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Storm surge, the pileup of seawater occurring as a result of high sur-

face stresses and strong currents generated by extreme storm events such as

hurricanes, is known to cause greater loss of life than these storms’ associ-

ated winds. For example, inland flooding from the storm surge along the Gulf

Coast during Hurricane Katrina killed hundreds of people. Previous storms

produced even larger death tolls. Simultaneously, dune, barrier island, and

channel erosion taking place during a hurricane leads to the removal of major

flow controls, which significantly affects inland inundation. Also, excessive sea

bed scouring around pilings can compromise the structural integrity of bridges,

levees, piers, and buildings.

Modeling these processes requires tightly coupling a bed morphology

equation to the shallow water equations (SWE). Discontinuous Galerkin finite

element methods (DGFEMs) are a natural choice for modeling this coupled
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system, given the need to solve these problems on large, complicated, unstruc-

tured computational meshes, as well as the desire to implement hp-adaptivity

for capturing the dynamic features of the solution.

Comprehensive modeling of these processes in the coastal zone presents

several challenges and open questions. Most existing hydrodynamic models use

a fixed-bed approach; the bottom is not allowed to evolve in response to the

fluid motion. With respect to movable-bed models, there is no single, generally

accepted mathematical model in use. Numerical challenges include coupling

models of processes that exhibit disparate time scales during fair weather, but

possibly similar time scales during intense storms.

The main goals of this dissertation include implementing a robust, ef-

ficient, tightly-coupled morphological model using the local discontinuous Ga-

lerkin (LDG) method within the existing Advanced Circulation (ADCIRC)

modeling framework, performing systematic code and model verification (using

test cases with known solutions, proven convergence rates, or well-documented

physical behavior), analyzing the stability and accuracy of the implemented

numerical scheme by way of a priori error estimates, and ultimately laying

some of the necessary groundwork needed to simultaneously model storm

surges and bed morphodynamics during extreme storm events.
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Chapter 1

Introduction

1.1 Background, Motivation, and Challenges

Modeling fluid flow and transport in coastal waters requires a detailed

knowledge of winds, waves, currents, sediment transport, and, ultimately, the

resulting morphological changes in the seabed that occur as a result of these

processes. The erosion and deposition of bed sediment can have a major detri-

mental impact on the coastal population, infrastructure, and environment.

For example, the US Army Corps of Engineers (USACE) maintains more than

12,000 miles of waterways for transportation, which carry approximately one-

sixth of US inter-city freight [183]. Maintenance of these waterways through

dredging and backfilling operations represents a significant cost to the USACE

as well as other agencies and industries. As another example, excessive seabed

scouring around pilings can compromise the structural integrity of bridges, lev-

ees, piers, and buildings; scouring has been cited as one of the most common

causes of bridge failures in coastal regions [123]. Also, dune, barrier island,

and channel erosion during a hurricane leads to the removal of major flow

controls, which significantly affects inland inundation. In addition to these

infrastructure-related issues, there exists a host of environmental concerns,

such as beach erosion and the transport of pollutants with sediment, which

may act as a source or sink for contaminants depending on the surrounding

physico-chemical conditions [45].

1



Collectively, the various flow and transport processes that lead to mor-

phological changes in the sea bed form an interdependent physical system in

which the fluid motion, due to both waves and currents, drives the transport

of sediment, which dictates the evolution of the sea bed. In turn, the fluid

motion itself is then directly affected by the morphological changes in the bed

that it induces. Comprehensive modeling of these processes in the coastal zone

presents several challenges and open questions. Most existing hydrodynamic

models use a fixed-bed approach; the fluid-bed interface is not allowed to evolve

in response to the fluid motion. With respect to movable-bed models, there

is no single, generally accepted mathematical model in use, with descriptions

of the fluid-bed interface region varying from simple single interface models

to more complex three-phase approaches that consist of fluid, fluid-sediment,

and sediment phases; see, for example, [74]. Once an appropriate mathemati-

cal model has been formulated, there exists the numerical challenge of coupling

models of various processes that exhibit disparate time scales—both within the

fluid motion itself and between the fluid and bed motion. The evolution of

the bed is typically on a much slower time scale compared to even the slowest

time scale of the fluid motion; a situation where this may not be the case is

during an extreme event, such as a hurricane.

In this dissertation, the focus is on the coupling of shallow water hydro-

dynamics with sediment transport described as bed load, and the application

of an hp Runge–Kutta local discontinuous Galerkin (RKLDG) approximation

to this coupled system. The mathematical model under consideration con-

sists of the depth-averaged (two-dimensional) shallow water equations (SWE)

and the well-known Exner equation [70], which describes the bed morphol-

ogy. The models are coupled in the sense that the sediment flux depends

2



on the current, while the transport of sediment induces dynamic bathymetry,

which affects the water depth. In addition, the fact that bathymetry is now

an unknown in the model rather than a known fixed quantity gives rise to a

nonconservative product in the momentum equations, which requires special

treatment.

The RKDG method is an extension of finite volume methods (FVMs)

which allows for arbitrary order of approximation in space and is applicable

to general unstructured meshes. A number of researchers have studied FVMs

for circulation/sediment transport/bed morphology models of various levels of

complexity, in one and two space dimensions [25, 27, 32, 74, 88, 89, 123, 124,

164]. These papers shed light on approaches for coupling the equations in both

space and time, including the development of numerical fluxes appropriate for

DG discretizations.

Recently, Tassi et al. [172] have examined river bed evolution in shal-

low water flow using the RKDG method. The DG spatial discretization that

is used is an extended approach developed by Rhebergen et al. [153] to han-

dle the nonconservative product that is introduced when coupling the Exner

equation to the SWE. This approach is followed here, but the focus is on

the development, analysis, and verification of the RKLDG method in both h

(mesh spacing) and p (polynomial order), and on the application of the model

to a number of coastal engineering problems, emphasizing the effects of h- and

p-refinement in these examples.

1.2 A Literary and Historical Review

In this section, a brief review of previous research and results on the

subject of shallow water modeling, sediment transport modeling, and discon-
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tinuous Galerkin methods is conducted. An attempt has been made to sum-

marize the development of these subjects in chronological order as terms were

added to the SWE, as new empirical expressions for the sediment discharge

rate were formulated, and as different numerical solution methods were pro-

posed.

1.2.1 Shallow Water Models

The “modern” development of shallow water models has a fairly lengthy

history, spanning several centuries. This is because one of their most important

applications, namely oceanic tidal modeling and prediction, has attracted the

interest of mankind since ancient times. As a result, the earliest developments

of shallow water models are closely associated with advances in the study

of tides. For an excellent and very comprehensive account on the history of

tidal studies, the reader is urged to consult Cartwright [28]. Also, much of

the development is tied to advances made in fluid mechanics, and to a lesser

extent, turbulence modeling. The connection between these research topics is

explained below.

During the Copernican Revolution, numerous theories were proposed

by various researchers, including the likes of Galilei, Kepler, and Descartes, to

explain the tides. These were largely unscientific in nature, and it was not until

1687 that the first physically consistent account was published [28, 93, 96].

This theory was offered by Newton [137], and was stated as a consequence

of his gravitational theory (between the Earth, Moon, and Sun) presented

in [136]. This development eventually led to the idea, due primarily to Daniel

Bernoulli (1740), of the so-called equilibrium theory of tides, which remained

the conventional wisdom on the subject until Laplace (1775) proposed a new
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dynamic theory in [56] and expanded upon it in [57]. Of interest here are

equations (6), (7), and (9) from [57], which when translated into modern

notation read:

∂ζ

∂t
= − 1

R cosϕ

[
∂

∂ϕ
(vH cosϕ) +

∂

∂λ
(uH)

]
, (1.2.1)

∂u

∂t
+ 2ωv sinϕ = − g

R cosϕ

∂

∂λ
[ζ − δU − U ], (1.2.2)

∂v

∂t
− 2ωu sinϕ = − g

R

∂

∂ϕ
[ζ − δU − U ], (1.2.3)

where ζ is the elevation “above the surface of the sea considered in an equilib-

rium state that would be reached in the long-term, without the action of the

Sun and the Moon”1, assumed to coincide with r = R, the mean radius of the

Earth; u and v, the eastward (λ) and northward (ϕ) velocities, respectively;

H, the depth of the seawater column; ω, the mean rotation rate of the Earth;

g, the gravitational constant; δU , the potential due to self-attraction and solid

Earth tides, and U , the astronomical tide-generating potential.

Equations (1.2.1)–(1.2.3), now known as Laplace’s tidal equations, can

arguably be considered the earliest, most specialized form of the SWE in spher-

ical coordinates. The momentum equations contain only the Coriolis forcing

term2, gravity term, and tidal potential terms; no advection or friction terms

are present [187], although linear friction terms were later added by Laplace.

Meanwhile, Euler (1755) derived the basic laws of incompressible fluid

motion and energy using differential forms, introducing a pressure term but

1Approximate translation from the original French: “. . . au-de
∫∫

us de la
∫

urface de la
mer con

∫
idérée dans l’état d’équilibre auquel elle

∫
eroit parvenue depuis long-temps,

∫
ans

l’action du Soleil & de la Lune.” [57]
2This term was first formulated by d’Alembert (1747), and appears to have been well

known prior to the 1792 birth of Coriolis [28].
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ignoring friction [68]. A major advance in fluid mechanics, and consequently

shallow water models, was achieved by Navier (1822), who additionally con-

sidered forces between molecules by appending a stress tensor to Euler’s equa-

tions [133]. By considering friction, Stokes (1845) formulated the “no-slip”

boundary condition and proceeded to re-derive Navier’s equations [169]. How-

ever, it was Barré de Saint-Venant (1843) who first produced a correct deriva-

tion of what would become known as the Navier–Stokes equations for viscous

flow [13], identifying viscosity as a multiplying factor of ∇u [90]. Thus, by

the middle of the nineteenth century, a vastly improved description of shallow

water flow was available.

A link between the three-dimensional Navier–Stokes equations and the

SWE was discovered in 1871 by Boussinesq [18] and independently by Barré

de Saint-Venant [14]. Boussinesq assumed a constant density in the Navier–

Stokes equations (except in the gravity term), and subsequently eliminated the

vertical momentum equation after integrating over depth, with the intent of

obtaining an approximate solution for a solitary wave [187]. Moreover, he later

postulated that when turbulent effects were considered, the resulting stress

tensor could be reformulated using an effective turbulent eddy viscosity [19].

This result proved useful in handling the closure problem which occurred when

Reynolds, who recognized that viscosity was a controlling factor in eddy for-

mation [150], spatially-averaged the Navier–Stokes equations [151]. Barré de

Saint-Venant posed the SWE essentially in their modern form, complete with

advection terms, a pressure term, a generic bottom friction term, and diffusion

terms with an eddy viscosity. However, the SWE still did not contain stress

terms due to wind and short waves; these would not be developed until well

into the twentieth century, and even then in a somewhat ad hoc manner (see
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[76] and [125]).

A separate line of research focused on the development of U in equa-

tions (1.2.2) and (1.2.3). Laplace (1776) was among the first to decompose

this term into a harmonic series containing three main species. Ferrel (1874)

accounted for tidal friction in his expansion, taking into account second-order

terms previously neglected by Laplace [72]. He produced a small listing of

the dominant tidal constituents. Darwin (1884) listed additional ones, and

developed the naming convention (e.g., M2 and S2) which is still in use to-

day [50]. Doodson (1921) published a comprehensive listing of nearly 400

constituents [61], although his analysis was based on Brown’s (1919) now-

obsolete lunar theory [23]. In short, these results allowed the tidal potential

term to be conveniently decomposed into series of long-period, diurnal, and

semi-diurnal species, with each series being sums of many individual harmonic

constituents.

The term δU , which accounts for the self-attraction effect and solid

Earth tides, was first expanded as a series by Laplace in the nineteenth century.

Love (1911) introduced the coefficients h and k to the harmonic constituents to

account for these effects [28]; the quantity 1−h+ k is sometimes referred to as

the Earth tide reduction factor. Henderschott (1981) adopted a constant value

for 1 − h + k when distinguishing between the theoretical and observed free

surface elevations [84], while Wahr (1981) adopted constituent-specific values

(most noticeably in the diurnal species) to account for resonance caused by

the Earth’s core [28, 188].

It was known since the time of Laplace that except in very simple

cases, analytic solutions to the SWE in closed form are not generally available.

However, with the advent of the earliest electronic computing systems in the
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1940s, solving the 2-D SWE numerically suddenly became tractable. Some

early numerical work of note is that of Charney et al. (1950) for an atmospheric

simulation [34], and Hansen (1956) for a coastal sea model [82]. The former

work is also noted for its calling for investigation of the BCs, a problem which

remains unresolved [101, 187]; the latter work is notable as an early attempt

to numerically predict sea levels.

Most early numerical shallow water models employed finite difference

methods (FDMs), based on the available theory and relative ease of implemen-

tation. However, it was realized by the end of the 1950s that these schemes

were prone to spurious 2h-oscillations in the solution, h being the maximal cell

size. Over the next twenty years, numerous strategies were tried in an attempt

to either control or suppress them, with varying degrees of success. According

to [1] and [94], some of the strategies utilized included staggered grids, which

were used first in [82] and then in [113] and [147], mixed interpolation [173],

viscous coefficients [189], nonphysically large bottom friction [145], and finally

a reformulation of the SWE as a single wave equation known as the generalized

wave continuity equation (GWCE). This latter result was due to Lynch and

Gray (1978), who also provided a suite of test cases with exact solutions useful

for verifying linearized shallow water models [127].

Beginning in the 1970s, finite element methods (FEMs) gradually dis-

placed FDMs as the numerical scheme of choice for solving the 2-D SWE,

partly because of their flexibility in the choice of approximation space and

element shape, and also their capability of handling the unstructured grids

needed to simulate very complex domains. This trend appears to have accel-

erated in the 1980s, with numerous sophisticated finite element shallow water

codes emerging, such as FEUDX [134], which utilized the nonconservative form
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of the primitive SWE, and FE2DY [168], among many others. Kinnmark and

Gray (1984) developed a GWCE-based model using an implicit solution pro-

cedure [95]. Luettich and Westerink (1992) developed the GWCE-based solver

ADCIRC [126]. Many of these codes were parallelized in the 1990s as problem

sizes grew.

Very recently, DG methods have become popular, due in part to their

compact stencil and the ease with which they handle complex, unstructured

meshes. They have been shown, under certain conditions, to possess some

advantages over the standard (continuous) Galerkin method in parallel com-

putation as well [103]. Since the use of DG methods in shallow water models

has been the subject of very intense investigation over the past decade, an

entire section is devoted to these developments; see Section 1.2.3. The DG

method has also been used in several two- and three-dimensional SWE codes,

such as the ADCIRC-DG [101] hydrodynamic model, and UTBEST [1]; the

former is the framework used to implement the coupled morphological model

formulated in Chapter 2.

1.2.2 Sediment Transport Models

The history of research on the sediment transport problem is even

longer than that for shallow water models. This is because there is evidence

that this problem has been of interest to civilizations (in connection with

channel construction) for more than 7200 years, dating to the Mesopotamian

era [80]. An excursion through this many years of advances is far beyond the

scope of this dissertation; in this section, an attempt will be made to review

briefly only the “modern” developments in this vast, largely empirical field of

research. The interested reader may refer to Graf (1971) for an excellent and
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much more complete history [80].

Some context is needed. Exner (1925) suggested a one-dimensional

model (neglecting diffusion) of sediment transport as the PDE

∂η

∂t
+

1

1−m
∂Q

∂x
= 0, (1.2.4)

where η is the elevation of the bed above some datum, m ∈ [0, 1) is the

bed porosity, and Q is the sediment discharge rate, which he assumed di-

rectly proportional to the fluid velocity and in the direction of the flow [70].

Paola and Voller (2005) generalized equation (1.2.4) to account for conser-

vation of total mass in a three-layer column consisting of seawater, sedi-

ment, and bedrock [142]. Their relation was complete, and included effects

such as tectonic motion of the bedrock, bed compaction, and mass produc-

tion/destruction through geochemical processes.

Equation (1.2.4) is simply a statement of conservation of sediment mass

within the sediment column, which Exner used in part to explain dune and

antidune formation [85]. However, a general-purpose, deterministic expression

for Q is as yet unknown; it is the quest for an accurate expression for Q that

has been the subject of extensive research and experimentation by engineers

for around 150 years. The major developments are summarized below.

1.2.2.1 Bed Load Transport

Among the earliest approaches taken by many investigators involved

finding direct expressions for the force exerted by the fluid on the bed [80, 194].

Du Buat (1786) introduced the shear-resistance concept, and proposed the

first relationship between the force (and sediment discharge) and the channel

depth and bed slope based on his experiments [64]. Stokes (1851) derived
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a relation for the corresponding resistance force and drag coefficient CD for

spherical sediment particles by simplifying and solving directly the Navier–

Stokes equations [80, 170, 194]. This work contains the earliest known use of

the quantity now known as the Reynolds number; Stokes’ solution for the drag

coefficient was valid only for Reynolds numbers less than one.

Oseen considered the steady-state Navier–Stokes equations for a viscous

fluid with the inertia terms and specialized BCs [140], and used the resulting

BVP and solution to expand upon Stokes’ expression for CD [141]. Goldstein

(1929) published a more complete version of this result [78, 79, 80]. Proudman

and Pearson (1957) were able to combine the previous results using bound-

ary layer theory, but had limited success extending them to somewhat higher

Reynolds numbers [80, 148]. Thus, experimental data must still be used to

estimate CD in that circumstance.

A new model of bed load movement was introduced by du Boys (1879),

who in his landmark paper hypothesized the sediment as moving in layers of

a given thickness, with the top layer moving most rapidly [63]. He determined

(p. 160) that

Q = χF (F − F0), (1.2.5)

where χ is what he termed a “characteristic coefficient” [63], F is the force ex-

erted on the bed by the fluid, and F0 is the entrainment force, i.e. the critical

force necessary to initiate bed movement. Schoklitsch (1914) verified equa-

tion (1.2.5) experimentally, which popularized it, but objected to the layered

model of transport since it did not agree with experimental data [161]. Nev-

ertheless, equation (1.2.5) apparently formed the basis of bed load transport

equations for many years [60, 139].
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Numerous experiments were carried out in order to determine empirical

formulæ for F0 for various bed materials. However, Shields (1936) conjectured

that it was extremely difficult to express F and F0 analytically [194]. Instead,

he opted for an excess bed shear stress approach, and published his now-famous

diagram showing the (nondimensionalized) bed shear stress in terms of the

particle Reynolds number [162]. Interestingly, Shields’ “curve” was actually

a narrow, shaded area, indicating some uncertainty in the value of τ0, the

critical shear stress; Rouse (1939) suggested a refined diagram, and proposed

an easier method for calculating τ0 empirically [159]. White (1940) discussed

an analytical approach to finding τ0 [85, 191, 194].

These developments prompted further investigation: beginning in the

1940s, and continuing into the present, a zoo of mostly excess bed shear stress-

based empirical formulæ for Q have been proposed. Some of the more widely-

used ones include that of Meyer-Peter and Müller (1948), Einstein (1950),

Bagnold (1966), Ribberink (1998), and Camenen and Larson (2005); consult

[11, 26, 67, 130, 154] for details. No attempt shall be made here to discuss

the relative merits and deficiencies of each; an entire book could be written on

this subject. Instead, the reader should refer to Sleath (1984) and Yang (1996)

for a much more complete listing, analysis, and comparison with experimental

and observational data [165, 194].

Alternatives to finding F0 were also tried, such as finding critical shear

velocity u0 =
√
τ0/ρ, where ρ is the fluid density. Fortier and Scobey (1926)

listed a table of maximum fluid speeds for which the bed will remain steady for

many types of sediment material in canals [73]. Other velocity-based studies

were performed by Hjulström (1935) and later by the American Society of Civil

Engineers (ASCE); see [86] and [186], respectively, for details. Yang (1972)
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adopted an analytical approach, utilizing some basic theories from fluid me-

chanics, and his results were confirmed experimentally during the 1980s [194].

Of course, this approach was not without its pitfalls, as it is well known that

the fluid velocity at the channel bottom is difficult to measure directly, and av-

eraged flow speeds are often used instead. The shear velocity can be estimated

using any of several classical formulæ; see, for example, [55] or [129]. Also see

Manning (1891) for a comparative study of the best-known expressions in use

at that time.

However, it was understood by investigators at a relatively early stage

that turbulence in the fluid flow plays an important role in determining the

corresponding sediment transport rate [158, 162]. This point was empha-

sized further in [92]. Of course, this realization meant that no single, definite

threshold value for τ0 exists where the entire bed begins to move. Conse-

quently, probabilistic models for transport were advanced. According to [194],

it was Einstein (1950) who first broke with the trend of formulating Q in terms

of critical criteria [67], and developed a probabilistic model based on his ex-

perimental data. Brown (1950) adopted Einstein’s ideas in [22], and Gessler

(1965) tabulated probabilities that sediment grains of a specific size would re-

main stationary when subjected to varying amounts of shear stress [77]. More

recently, Kobayashi et al. (2010) developed a probabilistic model for bed load

and suspended load transport due to currents and waves [98].

Presently, the trend in developing new bed load transport formulæ

appears to remain with curve-fitting of experimental data, often by means of

regression analysis; see, for example, [26, 157, 167]. Because of their agreement

with experimental data for the flow conditions considered in this dissertation,

the formulæ suggested in [26] and [167] are used in the model implementation
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for all except the final test case described in Chapter 4.

1.2.2.2 Suspended Load Transport

The sediment transport rate Q includes not only the transport of bed

load, but also of suspended load. This aspect of sediment transport is not as

well understood as bed load transport [80]. Yet it cannot be overlooked, as

this is known to be the main mode of transport in most rivers [194].

In any case, scientific analysis of the phenomenon has taken place for

about 150 years, with Dupuit (1865) making one of the earliest attempts to

model sediment in suspension [66]. He explained it as being caused by differ-

ences in velocities of the adjacent particles [80, 115]. In short, Dupuit’s theory

and basic assumptions appear to have been widely accepted until the 1930s,

by which time it was realized that turbulence plays a significant role in the

process [80]. Numerous attempts made during this time to definitively quan-

tify the transport rate were largely unsuccessful; proposed formulæ showed

poor agreement with experimental data.

A breakthrough in this area was achieved by Rouse (1937), who devel-

oped concentration diagrams for suspended sediment in a turbulent flow [80,

158]. His results rendered important aspects of earlier models of suspen-

sion (including that of Dupuit) obsolete, as suspended load transport is now

thought to be governed mainly by the level of fluid turbulence [75]. His work

also seems to have catalyzed research in this area, as a host of suspended load

transport formulæ were proposed over the next several decades, such as those

by Lane and Kalinske (1941), Einstein (1950), Brooks (1963), and Chang et

al. (1965), among a host of others; see [21, 33, 67, 107] for details, and [80]

and [165] for a more complete listing. Research in this area continues into the
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present.

1.2.2.3 Transport due to Waves

Sediment transport due to waves comprises part of the sediment dis-

charge rate Q. In the coastal zone, wave action is known to play an important,

if not dominating (relative to the current), role in the transport process. For

example, List et al. (2006) asserts that in many regions with seawater less

than 60 m deep, a tenfold increase in Q may occur because of the effect of the

waves, leading to isolated “hotspots” of erosion [121]. In essence, short waves

are known to complicate the transport process by stirring the bed load, causing

oscillatory transport rates that are not necessarily in phase with the wave [26].

Research in this area appears confined only to the past fifty years [26]. Even

so, several oft-used empirical formulæ have been proposed. Among the more

well-known ones are those of Madsen and Grant (1976), Bailard and Inman

(1981), Dibajnia and Watanabe (1992), Soulsby (1997), Ribberink (1998), and

Camenen and Larson (2005); consult [12, 59, 128, 154, 167] for details, and

[26] for a concise listing of these. Others may be found by consulting Sleath

(1984), who offers an excellent treatment of the subject [165].

The situation becomes further complicated when transport under the

combined effects of waves plus steady and/or oscillatory (tidal) currents is

considered. In many cases, the contributions of the waves and currents are not

additive; see [26] or [165] for details. Also, many of the formulæ require several

wave parameters, such as the wave speed, period, and significant wave height,

to be known a priori ; in practice, these would need to be calculated using

analytical or numerical wave models, such as STWAVE [184] or SWAN [179],

either separately (beforehand) or in parallel with the combined hydrodynamic-
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sediment transport model.

1.2.2.4 Total Load Transport

Some brief remarks are in order regarding direct expression of the to-

tal discharge rate Q. A few investigators have attempted to quantify the total

load discharge without separating it into total and suspended load components,

and/or current and wave components. One such proposed relation is due to

Engelund and Hansen (1967), and appears to be commonly used because of its

relatively wide range of applicability and ease of implementation [194]. Addi-

tional ones may be found in [80] and [194], but their validity is often limited

to grain sizes and flow profiles not under consideration in this dissertation.

1.2.2.5 Numerical Modeling

Until the rise of digital computing technology, almost all simulations of

sediment transport (by waves and/or currents) were done either by direct field

observations and measurements or by using flumes in laboratories. However,

by the end of the 1970s, new numerical algorithms became available, and com-

puters became powerful enough to make it feasible to predict numerically the

transport rates in flowing channels, rivers, and coastal systems. As such, a few

numerical models began to appear. Smith (1977) and Grant (1979) formulated

one-dimensional models in [166] and [81], respectively, while Lepetit and Hau-

guel (1979) discuss a two-dimensional model in [116]. Numerous programs were

developed beginning in the 1980s, such as SEDTRANS [135], RIVER [171],

and CROSMOR [185], to name just a few. Finite difference-based solvers

proved popular, though stochastic approaches were also tried [171, 185]. The

work of Kriebel and Dean (1985) is of keen interest, since it is an early account
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on numerically simulating beach erosion during hurricanes [100].

Owing to the fact that the two processes are inherently linked, inter-

est in coupling numerical sediment transport models to hydrodynamic models

has existed since at least the early 1980s, as evidenced in [99] and [116]. Ini-

tially applied to rivers, the models were quickly extended to estuarine and

coastal environments [17, 71]. Recently, several coupled models have since

been incorporated into larger, three-dimensional modeling frameworks such as

FVCOM [36] and the Regional Ocean Modeling System (ROMS) [176]. The

two-dimensional models generally fell into two types: the quasi-steady type, in

which the hydrodynamic and transport processes are analyzed separately, and

the fully-coupled type. A discussion and comparison of each in the context of

finite volume methods (FVMs) may be found in [122].

Recently, several new two-dimensional DGFEM-based solvers incorpo-

rating bed morphology have appeared [101, 152, 153, 172], which form the

basis of the present study. However, much work remains to be done in this

area. As far as the author knows, there are currently no working solvers for the

complete two-dimensional tightly-coupled SWE-Exner system which combine

the extended LDG method to treat the nonconservative product (more on this

in the next section) with wetting and drying and higher-order slope limiting

algorithms.

1.2.3 Discontinuous Galerkin Methods

In this section, the literature review is concluded with a discussion on

the development of DG methods, with an interest on the evolution of the

extended methods used to treat nonconservative products. An attempt will

be made to be brief here, but the interested reader may wish to consult Arnold
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et al. (2002) for an excellent historical discourse on DG methods [5].

Compared with the development of shallow water and sediment trans-

port models, discontinuous Galerkin methods are a modern idea, with their

roots traceable to work by Lions (1968), who introduced them in a primitive

form while solving second-order elliptic Dirichlet BVPs with very rough bound-

ary data [120]. The idea was to enforce the BC weakly through a (sufficiently

large) penalty. Aubin (1970) applied this method to finite difference approxi-

mations of nonlinear problems [6], while Babuška (1973) applied it within the

finite element framework [7].

However, Babuška found that the convergence rates were suboptimal

because the weak formulation was inconsistent; the exact solution did not

satisfy the weak form of the regularized problem [5]. A workaround was found

by Nitsche (1971), who proposed an alternative FEM-based penalty method

with a consistent weak form, and showed that if the penalty is O(h−1) as h ↓ 0,

then the optimal L2- and H1-convergence rates are restored [138].

Around this time, it was observed that if Dirichlet BCs could be im-

posed weakly on the boundary instead of being incorporated into the finite

element space, then it should be possible to enforce inter-element continuity

in the same manner [5]. That is, terms that penalize the jump in the solution

should be introduced on interior edges. Indeed, Babuška and Zlámal (1973)

used this “interior penalty” (IP) method to weakly enforce C1-continuity on

interior edges for fourth-order problems [8]. But their bilinear form was in-

consistent: a consistent IP method was stated by Wheeler (1978), which was

a generalization of Nitsche’s method to second-order elliptic BVPs [190]. By

the end of the 1970s, IP methods were well established.

Despite continuing advances made by investigators such as Douglas et
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al. (1979) and Arnold (1982), who generalized Wheeler’s technique to nonlinear

hyperbolic and parabolic equations, respectively [4, 62], IP methods apparently

fell out of favor beginning in the early 1980s. The decline in interest has been

attributed to the method being no more efficient than the classical FEM, as

well as to the difficulty in finding optimal values for the penalty parameter [5].

Meanwhile, an FEM very closely related to the IP method was pro-

posed by Reed and Hill (1973), who were analyzing the neutron transport

problem [149]. Lasaint and Raviart (1974) analyzed this method extensively,

giving rise to the name “discontinuous Galerkin” (DG) method [108]. Further

theoretical development followed during the next twenty years; convergence

properties, in particular, appear to have been a subject of intense investiga-

tion, with an optimal rate of hp+1/2 being established for general triangula-

tions [91, 119, 146, 155]. Finally, it was realized that the similarity of the DG

method to the IP method warranted an attempt at a unified analysis, which

was undertaken by Arnold et al. (2002).

Development of RKDG methods appears to have been ongoing for

thirty years. Chavent and Salzano (1982) applied the DG method in space to

nonlinear hyperbolic equations, then applied the forward Euler method in time

to the resulting ODE [35]. A natural generalization to explicit Runge–Kutta

timestepping schemes was investigated by Cockburn and Shu (1989), begin-

ning a comprehensive study. A series of five papers on these RKDG schemes

resulted, which analyzed the stability and convergence of the method, dis-

cussed total variation diminishing (TVD) and total variation bounded (TVB)

schemes, and explored (but did not introduce) the use of slope limiting [39, 40,

41, 42, 44]. Bassi and Rebay (1997) applied the RKDG method to compressible

Navier–Stokes problems, adopting a mixed variant in which the solution gradi-
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ents were not computed explicitly, but rather were approximated weakly [15].

The term “local discontinuous Galerkin” (LDG) method seems to have origi-

nated in [43]. Shortly thereafter, Cockburn and Dawson (1999) extended the

LDG method to more general second-order problems [38], while Castillo et al.

(2002) analyzed the hp version [29].

However, it was apparently realized by the end of the 1980s that hy-

perbolic conservation laws in nonconservative form posed unique challenges

to DG methods; they could not be applied in a straightforward manner to

systems unable to be written in divergence form. This proved especially prob-

lematic when the true solution became discontinuous—a phenomenon proved

by Lax (1973) to occur in finite time for hyperbolic equations [109]—since

then the solution (interpreted in the distributional sense) fails to exist, and

Rankine–Hugoniot shock conditions cannot be formulated [153]. Thus, it be-

came necessary to construct mathematically well-balanced schemes in order

to properly handle the nonconservative product.

Several approaches were tried. Among the most widely accepted thus

far is due to LeFloch (1989), who adopted a definition of the nonconservative

product in terms of a bounded Borel measure [110]. This is a generalization of

the Volpert (1967) product [48], and was originally applied to studies of defor-

mation of elastoplastic materials and two-phase flows. His definition formed

the cornerstone of the so-called DLM theory, introduced by Dal Maso et al.

(1995) in [49]. Using this definition, LeFloch (1990), LeFloch and Liu (1993),

and later Crasta and LeFloch (2002) were able to prove several important ex-

istence and uniqueness results [46, 111, 112]. Around the same time, Toumi

(1992) developed a generalized Roe solver [177], which was applied to shock

tube problems in [178]. An alternative approach was proposed by Saurel and
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Abgrall (1999) in [160].

Lately, much of the work in this area has been devoted to finding well-

balanced schemes in an FVM context; see, for example, [30, 143, 144]. Xing

and Shu (2006) developed higher-order well-balanced WENO schemes for the

RKDG framework in [192]. Very recently, Castro et al. (2010) designed well-

balanced FDMs for nonconservative systems [31]. However, it is the recent

work of Rhebergen et al. (2008) that will be of prime importance here, since

they developed well-balanced schemes within the FEM context, and, along

with Tassi et al. (2008), tested this scheme on a simplified version of the

morphological system of interest here.

1.3 Summary of Contributions

In this dissertation, a tightly-coupled, robust, and efficient morpho-

logical model that utilizes the LDG finite element method has been pre-

sented, analyzed and implemented. It has been designed for use with two-

dimensional structured and unstructured meshes within the Advanced Cir-

culation (ADCIRC) modeling framework, and has been tested against exact

and/or published solutions whenever possible. Specifically, the following have

been achieved:

• The LDG method for the tightly-coupled morphological system, includ-

ing all diffusion terms, has been formulated, and an a priori error esti-

mate for a slightly simplified form of this system has been derived (see

Chapter 3). The estimate does not contain an exponential bounding

factor. The LDG formulation presented is L2-stable.

21



• The tightly-coupled morphological system, including the diffusion terms,

with added stabilization terms designed to handle the nonconservative

product arising in the momentum equations (see Section 2.4), has been

implemented within the ADCIRC modeling framework (see Section 2.5).

• Code and model verification work has been done by testing the h- and

p-convergence rates against the theoretical rates. This was achieved by

comparing the DG model solution against an exact solution (see Sec-

tion 4.1).

• The model’s convergence behavior has been tested, at least qualitatively,

on several simplified, idealistic two-dimensional coastal modeling appli-

cations. The model results are compared with those in the literature,

where available (see Sections 4.2–4.4).

• A higher-order WENO-type slope limiting algorithm has been added to

the implementation, which is designed to mitigate spurious oscillations

in DG solutions of order two (see Section 2.5 for discussion). It is shown

to work satisfactorily in Sections 4.2–4.4.

• The model is shown to capture several complex two-dimensional flow

features near obstacles when the grid and solution undergo h- and p-

refinement, respectively. The resulting flow properties are shown to co-

incide with those described in the literature (Sections 4.3 and 4.4).

• The relative computational costs of increasing p, the polynomial order

of approximation, have been demonstrated when the model is run using

a constant number of CPUs (see Section 4.6).
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• The implementation is shown to possess the ability to handle dry re-

gions whenever the use of a wetting and drying algorithm is enabled.

This includes those regions that are initially protected by potentially

over-topping barriers (see Section 4.5). The bed is shown to evolve qual-

itatively as expected in the vicinity of the barriers provided that p is of

sufficient order.

1.4 Outline of Dissertation

The remainder of this dissertation is as follows. The interdependent

system of governing equations for hydrodynamics and bed morphology are

presented in detail in the next chapter. The LDG formulation and finite ele-

ment discretization for this system of PDEs is given in Section 2.2. However,

as mentioned above, the presence of dynamic bathymetry gives rise to a non-

conservative product in the formulation. The analysis of such models is due

primarily to Dal Maso et al. [49], and their theoretical results are summarized

and discussed in Section 2.3. The resulting alternative semi-discrete formula-

tion is the basis of the RKDG method as originally presented by Rhebergen

et al. [152, 153], and is described in Section 2.4. Some details of the model

implementation are described in Section 2.5.

In Chapter 3, an a priori error estimate for the conventional LDG

method presented in Section 2.2 is derived. The error equation that arises

from the semi-discrete formulation is shown in Section 3.1. A detailed and

extensive analysis of this equation comprises the remainder of the chapter.

Several numerical studies are presented in Chapter 4. These studies

highlight the convergence of the method in both h and p for problems with

analytical solutions or those with previously published results. The focus is
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on coastal engineering applications, in which flow and transport through a

converging channel, around a bridge pile, within an inlet, and across a weir

are investigated. In all applications except the last, the effects of h- and/or

p-refinement within the RKDG formulation are studied. A brief runtime per-

formance comparison is conducted in Section 4.6.

Finally, some concluding remarks about the work and results presented

in Chapters 3 and 4 appear in Chapter 5. Also included (Section 5.2) is a

series of possible future research directions and goals.
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Chapter 2

Solution Methodology

This chapter begins with a presentation of the governing equations

for hydrodynamics and sediment transport. A detailed derivation of the two-

dimensional SWE, including a scaling analysis may be found in [101] and [187].

This is followed by a derivation of the weak formulation of the problem and

its LDG finite element discretization. A discussion of the treatment of discon-

tinuous true solutions follows, and an alternative semi-discrete formulation is

derived, following [153]. Finally, an overview of the implementation is given,

including a brief examination of the relevant boundary conditions (BCs), el-

ements and element mappings, basis functions, time stepping algorithm, and

post-processing operators.

The discussion concerning the problem description and finite element

discretization may be found in the author’s earlier work [131], as may much

of the material appearing in the remainder of the chapter [132].

2.1 Model Problem Statement

The two-dimensional shallow water, or Saint-Venant, equations [1, 101,

187] coupled to the sediment transport, or Exner, equation [70] represent the

system of incompletely parabolic partial differential equations under consider-

ation in this dissertation. The SWE are the governing equations for hydrody-
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namics, and are derived from the three-dimensional Navier–Stokes equations

by applying Boussinesq’s approximation [19], assuming a hydrostatic pressure

distribution and uniform velocity profile in the vertical direction, using an

eddy viscosity formulation, and integrating over depth [187]. Exner’s equation

governs the transport of sediment, and may be derived directly from so-called

“first principles” by considering mass balance within the sediment column

(lying directly beneath the seawater column) [101, 104].

Let Ω ⊂ R2 be a bounded, polygonal spatial domain for all values of

time t ∈ (t0, t0 +T ], given some fixed initial time t0 ∈ R and some fixed T > 0,

and let ∂Ω denote the boundary of Ω. On the set Ω× (t0, t0 + T ], the coupled

system of conservation laws may be written concisely in Cartesian coordinates

as

∂t(Kw) +∇ · (F− D : ∇w) + G : ∇w = s, (2.1.1)

where the quantity of interest is w = (H,q>, b)>. The first component of w,

which is H = ζ + b, is the total depth of the seawater column, where ζ is

the observed free surface elevation measured positively upward from a given

vertical datum, and b is the bathymetric depth measured positively downward

from the datum, as shown in Figure 2.1. The vector q is the discharge per

unit width. Expressed in terms of velocity, q = (Hu,Hv)>, where u and

v represent the depth-averaged, Reynolds-averaged current velocity in the x-

and y-direction, respectively.

In equation (2.1.1), the matrix K = diag(1, 1, 1,−κ), where κ ∈ (0, 1]

is one minus the bed porosity. The value of κ is assumed to be spatially and

temporally constant to facilitate the analysis in Chapter 3. The negative sign

in front of κ accounts for b being measured positively downward, not upward.
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Figure 2.1: The seawater column in Cartesian coordinates

Continuing with equation (2.1.1), the quantity F ∈ R4×2 denotes the

inviscid flux. It may be written concisely as

F(w) =

(
q,

q⊗ q

H
+
gH2

2
I, q̃

)>
, (2.1.2)

where g is the gravitational constant (taken as 9.80665 m/s2 in the implemen-

tation), I ∈ R2×2 is the identity matrix, and q̃ is the total sediment load

discharge per unit width due to the combined effects of currents and waves.

To simplify the analysis in Chapter 3, transport of bed load due to waves

and transport of suspended load are neglected. This restriction on q̃ remains

in place in Chapter 4. For the moment, it is assumed that each component

of F is sufficiently regular; it is shown in Chapter 3 that, under some mild

assumptions, F is Lipschitz-continuous in all of its arguments.

The anisotropic diffusion coefficient is represented by the fourth-order

tensor D ∈ R4×2×4×2. For simplicity, it is assumed to be constant in space and

time in Chapters 3 and 4. A difficulty arises here, however, because D is not

invertible—a consequence of equation (2.1.1) being incompletely parabolic. To

circumvent this limitation, D may be partitioned into sub-tensors that multiply

the hydrodynamic and sedimentary components of ∇w. Let Dijkl denote a
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component of D for i ∈ {1, 2, 3, 4}, j ∈ {1, 2}, k ∈ {1, 2, 3, 4}, and l ∈ {1, 2}.
Define the sub-tensors

H = D|i,k∈{2,3} =


(
νx 0
0 0

) (
0 νy
0 0

)
(

0 0
νx 0

) (
0 0
0 νy

)
 ,

S = D|i=k=4 = diag(ν̃x, ν̃y),

where νx, νy, ν̃x, and ν̃y are all strictly positive, and represent hydrodynamic

and sedimentary eddy viscosity in the x- and y-direction, respectively. The

remaining components of D are zero. Under these restrictions, both H and

S are easily inverted; each nonzero scalar component may simply be inverted

in place. Note that in the case of isotropic seawater flow, H = νI, where

I ∈ R2×2×2×2 is the fourth-order identity tensor; for isotropic transport, S = ν̃I.

This is the scenario handled in the implementation.

The remaining term appearing on the left-hand side of equation (2.1.1)

is the nonconservative product, where G ∈ R4×2×4 is a third-order tensor

which cannot be expressed as the Jacobian of some matrix [49, 152, 153]. This

term may be rewritten, since G has only two nonzero components: G214 =

G324 = −gH. Therefore G : ∇w = (0,−gH∇b>, 0)>.

Finally, the vector s denotes the source terms, which are nonzero only

in the momentum equations. That is,

s(w) =
(

0,
(
−τbfq− %−1(H∇patm − τwind − τ rad)

)>
, 0
)>

, (2.1.3)

where the nonnegative quantity τbf represents a constant bottom friction coef-

ficient; %, the seawater reference density1; patm, the atmospheric pressure at the

1Taken as 1024.763 kg/m3 in the implementation, which corresponds approximately to
seawater at 20 ◦C with salinity 35 psu in the IES-80 equation of state [180].
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sea surface; τwind, the wind stress at the sea surface, and τ rad, the radiation

stress at the sea surface caused by short wind-driven waves.

It has not escaped the author’s notice that the Coriolis and tidal po-

tential terms have been omitted from equation (2.1.3). These forcing terms,

while important when simulating geophysical phenomena over a portion of the

surface of the Earth, do not significantly affect the error analysis performed

in Chapter 3, nor do they affect the overall stability of the LDG method. If

investigators should insist on including these terms when Cartesian coordi-

nates are used, several approaches may be used. One, which is valid for small

portions of the Earth’s surface, is to apply the so-called “β-plane” approxima-

tion; see [187] for details. Another approach is to convert longitude-latitude

pairs (λ, ϕ) to linear distances (x, y) using the carte parallelogrammatique

projection (CPP):

x = R(λ− λ0) cosϕ0,

y = R(φ− φ0),

where R is the mean radius of the Earth (m) and (λ0, ϕ0) is the center of the

projection. Care, however, must be taken to properly account for this transfor-

mation in all derivatives appearing in equation (2.1.1); a so-called “spherical

correction factor” is required [51]. The CPP approach is taken in the imple-

mentation when spherical coordinates are used. However, the Coriolis and

tide-generating potential terms are zero in the test cases presented in Chap-

ter 4, since Cartesian coordinates are used.

The first step in formulating this problem by the LDG method is to

rewrite equation (2.1.1) as a first-order system in mixed form by introducing an

auxiliary variable Z ∈ R4×2 with components Zij. Then the initial-boundary
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value problem is

∂t(Kw) = −∇ · (F + Z) + g + s, on Ω× (t0, t0 + T ],

Z = −D : ∇w, on Ω× (t0, t0 + T ],

w = w0, on Ω× {t = t0},

w = wD, on ∂Ω× [t0, t0 + T ],

(2.1.4)

where g(Z) = −gH(0, ν̃−1
x Z41, ν̃

−1
y Z42, 0)>, w0 is the initial data, and wD

is the Dirichlet data, which was chosen for convenience and simplicity; the

implementation requires more complicated boundary conditions, which are

discussed in Section 2.5.1. It is also assumed that a unique solution to (2.1.4)

exists, although mathematical results in this realm are largely unavailable at

present [69].

2.2 Finite Element Discretization

2.2.1 Weak Formulation

Let Ω be approximated by a family of regular finite element parti-

tions {Ωh}h>0 such that

Ω = {∪EΩE} ∪
{
{∪IΓI} ∪ {∪BΓB}

}
∪
{
∪N{xN}

}
,

where Ω denotes the closure of Ω; ΩE, an element; ΓI , an interior edge; ΓB, a

boundary edge, and {xN}, a node. Recall that since Ω is polygonal, Ωh = Ω;

domain approximation errors were not considered in this dissertation. The

elements are convex, nonoverlapping subdomains with Lipschitz boundaries

which do not cross ∂Ω, with the element size parametrized by hE = diam(ΩE),

so that h = maxE hE. Additionally, each physical element is affinely equivalent

to one of several master elements [20]; see Section 2.5 for a brief description.
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Each Ωh may be nonconforming; element boundaries do not have to align.2

However, it is assumed that the number of elements sharing an edge is bounded

independently of h. Lastly, each Ωh is assumed to be locally quasi-uniform [20].

Define the function spaces

Xh =
{
f ∈ L2(Ωh) ∩BV (Ωh) : f |ΩE

∈ H1(ΩE) for all ΩE ⊆ Ωh

}
,

Wh = [L∞(t0, t0 + T ;Xh)]4,

Zh = [L∞(t0, t0 + T ;Xh)]4×2,

where BV (Ωh) ⊂ L1(Ωh) denotes the space of functions of bounded variation

on Ωh; these functions have well-defined traces on element boundaries. For

any function f ∈ Wh, its “interior” and “exterior” traces are denoted for any

fixed time t as

f (in)(t,x) = lim
ε↑0

f(t,x + εn),

f (ex)(t,x) = lim
ε↓0

f(t,x + εn),

where x ∈
{
{∪IΓI}∪{∪BΓB}

}
and n is the unit normal vector that points to-

ward the element with the lower index, with R2\Ω corresponding to E = 0. By

this convention, f (in)(t, ·) is the interior trace with respect to the element with

the higher index sharing the edge. Observe that since f(t, ·)|ΩE
∈ [H1(ΩE)]4,

both f (in)(t, ·) and f (ex)(t, ·) reside in [H1/2(∂ΩE)]4 because they merely repre-

sent the action of the trace operator upon f at some fixed time. The “average”

and “jump” operators may then be defined for any fixed time t as

{{f}} =
1

2

(
f (in) + f (ex)

)
, (2.2.1)

[[f ]] = f (in) − f (ex), (2.2.2)

2Valid for the analysis in Chapter 3 only. In the implementation, and in all test cases
presented herein, all elements were conforming.

31



where the dependencies of the functions on t and x have been suppressed.

Similar definitions for the interior and exterior trace, average, and jump hold

for functions residing in Zh. It should be noted that these definitions were

chosen for convenience and simplicity; they differ slightly from those commonly

used in the literature [152, 153, 172], in that the jump of a vector-valued

(matrix-valued) function is a vector (matrix), not a scalar, since the normal is

not included in equation (2.2.2).

Throughout this dissertation, the L2(ΩE)-inner product notation (·, ·)E
is used on elements and the L2(∂ΩE)-inner product notation 〈·, ·〉 on edges,

with either an I or a B appended as necessary to distinguish inner products

over interior and boundary edges. The arguments may be scalar-, vector-, or

matrix-valued functions, with the understanding that if each fi(t, ·) ∈ L2(ΩE)

and each gi(t, ·) ∈ L2(ΩE), then

(f ,g)E =
4∑
i=1

(fi, gi)E ,

and that if each Fij(t, ·) ∈ L2(ΩE) and each Gij(t, ·) ∈ L2(ΩE), then

(F,G)E =
4∑
i=1

2∑
j=1

(Fij, Gij)E .

Similar definitions apply for inner products on the edges.

In addition, the notation ‖·‖r,E is used to denote the Hr(ΩE)-norm for

integral values of 0 ≤ r < ∞; ‖·‖r,I , the Hr(ΓI)-norm; ‖·‖r,B, the Hr(ΓB)-

norm, and ‖·‖r,h, the Hr(Ωh)-norm. As before, the arguments may be scalar-,

vector-, or matrix-valued, and hold for any fixed time t. The L2(Ωh)- and

L2(ΩE)-norms are related by

‖f‖2
0,h =

∑
E

‖f‖2
0,E ,
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provided that f(t, ·) ∈ L2(ΩE) for all ΩE ⊆ Ωh.

With these definitions and conventions, the initial-boundary value prob-

lem (2.1.4) may be rewritten and stated in the following weak form:

Find w and Z such that

∑
E

(
∂t(Kw),v

)
E

= −
∑
I

〈
(F + Z)n, [[v]]

〉
I
−
∑
B

〈
(F + Z)n,v(in)

〉
B

+
∑
E

{
(F + Z,∇v)E + (g + s,v)E

}
,∑

E

(Z,V)E = −
∑
I

〈
w, (D : [[V]])n

〉
I
−
∑
B

〈
wD,

(
D : V(in)

)
n
〉
B

+
∑
E

(
w,∇ · (D : V)

)
E
,∑

E

(
w(t0, ·),v

)
E

=
∑
E

(w0,v)E ,

(2.2.3)

for all v ∈ Wh and all V ∈ Zh.

2.2.2 Semi-discrete Formulation

Now define the function spaces

Xhp = {f ∈ Xh : f |ΩE
∈ Pp(ΩE) for all ΩE ⊆ Ωh} ,

Whp = [L∞(t0, t0 + T ;Xhp)]4,

Zhp = [L∞(t0, t0 + T ;Xhp)]4×2,

where Pp(ΩE) denotes the space of complete polynomials of degree p ≥ 0

defined on ΩE. It is assumed for simplicity that p remains the same from

element to element; consideration of adaptivity in p is beyond the scope of this

dissertation. Note that Xhp represents a finite-dimensional subspace of Xh.

It is desired to approximate the solution w and Z to (2.2.3) by a finite
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element solution whp ∈ Whp and Zhp ∈ Zhp. However, whp and Zhp, and hence

Fhp = F(whp), are not single-valued on ∪IΓI . Therefore, it is necessary to

replace these terms with carefully chosen numerical fluxes; it is imperative that

these numerical fluxes preserve the stability and consistency of the method.

In addition, nonlinear fluxes must also preserve entropy conditions.

Let ΠFhp(t, ·) ∈ Zhp be the L2(ΩE)-projection of Fhp(t, ·) into the

space Zhp for any fixed time t:

(Fhp − ΠFhp,V)E = 0 for all V ∈ Zhp.

That is, ΠFhp is the best approximation of Fhp in Zhp. The nonlinear flux on

all interior and boundary edges is then approximated by

(ΠFhp)n ≈ {{ΠFhp}}n + σ[[whp]], (2.2.4)

where σ ∈ R4×4 acts as a stabilization term, in the form of numerical diffusion.

Notice that the approximation to ΠFhp defined by equation (2.2.4) is similar

in form to many commonly used numerical fluxes, such as the Roe [156] or

local Lax-Friedrichs flux. The stabilization term is defined as

σ = diag(σ11, σ22, σ33, σ44)

= diag

(
α

2
,max

{α
2
, µ
}
,max

{α
2
, µ
}
,max

{α
2
, µ̃
})

. (2.2.5)

In equation (2.2.5), α = max{α(in), α(ex)} is assumed to be bounded from

above independently of h, where α(in) and α(ex) are the maximum eigenvalues

in absolute value of ∇F
(in)
hp · n and ∇F

(ex)
hp · n, respectively, and are dependent

on the expression for q̃. The parameters µ and µ̃ are penalties, and both

are of the order h−1 as h ↓ 0. This property, together with the boundedness
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assumption about α above, ensures that σ22, σ33, and σ44 (but not σ11!) are

all of the order h−1 as h ↓ 0.

The linear boundary fluxes pose less of a problem; it is unnecessary to

either project onto the finite element space or introduce penalty terms. They

are defined as the averages of the interior and exterior traces of the functions:

whp(t,x) ≈ {{whp(t,x)}},

Zhp(t,x) ≈ {{Zhp(t,x)}},

for all x ∈
{
{∪IΓI} ∪ {∪BΓB}

}
and each fixed time t.

In addition, since ghp = g(Zhp), shp = s(whp), and w0 do not generally

reside in Whp, let Πghp(t, ·), Πshp(t, ·), and Πw0 be the L2(ΩE)-projections of

ghp(t, ·), shp(t, ·), and w0 into Whp, respectively, for any fixed time t. Then

the semi-discrete statement of (2.1.4) is:

Find whp ∈ Whp and Zhp ∈ Zhp such that

∑
E

(
∂t(Kwhp),v

)
E

= −
∑
I

〈
{{ΠFhp}}n + σ[[whp]] + {{Zhp}}n, [[v]]

〉
I

−
∑
B

〈
ΠF

(in)
hp n + σ

(
w

(in)
hp −wD

)
+ Z

(in)
hp n,v(in)

〉
B

+
∑
E

{
(ΠFhp + Zhp,∇v)E +

(
Π(ghp + shp),v

)
E

}
,∑

E

(Zhp,V)E = −
∑
I

〈
{{whp}}, (D : [[V]])n

〉
I

−
∑
B

〈
wD,

(
D : V(in)

)
n
〉
B

+
∑
E

(
whp,∇ · (D : V)

)
E
,∑

E

(
whp(t0, ·),v

)
E

=
∑
E

(Πw0,v)E ,

(2.2.6)

for all v ∈ Whp and all V ∈ Zhp.
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2.3 Treatment of Discontinuous Solutions

Consider the situation when the diffusion tensor D is identically zero

in equation (2.1.1):

∂t(Kw) +∇ · F + G : ∇w = s. (2.3.1)

The semi-discrete formulation that would result by following the procedure in

the previous section is:

Find whp ∈ Whp such that

∑
E

(
∂t(Kwhp),v

)
E

= −
∑
I

〈
{{ΠFhp}}n + σ[[whp]], [[v]]

〉
I

−
∑
B

〈
ΠF

(in)
hp n + σ

(
w

(in)
hp −wD

)
,v(in)

〉
B

+
∑
E

{
(ΠFhp,∇v)E +

(
Π(ghp + shp),v

)
E

}
,∑

E

(
whp(t0, ·),v

)
E

=
∑
E

(Πw0,v)E ,

(2.3.2)

for all v ∈ Whp,

where ghp = (0, gHhp∇b>hp, 0)>.

The problem given by (2.3.2) is ill posed whenever the true solution

becomes discontinuous. This phenomenon is generally expected to occur here,

since equation (2.3.1) is a nonlinear hyperbolic PDE in nonconservative form;

shocks are known to develop over time [109]. Thus, weak solutions to (2.3.1)

will not exist because the distributional derivatives are not defined at the

discontinuities, and consequently no Rankine–Hugoniot shock conditions may

be defined [152, 153].

The underlying issue in the ill-posedness of (2.3.2) is the presence of

the nonconservative product G : ∇w, with nonzero components appearing
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in the momentum equations, which are represented by the second and third

components of equation (2.3.1). Since G cannot be expressed as the Jacobian

of some tensor Q ∈ R4×2, equation (2.3.1) cannot be written in so-called

divergence form:

∂t(Kw) +∇ ·Q = s. (2.3.3)

As a result, traditional DG methods cannot be applied to this system in a

straightforward manner.

There are three options available to treat this shortcoming. The first

is to use the fully nonconservative form of (2.3.1). Indeed, by considering

the fully nonconservative form of the coupled system in one space dimen-

sion, adjusted characteristic speeds may be extracted and incorporated into

the definition of the numerical flux, and the system may then be expressed

in divergence form. However, in two space dimensions, this approach fails.

Moreover, this option is unattractive from a numerical point of view, since

the numerical method may then possibly converge to nonphysical (i.e., non-

entropy-preserving) solutions [101].

The second approach involves uncoupling the sediment transport equa-

tion, represented by the fourth component of (2.3.1), from the SWE, repre-

sented by the first three components of (2.3.1), at least to some extent. Based

on physical arguments involving typical time scales for sediment and seawater

transport rates, this approach was previously taken in the model implemen-

tation [101]. The principal drawback to this approach is its lack of accuracy

during instances when the time scales for transport of sediment and seawater

become similar, such as during the extreme events ultimately desired to sim-

ulate. Some additional commentary regarding quasi-steady and fully coupled

formulations may be found in [123].
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The remaining option is to employ a special treatment for the noncon-

servative product. This was done in previous work for one-dimensional prob-

lems in [47] and for two phase flow problems in [16]. An alternative treatment

was proposed by Dal Maso et al. [49] and applied by Rhebergen et al. to one-

and two-dimensional problems using the DG method with piecewise linear fi-

nite element basis functions in [153]. It is this treatment that will be discussed

throughout the remainder of this section and used in the implementation.

The ideas proposed in [49] for overcoming the absence of a weak solution

are twofold:

1. Introduce a smooth path function which connects the interior and exte-

rior states across a discontinuity, and

2. Define the nonconservative product in terms of a bounded Borel measure.

Once done, and a new numerical flux defined, a notion of “weak solution” may

be given to equation (2.3.1), and an alternative semi-discrete formulation may

be derived.

The first idea proposed by Dal Maso et al. is to regularize the true

solution w near discontinuities by connecting the interior and exterior traces

w(in) and w(ex) (assuming these are well defined) with a smooth path func-

tion χ : [0, 1] → R4 parametrized by τ ∈ [0, 1]. This path χ must satisfy the

following properties:

1. [End conditions.] By definition, χ(0) = w(in) and χ(1) = w(ex),

2. [Consistency.] If [[w]] = 0, then χ(τ) = w(in),
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3. [Lipschitz-continuity.] For each component χi of χ, there exists a con-

stant M > 0 such that

|∂τχi(τ)| ≤M |[[wi]]|

for a.e. τ ∈ [0, 1], and

4. [Symmetry.] In two or more space dimensions, the path must be sym-

metric with respect to an interchange of the traces.

Condition 4 need not be satisfied for one-dimensional problems [49, 153].

Define the third-order tensor T ∈ R4×2×4 by the relation

T = ∂wF + G, (2.3.4)

where ∂wF denotes the Jacobian of F with respect to w. Then equation (2.3.1)

may be rewritten as

∂t(Kw) + T : ∇w = s. (2.3.5)

With the coupled system expressed by (2.3.5), the following theorem, due to

Dal Maso et al. [49], on the integration of nonconservative products, which are

treated as a bounded Borel measure, may be stated:

Theorem 2.3.1 (Dal Maso et al., 1995). Assume that

1. The function w is bounded on its domain Ω,

2. The function w is of bounded variation on Ω,

3. Each entry of T is a locally bounded, measurable function that maps

Borel sets to Borel sets, and

39



4. The domain Ω = ΩC ∪ ΩJ ∪ ΩI with each subset disjoint, where ΩC is

the set where w is almost everywhere continuous, ΩJ is the set of jumps

in w, and ΩI is the set of “irregular” (nodal) points.

Then there exists a unique, bounded vector of Borel measures µ : Ω→ R4 such

that for a given Borel subset A ⊂ Ω,

1. If A ⊂ ΩC, then

µ(A) =

∫
A

T : ∇w dA,

2. If A ⊂ ΩJ , then

µ(A) =

∫
A

(∫ 1

0

T(χ)∂τχ dτ

)
n dA,

where n is directed toward the region where τ = 1, and

3. If A ⊂ ΩI , then

µ(A) = 0.

Proof. Consult [49].

Remark 2.3.2. Assumption 2 is crucial since it guarantees that w(in) and w(ex)

are well defined, and also ensures that w admits only jump-type discontinuities

on Ω. For this reason, the space BV (Ωh) was incorporated into the definition

of the function spaces Whp and Zhp in Section 2.2.1.

Remark 2.3.3. In practice, and throughout the remainder of this dissertation,

ΩC = ∪EΩE,

ΩJ = {∪IΓI} ∪ {∪BΓB},

ΩI = ∪N{xN}.

40



2.4 Alternative semi-discrete formulation

Having introduced smooth paths which connect discontinuities in the

true solution of equation (2.3.5), and defined the nonconservative product, it

is now possible to seek a weak solution to (2.3.5) by way of an alternative

semi-discrete formulation. This is derived following the approach discussed

in [153] and [172].

Multiplying equation (2.3.5) by a test function v ∈ Wh, integrating

over Ωh, and rearranging gives∑
E

(
∂t(Kw),v

)
E

= −
∫

Ωh

v · dµ+
∑
E

(s,v)E . (2.4.1)

By Theorem 2.3.1,

dµ =


T : ∇w dx, on ∪EΩE,(∫ 1

0

T(χ)∂τχ dτ

)
n ds, on {∪IΓI} ∪ {∪BΓB},

0, on ∪N{xN}.

(2.4.2)

With dµ defined by equation (2.4.2), equation (2.4.1) becomes

∑
E

(
∂t(Kw),v

)
E

= −
∑
I

〈(∫ 1

0

T(χ)∂τχ dτ

)
n,v

〉
I

−
∑
B

〈(∫ 1

0

T(χ)∂τχ dτ

)
n,v

〉
B

−
∑
E

(T : ∇w,v)E +
∑
E

(s,v)E . (2.4.3)
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Splitting T using equation (2.3.4) gives

∑
E

(
∂t(Kw),v

)
E

=
∑
I

〈
[[F]]n−

(∫ 1

0

G(χ)∂τχ dτ

)
n,v

〉
I

+
∑
B

〈
[[F]]n−

(∫ 1

0

G(χ)∂τχ dτ

)
n,v

〉
B

−
∑
E

(∇ · F + G : ∇w − s,v)E ,∑
E

(
w(t0, ·),v

)
E

=
∑
E

(w0,v)E .

(2.4.4)

This is the alternative weak formulation.

Now consider seeking an approximate weak solution whp ∈ Whp. Since

the test function v is double-valued on the set {∪IΓI}∪{∪BΓB}, an appropri-

ate numerical flux v̂ must be supplied. This numerical flux is chosen in [153]

such that the DG formulation with nonconservative products reduces to the

conservative DG formulation whenever Ghp = G(whp) is the Jacobian of some

tensor Qhp. To this end, Rhebergen et al. [153] prove that v̂ = {{v}} satis-

fies this requirement. Thus, v may be replaced with {{v}} in the boundary

integrals of (2.4.4), and the divergence term in the element integral may be
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integrated by parts to obtain, after some simplification,

∑
E

(
∂t(Kwhp),v

)
E

= −
∑
I

〈
f̂ , [[v]]

〉
I

−
∑
I

〈(∫ 1

0

Ghp(χ)∂τχ dτ

)
n, {{v}}

〉
I

−
∑
B

〈
f̂ +

(∫ 1

0

Ghp(χ)∂τχ dτ

)
n,v(in)

〉
B

+
∑
E

{
(ΠFhp,∇v)E +

(
Π(ghp + shp),v

)
E

}
,∑

E

(
w(t0, ·),v

)
E

=
∑
E

(Πw0,v)E ,

(2.4.5)

where ghp = (0, gHhp∇b>hp, 0)> and f̂ is a numerical flux to be defined in

Sections 2.4.2 and 2.4.3.

2.4.1 Choice of Path Function

The derivation thus far has been independent of the exact form of the

path function χ. However, with whp regularized near the element boundaries

in this manner, the value of the regularized nonconservative product, and hence

the value of the path integral, is ultimately dependent in the limit on the choice

of path; see, for example, [49] or [153]. As a consequence, equation (2.4.5)

cannot be further simplified until a suitable form of χ is chosen.

Several investigators have studied the effect of the path choice on the

numerical solution. Rhebergen et al. [153] experimented with polynomial paths

of various orders. Additional trials were done by Toumi [177]. The effect on the

numerical solution was found to be small, and that having a good numerical

integration scheme to integrate the path integral appeared to be of greater

importance [153]. With this result in mind, a linear path will be used in the
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implementation:

χ(τ) = w
(in)
hp + τ(w

(ex)
hp −w

(in)
hp ).

This choice of path allows for easy evaluation of the path integrals appearing

in equation (2.4.5). Define

vnc =

(∫ 1

0

Ghp(χ)∂τχ dτ

)
n = (0, g{{Hhp}}[[bhp]]n>, 0)>

on both internal and boundary edges. Then equation (2.4.5) can be rewritten,

and the initial-boundary value problem (2.1.4) becomes:

Find whp ∈ Whp such that

∑
E

(
∂t(Kwhp),v

)
E

= −
∑
I

{〈
f̂ , [[v]]

〉
I

+ 〈vnc, {{v}}〉I
}

−
∑
B

〈
f̂ + vnc,v

(in)
〉
B

+
∑
E

{
(ΠFhp,∇v)E +

(
Π(ghp + shp),v

)
E

}
,∑

E

(
w(t0, ·),v

)
E

=
∑
E

(Πw0,v)E ,

(2.4.6)

for all v ∈ Whp.

This is the semi-discrete formulation of interest in the model imple-

mentation.

2.4.2 The Numerical Flux (Split Formulation)

To close (2.4.6), it remains to define an appropriate (stable) numerical

flux f̂ . In this section, the formulations for the numerical flux function f̂ differ

between the hydrodynamic and sedimentary components of equation (2.4.6).

That is,

f̂ =
(
f̂>hy, f̂sed

)>
,
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where f̂hy and f̂sed are the numerical fluxes for the hydrodynamic and sedimen-

tary components of (2.4.6), respectively. As discussed in [153], the form of the

hydrodynamic flux may be thought of as a sum of an average term involving

the hydrodynamic components of Fhp, a stabilizing (viscous) term involving

[[whp]], and an additional stabilizing term involving vnc, the value of the path

integral, which accounts for the nonconservative product. The function f̂hy is

defined, following [153], as

f̂hy =


F

(in)
hp n− 1

2
vnc S(in) > 0

f̂HLL −
S(in) + S(ex)

2(S(ex) − S(in))
vnc S(in) < 0 < S(ex)

F
(ex)
hp n + 1

2
vnc S(ex) < 0

, (2.4.7)

where the quantities

S(in) = min{min
i
λ

(in)
i ,min

i
λ

(ex)
i }

S(ex) = max{max
i
λ

(in)
i ,max

i
λ

(ex)
i }

represent the “truncated” speeds of the slowest- and fastest-moving character-

istics in the normal direction, respectively, λ
(in)
i and λ

(ex)
i are the eigenvalues

of the hydrodynamic components of T(in) · n and T(ex) · n, respectively, and

f̂HLL =
S(ex)F

(in)
hp n− S(in)F

(ex)
hp n

S(ex) − S(in)
− S(in)S(ex)

S(ex) − S(in)
[[whp]] (2.4.8)

is the Harten-Lax-van Leer (HLL) numerical flux defined in [83]. It should

be noted that for most problems in shallow water hydrodynamics, the Froude

number rarely3 exceeds 0.2, and therefore only the second case listed in equa-

tion (2.4.7) is frequently encountered [187]. It is emphasized once again that

3An exception would be flow across external and internal barriers (described in Sec-
tion 2.5.1), and possibly in estuarine regions where H is very small, but not small enough
for the region to be fully dry.
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only the hydrodynamic components of whp, Fhp, and vnc are considered in

equations (2.4.7) and (2.4.8); the sedimentary component is ignored.

It can be shown (see [117, 118]) that the eigenvalues of the hydrody-

namic part of T · n are given by

λ1 =
q

H
· n,

λ2 = λ1 −
√
gH,

λ3 = λ1 +
√
gH,

and therefore

S(in) = min{λ(in)
2 , λ

(ex)
2 },

S(ex) = max{λ(in)
3 , λ

(ex)
3 }.

For the sedimentary component of equation (2.4.6), an upwind flux is

used, based on the assumption that transport is always in the direction of the

flow. This choice of numerical flux is known to work well in practice [101], and

as such was introduced into the model implementation at an early date. It is

defined as

f̂sed =

{
q̃(in) · n, qRoe · n ≥ 0,

q̃(ex) · n, qRoe · n < 0,

where

qRoe =
q(in)
√
H(in) + q(ex)

√
H(ex)

√
H(in) +

√
H(ex)

is the so-called “Roe-averaged” value of q; consult [101, 117, 118, 156] for

additional details and remarks.

This formulation of the numerical flux is used in the numerical test cases

described in Sections 4.1 through 4.4, and is shown to be effective. However,

for the final test case described in Section 4.5, a modified numerical flux is

used. This is the subject of the next section.
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2.4.3 The NCP Numerical Flux

Although the split formulation for the numerical flux defined in the

previous section appears to work satisfactorily in practice, it is desirable, and

basically more correct, to employ a unified formulation for f̂ that properly

accounts for the additional characteristic that appears as a result of the pres-

ence of advecting sediment within the seawater column. More precisely, the

numerical flux is defined in [172] as

f̂ =


F

(in)
hp n− 1

2
vnc, S(in) > 0,

f̂HLL −
S(in) + S(ex)

2(S(ex) − S(in))
vnc, S(in) < 0 < S(ex),

F
(ex)
hp n + 1

2
vnc, S(ex) < 0,

(2.4.9)

where the quantities

S(in) = min{min
i
λ

(in)
i ,min

i
λ

(ex)
i }

S(ex) = max{max
i
λ

(in)
i ,max

i
λ

(ex)
i }

represent the speeds of the slowest- and fastest-moving characteristics in the

normal direction, respectively, λ
(in)
i and λ

(ex)
i are the (approximate) eigenvalues

of T(in) · n and T(ex) · n, respectively, and

f̂HLL =
S(ex)F

(in)
hp n− S(in)F

(ex)
hp n

S(ex) − S(in)
− S(in)S(ex)

S(ex) − S(in)

(
[[Hhp]], [[qhp]]

>,−[[bhp]]
)>

(2.4.10)

is the Harten-Lax-van Leer (HLL) numerical flux defined in [83]. Note that

all components of whp, Fhp, and vnc are considered in equation (2.4.9), unlike

in the previous section.

The four eigenvalues of T · n are found from its characteristic polyno-

mial, which takes the form(
λ− q

H
· n
)

(aλ3 + bλ2 + cλ+ d) = 0, (2.4.11)
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where

a = 1,

b = −
(

2q

H
+
∂q̃

∂b

)
· n,

c =
( q

H
· n
)2

− gH
[

1

κ

(
∂q̃

∂q
· n
)
· n + 1

]
+ 2

( q

H
· n
)(∂q̃

∂b
· n
)
,

d = −gH
κ

[(
∂q̃

∂H
· n
)

+
( q

H
· t
)(∂q̃

∂q
· t
)
· n
]

+

[
gH −

( q

H
· n
)2
](

∂q̃

∂b
· n
)
,

for any sufficiently smooth sediment discharge function q̃. Note that in the

expression for d, t is a unit tangent vector. Using these coefficients, the quan-

tities

Q =
1

9
(3c− b2),

R =
1

54
(9bc− 27d− 2b3),

may be formed, and, provided that the discriminant D = Q3 + R2 < 0, the

four (real and distinct) eigenvalues are given by

λ1 =
q

H
· n, (2.4.12)

λ2 = 2
√
−Q cos

(
θ

3

)
+

2

3
λ1, (2.4.13)

λ3 = 2
√
−Q cos

(
1

3
(θ + 2π)

)
+

2

3
λ1, (2.4.14)

λ4 = 2
√
−Q cos

(
1

3
(θ + 4π)

)
+

2

3
λ1, (2.4.15)

where θ = cos−1(R/
√
−Q3).

It is readily observed that the coefficients b, c, and d, and hence the

eigenvalues, depend strongly on q̃. Consequently, some care must be given to
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the choice of sediment discharge function, since it must be ensured that D < 0

for physically relevant values of whp.

For example, suppose that q̃ = H−3|q|2q, where | · | is the standard

Euclidean 2-norm, as is done in [123] and [172]. Due in part to the simplicity

of this relation, it may be shown analytically that D < 0 for all H > 0 and all

values of q: Since

b = −2λ1,

c =

(
1− 2g

κ

)
λ2

1 − g
(
|u|2

κ
+H

)
,

d =
gλ1

κ
(3|u|2 − 2λ2

1),

where λ1 is given by equation (2.4.12) and u = q/H, it follows that

D =
d2

4
− bcd

6
+

b3d

27
+

c3

27
− b2c2

108

<
d2

4
− bcd

6
+

b3d

27

=
gλ2

1

108κ2
(2λ2

1 − 3|u|2)(126gλ2
1 − 4κλ2

1 + 36gHκ− 45g|u|2)

≤ − g|u|4

108κ2

(
(81g − 4κ)|u|2 + 36gHκ

)
≤ 0

since c < 0 and λ2
1 ≤ |u|2.

However, if a more physically realistic formulation for q̃ is used, such

as that described by Camenen and Larson (2005) in [26], then it turns out

that D is not always negative. This phenomenon is shown in Figure 2.2,

where D is positive in the indicated region. Note, however, that this region

corresponds to unrealistic flow profiles; a groundwater flow model is more

appropriate as H/d50 ↓ 0, where d50 is the median sediment grain size. Since

f̂ becomes very sensitive to |q| as H ↓ 0, it is necessary to choose a sufficiently
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large minimum seawater column depth Hmin for determining dry regions (see

Section 2.5.5).
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Critical flow

Figure 2.2: Froude numbers for which D = 0 using Camenen and Larson’s
formulation of q̃

2.5 Implementation Overview

In this section, a brief summary of the model implementation is given.

This includes details regarding the choices of boundary conditions (BCs), ele-

ment types, basis functions, and time stepping schemes. For a more complete

description of the current implementation of these items, consult [101] or [105].

2.5.1 Boundary Conditions

It was mentioned in Section 2.1 that the Dirichlet BC that appears

in the IBVP (2.1.4) was chosen to simplify the analysis given in Chapter 3.

However, in many kinds of geophysical flow problems, several other types of

BCs appear. These are enforced weakly through the linear and nonlinear
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numerical fluxes by specifying the values of the exterior traces (defined in

Section 2.2.1) along the boundary edges. It is these BCs that are implemented

in the numerical model.

There are seven types of BCs which appear in the test cases described

in Chapter 4. They are as follows:

Open BCs: In regions where the open ocean intersects the domain boundary,

the free surface elevation is specified, and continuity of the hydrodynamic

discharge and bathymetric depth is enforced:

ζ(ex) = ζD,

[[q]] = 0,

[[b]] = 0,

where ζD is specified (typically it is a periodic function in time and

is composed of several tidal harmonic constituents). For the diffusive

terms, no information on Z(ex) is stated, and therefore {{Z}} = Z(in).

Land BCs: At interfaces between seawater and either the mainland or an

island, continuity of the seawater column depth and bathymetry is en-

forced, the average normal flow is set to zero, and free slip is specified:

[[H]] = 0,

{{q}} · n = 0,

[[q]] · t = 0,

[[b]] = 0.

Note that although the sedimentary flux integrals are zero, the BC for b

is necessary to ensure that vnc = 0. As with open boundaries, no action

is taken with Z(ex); it then follows that {{Z}} = Z(in).
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Flow BCs: In regions where a river intersects the domain boundary, continu-

ity of the seawater column depth and bathymetry is assumed, the normal

hydrodynamic discharge is prescribed, and no slip is specified:

[[H]] = 0,

(q(ex) − qD) · n = 0,

[[q]] · t = q(in) · t,

[[b]] = 0,

where qD is prescribed (typically it is a periodic function also composed

of tidal harmonic constituents). Again, nothing is said about Z(ex); there-

fore {{Z}} = Z(in).

External barrier BCs: An external barrier is a levee, dike, weir, or other

man-made object which impedes the flow across the domain boundary.

When the seawater level is below the barrier height Hebar, which is mea-

sured positively above the datum, negatively below, a land BC is im-

posed. However, when the seawater level exceeds Hebar, the barrier is

over-topped, the normal discharge becomes nonzero, and the flow across

the barrier is supercritical. In all cases, continuity of the seawater column

height and bathymetry is imposed, as well as conditional slip:

[[H]] = 0,

(q(ex) − qD) · n = 0,

[[q]] · t =

{
0, ζ ≤ Hebar,

q(in) · t, ζ > Hebar,

[[b]] = 0,
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where the normal discharge across the barrier is given by

qD · n =

−q(in) · n, ζ ≤ Hebar,

RebarC
S
ebar

√
8g

27
(ζ −Hebar)

3/2, ζ > Hebar,

where Rebar ∈ [0, 1] is a ramping function of a specified duration, and

CS
ebar is the (dimensionless) coefficient of free surface supercritical flow

(typically unity). The barrier is assumed to behave as a broad-crested

weir [85, 114]. It is also assumed that Hebar � −b, so that it never

becomes buried beneath the bed. In addition, the condition {{Z}} = 0

is imposed.

Internal barrier BCs: An internal barrier behaves like an external barrier,

except that it impedes the flow between two elements, as shown in Fig-

ure 2.3. A well-constructed jetty may act as an internal barrier, for

example. For the purposes of the implementation, the internal barrier is

assumed to behave as a broad-crested weir4, allowing for the use of for-

mulæ from [114]. In all cases, continuity of the seawater column height

and bathymetry is imposed, as well as conditional slip, on both sides of

the barrier:

4This implicitly assumes that flow across the barrier is always normal to both the “front”
and “back” edges of the weir. A front edge is always paired with a corresponding back edge,
as shown in Figure 2.3. For lone edges located at T-junctions or at the ends of internal
barriers, a land BC is imposed.
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Front side:

[[H]] = 0,

(q(ex) − qD) · nfront = 0,

[[q]] · tfront =

{
0, ζ ≤ Hibar

q(in) · tfront, otherwise
,

[[b]] = 0.

Back side:

[[H]] = 0,

(q(ex) − qD) · nback = 0,

[[q]] · tback =

{
0, ζ ≤ Hibar

q(in) · tback, otherwise
,

[[b]] = 0.

The normal discharge across the front side of the barrier is determined

by the following algorithm:

1. [Not over-topped?] If ζfront ≤ Hibar and ζback ≤ Hibar, then

qD · nfront = −q(in) · nfront.

2. [Water levels equal?] If ζfront = ζback, then

qD · nfront = −q(in) · nfront.

3. [Over-topped at front?] If ζfront > ζback and ζfront > Hibar, then

determine whether the flow is sub- or supercritical:

(a) [Subcritical flow?] If ζback −Hibar >
2
3
(ζfront −Hibar), then

qD · nfront = RibarC
s
ibar(ζback −Hibar)

√
2g(ζfront − ζback).
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(b) Otherwise, the flow is supercritical, and

qD · nfront = RibarC
S
ibar

√
8g

27
(ζfront −Hibar)

3/2.

4. [Over-topped at back?] If ζback > ζfront and ζback > Hibar, then

determine whether the flow is sub- or supercritical:

(a) [Subcritical flow?] If ζfront −Hibar >
2
3
(ζback −Hibar), then

qD · nfront = −RibarC
s
ibar(ζfront −Hibar)

√
2g(ζback − ζfront).

(b) Otherwise, the flow is supercritical, and

qD · nfront = −RibarC
S
ibar

√
8g

27
(ζback −Hibar)

3/2.

An analogous algorithm holds for the back side of the barrier. Here,

Ribar ∈ [0, 1] is a ramping function of specified duration; Cs
ibar, the

coefficient of free surface subcritical flow (typically unity); CS
ibar, the

coefficient of free surface supercritical flow (also typically unity), and

ζfront and ζback, the interior traces of the free surface elevations at the

front and back sides, respectively. Similar to external barriers, it is as-

sumed that Hibar � −b on both sides, so that the internal barrier never

becomes buried beneath the bed. In addition, the condition {{Z}} = 0

is imposed.

Radiation (Sommerfield) BCs: On these boundaries, information about

the bed, seawater column height, and flow is allowed to freely propagate

out of the domain without reflection. Thus, the jump in the solution is

zero:

[[w]] = 0.

In addition, the condition {{Z}} = 0 is imposed here.
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Figure 2.3: An internal barrier boundary between triangular elements

Periodic BCs: For the test case described in Section 4.1, the domain is rect-

angular, and the seawater column height, bathymetry, and flow are as-

sumed to be periodic:

w(ex)(x) = w(in)(x+ λ),

w(ex)(x+ λ) = w(in)(x),

where λ > 0 is the period (domain length in the x-direction). Note

that for that test case, the diffusion terms are identically zero, so no

conditions for Z are needed.

For all test cases, the boundary conditions must be carefully chosen.

For example, for the test case described in Section 4.2, it was found that

imposing a radiation BC on the downstream boundary instead of an open BC

resulted in a net gain of global seawater mass. Although not the focus of this

dissertation, the proper specification of boundary conditions is the subject of

ongoing research by many investigators [101, 187].
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2.5.2 Elements and Affine Mappings

Recall from Section 2.2 that each element ΩE is assumed to be tri-

angular. This choice of element allows for greater flexibility when handling

unstructured meshes, such as those used in the numerical examples described

in Chapter 4. On each element ΩE, the LDG solution pair whp and Zhp may

be expanded as

whp(t,x)|ΩE
= Whp,E(t) · φ(x), (2.5.1)

Zhp(t,x)|ΩE
= Zhp,E(t) · φ(x), (2.5.2)

where Whp,E ∈ R4×N and Zhp,E ∈ R4×2×N are tensors which contain the local

degrees of freedom of whp and Zhp, respectively,

N =
1

2
(p+ 1)(p+ 2)

is the number of degrees of freedom on each element, and φ(x) ∈ RN is

a vector of basis functions on the physical element, defined in terms of the

basis functions on the master triangular element φ̂(ξ) through an affine map-

ping GE : Ω̂→ ΩE as

φ(x) = φ̂
(
G−1
E (x)

)
,

where Ω̂ is the master triangular element defined by

Ω̂ = {(ξ1, ξ2) ∈ R2 : ξ1 > −1, ξ2 > −1, ξ1 + ξ2 < 0}.

The map GE is defined as follows. Let (x1, y1), (x2, y2), and (x3, y3) be

the vertices of ΩE, in counterclockwise order. Then

GE(ξ) = −1

2

(
x1 − x2 x1 − x3

y1 − y2 y1 − y3

)
ξ +

1

2

(
x2 + x3

y2 + y3

)
.
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Thus, the inverse of this map is given by

G−1
E (x) =

1

|ΩE|

(
y3 − y1 x1 − x3

y1 − y2 x2 − x1

)[
x− 1

2

(
x2 + x3

y2 + y3

)]
,

where |ΩE| is the area of ΩE.

2.5.3 Basis Functions and the Mass Matrix

Substituting the expansions (2.5.1) and (2.5.2) into the discrete weak

systems (2.2.6) and (2.4.6), and taking the test functions to be φ yields an

algebraic linear system of ODEs∑
E

d

dt
(KWhp,E)ME =

∑
E

R(Whp,E,Zhp,E) (2.5.3)

as well as an auxiliary system∑
E

Zhp,EME =
∑
E

Ra(Whp,E), (2.5.4)

where ME ∈ RN×N is the elemental mass matrix, and the tensors R ∈

R4×N and Ra ∈ R4×2×N denote the remaining terms on the right-hand sides

of the primary and auxiliary equations in (2.2.6), respectively.

In order to solve the systems (2.5.3) and (2.5.4) for Whp,E and Zhp,E, re-

spectively, the mass matrix ME must be inverted. Using an L2(Ω̂)-orthogonal

basis reduces the mass matrix ME to a diagonal one, which may be trivially

inverted. For this reason, a hierarchical basis with the L2(Ω̂)-orthogonality

property proposed by Dubiner [65] has been implemented. For future ref-

erence, the first six basis functions and the corresponding values of the mass

matrix on the master element (denoted by Md) are given in Table 2.1; a concise

general formulation may be found in [101].
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d φ̂d(ξ1, ξ2) Md

1 1 2

2 1
2

+ 3
2
ξ2 1

3 1
2

+ ξ1 + 1
2
ξ2

1
3

4 −1
2

+ ξ2 + 5
2
ξ2

2
2
3

5 3
4

+ 3
2
ξ1 + 2ξ2 + 5

2
ξ1ξ2 + 5

4
ξ2

2
2
9

6 1
4

+ 3
2
ξ1 + ξ2 + 3

2
ξ2

1 + 3
2
ξ1ξ2 + 1

4
ξ2

2
2
15

Table 2.1: The first six Dubiner basis functions

2.5.4 Timestepping Scheme

Solving equation (2.5.3) requires the use of an appropriate time stepping

scheme once M−1
E is determined. The time stepping scheme utilized herein is

an explicit strong-stability preserving (SSP) s-stage, kth-order Runge–Kutta

(RK) scheme, where the pair (s, k) is one of (1, 1), (s, 2) with s ≥ 2, (s, 3)

with 3 ≤ s ≤ 8, or (s, 4) with 5 ≤ s ≤ 8. The SSP RK scheme is designed

so that if the forward Euler method is stable under a given semi-norm and

Courant–Friedrichs–Lewy (CFL) condition, then the higher-order scheme re-

mains stable under the same semi-norm, but perhaps under a different CFL

condition [101]. These methods also possess the desirable TVD property. This

time stepping method takes the following general form5:

Algorithm 2.5.1 (SSP RK scheme). Given initial data Whp,E(t0) (which

contains the local degrees of freedom of Πw0), an element ΩE, the number of

stages s and order k, this algorithm computes the DG solution Whp,E at a

given final time t0 + T .

5The algorithm presentation, style, and notation was inspired by Knuth [97].
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1. [Initialize.] Set n← 0, so that t = t0.

2. [Modify IC.] Set W
(0)
hp,E ← (ΛΠ)(MΠ)Whp,E(t0). (That is, apply the

wetting and drying operator, and then apply the slope limiting operator.)

3. [Reset.] Set i← 1.

4. [Auxiliary solve.] Set Z
(i−1)
hp,E ← Ra(W

(i−1)
hp,E )M−1

E .

5. [Primary solve.] Set

W
(i)
hp,E ←

i∑
j=1

{
αijW

(j−1)
hp,E +βij∆tK

−1R
(
W

(j−1)
hp,E ,Z

(j−1)
hp,E , tn+δj∆t

)
M−1

E

}
.

6. [Wet/dry and slope limit.] Set W
(i)
hp,E ← (ΛΠ)(MΠ)W

(i)
hp,E. (At this

point W
(i)
hp,E is the DG solution at RK stage i.)

7. [More stages?] If i = s, set Whp,E(tn+1)←W
(s)
hp,E; otherwise increase i

by 1 and go back to step 4.

8. [Repeat?] If n = bT/∆t + 0.5c − 1, the algorithm terminates with

Whp,E(tn+1) as the DG solution at time t0 + T ; otherwise increment

n by 1 and go back to step 3.

In the algorithm above, (ΛΠ) and (MΠ) are the slope limiting and

wetting and drying operators (described in the next section), respectively,

δj =
∑j−1

k=1 γj−1,k is a vector of length s of time-lagging parameters, and the s×s

matrices α, β, and γ are optimized parameters with respect to maximization
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of the CFL number. They satisfy the TVD constraints

αij ≥ 0,
i∑

j=1

αij = 1,

γij = βij +
i−1∑
k=j

γkjαi,k+1.

To be clear, it should be noted that Algorithm 2.5.1 must be performed for

each degree of freedom on every element ΩE. Refer to [101, 105, 163] for

further details on SSP RK methods, and to [102] for values of α and β.

2.5.5 Post-processing Operations

The remainder of this chapter is devoted to remarks on the use of two

post-processing operators, namely the slope limiting operator (ΛΠ), and the

wetting and drying operator (MΠ). These operations are applied in steps 2

and 6 of Algorithm 2.5.1.

To eliminate local overshoots and undershoots, five different choices of

slope limiters are implemented. They are as follows:

1. Minmod (described in [101]),

2. Characteristic-based TVB [44],

3. Modified characteristic-based TVB [24, 44],

4. Higher-order WENO [193],

5. Vertex-based.
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However, only limiters 1 and 4 will be used in the numerical results presented

in Chapter 4; some of the others are notorious for degrading the solution to

first-order accuracy at local extrema (effectively p = 0 in these regions), and

it is desirable to test the implementation with p ≥ 0 in the examples listed in

Chapter 4. Thus, when p = 1, limiter 1 is used if needed. This is the case

for the entire morphodynamic system in Section 4.3, and for the sediment

transport equation in Section 4.4. But when p > 1, it becomes necessary to

make use of a higher-order slope limiting procedure. For this dissertation, the

algorithm outlined in the work by Xu et al. [193] is implemented, which is a

local limiting procedure based on the application of a WENO-type limiter to

the coefficients of the higher-order Taylor series expansion about the barycen-

ter of ΩE. It has been shown to work well in practice [193]. For the sake of

brevity, the implementation details shall not be expounded upon here, and

the interested reader may refer to Sections 2.1, 2.2, 2.3, and 2.5 of [193]. It

was found to be necessary to apply limiter 4 only to the sediment transport

equation for the test cases described in Sections 4.2 and 4.4. For the remain-

ing test cases, it was found that limiting was unnecessary in order to preserve

numerical stability. That is, (ΛΠ) = I in those cases.

Consider equation (2.1.2). Several components of F(w) contain a singu-

larity when H ↓ 0. For this reason, as well as those described at the conclusion

of Section 2.4.3, and for reasons elaborated in the next chapter, it is necessary

to select an appropriate value of Hmin, the minimum seawater column depth,

below which H cannot drop. When H ↓ Hmin, an element or node may become

dry, in which case both hydrodynamic and sedimentary discharge is either ze-

roed out or limited [24]. This action is described by the operator (MΠ). As

a general rule, the wetting and drying algorithm under consideration does not
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conserve linear momentum, although it does conserve seawater and sediment

mass. For implementation details, consult [24]. It should be noted that the

first four test cases described in Chapter 4 are designed so that (MΠ) = I;

a nontrivial application of the wetting and drying algorithm may be found in

Section 4.5.
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Chapter 3

An A Priori Error Estimate

This chapter contains the analysis of the LDG approximation to the full

system of the SWE, coupled with equations which also model bed morphol-

ogy due to sediment transport. The LDG method was originally developed

for the Navier–Stokes equations by Bassi and Rebay [15], and analyzed for

linear advection-diffusion equations by Cockburn and Shu [43]. Aizinger and

Dawson [2] first applied the method to the depth-averaged SWE and later to

three-dimensional hydrostatic shallow water models [3]. Some basic analysis

of the LDG method applied to a linearized model was done in [1]. Application

of the LDG method to the morphodynamics problem described herein was re-

cently studied numerically in [132]. Several collaborators have formulated and

analyzed DG and coupled continuous/discontinuous methods for the SWE in

a series of papers [1, 3, 52, 53, 54].

In this chapter, the analysis in [1] is extended to the full nonlinear SWE

coupled with bed morphology. This represents to the author’s knowledge the

first complete a priori error analysis for the LDG method applied to the SWE,

and the first error analysis of the method applied to morphodynamics. In

addition, the analysis uses a different technique than the somewhat standard

one used for time-dependent problems; the use of Grönwall’s lemma is avoided

in formulating the estimate and hence the exponentially large constant which

results from this approach is avoided.
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The outline of this chapter is as follows. Section 3.1 examines the error

equation, which is analyzed and bounded in Section 3.2. Finally, a discussion

of the result and potential applications appears in Section 3.3.

3.1 The Error Equation

The error equation is one of the key relations needed to perform the

a priori error analysis in the next section [1, 54]. To derive this relation,

subtract (2.2.3) from (2.2.6), which gives∑
E

(
K∂t(whp −w),v

)
E

= −
∑
I

〈
({{ΠFhp}} − F)n + σ[[whp −w]], [[v]]

〉
I

−
∑
I

〈
({{Zhp}} − Z)n, [[v]]

〉
I

−
∑
B

〈(
ΠF

(in)
hp − F

)
n + σ

(
w

(in)
hp −w

)
,v(in)

〉
B

−
∑
B

〈(
Z

(in)
hp − Z

)
n,v(in)

〉
B

+
∑
E

(ΠFhp − F + Zhp − Z,∇v)E

+
∑
E

(Πghp − g + Πshp − s,v)E , (3.1.1)∑
E

(Zhp − Z,V)E = −
∑
I

〈
{{whp}} −w, (D : [[V]])n

〉
I

+
∑
E

(
whp −w,∇ · (D : V)

)
E
, (3.1.2)∑

E

(
(whp −w)(t0, ·),v

)
E

=
∑
E

(Πw0 −w0,v)E = 0. (3.1.3)

Notice that in equation (3.1.1), w has been added to the stabilization terms

appearing inside the interior and boundary edge integrals. This is a harmless

operation, since it is assumed that [[w]] = 0 on all edges. Observe also that
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because of the choice of boundary conditions, no boundary edge integrals ap-

pear in equation (3.1.2). This result has consequences for the analysis in the

next section. Finally, it is seen that equation (3.1.3) simply states that the

finite element solution at the initial time is the best approximation to the true

solution at the initial time.

Equations (3.1.1)–(3.1.3) are written in terms of the total error in the

finite element solution. This can be decomposed into the approximation error

ψ = whp − Πw, (3.1.4)

Ψ = Zhp − ΠZ, (3.1.5)

and the projection error

θ = w − Πw, (3.1.6)

Θ = Z− ΠZ, (3.1.7)

where Πw(t, ·) and ΠZ(t, ·) are the L2(ΩE)-projections of w(t, ·) and Z(t, ·)

into the polynomial spaces Whp and Zhp for any fixed time t, respectively:

(θ,v)E = 0 for all v ∈ Whp, (3.1.8)

(Θ,V)E = 0 for all V ∈ Zhp. (3.1.9)

Using the relations (3.1.4)–(3.1.7) together with (3.1.8) and (3.1.9), equa-
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tions (3.1.1)–(3.1.3) may be written as∑
E

(K∂tψ,v)E = −
∑
I

〈
({{ΠFhp}} − F)n + σ[[ψ − θ]] + {{Ψ−Θ}}n, [[v]]

〉
I

−
∑
B

〈
(ΠF

(in)
hp − F)n + σ(ψ(in) − θ(in)),v(in)

〉
B

−
∑
B

〈
(Ψ(in) −Θ(in))n,v(in)

〉
B

+
∑
E

(ΠFhp − F + Ψ,∇v)E

+
∑
E

(Πghp − g + Πshp − s,v)E , (3.1.10)∑
E

(Ψ,V)E = −
∑
I

〈
{{ψ − θ}}, (D : [[V]])n

〉
I

+
∑
E

(
ψ,∇ · (D : V)

)
E
,

(3.1.11)∑
E

(
ψ(t0, ·),v

)
E

= 0. (3.1.12)

Setting v = ψ and V = Ψ, eliminating terms using the integration by parts

formula, adding equations (3.1.10) and (3.1.11) together, and rearranging

terms yields

0 =
1

2

d

dt

∥∥K1/2ψ
∥∥2

0,h
+ ‖Ψ‖2

0,h + τbf

(
‖ψ2‖2

0,h + ‖ψ3‖2
0,h

)
+
∑
I

∥∥σ1/2[[ψ]]
∥∥2

0,I
+
∑
B

∥∥σ1/2ψ(in)
∥∥2

0,B
−
∑
E

(ΠFhp − F,∇ψ)E

+
∑
I

〈
({{ΠFhp}} − F)n, [[ψ]]

〉
I

+
∑
B

〈(
ΠF

(in)
hp − F

)
n,ψ(in)

〉
B

−
∑
I

〈σ[[θ]], [[ψ]]〉I −
∑
B

〈
σθ(in),ψ(in)

〉
B
−
∑
I

〈{{Θ}}n, [[ψ]]〉I

−
∑
B

〈
Θ(in)n,ψ(in)

〉
B
−
∑
I

〈
{{θ}}, (D : [[Ψ]])n

〉
I
−
∑
E

(Πghp − g,ψ)E

+ %−1
∑
E

{(
(ψ1 − θ1)∂xP, ψ2

)
E

+
(
(ψ1 − θ1)∂yP, ψ3

)
E

}
.
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Observe the disappearance of the wind and wave radiation stress terms, since

these are empirically-derived relations that do not depend on either w or Z,

as well as equation (3.1.12). The above equation may be written more simply

as

1

2

d

dt

∥∥K1/2ψ
∥∥2

0,h
+ ‖Ψ‖2

0,h + τbf

(
‖ψ2‖2

0,h + ‖ψ3‖2
0,h

)
+
∑
I

∥∥σ1/2[[ψ]]
∥∥2

0,I
+
∑
B

∥∥σ1/2ψ(in)
∥∥2

0,B
=

10∑
n=1

Rn. (3.1.13)

Equation (3.1.13) is the so-called “error equation”; the left-hand side is written

solely in terms of the approximation error.

3.2 Error Analysis

At this point, one is now in a position to derive the error estimate.

Traditionally, this has been done in a very straightforward manner by first

integrating the error equation, such as equation (3.1.13), in time over the in-

terval [t0, t0 + T ] and then bounding all the terms on the right-hand side (in

our case terms R1 through R10). However, this approach inevitably requires

the use of the differential form of Grönwall’s lemma, which results in an ex-

ponentially large bounding constant in the final estimate. This is impractical

from a computational point of view.

In this dissertation, the following strategy is adopted in order to cir-

cumvent this problem, and thus tighten the bound:

1. Partition the time interval [t0, t0 +T ] into M sub-intervals of length ∆Tm

for 1 ≤ m ≤ M , where M is a sufficiently large positive integer, so that
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each ∆Tm is sufficiently small, and

[t0, t0 + T ] = [t0, tM ] =
M⋃
m=1

[tm−1, tm].

2. Bound the terms R1 through R10 on each time sub-interval, beginning

with the first sub-interval [t0, t1].

3. Take the maximum over all time sub-intervals of the approximation error,

and drop all penalty terms on the left-hand side, to obtain the result.

Assume that step 1 above has been followed. The next step is to proceed

to step 2 and consider the first time interval [t0, t1], so that m = 1. Define the

quantities

‖ψi(t1i, ·)‖0,h = max
t∈[t0,t1]

‖ψi(t, ·)‖0,h = ‖ψi‖L∞(t0,t1;L2(Ωh))

for i ∈ {1, 2, 3, 4}, and let t∗1 = t0 + maxi t1i. Integrating equation (3.1.13) in

time from t0 to t0 + t1i for each value of i yields a set of four error equations,

each with a right-hand side bounded by the quantity
∫ t∗1
t0

∣∣∑10
n=1Rn

∣∣ dt. Then

it follows that

1

2
Kii ‖ψi(t1i, ·)‖2

0,h ≤
∫ t∗1

t0

∣∣∣∣ 10∑
n=1

Rn

∣∣∣∣ dt+
1

2
Kii ‖ψi(t0, ·)‖2

0,h for 1 ≤ i ≤ 4

and∫ t∗1

t0

{
‖Ψ‖2

0,h +
∑
I

∥∥σ1/2[[ψ]]
∥∥2

0,I
+
∑
B

∥∥σ1/2ψ(in)
∥∥2

0,B

}
dt ≤

∫ t∗1

t0

∣∣∣∣ 10∑
n=1

Rn

∣∣∣∣ dt,
where the term involving ψi(t0, ·) has been retained for later discussion, even
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though it is zero. Therefore

1

2

∑
i

Kii ‖ψi(t1i, ·)‖2
0,h

+

∫ t∗1

t0

{
‖Ψ‖2

0,h +
∑
I

∥∥σ1/2[[ψ]]
∥∥2

0,I
+
∑
B

∥∥σ1/2ψ(in)
∥∥2

0,B

}
dt

≤ 4

∫ t∗1

t0

∣∣∣∣ 10∑
n=1

Rn

∣∣∣∣ dt+
1

2

∑
i

Kii ‖ψi(t0, ·)‖2
0,h . (3.2.1)

Before bounding the terms R1 through R10 over [t0, t1], it should be

noted that the following four inequalities involving scalar “cross-terms”, which

all hold on each element ΩE for any value of ∆T1 > 0 and ε > 0, will prove

useful in the analysis that follows:∫ t∗1

t0

‖ψi‖0,E ‖ψk‖0,E dt ≤ ∆T1

2
‖ψi(t1i, ·)‖2

0,E +
∆T1

2
‖ψk(t1k, ·)‖2

0,E , (3.2.2)∫ t∗1

t0

‖θi‖0,E ‖ψk‖0,E dt ≤ ε

∫ t∗1

t0

‖θi‖2
0,E dt+

∆T1

4ε
‖ψk(t1k, ·)‖2

0,E , (3.2.3)∫ t∗1

t0

‖Ψij‖0,E ‖ψk‖0,E dt ≤ ε

∫ t∗1

t0

‖Ψij‖2
0,E dt+

∆T1

4ε
‖ψk(t1k, ·)‖2

0,E , (3.2.4)∫ t∗1

t0

‖Θij‖0,E ‖ψk‖0,E dt ≤ ε

∫ t∗1

t0

‖Θij‖2
0,E dt+

∆T1

4ε
‖ψk(t1k, ·)‖2

0,E . (3.2.5)

These relations follow directly from Young’s inequality, and it is envisaged

that these hold when both the parameter ε and the time interval length ∆T1

are chosen to be sufficiently small.

To bound the right-hand side of equation (3.2.1), one must make use

of the following results which may be found in many standard texts on the

mathematical theory of the finite element method [20, 37]:
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Theorem 3.2.1 (Trace inequality). Suppose that an element ΩE has a Lips-

chitz boundary. Then there exists a constant Ctr,E such that

‖f‖0,∂ΩE
≤ Ctr,E ‖f‖1/2

0,E ‖f‖
1/2
1,E

for every f ∈ H1(ΩE).

Note that if one defines the trace constant Ctr = suph maxE Ctr,E, this

can be shown to be finite for regular meshes, including triangular, quadrilat-

eral, or hybrid meshes. Two immediate consequences of Theorem 3.2.1 are∑
I

‖f‖2
0,I ≤ C2

tr

∑
E

‖f‖0,E ‖f‖1,E ,∑
B

‖f‖2
0,B ≤ C2

tr

∑
E

‖f‖0,E ‖f‖1,E ;

extensive use is made of these facts in the analysis below.

Theorem 3.2.2 (Inverse inequality). For a regular, quasi-uniform mesh, there

exists a constant Cinv independent of h such that

‖f‖1,E ≤ Cinvh
−1 ‖f‖0,E

for every f ∈ Xhp.

Theorem 3.2.3 (Approximation error bound). Let Πf denote the L2(ΩE)-

projection of f ∈ Hr(ΩE) into the space Pp(ΩE). Then there exists a con-

stant K independent of h such that

‖f − Πf‖`,E ≤ Khmin{r,p+1}−` ‖f‖r,E ,

where 0 ≤ ` ≤ min{r, p+ 1}.
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The right-hand side of equation (3.2.1) by now be bounded. Terms R1

through R3 involve the nonlinear fluxes, which require much more scrutiny,

and so are treated separately from the remaining terms:∫ t∗1

t0

∣∣∣∣ 10∑
n=1

Rn

∣∣∣∣ dt ≤ ∫ t∗1

t0

{
|R1 +R2 +R3|+

10∑
n=4

|Rn|
}
dt.

Term R1 may be integrated by parts to obtain

R1 =
∑
E

(ΠFhp − F,∇ψ)E =
∑
E

(
Π(Fhp − F),∇ψ

)
E

=
∑
I

〈
{{Π(Fhp − F)}}n, [[ψ]]

〉
I

+
∑
B

〈
Π
(
F

(in)
hp − F

)
n,ψ(in)

〉
B

−
∑
E

(
∇ · Π(Fhp − F),ψ

)
E

+
∑
I

〈
[[Π(Fhp − F)]]n, {{ψ}}

〉
I

= R1,1 +R1,2 +R1,3 +R1,4.

Let ΘF = F− ΠF denote the flux projection error. Then

R2 = −
∑
I

〈
({{ΠFhp}} − F)n, [[ψ]]

〉
I

= −
∑
I

〈
{{Π(Fhp − F)}}n− {{ΘF}}n, [[ψ]]

〉
I

= R2,1 +R2,2,

and similarly,

R3 = −
∑
B

〈(
ΠF

(in)
hp − F

)
n,ψ(in)

〉
B

= −
∑
B

〈
Π
(
F

(in)
hp − F

)
n−Θ

(in)
F n,ψ(in)

〉
B

= R3,1 +R3,2.

Notice that R1,1 +R2,1 = 0 and R1,2 +R3,1 = 0, and so

R1 +R2 +R3 = R1,3 +R1,4 +R2,2 +R3,2.
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Next comes one of the more difficult parts of the analysis, which lies

in the treatment of the sub-terms R1,3 + R1,4. The aim is to invoke equa-

tion (3.1.11), at least in some form. However, since the morphodynamic sys-

tem is incompletely parabolic, the first component of equation (3.1.11) is zero.

Therefore, the first component of R1,3+R1,4 is split off and bounded separately:

R1,3 +R1,4 = −
∑
E

(
∇ · (ψ2, ψ3)>, ψ1

)
E

+
∑
I

〈
[[(ψ2, ψ3)>]] · n, {{ψ1}}

〉
I

−
∑
E

∑
i>1

(
∂xΠ(Fi1,hp − Fi1) + ∂yΠ(Fi2,hp − Fi2), ψi

)
E

+
∑
I

∑
i>1

〈
[[Π(Fi1,hp − Fi1)]]nx + [[Π(Fi2,hp − Fi2)]]ny, {{ψi}}

〉
I

= R1,3,1 +R1,4,1 +R1,3,2 +R1,4,2,

since Π(qhp − q) = (ψ2, ψ3)>. Now consider terms R1,3,1 and R1,3,2, which

involve the linear part of the flux. After integrating term R1,3,1 by parts, the

result is

R1,3,1 +R1,4,1 = −
∑
I

〈
{{(ψ2, ψ3)>}} · n, [[ψ1]]

〉
I

−
∑
B

〈(
ψ

(in)
2 , ψ

(in)
3

)> · n, ψ(in)
1

〉
B

+
∑
E

(
(ψ2, ψ3)>,∇ · V̂

)
E
,

where V̂ = ψ1I, so that ∇ · V̂ = ∇ψ1. The second and third components of

equation (3.1.11) may now be invoked, since the relation V̂ = H : V|i∈{2,3}
may now be substituted. After doing so, some tedious manipulation, which
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involves the cancellation of the first component of term R2,2, yields the relation

R1,3,1 +R1,4,1 +R2,2 = −
∑
B

〈(
ψ

(in)
2 , ψ

(in)
3

)>
, ψ

(in)
1 n

〉
B

+
∑
E

{(
Ψ21, ν

−1
x ψ1

)
E

+
(
Ψ32, ν

−1
y ψ1

)
E

}
+
∑
I

∑
i>1

〈
{{ΘF,i1}}nx + {{ΘF,i2}}ny, [[ψi]]

〉
I

= R̂1 + R̂2 + R̂4.

The dissection of terms R1 + R2 + R3 is now complete; they may now

be bounded. Let R̂3 = R1,3,2 +R1,4,2 and R̂5 = R3,2. Noting that∫ t∗1

t0

|R1 +R2 +R3| dt ≤
∫ t∗1

t0

{∣∣R̂1

∣∣+
∣∣R̂2

∣∣+
∣∣R̂3

∣∣+
∣∣R̂4

∣∣+
∣∣R̂5

∣∣} dt,
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the first observation is∫ t∗1

t0

∣∣R̂1

∣∣ dt =

∫ t∗1

t0

∣∣∣∣∑
B

〈(
ψ

(in)
2 , ψ

(in)
3

)>
, ψ

(in)
1 n

〉
B

∣∣∣∣ dt
≤
∫ t∗1

t0

∑
B

∣∣∣〈σ1/2
22 ψ

(in)
2 , σ

−1/2
22 ψ

(in)
1 nx

〉
B

∣∣∣ dt
+

∫ t∗1

t0

∑
B

∣∣∣〈σ1/2
33 ψ

(in)
3 , σ

−1/2
33 ψ

(in)
1 ny

〉
B

∣∣∣ dt
≤
∫ t∗1

t0

∑
B

∥∥σ1/2
22 ψ

(in)
2

∥∥
0,B

∥∥σ−1/2
22 ψ

(in)
1 nx

∥∥
0,B

dt

+

∫ t∗1

t0

∑
B

∥∥σ1/2
33 ψ

(in)
3

∥∥
0,B

∥∥σ−1/2
33 ψ

(in)
1 ny

∥∥
0,B

dt

≤ ε

∫ t∗1

t0

∑
B

{∥∥σ1/2
22 ψ

(in)
2

∥∥2

0,B
+
∥∥σ1/2

33 ψ
(in)
3

∥∥2

0,B

}
dt

+
1

4ε

∫ t∗1

t0

∑
B

{∥∥σ−1/2
22 ψ

(in)
1 nx

∥∥2

0,B
+
∥∥σ−1/2

33 ψ
(in)
1 ny

∥∥2

0,B

}
dt

≤ C2
trCinv

∆T1

2ε
‖ψ1(t11, ·)‖2

0,h + ε

∫ t∗1

t0

∑
B

∥∥σ1/2ψ(in)
∥∥2

0,B
dt, (3.2.6)

which is obtained after applying Schwarz’s inequality twice (once for each

component), Young’s inequality twice, Theorems 3.2.1 and 3.2.2 in succes-

sion (to each of the latter two terms), and equation (3.2.2) once. Since both

σ−1
22 and σ−1

33 are of the order h as h ↓ 0, they cancel the h−1 that appears as

a result of invoking Theorem 3.2.2.
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Two applications of equation (3.2.4) yield∫ t∗1

t0

∣∣R̂2

∣∣ dt =

∫ t∗1

t0

∣∣∣∣∑
E

{(
Ψ21, ν

−1
x ψ1

)
E

+
(
Ψ32, ν

−1
y ψ1

)
E

}∣∣∣∣ dt
≤
∑
E

∫ t∗1

t0

{
ν−1
x ‖Ψ21‖0,E + ν−1

y ‖Ψ32‖0,E

}
‖ψ1‖0,E dt

≤ ε

∫ t∗1

t0

∑
E

{
‖Ψ21‖2

0,E + ‖Ψ32‖2
0,E

}
dt

+
∆T1

4ε

(
ν−2
x + ν−2

y

)∑
E

‖ψ1(t11, ·)‖2
0,E

≤ ∆T1

4ε

(
ν−2
x + ν−2

y

)
‖ψ1(t11, ·)‖2

0,h + ε

∫ t∗1

t0

‖Ψ‖2
0,h dt. (3.2.7)

The second, third, and fourth components of equation (3.1.11) may be applied

directly to term R1,3,2 in order to treat R̂3:∫ t∗1

t0

∣∣R̂3

∣∣ dt ≤ ∫ t∗1

t0

∑
E

∣∣(Ψ21, ν
−1
x Π(Fhp,21 − F21)

)
E

∣∣ dt
+

∫ t∗1

t0

∑
E

∣∣(Ψ22, ν
−1
y Π(Fhp,22 − F22)

)
E

∣∣ dt
+

∫ t∗1

t0

∑
E

∣∣(Ψ31, ν
−1
x Π(Fhp,31 − F31)

)
E

∣∣ dt
+

∫ t∗1

t0

∑
E

∣∣(Ψ32, ν
−1
y Π(Fhp,32 − F32)

)
E

∣∣ dt
+

∫ t∗1

t0

∑
E

∣∣(Ψ41, ν̃
−1
x Π(Fhp,41 − F41)

)
E

∣∣ dt
+

∫ t∗1

t0

∑
E

∣∣(Ψ42, ν̃
−1
y Π(Fhp,42 − F42)

)
E

∣∣ dt
+

∫ t∗1

t0

∑
I

∑
i>1

∣∣∣〈σ1/2
ii {{θi}}, σ

−1/2
ii [[Π(Fhp − F)|i]] · n

〉
I

∣∣∣ dt.
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Consider the first six terms on the right-hand side. Since

‖Πf‖0,E ≤ ‖f‖0,E for all f ∈ L2(ΩE),

it is clear that∑
E

∣∣(Ψ21, ν
−1
x Π(Fhp,21 − F21)

)
E

∣∣ ≤∑
E

‖Ψ21‖0,E ν
−1
x ‖Fhp,21 − F21‖0,E

≤ ε
∑
E

‖Ψ21‖2
0,E +

ν−2
x

4ε

∑
E

‖Fhp,21 − F21‖2
0,E .

To proceed further, it must now be shown that each component of F is

Lipschitz-continuous in all its arguments. This will enable the expression

of ‖Fhp,ij − Fij‖0,E in terms of ψ and θ. For the linear parts of F, it is clear

that

‖Fhp,1j − F1j‖0,E ≤ ‖ψ − θ‖0,E for j = 1, 2,

with Lipschitz constants L11 = L12 = 1. It can be shown that

‖Fhp,21 − F21‖0,E ≤ L21 ‖ψ − θ‖0,E ,

‖Fhp,22 − F22‖0,E ≤ L22 ‖ψ − θ‖0,E ,

where

L21 = max

{
‖w2

2‖∞
‖w1‖∞‖whp,1‖∞

,
‖w2‖∞ + ‖whp,2‖∞

‖whp,1‖∞

}
,

L22 = max

{
‖whp,2‖∞‖whp,3‖∞
‖w1‖∞‖whp,1‖∞

,
‖whp,3‖∞
‖w1‖∞

,
‖w2‖∞
‖w1‖∞

}
,

and similarly for F31 and F32, provided that w2, w2
2, w3, w2

3, whp,2, and whp,3

are all uniformly bounded above, and that w1 and whp,1 are both uniformly

bounded below, for all partitions Ωh. Finally, since it is assumed that q̃ is

Lipschitz-continuous in all its arguments, it follows that

‖Fhp,41 − F41‖0,E ≤ L41 ‖ψ − θ‖0,E ,

‖Fhp,42 − F42‖0,E ≤ L42 ‖ψ − θ‖0,E .
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Now, defining CL = maxi,j Lij, it follows that∑
E

∣∣(Ψ21, ν
−1
x Π(Fhp,21 − F21)

)
E

∣∣
≤ ε ‖Ψ21‖2

0,h +
ν−2
x C2

L

4ε

(∑
i

‖ψi‖2
0,h +

∑
E

‖θ‖2
0,E

)
,

and similarly for the other five terms. Applying equation (3.2.2) to integrate

‖ψi‖2
0,h in time gives∫ t∗1

t0

∑
E

∣∣(Ψ21, ν
−1
x Π(Fhp,21 − F21)

)
E

∣∣ dt ≤ ε

∫ t∗1

t0

‖Ψ21‖2
0,h dt

+
ν−2
x C2

L

4ε

(
∆T1

∑
i

‖ψi(t1i, ·)‖2
0,h +

∫ t∗1

t0

∑
E

‖θ‖2
0,E dt

)
,

and likewise for the other five terms. For the last term, since∫ t∗1

t0

∑
I

∑
i>1

∣∣∣〈σ1/2
ii {{θi}}, σ

−1/2
ii [[Π(Fhp − F)|i]] · n

〉
I

∣∣∣ dt
≤
∫ t∗1

t0

∑
I

∑
i>1

∥∥σ1/2
ii {{θi}}

∥∥
0,I

∥∥σ−1/2
ii [[Π(Fhp − F)|i]] · n

∥∥
0,I
dt

≤
∫ t∗1

t0

∑
I

∑
i>1

{
1

4ε

∥∥σ1/2
ii {{θi}}

∥∥2

0,I
+ ε
∥∥σ−1/2

ii [[Π(Fhp − F)|i]] · n
∥∥2

0,I

}
dt

≤ C2
tr

∫ t∗1

t0

∑
E

{
h−1

4ε

∑
i>1

‖θi‖2
0,E + 6εC2

LCinv ‖ψ − θ‖2
0,E

}
dt

≤ C2
tr

{∫ t∗1

t0

(
h−1

4ε
+ 6εC2

LCinv

)∑
E

‖θ‖2
0,E dt

+ 6εC2
LCinv∆T1

∑
i

‖ψi(t1i, ·)‖2
0,h

}
,

it follows that∫ t∗1

t0

∣∣R̂3

∣∣ dt ≤ ε

∫ t∗1

t0

‖Ψ‖2
0,h dt+ Ĉ

∑
i

‖ψi(t1i, ·)‖2
0,h +

̂̂
C

∫ t∗1

t0

∑
E

‖θ‖2
0,E dt,

(3.2.8)
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where

Ĉ =

(
1

4ε

(
2
(
ν−2
x + ν−2

y

)
+ ν̃−2

x + ν̃−2
y

)
+ 6εC2

trCinv

)
C2
L∆T1,

̂̂
C =

C2
L

4ε

(
2
(
ν−2
x + ν−2

y

)
+ ν̃−2

x + ν̃−2
y

)
+ C2

tr

(
h−1

4ε
+ 6εC2

LCinv

)
.

Now consider term R̂4. With the aid of the penalty terms, Schwarz’s

inequality, Young’s inequality, and Theorem 3.2.1, it is observed that∫ t∗1

t0

∣∣R̂4

∣∣ dt ≤ ∫ t∗1

t0

∑
I

∑
i>1

∣∣∣〈σ−1/2
ii {{ΘF|i}} · n, σ1/2

ii [[ψi]]
〉
I

∣∣∣ dt
≤
∫ t∗1

t0

∑
I

∑
i>1

∥∥σ−1/2
ii {{ΘF|i}} · n

∥∥
0,I

∥∥σ1/2
ii [[ψi]]

∥∥
0,I
dt

≤
∫ t∗1

t0

∑
I

∑
i>1

{
1

4ε

∥∥σ−1/2
ii {{ΘF|i}} · n

∥∥2

0,I
+ ε
∥∥σ1/2

ii [[ψi]]
∥∥2

0,I

}
dt

≤ ε

∫ t∗1

t0

∑
I

∑
i>1

∥∥σ1/2
ii [[ψi]]

∥∥2

0,I
dt

+
C2

tr

4ε

∫ t∗1

t0

∑
E

∑
i>1

∥∥σ−1/2
ii ΘF|i

∥∥
0,E

∥∥σ−1/2
ii ΘF|i

∥∥
1,E

dt. (3.2.9)

Term R̂5 must be split into components, since no part of it was canceled

earlier (owing to the choice of boundary conditions). For the first component,

notice that Θ
(in)
F |i=1 =

(
θ

(in)
2 , θ

(in)
3

)>
. Thus,

R̂5 =
∑
B

{〈(
θ

(in)
2 , θ

(in)
3

)>
, ψ

(in)
1 n

〉
B

+
∑
i>1

〈
Θ

(in)
F |i · n, ψ

(in)
i

〉
B

}
.

The first subterm has the same form as term R̂1; an argument similar to the

one used to bound that term may be used here. For the second, third, and

fourth subterms of R̂5, the same procedure used to bound term R̂4 may again
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be used here. After some straightforward manipulations, the result is∫ t∗1

t0

∣∣R̂5

∣∣ dt ≤ C2
trCinv

∆T1

2ε
‖ψ1(t11, ·)‖2

0,h + ε

∫ t∗1

t0

∑
B

∑
i>1

∥∥σ1/2
ii ψ

(in)
i

∥∥2

0,B
dt

+ εC2
tr

∫ t∗1

t0

∑
E

3∑
i=2

∥∥σ1/2
ii θi

∥∥
0,E

∥∥σ1/2
ii θi

∥∥
1,E

dt

+
C2

tr

4ε

∫ t∗1

t0

∑
E

∑
i>1

∥∥σ−1/2
ii ΘF|i

∥∥
0,E

∥∥σ−1/2
ii ΘF|i

∥∥
1,E

dt. (3.2.10)

At this point,
∫ t∗1
t0
|R1 +R2 +R3| dt has been bounded, and it remains

to bound
∫ t∗1
t0

∑10
n=4 |Rn| dt. Proceeding, consider the penalty terms R4 and R5.

These satisfy∫ t∗1

t0

|R4| dt ≤
∫ t∗1

t0

{
ε
∑
I

∥∥σ1/2[[ψ]]
∥∥2

0,I

+
C2

tr

4ε

∑
E

∑
i

∥∥σ1/2
ii θi

∥∥
0,E

∥∥σ1/2
ii θi

∥∥
1,E

}
dt, (3.2.11)

and similarly,∫ t∗1

t0

|R5| dt ≤
∫ t∗1

t0

{
ε
∑
B

∥∥σ1/2ψ(in)
∥∥2

0,B

+
C2

tr

4ε

∑
E

∑
i

∥∥σ1/2
ii θi

∥∥
0,E

∥∥σ1/2
ii θi

∥∥
1,E

}
dt. (3.2.12)

To bound the first two diffusion terms R6 and R7, the same trick as that used

to bound R2,2 and R3,2 may be applied:∫ t∗1

t0

|R6| dt =

∫ t∗1

t0

∣∣∣∣∑
I

〈{{Θ}}n, [[ψ]]〉I

∣∣∣∣ dt
≤ ε

∫ t∗1

t0

∑
I

∥∥σ1/2[[ψ]]
∥∥2

0,I
dt

+
C2

tr

4ε

∫ t∗1

t0

∑
E

∑
i

∥∥σ−1/2
ii Θ|i

∥∥
0,E

∥∥σ−1/2
ii Θ|i

∥∥
1,E

dt, (3.2.13)
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and, analogously,∫ t∗1

t0

|R7| dt ≤ ε

∫ t∗1

t0

∑
B

∥∥σ1/2ψ(in)
∥∥2

0,B
dt

+
C2

tr

4ε

∫ t∗1

t0

∑
E

∑
i

∥∥σ−1/2
ii Θ|i

∥∥
0,E

∥∥σ−1/2
ii Θ|i

∥∥
1,E

dt. (3.2.14)

The last diffusion term R8 must be handled slightly differently; the penalty

terms are not used. Two applications of Theorem 3.2.1 and one of Theo-

rem 3.2.2 yield∫ t∗1

t0

|R8| dt =

∫ t∗1

t0

∣∣∣∣∑
I

〈{{θ}}, (D : [[Ψ]])n〉I

∣∣∣∣ dt
≤ |D|∞

∫ t∗1

t0

∑
I

∑
i

‖{{θi}}‖0,I ‖[[Ψ|i]] · n‖0,I dt

≤ |D|∞C
2
tr

∫ t∗1

t0

∑
E

∑
i

(
‖θi‖1/2

0,E ‖θi‖
1/2
1,E

)(
‖Ψ|i‖1/2

0,E ‖Ψ|i‖
1/2
1,E

)
dt

≤ |D|∞C
2
trC

1/2
inv

∫ t∗1

t0

∑
E

∑
i

(
h−1/2 ‖θi‖1/2

0,E ‖θi‖
1/2
1,E

)
‖Ψ|i‖0,E dt

≤
∫ t∗1

t0

{
ε ‖Ψ‖2

0,h +
1

4ε
|D|2∞C

4
trCinv

∑
E

∑
i

h−1 ‖θi‖0,E ‖θi‖1,E

}
dt,

(3.2.15)

where |·|∞ denotes the tensor maximum norm. Recall that since D is a constant

tensor in space and time, |D|∞ is bounded.

Next, consider term R9, which contains the nonconservative product,
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and rewrite it as follows:∫ t∗1

t0

|R9| dt =

∫ t∗1

t0

∣∣∣∣∑
E

(Πghp − g,ψ)E

∣∣∣∣ dt
≤
∫ t∗1

t0

∑
E

∣∣∣(−ν̃−1
x g
(
Π(HhpZ41,hp)−HZ41

)
, ψ2

)
E

∣∣∣ dt
+

∫ t∗1

t0

∑
E

∣∣∣(−ν̃−1
y g
(
Π(HhpZ42,hp)−HZ42

)
, ψ3

)
E

∣∣∣ dt
= ν̃−1

x g

∫ t∗1

t0

∑
E

∣∣∣(Π
(
Hhp(Ψ41 −Θ41) + Z41(ψ1 − θ1)

)
, ψ2

)
E

∣∣∣ dt
+ ν̃−1

y g

∫ t∗1

t0

∑
E

∣∣∣(Π
(
Hhp(Ψ42 −Θ42) + Z42(ψ1 − θ1)

)
, ψ3

)
E

∣∣∣ dt,
which is an immediate consequence of the facts that

(
HZ41 − Π(HZ41), ψ2

)
E

= 0,(
HZ42 − Π(HZ42), ψ3

)
E

= 0.

Assuming that Hhp, Z41, and Z42 are all bounded on each element in Ωh for

all h > 0 and for each t ∈ [t0, t0 + T ], then each of equations (3.2.2)–(3.2.5)
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may be invoked twice to obtain, after some rearrangement,∫ t∗1

t0

|R9| dt ≤ ν̃−1
x g

∑
E

∫ t∗1

t0

‖Hhp‖∞
(
‖Ψ41‖0,E + ‖Θ41‖0,E

)
‖ψ2‖0,E dt

+ ν̃−1
x g

∑
E

∫ t∗1

t0

‖Z41‖∞
(
‖ψ1‖0,E + ‖θ1‖0,E

)
‖ψ2‖0,E dt

+ ν̃−1
y g

∑
E

∫ t∗1

t0

‖Hhp‖∞
(
‖Ψ42‖0,E + ‖Θ42‖0,E

)
‖ψ3‖0,E dt

+ ν̃−1
y g

∑
E

∫ t∗1

t0

‖Z42‖∞
(
‖ψ1‖0,E + ‖θ1‖0,E

)
‖ψ3‖0,E dt

≤ ∆T1

2
g
(
ν̃−1
x ‖Z41‖∞ + ν̃−1

y ‖Z42‖∞
)
‖ψ1(t11, ·)‖2

0,h

+
∆T1

4ε
gν̃−1

x

(
2‖Hhp‖∞ + (1 + 2ε)‖Z41‖∞

)
‖ψ2(t12, ·)‖2

0,h

+
∆T1

4ε
gν̃−1

y

(
2‖Hhp‖∞ + (1 + 2ε)‖Z42‖∞

)
‖ψ3(t13, ·)‖2

0,h

+ εg‖Hhp‖∞
∫ t∗1

t0

{
ν̃−1
x ‖Ψ41‖2

0,h + ν̃−1
y ‖Ψ42‖2

0,h

}
dt

+ εg
(
ν̃−1
x ‖Z41‖∞ + ν̃−1

y ‖Z42‖∞
) ∫ t∗1

t0

∑
E

‖θ1‖2
0,E dt

+ εg‖Hhp‖∞
∫ t∗1

t0

∑
E

{
ν̃−1
x ‖Θ41‖2

0,E + ν̃−1
y ‖Θ42‖2

0,E

}
dt,

(3.2.16)

where ‖ · ‖∞ denotes the L∞(t0, t0 + T ;L∞(Ωh))-norm.

Lastly, consider term R10. Assuming that ∂xP and ∂yP , which are given

data, are both bounded on Ωh for all h > 0 and for all t ∈ [t0, t0 + T ], then
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this term may be bounded by applying equations (3.2.2) and (3.2.3) twice:∫ t∗1

t0

|R10| dt = %−1

∫ t∗1

t0

∣∣∣∣∑
E

{(
(ψ1 − θ1)∂xP, ψ2

)
E

+
(
(ψ1 − θ1)∂yP, ψ3

)
E

}∣∣∣∣ dt
≤ %−1

∫ t∗1

t0

∑
E

‖ψ1 − θ1‖0,E

×
(
‖∂xP‖∞ ‖ψ2‖0,E + ‖∂yP‖∞ ‖ψ3‖0,E

)
dt

≤ %−1

(
∆T1

2
‖ψ1(t11, ·)‖2

0,h +
∆T1

4ε
(1 + 2ε)‖∂xP‖2

∞ ‖ψ2(t12, ·)‖2
0,h

+
∆T1

4ε
(1 + 2ε)‖∂yP‖2

∞ ‖ψ3(t13, ·)‖2
0,h

+ ε

∫ t∗1

t0

∑
E

‖θ1‖2
0,E dt

)
. (3.2.17)

To complete step 2 for the first time interval [t0, t1], the results in

equations (3.2.6)–(3.2.17) are combined, and all terms involving ‖ψi(t1i, ·)‖2
0,h

for each value of i, as well as all terms involving various components of

‖Ψ‖2
0,h,

∥∥σ1/2[[ψ]]
∥∥2

0,I
, and

∥∥σ1/2ψ(in)
∥∥2

0,B
, are hidden inside the appropriate

terms appearing on the left-hand side of equation (3.2.1). This is accom-

plished by taking both the parameter ε and the time interval length ∆T1 to

be sufficiently small.

Now consider all subsequent time sub-intervals [tm−1, tm] for m = 2, 3,

. . . , M . Equation (3.2.1) becomes

1

2

∑
i

Kii ‖ψi(tmi, ·)‖2
0,h

+

∫ t∗m

tm−1

{
‖Ψ‖2

0,h +
∑
I

∥∥σ1/2[[ψ]]
∥∥2

0,I
+
∑
B

∥∥σ1/2ψ(in)
∥∥2

0,B

}
dt

≤ 4

∫ t∗m

tm−1

∣∣∣∣ 10∑
n=1

Rn

∣∣∣∣ dt+
1

2

∑
i

Kii ‖ψi(tm−1,i, ·)‖2
0,h (3.2.18)
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since ‖ψi(tm−1, ·)‖0,h ≤ ‖ψi(tm−1,i, ·)‖0,h. This term is bounded from the argu-

ment on the previous time interval(s). Equations (3.2.2)–(3.2.5) continue to

hold, with t0, t∗1, ∆T1, t1i, and t1k replaced by tm−1, t∗m, ∆Tm, tmi, and tmk,

respectively. Repeating the process of bounding terms R1 through R10 gives,

for the sub-interval [tm−1, tm],∫ t∗m

tm−1

∣∣∣∣ 10∑
n=1

Rn

∣∣∣∣ dt ≤ ̂̂
C

∫ t∗m

tm−1

∑
E

‖θ‖2
0,E dt

+
C2

tr

2ε

∫ t∗m

tm−1

∑
E

∑
i>1

∥∥σ−1/2
ii ΘF|i

∥∥
0,E

∥∥σ−1/2
ii ΘF|i

∥∥
1,E

dt

+ εC2
tr

∫ t∗m

tm−1

∑
E

3∑
i=2

∥∥σ1/2
ii θi

∥∥
0,E

∥∥σ1/2
ii θi

∥∥
1,E

dt

+
C2

tr

2ε

∫ t∗m

tm−1

∑
E

∑
i

∥∥σ1/2
ii θi

∥∥
0,E

∥∥σ1/2
ii θi

∥∥
1,E

+
C2

tr

2ε

∫ t∗m

tm−1

∑
E

∑
i

∥∥σ−1/2
ii Θ|i

∥∥
0,E

∥∥σ−1/2
ii Θ|i

∥∥
1,E

+
1

4ε
|D|2∞C

4
trCinv

∫ t∗m

tm−1

∑
E

∑
i

h−1 ‖θi‖0,E ‖θi‖1,E dt

+ Č

∫ t∗m

tm−1

∑
E

‖θ1‖2
0,E dt

+ εg‖Hhp‖∞
∫ t∗m

tm−1

∑
E

{
ν̃−1
x ‖Θ41‖2

0,E + ν̃−1
y ‖Θ42‖2

0,E

}
dt,

(3.2.19)

where

Č = ε
(
g
(
ν̃−1
x ‖Z41‖∞ + ν̃−1

y ‖Z42‖∞
)

+ %−1
)
.

To bound the right-hand side in terms of the exact solution and flux, The-

orem 3.2.3 is applied with r = p + 1 to the first, third, fourth, sixth, and

seventh terms. For the second, fifth, and eighth terms, Theorem 3.2.3 is ap-
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plied with r = p, and the facts that

‖Z41‖p,E ≤ ν̃x ‖b‖p+1,E ,

‖Z42‖p,E ≤ ν̃y ‖b‖p+1,E ,∑
i>1

‖Z|i‖2
p,E ≤ max

{
ν2
x + ν2

y , ν̃
2
x + ν̃2

y

}
‖w‖2

p+1,E ,

are used when bounding the fifth and eighth terms. This completes step 2.

To accomplish step 3, one must bound the maximum over all time sub-

intervals of the first term on the left-hand side of equation (3.2.18), dropping

the remaining terms. The right-hand side of equation (3.2.18) is bounded

by 4
∫ t0+T

t0
|
∑

nRn| dt by a recursive argument on m. Thus, after some tedious

manipulation, one arrives at the result:

Theorem 3.2.4 (A priori error estimate). Assume that:

1. The bed porosity matrix K is constant,

2. The diffusion tensor D is constant,

3. The bottom friction coefficient τbf is constant,

4. Each component of q and qhp, the square of each component of q, and

also Z41, Z42, ∂xP , and ∂yP are uniformly bounded from above (in space

and time) for all partitions of Ωh, and

5. H and Hhp are uniformly bounded from above and below (in space and

time) for all partitions of Ωh.

Then:

1. Each component of the inviscid flux F is Lipschitz-continuous in w, and
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2. For a sufficiently smooth solution w, the semidiscrete formulation (2.2.6)

of the initial-boundary value problem (2.1.4) satisfies

max
m

1

2

∑
i

Kii ‖ψi(tmi, ·)‖2
0,h

≤
∫ t0+T

t0

h2p
{

(C + C∗h+ C∗∗h2) ‖w‖2
p+1,h

+ C ‖F‖2
p,h + C∗h

∥∥σ1/2
11 H

∥∥2

p+1,h

}
dt, (3.2.20)

where C, C∗, and C∗∗ are constants that are independent of h.

The bounding constants in equation (3.2.20) are given by

C = 4K2

(
εC2

tr +
C2

tr

2ε

(
1 + max

{
ν2
x + ν2

y , ν̃
2
x + ν̃2

y

})
+

1

4ε
|D|∞C

4
trCinv + εg‖H‖∞(ν̃x + ν̃y)

)
,

C∗ =
3K2C2

tr

ε
,

C∗∗ = 4K2

(
C2
L

4ε

(
2
(
ν−2
x + ν−2

y

)
+ ν̃−2

x + ν̃−2
y

)
+ 6εC2

LC
2
trCinv + Č.

3.3 Discussion and Remarks

In this preceding two sections, an a priori error estimate for the LDG

method applied to the morphodynamics problem—that is, for the full non-

linear coupled SWE–Exner system—has been formulated, analyzed, and de-

veloped. The estimate obtained here is similar in form to that derived in [1],

except that this result requires one fewer degree of regularity for the solution w

and inviscid flux F, and contains additional terms arising from the nonlinear

components of F, sedimentary diffusion, and penalty terms. The resulting
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bounding constants are not exponentially dependent; Grönwall’s lemma is

neither applied nor needed.

An attempt has been made to explicitly track the bounding constants,

in hopes of enhancing the usefulness of the result as a verification tool for LDG

morphodynamic solvers. For a simple mesh with a known (or manufactured)

solution, where enough parameters can be explicitly computed, this may serve

as a simple check for solver correctness and, perhaps more importantly, h-

convergence behavior. The h-convergence rate is seen in equation (3.2.20)

to be p, as expected, although not optimal. More rapid convergence rates

may be realized for problems with simple meshes and very smooth initial and

boundary data.

The reader is cautioned that the estimate obtained herein applies only

under the numerous assumptions regarding the smoothness of the coefficients

stated above, as well as a rather simplistic choice of (pure Dirichlet) boundary

conditions. In practice, most, if not all, of these coefficients, such as K, D,

and τbf, are spatially (and possibly temporally) dependent, and may exhibit

nonlinear dependence on the solution. Also, many finite element domains

used in numerical shallow water and/or morphodynamic solvers (such as the

Advanced Circulation Model ADCIRC) possess many types of boundaries,

such as those described in Section 2.5.1, each applying on distinct boundary

segments, and none of which are pure Dirichlet for all components of w. This,

of course, affects the form of equation (3.1.11); the boundary term reappears.

Treatment of variable material data, as well as more complex boundary data,

will be addressed in future research.
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Chapter 4

Numerical Examples and Results

In this chapter, numerical examples and results using the model imple-

mentation described in Chapter 2 are presented. The LDG method is applied

to five problems: an evolving dune, a converging channel, a bridge pier, an

idealized inlet, and a dry area protected by barriers. These cases are described

and analyzed in Sections 4.1–4.5. These simulations were run in parallel (with

the exception of the first and fifth test cases) on the Institute for Computa-

tional Engineering and Science’s (ICES) bevo2 cluster, as well as on the Texas

Advanced Computing Center’s lonestar (III) [174] cluster1.

As a reminder to the reader, D = 0 in all test cases described in this

chapter. As such, the alternative DG formulation given by (2.4.6) is used. In

addition, the split formulation of the numerical flux is used in Sections 4.1

through 4.4, while the NCP numerical flux described in Section 2.4.3 is used

in Section 4.5.

It should be noted that the results and descriptions presented in Sec-

tions 4.1–4.4 and 4.6 appear in earlier work by the author [132]. Minor changes

and clarifications appear in this work.

1The architecture of the lonestar (III) cluster has been upgraded since these test cases
were run, and the machine relaunched in February 2011 as lonestar (IV) [175]. The effect
on the results in Section 4.6 has yet to be tested.
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4.1 Convergence Study: Evolution of a Dune

For this test case, a problem posed by Exner [70] in 1925 was examined.

The problem considered the evolution of an initially symmetric mound, or

dune, which was subjected to steady, unidirectional flow under the assumption

of a rigid lid (meaning ζ was assumed constant in space and time). Solving this

problem permitted the sediment transport model to be tested independently

of the hydrodynamics. This was accomplished by comparing the numerical

solution to a classical one derived in [70] for the purpose of verifying h- and p-

convergence rates. A secondary benefit is the verification and expansion upon

the results presented in [101] for second- and third-order RKDG schemes.

To properly compare the numerical solution to the exact solution, a

simpler model was employed. Exner’s model uncoupled the sediment transport

equation from the SWE by setting ζ = 0, which implies that H = b, and

a constant, unidirectional discharge rate per unit width q = (qf , 0)> where

qf > 0. Also, it was assumed that q̃ = (Aqf/b, 0)>, where A is a nonnegative

constant. When the porosity is zero (κ = 1), the diffusion is zero (D = 0),

and s = 0, it is straightforward to show that the SWE degenerate, and thus

equation (2.1.1) reduces to

∂t(−b) + ∂x(Aqf/b) = 0. (4.1.1)

Let b(0,x) = b0(x) be the initial data, which is assumed to be suf-

ficiently smooth. Then the exact solution derived in [70] is given implicitly

by

b(t,x) = b0(x− ct), (4.1.2a)

c(b) = Aqf/b
2, (4.1.2b)
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where c denotes the speed at which the top of the dune propagates. This is

the same as the characteristic speed.

For this problem, the square domain Ω = (−λ/2, λ/2)2 is considered,

and the initial data is given by

b0(x) = A0 + A1 cos

(
2πx

λ

)
,

with A0 = 2, A1 = −1, and λ = 20. The boundary conditions are shown in

Table 4.1. The solution is assumed periodic in the x-direction over Ω, and

a land BC is imposed at y = ±λ/2. Finally, it is assumed that Aqf = 1 in

equation (4.1.2b).

Boundary BC type

{(±λ/2, y) : y ∈ (−λ/2, λ/2)} Periodic
{(x,±λ/2) : x ∈ (−λ/2, λ/2)} Land

Table 4.1: Boundary conditions for the dune test case

Nonlinear hyperbolic conservation laws have the well-known property

that solutions typically develop very steep gradients and eventually disconti-

nuities or shocks. This behavior can be seen in this problem when performing

a characteristic analysis. Equation (4.1.1) may be written as

∂t(−b) + ∂xf = 0,

with f = Aqf/b, and carrying out the partial derivatives gives the nonconser-

vative form

∂t(−b) + c
(
b(x)

)
∂xb = 0,

where c
(
b(x)

)
= ∂f/∂b. Then it can be seen that the breaking time when the

shock (or sediment bore) forms is given by

tb = −
[
min
ξ

d

dξ
c
(
b0(ξ)

)]−1

=
5(5−

√
7)3

4π
√

2
√

7− 4
≈ 4.5685 s.
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In this study, four meshes denoted h1 through h4 are considered. The

coarsest mesh h1 consists of 800 elements, arranged according to Figure 4.1(a).

The value of h, defined here as the length of an element in the x-direction, is

1 m. Mesh h2 is a 1:4 refinement of h1, with h = 1/2 m and 3200 elements (see

Figure 4.1(b)). This process is repeated to generate meshes h3 and h4.

The numerical model is then run until the breaking time tb is reached.

The time step size is set small enough so that the spatial errors dominate

the overall error. The DG solution bh is computed using piecewise con-

stant, linear, quadratic, and cubic basis functions (p = 0, 1, 2, and 3) with

the SSP(1,1), SSP(2,2), SSP(3,3), and SSP(5,4) time stepping schemes, re-

spectively, and the errors are computed by comparing the approximate solu-

tion bh to the exact solution given by equations (4.1.2a) and (4.1.2b). The

h-convergence results using the L∞(Ωh)-norm at t = 2 s and t = 4 s are shown

in Figures 4.2(a) and 4.3(a), respectively, while the p-convergence results using

mesh h4 and the L∞(Ωh)-norm at t = 2 s and t = 4 s are shown in Figures

4.2(b) and 4.3(b), respectively.

At t = 2 s, the solution is still smooth, as this time is well before

the time of formation of the shock. Thus, the theoretical h-convergence rate

of p + 1 is very nearly attained, as can clearly be seen in Figure 4.2(a) for

the L∞(Ωh)-norm. It should be noted that these rates are also attained for

the L1(Ωh)- and L2(Ωh)-norms, though these results are not shown here. For

p-convergence, the theoretical exponential rate is attained, and this is shown

in Figure 4.2(b).

However, for t = 4 s, which is much closer to the breaking time tb, the

h-convergence rates are either seriously degraded (for the cases of p = 0, 2,

and 3) or obliterated (for the case p = 1) when the error over the entire
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(b) Mesh h2

Figure 4.1: Computational meshes (a) h1 and (b) h2
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Figure 4.2: L∞(Ωh) convergence rates at t = 2 s
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domain Ωh is under consideration. This is shown in Figure 4.3(a) for the

L∞(Ωh)-norm, and similar results were obtained for the L1(Ωh)- and L2(Ωh)-

norms. In this case, the largest portion of the error has accumulated within

the narrow region {(x, y) : x ∈ (4, 6), y ∈ (−10, 10)}, which corresponds to the

region containing the steepest gradients in the solution, and is also the region

containing the shock when t ≥ tb. This issue demonstrates the need for further

h-refinement in this region, as the results shown in Figure 4.3(a) appear to

display pre-asymptotic behavior. However, when accuracy is considered only

in the smooth region of the solution, taken here as

Ωsm = {(x, y) : x ∈ (−10, 4), y ∈ (−10, 10)},

it can be seen in Table 4.2 that nearly full order of convergence is restored

for the cases of p = 0 and p = 1, while the convergence rates for the cases of

p = 2 and p = 3, though not quite optimal, are much improved, and appear to

be tending towards the theoretical rates pending further h-refinement. This

verifies that the first- through fourth-order RKDG methods maintain their

accuracy and theoretical order of convergence away from the region containing

steep gradients and shocks.

In Figure 4.3(b), it is seen that the p-convergence rate at t = 4 s does

not appear to seriously degrade until p = 3. Since the results on mesh h4 were

used here, the effects of the value of h being in the pre-asymptotic regime

are mitigated; indeed, the convergence rate is further degraded when using

mesh h3, and no convergence is observed when using meshes h1 or h2 (not

shown here). Despite these shortcomings, however, these results show that

the model maintains its accuracy in p when h is small enough.
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Figure 4.3: L∞(Ωh) convergence rates at t = 4 s
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p Mesh
L∞ convergence rates

in Ωh in Ωsm

0

h1 · · · · · ·
h2 0.6305 0.9762
h3 0.6641 0.9892
h4 0.7001 0.9967

1

h1 · · · · · ·
h2 −0.1522 1.8339
h3 1.4000 1.7602
h4 0.7128 1.8740

2

h1 · · · · · ·
h2 1.8513 1.8512
h3 1.0743 2.3752
h4 2.2383 2.6923

3

h1 · · · · · ·
h2 1.5706 3.4398
h3 2.2724 3.1037
h4 2.0180 3.5808

Table 4.2: Comparison of h-convergence rates at t = 4 s
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4.2 A Converging Channel

In [70], Exner extended the model presented for the previous test case

to account for channels of varying width with vertical walls. He considered a

converging or bottleneck channel with an initially flat bed. This is the com-

putational domain considered in this test case, and it is shown in Figure 4.4.

The channel considered is 2 km long, 500 m wide at the eastern and western

ends, and narrows to 250 m wide at the center.

2 km

250 m

5
0

0
m

(a) Coarse-scale mesh, containing 378 elements

2 km

5
0

0
m

250 m

(b) Fine-scale mesh, containing 6804 elements

Figure 4.4: Unstructured computational meshes used in the channel test case.
The ratio hcoarse/hfine ≈ 4.88, where hcoarse and hfine are defined here as the
longest edge lengths in the coarse and fine grids, respectively.

Rather than considering the evolution of the bed in a one-dimensional

setting, as Exner did, the full morphological system is utilized to consider it

in a two-dimensional setting. This allows simultaneously examining both the

evolution of the bed and changes in the velocity and flow rate patterns over

a 90-day period. For this case, a land BC is imposed for the northern and

98



southern channel walls, while a fixed inflow rate of 5 m2/s is imposed at the

western end of the channel. This rate was chosen so that the flow speed is

0.5 m/s at either end of the channel, with a maximum speed of approximately

1 m/s in the throat of the channel. At the eastern boundary, the elevation is

held fixed at ζ = 0, chosen to enforce mass conservation. A summary of the

BCs is shown in Table 4.3. The bed is initially flat, with a bathymetric depth

of 10 m. The bottom is also non-porous (κ = 1), and the sediment density

is taken as %s = 2000 kg/m3, while the median grain size is d50 = 0.0002 m.

Nonlinear bottom friction given by τbf = cf |q| /H2 is considered, where cf =

0.0025 is the (dimensionless) friction or bed roughness coefficient.

Boundary BC Type Data

North & South walls Land
West Flow qD = 0.5 m2/s
East Open ζD = 0 m

Table 4.3: Boundary conditions for the converging channel test case

For purposes of comparison, this test case is run using two different

grids. The first is a coarse mesh, shown in Figure 4.4(a), and the second is

a finer-scale mesh, shown in Figure 4.4(b). For each of these grids, numerical

realizations of whp using piecewise constant, linear, and quadratic basis func-

tions are considered. For the case of piecewise constant basis functions, time

step sizes of 1.5 s (coarse grid) and 0.25 s (fine grid) are used with the forward

Euler scheme SSP(1,1); for piecewise linear basis functions, 0.75 s and 0.1 s, re-

spectively, with SSP(2,2); for piecewise quadratics, 0.5 s and 0.1 s, respectively,

with SSP(3,3). Recall from Section 2.5 that a higher-order slope limiter de-

scribed in [193] is applied when p = 2, which allows for taking slightly larger

time step sizes than usual, though still well below the theoretical threshold
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given by the CFL condition. For example, using the estimate for the CFL

restriction given by

∆t ≤ min
ΩE

(
hE

maxi |λi,E|
1

2p+ 1

)
, (4.2.1)

where 1/(2p + 1) is an estimate of the CFL number [101], one finds that

∆tCFL ≈ 0.85 s for the coarse grid and ∆tCFL ≈ 0.15 s for the fine grid. In

practice, however, time step sizes of approximately ∆tCFL/2 must be taken

before the model becomes stable when the operator (ΛΠ) = I; the ability to

take time step sizes larger than ∆tCFL/2 is thus a welcomed feature of this

slope limiter.

Plots of the bathymetry for p = 0, 1, and 2 on the coarse mesh at t =

90 days are shown in Figure 4.5, while Figure 4.6 shows the corresponding

velocity magnitude. In Figure 4.5, it can be seen that the bottom undergoes

erosion in the converging part of the channel because the flow is accelerating

there (shown in Figure 4.6). Conversely, sediment accretion can be seen in

the diverging part of the channel since the flow speed is decreasing there.

The erosion and accretion patterns are not uniform across the width of the

channel, however, as it can be observed in Figure 4.6 that the velocity is

nonuniform across the channel width; it is slightly higher near the center.

Since the sediment discharge rate q̃ is a function of |q|3, the magnitude of the

erosion and accretion is seen to vary considerably across the channel width.

The numerical solution exhibits qualitatively similar behavior on the

fine-scale mesh, except with generally better resolution. Consider the bathy-

metric profiles shown in Figures 4.5 and 4.7. For the piecewise constant case,

notice that the fine-scale solution reflects higher sediment mass transport rates.

For the cases of p = 1 and p = 2, differences in resolution are more pronounced:
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(a) Bathymetry (m) with bhp|ΩE
∈ P0(ΩE) (b) Bathymetry (m) with bhp|ΩE

∈ P1(ΩE)

(c) Bathymetry (m) with bhp|ΩE
∈ P2(ΩE)

Figure 4.5: Bathymetry (m) after 90 days on the coarse mesh
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(a) Flow speed (m/s) with p = 0 (b) Flow speed (m/s) with p = 1

(c) Flow speed (m/s) with p = 2

Figure 4.6: Flow speed (m/s) after 90 days on the coarse mesh
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the solution on the fine mesh appears to better account for the land bound-

aries, and the resolution in the transition regions (on the upstream edge of

the scouring region, between the erosion and deposition zones, and just down-

stream of the deposition region) is much sharper. The piecewise quadratic

solution on the fine mesh (Figure 4.5(c)) more sharply captures the transport

behavior in the center of the channel; the cross-stream profile is not as well

resolved on the coarse mesh, especially in the accretion zone.

Now consider the velocity profiles shown in Figures 4.6 and 4.8. For

the case of p = 0, the fine-scale solution shows a slightly larger speed gradi-

ent, especially near the boundaries, explaining the differences in bhp between

Figures 4.5(a) and 4.7(a) as a result of the differing transport rates. For the

cases of p = 1 and p = 2, one immediately spots the differences in the flow

behavior near the land boundaries in the channel throat when comparing them

with the piecewise constant results. The increase in velocity from the channel

center to the boundary region is more well defined; this feature appears to be

smeared in Figures 4.6(b) and 4.6(c). The highest speeds occur nearer to the

boundaries in the throat, and the velocity gradient downstream of the throat

is much higher compared to the coarse-grid solution.

When p ≥ 1, a long, thin boundary layer is seen downstream of the

channel throat. Its appearance is consistent with the results shown in [172],

and may be partly due to the effect of the land BC there (recall from Sec-

tion 2.5.1 that free tangential slip is specified there). However, it is noted that

by comparing Figures 4.6(b) and 4.8(b), its thickness appears to depend on

the grid size: as h ↓ 0, this layer becomes thinner, and appears to be confined

only to those elements next to the land boundary.

Comparing the DG solutions for b and |u| across the different values
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(a) Bathymetry (m) with bhp|ΩE
∈ P0(ΩE) (b) Bathymetry (m) with bhp|ΩE

∈ P1(ΩE)

(c) Bathymetry (m) with bhp|ΩE
∈ P2(ΩE)

Figure 4.7: Bathymetry (m) after 90 days on the fine mesh
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(a) Flow speed (m/s) with p = 0 (b) Flow speed (m/s) with p = 1

(c) Flow speed (m/s) with p = 2

Figure 4.8: Flow speed (m/s) after 90 days on the fine mesh
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of p, it is immediately noticed that the p = 0 approximation of b only super-

ficially captures the scouring and accretion behavior; the computed sediment

transport rate in the converging region appears too high, while it is too low

along the land boundaries. Thus, some numerical diffusion is evident here;

the p = 0 approximation of b appears to be overly diffusive. Increasing p

dramatically improves the resolution of bhp, especially near the boundaries, in

particular for p = 2, where the solution appears to sharply resolve the subgrid-

scale features in the transition region. Figures 4.5(c) and 4.7(c) show that the

higher-order slope limiter suppresses oscillations near the land boundaries in

the throat of the channel when p = 2. Considering |u| now, a similar problem

of resolution when p = 0 is observed: the cross-stream velocity profile ap-

pears to be nearly uniform in the throat of the channel, and the model fails to

capture the behavior of the solution near the land boundaries in the channel

throat; the predicted speed still appears to be too low.

Based on the issues pointed out thus far, it should be noted that the

coarse-grid solutions do not seem to be satisfactory for any value of p ∈ {0, 1, 2}

when compared with some results shown in the literature [106, 172]. Results

obtained using the fine-scale grid are still not well resolved when p = 0, but

are generally very well resolved when p ≥ 1. These observations, especially

the final one, underscore the need for taking p of sufficient order in the DG

approximations.

It is important to observe the interaction between the bathymetric and

velocity profiles as both evolve in time: as the bed is eroding in the converging

part of the channel, the total depth H increases, which in turn acts to decrease

|u|. Conversely, as a mound begins to form on the bed in the diverging part

of the channel, H decreases, causing an increase in |u| in this region. This
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ongoing (coupled) process results in the entire velocity profile slowly shifting

slightly downstream with time. These results are shown in Figures 4.9 and 4.10

for p = 2.

(a) Bathymetry (m) at t = 30 days (b) Bathymetry (m) at t = 60 days

(c) Bathymetry (m) at t = 90 days

Figure 4.9: Bathymetry (m) at 30-day intervals on the fine mesh

Lastly, it should be noted that the results shown in Figures 4.5–4.8 all

compare well qualitatively with an analytical solution derived by Exner in [70]

for a problem with similar geometry, with results shown in Tassi et al. [172]
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(a) Flow speed (m/s) at t = 30 days (b) Flow speed (m/s) at t = 60 days

(c) Flow speed (m/s) at t = 90 days

Figure 4.10: Flow speed (m/s) at 30-day intervals on the fine mesh
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for this problem posed in a non-dimensional setting, and with the computed

results presented in Kubatko et al. [106] using a combined CG/DG model

(for p = 1).

4.3 Scouring around a Bridge Pier

In this section, another well-known and well-studied problem in coastal

engineering is examined: scouring, or bed erosion, around a vertical, cylindri-

cal bridge pier, such as those commonly seen on roadway and railway bridges

across rivers and estuaries. Applications of these problems to coastal engi-

neering activities motivate this study, as scouring has been cited as one of the

most common causes of bridge failures in these regions [87, 122, 123]. It is

also wished to verify that the model accurately depicts the major flow fea-

tures associated with the scouring process, at least in a qualitative sense. This

problem would be more accurately simulated by a three-dimensional Navier–

Stokes model, but an interesting question is to determine which features can

be captured by a hydrostatic, depth-averaged model.

In this problem, an initially flat bed is subjected to a uniform, unidi-

rectional flow originating from the western (upstream) boundary. This free

stream or upstream velocity is denoted as u∞ = (u∞, 0)>. The domain under

study in this test case is a square of side length 30 m with a circular island of

diameter D = 2 m positioned at the origin. However, since the true solution w

is symmetric about the x-axis, the domain is chosen as

Ω = {(x, y) ∈ R2 : x ∈ (−15, 15), y ∈ (0, 15), x2 + y2 > 1}

in order to save computational time. Two computational meshes shall be used

for this test case for comparison. These are shown in Figure 4.11. The fine-
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scale mesh (Figure (b)) is a uniform 1:4 refinement of the coarse-scale mesh

(Figure (a)). The bed is initially flat with a depth of 1 m. Boundary conditions

are similar to those for the previous test case, and are shown in Table 4.4. That

is, at x = −15, a flow BC is specified. At the bridge pile boundary, a land BC

is imposed. A land BC is also imposed at the top (y = 15) and along the axis

of symmetry (y = 0). At x = 15, zero free surface elevation is specified.

Boundary BC type Data

{(−15, y) : y ∈ (0, 15)} Flow qD · n = 0.2 m2/s
{(x, 0) : x ∈ (−15,−1) ∪ (1, 15)} Land

{(x,
√

1− x2) : x ∈ [−1, 1]} Land
{(x, 15) : x ∈ (−15, 15)} Land
{(15, y) : y ∈ (0, 15)} Open ζD = 0 m

Table 4.4: Boundary conditions for the pile test case

Values for κ, %s, d50, and cf were the same as for the test case in Sec-

tion 4.2. However, in order to save computational time, the sediment transport

rates were artificially inflated by a factor of 1000 so that the bed evolution may

be examined after 1 day, well after the flow becomes fully developed.

Following the pattern begun with the previous test cases, the value

of whp for p = 0, 1, and 2 for both meshes is desired. When p = 0, the time

step sizes are set to 0.025 s (coarse mesh) and 0.01 s (fine mesh) and SSP(1,1)

is employed; p = 1, 0.01 s and 0.005 s, respectively, with SSP(2,2); p = 2,

0.0075 s and 0.0025 s, respectively, with SSP(3,3). Recall from Section 2.5 that

slope limiter 1 is applied to all components of whp in order to control and/or

suppress oscillations when p = 1. For the piecewise quadratic case, limiter 4

is used, again for the purpose of enforcing some form of TVB-stability.

For this problem, experimental results show that the basic scouring

process and flow profile evolution may be summarized as follows. The initial
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Figure 4.11: Unstructured meshes used for the pile test case
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approach flow splits in the horizontal direction when reaching the pier into

an upper and lower flow, leaving a stagnation point at the head of the pier

(the point (−1, 0) in Ωh). A corresponding stagnation pressure results; fluid

approaching the stagnation point decelerates, causing some pileup (and thus

an increase in ζ) [87] and a bow wave, and then accelerates along the sides of

the pier [58]. The fully developed flow speed along the pier perimeter reaches

its maximum at an angle θ ≈ 75◦ from the pier head, but then separates in

the region 90◦ ≤ θ ≤ 120◦ as a result of the acceleration along the sides [181],

and a long wake results. Meanwhile, scouring of the bed is initiated near θ ≈

75◦, closely corresponding to the point where the (attached) accelerating flow

reaches its maximum speed [181]. Sediment accretion occurs just downstream

of the pier, and the mound slowly drifts downstream with time because of the

growing scour hole [181].

However, it should be noted that in addition to this, the approach flow

also splits in the vertical direction at the upstream stagnation point; the up-

flow contributes to the formation of the bow wave, while the down-flow forms

a vertical eddy or vortex [58]. Because of accelerating flow around the pile, a

horseshoe vortex system is subsequently formed, and this has been deemed to

be the main scouring agent upstream of the pier [58, 181]. Thus, in time, the

scour hole advances upstream, eventually becoming U-shaped [58]. Note that

this latter process is inherently a three-dimensional effect, and consequently

cannot be properly simulated with a two-dimensional model. Testing will

proceed with this caveat in mind.

The resulting bed profiles are shown in Figure 4.12 for the coarse-scale

mesh and in Figure 4.14 for the fine-scale mesh. The corresponding velocity

profiles are displayed in Figure 4.13 for the coarse-scale mesh and in Figure 4.15
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for the fine-scale mesh. In all results, the locations of the stagnation points,

scouring initiation points, points of maximum flow speed along the perimeter,

and flow separation points appear to be in good agreement with the results

presented in [87] and [181].

In Figures 4.12 and 4.14, it can be seen that scouring emanates from

a point on the pier perimeter near θ = 75◦, which agrees with experimental

data in [181], and then is deposited just downstream of the pile, as should

be expected. However, the extent of the scouring varies considerably between

the coarse- and fine-scale meshes, especially when p ≥ 1; h-refinement near

the bridge pier appears to play a significant role here in the accurate calcu-

lation of the sediment transport rate. Also, when p ≥ 1, the resolution of

the scour hole seems to be slightly improved, and its extent appears to be

reduced. The same may be observed with the corresponding velocity profiles:

the wake appears slightly sharper and more compact (although the flow seems

to separate slightly too far downstream compared to the coarse-scale solution,

which shows separation around θ = 120◦), as does the flow near the upstream

stagnation point.

By closely observing the differences in the scouring and accretion pro-

files when p ≥ 1, the following may be noted. When p = 1, differences between

the coarse- and fine-scale solutions are quite apparent; the coarse-grid scour

hole appears smeared, and simply emanates outward at θ ≈ 75◦, while the

fine-grid hole exhibits a downstream tail. Its visual appearance is similar to

that of the p = 2 coarse-grid solution. While the corresponding fine-grid solu-

tion for p = 2 shown in Figure 4.15(c) displays some additional structure, it is

not substantially qualitatively different. Consequently, the piecewise quadratic

approximations of b may possibly be showing some signs of convergence (al-
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(a) Bathymetry (m) with bhp|ΩE
∈ P0(ΩE) (b) Bathymetry (m) with bhp|ΩE

∈ P1(ΩE)

(c) Bathymetry (m) with bhp|ΩE
∈ P2(ΩE)

Figure 4.12: Bed profiles after 1 day on the coarse mesh
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(a) Flow speed (m/s) with p = 0 (b) Flow speed (m/s) with p = 1

(c) Flow speed (m/s) with p = 2

Figure 4.13: Velocity profiles after 1 day on the coarse mesh
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(a) Bathymetry (m) with bhp|ΩE
∈ P0(ΩE) (b) Bathymetry (m) with bhp|ΩE

∈ P1(ΩE)

(c) Bathymetry (m) with bhp|ΩE
∈ P2(ΩE)

Figure 4.14: Bed profiles after 1 day on the fine mesh.
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(a) Flow speed (m/s) with p = 0 (b) Flow speed (m/s) with p = 1

(c) Flow speed (m/s) with p = 2

Figure 4.15: Velocity profiles after 1 day on the fine mesh
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though additional trials would be needed to verify this).

Many differences in the bed evolution can be remarked upon among

the cases for p = 0, 1, and 2. For the piecewise constant case, notice that

the eroding and accretion regions extend nearly two-thirds of the way to the

domain boundary. This is clearly unrealistic, since both experimental and

analytical investigations suggest that the boundary of the scour hole lies much

closer to the pile [58]. Thus, the RKDG scheme with p = 0 seems to be much

too diffusive, and this demonstrates the need for increasing p to sufficient

order. Also, the maximum scour and sediment accumulations are far less

than the maxima attained for the other two cases, possibly indicating that

the calculated values of q̃ may be too low. This agrees with our observations

in Section 4.2. When p is increased to 1, a more realistic result emerges, as

the area of erosion and deposition is constrained to a distance not exceeding

approximately 2D. The higher scouring and accretion rates may be attributed

to the larger velocity gradients seen in Figures 4.13(b) and 4.15(b), especially

in the wake, whose width is now much smaller; it is not smeared. The piecewise

quadratic solutions appear even less diffusive, even with the use of the higher-

order slope limiter: an even larger amount of sediment pick-up occurs in a still

smaller scour hole located closer to the pier compared with the p = 1 case,

and the ends of the U-shape attained by the scour hole are more evident. The

wake and upstream stagnation regions are more compact as well. Additionally,

observe that the accretion region emanates outward at a larger angle θ as p is

increased. It should be noted, however, that the general lack of diffusion seen

in these results for p ≥ 1 is primarily a numerical phenomenon, and it is a

consequence of setting D = 0 in equation (2.1.1); some physical diffusion will

be seen in reality.
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Lastly, it is noted that examination of the elevation profile for all model

runs revealed strong numerical evidence of a bow wave, as values of ζ were

elevated near the upstream stagnation point where seawater pileup is expected.

However, for the sake of brevity, these results are not shown here.

4.4 An Idealized Inlet

Attention is now turned toward a coastal modeling application. In this

test case, an idealization of a typical coastline, channel, and bay or estuary

is considered. For this case, it is wished to ensure that the model properly

captures the twin eddy formation in the back bay during an incoming (flood)

tide, the corresponding formation in the ocean during an outgoing (ebb) tide,

the formation of an ebb shoal in the ocean off the ends of the jetties, and the

formation of a corresponding flood shoal in the back bay. Ebb and flood shoal

formation is very common in both coastal inlets and river deltas, and they

form as a result of sediment accretion caused by decelerating flow exiting the

channel during the ebb and flood tides, respectively. Though the time scales

are generally on the order of months to many years (assuming fair weather),

this process, left unchecked, can severely alter the flow patterns of an inlet

and disrupt shipping operations, and the ensuing dredging operation may be

very expensive. Thus, analysis of these systems serves an important purpose.

An example of an ebb and flood shoal is shown in Figure 4.16.

The domain under consideration is shown in Figure 4.17. It is a simpli-

fied, or idealized, inlet containing a channel 300 m wide and 525 m long which

connects a rectangular section (stretching 3 km north to south and 2.475 km

out to sea) of open ocean to the west with a rectangular back bay (spanning

3 km north to south and 1.5 km inland) to the east. At the western end of the
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Figure 4.16: Ebb and flood shoal formation in Shinnecock Inlet, NY. Credit:
NOAA Coastal Services Center
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Figure 4.17: Computational domain of the idealized inlet system containing
4374 elements. The initial bathymetry (m) is shown as well. The jetties are
225 m long by 50 m wide.

channel are twin jetties 50 m wide and 225 m long. The initial bathymetry in

the back bay and channel is flat and measures 5 m, while the bottom slopes lin-

early in the open ocean to the west, measuring 19 m at the western open ocean

boundary. The water in the sea, channel, and back bay is initially tranquil.

The boundary conditions for this problem are as follows: a land BC is

imposed at the northern, southern, and eastern edges of the open ocean, as

well as at the jetties, channel walls, and all edges of the back bay. On the

western open ocean boundary, a spatially uniform periodic normal discharge

rate qD · n is prescribed, with an amplitude of 0.75 m2/s, and a frequency

corresponding to that of the M2 tide (period 12h25m14s). This amplitude was

chosen so that the maximum flow speed in the channel is approximately 1 m/s.

This test case is solved over a period of 10 days using piecewise constant,
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linear, and quadratic basis functions for the purpose of comparison. For the

piecewise constant approximation, a time step size of 1.25 s with SSP(1,1) is

used; for the piecewise linear approximation, 0.5 s with SSP(2,2); for the piece-

wise quadratic approximation, 0.25 s with SSP(3,3). Recall once more from

Section 2.5 that for the sediment transport equation, slope limiter 1 is applied

when p = 1, and the higher-order slope limiting procedure of Xu et al. [193] is

applied when p = 2. The bed remains non-porous, with the same value for d50

as in Section 4.2. However, the grain density is now increased to 2650 kg/m3.

The nonlinear bottom friction coefficient cf is increased to 0.003 for this case.

Additionally, the sediment transport rates were magnified 50 times in order to

speed up the bed evolution process. This was done in the interest of saving

computational time.

Figures 4.18(a)–4.18(c) show plots of the piecewise constant, linear,

and quadratic approximations of b after 10 days, respectively, in the vicinity

of the channel. The other areas of the domain experience negligible amounts

of sediment transport, and so are not shown here; the most interesting flow

features are found in the channel region. The most prominent of these is the

formation of dual scour holes in the center of the channel—one located at the

entrance to the back bay, the other just off the ends of the twin jetties. These

scour holes are caused primarily by converging accelerating flow during the

incoming tide (for the hole near the jetties) and during the outgoing tide (for

the hole at the bay entrance). This dual scour hole formation is consistent

with what is observed in real channel-inlet systems, such as Shinnecock Inlet,

NY, where bathymetric soundings reveal dual scour holes in approximately the

same locations as described above (though these are slightly off-center because

the channel is not straight, as can be seen in Figure 4.16). The jagged shape
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(a) Bathymetry (m) with bhp|ΩE
∈ P0(ΩE) (b) Bathymetry (m) with bhp|ΩE

∈ P1(ΩE)

(c) Bathymetry (m) with bhp|ΩE
∈ P2(ΩE)

Figure 4.18: Bathymetry (m) in the channel region after 10 days.
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of the scour holes is a direct result of the relative coarseness of the mesh in this

region (see Figure 4.17); this grid size was chosen as a compromise between

resolution and computational time.

Notice also in Figures 4.18(b) and 4.18(c) that sediment accretion oc-

curs in the center of the channel. This phenomenon is due to the slightly

negative velocity gradient existing there for most of the duration of the M2

tidal cycle. See Figures 4.19 and 4.20, and observe the channel center. These

results suggest a mechanism by which channels could fill in over longer time

periods and possibly block the flow, posing a hazard to shipping interests,

however, this requires further investigation. Finally, notice the formation of

ebb and flood shoals beyond the scour holes, which are also caused in part by

the negative velocity gradients in these regions during the ebb and flood tides,

respectively.

Comparing the results across the different values of p, it is gleaned

that the piecewise constant approximation of b once again fails to capture the

full extent of the induced bed evolution: the scour hole depths are approxi-

mately 9 and 7 cm at the jetties and back end, respectively, compared with

49 and 36 cm for the piecewise linear case and approximately 55 cm (both ends)

for the piecewise quadratic case. It should be noted, however, that values for

the scour hole depths for p ≥ 1 are highly dependent on the use of the slope

limiter; it should be made clear that without the use of a slope limiter, run-

away scouring will eventually occur, and the resulting scour hole depths will

become non-physically large, leading to numerical instability. In any case, the

depths were substantially higher than those obtained when p = 0.

The maximum speed in the channel is approximately 0.2 m/s lower

when p = 0 compared with p > 0, and since the sediment discharge rate
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(a) Velocity profile (m/s) with p = 0 (b) Velocity profile (m/s) with p = 1

(c) Velocity profile (m/s) with p = 2

Figure 4.19: Velocity profiles during approximate maximum ebb
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(a) Velocity profile (m/s) with p = 0 (b) Velocity profile (m/s) with p = 1

(c) Velocity profile (m/s) with p = 2

Figure 4.20: Velocity profiles during approximate maximum flood
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depends on q3, the induced transport rate is lower. Low deposition rates

for this case result in scant evidence of ebb and flood shoal formation, and of

accretion in the channel center. These low observed rates of sediment transport

compared to higher-order approximations are again consistent with what was

seen in Sections 4.2 and 4.3.

Seeking a higher-order approximation of w yields a dramatic improve-

ment in resolution, as numerical evidence for ebb and flood shoal formation is

clearer, and sediment accretion in the center is more easily seen. The solution

for the case of p = 2 appears to be even less diffusive; the scour holes are now

very well defined, as is the accretion in the channel center.

For this test case, as alluded to earlier, it is worthwhile to examine

the velocity profiles at two different times—during the approximate time of

maximum ebb, which is the time in which the seaward current associated

with the outgoing tide is the strongest, and during the approximate time of

maximum flood, when the incoming tidal current is the strongest. Figure 4.19

shows the flow profile for p = 0, 1, and 2 at maximum ebb. Immediately it

is seen that the numerical solution for the piecewise constant approximation

of |u| is unrealistically simple; the model cannot resolve the dual eddies that

form in the ocean as a result of interaction with the jetties. Even within the

channel, the grid- and subgrid-scale flow features are not well resolved. This

changes drastically when p ≥ 1, as Figure 4.19(b) reveals two sets of dual

eddies. One of these is a pair of jetty-scale eddies appearing in the ocean near

the leading edge of the main seaward current coming from the channel. A

pair of kilometer-scale eddies in the back bay is present as well, and these are

residual eddies which contain remnants of the seawater transported into the

bay during the previous incoming tide. They supply the seawater mass for the
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return flow. The p = 2 solution appears to give slightly better resolution of

these large-scale eddies. Notice also that the solutions for p ≥ 1 reveal much

greater detail within the channel, especially near the scour holes, where small

regions of increased velocity are seen. In addition, long, thin tails of slow-

moving seawater are present near the channel walls—a feature not seen in the

p = 0 case, but consistent with results shown in [101]. Grid- and subgrid-scale

velocity gradients are better resolved here, too, specifically in the piecewise

quadratic case. All of these observations underscore the need to take p ≥ 1 in

order to obtain a reasonable flow profile.

The velocity profiles for the opposite tidal phase are shown in Fig-

ure 4.20. Similar remarks from the previous paragraph about the solutions for

the different values of p apply here as well: the numerical solution for p = 0 is

still far too simplistic, while the piecewise linear approximation only partially

resolves the (now clearly visible) dual eddies in the back bay, which appear

to be nearly fully resolved only when p = 2 (shown in Figure 4.20(c)). These

observations and results are consistent with those in [101]. Note, however,

that during the flood tide, a pair of unnatural residual kilometer-scale eddies

remain in the ocean, which is likely a result of the interaction between the

outgoing current (originating from the channel) and the flow-specified western

boundary: they likely are deflected back into Ωh and do not dissipate quickly

enough since D = 0. This not only highlights the issues relating to numeri-

cal diffusion, or lack thereof, but also highlights the ongoing issue of proper

specification of open ocean boundary conditions in the framework of the DG

method. Both issues require further investigation.

As was the case during maximum ebb, the cross-stream flow features

are better resolved when p is increased to at least one, and they are very
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well resolved when p is increased to two, which successfully captures the more

complex features. Specifically, consider the flow between the jetties: the max-

imal speed occurs at two locations in this region, compared to just one when

p = 1. Obviously, this phenomenon occurs during the outgoing tide as well,

but is not quite as easily discerned in Figure 4.19(c) because the time does not

correspond precisely with that of maximum ebb. Again, these results agree

with those presented in [101], and the presence of multiple local maxima in |u|

suggest the presence of multiple local maxima in b as well. This is indeed

the case, and may be spotted in Figure 4.18(c). Thus, the corresponding bed

profile may be thought of as possessing a dual-dual scour hole arrangement,

rather than simply a dual setup as seen in Figure 4.18(b).

4.5 Surge into a Barrier-Protected Lowland

In this section, the objective is to test the ability of the wetting and

drying algorithm described in Section 2.5.5 to capture the behavior of the

flow and transport when a region of the computational domain contains dry

elements. It also provides the opportunity to investigate the nature of sediment

transport near man-made structures such as sea walls. Obtaining qualitatively

reasonable results for test cases such as this one are a prerequisite for running

simulations involving extreme storm events, in particular Hurricane Ike. This

is because computational domains that encompass the Gulf of Mexico and

other coastal areas often contain dry areas that lie below mean sea level, such

as the city of New Orleans, which is protected by an extensive levee system.

Consider the domain and initial bathymetry shown in Figure 4.21. It is

a structured grid containing two rectangular regions of elements separated by

a barrier 45 km long, 3750 m wide, and 0.1 m high relative to the datum. That
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is, Hibar = 0.1 m. The (initially) dry region is located to the west of the barrier;

the wet region, to the east. On the western boundary lies another barrier, with

a height of Hebar = −0.5 m. The two barriers are situated on either end of the

(initially) dry region, and are meant to partially impede incoming flow from

the wet region. Finally, the open ocean lies at the eastern boundary.

Figure 4.21: Computational mesh containing 552 elements used in the barrier
test case. The initial bathymetry (m) is also shown.

The boundary conditions are summarized in Table 4.5 and are as fol-

lows: a land BC is imposed at the northern and southern boundaries. On the

western boundary, an external barrier BC is enforced. An internal barrier BC

is imposed on both sides of the barrier separating the wet and dry regions.

Finally, on the eastern boundary, an open BC is specified, with ζD spatially
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uniform with an amplitude of 1 m and a frequency corresponding to that of

the M2 tide (period 12h25m14s). This amplitude was chosen so that the inter-

nal barrier is over-topped during each tidal cycle. However, in addition, ζD is

controlled by a ramping function

R(t) =

{
tanh

(
4(t−t0)
86400D

)
, t− t0 < 86400D,

1, t− t0 ≥ 86400D,
(4.5.1)

where D is the ramping duration (in days); in this case D = 2. This is done to

prevent shocking the system. The internal and external barriers are ramped

using equation (4.5.1) as well. The initial time t0 is set to zero.

Boundary (Units: km) BC type Data

{(x, 0) : x ∈ (60, 150)} Land
{(x, 45) : x ∈ (60, 150)} Land
{(60, y) : y ∈ (0, 45)} Ext. barrier D = 2 days

Hebar = −0.5 m
CS

ebar = 1
{(101.25, y) : y ∈ (0, 45)} Int. barrier (front) D = 2 days

Hibar = 0.1 m
Cs

ibar = CS
ibar = 1

{(105, y) : y ∈ (0, 45)} Int. barrier (back) D = 2 days
Hibar = 0.1 m

Cs
ibar = CS

ibar = 1
{(150, y) : y ∈ (0, 45)} Open ζD = R(t) cos(ωM2t)

ωM2 ≈ 1.405× 10−4 s−1

D = 2 days

Table 4.5: Boundary conditions for the barrier test case

This test case is solved over a period of 5 days using piecewise constant

and linear basis functions. Piecewise quadratic basis functions are not used

here; this is a limitation of the wetting and drying algorithm. In both instances,

the time step size was 20 s, which is well below the necessary threshold given
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by the CFL condition. As with the previous test cases described in Sections

4.1–4.4, the forward Euler scheme SSP(1,1) was used when p = 0; the SSP(2,2)

scheme, when p = 1.

The initial bathymetry (shown in Figure 4.21) is given by the piecewise

linear function

b0(x) =

{
1 + (2/41250)x, x ∈ (60000, 101250),

3, x ∈ (105000, 150000).

That is, the bed initially lies 0.5 m below the top of the external barrier, slopes

linearly to the east, lying 3.1 m below the top of the internal barrier. The initial

depth is Hmin = 0.2 m in the initially dry region, and 3 m in the wet region

to the east of the internal barrier. Note that when p = 0, the bed in the

dry region cannot be faithfully represented; the consequences of this will be

apparent below.

The sediment transport function used for this case is given by q̃ =

AH−3|q|2q, where A = 0.05, which was chosen to simplify the implementation

of the NCP numerical flux described in Section 2.4.3. As with previous test

cases, κ = 1, but now, for simplicity, linear bottom friction is used, with

τbf = 0.003. Lastly, the slope limiting operator (ΛΠ) = I.

Figure 4.22 shows the difference in bathymetric depth (denoted ∆b)

since the start of the simulation; ∆b > 0 indicates erosion; ∆b < 0, deposition.

In Figure 4.22(a), where p = 0, it can be seen that after 5 days, significant

deposition has occurred on the western side of the internal barrier. Also, the

bed has undergone very slight erosion near the open boundary and external

barrier. Negligible amounts of sediment transport occur elsewhere. However,

since Hu < 0 and Hv ≈ 0 for nearly the duration of the simulation, and since

bed load transport is in the direction of the flow, the deposition occurring
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along the internal barrier is both unexpected and unrealistic. This is likely a

consequence of the bed not being represented accurately in this region, which

introduces artificial jumps along element boundaries, thus initiating sediment

transport when it would otherwise not occur once the elements in question

become wet.

On the other hand, when p = 1, significant scouring occurs along the

front edge of the internal barrier, while small amounts of deposition occur

near the external barrier (and near the southern land boundary), as shown in

Figure 4.22(b). Scouring near the barrier is a more realistic effect, compared

with the accumulation seen when p = 0, because it is a result of accelerating

westward flow, which takes place whenever the barrier is over-topped (from the

back, or eastern, side), which occurs every tidal cycle. More noticeable erosion

(compared with the piecewise constant case) occurs near the open boundary,

although this phenomenon is likely an artifact of the BC. Notice also that

the bed profile is smooth and nearly symmetric2 seaward of the barrier, but

contains oscillations in the protected region. A portion of this “noise” can be

attributed to the wetting and drying algorithm itself; a known side effect of

the scheme is the high-frequency “flickering” of elements from wet to dry and

vice versa between time steps [24].

Turning attention to the elevation profiles, it is seen in Figure 4.23(b)

that the initially dry region has now flooded, with the elevation increasing by

approximately 80 cm near the internal barrier. Smaller increases are present

as one moves west toward the external barrier. Comparing this with Fig-

2The asymmetry observed in Figures 4.22(a), 4.22(b) (near the open boundary), and 4.23
is spatial interpolation error introduced by the visualization software, which only accepts
the first degree of freedom as data.

133



(a) Bathymetry difference (m) with p = 0

(b) Bathymetry difference (m) with p = 1

Figure 4.22: Bathymetry difference (m) after 5 days with p = 0 and p = 1
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ure 4.23(c), an immediate observation is that elevation changes are far less

drastic when p is increased to one; the scheme appears to be far less nu-

merically diffusive. As a consequence, rapidly accelerating flow caused by

over-topping induces high erosion rates there, because the seawater is much

more shallow than when p = 0. The flood wave does not dissipate in the

protected region, but instead over-tops the external barrier, leaving Ωh and

carrying bed load with it. Finally, it should be pointed out that although

Figures 4.23(b) and 4.23(c) appear to display a loss of seawater mass on the

seaward side of the internal barrier, this is in fact simply the stage of the tidal

cycle, combined with the effect of bottom friction.

Before leaving this example, a few closing remarks seem appropriate.

It should be stressed that the results shown in this section are preliminary

as of publication time, and that work is currently ongoing. Yet even so, as

the behavior of the bed near the internal barrier is inconsistent with the local

flow profile when p = 0, the dangers of utilizing FV-based models in cases

such as this are exposed. As regards the case of p = 1, the limitations of the

wetting and drying scheme are revealed, as not only do elements sometimes

“flicker”, but they tend to wet and dry in waves, wetting when the flood wave

from the over-topped barrier reaches them, drying after it has passed. Yet the

results do suggest that the scouring of the seabed along the internal barrier, if

left unchecked, would eventually damage the structure, and potentially even

destroy it.

4.6 Parallel Performance

This chapter concludes with some brief remarks on the performance

aspect of the model when run in parallel. The numerical results presented in
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(a) Initial elevation (m) (b) Elevation (m) with p = 0

(c) Elevation (m) with p = 1

Figure 4.23: Elevation (m) for (a) the initial time (b) after 5 days with p = 0
and (c) after 5 days with p = 1
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the previous four sections have focused on the improved accuracy in whp with

increasing p. However, this improvement in accuracy comes with the price of

additional computational costs as p is increased. For example, increasing p

from zero to one triples the number of degrees of freedom, and, in the case

of the converging channel with the coarse grid, requires twice as many time

steps. Also, additional computational work is needed to evaluate the interior

and edge integrals, as more quadrature points are required. An attempt is

made to quantify the amount of extra work required in the test case that

follows.

Consider once again the converging channel test case described in Sec-

tion 4.2. For this trial, only the coarse grid is considered. The objective is to

measure the relative CPU times when the model is run for p = 0, 1, and 2.

The model is run using the same parameters as those described in Section 4.2,

except that the model is run for 1 day, instead of 90 days. For each run, 4 pro-

cessors were utilized on a Dell PowerEdge cluster located at the Institute for

Computational Engineering and Sciences (ICES) at The University of Texas

at Austin (bevo2).

The results of these three model runs are shown in Table 4.6. As can

be observed there, using piecewise linear basis functions instead of piecewise

constant ones results in a nearly six-fold increase in CPU time, and using

piecewise quadratic basis functions leads to a sixteen-fold increase. Both values

are well below estimates which account for increases in the number of degrees

of freedom, Runge–Kutta stages, time steps, and quadrature points. Since

the run-time optimization process is sophisticated, this phenomenon requires

additional investigation; the reader is cautioned that the results shown here

are preliminary; a much more thorough scaling and performance analysis is
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p ∆t (s) SSP(s,k) CPU time (s) Ratio

0 1.50 1, 1 24.56 1.00
1 0.75 2, 2 139.40 5.68
2 0.50 3, 3 394.42 16.06

Table 4.6: Relative computational costs for solving the channel test case

currently planned.

4.7 Discussion and Remarks

In this chapter, a well-balanced (as demonstrated in [153]) DG mor-

phological model was implemented within the ADCIRC modeling framework

by following an extended approach which specially treats the nonconservative

products through the addition of stabilizing terms in the numerical flux. An

investigation of the resulting RKDG method was made, and it was verified that

the scheme maintains first- through fourth-order accuracy away from shocks

prior to their formation, provided that the mesh is sufficiently h-refined in the

shock vicinity; the theoretical convergence rates were nearly attained in these

cases.

Effects of h- and p-refinement were readily seen in the test cases: nu-

merical solutions appeared to converge to those with the lowest values of h

and highest values of p, with the highly-refined approximations able to cap-

ture subgrid-scale features, especially in the transition regions near scour hole

boundaries. Moreover, it was observed that sufficient p-refinement (and to a

lesser extent, sufficient h-refinement) is necessary for the accurate computation

of sediment transport rates. That is, very low-order p approximations resulted

in artificially low sediment pick-up, even with highly amplified transport for-

mulæ, and the method appeared to be too diffusive. This latter point must be
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emphasized: since finite volume models are in fact equivalent to DG models

with p = 0, the numerical results in Sections 4.1–4.6 suggest that FV-based

models can yield poorly-resolved sediment solutions.

Although it is clear that a three-dimensional model is required to ac-

curately resolve all the flow features around structures such as bridge piers, it

was discovered that this morphological model does capture a surprising num-

ber of flow characteristics, including those of the wake, scour hole shape and

location, accretion region, and points of flow separation.

Additionally, it was demonstrated that the use and selection of a slope

limiter plays a crucial role in improving the solution quality in these cases. This

was especially true for higher-order approximations, as its omission resulted

in significant spurious oscillations in the solution, and even instability in some

extreme cases. Inclusion of a higher-order slope limiter is therefore critically

important for DG morphological models which accommodate arbitrary-order

solution approximation.

Lastly, it was verified that the wetting and drying algorithm proposed

in [24], although prone to generate somewhat noisy solutions, stably recti-

fies the problem of meshes containing dry elements and regions, even when

bed movement is allowed. The model was also shown to handle artificial flow

controls reasonably well, and was shown to possess the ability to capture in-

teraction between the barriers and seabed.
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Chapter 5

Concluding Remarks and Future Directions

In this final chapter, some general observations about the analytical

and numerical results discussed in the previous chapters are given. These

concluding remarks appear in Section 5.1. This is followed by a discussion

of potential future research directions, short- and long-term goals, and open

problems in Section 5.2.

5.1 Concluding Remarks

This dissertation describes the development of a tightly-coupled hy-

drodynamic and bed morphology model that utilizes the LDG finite element

method from both a theoretical and computational viewpoint. As a result of

the present study, the following observations are made:

• An alternative (L)DG formulation is required, which properly accounts

for the nonconservative product appearing in the momentum equations,

whenever the true solution becomes discontinuous, especially if Z = 0.

Additional regularity in the solution introduced by the diffusive terms

does not necessarily eliminate the need for this; special treatment of g,

which gives rise to additional stabilization terms in the numerical flux,

is still crucial.

• The split formulation of the numerical flux described in Section 2.4.2 is
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less computationally expensive, although possibly more diffusive, than

the NCP formulation described in Section 2.4.3. This is especially im-

portant if the (empirical) sediment discharge function is complicated,

which many are in practice.

• A higher-order WENO-type slope limiting algorithm was implemented in

order to define the operator (ΛΠ), and was shown to perform reasonably

well in practice when used with DG solutions of order two. However, as

applying the algorithm to whp can be computationally expensive, espe-

cially as p increases, some care must be taken as to which components

of whp the operator should be applied; it is not always necessary to apply

(ΛΠ) to all solution components.

• A wetting and drying algorithm was implemented in order to define the

operator (MΠ), and was shown to perform reasonably well in practice.

However, it is currently designed to handle p ≤ 1, which limits the

model’s robustness. This algorithm is also fairly computationally expen-

sive, as each element must be checked at every RK stage of every time

step, requiring modal-nodal transformations (and vice versa) each time.

• In deriving the error estimate, it was not necessary to apply Grönwall’s

lemma (as is typically done in the literature, e.g. [1, 38]), thus producing

a much lower bound than would otherwise result. The price paid for this

is additional tediousness in the proof.

• The estimate obtained here is similar in form to that derived in [1],

except that this result requires one fewer degree of regularity for the

solution w and inviscid flux F, and contains additional terms arising

from the nonlinear components of F, sedimentary diffusion, and penalty
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terms. As much of the work in Chapter 3 is an extension of work done

in [1] and [38], this is not unexpected.

• It was verified that the scheme maintains first- through fourth-order

accuracy away from shocks prior to their formation, provided that the

mesh is sufficiently h-refined in the shock vicinity.

• In each of the test cases presented in Sections 4.1–4.4, the effects of h-

and p-refinement were readily seen, which included the ability to cap-

ture several complex two-dimensional (but not three-dimensional) flow

features near obstacles, as well as subgrid-scale features. It seems nec-

essary to increase p to at least one in order to properly resolve many

of these phenomena; piecewise constant solutions, and hence FVMs, ap-

pear much too diffusive, underestimating the transport rates and, in

the case presented in Section 4.5, producing very misleading, physically

inconsistent results.

5.2 Future Research Directions and Open Problems

Development of the tightly-coupled morphodynamic model described

in the preceding chapters is an ongoing research effort. It should be empha-

sized that there are many possible research directions that could be taken by

investigators in the years to come; the following is merely a small listing of

recommended development paths and strategies. At present, significant future

research is planned in the following areas:

• The proper formulation of BCs for all boundary types remains the sub-

ject of ongoing work by several investigators [101]. Proper BCs for Z
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appear to be even less well understood, especially on artificial flow con-

trols such as weirs and dikes.

• An attempt should be made to consider more realistic BCs, such as

those described in Section 2.5.1, as well as variable data (D, τbf, etc.)

in the analysis performed in Chapter 3. This will introduce additional

terms into the auxiliary equation. In addition, it would be worthwhile to

consider the effect of the NCP numerical flux, as opposed to the generic

one used in Chapter 3.

• A short-term, almost immediate goal is to weaken and/or eliminate the

assumptions of uniform a priori bounds on the discrete solution in Theo-

rem 3.2.4. An attempt should be made to show that the discrete solution

components are indeed bounded from above, and that Hhp is bounded

from below.

• Another short-term goal is to extend the higher-order slope limiter to

handle polynomial approximations of degree higher than two. The algo-

rithm described in [193] is valid for any value of p ≥ 2, but this has not

yet been fully implemented. This will make further convergence studies

possible for cases in which (MΠ) = I.

• As mentioned in Sections 4.5 and 5.1, a higher-order wetting and dry-

ing algorithm is not, to the best of the author’s knowledge, generally

available at present, although work in this area is ongoing.

• Although fully implemented, the test cases presented in Chapter 4 utilize

neither hydrodynamic nor sedimentary diffusion. Since some physical

diffusion is seen in reality, largely because of turbulent effects, its effect
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on the numerical solutions demands further investigation. This is a short-

term goal, but will require careful selection and tuning of νx, νy, ν̃x,

and ν̃y; preliminary tests have revealed that model stability is highly

sensitive to these parameters.

• A long-term goal is to investigate the use of quadrature-free schemes for

area and edge integral computations. This may be desirable because

of the growing computational cost of evaluating the numerical fluxes at

each RK stage and at each time step as p increases and as problem

sizes increase. Although these schemes have shown promise in terms of

dramatically reducing computational costs [9, 10], questions have been

raised regarding accuracy. Implementation will require an overhauling

of the parallel (MPI) communication paradigm used in the model.

• A significant limitation of the current implementation is underestima-

tion of the sediment discharge rates, particularly for low values of p,

where the problem is acute. In the coastal environment, transport due

to waves can play a dominating role, but this effect is neglected in this

work. Therefore, alternative sediment transport models which include

the effects of waves and suspended load should be investigated, such as

those mentioned in Section 1.2.2.4, or that developed by Kobayashi et

al. (2010) [98], or that implemented within SEDLIB [182], which ad-

ditionally accounts for sediments containing multiple grain types and

sizes (the current model assumes the bed is composed only of fine sand).

Note, however, that the choice of discharge function will require some

care; a delicate balance between computational cost and accuracy must

be attained.
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• Lastly, perhaps the most important long-term goal of model development

revolves around the simultaneous simulation of storm surges and coastal

morphology taking place during a hurricane. An attempt has been made

in this work to lay some of the necessary groundwork for such a task

to be completed. However, achieving this goal will require substantial

investment of time and effort by many investigators, as the challenges

remain many-fold. To name just one example, although storm surge data

from previous hurricanes is available in the form of hydrographs through

agencies such as the USGS, along with LiDAR soundings and charts,

the issue of model validation remains unresolved because of a lack of

recent bathymetric data. It is hoped that this and other problems can

be overcome in the near future.

As already noted, these are just a few of the ideas worth pursuing in

future studies; the list above is by no means meant to be complete. A number

of other interesting directions could be taken. For example, as formulated in

Chapter 2, equation (2.1.1) may be easily extended to accommodate one or

more passive tracers, which may be used to simulate simultaneous hydrody-

namic, sedimentary, and contaminant transport processes.

In any case, it is hoped that at some point in the future, the advantages

of using a tightly-coupled model of flow and transport can be fully exploited,

and the use of LDG methods for this purpose fully realized.
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