full calculations for learning the weights of the

bidirectional tree.

Proposition B.1.1. If we know (i, j) is an edge in the original tree, then the

probability of infection along this edge is given by:

pij =
fi<j · s0 − fj<i · s2

gi,Cj · (s
2
0 − s2

2) + fi<j · s0 − fj<i · s2

.

Proof. According to Lemma 4.2.8, we have:

fi<j = P
Cj
(→ i) · pij · s0 + P

Ci
(→ j) · pji · s2

gi,Cj = P
Cj
(→ i) · (1− pij)

fj<i = P
Ci
(→ j) · pji · s0 + P

Cj
(→ i) · pij · s2

gj,Ci = P
Ci
(→ j) · (1− pji).

We have 4 second-order equations, with 4 unknowns: pij, pji, P
Cj
(→ i) and

148

P
Ci
(→ j). We solve it:

fi<j + fj<i = (P
Cj
(→ i) · pij + P

Ci
(→ j) · pji) · (s0 + s2)

fi<j − fj<i = (P
Cj
(→ i) · pij − P

Ci
(→ j) · pji) · (s0 − s2)

=⇒ P
Cj
(→ i) · pij =

1

2

(
fi<j + fj<i
s0 + s2

+
fi<j − fj<i
s0 − s2

)
=
fi<j · s0 − fj<i · s2

s2
0 − s2

2

P
Cj
(→ i) = gi,Cj + P

Cj
(→ i) · pij

= gi,Cj +
fi<j · s0 − fj<i · s2

s2
0 − s2

2

=⇒ pij =
P
Cj
(→ i) · pij
P
Cj
(→ i)

pij =
fi<j · s0 − fj<i · s2

gi,Cj · (s
2
0 − s2

2) + fi<j · s0 − fj<i · s2

.

Lemma B.1.2. With M = N2

ε2
log
(

6
δ

) ((s20−s22+s0+s2)pmax+s0+s2)
2

(s20−s22)2 samples, with

probability at least 1− δ, we have:

|p̂ij − pij| ≤ ε.

Proof. Using Hoeffding’s inequality:

P(|f̂i<j − fi<j| > ε1) ≤ 2e−2Mε21 ,

P(|f̂j<i − fj<i| > ε1) ≤ 2e−2Mε21 ,

P(|ĝi,Cj − gi,Cj| > ε1) ≤ 2e−2Mε21 .

149

Choosing M = 1
ε21

log
(

6
δ

)
, we have that with probability at least 1− δ, all the

following hold:

|f̂i<j − fi<j| ≤ ε1,

|f̂j<i − fj<i| ≤ ε1,

|ĝi,Cj − gi,Cj| ≤ ε1.

Hence, with probability at least 1− δ, we have:

p̂ij =
f̂i<j · s0 − f̂j<i · s2

ĝi,Cj · (s
2
0 − s2

2) + f̂i<j · s0 − f̂j<i · s2

≤ (fi<j + ε1) · s0 − (fj<i − ε1) · s2

(gi,Cj − ε1) · (s2
0 − s2

2) + (fi<j − ε1) · s0 − (fj<i + ε1) · s2

=
fi<j · s0 − fj<i · s2 + ε1(s0 + s2)

gi,Cj · (s
2
0 − s2

2) + fi<j · s0 − fj<i · s2 − ε1(s2
0 − s2

2 + s0 + s2)

= pij
1

1− ε1(s20−s22+s0+s2)

g
i,Cj
·(s20−s22)+fi<j ·s0−fj<i·s2

+ ε1
s0 + s2

gi,Cj · (s
2
0 − s2

2) + fi<j · s0 − fj<i · s2

+ o(ε1)

= pij

(
1 +

ε1(s2
0 − s2

2 + s0 + s2)

gi,Cj · (s
2
0 − s2

2) + fi<j · s0 − fj<i · s2

)
+ ε1

s0 + s2

gi,Cj · (s
2
0 − s2

2) + fi<j · s0 − fj<i · s2

+ o(ε1)

p̂ij − pij ≤ ε1
(s2

0 − s2
2 + s0 + s2)pmax

gi,Cj · (s
2
0 − s2

2) + fi<j · s0 − fj<i · s2

+ ε1
s0 + s2

gi,Cj · (s
2
0 − s2

2) + fi<j · s0 − fj<i · s2

+ o(ε1).

Using the results from Lemma 4.2.8, we have:

fi<j = P
Cj
(→ i) · pij · s0 + P

Ci
(→ j) · pji · s2,

gi,Cj = P
Cj
(→ i) · (1− pij).

150

We use it to simplify the denominator:

denominator = gi,Cj · (s
2
0 − s2

2) + fi<j · s0 − fj<i · s2

=
(
P
Cj
(→ i) · (1− pij)

)
· (s2

0 − s2
2)

+
(
P
Cj
(→ i) · pij · s0 + P

Ci
(→ j) · pji · s2

)
· s0

−
(
P
Ci
(→ j) · pji · s0 + P

Cj
(→ i) · pij · s2

)
s2

= P
Cj
(→ i) · (s2

0 − s2
2)

≥ s2
0 − s2

2

N
.

Plugging back above:

p̂ij − pij ≤ ε1
(s2

0 − s2
2 + s0 + s2)pmax

gi,Cj · (s
2
0 − s2

2) + fi<j · s0 − fj<i · s2

+ ε1
s0 + s2

gi,Cj · (s
2
0 − s2

2) + fi<j · s0 − fj<i · s2

+ o(ε1)

≤ ε1N
(s2

0 − s2
2 + s0 + s2)pmax
s2

0 − s2
2

+ ε1N
s0 + s2

s2
0 − s2

2

+ o(ε1).

By symmetry, we obtain:

|p̂ij − pij| ≤ ε1N
(s2

0 − s2
2 + s0 + s2)pmax + s0 + s2

s2
0 − s2

2

+ o(ε1).

By choosing ε1 = ε
N

s20−s22
(s20−s22+s0+s2)pmax+s0+s2

, we therefore have:

With M = N2

ε2
log
(

6
δ

) ((s20−s22+s0+s2)pmax+s0+s2)
2

(s20−s22)2 samples, with probability at

least 1− δ, we have |p̂ij − pij| ≤ ε.

151

B.2 Bounded-degree graphs

B.2.1 Solving the system

Lemma B.2.1. Let ∆ = (s2
0 − s2

2)
2−4(Vjis2−Vijs0)(Vijs2−Vjis0). We have:

∆ ≥ (s2
0 − s2

2)2 (1− pmax)2

1 + p2
max

.

Proof. Finding a lower bound for ∆ can be achieved through minimizing ∆,

or maximizing (Vjis2 − Vijs0)(Vijs2 − Vjis0). We want to solve:

maximize
Vij ,Vji

(Vjis2 − Vijs0)(Vijs2 − Vjis0)

subject to Vij =
pijs0 + pjis2

1 + pijpji
,

Vji =
pjis0 + pijs2

1 + pijpji
,

pij ≥ 0,

pmax − pij ≥ 0,

pji ≥ 0,

pmax − pji ≥ 0.

To do so, we introduce Lagrangian multipliers. By replacing Vij and Vji with

their actual value, the optimization problem above only has affine constraints,

so it satisfies the linearity constraint qualification for the Karush-Kuhn-Tucker

conditions. In other words, all the partial derivatives of the Lagrangian are

152

equal to 0 for an optimal point.

L = L(Vij, Vji, pij, pji, λ1, λ2, µ1, µ2, µ3, µ4)

= (Vjis2 − Vijs0)(Vijs2 − Vjis0)

− λ1(vij(1 + pijpji)− pijs0 + pjis2)

− λ2(vji(1 + pijpji)− pjis0 + pijs2)

− µ1pij − µ2(pmax − pij)

− µ3pji − µ4(pmax − pji).

We calculate the gradients of L.

∂L

∂Vij
= Vji(s

2
0 + s2

2)− 2Vijs0s2 − λ1(1 + pijpji),

∂L

∂Vji
= Vij(s

2
0 + s2

2)− 2Vjis0s2 − λ2(1 + pijpji),

∂L

∂pij
= −λ1(Vijpji − s0)− λ2(Vjipji − s2)− µ1 + µ2,

∂L

∂pji
= −λ1(Vijpij − s2)− λ2(Vjipij − s0)− µ3 + µ4.

From now on, we find the set X0 of points for which all the partial derivatives

are null. We know the solution of the maximization problem is the point of

X0 which maximizes the objective function.

Let us assume an interior point solution exists. For this point, all the

gradients of L are equal to 0. Since it is an interior point, we also have

µ1 = µ2 = µ3 = µ4 = 0 by complementary slackness. Solving this system, we

153

obtain:

λ1 = (s2
0 − s2

2)
pjis0 − pijs2

(1 + pijpji)2
,

λ2 = (s2
0 − s2

2)
pijs0 − pjis2

(1 + pijpji)2
.

Plugging this in above, the condition ∂L
∂pij

= 0 becomes pijpji(1 − pji) = 0.

However, this is impossible for an interior point, since 0 < pij, pji < pmax < 1.

Therefore, the extrema of ∆ are attained when at least one constraint is active.

We notice that if the conditions pij = 0 or pji = 0 are active, then

(Vjis2 − Vijs0)(Vijs2 − Vjis0) = 0. Let us suppose (without loss of generality,

by symmetry of the problem) that we have pij = pmax. The objective function

is then increasing in pji. Therefore, ∆ is minimized when pij = pji = pmax,

which implies vij = Vji = pmax(s0+s2)
1+p2

max
. In this case:

∆ ≥ (s2
0 − s2

2)2 − 4V 2
ij(s0 − s2)2

≥ (s2
0 − s2

2)2 − 4

(
pmax(s0 + s2)

1 + p2
max

)2

(s0 − s2)2

≥ (s2
0 − s2

2)2

[
1− 4

pmax
1 + p2

max

]
≥ (s2

0 − s2
2)2 (1− pmax)2

1 + p2
max

.

This expression is always positive, which is what we wanted.

Theorem B.2.2. For any graph, for any noise distribution having finite val-

ues, we can learn the weights of all the edges of the graph. In particular, we

154

can compute a quantity which converges to the true weight of each edge:

p̂ij =
2(V̂jis2 − V̂ijs0)

(s2
0 − s2

2) +
√

(s2
0 − s2

2)
2 − 4(V̂jis2 − V̂ijs0)(V̂ijs2 − V̂jis0)

.

Proof.

V̂ij →M→∞ Vij

:=
pij · s0 + pji · s2

1 + pij · pji
pji =

Vij − pij · s0

s2 − Vij · pij

We can plug this in Vji:

Vji =
pji · s0 + pij · s2

1 + pij · pji
Vji

[
1 + pij ·

Vij − pij · s0

s2 − Vij · pij

]
=
Vij − pij · s0

s2 − Vij · pij
· s0 + pij · s2

After some shuffling around, we obtain the second-degree equation:

Vjis2 − Vijs0 +
(
s2

0 − s2
2

)
pij + (Vijs2 − Vjis0) p2

ij = 0

We recall that by definition, s0 ≥ s2. We also notice that if pij = q1 and

pji = q2 is a pair of solutions of this system, then pij = 1
q2

and pji = 1
q1

forms

the other pair of solution, which implies there is uniqueness of solutions in

[0, pmax]. Since the real probabilities of infection satisfy this system, we also

know the solution exists. Let ∆ = (s2
0 − s2

2)
2 − 4(Vjis2 − Vijs0)(Vijs2 − Vjis0).

155

The only solution of this system in [0, pmax] is:

pij =
− (s2

0 − s2
2) +
√

∆

2(Vijs2 − Vjis0)

=
(s2

0 − s2
2)

2 − (s2
0 − s2

2)
2 − 4(Vjis2 − Vijs0)(Vijs2 − Vjis0)

2(Vjis0 − Vijs2)
(

(s2
0 − s2

2) +
√

∆
)

=
2(Vjis2 − Vijs0)

(s2
0 − s2

2) +
√

∆

B.2.2 Sample complexity

Proposition B.2.3. As the number of cascades M goes to infinity, the esti-

mators below tend to the following limit:

ĥ2
i,j →M→∞

1

N
(pij + pji)

∏
k 6=i,j

(1− pik)(1− pjk)

f̂ 2
i<j →M→∞

1

N
(pij · s0 + pji · s2)

∏
k 6=i,j

(1− pik)(1− pjk)

ê1
i →M→∞

1

N
(1− pij)

∏
k 6=i,j

(1− pik)

156

Proof. Using the law of large numbers:

f̂ 2
i<j →M→∞ E[f̂ 2

i<j]

= P(i source, infects j, no other infections, delay 0)

+ P(j source, infects i, no other infections, delay 2)

=
1

N
pij
∏
k 6=i,j

(1− pik)
∏
k 6=i,j

(1− pjk) · s0

+
1

N
pji
∏
k 6=i,j

(1− pjk)
∏
k 6=i,j

(1− pik) · s2

=
1

N
(pij · s0 + pji · s2)

∏
k 6=i,j

(1− pik)(1− pjk).

In the same vein, we have:

ĥ2
i,j →M→∞ E[ĥ2

i,j]

= P(i source, infects j, no other infections)

+ P(j source, infects i, no other infections)

=
1

N
(pij + pji)

∏
k 6=i,j

(1− pik)(1− pjk)

ê1
i →M→∞ E[ê1

i]

= P(i source, no other infections)

=
1

N

∏
k 6=i

(1− pik)

=
1

N
(1− pij)

∏
k 6=i,j

(1− pik).

Proposition B.2.4. With probability 1 − δ
N2 , with M = samples, we can

estimate Vij with precision εV .

157

Proof. As in Proposition 4.2.11, we use Hoeffding’s inequality:

P(|f̂ 2
i<j − f 2

i<j| > ε1) ≤ 2e−2Mε21 ,

P(|ĥ2
i,j − h2

i,j| > ε1) ≤ 2e−2Mε21 ,

P(|ê1
i − e1

i | > ε1) ≤ 2e−2Mε21 ,

P(|ê1
j − e1

j | > ε1) ≤ 2e−2Mε21 .

We use this to bound above Vij:

V̂ij =
f̂ 2
i<j

ĥ2
i,j +N · ê1

i · ê1
j

≤ f 2
i<j + ε1

h2
i,j + ε1 +N · (e1

i + ε1) · (e1
j + ε1)

= Vij
1 + ε1

f2
i<j

1 +
ε1+Nε1(e1i+e

1
j)

h2
i,j+Ne

1
i e

1
j

= Vij

[
1 +

ε1
f 2
i<j

+ ε1
1 +N(e1

i + e1
j)

h2
i,j +Ne1

i e
1
j

+ o(ε1)

]
We bound below the denominators:

f 2
i<j ≥

1

N
(pijs0 + pjis2)(1− pmax)2d

≥ pmins2

N
(1− pmax)2d

h2
i,j +Ne1

i e
1
j ≥

1

N
(1 + pijpji)(1− pmax)2d

≥ 1

N
(1− pmax)2d

158

We bound above the numerator:

N(e1
i + e1

i) = N

(
1

N

∏
k 6=i

(1− pik) +
1

N

∏
k 6=j

(1− pjk)
)

≤ N

(
1

N
+

1

N

)
≤ 2.

Plugging in above:

V̂ij = Vij

[
1 +

ε1
f 2
i<j

+ ε1
1 +N(e1

i + e1
j)

h2
i,j +Ne1

i e
1
j

+ o(ε1)

]
≤ Vij

[
1 +

ε1
pmins2
N

(1− pmax)2d
+

ε1(1 + 2)
1
N

(1− pmax)2d
+ o(ε1)

]
.

Using Vij ≤ 1, and by symmetry:

|V̂ij − Vij| = ε1
N

(1− pmax)2d

[
1

pmins2

+ 3

]
+ o(ε1)

=≤ ε1
N

(1− pmax)2d

[
1 + 3pmins2

pmins2

]
+ o(ε1)

≤ ε1
4N

pmins2(1− pmax)2d
+ o(ε1).

Therefore, by union bound, and by choosing ε1
4N

pmins2(1−pmax)2d = εV , and setting

2e−2Mε21 = δ
3N2 , we obtain:

With M = 1
ε2V

16N2

p2
mins

2
2(1−pmax)4d

2 log(3N)−log(δ)
2

samples, we can guarantee |V̂ij −

Vij| ≤ εV with probability at least 1− δ
N2 .

Proposition B.2.5. Assuming we can estimate Vij within precision εV , then

we can estimate pij within precision ε = 6εV (1+p2
max)

(s20−s22)2(1−pmax)2 .

159

Proof. If we know |V̂ij − Vij| < εV and |V̂ji − Vji| < εV :

p̂ij =
2(V̂jis2 − V̂ijs0)

(s2
0 − s2

2) +
√

(s2
0 − s2

2)
2 − 4(V̂jis2 − V̂ijs0)(V̂ijs2 − V̂jis0)

≤ 2(Vjis2 − Vijs0) + 2εV (s0 + s2)

(s2
0 − s2

2)
2

+
√

∆− 4εV (s0 + s2)2(Vij + Vji)
.

We recall s0 + s2 ≤ 1, Vij ≤ 1, pij ≤ 1, and 1 + p2
max ≤ ∆ ≤ 1 (Lemma 4.3.10).

Hence:

p̂ij ≤
2(Vjis2 − Vijs0) + 2εV

(s2
0 − s2

2)
2

+
√

∆
√

1− 8 εV
∆

≤ pij

1 +
4εV√

∆
(

(s2
0 − s2

2)
2

+
√

∆
)
+

2εV

(s2
0 − s2

2)
2

+
√

∆
+ o(εV)

≤ pij +
6εV
∆
.

By symmetry, and using the bound on ∆ stated above, we conclude that if

we know Vij and Vji up to precision εV , we know pij up to precision ε =

6εV (1+p2
max)

(s20−s22)2(1−pmax)2 .

Theorem B.2.6. In the limited-noise setting, with probability at least 1 − δ,

with M = O
(

e4pmax(d+1)

p2
mins

2
2(s20−s22)4

N2

ε2
log
(
N
δ

))
samples, we can learn the weights of

any bounded-degree graph up to precision epsilon.

Proof. With probability at least 1− δ
N2 , using

M = 1
ε2V

16N2

p2
mins

2
2(1−pmax)4d

2 log(3N)−log(δ)
2

samples, we can guarantee |V̂ij−Vij| ≤ εV

160

with probability at least 1− δ
N2 samples, knowing 1

εV
= 6(1+p2

max)

ε(s20−s22)2(1−pmax)2 . This

gives us a sample complexity of:

M ≥ 18

ε2(s2
0 − s2

2)4(1− pmax)4(d+1)
N2

[
4

pmins2

]2

log

(
9N2

δ

)
≥ 1152 · e4pmax(d+1)

p2
mins

2
2(s2

0 − s2
2)4

N2

ε2
log

(
9N2

δ

)
= O

(
e4pmax(d+1)

p2
mins

2
2(s2

0 − s2
2)4

N2

ε2
log

(
N

δ

))
.

161

Appendix C

Uncertainty about what is infecting nodes

C.1 Necessary Conditions

C.1.1 We need at least three edges

Let G = (V,E1 ∪ E2) be the union of the graphs from both mixtures.

In this subsection, we prove it is impossible to learn the weights of E1 and E2

if G has less than three edges:

One edge: For a graph on two nodes, we have already seen that the cascade

distribution are identical if p12 = β = 1− q12, for any value of β, which proves

the problem is not solvable.

Two edges: When we have two nodes and two edges, we can without loss

of generality assume that node 1 is connected to node 2 and node 3. Then, if:

• p12 = β

• q12 = 1− β

• p13 =
1
2
−β

2
+ 1

4
1
2
−β

• q13 =
1
4
−β

2
1
2
−β

162

The cascade distribution is identical for any value of β < 1
2
. By simple calcu-

lations, we can show the following,

• Fraction of cascades with only node 1 infected: 1
12

.

• Fraction of cascades with only node 2 infected: 1
6
.

• Fraction of cascades with only node 3 infected: 1
6
.

• Fraction of cascades where 3 infected 1, but 1 did not infect 2: 1
12

.

• Fraction of cascades where 3 infected 1, 1 infected 2: 1
12

.

• Fraction of cascades where 1 infected 3, but 1 did not infect 2: 1
12

.

• Fraction of cascades where 1 infected 2, but 1 did not infect 3: 1
12

.

• Fraction of cascades where 1 infected 3 and 2: 1
12

.

• Fraction of cascades where 2 infected 1, but 1 did not infect 3: 1
12

.

• Fraction of cascades where 2 infected 1, then 1 infected 3: 1
12

.

Since the distribution of cascades is the same for any value of β < 1
2
, the

problem is not solvable.

C.1.2 We need ∆-separation

Separability is necessary for the existence of sample efficient algorithms.

Specifically, we show that there exist (many) graphs where separability is

163

violated, and for which the sample complexity is exponential in the size of the

graph.

Indeed, consider a graph G composed of two subgraphs A and B, con-

nected by a path P of length d. Suppose the path has the same weight in both

mixtures, and for the edges e ∈ P , maxe∈P pe < 1. Similar to the disconnected

graph, we write Ai = A∩Ei, and Bi = B ∩Ei. To learn the graph completely

we need to differentiate between the mixture on E1 and E2, and the mixture

on E ′1 = A1 ∪ P ∪B2 and E ′2 = A2 ∪ P ∪B1.

The path P is not informative in the above differentiation as both the

mixture in the path have same weights. Therefore, we need at least one cascade

covering at least one edge in A and one edge in B. Since P is of length d,

this happens with probability at most e−Ω(d). To see such a cascade, we need

at least eΩ(d) cascades in expectation. Therefore, setting d = cN , for some

constant c > 0, we prove that exponential number of samples are necessary for

any algorithm to recover the graph if the ∆-separated Condition is violated.

C.1.3 Dealing with mixtures which are not ∆-separated

In this section, we show how to detect and deduce the weights of edges

which have the same weight across both component of the mixture. We assume

both G1 and G2 follow Conditions 1 and 2 if we remove all non-distinct edges,

and in particular remain connected.

Suppose there exists an edge (i, j) in the graph, such that pij = qij > 0.

Then in particular, there exists another edge connecting i to the rest of the

164

graph G1 through node k, such that pik 6= qik. Then:

Lemma C.1.1. Suppose G1 and G2 follow assumption 2 after removing all

non-distinct edges. We can detect and learn the weights of non-distinct edges

the following way:

If Xij > 0, and ∀k ∈ V, Xik > 0 =⇒ Yik,ij − XikXij = 0, then

pij = qij = Xij.

Proof. Since G1 is connected on three nodes or more even when removing edge

(i, j), we know there exists a node l such either l is connected to either i or k.

Therefore, either Yik,il−XikXil > 0 or Yki,kl−XkiXkl > 0. In both these cases,

we deduce pik 6= qik. This in turns allow us to detect that pij = qij. Once this

edge is detected, it is very easy to deduce its weight, since pij = Xij = qij by

definition.

165

C.2 Proofs for unbalanced mixtures

C.2.1 Estimators - proofs

Lemma C.2.1. Under Conditions 1 and 2, in the setting of infinite samples,

the weights of the edges for a line structure are then given by:

pua = Xua + sua

√√√√(Y
|
ua,ub −XuaXub)R|

Y
|
ub,bc −XuaXbc

, qua = Xua − sua

√√√√(Y
|
ua,ub −XuaXub)R|

Y
|
ub,bc −XuaXbc

,

pbc = Xuc + sbc

√√√√(Y
|
ub,bc −XuaXbc)R|

Y
|
ua,ub −XucXua

, qbc = Xuc − sbc

√√√√(Y
|
ub,bc −XuaXbc)R|

Y
|
ua,ub −XucXua

pub = Xub + sub

√
(Y
|
uc,ua −XucXua)(Y

|
ub,bc −XuaXbc)

R|
,

qua = Xua − sua

√
(Y
|
ua,ub −XucXua)(Y

|
ub,bc −XuaXbc)

R|
,

where R| = XuaXbc +
Z
|
ua,ub,bc−XuaY

|
ub,bc−XbcY

|
ua,ub

Xub
, and for sua ∈ {−1, 1}.

Proof. In this case, there is no edge between u and c, which implies that

puc = quc = 0. Hence, we cannot use a variation of the equation above for

finding the edges of a star structure without dividing by zero. Therefore, we

need to use Z
|
ua,ub,bc. Let R| = XuaXbc +

Z
|
ua,ub,bc−XuaY

|
ub,bc−XbcY

|
ua,ub

Xub
. We notice

166

a remarkable simplification:

R| = XuaXbc +
Z
|
ua,ub,bc −XuaY

|
ub,bc −XbcY

|
ua,ub

Xub

=
pua + qua

2
· pbc + qbc

2
+

puapubpbc+quaqubqbc
2

− pua+qua
2
· puapbc+quaqbc

2
− pbc+qbc

2
· puapua+quaqua

2
pub+qub

2

=
1

4
(puapbc + puaqbc + quapbc + quaqbc) +

2

pub + qub

[
puapubpbc + quaqubqbc

2

−1

4
(puapubpbc + quapubpbc + puaqubqbc + quaqubqbc)

−1

4
(puapubpbc + puapubqbc + quaqubpbc + quaqubqbc)

]
=

1

4
(puapbc + puaqbc + quapbc + quaqbc)−

1

2(pub + qub)
[quapubpbc + puaqubqbc + puapubqbc + quaqubqbc]

=
1

4
(puapbc + quapbc + quaqbc + puaqbc)−

1

2(pub + qub)
[(pub + qub)(quapbc + puaqbc)]

=
1

4
(puapbc + quaqbc − puaqbc − quapbc)

=
1

4
(pua − qua)(pbc − qbc)

We can then use the same proof techniques as in Lemma 5.4.1, and

finally obtain:

|pua − qua| =

√√√√√√(Y
|
ua,ub −XuaXua)

(
XuaXbc +

Z
|
ua,ub,bc−XuaY

|
ub,bc−XbcY

|
ua,ub

Xub

)
Y
|
ub,bc −XuaXbc

.

This gives us the required result.

C.2.2 Resolving Sign Ambiguity across Base Estimators

The following lemma handles the sign ambiguity (sua) introduced above.

167

Lemma C.2.2. Suppose Condition 1 and 2 are true, in the setting of infinite

samples, for edges (u, a), (u, b) with a 6= b for any vertex u with degree ≥ 2,

the sign pattern sua, sub satisfy the following relation.

suasub = sgn(Yua,ub −XuaXub).

Proof. From previous analysis, we have sgn(pua − qua) = sua. Therefore:

sgn(Yua,ub −XuaXub) = sgn

(
(pua − qua)(pub − qub)

4

)
= suasub.

Thus fixing sign of one edge gives us the signs of all the other edges

adjacent to a star vertex. A similar relationship can be established among the

edges of a line vertex, using sgn

(
XuaXbc +

Z
|
ua,ub,bc−XuaY

|
ub,bc−XbcY

|
ua,ub

Xub

)
.

C.2.3 Main algorithm - proofs

Here we will present in detail the sub-routines required by our algorithm

and the essential lemmas needed for our main proof.

LearnEdges This procedure detects the edges in the underlying graph using

the estimate Xuv.

168

Algorithm 4 LearnEdges
Input Vertex set V
Output Edges of the graph

1: Set E ← ∅
2: for u < v ∈ V do
3: Compute X̂uv

4: if X̂uv ≥ ε then
5: E ← E ∪ {(u, v)}
6: Return E

Claim 6. LearnEdges(V) outputs E such that E = E1 ∪ E2.

Proof. For each pair of nodes u, v ∈ V , if (u, v) ∈ E1 ∪ E2 then Xuv 6= 0 since

Xuv = 0 if and only if puv = quv = 0, which is equivalent to the edge (u, v) not

belonging in the mixture.

LearnStar This procedure returns the weights of the outgoing edges of a

star vertex using the star primitive discussed before.

Algorithm 5 LearnStar

Input Star vertex u ∈ V , edge set E, weights W
Output Weights of edges adjacent to u

1: Use star primitive with star vertex u and learn all adjacent edges weights
W ∗.

2: if W = ∅ then
3: Fix sign of any edge and ensure sign consistency.
4: else
5: Set v ∈ V such that (u, v) ∈ W .
6: Use suv to remove sign ambiguity

7: Return W ∗.

169

Lemma C.2.3. If deg(u) ≥ 3, LearnStar(u, S,W) recovers pua, qua for all

a such that (u, a) ∈ E.

Proof. The proof follows from using Lemma 5.4.1 on star vertex u (degree of

u ≥ 3) and using Lemma C.2.2 to resolve sign ambiguity through fixing an

edge or suv ((u, v) ∈ W hence know sign).

LearnLine This procedure returns the weights of the edges of a line a− b−

c− d rooted at vertex b of degree 2 using the line primitive discussed before.

Algorithm 6 LearnLine

Input Line a− b− c− d with deg(b) = 2, edge set E, weights W
Output Weights of edges (a, b), (b, c), (c, d)

1: Use line primitive on a− b− c− d rooted at b and learn all edges weights
W |.

2: if W = ∅ then
3: Fix sign of any edge and ensure sign consistency.
4: else
5: Find edge e ∈ {(a, b), (b, c), (c, d)} such that e ∈ W .
6: Use se to remove sign ambiguity.

7: Return W |.

Lemma C.2.4. If deg(b) = 2, LearnLine(a, b, c, d, S,W) recovers pab, qab, pbc, qbc, pcd, qcd.

Proof. The proof follows from using Lemma 5.4.2 on line a− b− c− d rooted

at vertex b (degree of b = 2) and using Lemma C.2.2 to resolve sign ambiguity

by fixing an edge or using se.

170

Learn2Nodes This procedure chooses a pair of connected vertices in our

graph and outputs the weights of all outgoing edges of each of the two vertices.

We initialize our algorithm using this procedure.

Algorithm 7 Learn2Nodes

Input Vertex set V , Edge Set E
Output Set of 2 vertices V , Weight of all edges adjacent to the vertices

W

1: W = ∅
2: Set u = arg maxa∈V deg(a)
3: Set v = arg mina∈V,(u,a)∈E deg(a)
4: if deg(u) ≥ 3 then
5: W ← LearnStar(u,E,W)
6: if deg(v) = 3 then
7: W ← W ∪ LearnStar(v, E,W)
8: else if deg(v) = 2 then
9: Let t ∈ V be such that (t, v) ∈ E and t 6= u

10: Let w ∈ V be such that (w, u) ∈ E and w 6= v, t
11: if v = t then
12: W ← W ∪ LearnLine(t, v, u, w,W)

13: else
14: w be such that (w, u) ∈ E and w 6= v
15: if deg(v) = 2 then
16: Let t ∈ V be such that (t, v) ∈ E and t 6= u
17: W ← LearnLine(w, u, v, t,W)
18: else
19: Let t ∈ V be such that (t, w) ∈ E and t 6= w
20: W ← LearnLine(v, u, w, t,W)

21: Return (u, v),W

Lemma C.2.5. Under Conditions 1 and 2, Learn2Nodes(V) outputs two

connected nodes (u, v) and weights of all edges adjacent to u, v.

Proof. We will break the proof down into cases based on the degree of chosen

171

vertices u, v as follows,

• deg(u) ≥ 3: By Lemma C.2.3, we can recover all the edges of u and fix

a sign.

– deg(v) ≥ 3: By Lemma C.2.3, we can recover all the edges of v and

ensure sign consistency by using the edge (u, v).

– deg(v) = 2: Since deg(v) = 2, there exists a vertex t 6= u such that

(t, u) ∈ E. Since deg(u) ≥ 3, there must exist w 6= t, u such that

(u,w) ∈ E. Now we have line primitive t−v−u−w with deg(v) = 2

and Lemma C.2.4 guarantees recovery of the edge weights.

– deg(v) = 1, then we already know all the edges adjacent to v.

• deg(u) = 2, deg(v) = 2: Since the max degree of the graph is 2 and it

is connected then it can either be a line or a cycle. There are at least

4 nodes in the graph, thus there exist w 6= v such that (w, u) ∈ E and

t 6= u,w such that (v, t) ∈ E. This gives a path w − u − v − t with

deg(u) = 2 and Lemma C.2.4 guarantees recovery of all edges.

• deg(u) = 2, deg(v) = 1: As in the previous case, the underlying graph

is a line. Therefore there exist path v − u− w − t and we can similarly

apply Lemma C.2.4 to guarantee recovery of all edges.

172

C.2.4 Finite sample complexity - proofs

In this section, we provide explicit proof for the sample complexity of

our algorithm. To do so, we bound below the number of cascades starting

on each node through Bernstein inequality, and use this number to obtain

concentration of all the estimators.

Definition C.2.1. Among M cascades, let Mu be the number of times node

u is the source.

Claim 7. With M samples, every node is the source of the infection at least

M
2N

times with probability at least 1− e− 3M
26N .

Proof. Among M cascade, the expectation of Mu is M
N

, since the source is

chosen uniformly at random among the N vertices of V . Since Mu can be

seen as the sum of Bernoulli variable of parameter 1
N

, we can use Bernstein’s

inequality to bound it below:

Pr(Mu <
M

2N
) = Pr

(
M

N
−Mu >

M

2N

)

≤ e
−

(M
2N)

2

2M 1
N

(1− 1
N

)+ 1
3
M
2N

≤ e−
3M
26N .

Claim 8. Let u either be a star vertex, with neighbors a, b and c, or be part of

a line structure rooted in u, with neighbors a, b, and c neighbor of b. Suppose

Mu ≥ M
2N

. Then with M = N
ε2

log
(

12N2

δ

)
samples, with probability at least

1− δ
6N2 , we can guarantee any of the following:

173

1. ∀r ∈ a, b, c,
∣∣∣X̂ur −Xur

∣∣∣ ≤ ε1.

2. ∀r 6= s ∈ {a, b, c}, |Ŷ ∗ur,us − Ŷ ∗ur,us| ≤ ε1.

3. |Ŷ |ua,ub − Ŷ
|
ua,ub| ≤ ε1 and |Ŷ |ua,ab − Ŷ

|
ua,ab| ≤ ε1.

4. |Ẑ |ua,ub,bc − Z
|
ua,ub,bc| ≤ ε1.

Proof. By Hoeffding’s inequality:

Pr(|X̂ur −Xur| > ε1) = Pr

(∣∣∣∣∣
Mu∑
m=1

1{u→r | u∈I0} −Mu ·Xur

∣∣∣∣∣ > Mu · ε1
)

≤ Pr

∣∣∣∣∣∣
M
2N∑
m=1

1{u→r | u∈I0} −
M

2N
·Xur

∣∣∣∣∣∣ > M

2N
· ε1


≤ 2e−2 M

2N
ε21 .

Therefore, the quantity above is smaller than δ
6N2 for M ≥ N

ε21
log
(

12N2

δ

)
. The

proof is almost identical for the other quantities involved.

Claim 9. If we can estimate Xua, Y
∗
ua,ub, Y

|
ua,ab and Z

|
ua,ub,bc within ε1, we can

estimate pua within precision ε = 41
p3
min∆2 · ε1.

Proof. If u is of degree three or more, we use a star primitive to estimate it.

174

Let a, b and c be three of its neigbors:

p̂ua = X̂ua + sua

√
(Ŷua,ub − X̂uaX̂ub)(Ŷua,uc − X̂uaX̂uc)

Ŷub,uc − X̂ubX̂uc

≤ Xua + ε1

+ sua

(
(Yua,ub −XuaXub + sua (1 +Xua +Xub) ε1)(Yua,uc −XuaXuc + sua [1 +Xua +Xuc) ε1)

Yub,bc −XubXuc − sua (1 +Xub +Xuc) ε1)

] 1
2

≤ Xua + ε1 + sua

√
(Yua,ub −XuaXub)(Yua,uc −XuaXuc)

Yub,uc −XubXuc

(1 + sua
3ε1
∆2

4

)2

1− sua 3ε1
∆2

4

 1
2

≤ pua + ε1 + pua

(
12

∆2
+

6

∆2

)
· ε1 + o(ε1)

≤ pua +
19

∆2
· ε1 + o(ε1).

Where we have used Yur,us−XurXus ≥ ∆2

4
, s2

ua = 1, pua ≤ 1, 1 ≤ 1
∆2 . We then

conclude by symmetry.

If u is of degree two, we use a line primitive to estimate it:

p̂ua = X̂ua + sua

√√√√√√(Ŷ
|
ua,ub − X̂uaX̂ub)

(
X̂uaX̂bc +

Ẑ
|
ua,ub,bc−X̂uaŶ

|
ub,bc−X̂bcŶ

|
ua,ub

X̂ub

)
Ŷ
|
ub,bc − X̂uaX̂bc

≤ Xua + ε1 + sua

√√√√√√(Y
|
ua,ub −XuaXub + 3suaε1)

(
XuaXbc + 2ε1 +

Z
|
ua,ub,bc−XuaY

|
ub,bc−XbcY

|
ua,ub+5suaε1

Xub−suaε1

)
Y
|
ub,bc −XuaXbc − 3suaε1

.

175

As shown in the proof of Lemma 5.4.2, we have:

Z
|
ua,ub,bc −XuaY

|
ub,bc −XbcY

|
ua,ub =

1

2
(pub + qub)(quapbc + puaqbc)

≥ p3
min

2(
XuaXbc +

Z
|
ua,ub,bc −XuaY

|
ub,bc −XbcY

|
ua,ub

Xub

)
=

1

4
(pua − qua)(pbc − qbc)

≥ ∆2

4
.

Therefore:

Z
|
ua,ub,bc −XuaY

|
ub,bc −XbcY

|
ua,ub + 5suaε1

Xub − suaε1
≤
Z
|
ua,ub,bc −XuaY

|
ub,bc −XbcY

|
ua,ub

Xub

1 + sua
5ε1
p3
min
2

1− sua ε1
pmin

2


≤
Z
|
ua,ub,bc −XuaY

|
ub,bc −XbcY

|
ua,ub

Xub

+ sua

(
12

p3
min

)
ε1 + o(ε1).

We also have:

XuaXbc + 2ε1 +
Z
|
ua,ub,bc −XuaY

|
ub,bc −XbcY

|
ua,ub + 5suaε1

Xub − suaε1
≤
(
XuaXbc +

Z
|
ua,ub,bc −XuaY

|
ub,bc −XbcY

|
ua,ub

Xub

)

·
(

1 + sua

14
p3
min

∆2

4

ε1

)
+ o(ε1).

176

Combining all the above inequalitites:

p̂ua ≤ Xua + ε1 + sua

√√√√√√(Y
|
ua,ub −XuaXub)

(
XuaXbc +

Z
|
ua,ub,bc−XuaY

|
ub,bc−XbcY

|
ua,ub

Xub

)
Y
|
ub,bc −XuaXbc

·


(

1 + 3ε1
∆2

4

)(
1 + sua

14

p3
min
∆2

4

ε1

)
1− sua 3ε1

∆2

4


1
2

≤ pua + ε1 + puas
2
ua

(
6

∆2
+

28

p3
min∆2

+
6

∆2

)
· ε1 + o(ε1)

≤ pua +
41

p3
min∆2

· ε1 + o(ε1).

We can conclude by symmetry.

Since 41
p3
min∆2 · ε1 ≥ 19

∆2 · ε1, we conclude that we can know pua within

precision ε = 41
p3
min∆2 · ε1 regardless of the degree of u.

Theorem C.2.6. Under Conditions 1 and 2,, with probability 1 − δ, with

M = N · 412

p6
min∆4·ε2 log

(
12N2

δ

)
= O

(
N
ε2

log
(
N
δ

))
samples, we can learn all the

edges of the mixture of the graphs within precision ε.

Proof. We pick ε = 41
p3
min∆2 ·ε1. We use Claim 7 to bound the quantity Pr(Mu <

M
2N

), and Claim 8 and 9 to bound Pr(|p̂ua − pua| > 41
p3
min∆2 · ε1|Mu ≥ M

2N
). For

177

(u, a) edge of the graph:

Pr(|p̂ua − pua| > ε) ≤ Pr(|p̂ua − pua| > ε|Mu <
M

2n
) · Pr(Mu <

M

2N
)

+ Pr(|p̂ua − pua| > ε|Mu ≥
M

2n
) · Pr(Mu ≥

M

2N
)

≤ 1 · 2e−2 M
2N + Pr(|p̂ua − pua| > ε|Mu ≥

M

2N
) · 1

≤ δ

12N2
+ Pr(|p̂ua − pua| >

41

p3
min∆2

· ε1|Mu ≥
M

2N
)

≤ δ

12N2
+

δ

12N2

≤ δ

6N2
.

We conclude by union bound on the six estimators involved for all the pairs

of nodes in the graph, for a total of at most 6N2 estimators.

C.2.5 Complete graph on three nodes

In this section, we prove it is possible to recover the weights of a mixture

on three nodes, as long as there are at least three edges in E1 ∪ E2. Since no

node is of degree 3, no node is a star vertex, and since there are less than four

nodes, no node is a line vertex, and we can not use the techniques developped

above for connected graphs on four vertices or more. However, we can still use

very similar proofs techniques. Suppose the vertices of V are 1, 2 and 3.

Definition C.2.2. We reuse the quantities defined for star vertices:

• For i, j distinct in {1, 2, 3}, X̂ij =
1
M

∑M
m=1 1i→j,i∈Im0

1
M

∑M
m=1 1i∈Im0

→M→∞ Xij =
pij+qij

2
.

178

• For i, j, k distinct in {1, 2, 3}, Yij,ik =
1
M

∑M
m=1 1i→j,i→k,i∈Im0

1
M

∑M
m=1 1u∈Im0

→M→∞

Yij,ik =
pijpik+qijqik

2
.

Even though neither 1, 2 or 3 is a star vertex, we can write the same

kind of system of equations as a star vertex would satisfy. In particular:

|pij − qij|
2

=

√
(Yij,ik −Xijik)(Yji,jk −XjiXjk)

Yki,kj −XkiXkj

.

Resolving the sign ambiguity as previoulsy (Lemma C.2.2), this finally

yields:

pij = Xij + sij

√
(Yij,ik −Xijik)(Yji,jk −XjiXjk)

Yki,kj −XkiXkj

,

qij = Xij + sij

√
(Yij,ik −Xijik)(Yji,jk −XjiXjk)

Yki,kj −XkiXkj

.

C.3 Lower Bounds

C.3.1 Directed lower bound

We consider the task of learning all the edges of any mixture of graphs

up to precision ε < ∆. To do so, we have to be able to learn a mixture on a

specific graph, which we present below.

179

4 2

3

1

5

6

7

N

Figure C.1: Lower-bound directed graph

The example we focus on is the directed graph of min-degree 3, com-

prised of a clique on 4 nodes, which we call nodes 1 to 4, and N − 4 other

nodes with 3 directed edges to nodes 1, 2 and 3. All edges have weight p in

E1, and p+ ∆ in E2.

We define a valid sample for edge (i, j) as a cascade during which i

became infected when j was not infected. Indeed, in this case, an infection

could happen along edge (i, j), and we can therefore gain information about

the weight of this edge. We first state a general claim:

Claim 10. We need at least Ω(1
∆2) valid samples for edge (i, j) to determine

the weights of this edge in the mixture.

Proof. Using Sanov’s theorem [70], and writing the Kullback–Leibler diver-

gence between p and q as D(p||q), we know we need at least Ω(D(p||p + ∆))

valid samples to determine whether the valid samples came from a random flip

of probability p, or a random flip of probability p+ ∆, which is an easier task

than computing both weights of the mixture.

180

Then, using standard Kullback–Leibler divergence bounds [21], we ob-

tain D(p||p+ ∆) ≥ 1
∆2 , which gives us the desired result.

We now combine this with Coupon collector’s result to obtain our lower

bound.

Claim 11. We need at least Ω
(
N log(N) + N log log(N)

∆2

)
cascades to obtain

enough valid samples for all the edges in the graph.

Proof. We notice that if we want to learn all edges in the graph, it implies

that we have to learn all the edges from the N − 4 nodes to node 1. How-

ever, if i is not part of the clique, any valid sample for such an edge (i, 1)

has to have i as its source. Having enough valid samples for each of these

edges is therefore equivalent to collecting Ω(1
∆2) copies of N − 4 distinct

coupons in the standard Coupon collector problem. Using results from [64, ?],

we need Ω((K log(K) + (d− 1) ·K · log log(K)) samples to obtain d copies

of each coupon when there are K distinct coupons in total, which is here

Ω
(
(N − 4) log(N − 4) + (1

∆2 − 1) · (N − 4) · log log(N − 4)
)

cascades. Using

standard approximation, we get the desired result.

Combining the results:

Theorem C.3.1. We need at least Ω
(
N log(N) + N log log(N)

∆2

)
cascades to

learn any mixture of directed graphs of minimum out-degree 3.

181

C.3.2 Undirected lower bound

We reuse a lot of the techniques in the previous subsection. This time,

we consider a simple line graph on N nodes, where for all 1 ≤ i ≤ N −1, node

i is connected to node i+ 1. Like in the previous example, the weights are all

p in G1, and all p+ ∆ in G2.

Reusing Claim 10, we now prove:

Claim 12. We need at least Ω
(
N
∆2

)
cascades to obtain enough valid samples

for edge (1,2).

Proof. To provide a valid sample, either:

• Node 1 is the source, which happens with probability P1 = 1
N

.

• Node 2 was infected, which happens with probability P2 ≤
N∑
i=2

1

N
pi−2
max ≤

1

N

1

1− pmax
.

Therefore, the probability of getting a valid sample is smaller than P1 + P2 ≤
1
N
· 2

1−pmax . Hence, we need at least Ω(1−pmax
2
· N · 1

∆2) = Ω
(
N
∆2

)
cascades to

obtain enough valid samples.

Since we need to learn at least edge (1, 2) to learn all the edges of this

graph:

Theorem C.3.2. We need at least Ω
(
N
∆2

)
cascades to learn any mixture of

undirected graphs.

182

a u

b

c

(a) A star vertex u for
a directed graph.

a u

b

(b) First structure to
ensure sign consistency.

a u

b

(c) Second structure to
ensure sign consistency.

Figure C.2: Structures for directed graphs of minimum out-degree three.

C.4 Directed graphs

C.4.1 Structures

Star vertex For directed graph of out-degree at least 3, every vertex is a

star vertex. This implies we can reuse the star vertex equations to learn the

weights of the whole neighborhood of each node. However, if we learn the

neighborhoods of node u in both graphs, which we call Nu
1 and Nu

2 , as well as

the neighbordhoods of node a, which we call Na
1 and Na

2, it is impossible to

recover from the star structure alone if Nu
1 and Na

1 are in the same mixture, or

if it is Nu
1 and Na

2 instead. We therefore use the two other structures in Figure

C.2 to ensure mixture consistency.

Mixture consistency Suppose we have learned the weights of all the edges

stemming from a, as well as all the weighted edges stemming from u, and

suppose there is no edge between a and b. The probability that a infected u,

which in turn infected b is:

P(a→ u→ b|a ∈ I0) =
paupub + qauqub

2
.

183

This gives us a way to decide whether Nu
1 and Na

1 are in the same mixture, or

if it is Nu
1 and Na

2 instead. Indeed, if we know pau ∈ Na
1, qau ∈ Na

2, and we also

know wub ∈ Nu
1 , w

′
ub ∈ Nu

2 , and we have an estimator Ŷau,ub for P(a → u →

b|a ∈ I0), then we can check whether Ŷau,ub ≈ pauwub+qauw
′
ub

2
, in which case Nu

1

belongs with Na
1, or whether Ŷau,ub ≈ pauw′ub+qauwub

2
, in which case Nu

2 belongs

in the with Na
1. We call this procedure CheckPath.

Similarly, if there is an edge between a and b, then:

P(a→ u→ b|a ∈ I0) =
pau(1− pab)pub + qau(1− qab)qub

2
.

This also allows us to ensure mixture consistency. We call this procedure

CheckTriangle.

Here is the final algorithm:

184

Algorithm 8 Learn the weights of directed edges
Input Vertex set V
Output Edge weights for the two epidemics graphs

1: E ← LearnEdges(V)
2: Select any first node v
3: W ← LearnStar(v, E,W)
4: S = {v}
5: while S 6= V do
6: Select a ∈ S, v ∈ V \S such that (a, u) ∈ E . v has out-degree at

least 3
7: N1,N2 ← LearnStar(u,E,W)
8: Select b 6= a neighbor of u . b exists because u os of degree at

least 3.
9: if (a, b) /∈ E then . Use first structure.

10: if CheckPath(v, u, b,W,N1,N2) then
11: W = {W1 ∪N1,W2 ∪N2}
12: else
13: W = {W1 ∪N2,W2 ∪N1}
14: else . Use second structure.
15: if CheckTriangle(v, u, b,W,N1,N2) then
16: W = {W1 ∪N1,W2 ∪N2}
17: else
18: W = {W1 ∪N2,W2 ∪N1}
19: S ← S ∪ {u}

return W

C.5 Unbalanced/Unknown Mixtures

In this section we provide the primitives required for LearnStar and

LearnLine, when the first mixture occurs with probability α and the second

mixture with probability (1− α).

Notations: In this section, to avoid clutter in notation we use i, j

185

and k to be all distinct unless mentioned otherwise. Also, let σ({a, b, c}) =

{(a, b, c), (b, c, a), (c, a, b)} denote all the permutations of a, b, and c.

Claim 13. If a and b are two distinct nodes of V1∩V2 such that (a, b) ∈ E1∩E2

then under general mixture model Xab = αpab + (1− α)qab.

Fuither, when the four nodes u, a, b and c forms a star graph (Fig. 5.3)

with u in the center under general mixture model

1) ∀i, j ∈ {a, b, c}, i, j 6= u, Yui,uj = αpuipuj + (1− α)quiquj,

2) Zua,ub,uc = αpuapubpuc + (1− α)quaqubquc.

Finally, when the four nodes u, a, b and c forms a line graph (Fig. 5.4)

under general mixture model

1) Y
|
ua,ub = αpuapub + (1− α)quaqub, 2) Y

|
ub,bc = αpubpbc + (1− α)qubqbc,

3) Z
|
ua,ub,bc = αpuapubpbc + (1− α)quaqubqbc.

The proof of the above claim is omitted as it follows closely the proofs

of Claim 3, 4, and 5.

C.5.1 Star Graph

We now present the following two lemmas which recover the weights

pui,and qui for all i ∈ {a, b, c} in the star graph (Fig. 5.3), and the general

mixture parameter α, respectively.

186

Lemma C.5.1 (Weights of General Star Graph). Under Conditions 1 and 2,

in the setting of infinite samples, for the star structure (u, a, b, c) with u as

the central vertex the weight of any edge (u, a) is given by:

pua = Xua + sua

√
1−α
α

√
(Yua,ub −XuaXub)(Yua,uc −XuaXuc)

Yub,uc −XubXuc

qua = Xua − sua
√

α
1−α

√
(Yua,ub −XuaXub)(Yua,uc −XuaXuc)

Yub,uc −XubXuc

where sua ∈ {−1, 1} and b, c ∈ N1(u) ∩N2(u) such that b, c 6= a, b 6= c.

Proof. We notice that for r 6= j ∈ {a, b, c}

(Yui,uj −XuiXuj) = (αpuipuj + (1− α)quiquj)− (αpui + (1− α)qui) (αpuj + (1− α)quj)

= α(1− α)(pui − qui)(puj − quj).

The rest of the proof follows the same steps as given in the proof of Lemma 5.4.1

with the above modification.

Lemma C.5.2 (Sign Ambiguity Star Graph). Under Conditions 1 and 2,

in the setting of infinite samples, for edges (u, a), (u, b) for the star struc-

ture (u, a, b, c) with u as the central vertex, the sign pattern sua, sub satisfy the

following relation.

subsua = sgn(Yua,ub −XuaXub).

Proof. The proof of the first statement follows the same logic as the proof of

Lemma C.2.2, after noting that sgn(α(1− α)) = 1 for α ∈ (0, 1).

187

C.5.2 Line Graph

We now present the recovery of parameters in the case of a line graph

with knowledge of α

Lemma C.5.3 (Weights of General Line Graph). Under Conditions 1 and 2,

in the setting of infinite samples, the weights of the edges (u, a), and (u, b) for

a line graph a−u− b− c can be learned in closed form (as given in the proof),

as a function of

(1) the mixture parameter α,

(2) estimators Xua, Xub, Xbc, Y
|
ua,ub, Y

|
ub,bc, and Z

|
ua,ub,bc,

(3) one variable sub ∈ {−1,+1}.

Proof. We first note that we have access to the following three relations

1) (Y
|
ua,ub −XuaXub) = α(1− α)(pua − qua)(pub − qub)

2) (Y
|
ub,bc −XubXbc) = α(1− α)(pub − qub)(pbc − qbc)

3) (Z
|
ua,ub,bc +XuaXubXbc −XuaY

|
ub,bc −XbcY

|
ua,ub)

= α(1− α)((1− α)pub + αqub)(pua − qua)(pbc − qbc).

The first two inequalities follow similar to Lemma 5.4.2. We derive the final

188

equality below.

Z
|
ua,ub,bc +XuaXubXbc −XuaY

|
ub,bc −XbcY

|
ua,ub

= αpuapubpbc + (1− α)quaqubqbc

− (αpua + (1− α)qua)((αpubpbc + (1− α)qubqbc)− (αpbc + (1− α)qbc)((αpuapub + (1− α)quaqub)

+ (αpua + (1− α)qua)(αpub + (1− α)qub)(αpbc + (1− α)qbc)

= α(1− α)2puapubpbc + α2(1− α)quaqubqbc

− α(1− α)2puapubqbc + α2(1− α)puaqubpbc − α(1− α)2quapubpbc

− α2(1− α)quaqubpbc + α(1− α)2quapubqbc − α2(1− α)puaqubqbc

= α(1− α)((1− α)pub + αqub)(pua − qua)(pbc − qbc)

Therefore, we obtain the following quadratic equation in pub and qub

(unlike the α = 1/2 case it cannot be easily reduced to a linear equation),

α(1− α)(pub − qub)2

((1− α)pub + αqub)
=

(Y
|
ua,ub −XuaXub)(Y

|
ub,bc −XubXbc)

(Z
|
ua,ub,bc +XuaXubXbc −XuaY

|
ub,bc −XbcY

|
ua,ub)

:= C
|
ub

Note that Xub = αpub + (1− α)qub, thus the above can be reduced to

α(1− α)(pub −Xub)
2/(1− α)2

(pub(1− 2α) + αXub)/(1− α)
= C

|
ub

p2
ub − 2

(
Xub + (1−2α)

2α
C
|
ub

)
pub = C

|
ubXub −X2

ub

pub = Xub + (1−2α)
2α

C
|
ub + sub

√(
(1−2α)

2α
C
|
ub

)2

+ 1−α
α
C
|
ubXub

qub = Xub − (1−2α)
2(1−α)

C
|
ub − sub

√(
(1−2α)
2(1−α)

C
|
ub

)2

+ α
1−αC

|
ubXub

We substitute in the above two equations θ and sα as defined below

α = 1
2
(1− sα

√
θ), (1− α) = 1

2
(1 + sα

√
θ), (1− 2α) = sα

√
θ.

189

From the substitution we obtain,

pub = Xub +
sα
√
θ(1+sα

√
θ)C
|
ub

(1−θ)

(
1 + sαsub

√
1 + (1−θ)Xub

θC
|
ub

)
qub = Xub − sα

√
θ(1−sα

√
θ)C
|
ub

(1−θ)

(
1 + sαsub

√
1 + (1−θ)Xub

θC
|
ub

)

Next we use pub, and qub to obtain pua, and qua. Specifically, we have

α(1− α)(pub − qub)(pua − qua) = (Y
|
ua,ub −XuaXub)

(pua − qua) =
4(Y

|
ua,ub −XuaXub)

sα
√
θ

(
1 + sαsub

√
1 + (1−θ)Xub

θC
|
ub

) .
Finally, we use the above relation to arrive at the required result.

pua = Xua +
2(1 + sα

√
θ)(Y

|
ua,ub −XuaXub)

sα
√
θ

(
1 + sαsub

√
1 + (1−θ)Xub

θC
|
ub

)
qua = Xua −

2(1− sα
√
θ)(Y

|
ua,ub −XuaXub)

sα
√
θ

(
1 + sαsub

√
1 + (1−θ)Xub

θC
|
ub

)

Lemma C.5.4 (Sign Ambiguity Line graph on 5 nodes). Under Conditions 1

and 2, in the setting of infinite samples, for a line structure a− u− b− c− d

the sign patterns sub and sbc satisfy the relation, subsbc = sgn(Y
|
ub,bc−XubXbc).

Proof. The proof is almost identical to the other sign ambiguity proofs.

190

C.5.3 Finite Sample Complexity

We start by observing that the Claim 7 still holds in the general case.

Claim 14. If we can estimate Xua, Y
∗
ua,ub, Y

|
ua,ab and Z

|
ua,ub,bc within ε1, we can

estimate pua and qua within precision ε = O (ε1/min(pmin,∆)5 min(α, 1− α)4).

Proof. The proof proceeds in a very similar manner as Claim9. Following the

derivations for p̂ua and q̂ua in the proof of Claim9, we can see that for the star

primitive all the computation carry over with a scaling of 4
α(1−α)

as we have

Y ∗ur,us −XurXus ≥ ∆2α(1− α) instead of ∆2/4.

The line primitive presents with increased difficulty as the estimator is

more complex. We first observe that α(1 − α)∆2 ≤ C
|
ub ≤ max(α, (1 − α)).

We recall that

(Z
|
ua,ub,bc +XuaXubXbc −XuaY

|
ub,bc −XbcY

|
ua,ub)

= α(1− α)((1− α)pub + αqub)(pua − qua)(pbc − qbc)

≥ min(α, 1− α)2pmin min(pmin,∆)2/2,

(Y
|
ua,ub −XuaXub) = α(1− α)(pua − qua)(pub − qub) ≥ min(α, 1− α) min(pmin,∆)2/2.

Let us assume the error in (Z
|
ua,ub,bc + XuaXubXbc − XuaY

|
ub,bc − XbcY

|
ua,ub) is

bounded as εd and the error in (Y
|
ua,ub −XuaXub)(Y

|
ub,bc −XubXbc) is bounded

as εn. We have εn ≤ 4ε1 and εd ≤ 3ε1 as all the estimators are assumed to

have error bounded by ε1.

191

Therefore, using |x/y − x̂/ŷ| ≤ x/y(δx/x+ δy/y) + O(δxδy),

|Ĉ |ub − C
|
ub| ≤ εc := O

(
εn

min(α,1−α)2 min(pmin,∆)4 + εd
min(α,1−α)2pmin min(pmin,∆)2

)
= O(ε1/min(α, 1− α)2 min(pmin,∆)4).

Using the above bound in the expression of pua we can obtain,

|p̂ua − pua| ≤ |X̂ua −Xua|+ (1−2α)
2α
|Ĉ |ua − C |ua|+ . . .

+
∣∣√((1−2α)

2α
Ĉ
|
ua

)2

+ (1−α)
α

Ĉ
|
uaX̂ua −

√(
(1−2α)

2α
C
|
ua

)2

+ (1−α)
α

C
|
uaXua

∣∣
≤ |X̂ua −Xua|+ (1−2α)

2α
|Ĉ |ua − C |ua|+ . . .

+

(
(1−2α)

2α

)2

|Ĉ |ua − C |ua|(Ĉ |ua + C
|
ua) + (1−α)

α
|Ĉ |uaX̂ua − C |uaXua|√(

(1−2α)
2α

C
|
ua

)2

+ (1−α)
α

C
|
uaXua

≤ ε1 + (1−2α)
2α

εc + 2
(1−α) min(pmin,∆)

(
2
(

(1−2α)
2α

)2

εc + (1−α)
α

(ε1 + εc)

)
+ o(ε1) + o(εc)

≤ O(ε1/min(pmin,∆)α(1− α)) + O(εc/min(pmin,∆)α2(1− α)) + o(ε1) + o(εc)

Therefore, using the estimate of εc we obtain,

|p̂ua − pua| ≤ O
(
ε1/min(pmin,∆)5αmin(α, 1− α)3

)
.

Switching α and (1− α) gives us the same bounds for |q̂ua − qua|.

In the above derivation we have used

√(
(1−2α)

2α
C
|
ua

)2

+ (1−α)
α

C
|
uaXua ≥

192

(1− α) min(pmin,∆)/2. We now derive the above inequality.

|
√(

(1−2α)
2α

C
|
ua

)2

+ (1−α)
α

C
|
uaXua| = |pua −Xua − (1−2α)

2α
C |ua|

= |(1− α)(pua − qua)− (1−2α)(1−α)(pua−qua)2

2((1−α)pua+αqua)
|

≥


(1− α) min(pmin,∆), (α ≥ 1/2 ∧ pua ≥ qua) ∨ (α < 1/2 ∧ pua < qua)

(1− α) min(pmin,∆)|1− (1−2α)
2(1−α)

|, (α < 1/2 ∧ pua ≥ qua)

(1− α) min(pmin,∆)|1− (2α−1)
2α
|, (α ≥ 1/2 ∧ pua < qua),

Finally, using union bound on all the estimators involved accross all

possible edges, we can obtain the error bound in the following Theorem C.5.5.

Theorem C.5.5. Suppose Condition 1 and 2 are true, there exists an al-

gorithm that runs on epidemic cascades over a mixture of two undirected,

weighted graphs G1 = (V,E1) and G2 = (V,E2), and recovers the edge weights

corresponding to each graph up to precision ε in time O(N2) and sample

complexity O
(
N logN
ε2∆4

)
for α = 1/2 and O

(
N logN

ε2∆10 min(α,1−α)8

)
for general α ∈

(0, 1), α 6= 1/2, where N = |V |.

193

Bibliography

[1] Imported from Combinatorial Pure Exploration with Continuous and

Separable Reward Functions and Its Applications (Extended Version)

http://arxiv.org/abs/1805.01685v1.

[2] Bruno Abrahao, Flavio Chierichetti, Robert Kleinberg, and Alessandro

Panconesi. Trace complexity of network inference. Proceedings of the

19th ACM SIGKDD international conference on Knowledge discovery and

data mining - KDD ’13, page 491, 2013.

[3] Edouard Amouroux, Stéphanie Desvaux, and Alexis Drogoul. Towards

virtual epidemiology: an agent-based approach to the modeling of h5n1

propagation and persistence in north-vietnam. In Pacific Rim Interna-

tional Conference on Multi-Agents, pages 26–33. Springer, 2008.

[4] Ery Arias-castro, Emmanuel J Candès, and Arnaud Durand. Detection of

an anomalous cluster in a network. The Annals of Statistics, 39(1):278–

304, 2011.

[5] Ery Arias-Castro, Emmanuel J. Candès, Hannes Helgason, and Ofer Zeitouni.

Searching for a trail of evidence in a maze. Annals of Statistics, 36(4):1726–

1757, 2008.

194

[6] Ery Arias-castro and S T Nov. Detecting a Path of Correlations in a

Network. pages 1–12.

[7] Sivaraman Balakrishnan, Martin J Wainwright, Bin Yu, et al. Statisti-

cal guarantees for the em algorithm: From population to sample-based

analysis. The Annals of Statistics, 45(1):77–120, 2017.

[8] Daniel Bernoulli and Sally Blower. An attempt at a new analysis of

the mortality caused by smallpox and of the advantages of inoculation to

prevent it. Reviews in medical virology, 14:275–288, 2004.

[9] Abhijit Bose, Xin Hu, Kang G Shin, and Taejoon Park. Behavioral

Detection of Malware on Mobile Handsets. In Proceedings of the 6th

International Conference on Mobile Systems, Applications, and Services,

MobiSys ’08, pages 225–238, New York, NY, USA, 2008. ACM.

[10] Daniel G Brown. How I wasted too long finding a concentration inequal-

ity for sums of geometric variables. Found at https://cs. uwaterloo. ca/˜

browndg/negbin. pdf, 6.

[11] A. Cayley. A theorem on trees. In Collected Mathematical Papers Vol.

13, pages 26–28. Cambridge University Press, 1897.

[12] Yudong Chen, Xinyang Yi, and Constantine Caramanis. Convex and

nonconvex formulations for mixed regression with two components: Mini-

max optimal rates. IEEE Transactions on Information Theory, 64(3):1738–

1766, 2017.

195

[13] Justin Cheng, Lada A. Adamic, P. Alex Dow, Jon Kleinberg, and Jure

Leskovec. Can Cascades be Predicted? In Proceedings of the 23rd inter-

national conference on World wide web (WWW’ 14), 2014.

[14] Edward Choi, Nan Du, Robert Chen, Le Song, and Jimeng Sun. Con-

structing disease network and temporal progression model via context-

sensitive hawkes process. In 2015 IEEE International Conference on

Data Mining, pages 721–726. IEEE, 2015.

[15] Thomas M Cover and Joy A Thomas. Elements of information theory.

John Wiley & Sons, 2012.

[16] Constantinos Daskalakis, Christos Tzamos, and Manolis Zampetakis. Ten

steps of em suffice for mixtures of two gaussians. In 30th Annual Con-

ference on Learning Theory, 2017.

[17] Michela Del Vicario, Alessandro Bessi, Fabiana Zollo, Fabio Petroni, An-

tonio Scala, Guido Caldarelli, H. Eugene Stanley, and Walter Quattro-

ciocchi. The spreading of misinformation online. Proceedings of the

National Academy of Sciences, page 201517441, 2016.

[18] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood

from Incomplete Data via the EM Algorithm. Journal ofthe Royal Sta-

tistical Society, 39(1):1–38, 1977.

[19] Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. List-decodable

robust mean estimation and learning mixtures of spherical gaussians. In

196

Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of

Computing, pages 1047–1060. ACM, 2018.

[20] Ming Dong, Bolong Zheng, Nguyen Quoc Viet Hung, Han Su, and Guohui

Li. Multiple rumor source detection with graph convolutional networks.

In Proceedings of the 28th ACM International Conference on Information

and Knowledge Management, pages 569–578, 2019.

[21] Sever S Dragomir and V Gluscevic. Some inequalities for the kullback-

leibler and x2- distances in information theory and applications. RGMIA

research report collection, 3(2):199–210, 2000.

[22] Kimon Drakopoulos, Asuman Ozdaglar, and John N. Tsitsiklis. An effi-

cient curing policy for epidemics on graphs. arXiv preprint arXiv:1407.2241,

(December):1–10, 2014.

[23] Kimon Drakopoulos, Asuman Ozdaglar, and John N. Tsitsiklis. A lower

bound on the performance of dynamic curing policies for epidemics on

graphs. (978):3560–3567, 2015.

[24] Kimon Drakopoulos, Asuman Ozdaglar, and John N. Tsitsiklis. When is

a network epidemic hard to eliminate? pages 1–17, 2015.

[25] Jalal Etesami, Negar Kiyavash, Kun Zhang, and Kushagra Singhal. Learn-

ing network of multivariate hawkes processes: A time series approach.

arXiv preprint arXiv:1603.04319, 2016.

197

[26] Giulia Fanti, Peter Kairouz, Sewoong Oh, Kannan Ramchandran, and

Pramod Viswanath. Rumor source obfuscation on irregular trees. In

Proceedings of the 2016 ACM SIGMETRICS International Conference

on Measurement and Modeling of Computer Science (SIGMETRICS’ 16

), pages 153–164. ACM, 2016.

[27] Giulia Fanti, Peter Kairouz, Sewoong Oh, Kannan Ramchandran, and

Pramod Viswanath. Hiding the Rumor Source. IEEE Transactions on

Information Theory, 63(10):6679–6713, 2017.

[28] Giulia Fanti, Peter Kairouz, Sewoong Oh, and Pramod Viswanath. Spy

vs. Spy: Rumor Source Obfuscation. Proceedings of the 2015 ACM

SIGMETRICS International Conference on Measurement and Modeling

of Computer Systems (SIGMETRICS’ 14), pages 271–284, 2015.

[29] Giulia Fanti, Peter Kairouz, Sewoong Oh, and Pramod Viswanath. Spy

vs. spy: Rumor source obfuscation. In ACM SIGMETRICS Performance

Evaluation Review, volume 43, pages 271–284. ACM, 2015.

[30] Mehrdad Farajtabar, Jiachen Yang, Xiaojing Ye, Huan Xu, Rakshit Trivedi,

Elias Khalil, Shuang Li, Le Song, and Hongyuan Zha. Fake News Miti-

gation via Point Process Based Intervention. In Proceedings of the 34th

International Conference on Machine Learning (ICML’ 17), 2017.

[31] Mehrdad Farajtabar, Jiachen Yang, Xiaojing Ye, Huan Xu, Rakshit Trivedi,

Elias Khalil, Shuang Li, Le Song, and Hongyuan Zha. Fake news mitiga-

198

tion via point process based intervention. arXiv preprint arXiv:1703.07823,

2017.

[32] Robert Gallager. Stochastic Processes: 9 - Random Walks, Large Devi-

ations, and Martingales. Stochastic Processes, 2013.

[33] Ayalvadi Ganesh, Laurent Massoulié, and Don Towsley. The effect of

network topology on the spread of epidemics. In INFOCOM 2005. 24th

Annual Joint Conference of the IEEE Computer and Communications

Societies. Proceedings IEEE, volume 2, pages 1455–1466. IEEE, 2005.

[34] Ken Goldberg, Theresa Roeder, Dhruv Gupta, and Chris Perkins. Eigen-

taste: A Constant Time Collaborative Filtering Algorithm. Information

Retrieval, 4(2):133–151, 2001.

[35] Manuel Gomez-rodriguez, Jure Leskovec, and Andreas Krause. Inferring

Networks of Diffusion and Influence. In ACM Transactions on Knowledge

Discovery from Data (TKDD’ 12), volume 5, 2012.

[36] Manuel Gomez-Rodriguez, Jure Leskovec, and Bernhard Schölkopf. Struc-

ture and Dynamics of Information Pathways in Online Media. In 6th In-

ternational Conference on Web Search and Data Mining (WSDM 2013),

2013.

[37] David Grimmett, Geoffrey Stirzaker. Probability and random processes.

Oxford university press, 2001.

[38] Ilkka Hanski. Metapopulation dynamics. Nature, 396(6706):41–49, 1998.

199

[39] Jessica Hoffmann, Soumya Basu, Surbhi Goel, and Constantine Carama-

nis. Learning mixture of graphs from epidemic cascades. Proceedings of

the 29th International Conference of Machine Learning - ICML, 2020.

[40] Jessica Hoffmann and Constantine Caramanis. The Cost of Uncertainty

in Curing Epidemics. Proceedings of the ACM on Measurement and

Analysis of Computing Systems (SIGMETRICS’ 18), 2(2):11–13, 2018.

[41] Jessica Hoffmann and Constantine Caramanis. Learning graphs from

noisy epidemic cascades. arXiv preprint arXiv:1903.02650, 2019.

[42] Lars Hufnagel, Dirk Brockmann, and Theo Geisel. Forecast and control

of epidemics in a globalized world. Proceedings of the National Academy

of Sciences, 101(42):15124–15129, 2004.

[43] Tomoharu Iwata, Amar Shah, and Zoubin Ghahramani. Discovering

Latent Influence in Online Social Activities via Shared Cascade Poisson

Processes. In Proceedings of the 19th ACM SIGKDD international con-

ference on Knowledge discovery and data mining (KDD’ 13), 2013.

[44] Grégoire Jacob, Hervé Debar, and Eric Filiol. Behavioral detection of

malware: from a survey towards an established taxonomy. Journal in

Computer Virology, 4(3):251–266, 2008.

[45] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread

of influence through a social network. In Proceedings of the ninth ACM

200

SIGKDD international conference on Knowledge discovery and data min-

ing - KDD ’03, 2003.

[46] Justin Khim and Po-Ling Loh. Permutation Tests for Infection Graphs.

pages 1–28, 2017.

[47] Justin Khim and Po-Ling Loh. A theory of maximum likelihood for

weighted infection graphs. pages 1–47, 2018.

[48] Ryota Kobayashi and Renaud Lambiotte. Tideh: Time-dependent hawkes

process for predicting retweet dynamics. In Tenth International AAAI

Conference on Web and Social Media, 2016.

[49] Naimisha Kolli and Balakrishnan Narayanaswamy. Influence maximiza-

tion from cascade information traces in complex networks in the absence

of network structure. IEEE Transactions on Computational Social Sys-

tems, 6(6):1147–1155, 2019.

[50] Jeongyeol Kwon and Constantine Caramanis. Em converges for a mixture

of many linear regressions. arXiv preprint arXiv:1905.12106, 2019.

[51] Jeongyeol Kwon, Wei Qian, Constantine Caramanis, Yudong Chen, and

Damek Davis. Global Convergence of the EM Algorithm for Mixtures of

Two Component Linear Regression. XX:1–57, 2019.

[52] Jeongyeol Kwon, Wei Qian, Constantine Caramanis, Yudong Chen, and

Damek Davis. Global convergence of the em algorithm for mixtures of

201

two component linear regression. In 32nd Annual Conference on Learning

Theory, pages 2055–2110. PMLR, 2019.

[53] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne

VanBriesen, and Natalie Glance. Cost-effective Outbreak Detection in

Networks. Proceedings of the 13th ACM SIGKDD international con-

ference on Knowledge discovery and data mining (KDD ’07), page 420,

2007.

[54] Xiang Li, Jian-Bo Wang, and Cong Li. Towards identifying and predict-

ing spatial epidemics on complex meta-population networks. In Temporal

Network Epidemiology, pages 129–160. Springer, 2017.

[55] Shenghua Liu, Huawei Shen, Houdong Zheng, Xueqi Cheng, and Xiang-

wen Liao. Ct lis: Learning influences and susceptibilities through tem-

poral behaviors. ACM Transactions on Knowledge Discovery from Data

(TKDD), 13(6):1–21, 2019.

[56] Yishay Mansour. Lecture 5 : Lower Bounds using Information Theory

Tools Distance between Distributions KL-Divergence. 2011.

[57] Benjamin Mark, Garvesh Raskutti, and Rebecca Willett. Network es-

timation from point process data. IEEE Transactions on Information

Theory, 65(5):2953–2975, 2018.

[58] Eli A. Meirom, Chris Milling, Constantine Caramanis, Shie Mannor, Ariel

Orda, and Sanjay Shakkottai. Localized epidemic detection in networks

202

with overwhelming noise. pages 1–27, 2014.

[59] Eli A Meirom, Chris Milling, Constantine Caramanis, Shie Mannor, San-

jay Shakkottai, and Ariel Orda. Localized epidemic detection in networks

with overwhelming noise. In Proceedings of the 2015 ACM SIGMET-

RICS International Conference on Measurement and Modeling of Com-

puter Systems (SIGMETRICS’ 15), volume 43, pages 441–442. ACM,

2015.

[60] Chris Milling, Constantine Caramanis, Shie Mannor, and Sanjay Shakkot-

tai. Network Forensics : Random Infection vs Spreading Epidemic. In

Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE joint in-

ternational conference on Measurement and Modeling of Computer Sys-

tems (SIGMETRICS’ 12), 2012.

[61] Chris Milling, Constantine Caramanis, Shie Mannor, and Sanjay Shakkot-

tai. Distinguishing Infections on Different Graph Topologies. IEEE

Transactions on Information Theory, 61(6):3100–3120, 2015.

[62] Chris Milling, Constantine Caramanis, Shie Mannor, and Sanjay Shakkot-

tai. Local detection of infections in heterogeneous networks. Proceedings

- IEEE INFOCOM, 26:1517–1525, 2015.

[63] Praneeth Netrapalli and Sujay Sanghavi. Learning the Graph of Epi-

demic Cascades. In Proceedings of the 12th ACM SIGMETRICS/PER-

FORMANCE joint international conference on Measurement and Model-

ing of Computer Systems (SIGMETRICS’ 12), pages 211–222, 2012.

203

[64] Donald J Newman. The double dixie cup problem. The American

Mathematical Monthly, 67(1):58–61, 1960.

[65] Mark E. J. Newman. Spread of epidemic disease on networks. Physical

Review E - Statistical, Nonlinear, and Soft Matter Physics, 66(1), 2002.

[66] Richard S Ostfeld, Gregory E Glass, and Felicia Keesing. Spatial epi-

demiology: an emerging (or re-emerging) discipline. Trends in ecology &

evolution, 20(6):328–336, 2005.

[67] Han-Ching Ou, Arunesh Sinha, Sze-Chuan Suen, Andrew Perrault, and

Milind Tambe. Who and when to screen: Multi-round active screening

for recurrent infectious diseases under uncertainty, 2019.

[68] Padmavathi Patlolla, Vandana Gunupudi, Armin R Mikler, and Roy T Ja-

cob. Agent-based simulation tools in computational epidemiology. In In-

ternational Workshop on Innovative Internet Community Systems, pages

212–223. Springer, 2004.

[69] Liudmila Prokhorenkova, Alexey Tikhonov, and Nelly Litvak. Learning

clusters through information diffusion. In The World Wide Web Confer-

ence, pages 3151–3157, 2019.

[70] Ivan N. Sanov. On the Probability of Large Deviations of Random Vari-

ables, 1961.

204

[71] Devavrat Shah and Tauhid Zaman. Detecting sources of computer viruses

in networks: theory and experiment. In ACM SIGMETRICS Perfor-

mance Evaluation Review, volume 38, pages 203–214. ACM, 2010.

[72] Devavrat Shah and Tauhid Zaman. Rumors in a Network : Who ’ s the

Culprit ? IEEE Transactions on information theory, 57(8):1–43, 2010.

[73] Devavrat Shah and Tauhid Zaman. Rumors in a network: Who’s the

culprit? IEEE Transactions on information theory, 57(8):5163–5181,

2011.

[74] Devavrat Shah and Tauhid Zaman. Rumor centrality: a universal source

detector. In ACM SIGMETRICS Performance Evaluation Review, vol-

ume 40, pages 199–210. ACM, 2012.

[75] James Sharpnack, Alessandro Rinaldo, and Aarti Singh. Changepoint

detection over graphs with the spectral scan statistic. arXiv preprint,

31:1–14, 2012.

[76] Sam Spencer and R Srikant. On the impossibility of localizing multi-

ple rumor sources in a line graph. ACM SIGMETRICS Performance

Evaluation Review, 43(2):66–68, 2015.

[77] Anirudh Sridhar and H Vincent Poor. Sequential estimation of network

cascades. arXiv preprint arXiv:1912.03800, 2019.

[78] Lin Wang and Xiang Li. Spatial epidemiology of networked metapopu-

lation: An overview. Chinese Science Bulletin, 59(28):3511–3522, 2014.

205

[79] Shengling Wang, Shasha Chen, Xiuzhen Cheng, Weifeng Lv, and Jiguo

Yu. Analysis of antagonistic dynamics for rumor propagation. In 2019

IEEE 39th International Conference on Distributed Computing Systems

(ICDCS), pages 1253–1263. IEEE, 2019.

[80] Zhaoxu Wang, Wenxiang Dong, Wenyi Zhang, and Chee Wei Tan. Ru-

mor source detection with multiple observations: Fundamental limits and

algorithms. In ACM SIGMETRICS Performance Evaluation Review,

volume 42, pages 1–13. ACM, 2014.

[81] Liang Wu and Huan Liu. Tracing Fake-News Footprints: Characterizing

Social Media Messages by How They Propagate. In (WSDM 2018) The

11th ACM International Conference on Web Search and Data Mining,

2018.

[82] Yujia Xie, Haoming Jiang, Feng Liu, Tuo Zhao, and Hongyuan Zha. Meta

learning with relational information for short sequences. In Advances in

Neural Information Processing Systems, pages 9901–9912, 2019.

[83] Ji Xu, Daniel J Hsu, and Arian Maleki. Global analysis of expecta-

tion maximization for mixtures of two gaussians. In Advances in Neural

Information Processing Systems, pages 2676–2684, 2016.

[84] Wen Yan, Po-Ling Loh, Chunguo Li, Yongming Huang, and Luxi Yang.

Conquering the worst case of infections in networks. IEEE Access, 2019.

206

[85] Xinyang Yi, Constantine Caramanis, and Sujay Sanghavi. Alternating

minimization for mixed linear regression. In International Conference on

Machine Learning, pages 613–621, 2014.

[86] Xinyang Yi, Constantine Caramanis, and Sujay Sanghavi. Solving a

mixture of many random linear equations by tensor decomposition and

alternating minimization. arXiv preprint arXiv:1608.05749, 2016.

[87] Ali Zarezade, Ali Khodadadi, Mehrdad Farajtabar, Hamid R Rabiee, and

Hongyuan Zha. Correlated Cascades : Compete or Cooperate. In

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence

(AAAI-17), pages 238–244, 2017.

[88] Qingyuan Zhao, Murat A. Erdogdu, Hera Y. He, Anand Rajaraman, and

Jure Leskovec. SEISMIC: A Self-Exciting Point Process Model for Pre-

dicting Tweet Popularity. Proceedings of the 21th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining (KDD ’15

), 2015.

[89] Lili Zheng, Garvesh Raskutti, Rebecca Willett, and Benjamin Mark.

Context-dependent self-exciting point processes: models, methods, and

risk bounds in high dimensions. arXiv preprint arXiv:2003.07429, 2020.

207

Vita

Jessica Hélène Hoffmann was born in Philadelphia, Pennsylvania on

December 30th, 1991, the daughter of Prof. Isabelle Berrebi-Hoffmann and

Claude Hoffmann. She then grew up in Paris, France, where she received

two Bachelor of Science degrees, one in Physics and one in Computer Science,

from École Normale Supérieure de Paris, followed by a Master of Science in

Applied Mathematics (Computer Vision and Machine Learning) from École

Normale Supérieure de Cachan, while on a full scholarship. After a year of

travel, she joined the Ph.D. program at the University of Texas at Austin in

August, 2015. Both during and prior to her doctoral work, she was fortunate

to complete internships at the Institut Pierre et Marie Curie in Paris with

Prof. Jean-Baptiste Manneville, the Univerisity of California at Berkeley with

Prof. Pieter Abbeel, Tel Aviv University with Prof. Ron Shamir, Quantcast,

and Google.

Permanent address: 4510 W. Guadalupe St., #C202
Austin, Texas 78751

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

208

