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In this research the recombining binomial lattice approach for valuing real options 

is generalized to address a common issue in many real valuation problems, underlying 

stochastic processes that are mean-reverting.  Binomial lattices were first introduced to 

approximate stochastic processes for valuation of financial options, and they provide a 

convenient framework for numerical analysis.  Unfortunately, the standard approach to 

constructing binomial lattices can result in invalid probabilities of up and down moves in 

the lattice when a mean-reverting stochastic process is to be approximated.  There have 

been several alternative methods introduced for modeling mean-reverting processes, 

including simulation-based approaches and trinomial trees, however they unfortunately 

complicate the numerical analysis of valuation problems. The approach developed in this 

research utilizes a more general binomial approximation methodology from the existing 

literature to model simple homoskedastic mean-reverting stochastic processes as 

recombining lattices.  This approach is then extended to model a two-factor mean-
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reverting process that allows for uncertainty in the long-term mean, and to model two 

correlated one-factor mean-reverting processes.  These models facilitate the evaluation of 

real options with early-exercise characteristics, as well as multiple concurrent options. 

The models developed in this research are tested by implementing the lattice in 

binomial decision tree format and applying to hypothetical real option examples with 

underlying mean-reverting commodity price.  To specify the stochastic process for 

commodity price, different data analysis techniques such as Kalman filtering and 

seemingly unrelated regression are used.  These different techniques are empirically 

tested to evaluate differences in the estimates and assess the tradeoffs in computational 

requirements.  To validate the binomial model, results are compared to those from 

simulation-based methods for simple options.  The convergence properties of the model 

and the relationship between length of time increment and accuracy of solutions obtained 

are also investigated.  For cases where the number of discrete time periods becomes too 

large to be solved using common decision tree software, recursive dynamic programming 

algorithms are developed to generate solutions.  Finally, we illustrate a real application 

by solving for the value of an oil and gas switching option which requires a binomial 

model of two correlated one-factor commodity price models.  
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1. INTRODUCTION 

 
The seminal work of Black and Scholes (1973) and Merton (1973) in the area of 

financial option valuation led to the application of option pricing methods in valuing real 

investments under uncertainty by recognizing the analogy between financial options and 

project decisions that can be made after some uncertainties are resolved. This approach 

has the advantage of including the value of managerial flexibility, which is frequently not 

captured by standard valuation approaches.   

The options derived from managerial flexibility are commonly called “real 

options” to reflect their association with real assets rather than with financial assets.  

Despite its theoretical appeal, however, the practical use of real option valuation 

techniques in industry has been limited by the mathematical complexity of these 

techniques and the resulting lack of intuition associated with the solution process, or the 

restrictive assumptions required to obtain analytical solutions.   

The mathematical complexity associated with option theory stems from the fact 

that the general problem requires a probabilistic solution to a firm’s optimal investment 

decision policy at the present time and also at all instances in time up to the maturity of 

its options.  To solve this problem of dynamic optimization, the evolution of uncertainty 

in the value of the real asset over time is first modeled as a stochastic process.  Then the 

value of the firm’s optimal policy over time is obtained as the solution to a stochastic 

differential equation with appropriate boundary conditions to reflect the initial conditions 

and terminal payoff characteristics.  Recursive dynamic programming may be used to 
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obtain closed-form mathematical solutions for certain types of stochastic processes and 

for specific exercise characteristics of options.  

However, a complicating key assumption is that market-based information (i.e., 

information on prices of traded assets) can be used to specify the parameters of the 

stochastic process for the underlying asset.  If not, as is often the case with options on 

real projects, there is no information on the market’s view of the risk associated with the 

project.  Hence, there is no market-based guidance for selecting the discount rate to be 

applied to cash flows.   

To provide a transparent, computationally efficient model of the valuation 

problem, a discrete approximation of the underlying stochastic process can be developed.  

The first example of this approach was a binomial lattice model that converges weakly to 

a lognormal diffusion of stock prices known as a Geometric Brownian motion or GBM, 

developed by Cox, Ross, and Rubinstein (1979).  The binomial model can be used to 

accurately approximate solutions from the Black-Scholes-Merton continuous-time option 

valuation model.  Moreover, this approach can also be used to solve for the value of 

early-exercise American options, whereas the Black-Scholes-Merton model can only 

value European and infinite-horizon American options.  

However, the assumption of a lognormal geometric Brownian diffusion as a 

model of the underlying stochastic process may not be valid for many real option 

valuation problems, such as projects with cash flows that depend on mean-reverting 

commodity prices.   The effect of modeling a stochastic process that is mean-reverting 

with a lognormal geometric Brownian diffusion model can be a significant 

overestimation of uncertainty in the resultant cash flows from a project, which can result 
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in overstated option values.  Figure 1.1 shows a comparison of GBM and mean-reverting 

diffusions with the same standard deviation of returns. 

 

 

 

 

 

 

 

 

 

Figure 1.1 – Comparison of GBM and Mean-Reverting Diffusions 
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Schwartz and Smith (2000).  A goal of this research is to demonstrate that these models 

can be used for real option problems, such as those used to model commodity price.  This 

approach can be implemented in binary decision trees with off-the-shelf decision tree 

software. 

 This dissertation is organized as follows: Section 2 contains a review of the 

relevant literature for this topic.  In Section 3, the Nelson and Ramaswamy (1990) 

approach to constructing computationally simple binomial lattices is reviewed for the 

case of a one-factor mean-reverting process and then extended to model both two-factor 

mean-reverting diffusions and two correlated one-factor diffusions.  Section 4 details how 

a two-factor model can be implemented in decision tree and lattice formats, and 

investigates the model’s convergence properties numerically for the two-factor diffusion 

model of Schwartz and Smith (2000) up to the computational limits of decision tree 

software, and from that point forward with a coded lattice algorithm.  In Section 5, the 

different methods for determining the parameters for the mean-reverting processes to be 

modeled are presented, and the results from application of each approach to an extensive 

futures data set are discussed.  In Section 6, the approach  developed in this research is 

applied to a real example of a switching option in an oil and gas setting which requires a 

binomial model of two correlated one-factor models.  Finally, in Section 7, conclusions 

from this work and further research issues regarding model formulation and application 

to real problems are discussed. 
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2.  LITERATURE REVIEW 

 

Discounted cash flow methods (DCF) are commonly used in practice for the 

valuation of projects and for decision-making regarding investments in real assets.  Under 

this approach, the value of a project is determined by discounting the future expected 

cash flows at a discount rate that reflects the riskiness of the project.  In practice, most 

projects are valued using the weighted average cost of capital for the firm, or WACC, as 

the discount rate.  This assumes the project’s risks are essentially equal to the risks 

associated with the firm as a whole, which may not be appropriate for many investment 

projects.  The DCF approach also assumes that once the firm commits to a project, the 

project’s outcome will be unaffected by future decisions, thereby ignoring any 

managerial flexibility the project may have. Option pricing approaches can be used to 

address the shortcomings of the traditional DCF approach and provide an integrated 

approach to risk and its effect on value.  

2.1 OPTION PRICING TECHNIQUES 

Option pricing approaches are founded in the work of Black and Scholes (1973) 

and Merton (1973) in the area of financial option valuation.  Traditional option pricing 

methods are based on the concept of no-arbitrage pricing and therefore require that 

markets be complete.  In complete markets, there are a sufficient number of traded assets 

to allow the creation of a portfolio of securities whose payoffs exactly replicate the 

payoffs of the asset in all states of nature and in all future periods.  Rubinstein (1976) and 

Brennan (1979) also showed that if the return on an asset is lognormal, under the 
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assumptions of aggregation and constant proportional risk aversion the Black-Scholes 

formula holds even without the ability to construct a riskless hedge.  This is important in 

cases where the basic exogenous variables are cash flows from assets, as in the case of 

many corporate finance problems, rather than the value of a traded asset.    

A shortcoming of the Black-Scholes-Merton model and most continuous-time 

closed-form solutions for option value is that only options exercised at maturity, so-called 

European options, can be valued.  Geske and Johnson (1984) developed an analytical 

expression for the value of American put options and proved that it holds in the limit, 

however it cannot be directly evaluated, as the solution to the partial differential equation 

is subject to boundary conditions at an infinite number of discrete points.  Consequently, 

they proposed picking discrete evaluation points and extrapolating results to obtain the 

value estimate.  Ramaswamy and Sundaresan (1985) note in their work on interest rate 

derivatives that, in some cases, the incremental values due to early exercise of American 

options are small, and therefore the European price serves as a useful approximation.  

Unfortunately, there are no general rules for when this approximation might be adequate, 

and there are certainly applications in which such an approach would be unsatisfactory.  

To value American options and other types of options that can be exercised before 

maturity, numerical techniques are typically used.  The binomial approximation of 

Sharpe (1978) and Cox, Ross, and Rubinstein (1979) and finite difference methods are 

the two primary techniques that have been introduced for this purpose. 

Binomial models are accurate, remarkably robust, and intuitively appealing tools 

for valuing financial and real options.   A well-known example of specifying parameters 

for a recombining binomial lattice is the model of the stochastic differential equation 
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dzdt
S

dS σµ += , which represents a GBM model of the diffusion of asset price over time.  

Using an important result from stochastic calculus, Ito’s Lemma, we can write the 

corresponding transformed process for the log of asset price as 

                                  dzdtSd σσµ +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

2
ln

2

, 

where S  is the asset price (eg., stock price), µ  is the growth rate (drift), σ  is the 

standard deviation of returns (volatility), and dz  is a Wiener process (random increment 

with mean zero and variance of dt ). 

By requiring that the first and second moments of a binomial distribution match 

those of the continuous diffusion, the up and down movements at each step in a lattice are 

calculated to be teu ∆= σ and ted ∆−= σ , respectively, and the probabilities of the up and 

down movements are 
du

dp
−
−+

=
µ1 and p−1 , respectively.  The asset price in period i  

and state j  is jji
ji duSS −= 0, .  This model converges weakly to the above GBM as the 

time increment t∆  approaches zero.  As a result it has been very popular in valuing 

financial options and many types of real options where a GBM is a reasonable 

representation of the diffusion of the underlying asset value.  Furthermore, binomial 

models can be used to implement either the riskless hedge approach to option valuation, 

using the Cox, Ross, Rubinstein model, or the preference-based approach of Rubinstein 

(1976) and Brennan (1979), as outlined by Stapleton and Subrahmanyam (1984). 

Binomial approximations have also been developed for two-factor diffusions 

(Boyle, 1988) and have been used extensively in modeling interest rate dynamics.  Boyle, 
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Evnine, and Gibbs (1989) illustrate the use of a generalized lattice framework for 

multivariate contingent claims by computing option values and checking against values 

from closed-form solutions.  Madan, Milne, and Shefrin (1989), He (1990), and Ho, 

Stapleton, and Subrahmanyam (1995) have also demonstrated that the convergence of 

these models duplicates that of the univariate case for GBM diffusions.  Amin (1991) 

extends the discrete binomial approximation for both univariate and multivariate cases to 

allow for time-varying volatility functions.  The time-varying volatility is accommodated 

in this approach by introducing a time-dependent step size that offsets changing 

volatility. 

The typical approach for solving for option value using a binomial lattice is to 

find the replicating portfolio at each node, working backwards through the lattice.  

Unfortunately, this process can be cumbersome and non-intuitive, especially for more 

complex applications to real assets, which can involve several simultaneous and 

compound options, or involve path-dependant options.   

Finite difference methods were first introduced for option valuation by Schwartz 

(1977) and later extended to value exercise options with jump diffusion stochastic 

processes (Brennan and Schwartz, 1978). While finite difference methods have the 

advantage of more flexibility in modeling underlying stochastic processes, these methods 

can be computationally intensive. Geske and Shastri (1985) provide a comparison of 

alternative option valuation methods, including a binomial model and several different 

finite difference models, based on both accuracy and computational time.  Their results 

demonstrate the binomial models run in a fraction of the time required for most finite 

difference models and are generally more stable, although finite difference models were 
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more accurate in some cases.  They also note that binomial models are pedagogically 

superior.  

2.2 MEAN REVERTING PROCESSES 

The assumption of a lognormal geometric Brownian diffusion as a model of the 

underlying stochastic process may not be valid for many problems.  This is a key issue, as 

pointed out by Cox and Ross (1976), who note the importance of the specification of 

underlying stochastic process in valuation of options by reviewing the assumptions 

employed in the Black-Scholes model and evaluate alternative forms of processes.  Their 

study of so-called “single-stage” jump processes was a necessary prelude to the 

subsequent development of their binomial model.   

Many valuation problems have underlying stochastic processes that are mean-

reverting, such as projects with cash flows that depend on mean-reverting commodity 

prices.   Most empirical studies of historical commodity data have found that mean-

reverting models accurately capture the evolution of prices (e.g., Schwartz, 1997).  

Bessembinder, et al. (1995) find that a forward-looking analysis of the commodities 

futures data implies mean reversion as well.  There are a few empirical studies of 

commodity data that do not support the mean-reverting hypothesis, but they are either for 

special cases or are inconclusive.  Hjalmarsson (2003) finds that electricity option prices 

based on the GBM assumption are more accurate in matching non-parametric estimates 

than are prices calculated from an Ornstein-Uhlenbeck mean-reverting process, however 

it is likely that this analysis may be affected by the lack of an efficient electricity options 
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trading market, as well as by the fact that electricity is essentially a non-storable 

commodity.  

Bhattacharya (1978) demonstrates that mean-reverting cash flows are in general 

likely to be more realistic for many investment projects in a competitive economy, since 

the expectation is that cash flows from a particular project will revert to levels that make 

firms indifferent about new investments of the same type.  Metcalf and Hassett (1995) 

study investment under the assumptions of lognormality and mean-reversion and find 

offsetting consequences.  Under the lognormal assumption investments derive value from 

the option effect and the possibility of higher future payoffs, whereas under mean-

reversion it is the reduced risk that encourages investment.  Lo and Wang (1995) show 

that drift indirectly affects options prices, and thus predictability in returns and mean-

reversion will affect option prices.  They demonstrate this by comparing option prices for 

a hypothetical stock under lognormal and mean-reverting Ornstein-Uhlenbeck processes 

assumptions.  In order to do this, they set the distribution of the underlying process and 

find its implications for the risk-neutral process.  This is the reverse approach of Gundy 

(1991) who takes the risk-neutral distribution reflected in derivative prices and infers the 

properties of the true process.   

As noted by Schwartz (1998), Laughton and Jacoby (1993), and others, if 

commodity prices are indeed mean-reverting, then a lognormal geometric Brownian 

diffusion model can significantly overestimate uncertainty in the resultant cash flows 

from a project, and result in overstated option values.  
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2.3 NUMERICAL TECHNIQUES 

In cases where the underlying stochastic process should be modeled as mean-

reverting, rather than as a GBM, the problem can be solved in one of two ways: 1) use a 

Monte Carlo simulation method, thereby eliminating the need to build a tree to represent 

the stochastic process or 2) use a different type of tree-building procedure or finite 

difference approach.  Monte Carlo methods are straightforward to apply for European 

options, and can also be used to value American options in some cases.  Longstaff and 

Schwartz (2001) proposed a method employing Monte Carlo simulation which can 

accommodate general types of stochastic processes, and can also be used to value early-

exercise options.  This method uses ex-post regression of cash flows on state values at 

each step to estimate the value function used to determine the optimal stopping rule, and 

hence option value.  However, a significant drawback of this approach is that it is 

computationally intensive, non-intuitive, and limited to a small number of relatively 

simple types of project options.   

Other researchers have developed discrete tri- and multi-nomial trees for valuing 

options in a similar manner to the binomial approach, but with the ability to model more 

general types of stochastic processes, due to the additional degrees of freedom.  Hull and 

White (1990a) introduce the approach whereby the initial term structure of futures prices 

is matched by including an adjustment term, )(tθ in the diffusion equation.  In this paper 

they use this approach to extend two different mean-reverting interest rate models, 

Vasicek (1977) and the Cox, Ingersoll, and Ross (1985), so that the initial term structure 

is exactly matched.  They integrate this with their work on valuing derivatives using the 
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explicit finite difference method (Hull and White, 1990b) to produce a procedure for 

valuing derivative securities that have underlying mean-reverting interest rate processes 

(Hull and White, 1993a).  In this paper they assert that recombining binomial models 

cannot be used in general to model these types of processes, but acknowledge in a 

footnote that the approach of Nelson and Ramaswamy (1990) can be used if the expected 

drift and variance at each step are required to be correct only in the limit.  They do not 

comment on whether desired levels of accuracy might be obtained within a reasonable 

number of steps.   In this approach, the values of the adjustment θ  and drift µ  are 

assumed to be constant in between the increments, and the length of the increments is set 

by the frequency of futures maturities.  This approach is later improved to provide faster 

tree construction, more accurate pricing, and better convergence by changing the 

geometry of the trinomial tree so that the central node at each step corresponds to the 

expected value (Hull and White, 1993b).   

Hull and White (1994b) also show that their approach can be extended to model 

two-factor processes or two correlated one-factor processes, and illustrate for the example 

of interest rate derivatives from two countries.  The bivariate Hull and White approach 

entails calibration of two separate trees and construction of a combined tree with nine 

branches emanating from each node.  To adjust for correlation, nine factors must be 

calculated for each node to adjust the branching probabilities, and further, the calculation 

of the adjustments depends on whether the correlation is positive, zero, or negative.  

Probabilities can still be negative at some nodes under this procedure, so the adjustment 

factor is set to the maximum value for which probabilities are non-negative.  Hull and 

White acknowledge that this introduces some bias in correlation, but claim that this bias 
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disappears as the time increment goes to zero.  Some of the other issues with the use of 

univariate approach, including variable time steps, cash flows that occur between nodes, 

and path dependency, and more detail on use of the method are provided in a subsequent 

paper (Hull and White, 1996).  The approach suggested for interim cash flows is either to 

discount to the nearest node or to increase the number of time steps so that nodes occur at 

the same frequency as cash flows.  They do not describe how to calibrate such a tree at 

points where no futures data exists.    

The difficulties with implementing the Hull-White multivariate method and issues 

with performance are discussed in both Muck and Rudolf (2002) and Staley and 

Wicentowich (2003).  In the latter of these, the authors propose as an alternative a tree in 

which the probabilities and node spacing are set to match the volatility structure, and the 

drift term is allowed to be miss-specified.  The drift errors, or difference between the true 

process drift and the miss-specified drift, are stored for each node, and the tree is then 

adjusted during backward induction to calculate option values.  Derivative values must 

then be calculated by cubic spline interpolation to compensate for underlying drift errors.  

These authors acknowledge the computational burden with this approach, especially with 

the Hull-White two factor diffusion.  These authors also cite the Nelson and Ramaswamy 

(1990) approach as an alternative, but note that it has not been extended to the 

multivariate case. 

 Other two-factor mean-reverting processes include Schwartz (1997), Schwartz 

and Smith (2000), Gibson and Schwartz (1990), and Ribeiro and Hodges (2004).  These 

composite diffusions generally include a second factor to explicitly model uncertainty in 

the short-term deviations from the long-term mean, as well as in the long-term mean 
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itself.  None of these diffusions have yet been approximated with a discrete recombining 

lattice or tree. 

Given the difficulty in implementing trinomial trees, there is a need for a 

modeling procedure similar to the binomial approach to a GBM that exhibits convergence 

in distribution for other distributions, and is yet computationally simple and robust in 

terms of allowable payoff specifications.   

Nelson and Ramaswamy (1990) propose a modeling procedure that exhibits 

convergence in distribution under very general conditions.  The binomial sequence of 

Cox, Ross, and Rubinstein is in fact a special case of this procedure.  For diffusions with 

constant variance, this approach entails fixing the up and down moves in the tree and 

calculating probabilities at each node, conditioned on the state, to reflect the local drift.  

In any cases where nodes have invalid probabilities, the probabilities are censored so that 

negative probabilities are set to zero and probabilities greater than one are set to one.  

Nelson and Ramaswamy show that as the time step is reduced the drift and variance of 

this approximation converge to those of the continuous diffusion.  This paper is preceded 

by Nelson’s (1990) investigation of the use of discrete time ARCH stochastic difference 

equation systems to approximate continuous diffusions, in which conditions for a finite 

dimensional discrete time Markov process to converge to an Ito process are presented.   

This method can also be applied, with additional calibration steps, to the 

development of recombining lattices for heteroskedastic stochastic processes.  This 

additional step is required to calibrate the up and down moves to reflect the local 

variance, and basically entails a transformation of the process to remove the 

heteroskedasticity.  Subsequent work with this method has centered on developing 
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models for valuing interest rate derivatives.  Peterson, Stapleton, and Subrahmanyam 

(1999) provide an example of this line of research.  This model also appears in work to 

develop a discrete model to value American options when the underlying uncertainty 

follows a jump diffusion process (Amin, 1993), and in work to develop a discrete-time 

model to price currency exchange rate derivatives with stochastic volatility (Amin and 

Bodurtha, 1995). 

Other proposed methods for constructing recombining lattices for general types of 

stochastic processes, such as the variable jump approach proposed by Calistrate, Paulhus, 

and Sick (1999) and a lattice based on an inhomogeneous geometric Brownian motion 

(Robel, 2001) also appeal to the Nelson and Ramaswamy approach to calculating 

probabilities of up and down moves in the lattice.  

2.4 REAL OPTIONS AND DECISION ANALYSIS 

Building on the success of the Black-Scholes-Merton and Cox-Ross-Rubinstein 

approaches in the area of financial option valuation, option pricing methods were soon 

applied to the valuation of real investments under uncertainty to address the shortcomings 

of the traditional DCF approach.  The fundamental premise, as pointed out by Rubinstein 

(1994) is that asset prices in efficient markets contain valuable information that can be 

used in making economic decisions.  Some of the first examples were Tourinho (1979), 

who used the concept of an option to evaluate a non-renewable natural resources reserve 

under price uncertainty; Brenann and Schwartz (1985), who analyzed the optimal 

operational policy of a copper mine; and McDonald and Siegel (1986), who determined 

the optimal timing for investing in a project with irreversible investments with uncertain 
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cost and benefits. Dixit and Pindyck (1994) and Trigeorgis (1996) were among the first 

authors to synthesize several of these ideas.  Most of the early applications were either 

attempts to adapt continuous-time analytical solutions or lattice-based approaches similar 

in spirit to the Cox-Ross-Rubinstein approach using replicating portfolios.  However, 

most projects involving real assets do not have a replicating portfolio of securities, so 

markets are not complete.  In this case, Dixit and Pindyck (1994) propose the use of 

dynamic programming using a subjectively defined discount rate, but the result does not 

provide a true market value for the project and its options. 

The application of decision analysis to real option valuation problems seems 

natural because decision trees are commonly used to model project flexibility, but there 

has only been limited work in this area (Howard (1996)).  Nau and McCardle (1991) and 

Smith and Nau (1995) study the relationship between option pricing theory and decision 

analysis and demonstrate that the two approaches yield the same results when applied 

correctly.  Smith and Nau propose a method which integrates the two approaches by 

distinguishing between market risks, which can be hedged by trading securities and 

valued using option pricing theory, and private uncertainties which are project-specific 

risks and can be valued using decision analysis techniques.  Smith and McCardle (1998, 

1999) illustrate how this approach can be applied in the context of oil and gas projects, 

and provide a discussion of lessons learned from applications to some case studies.   

To transition from a binomial lattice to a probability tree, a tree is constructed 

with binary chance branches that have the unique feature that the outcome resulting from 

moving up and then down in value is the same as the outcome from moving down and 

then up.   For example, Figure 2.1 shows a binomial lattice, along with a binary tree that 
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has the relationship between up and down movements at each node specified as 

down
up 1

= .  From this figure, it is evident that there will be the same number of different 

outcomes in any period, although some of the outcomes will be recurring in the binomial 

tree. 

 

 

 

 

 

 

 

         Binomial Lattice                                                 Binomial Tree 

Figure 2.1 – Comparison of Recombining Binomial Lattice and Binomial Tree 

 
To value options in this format, decision nodes are added at each point in the tree 

where exercise decisions exist, with corresponding payoffs entered at each terminal node 

(Brandao and Dyer, 2004; Brandao, Dyer, and Hahn, 2004).  The binomial model has the 

important property of recombination, that is, branches of the binomial lattice reconnect at 

each step.  This is an important issue from a computational perspective, because there are 

1+N  nodes at any stage N , whereas there are N2 nodes at the same stage for a binary 
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tree.  Therefore, problems with large values of N  may require algorithms that are coded 

to take advantage of efficiencies provided by recombining lattices. 
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3.  GENERAL METHOD OF DEVELOPING RECOMBINING 
LATTICES 

 
In constructing the Nelson and Ramaswamy (1990) model, the problem is to find 

a binomial sequence that converges to a stochastic differential equation (SDE) of the 

general form: 

dztYdttYdYt ),(),( σµ +=  

where ),( tYµ  and ),( tYσ  are continuous instantaneous drift and standard deviation 

functions, and dz  is a standard Brownian increment.  To solve this problem, Nelson and 

Ramaswamy propose a simple binomial sequence of n  periods of length t∆ , where 

n
Tt =∆ , and 

),( tYtYYt σ∆+≡+   (up move) 

),( tYtYYt σ∆−≡−   (down move) 

),(2
),(

2
1

tY
tYtqt σ

µ
∆+≡  (probability of up move) 

tq−1     (probability of down move) 

The conditions under which this sequence converges to the above SDE are 1) that 

the SDE is well-behaved (i.e., that  ∫∫ ++=
t

ss

t

st dzsYdssYYY
00

0 ),(),( σµ  exists on 

∞<< t0 ) and 2) that the jump sizes, local drift, and local variance converge in 



 20

distribution (i.e., YtYYt −± ),( , ),(),( tYtYt µµ − , and 0),(),( 22 →− tYtYt σσ as 

0→∆t ). 

3.1 ONE-FACTOR MEAN-REVERTING MODELS 

This approach can be applied to a mean-reverting process to facilitate the 

evaluation of real options on commodity price-contingent projects.  First consider a 

simple one-factor mean-reverting process, the Ornstein-Uhlenbeck process, which is 

given by: 

ttt dzdtYYdY σκ +−= )( , 

where tY  is the log of commodity price, κ  is a mean reversion coefficient, Y  is the log 

of long-term mean price, σ  is the process volatility, and dz  is a Wiener process (random 

increment with mean zero and variance of dt ).  We use the log since it is commonly 

assumed that commodity prices are lognormally distributed. 

Substituting )( tYY −κ  for ),( tYµ  and σ  for ),( tYσ  in the above binomial 

sequence yields the following parameterization for the binomial model: 

σtYYt ∆+≡+         (up move) 

σtYYt ∆−≡−         (down move) 

    

σ
κ
σ
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≡         (probability of up move) 
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tq−1                    (probability of down move) 

This specification shows the conditioning of probabilities on the deviation of the 

mean at each node, and the necessary censorship to values between 0 and 1. The above 

formula can be rewritten in one statement as: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
∆+=

σ
κ

2
)(

2
1,1min,0max t

t
YY

tq  

Thus, all of the information for modeling a one-factor mean-reverting process as a 

discrete-time binomial lattice or binomial tree is given. 

 

3.2 TWO-FACTOR MEAN-REVERTING MODELS 

Although the one-factor model can be used to capture mean reversion in a 

parameter such as a commodity price, it assumes there is no uncertainty in the long-term 

mean.  Gibson and Schwartz (1990), Schwartz (1997), Schwartz and Smith (2000) and 

others have introduced composite diffusions that include a second factor to explicitly 

model uncertainty in the short-term deviations from the long-term mean, as well as in the 

long-term mean itself.  A goal of this research was to develop a discrete binomial 

representation of a two-factor model in a similar manner to the binomial approximations 

of two correlated GBM diffusions introduced by Boyle (1988).  Hull and White (1994b) 

also show that their approach can be extended to model two-factor processes or two 

correlated one-factor processes, but there are several computational difficulties with this 

approach as was discussed in Chapter 2.  We show that the general approach for tree 
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construction discussed thus far can be extended to this two-factor model so that one or 

both of the factors can follow a mean-reverting diffusion. 

The Schwartz and Smith diffusion (2000) is the best candidate for discrete 

modeling because the two factors are split apart, rather than having one factor nested in 

the process for the other.  In this diffusion, the logarithm of the price at any point is 

decomposed into two factors; a long-term equilibrium price, tξ , and a deviation from the 

equilibrium price, tχ . The long-term equilibrium price is specified to follow a GBM, 

while the short-term deviation follows a simple one-factor Ornstein-Uhlenbeck process 

and eventually reverts to zero.  The price is therefore given as: 

  tteYt
ξχ += ,  

where the two processes are: 

  ξξξ σµξ dzdtd t +=    (long-term mean price) 

  χχσχκχ dzdtd tt +−= )0(   (deviation from long-term mean price). 

The relationship between the increments of the two processes is given by: 

dtdzdz ξχχξ ρ=  

Thus, the correlation ξχρ  describes the degree to which the increments move in the same 

( )10 ≤< ξχρ  or opposite ( )01 <≤− ξχρ  directions. 

A two-dimensional binomial approximation can be developed for this process, 

which results in a four-branch chance node for each discrete period, as shown in Figure 

3.1. 
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Figure 3.1 – Four-branch Chance Node for Two-factor Process 

The probabilities for the joint lognormal-Ornstein-Unlenbeck process can be 

derived by first denoting the drift of the respective processes as 

2

2
ξ

ξξ

σ
µν −=   (GBM for long-term mean, tξ )   

( )tχκν χ −= 0   (mean-reverting process for deviation, tχ ) 

and selecting equal up and down jump sizes for each process: 

  t∆=∆ ξξ σ    (for long-term mean, tξ )   

t∆=∆ χχ σ   (for deviation, tχ ) 

Then by using the same basic method employed by Boyle (1988) for a dual 

lognormal approximation, we solve for the probabilities of the four possible combined 

outcomes by next matching the mean and variance of a two-variable binomial process.  

This results in the following four equations: 

[ ] ( ) ( ) tppppE ddduuduu ∆=∆+−∆+=∆ ξξξξ ν  

[ ] ( ) ( ) tppppE ddduuduu ∆=∆+−∆+=∆ 2222
ξξξξ σ  

ξ+∆ξ,χ+∆χ

ξ−∆ξ,χ−∆χ

ξ−∆ξ,χ+∆χ

ξ+∆ξ,χ−∆χ
pdu

pdd

puu
pud
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[ ] ( ) ( ) tppppE ddudduuu ∆=∆+−∆+=∆ χχχχ ν  

[ ] ( ) ( ) tppppE ddudduuu ∆=∆+−∆+=∆ 2222
χχχχ σ  

Adding an additional equation for the correlation; 

[ ] ( ) tppppE ddduuduu ∆=∆∆−−−=∆∆ χξχξχξ σρσ  

and also requiring that the probabilities sum to unity; 

1=+++ ddduuduu pppp  

yields six equations and six unknowns ( χξ ∆∆ ,,,,, ddduuduu pppp ).  Solving gives the 

following joint probabilities. 

χξ

χξχξξχχξ σρσνν
∆∆

∆+∆∆+∆∆+∆∆
=

4
ttt

puu  

χξ

χξχξξχχξ σρσνν
∆∆

∆−∆∆−∆∆+∆∆
=

4
ttt

pud  

χξ

χξχξξχχξ σρσνν
∆∆

∆−∆∆+∆∆−∆∆
=

4
ttt

pdu  

χξ

χξχξξχχξ σρσνν
∆∆

∆+∆∆−∆∆−∆∆
=

4
ttt

pdd  

This model is the synthesis of two processes that can be approximated with 

recombining lattices, and therefore it is also recombining.  However, as was the case with 

the Ornstein-Uhlenbeck approximation shown earlier, it may be necessary to censor 

probabilities when the degree of mean reversion required from a particular state results in 

probabilities greater than one (upward force of reversion) or less than zero (downward 

force of reversion) in a binomial node.  Unfortunately, for a four-branch node for a joint 
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process, it is not possible to directly censor the probabilities as previously described.  

Therefore, the approximation must be revised to address the limitations of the mean-

reverting process approximation, while still retaining the capability of modeling two 

correlated processes.   

The solution to this problem is a straightforward application of Bayes’ Rule, 

which describes the relationship between joint, marginal, and conditional distributions.  If 

the conditional probabilities for the binomial diffusion of χ  can be derived, then the joint 

process can be expressed as the product of the marginal binomial process for ξ  and the 

conditional binomial process for χ : 

( ) ( ) ( )ttttt ppp ξξχχξ =∩   (Bayes’ Rule) 

Since the joint probabilities have already been derived, the conditional 

probabilities for χ  can be obtained by dividing by the marginal probabilities for ξ , 

 
ξ

ξν
∆

∆
+=

t
pu 2

1
2
1  

 
ξ

ξν
∆

∆
−=

t
pd 2

1
2
1 , 

which yields: 

 
( ) ( )

( )ξξχ

χξξχχχξ

ν
σρσνν

t
tt

p uu ∆+∆∆

+∆∆+∆+∆∆
=

2|  

 
( ) ( )

( )ξξχ

χξξχχχξ

ν
σρσνν

t
tt

p ud ∆+∆∆

−∆∆+∆−∆∆
=

2|  

 
( ) ( )

( )ξξχ

ξχχξχχξ

ν
νσρσν

t
tt

p du ∆+∆∆

∆−∆+∆−∆∆
=

2|  
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( ) ( )

( )ξξχ

χξξχχχξ

ν
σρσνν

t
tt

p dd ∆+∆∆

+∆∆−∆+∆∆
=

2| . 

This formulation can be represented in decision tree format as a two-node 

sequence.  As shown in the following schematic, the first node is a binomial node for the 

GBM process for the long-term mean ξ , followed by a binomial node for the conditional 

process for the short-term deviation χ . 

 

 

 

 

 

 

 

 

 

Figure 3.2 – Splitting the Four-branch node into Marginal and Conditional Steps 

 

To check to see that the binomial approximation converges to the general SDE: 

 dztYdttYdYt ),(),( σµ += , 

the conditions are: 

puu/p χ+∆χ

∆χ

p ξ+∆ξ pud/p χ−∆χ

ξ

1-p ξ−∆ξ pdu/(1-p) χ+∆χ

∆χ

pdd/(1-p) χ−∆χ

Censor as necessary

DeviationL-T Mean
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1) The functions ),( tYµ  and ),( tYσ  are continuous and ),( tYσ  is non-

negative.  

2) A solution of ∫∫ ++=
t

ss

t

st dzsYdssYYY
00

0 ),(),( σµ  exists on ∞<< t0  

(this and condition 1 ensure that the limiting SDE is well-behaved).   

When this condition is satisfied, the process { } TttY <≤0 is characterized by: 

1) the starting point 0Y  

2) the continuity of tY  

3) the drift ),( sYµ , and  

4) the diffusion, ),(2 sYσ   

Given this characterization, convergence of the discrete process { }tY  is proved by 

showing the following: 1) the starting point for each increment, 0,0 YY t → , 2) Jump sizes 

of 0Y  become small at a sufficiently rapid rate, 3) ),(),( sYsYt µµ → , and 4) 

),(),( 22 sYsYt σσ → .  Stroock and Varadhan (1979) contains a detailed discussion of 

convergence requirements for discrete diffusion processes. 

Since the two-factor process has been decomposed into an ABM process for ξ  

and a conditional arithmetic Ornstein-Uhlenbeck process for χ , convergence must be 

shown for both approximations.  The proof of convergence for the binomial 

approximation of an ABM was shown by Cox, Ross, and Rubinstein (1979), and is 

therefore not discussed here. 
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For the conditional Ornstein-Uhlenbeck process, i) is satisfied, since the starting 

value does not change for our discrete process.  For ii) to be satisfied both jumps need to 

converge as 0→∆t , or: 

 0),(suplim
0

0
=−+

<≤
≤→∆

ytYYt

Tt
yt δ

 0>δ  

 0),(suplim
0

0
=−−

<≤
≤→∆

ytYYt

Tt
yt δ

 0>δ  

In our particular case, ( )( ) 1100
limlim −−→∆→∆

=∆±= ttttt
t χσχχ χ , so are both satisfied.  

For iii) and iv), we need: 

 0),(),(suplim
0

0
=−

<≤
≤→∆

tYtYt

Tt
yt

µµ
δ

  0>δ    and 

 0),(),(suplim 22

0
0

=−
<≤
≤→∆

tYtYt

Tt
yt

σσ
δ

 0>δ , respectively. 

The drift for the conditional process is ρσκ +− )( tYY , or in our particular case, 

χξχσρχκ +− )0( t .  However, recall that it may be necessary to censor probabilities 

when the degree of mean reversion required from a particular state results in probabilities 

greater than one (upward force of reversion) or less than zero (downward force of 

reversion) in a binomial node.  This has an effect on the drift of the process; thus we 

have: 
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To evaluate the convergence of ),( tYtµ , we test the limiting behavior of each of 

the conditional probabilities derived earlier: 

 
( ) ( )

( )ξξχ

χξξχχχξ

ν
σρσνν

t
tt

p uu ∆+∆∆

+∆∆+∆+∆∆
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2|  

 
( ) ( )

( )ξξχ

χξξχχχξ

ν
σρσνν

t
tt

p ud ∆+∆∆

−∆∆+∆−∆∆
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2|  

 
( ) ( )

( )ξξχ

ξχχξχχξ

ν
νσρσν

t
tt

p du ∆+∆∆

∆−∆+∆−∆∆
=
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( ) ( )

( )ξξχ

χξξχχχξ

ν
σρσνν

t
tt

p dd ∆+∆∆

+∆∆−∆+∆∆
=

2| . 

 

Each of these is censored in the approximation when the probabilities are invalid, that is, 

 ( )ddudduuu ppppp
pif

pif
pifp

p |||| ,,,
1

0
10

1
0 ∀

≤
≤

≤≤

⎪
⎩

⎪
⎨

⎧
≡ . 

We see that  
2
1lim

0
=

→∆ tt
q  for each conditional probability ( uup | , udp | , dup | , ddp | ), which 

means that in the limit, we have convergence to the instantaneous drift, so 

 ),(),(lim
0

tttt
χµρσκχχµ χ =−=

→∆
. 

The local variance is equal to the instantaneous variance, since there is no dependence on 

t∆ , therefore we also satisfy the final condition 

 ),(),(lim 22

0
tttt

χσχσ =
→∆

. 
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3.3 TWO CORRELATED ONE-FACTOR MEAN-REVERTING MODELS 

Another goal of this research was to develop a discrete binomial representation of 

two one-factor mean-reverting diffusions, again using a similar approach to the bivariate 

binomial approximations of Boyle (1988).   The same basic principles used in developing 

the discrete two-factor commodity price model apply, but in this case both of the 

individual processes are mean-reverting and therefore approximated using the Nelson and 

Ramaswamy approach.   

Both processes to be modeled are assumed to follow simple one-factor Ornstein-

Uhlenbeck processes.  The price process for commodity one is 

XXtt dzdtXXdX σκ +−= )(  and the price process for commodity two is 

YYtt dzdtYYdY σκ +−= )( .  The relationship between the increments of the two 

processes is given by dtdzdz XYYX ρ= . 

A two-dimensional binomial approximation can be developed for this process, 

which results in a four-branch chance node for each discrete period, as before. The 

probabilities for the joint process can be derived using the same steps as above, but with 

the drift of the processes as )( tX XX −= κν  and )( tY YY −= κν , respectively.  The 

equal up and down jump sizes for each process are tXX ∆=∆ σ  and tYY ∆=∆ σ , 

respectively.  As with the short term-long term model, at some nodes it may be necessary 

to censor probabilities when the degree of mean reversion required from a particular state 

results in probabilities greater than one (upward force of reversion) or less than zero 

(downward force of reversion).   Bayes’ Rule can again be applied to split the joint 

distribution into a marginal distribution for one of the commodities and a conditional 
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distribution for the other.  The difference in this case is that both the marginal and joint 

probabilities could be censored.  The marginal distribution will be of the same form as 

that for the one factor Ornstein-Uhlenbeck process shown earlier in this section. 

As shown in the following schematic, the first node is a binomial node for the 

marginal price process for commodity X , followed by a binomial node for the 

conditional price process for commodity Y . 

 

puu/p Y+∆Y

Y

p X+∆X pud/p Y-∆Y

X

1-p X-∆X pdu/(1-p) Y+∆Y

Y

pdd/(1-p) Y-∆Y

Commodity X Commodity Y

Censor as necessary

 

Figure 3.3 – Splitting the Four-branch node into Marginal and Conditional Steps 

 

As with the two-factor model, convergence must be shown for both 

approximations.  The proof of convergence for the binomial approximation of a one-

factor Ornstein-Uhlenbeck process was given in Nelson and Ramaswamy (1990).  For the 

conditional Ornstein-Uhlenbeck process the same steps that were used with the two-
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factor model earlier in this section are used, with the only difference being the drift term 

for commodity X , which changes from the GBM form, 
2

2σµν −=  , to the form of   

)( tXX −= κν .  It is straightforward to see that this also meets the convergence criteria.  
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4.  NUMERICAL RESULTS 

 
The modeling approach based on Nelson and Ramaswamy’s approximation can 

be applied to mean-reverting processes to facilitate the evaluation of real options on 

commodity price-contingent projects.   As discussed in Section 2, this can either be done 

in binomial lattice or binomial tree format, and both will be demonstrated in this Section. 

4.1 ONE-FACTOR MEAN-REVERTING MODELS 

The first example is for a one-factor Ornstein-Uhlenbeck process.  This is 

implemented in decision tree format with example parameters for a hypothetical process 

for oil price as follows: beginning price =0Y  ln($20), mean reversion coefficient =κ  

0.4, process volatility =σ  0.2, and long-term mean price =Y  ln($25).  In practice, these 

parameters could be obtained from historical data.  The objective here is to illustrate the 

approach by modeling prices over three years, beginning with a initial partition into three 

annual periods, so that ==∆
3
3t  1.  

A solved decision tree, which shows the endpoint values, probabilities, and 

expected value for price in the third period, is shown in Figure 4.1.  It is evident upon 

inspection that values are recurring in the tree, as would be expected for a tree 

representation of a recombining binomial lattice.  It is also evident from this figure that 

the probabilities are calculated at each node to reflect the mean reversion, and that there 

is one case where the probabilities are censored (after two down moves) due to the 

upward force of reversion.  
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Figure 4.1 – Solved Three-Period Decision Tree for Third Period Price 

To investigate convergence with this tree, the length of the time period can be 

reduced in several successive increments.  In this case the three-year time horizon is 

divided up into an increasing number of steps, according to the following sequence: 

==∆
6
3t  0.5, ==∆

12
3t  0.25, ==∆

18
3t  0.1667, and ==∆

24
3t  0.125.  As an example, 

the tree for =∆t 0.25 is solved in Figure 4.2. 

 

 

 

 

 

 

 

Figure 4.2 – Solved 12-Period Decision Tree for Twelfth Period Price (Partial View) 
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The price to which these models should converge can be calculated using the 

following expression for discretized values from the Ornstein-Uhlenbeck process: 

)1(1
tt

tt eYeYY ∆−∆−
− −+= κκ  

Using the parameters for this example, the oil prices for year 1, year 2, and year 3 

are $21.83, $23.07, and $23.91, respectively.  The convergence of the binomial model to 

these values is shown in Figure 4.3.   

 

 

 

 

 

 

 

 

 

Figure 4.3 – Convergence of Prices for Years 1, 2, and 3 
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While this implementation in decision tree format shows the model to be 

converging, for practical computational times it is limited to about 30 time steps, as the 

number of endpoints in the tree grows rapidly ( 302 , or 91007.1 ×  endpoints for 30 steps).  

In this case, a more efficient lattice-based algorithm in Visual Basic or other 

programming language can be used.  Using this approach and further decreasing the 

period length to 
48
3

=∆t  yields the convergence behavior shown in Figure 4.3.  

4.2 TWO-FACTOR MEAN-REVERTING MODELS 

The next objective is to implement the approach that was developed in the 

previous section for tree or lattice construction for a two-factor model and to test its 

convergence.  To accomplish this, the Schwartz and Smith (2000) two-factor model is 

first implemented in decision tree format, using parameter data estimated by Schwartz 

and Smith from oil price data from 1/2/90 to 2/17/95.  Based on this data, the current spot 

price of oil is $19.61 and the parameters for the model are: =κ  1.49, =χσ  28.6%, =0ξ  

ln($17.41) = 2.857, =ξµ  1.6%, =ξσ  14.5%, and =ρ  0.3.  The example of modeling 

prices over a three year period is used again, and the initial partition of time is into three 

annual periods ( ==∆
3
3t  1).  A decision tree model for the price of oil in the third period 

is shown in Figure 4.4.  Nodes denoted with “Mean i” in the figure are the binomial 

nodes for the long-term mean ξ  for period i, and nodes denoted with “Xi” are the 

binomial nodes for the conditional process for the short-term deviation χ  for period i.   
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Figure 4.4 – Simple Three-Period Decision Tree – Two-Factor Model 

 

The solved tree, with some nodes collapsed to save space, is shown Figure 4.5. 

 

 

Figure 4.5 – Solved Decision Tree for Third Period Price (Partial View) 
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It is again evident from the recurring terminal values of the one expanded path 

that this process can be modeled as a binomial tree.  Figure 4.5 also shows that the 

probabilities in the nodes for the long-term mean are constant, following GBM diffusion, 

while the probabilities in the short-term deviation nodes change to reflect the required 

degree of mean reversion.  

To again investigate convergence of the approximation numerically, the length of 

time period is reduced in several increments.  The values with large time increments 

again exhibit significant ( %5±≈ .) error, but convergence to values within 1% are 

achieved rapidly (by 
6
1

=∆t ).  As was the case with the one-factor model, we can 

continue to reduce the period length to more fully investigate convergence behavior by 

switching to a lattice-based algorithm, and we next discuss how to accomplish this.   

4.2  LATTICE-BASED IMPLEMENTATION FOR TWO-FACTOR MODELS 

Implementation of the approach developed in the Section 3 is fairly 

straightforward in decision tree format, but requires a few additional steps in lattice 

format.  Although the endpoints of the binomial nodes are recombining, when there are 

two separate factors the procedure for capitalizing on the recurring values changes.  To 

provide an example of where these values occur in an expanded tree, and how they can 

be arranged for a two dimensional lattice, the first couple of steps are shown explicitly in 

Figure 4.6.  From this figure, in which the same parameter values as above are used, it is 

evident that while there are sixteen endpoints at the end of the second period, there are 

only nine unique values. 
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Process Parameters ξo 2.857 long-term mean Χo 0.119 deviation
ν 0.039 drift κ 1.49 M-R coefficient

T 2 σ 14.5% volatility of process ν -0.177 drift Unique 
n 2 dt 1 σ 28.6% Values
rf 5% risk-free rate dξ 0.145 dt 1

ρ 0.3 dΧ 0.286

Long-Term Mean Values
Short Term Deviation Values Endpoints
Endpoint Values (Sum) 0.00 0.691 3.838 3.838

3.147 0.405
0.64 1.00 0.119 3.266 3.266

0.405 3.407 3.002
0.36 0.00 0.691 3.548 3.548

0.37 2.857 0.405
1.00 0.119 2.976 2.976

3.002 0.119

0.96 0.119 3.266 duplicate
0.63 3.147 -0.167

0.64 0.04 -0.453 2.694 2.694
0.64 -0.167 2.835 3.002

0.36 0.89 0.119 2.976 duplicate
2.857 -0.167

0.11 -0.453 2.404 2.404

2.857

0.00 0.691 3.548 duplicate
2.857 0.405

0.64 1.00 0.119 2.976 duplicate
0.36 0.405 3.117 2.712

0.36 0.00 0.691 3.258 3.258
0.00 2.567 0.405

1.00 0.119 2.686 2.686

2.712 0.119

0.96 0.119 2.976 duplicate
1.00 2.857 -0.167

0.64 0.04 -0.453 2.404 duplicate
-0.167 2.545 2.712

0.36 0.89 0.119 2.686 duplicate
2.567 -0.167

0.11 -0.453 2.114 2.114

Period 1

Period 2

 

Figure 4.6 – Distribution of Unique Endpoints after Two Periods 

 

The distribution of the endpoints appears to be arbitrary based on this one-

dimensional view, however as discussed in Clewlow and Strickland (2000) this can be 

shown in two dimensions to lend more intuition toward the development of an algorithm 

to build the lattice.  To show this, the same example shown above is represented in this 
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alternative representation in Figure 4.7.   In this view, shifts in the mean are indicated by 

the column position and shifts in the deviation from the mean are indicated by the row 

position. 
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0.691
0.405
0.119 2.976 Period 0
-0.167
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ξ 2.567 2.712 2.857 3.002 3.147
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0.119 Period 1
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ξ 2.567 2.712 2.857 3.002 3.147  

 

Figure 4.7 – Distribution of Endpoints in Two Dimensions 

 



 41

The following figure shows the relationship between a standard branching representation 

and the two-dimensional view. 

 

 

 

Figure 4.8 – Progression of Endpoints in Two Dimensions 
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With this approach, an algorithm can be developed to build a lattice in a two-

dimensional array at each step.  An example of such an algorithm is presented in 

Clewlow and Strickland (2000) for the case of two GBM’s and based on four branch 

nodes at each step.  In this case, one of the GBM’s is replaced with a one-factor Ornstein-

Uhlenbeck process and the four-branch node has also been replaced with a two node 

marginal-conditional sequence.  However, it is relatively straightforward to convert the 

two node sequence back to a four branch node after testing to see whether censoring is 

required or not.  Figure 4.9 shows and example of this process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 – Bayes Transformation and Inverse 
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By continuing past the number of feasible steps for a recursive decision tree algorithm, 

prices converge to the expected prices of $18.73, $19.22, and $20.06 for year 1, year 2, 

and year 3, respectively, as shown in Figure 4.10.  
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Figure 4.10 – Convergence of Two-Factor Prices 

 

The figure also shows that convergence is slower for prices in periods farther out 

in time, which is to be expected as the errors in the model are compounded.  Fortunately, 

the impact of such errors would be diminished by discounting in a valuation problem.  In 

any case, for this example convergence to within what might be considered reasonable 

tolerance for a real option problem was achieved within the range of capabilities of 

recursive decision tree algorithms.   
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4.3  APPLICATION TO REAL OPTIONS 

Thus far it has only been shown that this discrete approximation numerically 

converges to the expected prices.  This is important, but does not ensure that option 

values calculated using the discrete approximation will converge to option prices that 

would be calculated from a continuous distribution.  Convergence in distribution can be 

numerically tested by valuing a simple real option example and validating it against the 

results from existing approaches. 

To illustrate such a test, the following example (from Hull, 1999) of an option 

associated with an oil project can be used.  In this example, an oil producing firm is 

considering investing in a project that will deliver 2 million barrels of oil annually over a 

three-year period.  The initial capital expenditure for the project is $15MM, with annual 

fixed costs of $6MM, and variable production costs of $17/barrel.  The risk-free discount 

rate is given to be 10%.  Therefore, the expected net present value of the cash flows from 

the project can be calculated using the following formula: 

3*1.0
3

2*1.0
2

1*1.0
1 *)62*)17((*)62*)17((*)62*)17((15 −−− −−+−−+−−+−= ePePePNPV  

where 1P , 2P , and 3P  are future spot oil prices.  Using the expected futures prices given 

in the example ( =1P $22.00, $ =2P $23.00, and =3P $24.00) yields a net present value of 

-$0.54MM.   

If the model is calibrated to actual futures prices, we have a risk-neutral forecast 

of future oil prices.  Risk-neutrality implies that the owner of this project could arrange 

for a hedge against the production using financial instruments in the commodities 

markets, and thereby guarantee the net present value that is derived when the futures 
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prices are assumed as above.  This of course assumes that there is no uncertainty in the 

amount of oil to be produced, or that the firm has a sufficient number of project of this 

type so that if this project under-delivers, some other project in the firm’s portfolio will 

compensate, and vice-versa.  The key advantage of having a risk-neutral forecast is that 

future cash flows resulting from the project’s options can be discounted at the risk-free 

rate to obtain a valid project value.  Values calculated in this manner reflect a consensus 

view of what the project would be worth, without having to consider the risk level of the 

project.  Without a risk-neutral forecast, we would have no view on the relative risks 

associated with the project’s payoffs, and therefore could only obtain a valuation based 

on an arbitrary discount rate.   

Like many real projects, this example could have embedded options due to project 

managerial flexibility.  For example, there may be an option to abandon the project with 

zero salvage value at different points during the project, with the following payoffs: 

15−=NPV            (during first year) 

1*1.0
1 *)62*)17((15 −−−+−= ePNPV    (during second year) 

2*1.0
2

1*1.0
1 *)62*)17((*)62*)17((15 −− −−+−−+−= ePePNPV     (third year) 

The ability to exercise this option to avoid bad outcomes (negative cash flows) if prices 

fall below a certain level changes the riskiness of this project.  It also obviously changes 

the value relative to the deterministic expected value case. 

Hull (1999) uses a discrete trinomial (three-branch) tree to solve this example.  

Compared to a binomial tree, the extra branch gives an added degree of freedom to 

accommodate mean reversion.  In Hull’s approach, a trinomial tree is constructed to 
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model a simple mean-reverting process and then calibrated so that the expected values 

match the given futures price in each period.  Then decision nodes are added to the tree to 

reflect the abandonment decisions. The solved tree for this example is shown in Figure 

4.11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 – Trinomial Tree for Valuing Abandonment Option 
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analogous to an American Put, could be accomplished through straightforward 

application of a binomial model.  However, a GBM model does not capture the mean 

reversion evident in the term structure of futures prices.  As a result, if we fit a GBM to 

the futures data and solve with a binomial model, we obtain an option value of $3.60MM.  

To verify Hull’s results, we can also work the example using a simulation-based 

approach.  Simulation does not require discretization of outcomes at each increment, and 

can easily model virtually any form of stochastic process, however some method of 

evaluating the decisions at each instance must be derived.  Using the Longstaff and 

Schwartz (2001) approach discussed earlier, and implementing with the simple one-factor 

mean-reverting process used by Hull, we can find a value in agreement with the result 

from the trinomial tree method.   

We next switch to the Schwartz and Smith two-factor model and fit it to the 

futures prices from the example by finding the parameters that minimize the squared 

deviations between predicted and actual futures prices.  Under this approach, the 

parameters are: =0ξ  3.374, =0χ  -0.378, =κ  0.3, =χσ  15%, =ξµ  2%, =ξσ  12%, 

and =ρ  0.3.  Using this process in the Longstaff and Schwartz simulation approach, we 

again arrive at the same result of $1.94 for the value of the abandon option. 

Finally, we use our binomial approximation of the two-factor model to work the 

example and validate against the above results.  We use the decision tree implementation, 

as previously shown in Figure 8, and add decision nodes to reflect the option value and to 

convert the terminal payoffs from prices to project cash flows.  Carrying out these steps 

results in the tree shown in Figure 4.12, and the solution is shown in Figure 4.13. 
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Figure 4.12 – Decision Tree for Valuing Abandonment Option 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 – Solved Decision Tree for Valuing Abandonment Option (Partial View) 
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The solution for project value with the abandonment option is $0.10MM, which 

yields an incremental option value of $0.64MM.  As shown by Amin and Khanna (1994) 

for the case of an early exercise option such as the abandon option in this example, if we 

have convergence in distribution, then we should have convergence in option value as 

well.  We show that this is indeed the case by again reducing the time increments, this 

time between calculations of project payoffs.  The results are shown in Figure 4.14. 

 

 

 

 

 

 

 

 

Figure 4.14 – Convergence in Option Value 

The fact that this approach converges to the same solutions for a simple option as 

the ones provided by a Monte Carlo simulation approach and a trinomial tree is 

important.  However, this approach is much more flexible than the simulation-based 

approach, and provides a simple one-step method for valuing multiple concurrent options 

with complex payoff characteristics.  Once the tree for underlying asset value is created, 

this approach can accommodate most any combination of options and payoff 

$0.00

$0.50

$1.00

$1.50

$2.00

$2.50

$3.00

1 2 3 4 5 6 7 8

Number of Time Increments per Period

Va
lu

e



 50

characteristics simply by adding decision nodes and terminal payoff statements at the 

appropriate locations in the tree.  It can also easily accommodate two-factor processes 

with superior out-of-sample performance relative to the Hull one-factor process.   This is 

important if, for example, the duration of the project extends past the available future 

data, as is often the case in real option valuation 
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5.  PARAMETER ESTIMATION FOR A TWO-FACTOR MODEL 

 

For valuation problems that have underlying stochastic processes that are mean-

reverting, such as projects with cash flows driven by mean-reverting commodity prices, a 

necessary first step is constructing a model of the problem is to select an appropriate 

diffusion model and then determine its parameters empirically from data.  Although 

futures markets are primarily in existence to provide an inexpensive way to transfer risks, 

a side benefit of these markets is that they also impound information about commodity 

prices that can be used to specify a diffusion model.   

5.1  DIFFUSION MODELS 

In some cases, a simple one-factor model may be appropriate for modeling 

commodity price evolution; in others it may be necessary to utilize a diffusion that 

incorporates more than one factor to model more complex interactions, such as economic 

supply and demand effects.  Examples of this type of model include Gibson and Schwartz 

(1990), Schwartz (1997), Schwartz and Smith (2000), and others, as was discussed 

briefly in Sections 2 and 3.  Schwartz (1997) compared a one-factor model, a two-factor 

model that incorporates mean-reverting convenience yield as the second factor, and a 

three-factor model that adds stochastic interest rates to the two-factor model in terms of 

each model’s ability to fit commodity futures prices.  That study found that two- and 

three-factor models outperformed one-factor models, and the three-factor model 

produced only marginally better results relative to the two-factor model.  Hilliard and 

Reis (1998) investigated the differences in results for similar one-, two-, and three-factor 
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commodity price models for valuing both financial and real assets.  They found 

significant differences between one- and two-factor models when very high or very low 

convenience yields occur during the term, and that the difference between the two- and 

three-factor models depends on the interrelationship between interest rate volatility, 

correlation between the spot price and interest rate, and correlation between the 

convenience yield and interest rate.  

In this section two-factor models are discussed in more detail and the various 

approaches to estimating model parameters are tested on empirical data and contrasted.  

Although we make some comparisons based on statistics, we note that this is not an 

exhaustive, scientifically valid comparison of these methods.   There are two basic types 

of two-factor models.  The first approach, used by Gibson and Schwartz (1990), Schwartz 

(1997), and Ribeiro and Hodges (2004) is to model price as a GBM as the first factor, and 

nest within the drift function of the price process a mean-reverting process for 

convenience yield.  Hull and White (1994b) also use a variation of this approach in their 

two-factor model; however they use their fitted mean-reverting formulation as the 

process for the first factor instead of a GBM.  The second approach is to decompose price 

into factors for the long-term mean, which is specified with a GBM process, and the 

short-term deviation from the long-term mean, which is modeled as a one-factor mean-

reverting process.  Schwartz and Smith’s (2000) short-term/long-term model is the 

primary example of this approach.  As mentioned in Section 4, this approach is more 

computationally convenient from the perspective of the discrete modeler, because the two 

factors are connected only by the correlation of their increments.   
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The basic rationale for the Schwartz and Smith (2000) model is to draw on the 

valid arguments of both primary single-factor models.  Prices at a basic level should be 

expected to grow at a constant rate over time with variance increasing in proportion to 

time, which is behavior that can be modeled with a GBM.  In the short term, however 

prices will also be affected by supply and demand conditions.  Since these effects are 

short-lived, they would be expected to go away over time, which can be modeled with a 

process reverting to a mean of zero.  The Schwartz and Smith model accommodates both 

types of behavior by introducing a bifurcation of the time horizon.   

Following the nomenclature of Schwartz and Smith (2000) the long-term 

equilibrium price and deviation from the equilibrium price at any point are denoted as tξ  

and tχ , respectively.  As discussed in Section 3, the price is the sum of the two factors: 

  tteYt
ξχ += ,  

where the two processes are: 

  ξξξ σµξ dzdtd t +=    (GBM for long-term mean price) 

  χχσχκχ dzdtd tt +−= )0(   (Mean-reverting process for the deviation) 

and the increments of the two processes are correlated: 

dtdzdz ξχχξ ρ= . 

This formulation indicates that there are five parameters required to specify this model: 

,,,, χξξ σκσµ  and χξρ .   
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Since the state variables tξ  and tχ  are unobservable, we need some way to link 

them to observable information to in order to determine the five parameters above that 

define their stochastic process.  We can use futures price data for that purpose.   

Under risk-neutral valuation, the Schwartz and Smith process should be 

transformed with the addition of two parameters, χλ and ξλ , to adjust the drift of each 

process to produce a risk-neutral price model.  The function of these two parameters, 

called the short-term deviation risk premium and equilibrium risk premium respectively, 

is to transform the two processes so that cash flows generated from the model can be 

discounted at the risk-free rate.  The resultant formulation for the two-factor process then 

becomes: 

∗+−= ξξξξ σλµξ dzdtd t )(  

∗+−−= ξχχ σλκχχ dzdtd tt )(  

Denoting the risk-neutral drift as ξξξ λµµ −=∗  , the first equation can be written as:  

∗∗ += ξξξ σµξ dzdtd t  

The result is that the log of future spot price is normally distributed with the following 

revised mean and variance: 

[ ] teeYE tt
t

∗−− +−−+= ξχ
κκ µκλξχ /)1()ln( 00  

κσσρσκσ ξχχξ
κκ

ξχ /)exp1(22/)1()][ln( 222 tt
t TeYVar −− −++−=  

A complete derivation of these formulas can be found in Schwartz and Smith (2000).  

Under risk-neutral valuation, the futures prices will equal the expected spot prices (Black, 
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1976).  Therefore the expectation and variance can be used to derive the following 

expression for futures prices: 

         )()ln( 000, TAeF T
T ++= − ξχκ  

where, 

            ⎟
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⎠
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2
2 TTT eTeeTTA  

There are now seven parameters required to specify this model: χξξξξχ ρµµσσκ ,,,,, ∗  

and χλ , however we now have a method to link these parameters to observable data. 

There are three primary methods for estimating these parameters, two of which 

use historical data and one of which implies estimates from forward-looking data.  The 

first approach using historical data is Kalman filtering with maximum likelihood 

estimation of the parameters. 

5.2  ESTIMATION USING THE KALMAN FILTER 

The Kalman filter is a recursive procedure for estimating unobserved state 

variables based on observations that depend on these state variables (Kalman, 1960).  In 

this case, the Kalman filter can be applied to estimate the unobservable state variables tχ  

and tξ  in the Schwartz and Smith model using the futures pricing equation shown in the 

previous section.  It is then possible to calculate the likelihood of a set of observations 

given a particular set of parameters.  By varying the parameters and re-running the 

Kalman filter, the parameters that maximize the likelihood function can be identified. A 

detailed description of this technique can be found in Harvey (1989). 
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For the Kalman filter, Schwartz and Smith (2000) specify the transition equation 

as: 

Ttt ntGxcx ,...,1,1 =++= − ω  

where, 

[ ]tttx ξχ ,= is a   12× vector of state variables 

[ ]tc ∆= ξµ,0 is a 12× vector 

⎥
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⎤
⎢
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⎡
=
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10
0te

G
κ

is a 22× vector of state variables 

ω   is a 12× vector of serially uncorrelated normally-distributed 

disturbances with: 

[ ] 0=tEω    and 
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t∆   is the length of time steps 

Tn   is the number of time periods 

The corresponding measurement equation is: 

Tttttt ntvxFdy ,...,1,' =++=  

where, 
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[ ])ln(),...,ln( 1 TnTt FFy = is a 1×n vector of observed (log) futures 

prices with maturities nTTT ,...,, 21  

[ ])(),...,( 1 nt TATAd =  is a 1×n vector 

[ ]1,...,11 nTT
t eeF κκ −−=        is a 2×n matrix 

tv   is a 1×n vector of serially uncorrelated normally-distributed  

disturbances (measurement errors) with [ ] 0=tvE  and [ ] VvCov t = . 

With these two equations and a set of observed futures prices for different 

maturities, the Kalman filter can be run recursively beginning with a prior distribution of 

the initial values of the state variables ( )00 ,ξχ .  A multivariate normal with mean vector 

0m  and covariance matrix 0C  is assumed. 

In each subsequent period, the next observation ty  and the previous period’s 

mean vector and covariance matrix are used to calculate the posterior mean vector and 

covariance matrix.  The mean and covariance of the state variables are given by: 

[ ] )(, ttttttt fyAamE −+==ξχ  

[ ] ', ttttttt AQARCVar −==ξχ  

where, 

1−+= tt Gmca   (mean of ( )tt ξχ ,  based on what is known at 1−t ) 

WGCGR tttt += −
'

1   (covariance of ( )tt ξχ ,  based on what is known at 

1−t ) 
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tttt aFdf '+=   (mean of period t futures price based on what is known at 

1−t ) 

VFRFQ tttt += '   (covariance of period t futures price based on what is 

known at 1−t ) 

1−= tttt QFRA     (correction to predicted state variables ta  based on the 

difference between the (log) observed prices observed at time t, ty , and 

the predicted price vector at time t, tf ) 

As described in Harvey (1989), Chapter 3.4, Kalman filtering facilitates 

calculation of the likelihood of a set of observations given a particular set of parameters.  

In this case there are seven model parameters to estimate ( )χχξξξξχ λρµµσσκ ,,,,,, ∗ , 

along with the terms in the covariance matrix for the measurement errors (V).  This can 

be simplified with the common assumption that the errors are not correlated with each 

other, so that V is diagonal with elements ( )22
1 ,..., nss , as in Schwartz (1997) and Schwartz 

and Smith (2000).  The general form for the log-likelihood function for a joint normal 

distribution is: 

( ) ( ) .ˆˆ
2
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2
1)ln( 1|
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T
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−
−
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∑∑  

where, 

( )( )[ ]'1|1| ˆˆ −− −−= ttttttt yyyyEF  

Schwartz and Smith (2000) use the maxlik routine in Gauss to numerically determine the 

estimates of the above parameters for their two-factor process based on two different 
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crude oil futures price data sets.  The first set covers the period from 1990 - 1995 and has 

prices for contracts with 1-, 5-, 9-, 13-, and 17-month maturities.  The second set covers a 

different period, 1993 -1996, and includes more longer-term contracts, with a spread of 2-

, 5-, 8-, 12-, 18-, 24-, 36-, 60-, 84-, and 108-month maturities.   

In this section we use a three-part MATLAB routine on a data set covering futures 

contract maturities of  1-, 3-, 5-, 9-, 13-, and 17 months and compare both in-period 

parameter estimates to those mentioned above, as well as estimates from a more current 

and extensive data set, which covers the period from 1990-2005 as shown in Figure 5.1 
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Figure 5.1 – Crude Oil Futures Data Set 

The MATLAB routine, which is based on code developed by Jim Smith at Duke 

University, includes modules to read in and manipulate data sets, to return the likelihood 

function based on the Kalman filter, and to maximize the likelihood function.  The first 
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set of parameter estimates, covering the 1990 to 1995 period is shown in Table 5.1. 

Although the algorithm did not automatically find the parameters that globally maximize 

the likelihood function, by trying a few different starting parameter estimates, a solution 

was eventually found.  Once this solution was determined, the starting parameter 

estimates could be changed within a limited range and the algorithm would still converge 

to the same solution.   Thus, the algorithm did not always find a solution to the global 

maximization, but when it did, it was always the same solution. 

S&S Std. Err. This Study
Equilibribum drift rate µξ -0.0125 0.0728 0.0116

Short-term mean-reversion rate κ 1.4900 0.0300 1.5002
Short-term risk premium λχ 0.1570 0.1440 0.2740

Short-term volatility σχ 0.2860 0.0100 0.3411
Equlibrium volatility σξ 0.1450 0.0050 0.1623

Correlation in increments ρξχ 0.3000 0.0440 0.3519
Equilibrium risk-neutral drift rate µξ

∗ 0.0115 0.0013 0.0100

Standard deviation of error for Measurement Eq. s1 0.0420 0.0020 0.0408
s2 0.0060 0.0010 0.0028
s3 0.0030 0.0000 0.0042
s4 0.0000 0.0000 0.0019
s5 0.0040 0.0000 0.0051
s6 n/a n/a

'90-'95
Parameter

 

Table 5.1 – Comparison with Schwartz and Smith’s ’90 – ’95 Results 

The results shown above indicate good agreement between the algorithm used by 

Schwartz and Smith (2000) and the one used in this study.  If we consider the confidence 

intervals around parameter estimates from Schwartz and Smith, only the estimates for 

short-term volatility and equilibrium volatility are outside the 95% intervals, however 

these two parameters also have very small standard errors.   Table 5.2 shows the same 

information for the period from 1993 to 1996.  Here we also see general agreement 
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between the two different parameter estimates.  Short-term mean-reversion rate, short-

term volatility, and equilibrium risk-neutral drift rate fall outside the 95% confidence 

interval, owing again to the very low standard errors for those parameter estimates in the 

Schwartz and Smith study. 

S&S Std. Err. This Study
Equilibribum drift rate µξ -0.0386 0.0728 -0.0554

Short-term mean-reversion rate κ 1.1900 0.0300 1.5624
Short-term risk premium λχ 0.0140 0.0820 0.0366

Short-term volatility σχ 0.1580 0.0090 0.1912
Equlibrium volatility σξ 0.1150 0.0060 0.1026

Correlation in increments ρξχ 0.1890 0.0960 0.1721
Equilibrium risk-neutral drift rate µξ

∗ 0.0161 0.0012 0.0236

Standard deviation of error for Measurement Eq. s1 0.0270 0.0010 0.0422
s2 0.0060 0.0010 0.0086
s3 0.0000 0.0000 0.0000
s4 0.0020 0.0000 0.0027
s5 0.0000 0.0000 0.0000
s6 0.0050 0.0000 0.0041

 '93-'96
Parameter

 

Table 5.2 – Comparison with Schwartz and Smith’s ’93 – ’96 Results 

Figures 5.2 and 5.3 compare the forecasts that would be obtained in each case 

graphically.  While our results duplicated most of those from Schwartz and Smith’s, we 

might expect some differences due to slight differences in data.  We did not have access 

to their sources, which were Knight-Ridder financial services (1990-1995) and Enron 

(1993-1996), and instead used data from Bloomberg.  Given that global optimization of a 

function of seven variables is a challenging computational problem, slight differences 

between the estimates could also result from the use of different optimization routines.  A 

Gauss optimization routine was used in the Schwartz and Smith study, whereas we used a 

MATLAB routine in this study.   
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By experimenting with changes to the different parameters, we found the 

forecasts were most sensitive to the equilibrium drift rate, equilibrium risk-neutral drift 

rate, and the short-term risk premium.  The differences in results in Figures 5.2 and 5.3 

are largely due to differences in the estimates of these parameters.  In the case shown in 

Figure 5.2, the difference is almost entirely due to an estimate of the short-term risk 

premium that is 75% higher in our case than in that of Schwartz and Smith (2000).  This 

may be due to slight differences in data sets, since even small differences in the period 

around the Gulf War from late 1990 through the first half of 1991 would have a 

significant impact on the estimated short-term risk premium.   As shown in Figure 5.1, 

this was the period when the differences in prices for the different maturities were the 

most pronounced.  We also note that the short-term risk premium was the most difficult 

to estimate, as it had the highest standard error of all the estimates.   
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Figure 5.2 – Comparison of Forecasts Based on ’90 – ’95 Data 
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The short-term risk premium was also higher is the case shown in Figure 5.3, 

although not by as much as the previous case because the Gulf War period is not 

included.  This difference was offset by a higher estimated equilibrium drift rate.  In this 

case, the variation is most likely due to the slightly different maturities used in the data 

for this study and in the Enron data. 
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Figure 5.3 – Comparison of Forecasts Based on ’93 – ’96 Data 

In general, however, the forecasts are similar in structure and standard errors for 

the parameter estimates were also similar to those obtained by Schwartz and Smith.  

These ranged from just over 0.0668 for the equilibrium drift rate estimate of 0.0116 for 

the 1990 to 1995 period, to 0.0056 for the equilibrium volatility of 0.1026 for the 1993 to 

1996 period.  Consequently, from the perspective of our study, we find that the parameter 

estimates from the Schwartz and Smith study that fall outside the 95% confidence 
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intervals are nearly the same as those noted above from the reverse perspective.  The only 

change is the addition of the short-term risk premium for the 1990 to 1995 period and the 

equilibrium volatility for the 1993 to 1996 periods as estimates falling outside the 

confidence intervals, due to smaller errors in our study. 

We next fit the data over the expanded time horizon, from January 1990 through 

September 2004, with the results compared to the two prior fits shown in Table 5.3.   The 

fit to the expanded data set picks up the events of 1990 – 1991, and the effect on the 

short-term risk premium is again evident.  We also note that the equilibrium drift rate and 

risk-neutral equilibrium drift rate are the highest and lowest, respectively, of those 

estimated in any of the three cases, indicating that the long-term risk premium has 

increased.  This is likely due to the run-up in prices since 2000, and the uncertainty about 

the long-term equilibrium level. 

 

 '90 - '95  '93 - '96  '90 - '04 Std. Err.
Equilibribum drift rate µξ 0.0116 -0.0554 0.0547 0.0401

Short-term mean-reversion rate κ 1.5002 1.5624 1.2148 0.0270
Short-term risk premium λχ 0.2740 0.0366 0.2758 0.0429

Short-term volatility σχ 0.3411 0.1912 0.3614 0.0114
Equlibrium volatility σξ 0.1623 0.1026 0.1532 0.0059

Correlation in increments ρξχ 0.3519 0.1721 0.0427 0.0557
Equilibrium risk-neutral drift rate µξ

∗ 0.0100 0.0236 -0.0080 0.0027

Std. Dev. of error for Measurement Eq. s1 0.0408 0.0422 0.0271 0.0007
s2 0.0028 0.0086 0.0023 0.0007
s3 0.0042 0.0000 0.0080 0.0002
s4 0.0019 0.0027 0.0031 0.0005
s5 0.0051 0.0000 0.0218 0.0006
s6 n/a 0.0041 0.0183 0.0006

Parameter

 

Table 5.3 – Comparison of Estimates by Timeframe 
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We also show a graphical comparison in Figure 5.4 of the forecast that would be 

generated in this latest case to that generated from the January 1990 – February 1995 fit.  

The first and most obvious conclusion is that the forecasts start from very different 

places.  In all cases shown in this section, forecasts start from values indicated by the last 

set of the state variables from the fit to the relevant data set.  We also note that the current 

price is significantly above the long-term equilibrium level, but that level appears to have 

shifted upward based on the values seen in the out years.  All of the parameter estimates 

in the 1993 to 1996 period fall outside the 95% confidence interval around the estimates 

from this study, as do the short-term mean reversion rate, correlation, and equilibrium 

risk-neutral drift rate estimates from the 1990 to 1995 study, further signaling significant 

changes in the parameters when we consider the extended time horizon.  
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Figure 5.4 – Comparison of Forecasts Based on Different Time Horizons 
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Finally, to review the evolution of the underlying state variables tξ  and tχ , we 

show a plot of these two variables and the spot price given by them in Figure 5.5.   
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Figure 5.5 – Evolution of State Variables 

All of the series in Figure 5.5 are unobservable; however as noted by Cox, 

Ingersoll, and Ross (1981), if the time to maturity for the futures price is relatively small, 

we can use it as a proxy for the spot price where it does not exist.  We therefore show a 

plot in Figure 5.6 of the nearest futures maturity data with the spot price given by the 

underlying state variables to show that a good fit has been obtained.  To evaluate the fit 

of an estimate to a data set, we can calculate the mean absolute percent error (MAPE).  In 

this case, using our forecasted price as the estimate and the near-term futures price as the 

data set, we calculate a MAPE of 2.58%, indicating a good fit.  We also note that the 

correlation between the two series is very high, having a value of 0.996.  
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Figure 5.6 – Calculated Spot Price and Near-Term Futures Price 

   

5.3  ESTIMATION USING SEEMINGLY UNRELATED REGRESSION 

A second approach to determining the parameters for the Schwartz and Smith 

two-factor model is to use an alternative form of two-factor model, developed by Gibson 

and Schwartz (1990).  Unlike the Schwartz and Smith model, this model is nested; the 

second factor is actually a parameter in the diffusion equation for the first factor.  

Therefore, it does not lend itself to straightforward modeling in a two-factor binomial 

lattice.  However, estimation for this model is more straightforward, and uses nothing 

more than regression analysis.  Schwartz and Smith (2000) showed that the two models 

are equivalent; therefore if we can find the parameters for the Gibson and Schwartz 

model, we can convert to the parameters needed for the Schwartz and Smith model.  
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The Gibson and Schwartz model includes a GBM process for tX , the log of the 

spot price at time t, and an Ornstein-Uhlenbeck process for convenience yield, tδ .  

Convenience yield is a parameter that measures the benefit to the holder of a commodity 

due to the option to sell it for consumption or use it in production.  It fluctuates with 

supply and demand conditions and has been shown to be the primary factor in the 

relationship between spot and futures prices.  It can be viewed as a dividend accruing to 

the commodity owner, as is the case in the Gibson and Schwartz process:  

11
2
1 )

2
1( dzdtdX tt σσδµ +−−=  

22)( dzdtd tt σδακδ +−=  

where, 

µ  is the drift rate 

tδ  is the convenience yield 

1σ  is the spot price volatiliy 

κ  is the mean reversion coefficient 

α is the long-term convenience yield 

2σ  is the convenience yield volatility 

Similar to the Schwartz and Smith model, the increments of the two processes are 

correlated: 

dtdzdz ρ=21  
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Seemingly unrelated regression (SUR) can be used to estimate ρ , as well as the 

parameters κ , α , and 2σ  for the convenience yield process.  Convenience yields are 

calculated based on the relationship between the spot price and the futures price: 

( ) 12
)(

00 ,
Tr

eXTSF
δ−

=  

where T is time to futures maturity and Tr  is the risk-free rate during the intervening time 

period from 0  to T , which leads to: 

( )
⎥
⎦

⎤
⎢
⎣

⎡
−=

0

0 ,
ln12

X
TSF

T
rTδ  

For each period there is a spot price and corresponding futures prices of different 

maturities, so a time series for convenience yields can be constructed from data.  Given 

the above mean-reverting process for the convenience yield, it can be shown that the 

expected value and variance of this distribution of δ are: 

[ ] ( ) T
t eE καδαδ −−+= 0  

[ ] ( )T
t eVar κ

κ
σ

δ 2
2
2 1

2
−−=  

These definitions and the discrete-time first-order autoregressive form of this Ornstein-

Uhlenbeck process: 

  ( ) ( ) tt

ba

tt eee +−+−=− −
−−

− 11 11 δαδδ κκ

4342143421     , or 

tttt eba ++=− −− 11 δδδ  

can be used to formulate a regression to determine the parameters a  and b . This 

regression is performed in conjunction with the regression for the price process 
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( ) ( ) ttttt XXbaXX ε+′+′= −−− 211 lnln  

to capture the correlation between the two processes. 

Using the same data set that was used in the previous section we ran a SUR model 

on both convenience yield and price using a common econometrics software package, 

LIMDEP.  A separate regression with convenience yield was run for each futures 

maturity date, for a total of six different runs.  For each run, the SUR model produces 

regression coefficients for each equation, as well as a 22×  covariance matrix Σ  for the 

residuals: 

⎥
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⎤
⎢
⎣

⎡

εεε

ε

σσ
σσ

e

eee  

The results from each run are summarized below in Table 5.4. 

 

Maturity 1 mo. 3 mo. 5 mo. 9 mo. 13 mo. 17 mo.
Results from SUR:

a -0.9574 -0.2199 -0.0631 -0.0296 -0.0521 -0.0187
b 0.0587 0.0152 0.0069 0.0033 0.0056 0.0019
σe 0.1679 0.1421 0.0714 0.0453 0.0433 0.0285
σεe 0.0010 0.0044 0.0027 0.0020 0.0015 0.0014
σε 0.0525 0.0527 0.0529 0.0528 0.0525 0.0528  

Table 5.4 – Regression Results for Different Maturities 

 

With a  and b  determined from the convenience yield regression, κ , α , and 2σ  

are calculated as follows: 

( )bk +−= 1ln  
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b
a

−=α  

( )
( ) 11

1ln
22
−+

+
=

b
b

eσσ . 

The correlation ρ  is calculated by using either off-diagonal term in covariance matrix Σ  

and dividing by the standard deviations of the residuals: 

ε

ε

σσ
σ

ρ
e

e=  

The calculated parameters are shown for each maturity date in Table 5.5.  The table 

shows significant variance in the parameter value, depending on the time to maturity. 

 

Maturity 1 mo. 3 mo. 5 mo. 9 mo. 13 mo. 17 mo.
Parameters:

α 0.0613 0.0691 0.1101 0.1110 0.1068 0.1022
κ 22.7510 1.7904 0.4699 0.2166 0.3862 0.1358
σ2 0.2985 0.1132 0.0521 0.0325 0.0314 0.0204
ρ 0.1171 0.5829 0.7208 0.8479 0.6757 0.9077  

Table 5.5 – Parameter Estimates for Different Maturities 

Next, we determine the parameters 1σ  and µ  directly from the futures price data.  

Depending on the frequency of data, the parameters can be adjusted to the desired 

reference period.  If  Tσ  is the standard deviation for convenience yield of frequency T , 

to obtain σ on an annual basis the following conversion is used: 

yearperperiodsTTσσ =  
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Volatility of the spot price, 1σ , can thus be determined directly from spot price 

data by tabulating the returns, ( )1ln −= ttt XXR , and then computing the standard 

deviation. The drift rate,µ , can then be computed from the average of tR  , ν , and 

transforming to a lognormal mean: 

2

2
1σνµ += . 

Analysis of the data in our case showed 1σ  to be 38.4 % and µ  to be 3.6 %  

As was the case with the Schwarz and Smith model, the Gibson and Schwartz 

model can be used for valuation provided it is adjusted to reflect a risk-neutral forecast.  

For the Gibson and Schwartz model, this requires adjustment of the drift rate of the 

convenience yield process to account for the market price of convenience yield risk.  The 

model specification then becomes: 

∗+−−= 11
2
1 )

2
1( dzdtdX tt σσδµ  

[ ] ∗+−−= 22)( dzdtd tt σλδακδ  

dtdzdz ρ=∗∗
21  

where λ  is the market price of convenience yield risk.  This parameter can be estimated, 

once the other parameters are determined, by using the futures valuation equation: 
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and solving for the value of λ  that yields the best fit with the current futures price data.  

This was done in our case by setting up a simple Excel worksheet to calculate the futures 

prices and then using the add-in function Solver to find the value of λ  that minimizes the 

squared deviations from the actual observed futures prices for each date.  Using this 

approach, the values for λ  ranged from -0.11 to 0.39, depending on the slope of the 

individual futures curve, however the average value was 0.185. 

With estimates for all the parameters for the Gibson and Schwartz model we can 

use the following mapping to obtain the parameters for an equivalent Schwartz and Smith 

model: 

Schwartz & Smith Parameter ⇒  Calculated from Gibson & Schwartz Parameters 
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κ
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The resulting parameters for the Schwartz and Smith model, shown in Table 5.6, 

indicate that the estimates vary considerably with the futures maturity.   

 

Maturity 1 mo. 3 mo. 5 mo. 9 mo. 13 mo. 17 mo.
Calculated Schwartz & Smith Parameters:

κ = 22.7510 1.7904 0.4699 0.2166 0.3862 0.1358
σχ = 0.0131 0.0632 0.1110 0.1500 0.0814 0.1500
µξ = -0.0083 -0.0161 -0.0571 -0.0580 -0.0538 -0.0491
σξ = 0.3824 0.3507 0.3134 0.2686 0.3342 0.2555
ρξχ = -0.0832 -0.4576 -0.5285 -0.6528 -0.5324 -0.7765
λχ = 0.0081 0.1033 0.3937 0.8539 0.4791 1.3619
λξ = 0.0685 -0.0267 -0.3170 -0.7773 -0.4024 -1.2852  

Table 5.6 – Parameter Estimates from Mapping 

This raises the issue of deciding which futures maturities to use with this method.  

As noted by Schwartz and Cortazar (1994), stochastic process movements have an impact 

on futures returns across all maturities and are important in explaining return variance.  

Therefore it is important in estimating the stochastic process of prices to use a wide 

spread of information across all futures maturities.  However, it is not clear how to 

accomplish that in this case, and a simple average of the parameter estimates from the 

different maturities yields significantly different answers than those from the previous 

section.  We can select the estimates based on the three month maturity prices as the most 

similar set of parameters to those determined from Kalman filter estimation and plot 

forecasts for comparison, as shown in Figure 5.7.   
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 Figure 5.7 – Forecasts from Kalman Filter Estimation and Mapping 

This figure shows that the two forecasts are still significantly different, both in 

terms of drift and variance.  Furthermore, all of the parameter estimates except 

equilibrium drift rate are outside the 95% confidence intervals for estimates from the 

Kalman Filter estimates for this period.  Therefore, although the regression approach with 

mapping to the Schwartz and Smith model parameters is simpler computationally relative 

to Kalman Filter estimation, in this case it did not provide a consistent set of parameters.  

This is likely due to the fact that this approach does not simultaneously consider futures 

data across the different maturities, as in the Kalman Filter approach.  We therefore 

recommend that this method only be used when approximate estimates are required. 
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5.3  IMPLIED ESTIMATION USING THE CURRENT FUTURES STRIP 

The third method for estimating parameters for the Schwartz and Smith two-

factor model is to fit the current futures curve with the futures pricing equation: 

)()ln( 000, TAeF T
T ++= − ξχκ  

where, 
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Using this equation and initial estimates for each of the parameters, the state 

variables that minimize the squared deviations between the calculated and observed 

futures prices can be obtained, thereby yielding the spot price.  Based on the fit to the 

observed prices, the parameters can be changed and the process repeated until the fit 

cannot be further improved, in which case the final set of parameters become the 

estimates.  This process is obviously easier to implement when some of the seven 

parameters are known, and only two or three of the seven parameters need to be 

estimated.   Two parameters that can be estimated beforehand from historical data are the 

short-term and equilibrium volatilities.  Schwartz and Smith (2000) propose using this 

method as a shorthand way to approximate the solutions obtained through the full 

Kalman Filter method 

In this case, a simple worksheet was set up to implement the above pricing 

equation and compile the squared differences from the actual futures curve.  Given a set 

of estimated parameters, Excel Solver was then used to find the state variables that 
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minimize the sum of the squared differences.  The objective function and constraints for 

this problem can be written as: 

 ( ) TfF TT ∀−∑ 2min  

 =+ χξ..ts  log(current price) 

where: 

  =TF calculated futures price using the equation above 

  =Tf  observed futures price 

 =T  futures maturity 

 

A snapshot of the worksheet for this process is shown in Figure 5.8.   

 

Stochastic Process Parameters
µξ = 0.050
κ = 1.500
λχ = 0.200
σχ = 0.350 ξ0 χ0 Date Spot 30 90 150 270 390 510
σξ = 0.150 3.82403 0.08318 9/28/04 49.76 49.90 48.49 47.17 44.61 42.65 41.02
ρξχ = 0.300
µξ

∗ = -0.010 L-T Mean Spot Price

45.788 49.760
∆t = 0.083

Maturity ε−κTχ0+ξ0 A(T) ln(FT,0) FT Obs. FT ∆
1.000 3.897 -0.010 3.888 48.795 49.900 1.221
3.000 3.881 -0.027 3.854 47.175 48.490 1.728
5.000 3.869 -0.042 3.827 45.904 47.170 1.602
9.000 3.851 -0.064 3.787 44.136 44.610 0.224
13.000 3.840 -0.078 3.763 43.066 42.650 0.173
17.000 3.834 -0.086 3.748 42.423 41.020 1.970

6.919 minimize

Futures PricesState Values

Observed vs. Calculated Futures Price
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Figure 5.8 – Worksheet for Implied Method 
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We can select a set of parameters to estimate by running solver again with these state 

variables.  For example, we can use historical estimates for ξσ  and χσ , assume χξρ is a 

known stable estimate, and then estimate the remaining parameters, κ , χλ , and ∗
ξµ .  

Figure 5.9 shows the worksheet with updated parameters and fit in this case, where we 

can see that the sum of squared errors has been substantially reduced from the previous 

case. 

 

Stochastic Process Parameters
µξ = 0.050
κ = 0.653
λχ = 0.161
σχ = 0.350 ξ0 χ0 Date Spot 30 90 150 270 390 510
σξ = 0.150 3.82403 0.08318 9/28/04 49.76 49.90 48.49 47.17 44.61 42.65 41.02
ρξχ = 0.300
µξ

∗ = -0.030 45.788 49.760

∆t = 0.083
Maturity ε−κTχ0+ξ0 A(T) ln(FT,0) FT Obs. FT ∆

1.000 3.903 -0.009 3.894 49.122 49.900 0.606
3.000 3.895 -0.025 3.870 47.921 48.490 0.324
5.000 3.887 -0.041 3.846 46.818 47.170 0.124
9.000 3.875 -0.071 3.804 44.884 44.610 0.075
13.000 3.865 -0.098 3.767 43.268 42.650 0.383
17.000 3.857 -0.121 3.736 41.919 41.020 0.808

2.319 minimize

Futures PricesState Values

Observed vs. Calculated Futures Price

20

30

40

50

60

1 3 5 9 13 17

Maturity

Pr
ic

e 
($

)

FT
Obs. FT

 

Figure 5.9 – Updated Worksheet for Implied Method 

Figure 5.10 shows the forecast that would be generated from these parameters as 

compared to the parameters from the Kalman Filter approach.  
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Figure 5.10 – Forecasts for Kalman Filter Estimation and the Implied Method 

Although simple to implement, this process is rather ad-hoc in both the way 

parameter values are selected for estimation and in the way an “optimized” set of 

parameters is obtained.  Furthermore, without having some knowledge of the parameter 

estimates beforehand, or having historical estimates of parameter values, it might be very 

difficult to find the optimum or near-optimum set.  

5.4  SUMMARY 

To summarize, in this section estimates for the two-factor Schwartz and Smith 

model were be obtained using three different methods.  Since this evaluation was 

primarily undertaken to support testing of the models we have developed, we have not 

presented a detailed statistical comparison of the different approaches.  However, we 
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have documented our experiments with each approach.  The Kalman Filter method 

provides not only parameter estimates, but also errors for those estimates, and is 

generally considered the best approach for this type of problem.  However, it also 

requires considerable knowledge of its algorithm and its computational implementation, 

as well as facility with an appropriate platform in which to carry out the calculations.  

The other two approaches, especially the implied approach, impose a much lighter 

computational burden and use analysis tools familiar to most practitioners.  The approach 

using a mapping from parameters determined through regression for the Gibson and 

Schwartz model did not provide results that were consistent with those from Kalman 

filtering, however. As a result, if an approach with lighter computational burden is 

required, the implied approach would be preferred.  The implied approach also provides 

the benefit of a forward-looking analysis, and may be preferable when forecasting in the 

near term is the objective.  Like the Kalman Filter, the implied approach can also return 

the state variables so that their evolution over time can be checked against near-term 

futures data. 
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6.  APPLICATION TO A SWITCHING OPTION 

The previous sections have detailed how the bivariate binomial approximation can 

be used to model a two-factor mean reverting processes for a single underlying asset.  In 

this section the approximation is applied to a real option problem that has two underlying 

assets that both follow mean-reverting stochastic processes.  Assuming both processes 

can be modeled as one-factor Ornstein-Uhlenbeck processes, the bivariate approximation 

applies as outlined at the end of Section 3. 

6.1  DESCRIPTION OF THE APPLICATION 

The application deals with valuing an important research and development 

prospect in the area of enhanced oil recovery.  This project has implications for 

development scenarios for one of North America’s largest producing areas, the North 

Slope of Alaska, which currently comprises 25% of the total U.S. oil production and 30% 

of its remaining oil reserves.  The technology to be evaluated is low-salinity water 

flooding, which has the potential to increase the amount of oil recovered by up to 10% 

relative to conventional waterflooding techniques, as discussed by Webb et. al. (2004) 

and McGuire et. al. (2005).  Conventional waterflooding is the practice by which water is 

injected into an oil reservoir via dedicated injector wells to artificially maintain the 

reservoir drive mechanism of water sweeping oil toward producer wells.  Typical 

recovery percentages under waterflooding in the North Slope can reach nearly 60% of the 

original oil in place, leaving approximately 40% of the oil behind.   Given that the oil in 

place was 55 billion barrels (Bbo), an incremental 10% in ultimate recovery would have a 

huge economic impact.  However, the North Slope also holds an estimated 35 trillion 
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cubic feet (Tcf) of natural gas, some of which is currently being produced with oil and re-

injected into the reservoir because there is no pipeline to transport it to North American 

markets.  A pipeline which would cost an estimated $19 billion and would follow a route 

through northwestern Canada is currently being evaluated, both in terms of its economic 

viability and its technical and regulatory feasibility.  If gas production commences, the 

assumption is that oil production would be impacted.  The current producing wells are 

optimally configured and operated to maximize oil production; therefore a 

reconfiguration or change in operational approach would reduce the oil production at the 

expense of increasing gas production.  Furthermore, energy in the form of gas pressure is 

removed from the reservoir rather than replaced, as is the current practice.   

Given this context, a real option analysis can be carried out to determine the value 

of a research and development project to evaluate low-salinity waterflooding.  This value 

will naturally be contingent upon the optimal course of action for managing North Slope 

production and timing the Alaska gas pipeline.  The optimal course of action will be 

determined by the relationship between oil and gas prices, as well as the decline of 

continued oil production from a finite-sized reservoir.  The point of switching from only 

oil production to combined oil and gas production could thus be affected by the success 

of low-salinity waterflooding in stemming the oil production decline.  At the same time, 

the economic viability of pursuing low-salinity waterflooding depends on the remaining 

length of time, and thus volume, of oil production before the switch to gas production.  

Therefore there is a classic recursive relationship between future production and the low-

salinity project that requires optimization through dynamic programming techniques. 
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6.2  RELATED RESEARCH 

The background literature on the issues involved in this problem is varied.  

Several different types of options, such as exchange options and rainbow options, have 

similar characteristics to this problem, although there are also key differences in each 

case.  Copeland and Antikarov (2001) present a simple example of a switching option 

between two modes of operation for a factory, and they obtain a solution using a discrete 

lattice.  They assume two GBM process for the uncertain cash flows from the two modes 

of operation, and approximate with the standard binomial lattice, assuming that the two 

processes are uncorrelated.  The authors also note that both a correct valuation of the 

project with flexibility and the optimal management policy are obtained through their 

analysis.  Cases where the underlying asset is exhaustible are suggested as an area for 

extension for this type of approach.  Bailey et. al. (2003) discuss several applications of 

real options, including a switching option for the size of a key processing component 

during the design phase of a facility construction project.  They propose using a similar 

discrete time approach to that used by Copeland and Antikarov (2001), with independent 

lattices for the two facility size options. 

There are several studies on the optimal extraction of a depletable natural resource 

base, including Brennan and Schwartz (1985), Dixit and Pindyck (1994), Carlson, 

Khokher, and Titman (2000), Dias, Rocha, and Teixeira (2003), and Ronn (2004) that are 

useful for developing analytical representations of this problem, however they do not 

address the case of more than one coexisting resource.   

Outside of the natural resources literature, Margrabe (1978) developed an early 

model for valuing the option to exchange one asset for another; however this closed-form 
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solution is valid only for the case of underlying assets that follow GBM diffusions and 

also does not consider depletion.  Carr (1988) generalizes this model to the case of 

sequential exchange opportunities.  Dixit (1989) studies entry and exit decisions of a firm 

under uncertainty, developing closed-form solutions for the value with this flexibility 

under a GBM assumption and also considering the case of an underlying one-factor 

mean-reverting process.  In the latter case Dixit notes that closed form solutions cannot 

be obtained. 

Other related research on problems with similar characteristics includes the work 

of Stulz (1982), Johnson (1987), and Boyle and Tse (1990) who find analytical solutions 

for pricing options on the maximum of multiple assets, but only under the assumptions of 

underlying GBM diffusions and non-depletable assets.  Childs, Ott, and Triantis (1998) 

also investigate valuation for multiple assets and specifically consider the case where the 

assets are interrelated.  They develop a closed-form solution for the case of a European 

option, but note that a more realistic formulation to allow early exercise would require 

numerical approximation.  Wilmott, Howison, and Dewynne (1995) assume a two-factor 

correlated process to develop a framework for valuing a convertible bond with stochastic 

interest rate, however it does not accommodate a depletable asset and in any case must be 

solved numerically. 

6.3  DEVELOPMENT OF AN ANALYTICAL MODEL 

We are not aware of an existing analytical solution that can be easily adapted to 

the problem being considered here.  To evaluate whether a closed-form solution can be 

found for this problem, the general approach used by Dixit and Pindyck (1994) can first 
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be used to set up the differential equation to model this problem.  In this case, there will 

be four state variables for the problem: 

  O  = price of oil  

G  = price of natural gas  

OR  = oil reserves 

GR  = gas reserves. 

The stochastic process for oil price O  and natural gas price G  are assumed to be 

single-factor mean-reverting processes: 

 O
tOtOt dzdtOOdO σκ +−= )](  

 G
tGtGt dzdtGGdG σκ +−= )]( , 

with correlated process increments, dtdzdz G
t

O
t ρ= , and reserves are expected to change 

over time according to the following relationships, which depend on which types of 

production are active: 
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( ) ( )tRtR OO δτωδτ +=−   at time of switching,τ  

where, 

GO κκ ,  = coefficients for the speed of mean reversion 

GO ,  = long-term mean commodity prices 
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GO σσ ,  = process volatilities 

GO dzdz ,  = random increments of the processes 

GO αα ,  = production decline rates, and  

ω  = factor for impact of gas production. 

With these specifications and using the risk-free discount rate r , the unit value V ′ of the 

project during oil production only must satisfy the differential equation: 

  ( ) 0
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When oil and gas production both occur, the unit value V ′′ must satisfy: 
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Under these conditions, we satisfy the Bellman equation for the optimal control policy for 

the project.  Next, the particular characteristics of this problem need to be incorporated by 

specifying boundary conditions for the above differential equation.  These are given by 

the following: 

 0≥OR  

 0≥GR  

 ( ) ( ) KRRGOVROV GOO −′′≥′ ,,,, , and 

 ( ) 00,0,, =′′ GOV , 
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which set the economic stopping and strike conditions.  In these equations, Oθ  and Gθ  

are oil and gas production conversion factors, which use an assumed point-forward 

production decline profile to convert reserves to an unit factor that can be multiplied by 

price to determine present value. 

This formulation is somewhat similar to that for a power plant input fuel 

switching option provided in Dixit and Pindyck (1994); however it is slightly more 

complicated due to the depleting oil reserve base, rather than finite time horizon, and the 

underlying mean-reverting processes.  In that example they note that the resultant partial 

differential equation must be solved numerically and propose using the binomial method, 

a direction which is followed for the remainder of this section.  

6.4  NUMERICAL SOLUTION 

As a numerical approach for solving options with underlying mean-reverting 

processes, discrete trees have found some limited use.  Slade (2001) uses binomial trees 

based on the Nelson and Ramaswamy (1990) approach to model a one-factor mean-

reverting process for metals price in valuing options for a mining operation.  In the area 

of financial options, Hull’s (1994) trees are used extensively for valuing interest rate 

derivatives and Jaillet, Ronn, and Tompaidis (2004) and Lari-Lavassani, Simchi, and 

Ware (2001) use binomial or trinomial trees to value swing options based on mean-

reverting commodity prices.  In the example problem being considered here, the binomial 

approximation method developed in Section 3.3 will be used.  
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6.4.1 Definitions and Assumptions 

To solve the problem numerically, we need to first further define the problem and 

state the assumptions that will be used.  First, although several firms share ownership in 

North Slope production, the project will be valued from the perspective of a single firm 

with one non-operating partner, the State of Alaska, which holds the mineral rights and 

therefore collects a 12.5% royalty.  As a non-operating partner the State has 0% working 

interest and does not share in any costs.  As is usually the case with real options 

problems, there are some required assumptions with regard to timing.  The operating firm 

could in principle decide to switch production from oil to gas at any point in continuous 

time; however we will assume in this problem that this continuum is discretized into 

annual periods.  The actual decision-making frequency in a firm is likely to be 

somewhere in between the two extremes.  We will also assume that when a switch is 

made, it occurs instantaneously.   

After a switch to gas production, we make the base-case assumption that the oil 

production would be reduced by 10%.  This can be included in the model as a 

downstream private, or non-hedgeable, risk as an extension.  Reserves for both for oil and 

natural gas are also assumed to be deterministic, but could also be modeled as private 

uncertainties in extended models.  However, since oil has been produced from the North 

Slope since the early 1970’s, there is a high level of certainty about reserves levels. 

The low salinity technology has been tested in single wells with the impact 

measured by tracking chemical tracers injected with the water that was later recovered in 

nearby producing wells (McGuire et. al., 2005).  Based on these pilot tests, the estimated 

probability that a more extensive test using a three-well grid will verify that an 
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incremental 9% of oil can be recovered is 45%, while there is a 55% chance that larger 

scale testing will show that incremental recovery will only be 4% with low salinity water.  

These estimates are based on information from industry personnel familiar with the 

characteristics this technology.  If the large scale test of sweep efficiency is successful, 

the next problem would be to prove that an operating-scale desalinization plant capable 

of producing the volumes of water needed could be feasible.  The test plant will produce 

50,000 barrels of water per day, and the estimated probability that it will operate 

efficiently is 40%, leaving a 60% chance that the plant will be inefficient.  If the plant is 

inefficient, oil production would be impaired by 20% due to the lower volumes of water 

available for flooding the reservoir.  The tests will be run in conjunction, since the 

desalinization plant is needed for the test waterflood. 

6.4.2 Analytical Framework and Base Case Analysis 

A base case solution to the problem can be obtained by finding the deterministic 

net present value using a simple decision tree or spreadsheet model with expected values 

for all inputs.  In each year of the project the firm will decide whether to pay the 

switching cost to activate the pipeline and switch to gas production with reduced oil 

production, or to continue with producing oil and wait until the next year to revisit the 

switching question.  Later in this section, we will remove some of the deterministic 

assumptions and compare to this base case.   

Among the required inputs for this analysis are oil and gas prices and production 

profiles.  The one-factor Ornstein-Uhlenbeck process is used in the example to model the 

separate processes.  Although not as economically sophisticated as the two-factor models, 
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Smith and McCardle (1999) use a one-factor mean-reverting process in their analyses of 

the application of option valuation techniques to oil and gas projects and note that it 

provided a fit to the empirical data in their case.  The parameters for the two processes 

were determined using the same implied approach discussed in the previous chapter, and 

are summarized in Table 6.1. 

 

Current Spot Price 53.00 $/bbl 6.50 $/Mcf
Mean-Reversion Coefficient, κ 0.5 2.0

Long-Term Mean Price 45.00 $/bbl 4.50 $/Mcf
Process Variance, σ 20% 30%

Oil Gas

 

Table 6.1 – Process Parameters for Oil and Gas 

 
Pindyck and Rotemberg (1990) discuss the correlation between commodity prices 

as a well known phenomenon, and this was also empirically observed by Moel and 

Tufano (1998) and others.  In this case, the correlation between oil and gas prices was 

estimated to be approximately 30%, based on data from 1990 through 2004.  Using the 

parameters from the above table yields the deterministic forecasts for oil and gas over a 

ten-year period shown in Figure 6.1.  The figure shows that gas reverts more quickly to 

its long-term mean than oil does, stabilizing near its long-term equilibrium level by the 

third period.  Both commodities are currently well above their estimated long-term 

means.  Although the confidence intervals around the expected values are shown as in 

Section 5, only the expected value forecast lines, shown in bold in the figure, are relevant 

for the base case deterministic analysis. 
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Figure 6.1 – One-Factor Price Forecasts for Oil and Gas 

NPV calculations are greatly simplified with the use of a reserves factor that 

converts a given reserves amount to an assumed production profile.  These factors can be 

used with the price forecast to calculate a series of cash flows which yield a present 

value.  Implicit in the reserves factor are decline and discount rates.  For this example, we 

assume that the historical decline rate for North Slope oil production holds, which is 

approximately 5% in an exponential model, so that the amount of reserves R  remaining 

at any time t  is given by: 

 teRR 05.0
0

−= . 

There is no historical gas production decline information for the North Slope, 

since the gas has been re-injected.  However, standard reservoir engineering calculations 

based on the pressure, temperature, volume and rock permeability of the reservoir 
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indicate an estimated exponential decline rate of 4.25%.  The initial oil production rate is 

assumed to be approximately 1.6 million barrels per day, and initial gas production is 

estimated to be 4 billion cubic feet per day based on reservoir engineering calculations 

and pipeline capacity.  These assumptions give the following production profiles that are 

shown in Figure 6.2. 

             North Slope Oil and Gas Production Decline
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Figure 6.2 – Production Forecasts for Oil and Gas 

We assume a 5% discount rate for deriving the reserves factors, since this is the 

approximate risk-free discount rate and the hypothetical firm should have a risk-neutral 

view of the private uncertainties that affect production forecasts.  With these assumptions 

about decline and discounting, the reserves factors are obtained by forecasting a unit of 

production, assuming a price forecast, and then calculating the present value at the 

chosen discount rate.  Using this approach, the reserves factors for oil and gas for this 

example were calculated to be 6699.0=Oθ  and 4248.0=Gθ , respectively.  This means 
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that, for example, the value of one barrel of oil reserves, or a “barrel of oil in the ground”, 

when the current price is $40 is $26.80.   Such factors are commonly used in rule-of-

thumb estimation of oil and gas property values for screening acquisition and divestiture 

opportunities. 

The net present value of the two alternatives at each step, continuing oil 

production or commencing oil/gas production, can then be calculated using: 

( )( ) ( ){ }switch
rt

tpstOOt PVePVQtPPV ,1max 1
−

++−∆−= δδλ  

where, 

( )( ) ( ){ } ( )( ) ( ){ }psO
t

OOOGGGGswitch eRtPKRtPPV δδθλωθλ α −∆−+−−∆−= − 11  

( ) ( ) =tPtP GO , Prices of oil and gas at time t  

=∆∆ GO ,  Price differentials due to processing and transportation costs 

=tQ Oil Production rate  

=λ State of Alaska royalty 

=ps δδ ,  Efficiency factors for low salinity sweep and desalinization plant 

=GO RR , Reserves for oil and gas 

=K Switching cost (cost of pipeline) 

=ω Impact on oil production due to gas production 

=α Exponential decline coefficient for oil production rate 

This equation represents the optimization between the value of switching and the 

value of continuing the recursion for another step, and is easily implemented in 
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spreadsheet or decision tree format.  A simple decision tree constructed using DPL 

software is shown in Figure 6.3. 
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Figure 6.3 – Decision Tree for Switching Problem 

Using the inputs shown in table 6.2 yields the policy summary shown in Figure 

6.4. 

 

Inputs
Current Spot Price 53.00 $/bbl 6.50 $/Mcf

Transportation/Processing Cost, ∆ 5.0 $/bbl 1.0 $/Mcf
Reserves 35.00 Tcf 5.00 Bbo

Oil decline rate, α 11%
Oil Production Rate 1.43 MMbo/d

Royalty, λ 0.125
Gas production impact, ω 0.9
Switching cost (pipeline) 19 $Bn

Oil Gas

 

Table 6.2 – Base Case Model Inputs 
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Figure 6.4 – Policy Summary for Deterministic Case 

The figure indicates that the optimal point at which to switch to combined gas and 

oil production is year 10, which yields a Net Present value of $131.29 billion.  In the 

deterministic success case, that is, when the low salinity process works with certainty and 

ultimate reserves recovery is 9% greater than the base case, the Net Present value 

increases to $141.84 billion. 

6.4.3 Adding Technical Uncertainties 

With a basic model of the problem constructed, we can now model the key 

underlying uncertainties.  To assess which uncertainties should be modeled, we first 

consider the degree of uncertainty around selected variables, and then determine whether 
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the solution will be sensitive to those uncertainties by performing sensitivity analysis 

with the base case solution.  The variables and ranges selected for investigation in this 

case are oil price ($40 to $70), oil reserves (4.5 Bbo to 5.5 Bbo), oil decline rate (9% to 

14%), gas price ($4 to $8), gas reserves (30 Tcf to 40 Tcf), gas production impact (0.8 to 

1.0), low-salinity waterflood sweep efficiency gain (1.0 to 1.09), desalinization plant 

efficiency (0.8 to 1.0), and switching costs ($15 Bn to $25 Bn).  The result of these 

sensitivities are shown in the Tornado diagram in Figure 6.5.  
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Figure 6.5 – Sensitivity Analysis for Base Case 

This figure shows that oil and gas price as well as the two private technological 

uncertainties comprise four of the five most significant variables.  The solution is also 

very sensitive to the oil reserves, even though there is a fairly high level of certainty 

around the estimate of this variable.  
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We thus begin construction of a dynamic model by incorporating the private 

uncertainties associated with low salinity waterflooding into the model.  Following the 

outcome of the tests of plant and sweep efficiency, a decision will be made on whether or 

not to implement low-salinity waterflooding.  This uncertainty-decision sequence is 

depicted in Figure 6.6. 
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Figure 6.6 – Adding Technology Test Uncertainty 

This sequence precedes the tree shown in Figure 6.3, denoted as sub-tree “b” in 

the above figure.  The values for plant efficiency, pδ  and sweep efficiency, sδ  are 

contingent on both the test outcomes and the firm’s implementation decision, as shown in 

Figure 6.7 below. 

 

 

 

 

 

Figure 6.7 – Conditioning Efficiency Terms on Implementation  
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In cases where the firm decides not to implement, the efficiency terms are 

therefore equal to one, which is the benchmark conventional waterflood.  The four cases 

and their expected outcomes are shown in Figure 6.8.  When the low-salinity approach is 

implemented, an additional development cost of $5.50/bbl, or $2.5Bn is incurred on a 

present value basis over the life of the project.  Therefore this cost is entered in the 

decision nodes where it applies.   
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Figure 6.8 – Private Uncertainty Outcomes  

As shown in Figure 6.8, the expected value is $1.45 Bn more than the base case, 

due to one outcome where the optimal decision is to implement, which produces an 

additional $8 Bn over the base case.  The outcome of an efficient plant test coupled with 

a marginal improvement in sweep efficiency is nearly breakeven.  In the case where low 
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salinity waterflooding is implemented, the impact on the switch to gas production and the 

decision on when to construct the pipeline is to move it back from year 10 to year 13.   

This makes sense intuitively, since the oil production is extended further out in time with 

the added recoverable reserves. 

The model in its current state is still deterministic with respect to commodity 

prices.  The next step is then to add price uncertainty in the form of mean-reverting 

stochastic price processes for the two commodities. 

6.4.4 Adding Commodity Price Uncertainties 

 Commodity price uncertainty can be added to the model by implementing the 

approach developed in Section 3 and using the parameters given in Table 6.1.  Since low-

salinity waterflooding has the primary objective of increasing oil production, the 

stochastic process for oil is added first.  This is done by changing the deterministic value 

entries for oil price in each period to chance nodes with the probabilities and up/down 

movements specified per the one-factor binomial model developed in Section 3.1.  These 

chance nodes are then added to the tree as shown in Figure 6.9 for the first three periods. 
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Figure 6.9 – Adding Oil Price Uncertainty  
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Solving this tree yields a value of $139.56 Bn which reflects increased value due 

to optimized decision-making under uncertainty, but also includes error due to the 

binomial approximation, as shown in Section 4.   

The tree with the oil price uncertainty starts to become very large, with over one 

million endpoints for the 20 price nodes alone.  With a view toward the additional nodes 

that will be needed to incorporate the gas price uncertainty, the tree can be economized 

by noting that in late periods, specifically in periods 15-20, the price has largely reverted 

to its equilibrium level.  By this point, decisions have been made for most paths, and 

discounting minimizes the impact of any changes in cash flows as well.  Modifying the 

tree to include constant value nodes rather than chance nodes in periods 15-20 reduces 

the number of endpoints by nearly 97% which drastically reduces computing time and 

still yields a value, $139.49 Bn, which is very close to the solution with the full tree.   

The policy summary from this solution, shown in Figure 6.10, indicates a marked 

change in clarity about when the switch to oil and gas production should commence, due 

to the added uncertainty.  Of note, the up move in the first period triggers an immediate 

move to oil and gas production.  Although this seems counterintuitive, since oil price 

occurs in both the value for continuing only oil production and for commencing both oil 

and gas production, the impact of reduced oil production rate on value in the second 

scenario is more than offset by the increase in oil price.  The effect of price uncertainty is 

complex, however,   For example, there are also some paths where high prices occur later 

in time and offset the oil production decline to delay the switch to oil and gas.  These 

cases can be noted in Figure 6.10, as there are some decisions to switch that do not occur 

until year 15. 
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Figure 6.10 – Oil Price Uncertainty Effect on Policy  

The last step to complete the model under the framework and assumptions used to 

this point is to add the gas price uncertainty.  Following the same procedure as with oil 

price, the gas price uncertainty is added with a binomial approximation of a mean-

reverting stochastic price process with the parameters given in Table 6.1.  Based on what 

was learned from the oil price uncertainty modeling, and noting that the speed of mean-

reversion for gas is much higher than for oil, the number of periods to be modeled with 

chance nodes can be reduced for gas as well.  A review of the deterministic gas price 

forecast indicates that with the given parameters, it largely reverts to the long term 

equilibrium level within the first three years.  Therefore, only the first three periods in the 

tree will be modeled with chance nodes.  These chance nodes are then added to the tree as 

shown in Figure 6.11 for the first three periods. 
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Figure 6.11 – Adding Gas Price Uncertainty  

Solving this tree increases the value to $142.36 Bn, as shown in the partially 

expanded tree in Figure 6.12.  This again reflects value due to optimized decision-making 

under the added uncertainty, as well as the error due to the binomial approximation.   
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Figure 6.12 – Partially-Expanded Solved Decision Tree  

As can be seen by comparing in Figure 6.13 to Figure 6.10, there are only subtle 

changes to the decision policy due to the addition of the gas price uncertainty.  The first 
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period exercise rate goes down only slightly, from 0.273 to 0.245, and the last period in 

which an exercise takes place is still period 15, although the rate goes up from 0.088 to 

0.096.   
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Figure 6.13 – Policy Under Gas and Oil Price Uncertainty  

We note at this point that there is a peculiar pattern in both Figures 6.10 and 6.13 

where there are some periods with zero instances of an exercised decision.  This is due to 

the typical convergence pattern seen in binomial approximations, as was discussed in 

Section 3.   

6.4.5 Correlated Uncertainties 

The two-factor model developed in Section 3.3 provides the capability to 

incorporate correlation between the two commodities.  Correlation affects the distribution 

of outcomes in any increment through the probability calculations, and thus we expect it 

to have an effect on option values.  By including the estimated correlation of 0.30 in the 
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decision tree model, there is indeed a slight impact on the value, as it increases from 

$141.37 Bn to $142.36 Bn.  For some insight as to the changes under correlation a plot of 

cumulative fraction of exercise is provided in Figure 6.14. 
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Figure 6.14 – Policy Summary: Three Incremental Cases 

The figure shows that, although the curves are fairly similar, there are differences 

in the frequencies in periods 2 – 6.  In particular, we observe that in the case of correlated 

uncertainties, the option to switch is executed earlier.  From reviewing Figure 6.1, it 

follows that if the two commodity prices are moving in step and with their respective 

forecasts, then periods 1-6 is the period during which the rate of divergence is greatest 

and switching is likely to be triggered. 
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6.4.6 Summary and Interpretation of Results 

To summarize the results to this point, the values calculated and model 

assumptions for each of the decision tree models are presented in Table 6.3. 

 

PV ($Bn)

Base (continued North Slope production without new technology, deterministic price forecast) 131.29

Success (100% chance of success for technological risks, deterministic price forecast) 141.84

Expected Value (expected value for technological risks, deterministic price forecast) 132.74

Oil price uncertainty (stochastic price forecast for oil) 139.56

Oil price uncertainty (stochastic forecast to 15 years, deterministic thereafter) 139.49

Oil and gas price uncertainty (stochastic price forecasts for both oil and gas) 141.37

Oil and gas price uncertainty with correlation (ρ=0.3) 142.36

Case

 

Table 6.3 – Summary of Results 

While the economic benefits of low-salinity waterflooding are very substantial, it 

is important to incorporate the value of downstream managerial flexibility to understand 

more clearly the sources of value.  As an example, we can observe in the above summary 

that the value of the project, subject to the relevant risks but managed optimally, actually 

exceeds the deterministic success case economics that ignores all risks.   Although low-

salinity water flooding directly impacts only oil recovery, we see that it indirectly affects 

the optimal timing of gas production.  This is important, as the ability to optimize timing 

under price uncertainty for both commodities is over 80% of the incremental value to the 

deterministic case, or $8.6 Bn.  The sources of incremental value relative to the base 

deterministic case without new technology are shown in Figure 6.15. 
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Figure 6.15 – Sources of Incremental Value above Base Case 

The use of a dynamic economic model also has implications for the inputs and 

their estimation.  In Figure 6.16 we show a tornado chart of three key inputs we examined 

for the base case in Figure 6.5.  While the ranges in expected value due to the oil and gas 

price variables were approximately $75 Bn and $18 Bn, respectively before, the figure 

shows these ranges have been reduced to approximately $15 Bn and $3 Bn, respectively 

now.   
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Figure 6.16 – Sensitivity Analysis for Dynamic Model 
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In contrast, oil reserves uncertainty, which we have not modeled as a stochastic 

process in this model, has about the same impact on the solution as before.  The 

implication is that the specification of a stochastic process for an uncertainty and its 

subsequent use in a dynamic economic framework eliminates the requirement for a single 

point estimate of a variable to impound all of the information about that particular 

uncertainty.  This can be an important change, especially for variables such as 

commodity price that have high levels of uncertainty in forecasting. 

 

6.5  CONVERGENCE PROPERTIES OF NUMERICAL SOLUTION 

The binomial tree model used in the last section is useful for determining bounds 

and intuitive analysis; however the approximation errors for a one-year time increment 

are likely to be significant, as was discussed earlier.  Even though steps were taken in the 

previous section to reduce the number of nodes necessary, a reduction of time increments 

to a length of one half-year would double the number of chance nodes, which exceeds the 

limit of the size of problem that can be practically solved in a decision tree.  Thus, for a 

large practical problem like the one being considered here, showing convergence and 

obtaining a more accurate solution is not possible in decision trees.  Fortunately, the 

endpoints in this model formulation are recombining, as was discussed in Section 3.  

Therefore the convergence properties can be investigated by switching to lattice format. 

To switch to lattice format, a different kind of algorithm is required.  In this case 

the algorithmic approach presented in Section 4.2 was implemented in Visual Basic with 

an Excel interface.  With this approach, it is possible to model 200 or more increments 

within reasonable computational times.  The results, shown in Figure 6.17, indicate 
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agreement with the decision tree model for the case of 20 annual periods, and also show 

downward bias in this first estimate. 
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Figure 6.17 – Convergence of Switching Option Value 

The convergence behavior shown in the above figure mirrors that obtained by 

Clewlow and Strickland (2000) for their bivariate  binomial approximation.  The figure 

shows that using the binomial approximation with a low level of time granularity can 

result in significant error, as expected.   While the initial estimate with annual time 

increments in this case was approximately 16% lower than the true solution, which was 

estimated by extrapolation of the above curve, this bias was reduced to just over 3% by 

reducing the increment to five periods per year.  This would probably be considered a 

reasonable estimate for most real options applications. 
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7. CONCLUSIONS 

 
In this dissertation, we have shown how to construct recombining binomial 

lattices or binomial trees to model underlying stochastic processes that are mean-

reverting, and have extended this approach to develop a method for modeling two-factor 

processes and combined correlated one-factor processes.  This method provides an 

improved approach relative to simulation-based algorithms and discrete trinomial trees, 

and facilitates the evaluation of real options with early-exercise characteristics, as well as 

multiple concurrent options.   

We have shown how convergence is achieved for this method by reducing the 

discrete time increments and have described the behavior of models for several example 

problems.  The models developed in this research have been tested by implementing the 

lattice in binomial decision tree format for small problems, and we have also developed 

algorithms to implement in lattice format for problems where the number of periods 

becomes large and beyond the capabilities of commercial decision tree software.    

Three different data analysis techniques, Kalman filtering, seemingly unrelated 

regression, and an implied approach with futures data have been tested for their ability to 

estimate mean-reverting stochastic process parameters and for their computational 

requirements.  The Kalman filter is a computationally intense approach, but it provides 

stable estimates of the parameters as well as error estimates, and we were able to replicate 

parameter estimation work done by other researchers.  Although a rigorous statistical 

comparison of the approaches was not undertaken, we found the implied approach could 
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be used to approximate parameter estimates from the Kalman filter approach on a limited 

basis in cases where computational burden is a consideration. 

In the concluding section, we illustrated a real application by solving for the value 

of an oil and gas switching option related to a new enhanced oil recovery technology that 

would be applied to the North Slope Alaska producing area.  The value of the technology, 

the broader value of North Slope oil and gas production, and operating decisions about 

the Alaska Gas pipeline are all interrelated in this problem.  We first considered a base 

case deterministic model for continued development of the North Slope without the new 

technology, and then added uncertainties incrementally, starting with the private 

uncertainties related to the technology.  We then added oil and gas price uncertainties by 

using a binomial approximation of two correlated one-factor mean-reverting models, to 

finally develop a more fully dynamic economic model of the problem.   As would be 

expected, the solutions from our model were somewhat different from the base case 

deterministic model, showing the value in making optimal decisions under uncertainty.  

Although this project has robust economics in all cases, even the base case, it is important 

to understand and capture all of the underlying sources of value, as the project may be in 

competition with other high value projects in a constrained capital budgeting 

environment.  The analysis provided here also provides guidance and insight on operating 

decisions that would not be obtained through a deterministic model.  Results from our 

study could, for example, also be used to inform decisions about construction of the 

Alaska Gas Pipeline. 

 Further research issues regarding the methods we have developed here include 

additional work in the areas of parameter estimation and empirical testing.  Stochastic 
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process parameter estimation is obviously critical to formulating a good model, however 

empirical work in this area is limited.  While we investigated this topic to support the 

models developed for this research, the estimation techniques we used could be the 

subject of a more detailed statistical comparison.   

We have made several assumptions in this work that could be tested in an 

expanded study.  For example, we have assumed that when a switch in production mode 

is made, it occurs instantaneously.  In reality, it would take an estimated two years to 

convert the wells and bring the pipeline into operation.  This lag time between decision 

and operational change could be factored into the model by continuing to model 

uncertainty past the point of decision for two additional periods for each decision node, 

and possibly including a decision to delay actual execution of the switch if conditions 

worsen during this period.   

The approach we have developed here could also be tested for financial options if 

a suitable application can be found.  In such a case, solutions from alternative methods 

might be available and could be compared with solutions from our method.  The primary 

alternative to our method is the trinomial tree approach of Hull and White (1994b), 

however here has been very little published work done to empirically test their approach 

for two-factor processes.  Our approach could be tested in parallel with the Hull-White 

model to compare the accuracy and computational requirements of the two different 

methods.  
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