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Several comprehensive but time consuming neutronic codes are available for performing 

nuclear reactor and fuel cycle evaluations. In addition, simple models utilizing collision 

probability theory are used to perform similar tasks with reasonable accuracy. However, 

the current collision probability theory treats the heterogeneous reactor configurations 

with a two region unit cell model.  This model does not address several important reactor 

parameters including spatial self-shielding effects and simultaneous use of different 

reactor fuels within a reactor core. 

 



 
 
 
 

vii

This dissertation studies the fidelity of expanding the collision probability theory to 

address the stated shortcomings through analyzing two problems. 

 

Problem 1 analyzes the effects of self-shielding. The cylindrical fuel region is divided 

into several sub-regions and an overall equivalent escape probability from the entire fuel 

region is developed based on the identified neutron transmission and escape probabilities 

within each fuel sub-region.  The multiplication factor and radioisotopic inventory results 

based on modified V:BUDS (Visualize: Burnup, Depletion, Spectrum) code are in good 

agreement with benchmark scenarios for a reactor unit cell. The accurate multiplication 

factor calculation allows more accurate studies on the maximum fuel burnup and 

radionuclide inventories of interest in nuclear non-proliferation studies. 

  

Problem 2 analyzes the effects of simultaneous use of different fuels within a fuel lattice 

where the zero neutron leakage assumption across the unit cell boundaries is not valid. 

The developed methodology expands capabilities of the collision probability theory to a 

supercell model that allows existence of two different fuels. The radioisotopic inventory 

results for different fuels obtained from the modified V:BUDS code are in excellent 

agreement with the benchmark problems. These accurate results may be used in general 

fuel cycle and transmutation studies within power reactors.  
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1. Introduction 

 

The purpose of this dissertation is to expand the applications of the collision probability 

theory in the reactor performance and safety analysis and fuel cycle evaluations. This 

expansion can result in increased accuracy and utility of the collision probability theory 

in the treatment of heterogeneous cores and hence provide a faster and much simpler 

alternative when compared to much more complicated neutronic computer codes in 

addressing the feasibility and effectiveness of fuel cycle strategies.  

 

 The past few years have seen a clear resurgence of public opinion and interest in use of 

nuclear energy to meet future energy demands. This resurgence has been echoed by the 

Administration through its National Energy Policy where it calls for an increase in the 

diversity of the nation’s sources of traditional and alternative fuels. As part of this policy, 

the Administration calls for the safe expansion of nuclear energy by streamlining the 

licensing of nuclear power plants and establishing a national repository for nuclear waste 

[1].  Some of the specific points of this policy are the development of the advanced fuel 

cycles and next generation technologies for nuclear energy.  The policies of the United 

States to develop and deploy fuel conditioning methods that reduces waste streams and 

enhances proliferation resistance are specifically noted.   

 

In addition, while there has not been a major power plant construction in the United 

States since 1990’s, the increase power demand over the past two decades has outstripped 
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the added capacity and the price of petroleum and natural gas has dramatically increased 

the unit cost of electricity derived from these natural resources. For example, while the 

residential sector electric energy consumption has increased from 2.5 quadrillion BTU in 

1980 to 4.5 quadrillion BTU in 2006, the average retail price of this electricity generated 

from fossil fuel has increased from 5.5 ¢/kwh in 1980 to 10.5 ¢/kwh in 2006 [40]. 

 

In lieu of these developments, some electric utility companies have expressed interest in 

developing, licensing and operating the next generation of the power reactors. As part of 

the decision making process for the selection of the reactor type and the fuel cycle, 

several parameters and variables are being considered by utilities and government. 

Reactor safety, economics, disposal of the spent nuclear fuel and nonproliferation 

concerns constitute four of these major parameters.  

 

As part of the reactor safety considerations, determination of neutron flux within the 

reactor core plays an important role in regards to improving the overall reactor thermal 

efficiency by flattening the neutron flux in the fuel axial and radial direction and hence 

increasing the reactor thermal output for a given maximum fuel temperature and 

increasing the reactor safety by decreasing the temperature peaking within the reactor 

fuel. 

 

In regards to the fuel cycle considerations, several alternatives are required to be 

considered which includes economic as well as non-proliferation considerations. 
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The economic considerations are based on minimization of the volume, decay power and 

radiotoxicity of the spent fuel or ancillary waste, the fuel reprocessing costs for the 

chosen fuel cycle, and the storage costs of the final spent nuclear fuel which is correlated 

to its volume. 

 

Reactors and fuel cycles are protected by intrinsic and extrinsic safeguards.  The intrinsic 

aspects with which this study is concerned relate to the quantity and isotopic content of 

the spent fuel that is to be reprocessed or stored within a temporary storage facility such 

as the power plant spent fuel pool storage system or a permanent geological repository 

system.  In addition to affecting the proliferation-relevant characteristics of nuclear fuel 

and waste, the isotopic vector directly impacts the storage capacities of short and long 

term storage facilities via the heat generation capabilities of the actinides and fission 

products. 

 

All of these metrics depend strongly on the neutron flux spectrum and distribution 

characteristic of the reactors within a fuel cycle system.  Therefore, determination of the 

flux as well as the isotopic contents of the fuel during its burnup process becomes a 

vitally important task for fuel cycle analysis. 

 

There are several elaborate and comprehensive neutronic codes that can satisfy the above 

stated objectives. However, these codes are laborious and very time consuming. In recent 

years, efforts have been initiated to develop simple code models that can satisfy the 
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required technical challenges in determining the needed reactor and fuel cycle study 

parameters and be implemented on a PC platform with a few seconds run time.   

 

These simple models utilize collision probability theory that yields reasonably accurate 

results at the fraction of the computational times that is required by the more elaborate 

computational approaches. 

 

In the collision probability theory, the reactor core is assumed to consist of identical unit 

cells where each cell consists of a fuel region in the center and moderator/coolant region 

surrounding the fuel region. The neutron transport equation in the unit cell is then solved 

by decoupling the spatial and energy effects in the transport equation and then writing 

equations for the flux for each of the fuel and moderator/coolant regions of the unit cell. 

The result is a set of algebraic equations that are coupled through region-to-region 

transmission and escape probabilities.  

 

The current collision probability theory used to analyze heterogeneous reactor cell unit 

treats each of the fuel and moderator regions as single lump with uniform properties and 

fluxes within each lump. It also assumes that the unit cells are uniform throughout the 

core with a single type of fuel material. This work attempts to improve the current theory 

by treating the fuel region of the unit cell as a multi-region area and investigate whether 

the developed methodology enhances the results of the current lumped two region unit 

cell analyses in regards to multiplication factors and isotope inventory calculations versus 
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postulated burnup periods. The current work also attempts to develop a methodology to 

investigate similar types of analyses based on existence of two types of different fuel 

materials within the reactor core unit cells. This developed methodology will allow the 

usage of the collision probability theory to study the disposition of excess reactor or 

weapon grade plutonium within a commercial power reactor. The current methodologies 

on treatment of heterogeneous reactor cores are limited and do not allow high fidelity 

treatment of two different fuel types within the reactor core.     

 

At the present time, the modeling of unit cell is rather coarse in a sense that the neutron 

fluxes are taken to be constants in each of the unit cell fuel and moderator/coolant 

regions. This modeling neglects the effect of fuel self shielding and hence neglects the 

neutron flux gradient in the fuel region. Therefore, it increases the inaccuracy of the 

predicted results in regards to actinide and fission products in the spent fuel and hence 

increases the uncertainty in the fuel cycle and reactor safety selection and design process.  

 

In addition, the current model is a situation where the reactor consists of a lattice of 

identical unit cells.  This approach can treat heterogeneous lattices where the composition 

of the fuel varies from pin to pin, say only through decoupled calculations for each fuel 

type.  In cases where large regions of fuel, at the level of assemblies or larger, remain 

homogeneous this treatment retains a good deal of validity.  However, there are many 

circumstances when this approach would yield unsatisfactory results. For example, there 

are proposals from the Department of Energy to use excess weapon grade plutonium as a 
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fuel in the civilian power reactors. In collaboration with Canadian and Russian agencies, 

prototypes of manufactured fuel using excess weapon grade plutonium have been 

designed and produced. Use of these mixed oxide fuel (MOX) within the power reactors 

satisfies two goals. First, it provides a high heat value fuel source and secondly, burns up 

excess actinides to a point where the material is not attractive from nuclear proliferation 

perspective.  As part of implementation of the above strategy, Department of Energy 

started construction of the mixed oxide (MOX) fuel fabrication facility at Savannah River 

Site in November of 2005 and consequently, the United States Nuclear Regulatory 

Commission (NRC) amended the license for the Catawba Nuclear Station to irradiate 

four MOX fuel assemblies [41]. Duke Power is now seeking NRC approval to burn MOX 

fuel assemblies in its four units at McGuire and Catawba Nuclear Stations. The above 

practice is more established in Europe where 37 reactors are operating with part MOX 

loading and some additional reactors are licensed to do so when need arises [42]. 

 

The current heterogeneous treatment of the reactor core using collision probabilities do 

not account for the fact that a different fuel type may be present in the core.   

Furthermore, the MOX fuel design in the example given above calls for heterogeneity to 

exist at the fuel assembly level, so that the neutronic coupling between uranium oxide 

and plutonium oxide bearing pins will be considerable.   

 

Therefore, there is a need to expand the current modeling of the reactor core using 

collision probability theory in solving for fluxes within a unit cell. This expansion will 
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provide allowance to account for the non-uniformity of the neutron flux in the fuel region 

and use of MOX or other fuel in the reactor core in addition to standard enriched uranium 

oxide (UOX) fuel. 
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2. Review of Current Literature 

 

An accurate understanding of neutron transport processes is necessary in several fields of 

study; however full neutron transport solution of time dependent problems encountered in 

these fields can be computationally expensive. Hence, considerable effort has been 

dedicated to developing approximate solution techniques that are computationally much 

faster and at the same time are accurate enough for intended applications. The focus of 

this dissertation is on generalizing the collision probability theory for solving the neutron 

transport equations in several configurations with applications in studies of next 

generation of power reactors, nuclear reactor safety analysis, advanced fuel cycle 

initiatives, and use in transmuting extremely long lived radioactive isotopes for 

addressing the nuclear non-proliferation issues and more economical storage capabilities. 

 

Several textbooks and journal articles provide an overview of many of these 

approximation methodologies [2], [3], [4], [5], [13], [38] and [39]. Reference [32] 

provides a review of numerical methods for solving the integro-differential, integral, and 

surface-integral forms of the neutron transport equation. Reviewed methodologies in 

Reference [32] include the discrete ordinates finite difference method, the method of 

characteristics, finite element approximations, the collision probability method, and the 

nodal methods. Also, a comprehensive review of these methodologies is provided in 

References [10] and is updated and summarized in this section.  
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The energy dependence of the flux is usually treated by one of the two methods. In the 

multi-group formulation, the energy spectrum is discretized into tens or hundreds of 

groups. The neutron flux, nuclear cross sections and group to group transfer functions are 

averaged over each group in a manner that aims to preserve the correct interaction rate 

within that group. The energy dependent equation of neutron conservation is then written 

as a set of coupled algebraic equations in energy. Typically the control absorber 

concentration is iterated upon, or the multiplication factor keff is treated as an eigen value.  

  

The continuous method aims to avoid complications that arise in calculations involving 

discontinuous functions such as the scattering kernel. The aim is to formulate 

approximate differential equations for a smooth, slowly varying function such as the 

slowing-down density q. The slowing-down density is the number of neutrons per 

cm3/sec at which neutrons slow down past a given energy E. This is accomplished by a 

Taylor series expansion of the collision density, which appears in the integrand of q. 

Truncation of the series allows the integral equation to be transformed to a set of coupled 

first order differential equations.   

 

Since the spatial dependence of the flux exhibits higher order dimensionality, methods 

for its treatment are necessarily more involved.  In this section, common approximations 

to the spatially dependent neutron transport equation and their computational 

implementation are summarized. [10] 
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The collision probability method approximates the integral transport equation by dividing 

space into a set of homogeneous regions or cells and then computing the probability that 

a neutron in one region will contribute to the flux in another region. This contribution is 

modeled by formulating region-to-region transmission and escape probabilities. This 

method is exact provided that the correct probabilities are obtained. However, they are 

obtained beforehand as a function of geometry and collision probability via a simplified 

transport calculation employing one of several other methodologies.  While this method 

requires a considerable amount of work for initial problem setup, subsequent 

computational effort is low.   In this scheme, the spatial variation of flux in a region of 

interest is unimportant and hence each region is represented by equivalent homogenized 

cross sections Σ  and average fluxes φ  that preserves interaction rates within 

macroscopic homogenized region. This condition over a heterogeneous region with 

volume V is satisfied by ( ) ( )∫ Σ=Σ
V

rrdV φφ  .   

 

Nodal methods are often used when the spatial dependence of the flux in full three 

dimensions is of interest.  This method can be a good substitute for numerical solution of 

diffusion equations in three dimensions which can be computationally time consuming 

and prohibitive for parametric studies. In this methodology, the reactor core is subdivided 

to relatively large regions or node cells in which the material composition and flux are 

assumed to be uniform. Then attempts are made to determine the coupling coefficients 

characterizing node cell to node cell leakage and then determining the node cell fluxes. 
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The flux for each node n is developed as ∑
=

=
N

n
nnnn SK

1'
''φ   where 'nS  is the neutron source 

strength in node n’, 'nnK  is the nodal coupling coefficient and N represents the total 

number of node cells. The nodal coupling coefficients are typically obtained in empirical 

fashion. Proper selection of nodal coupling coefficients will generate extremely useful 

three dimensional flux distributions. Selection of the coupling coefficients is very 

problem sensitive and requires adjustments to obtain good agreements against more 

detailed calculations or power distribution measurements. Nodal methods are 

computationally very fast and have found acceptance for use in three dimensional reactor 

simulations [3, 5]. 

 

The position dependence of the flux is heavily dependent upon the angular dependence of 

the scattering transfer function, which is itself generally a strong function of position. 

Discrete ordinates method addresses and discretizes this angular dependence of the 

transport equation. In the discrete ordinates approximation, the transport equation is 

evaluated at only a few discrete directions or ordinates. Thus the full transport equation 

may be reproduced, with appropriate weighting, by quadrature. The scattering and fission 

kernels are formulated in terms of the laboratory frame cosine of the neutron scattering 

angle, μ, expanded in Legendre polynomials (the PN method), and represented as discrete 

functions of the ordinates. The ordinates themselves are often chosen to the roots of the 

highest order Legendre polynomial in the expansion. Spatial discretization schemes 

incorporate algorithms for sweeping in the direction of neutron motion, necessitating 
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several ‘passes’ through each location. Often, the inner iterative solution for ( )jix μφ ,  is 

accelerated by using a low-order deterministic calculation, perhaps via diffusion theory 

(the P1 method), to generate an initial guess forφ . High order discrete ordinates 

calculations are also used as trial functions to formulate a lower-order approximation to 

φ  for use with the nodal approach.  

 

The discrete ordinates method in more than one spatial dimension has a well known 

defect named as ‘the ray effect’. Due to the discrete nature of the angular approximation, 

neutrons do not reach regions where they otherwise would, sometimes producing large 

spatial oscillations in the scalar flux φ  [5, 19]. However, some methods have been 

developed to eliminate these ray effects by introducing extra terms in the discrete 

ordinates equation [20]. These extra terms are designed to ensure that the discrete 

ordinates equations will produce the same angular moments as the PN equations.  

 

At a fundamental level, neutron transport through matter is an essentially stochastic 

process. The total cross section is a probability and not a certainty that a neutron will 

have a collision while traversing a certain spatial distance. If neutron has a collision, the 

cross section for various processes such as scattering, radiative capture, fission, and so on 

are then just probabilities. Hence the neutron flux is actually the mean or expectation 

value of the neutron distribution function. So, the Monte Carlo method directly simulates 

neutron process as a stochastic process [5].   In this methodology, neutron histories are 

directly simulated from birth, usually through isotropic emission from fission.  The 
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fission source is generated by sampling a Bayesian statistical distribution in the energy, 

positional and directional variables; the prior distribution is obtained from guess work, 

iteration or experience. A neutron is followed through the slowing down process, until it 

is absorbed or escapes. Treatment is as exact as the geometric and physical inputs allow, 

either point-wise or group-wise cross sections may be used. A large number of histories 

are generated to reduce variance to within specified tolerances. Variance reduction may 

be accelerated by the attachment of weights to individual neutron histories. This is often 

carried out on the basis of an adjoint or importance function obtained beforehand by 

deterministic means [10].  

 

Now we will briefly discuss some of the more widely used software packages that are 

used to perform reactor physics analysis including neutron flux and fuel burnup 

determinations. This task is performed to evaluate the relevance of these packages to 

modeling of reactor core and fuel burnup analysis as related to the topic of this 

dissertation. 

 

SCALE (Standardized Computer Analysis for Licensing Evaluation) computer software 

system developed at Oak Ridge National Laboratory (ORNL) is a widely used 

computational tool used to investigate issues related to criticality safety and burnup credit 

analysis [22].  The latest version of the code package, SCALE 5, has the capability to 

treat multiple unit cells. Each unit cell specification contains the cell type (infinite 

homogeneous medium, multi-region, or lattice cell), cell geometry type, and appropriate 
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material and geometry data. Any number of unit cells may be specified, but each material 

may appear in only one unit cell. SCALE code package has several modules and these 

modules are used for different applications. We will discuss some of the modules that 

have relevance to the topic of this dissertation.  

 

The SCALE package contains KENO V.a and KENO-VI Monte Carlo criticality safety 

modules. These modules provide SCALE 5 with criticality search capabilities that allow 

each unit cell to be explicitly identified with either a unit or a material that is being 

modified. A search case may alter the material densities, the pitch of the cells in a lattice, 

or simple geometry boundaries. Since multiple unit cells are allowed, a criticality search 

may be performed on lattices containing more than one fuel pin type. As the geometry or 

material is modified, the unit cell is similarly modified, thus ensuring that the cross 

sections for the material are appropriately processed. Cell-weighted materials can be 

included in the searches, updating the geometry, material, and cross sections as the search 

progresses. 

 

CENTRM (Continuous Energy Transport Module) of SCALE package is a one-

dimensional (1-D) discrete ordinates code that uses a point-wise continuous energy cross-

section library to produce a set of point-wise continuous energy fluxes at discrete spatial 

intervals for each unit cell. These fluxes are then used by PMC (Point-wise Multi-group 

Converter) module to collapse the point-wise continuous energy cross sections into multi-

group cross sections for each nuclide in each material in the unit cell. CENTRM can be 
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used to explicitly model fuel or absorber materials in subdivided regions, such as 

concentric rings in a fuel pin, to more precisely model the spatial effect on the flux and 

cross sections. Other modules in SCALE 5, such as KENO, can then use these multi-

group cross sections. 

 

STARBUCS (Standardized Analysis of Reactivity for Burnup Credit using SCALE) is a 

sequence to perform criticality calculations for spent fuel systems employing burnup 

credit. STARBUCS automates the criticality analysis of spent fuel configurations by 

coupling the depletion and criticality aspects of the analysis, thereby eliminating the need 

to manually process the spent fuel nuclide compositions into a format compatible with 

criticality safety codes. STARBUCS automatically prepares the input for all codes in the 

analysis sequence, executes the codes through the SCALE driver, and performs all 

module interface and data management functions for the user. STARBUCS performs a 

depletion analysis calculation for each spatially varying burnup region (if an axial burnup 

profile is specified) of a spent fuel assembly using the ORIGEN-ARP methodology of 

 SCALE. The ORIGEN-ARP methodology serves as a faster alternative to the SAS2H 

depletion analysis sequence in SCALE, while maintaining calculational accuracy. The 

spent fuel compositions are then used to generate resonance self-shielded cross sections 

for each burnup-dependent fuel region using the SCALE Criticality Safety Analysis 

Sequence (CSAS). Finally, a KENO criticality calculation is performed using the 

spatially varying cross sections to determine the neutron multiplication factor for the 

system. 
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ORIGEN-ARP is a sequence in SCALE that serves as a fast and easy to use system to 

perform nuclear irradiation and decay calculations with the ORIGEN-S code using 

problem dependent cross sections. ARP (Automatic Rapid Processing) uses an algorithm 

that allows the generation of cross section libraries for the ORIGEN-S code by 

interpolation over pre-generated cross section libraries. The interpolations are carried out 

on the following variables: burnup, enrichment, and moderator density.   

 

ORIGEN has the capability to handle actinides with up to 30 explicit fission product 

yields. This capability allows for higher order actinides to address data requirements for 

actinide transmutation studies. These explicit yields improve fission product inventory 

and decay property predictions. In addition, ORIGEN-ARP methods allow the analysis of 

MOX fuel. It includes the MOX cross section libraries for most European MOX reactor 

types and fuel assembly designs [21].   

 

NEWT (NEW Transport algorithm) module of SCALE 5 introduces two-dimensional 

analytical capability as a flexible mesh discrete ordinates code. Unlike traditional Sn 

codes, NEWT is not limited to Cartesian or cylindrical coordinate systems. NEWT’s 

arbitrary geometry, or flexible mesh, allows users to combine orthogonal, radial, and 

other more unusual geometry shapes in the same model. NEWT is unique in the domain 

of discrete ordinates methods because it is based on a non-orthogonal, flexible mesh 

scheme that allows accurate representation of complex geometric configurations that are 
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normally impossible to model with discrete ordinates methods without significant 

approximations. Using a discrete ordinates approximation to the transport equation on an  

arbitrary grid, NEWT provides a rigorous deterministic solution for non-orthogonal 

configurations. Lower-order deterministic methods typically applied in lattice analyses 

(e.g., integral transport and collision probability methods) do not provide the angular 

resolution necessary to treat strongly anisotropic fluxes, such as those in the vicinity of 

strong absorbers or in high-leakage cores [22]. 

 

The SCALE package has been studied extensively for validation. Some of these 

validating studies are identified in [10]. In addition, the new features of the latest version 

of SCALE have been reviewed by several researchers. For example, the continuous 

energy version KENO-V.a and KENO-VI are investigated in [23], cross section libraries 

of ORIGEN-ARP is reviewed for validation in [24], and the fuel burnup and depletion 

capabilities of TRITON module are validated in [25, 26].  

 

There are several other code packages such as DIF3D/VARIANT/REBUS3 that were 

developed at Argonne National Laboratory that function along the same lines as 

SCALE/TRITON/ORIGEN. A review of these codes along with some additional codes is 

provided in [10] and hence is not repeated here. 

 

Finally, our literature review indicated that a fast and user friendly computational 

package V:BUDS (Visualize: Burnup, Depletion, Spectrum) was developed to provide a 
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scenario dependent material balances for fuel cycle systems studies. Even though 

V:BUDS does not replace the higher fidelity code packages such as SCALE, but its 

simple interface and very short computational time makes it a useful tool in parametric 

studies of different fuel cycles [10, 17]. Fuel element / moderator geometry and 

composition, reactor geometry, fuel residence time and target burnup are accepted as 

inputs and then the model calculates the buildup of 24 actinides, as well as fission 

products, along with the lethargy dependent neutron flux.  V:BUDS operates at a unit cell 

level and couples a detailed multi-group treatment of energy dependence with a 

simplified collision probability model of spatial dependence. V:BUDS treats each of the 

fuel and moderator/coolant regions within the unit cell as uniform homogeneous 

volumes. V:BUDS relies on a multi-group formulation to treat energy dependence. 

V:BUDS is bundled with cross sections libraries for a wide range of potential 

constituents. The cross section libraries were developed from ENDF/B-VI data using 

NJOY99 processor at 5 different temperatures (300°K, 600°K, 900°K, 1200°K, and 

1500°K). The results of VBUDS have been favorably compared against OECD/NEA 

benchmarks for homogeneous MOX and UOX LWR cores [27].   

 

V:BUDS is driven by a graphical user interface (GUI). This interface allows the user to 

customize the geometry and composition of the unit cell under consideration that includes 

the isotopic contents and quantity of fuel material and moderator/coolant, the temporal 

parameters governing a burnup calculation and the desired output plots. Figures 2-1 and 

2-2 represent a sample screenshots of the V:BUDS input parameters. 
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Figure 2- 1: V:BUDS GUI First Input Screen 
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Figure 2- 2: V:BUDS GUI Second Input Screen 
 

As indicated in Figure 2-2,V:BUDS offers two output options. First, the static (fuel 

burnup not simulated) option where spectral calculation is carried out for only the 

specified composition and second, time dependent option where burnup and depletion 

calculations are performed. As an output sample, the neutron energy spectra for fresh 
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fuel, within the fuel pin and the coolant/moderator annulus, are depicted in Figure 2-3. 

Figures 2-4 and 2-5 provide V:BUDS capabilities in demonstrating the burnup dependent 

effective multiplication factor for a given fuel composition and each of its contributing 

six factors and evolution of isotopic contents for a given fuel as a function of the fuel 

burnup. These capabilities are very appropriate in the studies of fuel cycle selection and 

nuclear non proliferation studies.  

 

Figure 2- 3: V:BUDS Demonstration of Neutron Energy Spectra for a Fresh Fuel 
Composition 
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Figure 2- 4: V:BUDS Demonstration of Burnup Dependent keff and Six Factor 
Formula terms for Time Dependent Calculations 

 

 

Figure 2- 5: V:BUDS Demonstration of Evolution of Isotopic Composition for a 
Selected Plutonium Fuel 
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Based on the review of the appropriate literature, we conclude that V:BUDS and its 

theoretical model will be best suited for our work and hence we will use this 

computational tool as a corner stone of our analyses for expanding and generalizing the 

collision probability theory to handle complicated problems. 
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3. Dissertation Description - Objectives and Problems 

 

We have generalized the treatment of unit cell models using collision probability theory 

for fuel burnup studies in heterogeneous reactors by considering the fuel as a non-

uniform multi-region area, and have developed an extension to the collision probability 

theory to situations where zero net neutron leakage across the unit cell boundaries is not 

appropriate.   

  

The above outlined objectives are achieved by analyzing two complex problems with 

different geometries. Each complex problem in general is presented by an identification 

of its scope and statement of the problem, specific background and introduction, 

developed methodology, any benchmark problem as applicable, and results of the 

developed methodology and comparisons with the benchmark results as appropriate and 

concluding remarks.  
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3.1 Complex Problem # 1 

3.1.1 Scope/Statement of Problem 

 

We have developed approximate equations for neutron transport using collision 

probability theory for a unit square cell with an infinitely long cylindrical fuel pin located 

at the center of the cell where the fuel pin is treated as a non-homogeneous fuel medium 

to account for non-uniformity of neutron flux within the fuel medium. 

 

The multi-region fuel area accounts for the non-uniformity/variability of the neutron flux 

and material properties across the fuel region which in turn affects the neutron 

transmission and escape probabilities inside the fuel region. The non-uniformity of the 

neutron flux and material properties better treats the self shielding effects inside the fuel 

region. The fuel within a reactor core is burned from outside surface toward inside of the 

fuel region and the developed treatment addresses this phenomenon.  

 

3.1.2 Background/Introduction 

 

A general form for the time independent neutron transport equation is: 
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where; 

Ω (ster): directional unit vector, 

r (cm): positional vector, 

E (eV): energy, 

( )Ω,.Erφ  (n/cm2/s/ster/eV): neutron flux per unit solid angle per unit energy 

( )Er,φ  (n/cm2/s/eV): neutron flux per unit energy;  ∫= Ω)E,(r,dΩE)(r, φφ  

( )ΩΣ ,,Ert  (1/cm) : total macroscopic cross section 

( )Ω→Ω′→′Σ ,, EErs  (1/cm/eV/ster): cross section for scattering from ( )Ω′′,E  into 

( )Ω,E  

( )Erf ′Σ ,  (1/cm): macroscopic fission cross section 

( )Eχ  (1/eV): probability that a fission neutron is born at energy E 

( )Er,υ  (neutron per fission): fission yield 

 

Collision probability theory solution of the integro-differential equation for neutron 

transport (Eqn: 3.1-1) for a given unit cell is accomplished by decoupling the spatial and 

energy effects. Two crucial assumptions are made in order to accomplish the subject 

decoupling.  

 

First, elastic scattering is assumed to be linearly anisotropic in the center-of-mass system 

and for calculations involving the spatially-dependent flux, the total cross section is 

replaced by transport cross section as follows: 
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( ) satr Σ−+Σ=Σ μ1          (Eqn: 3.1-2) 

 

where μ  is the average value of cosine of the scattering angle. For spatial transport 

modeling, scattering events devolve into a neglected forwarded scattering component 

with no energy transfer and an isotropic component governed by trΣ .  Second, a unit cell 

consisting of homogeneous fuel region surrounded by a homogeneous moderator/coolant 

is assumed for the neutron transport between the fuel and moderator/coolant (two region 

model). The subject two region model is depicted in Figure 3.1-1. 

 

 

Figure 3.1- 1: Unit Cell Representing a Two Region Model 
 

In the above two region model, the fuel region is considered to be homogeneous where 

the flux and properties are taken to be uniform Hence, the following transmission and 

Fuel Pin 
(Region 0) 

Moderator/
Coolant 
(Region 1) 
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escape probabilities are defined for the fuel (region 0) and the moderator/coolant (region 

1). 

 

 

Table 3.1- 1: Transmission and Escape Probabilities for Unit Cell Two 

Region Model 

 
0P  Probability that a neutron having had its last interaction in the fuel, will 

escape the fuel without further interaction. 

0T  Probability that a neutron entering the fuel region is transmitted without 

interaction. 

1P  Probability that a neutron, having had its last interaction in the 

moderator/coolant, will escape the moderator/coolant without further 

interaction. 

1T  Probability that a neutron entering the moderator/coolant is transmitted 

without interaction (Dancoff factor) 

 

 

Terms 100 ,, PTP  and 1T  are illustrated in Figure 3.1-2. 
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Figure 3.1- 2: Illustration of Terms P0, T0, P1, and T1 in a Two Region Unit Cell 
Model 

 
Decoupling of spatial and energy effects in the neutron transport equation can now be 

accomplished using region to region neutron transmission probabilities 0Π  and 1Π . 

These transmission probabilities, 0Π  and 1Π , are defined in terms of 100 ,, PTP  and 1T  as 

follows: 

 

0Π  is defined as the probability that a neutron appearing in the fuel (region 0) at energy 

E will undergo its next interaction in the moderator/coolant (region 1).   

 

1Π  is defined as the probability that a neutron of energy E appearing in the 

moderator/coolant undergoes its next interaction in the fuel. 

P0, neutron 
having had its 
last interaction in 
the fuel, will 
escape the fuel 

T0, neutron 
entering the fuel 
region is 
transmitted thru 
fuel without 
further 
interaction 

T1, neutron entering 
moderator is 
transmitted thru 
moderator without 
interaction (next 
interaction is in a 
fuel region) 

P1, neutron having 
its last interaction in 
moderator escapes 
the moderator 
without further 
interaction 
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0Π  and 1Π  are derived in [10] as; 

 

            (Eqn: 3.1-3) 

          (Eqn: 3.1-4) 

 

Values of 100 ,, PTP  and 1T  for infinitely long cylinders with radius of R have been 

derived and are presented as follows. It is noted that this infinitely long cylinder 

represents the fuel region in the two region unit cell model.  

 

The following closed form expression has been derived for T0 by using diffusion theory 

to solve the pin-cell transport problem [9]. This derivation is based on isotropic neutron 

emission and constant cross section within the central fuel region. Equation 3.1-5 or 

similarly developed equations from reference [10] will be used to determine the 

transmission probability through the central region of the multi-region cylindrical fuel 

model developed in problem number 1 of this dissertation.    

 

  

  

 

          (Eqn: 3.1-5) 

where ( )RKi Σ  and ( )RIi Σ  are modified ith order Bessel functions and Σ is the fuel total 

macroscopic interaction cross section.  
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0P  is obtained by use of reciprocity relationship between 0T  and 0P . 

 

          (Eqn: 3.1-6) 
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 for an infinite cylinder is 
2
R . So, 0P  is derived 

for the fuel region as; 

 

          (Eqn: 3.1-7) 

 

T1, the probability that a neutron entering the moderator/coolant region from the fuel 

region will be transmitted without interaction is known as the Dancoff factor.  

 

Computation of 1T  for cylindrical geometry is complicated. Fortunately, it has been 

determined for the subject configuration by several researchers. Dancoff factors have 

been obtained as functions of geometry and attenuation coefficient via ray tracing 

techniques and expressed in tabular form for parallel circular cylinders as a function of 

two dimensionless parameters; the pitch to pin radius ratio and the pin radius to the mean 

free path in the moderator ratio.  This approach is encoded in V:BUDS.  1P  is then 

calculated by use of reciprocity relation between 1P  and 1T .   
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Now, by knowing 01100 ,,,, ΠTPTP  and 1Π , the transport equation can be solved to find 

uniform fluxes in the fuel and moderator/coolant regions. The decoupled transport 

equation for two region unit cell model where spatial and energy variables have been 

decoupled are then presented in the following approximate form; 

 

For Fuel Region (Region 0): 

 

 

           

 

 

(Eqn: 3.1-8) 

For Moderator/Coolant (Region 1): 

 

  

 

          (Eqn: 3.1-9) 

 

We improve the solution to the unit cell flux equations by using collision probability 

theory and treating the fuel area as a multi-region area. This multi-region concept will 
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in each sub-region of the fuel region. We will develop the methodology within section 

3.1.3 of this dissertation.   

 

3.1.3 Developed Methodology and Definitions for Solving Complex Problem 

Number 1 

 

The methodology for solving the proposed problem is provided in the following sections.  

This methodology will provide a tool for examining the effects of variability of the flux 

and material properties across the fuel region which in turn will affect the neutron 

transmission and escape probabilities inside the fuel region.  These probabilities help 

determine important reactor physical parameters such as the multiplication factor in the 

unit cell and the fuel burnup and production of different radionuclides during the fuel 

irradiation process. 

 

We divide the cylindrical fuel region to several sub-regions. Then we determine the 

transmission and escape probabilities within each of these fuel sub-regions.  The 

proposed multi-region fuel complicates the determination of transmission and escape 

probabilities in the fuel region. A model of this subdivision is depicted in the Figure 3.1-

3. 
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Figure 3.1- 3: Unit Cell with Multi-Region Fuel Model 
 
 

Use of multi-region fuel area in a unit cell requires introduction of transmission and 

escape probabilities within each fuel sub-region. We use Figure 3.1-3 to derive these 

probabilities, m
oo

m
io

m
oi

m
o

m
i TTTPP ,,, ,,,,  and nm,Π   based on the following definitions. 

 

 

m
oiT ,  = probability that a neutron at energy E entering sub-region m from its inner 

surface is transmitted to its outer surface without interaction. 

Moderator/Coolant Sub-region (Sub-region N+1) 

RN

Rm 

Rm-1 

Sub-region m Sub-region N 
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m
ioT ,   = probability that a neutron at energy E entering sub-region m from its outer 

surface is transmitted to its inner surface without interaction. 

 

m
ooT ,  = probability that a neutron at energy E entering sub-region m from its outer 

surface is transmitted to its outer surface without interaction. 

  

m
iP  =  probability that a neutron at energy E, having had its last interaction in 

sub-region m, will escape through inner surface of sub-region m without 

further interaction. 

 

m
oP  =  probability that a neutron at energy E, having had its last interaction in 

sub-region m, will escape through outer surface of sub-region m without 

further interaction. 

 

nm,Π  =  probability that a neutron appearing in sub-region m at energy E will 

undergo its next interaction in sub-region n. 

 

For better understanding of the transmission and escape probabilities within each fuel 

sub-region m, these terms are depicted in Figure 3.1-4. 
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Figure 3.1- 4: Transmission and Escape Probabilities within Fuel Sub-Region m 
 
 

3.1.4 Coordinate System for Solving Complex Problem # 1 

 

Definition and selection of an appropriate set of coordinate systems is an absolute 

essential in the derivation of mathematical expressions for the transmission and escape 

probabilities in the fuel sub-regions. Use of the same coordinate system throughout the 

process of the mathematical derivation of transmission and escape probabilities will not 

result in mathematical expressions in their simplest possible form.  Therefore, the 

coordinate system is carefully selected on a case by case basis for the derivation of each 

desired probability. These coordinate systems are depicted in the following sections. 

m
oiT ,

m
ioT ,

m
ooT ,

m
iP  

 m
oP  

Fuel Sub-region m 



 
 
 
 

37

  

3.1.5 Determination of  m
iP  

 

The coordinate system for determination of m
iP  is shown in Figure 3.1-5. We take an 

arbitrary infinitesimal volume within region m (point of interest) of the fuel and define 

the following parameters; 

r and z = radial and vertical coordinates 

mr and 1−mr  =  outer and inner radii of fuel sub-region m 

L = distance between the point of interest and an arbitrary point on the inner cylinder 

with radius 1−mr  (target point).  

θ  = L angle of declination from vertical 

ω = angular distance between the target point and r axis. 

R = radial distance between the fuel centerline and intersection of the vertical line from 

the point of interest and the horizontal plane that contains the target point. It is noted that 

the horizontal plane is perpendicular to z axis. 

ϕ  = angle between the line that connects the target point to the intersection of the vertical 

line from the point of interest and the horizontal plane containing the target point and the 

extension of the line that connects the target point and the fuel centerline.  
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Figure 3.1- 5: Coordinate System for Determination of m
iP  

 

We will develop m
iP  by calculating the escape probability from a typical point of interest 

as shown in Figure 3.1-5 into a target point on the cylindrical region with radius 1−mr  and 

move the target point all over the inner cylinder where there is a line of sight between the 

point of interest and the inner cylinder. Then the point of interest is moved throughout the 

m sub-region and the above process is repeated. This process is accomplished by triple 

integrals as shown in the numerator of equation 3.1-10. Then the overall escape 

probability is obtained by dividing the result of this triple integrals by the total neutron 

source within sub-region m. As part of the analysis, it is assumed that the neutron source 

(q) is uniform and isotropic in the annular region between 1−mr  and mr  (region m) 

including the boundaries and the annular cylindrical region is infinite in the z direction.  

The concept of the above derivation is similar to derivation of view factors between two 
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surfaces however it includes the attenuation factor between the two surfaces which 

complicates the derivation tremendously. 
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By using law of cosines, 

)cos(sin2sin 1
222

1
2 ϕπθθ −−+= −− LrLrR mm      (Eqn: 3.1-11)  

ϕθθ cossin2sin 1
222

1
2 LrLrR mm −− ++=      (Eqn: 3.1-12) 

Lmax for a given (φ, θ) is found when the point of interest is located on the surface of 

cylinder with radius mr . Hence, 

ϕθθ cossin2sin max1
22

max
2

1
2 LrLrr mmm −− ++=     (Eqn: 3.1-13) 

Lmax is obtained as follows by solving equation 3.1-13. 

( ) θϕ
θ

ϕϕ
csc

sin
sincos 22

1
2

1
max f

rrr
L mmm =

−+−
= −−     (Eqn: 3.1-14) 

where we have defined ( )ϕf  as follows for simplifying the appearance of the derived 

equations. 

( ) ϕϕϕ 22
1

2
1 sincos −− −+−= mmm rrrf      (Eqn: 3.1-15) 
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By integrating and simplifying equation 3.1-10, we get; 
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For further simplification, define Bickley function [Ref. 5] as; 
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Hence the final form of the escape probability m
iP  is derived as: 
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Examination of equation 3.1-19 indicates that m
iP can be expressed in terms of two 

dimensionless variables 
1−m

m

r
r

and 1−Σ mmr . Therefore we will plot m
iP in terms of these two 

variables in order to verify the limiting behavior of m
iP .  Mathcad version 11 software is 
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used within this dissertation to obtain the values for the escape and transmission 

probabilities that are only used for plotting purposes. An adaptive quadrature integration 

method is used that is appropriate for use with functions that have the potential to change 

rapidly over an interval of interest such as our escape and transmission probabilities.     
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Figure 3.1- 6:  m
iP Escape Probability vs. 

1−m

m

r
r

 Ratio for Several S= 1−Σ mmr  Values 

 

m
iP exhibits the correct behavior as it approaches a value of 0.5 as 

1−m

m

r
r

 approaches unity. 

This is because for 
1−m

m

r
r

of 1, which means that the sub-region m is extremely thin, half 

the neutrons will escape to the inner surface and the other half will escape to the outer 
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surface and there will be virtually no attenuation due to very small travel distance. As 

1−m

m

r
r

gets larger, the escape probability gets smaller due to larger travel distance. 

Therefore, we conclude the validity of equation 3.1-19. 

 

3.1.6 Determination of m
oP  

 

The following calculations show how m
oP  is derived. The methodology is similar to those 

for derivation of m
iP so some of the intermediate steps are not shown for presentation 

simplicity reasons. The utilized coordination is shown in the figure below. We take an 

arbitrary infinitesimal volume within region m (point of interest) of the fuel and define 

the following parameters; 

r and z = radial and vertical coordinates 

mr and 1−mr  =  outer and inner radii of fuel sub-region m 

L = distance between the point of interest and an arbitrary point on the outer cylinder 

with radius mr  (target point).  

θ  = L angle of declination from vertical 

ω = angular distance between the target point and r axis. 
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R = radial distance between the fuel centerline and intersection of the vertical line from 

the point of interest and the horizontal plane that contains the target point. It is noted that 

the horizontal plane is perpendicular to z axis. 

ϕ  = angle between the line that connects the target point to the intersection of the vertical 

line from the point of interest and the horizontal plane containing the target point and the  

line that connects the target point and the fuel centerline.  

  

Figure 3.1- 7: Coordinate System for Determination of m
oP  

 
 
Derivation of m

oP within equation 3.1-20 is similar to derivation of  m
iP in equation 3.1-10 

except for the fact that the target point is now located on the outer surface with radius mr . 

The results are as follows. 
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Using Figure 3.1-7 and law of cosines we get; 
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Lmax for a given (φ, θ) and when 
m

m

r
r 1arcsin0 −≤≤ ϕ  is found by putting the point of 

interest on the surface of cylinder with radius 1−mr  (R = 1−mr ). Hence, 
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where; 
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maxL for a given (φ, θ) and when 
m

m

r
r 1arcsin

2
−>≥ ϕπ  is found by putting the point of 

interest on the surface of cylinder with radius mr  (R = mr  ). Hence, 
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where; 

 

( ) ϕϕ cos2 mrh =         (Eqn: 3.1-27) 

 

By plugging values of maxL  from equations 3.1-23 and 3.1-26 into equation 3.1-20 and 

simplification, we obtain;  

( )

( )

( )

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

−
=

∫ ∫∫

∫ ∫∫

= =

Σ−

=

= =

Σ−

=

−

−

−

2

0

csc

0

2
2

arcsin

2

0

csc

0

2

arcsin

0

2
1

2

.sincos

.sincos
2

1

1

π

θ

θϕ
π

ϕ

π

θ

θϕ

ϕ

θθϕϕ

θθϕϕ

π h

L

L

r
r

g

L

L
r

r

mm

mm
o

m

m

m

m

m

m

edLdd

edLdd

rr
r

P    (Eqn: 3.1-28) 



 
 
 
 

46

We have; 
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To further simplify the expression for m
oP , we will introduce the following transformation 

in order to change the (
m

m

r
r 1arcsin − ) integral limit to (

2
π ). 
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Hence when 
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where; 
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Equation 3.1-33 can now be simplified as, 
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Based on the definition for Bickley function [Ref. 5], the m
oP can be further simplified. 
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Equation 3.1-43 above is the simplest closed form representation of m
oP . 
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Examination of equation 3.1-43 indicates that m
oP can be expressed in terms of two 

dimensionless variables 
1−m

m

r
r

and mmrΣ . Therefore we will plot m
oP in terms of these two 

variables in order to verify the limiting behavior of m
oP . 
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Figure 3.1- 8:  Escape Probability vs. 
1−m

m

r
r

 Ratio for Several S= mmrΣ Values 

 

m
oP exhibits the correct behavior as it approaches a value of 0.5 as 

1−m

m

r
r

 approaches unity. 

This is because for 
1−m

m

r
r

of 1, which means that the sub-region m is extremely thin, half 

the neutrons will escape to the inner surface and the other half will escape to the outer 

surface and there will be virtually no attenuation due to very small travel distance. As 
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1−m

m

r
r

gets larger, the escape probability gets smaller due to larger travel distance. It is also 

noted that for small values of  mmrΣ , as
1−m

m

r
r

  starts increasing over unity,  m
oP    initially 

increases above 0.5 value due to a larger subtended angle towards the outer surface when 

compared to the inner surface, then m
oP decreases due to larger traversed distance to the 

outer surface.  Therefore, we conclude the validity of equation 3.1-43. 

 

3.1.7 Determination of  m
ioT  

 

Now we will turn our attention in calculations of the transmission probabilities in the 

cylindrical annular region. We take an arbitrary infinitesimal surface area on the inner 

cylinder with radius 1−mr  (point of interest) and define the following parameters; 

r and z = radial and vertical coordinates 

mr and 1−mr  =  outer and inner radii of fuel sub-region m 

L = distance between the point of interest and an arbitrary point on the outer cylinder 

with radius mr  (target point).  

θ  = L angle of declination from vertical 

ϕ  = angle between the horizontal projection of line L and r axis.  
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Figure 3.1- 9: Coordinate System for Determination of m
ioT  

 

We will develop m
ioT  by calculating the transmission probability from a typical point on 

the inner cylinder with radius 1−mr  as shown in Figure 3.1-9 into the outer cylindrical 

region with radius mr  as shown in equation 3.1-44. In this approach, the transmission 

probability is determined by finding the transmission probability from the point of 

interest to a target point on the outer surface where there is a line of sight from the point 

of interest.   

φ 

 
θ 

z 

r 
rm-1 

rm 

Point of interest 

 

L 



 
 
 
 

53

∫ ∫

∫ ∫

= =

= =

Σ−

=
2

0

2

0

2

2

0

2

0

2

sincos

sincos

π

ϕ

π

θ

π

ϕ

π

θ

θϕθϕ

θϕθϕ

dd

edd
T

L

m
io

m

      (Eqn: 3.1-44) 

∫ ∫
= =

Σ−=
2

0

2

0

2sincos4
π

ϕ

π

θ

θϕθϕ
π

Lm
io

meddT       (Eqn: 3.1-45) 

L can be found by using law of cosines in Figure 3.1-9. 
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Solution for the above equation is;  
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Therefore the transmission probability is; 
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Examination of equation 3.1-49 indicates that m
ioT can be expressed in terms of two 

dimensionless variables 
1−m

m

r
r

and 1−Σ mmr . Therefore we will plot m
ioT in terms of these two 

variables in order to verify the limiting behavior of m
ioT . 
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Figure 3.1- 10: m
ioT  Transmission Probability vs. 

1−m

m

r
r

 Ratio for Several S= 1−Σ mmr Values 

 

m
ioT exhibits the correct behavior as it approaches a value of 1.0 as 

1−m

m

r
r

 approaches unity. 

This is because for 
1−m

m

r
r

of 1, which means that the sub-region m is extremely thin, nearly 

all the neutrons will transmit to the outer surface un-interacted. As 
1−m

m

r
r

gets larger, the 
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transmission probability gets smaller due to larger travel distance. Therefore, we 

conclude the validity of equation 3.1-49. 

 

3.1.8 Determination of m
oiT  

 

We take an arbitrary infinitesimal surface area on the outer cylinder with radius mr  (point 

of interest) and define the following parameters; 

r and z = radial and vertical coordinates 

mr and 1−mr  =  outer and inner radii of fuel sub-region m 

L = distance between the point of interest and an arbitrary point on the inner cylinder 

with radius 1−mr  (target point).  

θ  = L angle of declination from vertical 

ϕ  = angle between the horizontal projection of line L and r axis.  
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Figure 3.1- 11: Coordinate System for Determination of m
oiT  

 
 
The derivation of m

oiT  is similar to that for m
ioT  as derived below. 
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By using the law of cosines and Figure 3.1-11; 
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Using a similar transformation as shown in equations 3.1-34 and 3.1-35, we get; 
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So the transmission probability from equation 3.1-50 becomes; 
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Examination of equation 3.1-58 indicates that m
oiT can be expressed in terms of two 

dimensionless variables 
1−m

m

r
r

and 1−Σ mmr . Therefore we will plot m
oiT in terms of these two 

variables in order to verify the limiting behavior of m
oiT . 
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Figure 3.1- 12: m
oiT Transmission Probability vs. 

1−m

m

r
r

 Ratio for Several 

S= 1−Σ mmr Values 

 

m
oiT exhibits the correct behavior as it approaches a value of 1.0 as 

1−m

m

r
r

 approaches unity. 

This is because for 
1−m

m

r
r

of 1, which means that the sub-region m is extremely thin, nearly 
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all the neutrons will transmit to the inner surface un-interacted. As 
1−m

m

r
r

gets larger, the 

transmission probability gets smaller due to larger travel distance. Therefore, we 

conclude the validity of equation 3.1-58. 

 

3.1.9 Determination of m
ooT  

 

We take an arbitrary infinitesimal surface area on the outer cylinder with radius mr  (point 

of interest) and define the following parameters; 

r and z = radial and vertical coordinates 

mr and 1−mr  =  outer and inner radii of fuel sub-region m 

L = distance between the point of interest and an arbitrary point on the outer cylinder 

with radius mr  (target point).  

θ  = L angle of declination from vertical 

ϕ  = angle between the horizontal projection of line L and r axis.  
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Figure 3.1- 13: Coordinate System for Determination of m
ooT  

 

 

We will develop m
ooT  by calculating the transmission probability from a typical point on 

the outer cylinder with radius mr as shown in Figure 3.1-13 to another outer cylinder area 

with radius mr  as shown in equation 3.1-59. In this approach, the transmission probability 

is determined by finding the transmission probability from the point of interest on the 

outer cylinder to a target point on the outer cylinder where there is a line of sight from the 

point of interest.   
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For a given ( )θϕ, , value of L is obtained by using the law of cosines. 

ϕθθ cossin2sin2222 LrLrr mmm −+=       (Eqn: 3.1-61) 

( ) θϕ
θ
ϕ csc

sin
cos2 hrL m ==        (Eqn: 3.1-62) 

where; 

( ) ϕϕ cos2 mrh =         (Eqn: 3.1-63) 

By using transformation as used before, we can get a simplified form for m
ooT . 
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Examination of equation 3.1-67 indicates that m
ooT can be expressed in terms of two 

dimensionless variables 
1−m

m

r
r

and 1−Σ mmr . Therefore we will plot m
ooT in terms of these two 

variables in order to verify the limiting behavior of m
ooT . 
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Figure 3.1- 14: m
ooT Transmission Probability vs. 

1−m

m

r
r

 Ratio for Several 

S= 1−Σ mmr Values 

 

m
ooT exhibits the correct behavior as it approaches a value of 0.0 as 

1−m

m

r
r

 approaches unity. 

This is because for 
1−m

m

r
r

of 1, which means that the sub-region m is extremely thin or the 

inner and outer radii are very close to each other, nearly all the neutrons will transmit to 

the inner surface un-interacted and not many of these neutrons will reach the outer 

surface again. As 
1−m

m

r
r

gets larger, the transmission probability gets smaller due to larger 

travel distance. It is noted again that as
1−m

m

r
r

  starts increasing over unity,  m
ooT   initially 

increases above zero due to a larger subtended angle towards the outer surface when 
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compared to the inner surface, then m
ooT decreases due to larger traversed distance to the 

outer surface. This effect is more pronounced for the smaller values of 1−Σ mmr .Therefore, 

we conclude the validity of equation 3.1-67. 

 

3.1.10 Correlations between the Transmission and Escape Probabilities 

 

The following section summaries the results for the transmission and escape probabilities 

and establishes the correlation between these probabilities. These derived equations are 

consistent with the results presented in Reference [37] for the transmission and escape 

probabilities for annular regions.   

( )( )∫
=

Σ=
2

0
3cos4

π

ϕ

ϕϕϕ
π

fKidT m
m

io       (Eqn: 3.1-68)  

where; 

( ) ϕϕϕ 22
1

2
1 sincos −− −+−= mmm rrrf      (Eqn: 3.1-69) 

( )( )∫
=

− Σ=
2

0
3

1 cos4
π

ϕ

ϕϕϕ
π

fKid
r

r
T m

m

mm
oi       (Eqn: 3.1-70) 

Therefore; 
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where; 

( ) ϕϕ cos2 mrh =         (Eqn: 3.1-73) 
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          (Eqn: 3.1-76)  

Substitution of equations 3.1-68, 3.1-70, and 3.1-71 into equations 3.1-75 and 3.1-76 will 

provide the escape probabilities in terms of transmission probabilities. 
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As a final note, examination of equation 3.1-71, reveals the fact that the reciprocity 

theorem applies to inner to outer and outer to inner transmission probabilities. This is 

similar to reciprocity theorem between two surfaces that exchange radiative heat transfer. 

In this case the product of the surface area and the transmission probability (similar to a 

view factor) follows the following correlation; 

m
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       (Eqn: 3.1-80) 

 

3.1.11 Calculation of Π0 for Problem # 1 

 

We will extend the definition of 0Π to be the probability that a neutron appearing in any 

fuel sub-region (sub-regions 1, 2, …, N) as demonstrated in Figure 3.1-3 at energy E will 

undergo its next interaction in the moderator/coolant (sub-region N+1).  Computation of 

0Π consists of two elements. The first one is fP , the probability of a neutron being born 

in any of the fuel sub-regions to escape the outer boundary of the outer most fuel sub-
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region (sub-region N) and the second one is the probability that a neutron entering the 

moderator/coolant sub-region (sub-region N+1) will interact with the moderator. 

Multiplication of these two probabilities will determine Π0.  

 

For determination of the fP , we will start with a fuel area divided in three annular regions 

(N=3) and after determination of fP  for three sub-regions, we will generalize it to N sub-

regions. 

i) For neutron born in sub-region 1 ( 1fP ); 

321
1 ioioof TTPP =          (Eqn: 3.1-81) 

ii) For neutron born in sub-region 2 ( 2fP ); 

321232
2 ioioooiioof TTTPTPP +=        (Eqn: 3.1-82) 

iii) For neutron born in sub-region 3 ( 3fP ); 

( )32123233
3 ioiooooiioooiof TTTTTTPPP ++=       (Eqn: 3.1-83) 

The overall escape probability of fP  can then be obtained by summing the weighted 

fraction of 21 , ff PP  and 3fP . The weighing factor for each region is necessary to 

normalize the total number of neutrons that are originated in all fuel sub-regions to 1. The 

developed equation will then give us the equivalent escape probability from the entire 
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fuel region for a neutron that is originated anywhere within the fuel.  We will designate 

the weighing factor for each fuel sub-region m as mω  where; 

1
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m mω          (Eqn: 3.1-84) 

332211 ffff PPPP ωωω ++=        (Eqn: 3.1-85) 
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(Eqn: 3.1-86) 

Based on the examination of the patterns of the terms in equation 3.1-86, the escape 

probability fP  is generalized for N fuel sub-regions as follows; 
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(Eqn: 3.1-87) 

Determination of the second element requires that we calculate the probability of a 

neutron entering the outer most fuel sub-region from outside will pass through the entire 

fuel without any interaction.  Similar to the methodology for determination fP , we will 

calculate this transmission probability fT  for a three fuel sub-regions and then we will 

generalize the results for N fuel sub-regions.   
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( ) ( )( )( )32123233 11 ioioooooiooooooof TTTTTTTTT −+−+=       (Eqn: 3.1-88) 

The above equation is rearranged for the purpose of pattern recognition. 

( )( ) ( ) 3233213
00

23 111 ioooooioiooooooof TTTTTTTTTT −+−−+=     (Eqn: 3.1-89) 

The general equation for the fuel transmission probability is then derived. 
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Now based on the two fP  and fT  elements as derived above, the escape probability oΠ  

is calculated.  
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where 1+NT is the Dancoff factor (transmission probability through the moderator/coolant) 

and as stated in the problem statement, the Dancoff factor as derived in reference [10] 

will be used in this work. 

 

At this point, we will derive the weighing factor mω  for each fuel sub-region. In a case 

where the neutron flux is taken as uniform throughout the fuel, weighting factor for each 
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fuel sub-region is equal to the fraction of the fuel sub-region volume to the total fuel 

volume.  
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r
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−
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π
π

ω        (Eqn: 3.1-93) 

We will attempt to refine mω  further for our calculations. For this purpose, we need to 

develop the weighing factors for neutrons that interact in each fuel sub-region, mω , as 

shown in equation 3.1-87. First, mω  is defined as the ratio of number of neutron 

interactions within fuel sub-region m to the total number of neutron interactions within 

the entire fuel. 
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We make the following simplifying assumptions in order to solve equation 3.1-94; (1) for 

addressing the issue of energy dependence of the interaction rate, we use an average cross 

section value within equation 3.1-94. The average total interaction cross section is taken 

to be constant throughout the fuel region and does not change significantly with the fuel 

burnup, (2) The rate of interaction of fast and epithermal neutrons within the fuel is 

assumed to be insignificant when compared to those for thermal neutrons. 
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The thermal flux within a fuel rod in a two region cell is determined by use of equation 

3.1-95 [14]. 

 

( ) ( )rAIr τφ 0=          (Eqn: 3.1-95) 

 

where A is a constant associated with the power level of the fuel rod and 
D

aΣ=τ is the 

reciprocal of the thermal diffusion length in the fuel. Based on these assumptions, 

equation 3.1-94 is simplified as follows.   
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The reasonableness of the above assumptions are discussed below.  The weighing factors 

as derived from equation 3.1-96 will be used in for solving the current subject problem. 

We used the modified V:BUDS code to calculate the values τ  based on averaged total 

absorption cross section and diffusion coefficient from equations 3.1-97 and 3.1-98 for 

the multiplication factor benchmark problems for the fresh and irradiated fuel using the 

input parameters from Reference [29]. 
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Calculated τ and averaged total interaction cross sections are included in Table 3.1-2. 

 

Table 3.1- 2: Calculated avgΣ for Multiplication Factor Benchmark Problems Using 
V:BUDS 

 

Level of Fuel Irradiation 

(MWd/kg) 

1−− cmτ  1−−Σ cmavg  

0 (fresh fuel) 0.118646 0.149309 

20 0.116728 0.147949 

40 0.114415 0.146400 

60 0.112192 0.144906 

 

 

Results of Table 3.1-2 validate the reasonableness of the constant average total 

interaction cross section assumption in the subject calculations. Also, incorporation of the 

average τ  and the fuel radius of the benchmark problem into equation 3.1-96 shows that 
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the values of mω  is very close to the values mω  that are obtained by assuming a uniform 

flux within the fuel region. Review of existing literature such as References [34] and [35] 

indicate that in closely packed cells with light nuclide moderator and small fuel diameter 

such as our benchmark problem and actual fuel assemblies of power reactor core, the 

uniform flux assumption is reasonable. These conclusions justify the adequacy of the 

assumptions we used in deriving values of  mω  for use in equation 3.1-87. 

1Π  will be derived based on the reciprocity theorem as follows; 

1110 ++ ΣΠ=ΣΠ NNff VV        (Eqn: 3.1-99) 

where; 

fΣ  = total macroscopic cross section of the fuel  

fV  = volume of the fuel region 

1+ΣN  = total macroscopic cross section of the moderator/coolant 

1+NV  = volume of the moderator/coolant 

 

At this point all the terms as defined in the statement of problem are derived and hence 

the decoupled flux equations as shown in equations 3.1-8 and 3.1-9 can be solved using 

the expanded V:BUDS computer code. 
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The V:BUDS computer code is expanded by allowing the code to recognize the multi-

region fuel, obtaining the geometry and material properties for each of the fuel sub-

regions, calculating the transmission and escape probabilities for each fuel sub-region 

using numerical integrations, calculating fP  and fT  values for the fuel and then 

calculating the equivalent oΠ  and 1Π .  As a last point in the development of the subject 

problem, we note that the characteristics length or mean chord length of the fuel sub-

region should be similar to or larger than the mean free path for the thermal neutrons 

within the fuel, otherwise, inaccuracies will be introduced into the calculations due to the 

imposed boundary conditions at each fuel sub-region. These inaccuracies will increase as 

the fuel sub-region characteristic length gets smaller when compared to the thermal 

neutron mean free path within the fuel.  Hence, care should be taken when selecting the 

number of the fuel sub-regions. This point is illustrated in Table 3.1-12 of section 3.1-14. 

 

3.1.12 Determination of fuel sub-region to sub-region escape probability nm,Π   

 

The purpose of this section is to determine the escape probability from sub-region m to 

sub-region n of the fuel for the purpose of providing a methodology for solving equations 

3.1-8 and 3.1-9.  This determination depends on location of m sub-region in relation to n 

sub-region. Therefore two escape probabilities will be determined based on whether m>n 

or m<n. 
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Case (1): m<n 

 

Figure 3.1-3 will be used as guide for this determination. The subject probability will be 

the sum of the following series of probabilities; (i) probability of a neutron being born in 

sub-region m will travel to sub-region n and will have its first interaction there, (ii) 

probability of neutron born in sub-region m will leave the fuel pin and travel through the 

moderator/coolant without any interaction and then enter another fuel pin and travel to 

sub-region n of that fuel and have its first interaction there, (iii) probability of neutron 

born in sub-region m leaving the fuel and moderator/coolant un-interacted entering 

another fuel pin and traversing it un-interacted and entering the moderator/coolant for the 

second time and traversing it un-interacted and then enter another fuel pin where it has 

into first interaction in sub-region n of that fuel pin. This process will be repeated infinite 

times. We will demonstrate the derivation for a six sub-region fuel model (N=6) where 

m=3 and n=5 for illustration purposes and then generalize the resulting probability 

correlation. Six fuel sub-regions were chosen in order to generate adequate number of 

terms for the purpose of pattern recognition.  Each of the possible escape probabilities 

from region m to region n will be identified as iP  as shown below and the total escape 

probability from region m into region n will be the sum of all sPi′ . 

 

( )543
1 1 ioioo TTPP −=          (Eqn: 3.1-100) 
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( )5432123
2 1 ioioioiooooii TTTTTTPP −=        (Eqn: 3.1-101) 

 

( )54323
3 1 ioioioooi TTTTPP −=        (Eqn: 3.1-102) 

 

321 PPP ++  constitutes (generally shown as m
nmP , ) the item (i) above. For calculating 

probabilities in items (ii), (iii) and on we will first calculate the neutron escape 

probability from the Nth sub-region for a neutron that was born in sub-region m. 

 

6543
4 ioioioo TTTPP =         (Eqn: 3.1-103) 

 

65432123
5 ioioioioiooooii TTTTTTTPP =        (Eqn: 3.1-104) 

 

65432
00

3
6 ioioioioi TTTTTPP =         (Eqn: 3.1-105) 

654 PPP ++  constitutes probability that a neutron that was born in sub-region m=3 will 

escape the fuel pin it was born in. We will designate this probability as m
eP .  

 

 Study of 321 PPP ++  shows that it can be generalized as follows: 
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Now, probability for the neutron that just escaped the fuel pin where it was originated, to 

enter back into the fuel region and have its first interaction in sub-region n (say n=5) ( 7P ) 

will be; 

 

( ) ( )561
7 1 oioi

Nm
e TTTPP −= +        (Eqn: 3.1-108) 

 

7P  constitutes item (ii) as discussed above. Now, to determine item (iii) and the 

consecutive iterations ( 8P ) from above discussion, we recall from equation 3.1-90 that 

the probability for a neutron entering a fuel region from its outer surface and traversing it 

un-interacted is fT . 
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Hence the probabilities for items (ii) and (iii) and so on are; 
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Equation 3.1-112 can be generalized for a target fuel sub-region n where the subject 

neutron is interacted as follows; 
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Therefore, nm,Π  for a case where m<n can be derived by combining equations 3.1-106 

and 3.1-113. 
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or; 
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          (Eqn: 3.1-115) 

 

Case (2): m>n 

 

Development of nm,Π  is similar to the previous case and hence all the developmental 

steps are not repeated here. The result for this case is given as; 
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          (Eqn: 3.1-116) 

 

Determination nm,Π  allows for the determination of flux distribution by solving the 

neutron transport equation as derived in this section. 

 

It is noted that derivation of nm,Π  is based on assumption that flux and material 

properties are uniform in each sub-region with neutron distribution being isotropic at 

each sub-region interface boundaries, i.e., a “white” or directionally homogenous 

boundary condition applies at each interface. 
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Also, reciprocity relationship can be used to determine mn,Π  as follows. 

 

nnmnmmnm VV ΣΠ=ΣΠ ,,        (Eqn: 3.1-117) 

 

We modify the transport equations as shown in equations 3.1-8 and 3.1-9 to generalize 

the collision probability theory in a unit cell with multi sub-regions. Generalization of 

these two neutron transport equations based on the terminology as used in Figure 3.1-3 

provides the following general neutron transport equation. 

 

 

 

                  

 

          (Eqn: 3.1-118) 

 

where definition of the terms are similar to those as used in equations 3.1-8 and 3.1-9.  

This general equation is applicable for each sub-region; therefore, we have N+1 

equations and N+1 unknowns as follows; 
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where ( )Emφ  represents the uniform flux for neutrons of energy E within sub-region m. 

Then we can obtain the total flux within a given sub-region by integrating or by summing 

( )Emφ  over all energy groups. 

 

          (Eqn: 3.1-120) 

 

where m represents the sub-region of interest, i.e., m= 1, 2, …, N, N+1. 

 

The developed methodology in this section will allow for the determination of even more 

detailed flux distribution for a future work. At this point, we will plot the region to region 

escape probabilities for two cases of m>n and m<n for eratorTmod  value of 0.5 in order to 

gain some intuition in this process for a four sub-region fuel. 
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Figure 3.1-15 indicates that for large interaction coefficient, all of these escape 

probabilities approach zero. Also, as the distance between the two sub-regions increase, 

the escape probability between the two region decreases for a given interaction 

coefficient.  These observations are consistent with our expectations and provide intuition 

in these region to region escape probabilities.   

 

We will also show the values of region to region escape probabilities from the fuel region 

where the transmission and escape probabilities are derived in the previous sections for  

eratorrTmod  value of 0.5 with fuel divided to four sub-regions in accordance with Figure 

3.1-3. Sub-region 5 is the moderator/coolant area. This will help us to observe the escape 

probability from each fuel sub-region to another fuel sub-region. 
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Table 3.1- 3:  Region to Region Escape Probabilities for a Fuel with 4 sub-regions 

 

Fuel Region to 

Region Escape 

Probability 

1=ΣR  10=ΣR  

11Π  0.625 0.903 

12Π  0.123 0.092 

13Π  0.104 0.004 

14Π  0.09 1.533E-04 

15Π  0.063 2.995E-06 
 

21Π  0.040 0.031 

22Π  0.330 0.838 

23Π  0.350 0.125 

24Π  0.234 0.005 

25Π  0.155 9.417E-05 
 

31Π  0.020 7.891E-04 

32Π  0.150 0.076 

33Π  0.355 0.807 

34Π  0.290 0.114 

35Π  0.190 0.002 
 

41Π  0.014 2.231E-05 

42Π  0.100 0.002 

43Π  0.198 0.082 

44Π  0.433 0.861 

45Π  0.253 0.055 
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Observations from Table 3.1-3 are similar to those as described for Figure 3.1-15 and 

they are in accordance with our expectations. 

 

3.1.13 Selection of Benchmark Problems 

 

The following benchmark problems from OECD/NEA Burnup Credit Criticality 

Benchmark, Phases IV-A and IV-B [28 and 29] are selected to verify the accuracy of the 

developed methodology. OECD/NEA phase IV-A provides data on reactivity effects 

observed with fresh and irradiated MOX fuels. OECD/NEA phase IV-B includes 

benchmarking results on the inventories of nuclides of interest in MOX fuel following a 

specified burnup period.  We will use the phase IV-A results for evaluating the fidelity of 

our model in calculating multiplication factors within the fuel cell and phase IV-B results 

for evaluation of our model’s capabilities in determination of radionuclide inventories 

following a specified fuel burnup. A second benchmark problem from Reference [30] is 

also selected to further evaluate the capabilities of our model in the context of plutonium 

burnup.  These test cases are of interest because plutonium-bearing fuel exhibits shorter 

neutron mean free paths at most energies than does uranium fuel, so the homogenization 

approach of the original model would be expected to lead to larger errors.  The unit cell 

from Reference [28] is shown below. 
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Figure 3.1- 16: Selected OECD/NEA Phase IV-A Unit Cell for Multiplication Factor 
Benchmarking 

 

The initial fuel number densities for the multiplication factor benchmarking are given as 

follows [28]: 
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Table 3.1- 4: Number Densities of Actinides in Fresh MOX Fuel used for 
Multiplication Factor Benchmarking 

 

 
Nuclide Number Density 

[atm/barn.cm] for Fresh Fuel 

234U 2.7999E-7 

235U 5.8570E-5 

236U __ 

238U 2.3074E-2 

238Pu 2.4700E-5 

239Pu 8.0623E-4 

240Pu 3.1298E-4 

241Pu 1.6533E-4 

242Pu 5.3981E-5 

237Np __ 

241Am __ 

243Am __ 
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Table 3.1- 5: Number Densities of Actinides in Irradiated MOX Fuel used for 
Multiplication Factor Benchmarking 

 

 
Number Density [atm/barn.cm] for Irradiated Fuel Nuclide 

20 MWd/kg 40 MWd/kg 60 MWd/kg 

234U 6.3600E-7 7.7718E-7 9.1664E-7 

235U 4.2219E-5 2.9018E-5 1.9181E-5 

236U 3.7252E-6 6.1753E-6 7.5360E-6 

238U 2.2732E-2 2.2365E-2 2.1986E-2 

238Pu 2.2785E-5 2.5504E-5 2.9509E-5 

239Pu 5.9182E-4 4.5028E-4 3.6327E-4 

240Pu 3.1445E-4 2.9067E-4 2.5605E-4 

241Pu 1.8251E-4 1.8125E-4 1.6525E-4 

242Pu 7.0592E-5 9.1733E-5 1.211E-4 

237Np 1.6134E-6 3.0746E-6 4.1997E-6 

241Am 1.8432E-5 2.2303E-5 2.1568E-5 

243Am 1.3528E-5 2.4023E-5 3.2566E-5 
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The benchmark problem from OECD/NEA phase IV-A [28] provides a mean 

multiplication factor and the standard deviation based on thirty seven reported values 

using different computer codes and techniques. These reported results are included 

in Table 3.1-6.  

 

 

Table 3.1- 6: Benchmark Multiplication Factors for Problem # 1 

 

 
Case Mean Keff Standard 

Deviation 

Fresh Fuel 1.3002 0.0045 

Irradiated Fuel 

20 MWd/kg 

1.2428 0.0042 

Irradiated Fuel 

40 MWd/kg 

1.2050 0.0041 

Irradiated Fuel 

60 MWd/kg 

1.1754 0.0039 
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For isotope inventory benchmarking purposes, reference [29] is used. The MOX fuel unit 

cell for this case is a follows. 

 

Figure 3.1- 17: Selected OECD/NEA Phase IV-B Unit Cell for Isotope Inventory 
Benchmarking 

 
 

The initial fuel number densities for isotope inventory benchmarking as given within 

Reference [29] are included in Table 3.1-7. 
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Table 3.1- 7: Number Densities of Actinides in Initial MOX Fuel Pin used for 
Isotope Inventory Benchmarking from Reference [29] 

 
Nuclide Initial Number Density 

[atm/barn.cm] for the fuel pin 

234U 2.5952E-7 

235U 5.4287E-5 

236U __ 

238U 2.1387E-2 

238Pu 4.6610E-5 

239Pu 1.0156E-3 

240Pu 4.8255E-4 

241Pu 1.7491E-4 

242Pu 1.3201E-4 

237Np __ 

241Am __ 

243Am __ 

 

 

Material temperature for the above benchmark are given as Fuel temperature = 900°K 

[29], and Coolant/Moderator temperature = 575°K [29].  The benchmark values from 

Reference [29] are provided in Table 3.1-8. 
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Table 3.1- 8: Isotope Inventory Benchmark Calculation Results for Pin Cell Model 
at End of Cycle 1 for MOX fuel from Reference [29] 

 

Nuclide Number Density at EOC1 

[atm/barn.cm] for the fuel pin 

234U 5.3603E-7 

235U 4.3896E-5 

236U 2.5160E-6 

238U 2.1157E-2 

238Pu 4.1350E-5 

239Pu 8.0727E-4 

240Pu 4.7367E-4 

241Pu 2.1899E-4 

242Pu 1.3465E-4 

237Np 1.1947E-6 

241Am 8.7782E-6 

243Am 1.7080E-5 

 

 

Additional literature search identified another benchmark problem pertinent to our work 

on problem 1 [30]. In this reference, consumption of plutonium within thorium and 

uranium based mixed oxide fuels within reactors are studied through the use of MOCUP, 

MCNP, and ORIGEN computer codes [43], [44] and [45]. We will use one of the studied 
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fuel pins of this reference for further validation of our developed methodology.  

Specifications of the studied fuel pin in Reference [30] are included in Table 3.1-9. 

 

Table 3.1- 9: Fuel Pin Parameters for Isotope Inventory Benchmarking from 
Reference [30] 

 

Parameter Values 

Fuel temperature 900° K 

Fuel radius  0.41274 cm 

Clad inner radius 0.41896 cm 

Clad outer radius 0.47609 cm 

Fuel density 94% of theoretical  

Pin pitch 1.2626 cm 

Plutonium loading of the fuel 4.4 wt% (Reactor Grade) 

Beginning of Cycle Plutonium Isotope Fractions 

238PU 2.0% 

239Pu 58.0% 

240Pu 26.0% 

241Pu 10.0% 

242Pu 4.0% 
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Plutonium isotopic fractions and the total plutonium fraction in the fuel with a discharge 

burnup of 37 MWd/kg are given in Reference [30] and included Table 3.1-10. Reference 

[30] uses a discharge burnup (BU) based on a three-batch fuel cycle that is calculated 

from the Linear Reactivity Model as described in Reference [31]. 

 

Table 3.1- 10: Mass Percentage of Pu Isotopes to Total Pu Mass 

with BU=37 MWd/kg [30] 

 

238Pu 239Pu 240Pu 241Pu 242Pu Total Pu mass 

fraction 

2.37% 41.92% 28.73% 18.73% 8.26% 3.54 wt% 

 

Results of our analyses based on the developed methodology will be compared against 

the above selected benchmark problems and conclusions will be drawn on the fidelity of 

our model in the following sections. 

 

3.1.14 Calculation of the Multiplication Factors and the Isotope Inventory Using the 

Developed Methodology and Modified V:BUDS 

 

V:BUDS computer code was modified to incorporate the theoretical results of sections 

3.1.5 through 3.1.11. Then calculations were performed for several fuel sub-region 

values.  The right Riemann sums numerical scheme was used to calculate the integral 
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values associated with the escape and transmission probabilities. The subject probabilities 

were calculated based on several small angular step sizes before the final selection of the 

angular step size in order to ensure the maximum optimal desired accuracy.  For 

multiplication factor calculations, the modified V:BUDS input parameters for geometry 

and material properties are shown in Table 3.1-11. The initial isotopic contents for this 

case are shown in Tables 3.1-4 and 3.1-5 for fresh and irradiated fuel respectively.  

 

Table 3.1- 11: Modified V:BUDS Input Parameters for the Multiplication Factor 
Benchmark Problem [28] 

 
Parameter Input Value 

Fuel Temperature 300° K.  The fuel is assumed to be uniform 

in temperature. 

Moderator/Coolant Temperature 300° K.  The moderator/coolant is assumed 

to be uniform in temperature. 

Boron Concentration in Moderator/Coolant 600 ppm. 

Fuel Density 10.4 g/cm3. 

Fuel Radius 0.412 cm. 

Cladding Thickness 0.063 cm. 

Fuel Center to Center Pitch 1.33 cm. 
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As discussed in section 3.1-11, the mean free path for thermal neutrons for typical light 

water reactor fuel similar to that for the benchmark problems is smaller than 1cm [3] 

which corresponds to about two fuel sub-regions. Therefore, selection of two fuel sub-

regions would render the best comparative results, however, the results for four sub-

regions were shown in this analysis for the demonstration purposes. The calculated 

multiplication factor values were documented in Tables 3.1-12 through 3.1-15. In 

addition, we calculated the multiplication factors based on the same input parameters as 

above using the single fuel region model from the original V:BUDS code and included 

the results in Table 3.1-16 for comparison purposes against the modified V:BUDS and 

benchmark problem.  The multiplication factor for the fresh fuel was calculated for up to 

12 fuel sub-regions based on the developed methodology in order to demonstrate the 

increased inaccuracy with increased number of fuel sub-regions as discussed within 

section 3.1-11.   
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Table 3.1- 12: Modified V:BUDS and Benchmark Multiplication factor Results for 
Fresh Fuel 

 

Number of Fuel 

Sub-Regions 

(NRING) 

keff 

From V:BUDS 

Developed Methodology 

Mean keff 

From Benchmark (with σ 

=0.0045) 

2 1.31562 1.3002 

3 1.34082 1.3002 

4 1.31168 1.3002 

5 1.30988 1.3002 

6 1.23085 1.3002 

8 1.17544 1.3002 

10 1.14475 1.3002 

12 1.12843 1.3002 
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Table 3.1- 13: Modified V:BUDS Multiplication Factor and Benchmark Results for 
20 MWd/kg Irradiated Fuel 

 

Number of Fuel 

Sub-Regions 

(NRING) 

keff 

From V:BUDS 

Developed Methodology 

Mean keff 

From Benchmark (with σ 

=0.0042) 

2 1.24852 1.24280 

3 1.26571 1.24280 

4 1.2316 1.24280 

  

 

Table 3.1- 14: Modified V:BUDS Multiplication Factor and Benchmark Results for 
40 MWd/kg Irradiated Fuel 

 
Number of Fuel 

Sub-Regions 

(NRING) 

keff 

From V:BUDS 

Developed Methodology 

Mean keff 

From Benchmark (with σ 

=0.0041) 

2 1.19635 1.20500 

3 1.20449 1.20500 

4 1.16986 1.20500 
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Table 3.1- 15: Modified V:BUDS Multiplication Factor and Benchmark Results for 
60 MWd/kg Irradiated Fuel 

 
Number of Fuel 

Sub-Regions 

(NRING) 

Keff 

From V:BUDS 

Developed Methodology 

Mean Keff 

From Benchmark (with 

σ =0.0039) 

2 1.15043 1.17540 

3 1.15462 1.17540 

4 1.12082 1.17540 

 

 

Table 3.1- 16: Comparison of Single Fuel Region Model (Original V:BUDS) Results 
versus the Benchmark 

 
Fuel Mean keff 

From Benchmark 

(with σ =0.0045) 

keff 

From Single Fuel 

Region Model 

% Difference when 

compared to 

Benchmark 

Fresh Fuel 1.3002 1.26655 -2.59% 

Irradiated Fuel 

BU=20 MWd/kg 

1.24280 1.20607 -2.96% 

Irradiated Fuel 

BU=40 MWd/kg 

1.20500 1.16491 -3.33% 

Irradiated Fuel 

BU=60 MWd/kg 

1.17540 1.13192 -3.70% 
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The input parameters for the isotope inventory benchmark problem from OECD/NEA 

Phase IV-B [29] as shown in Table 3.1-17 were inserted in the multi-region fuel model. 

The sample results for fuel with two sub-regions are shown in Table 3.1-18. The 

remaining results for 3 and 4 fuel sub-regions are included in Appendix A as Tables 

A.3.1-1 and A.3.1-2. Also, the isotope inventories for this benchmark problem using the 

original V:BUDS (single fuel region) are determined and included in Table 3.1-19 for 

comparison purposes.  

 

Table 3.1- 17: V:BUDS Input Parameters for the OECD/NEA Phase IV-B Isotope 
Inventory Benchmark Problem [29] 

 
Parameter Input Value 

Fuel Temperature 900° K.  The fuel is assumed to be uniform 

in temperature. 

Moderator/Coolant Temperature 575° K.  The moderator/coolant is assumed 

to be uniform in temperature. 

Boron Concentration in Moderator/Coolant 600 ppm. 

Fuel Density 10.4 g/cm3. 

Fuel Radius 0.410 cm. 

Cladding Thickness 0.065 cm. 

Fuel Center to Center Pitch 1.3127cm. 
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Table 3.1- 18: Modified V:BUDS Isotope Inventory and OECD/NEA Phase IV-B 
Benchmark Results for Irradiated MOX fuel (Number of Fuel Sub-regions = 2) 

 

Number of Fuel 

Sub-Regions 

(NRING) 

Nuclide Number Density 

[atm/barn.cm] 

Benchmark 

Number Density 

[atm/barn.cm] 

Developed Methodology 

234U 5.3603E-7 5.764E-7 

235U 4.3896E-5 4.327E-5 

236U 2.5160E-6 2.445E-6 

238U 2.1157E-2 2.117E-2 

238Pu 4.1350E-5 4.052E-5 

239Pu 8.0727E-4 7.855E-4 

240Pu 4.7367E-4 4.81E-4 

241Pu 2.1899E-4 2.058E-4 

242Pu 1.3465E-4 1.362E-4 

237Np 1.1947E-6 1.192E-6 

241Am 8.7782E-6 8.556E-6 

2 

243Am 1.7080E-5 1.517E-5 
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Table 3.1- 19: Comparison of the Isotope Inventory OECD/NEA Phase IV-B 
Benchmark Calculation Results to Single Fuel Region Model for Irradiated MOX 

fuel (Original V:BUDS Model) 
 

Nuclide Number Density 

[atm/barn.cm] 

Benchmark 

Number Density 

[atm/barn.cm] Single 

Region Fuel Model 

234U 5.3603E-7 5.503E-7 

235U 4.3896E-5 4.239E-5 

236U 2.5160E-6 2.836E-6 

238U 2.1157E-2 2.114E-2 

238Pu 4.1350E-5 4.054E-5 

239Pu 8.0727E-4 8.144E-4 

240Pu 4.7367E-4 4.717E-4 

241Pu 2.1899E-4 2.132E-4 

242Pu 1.3465E-4 1.347E-4 

237Np 1.1947E-6 1.419E-6 

241Am 8.7782E-6 8.45E-6 

243Am 1.7080E-5 1.699E-5 
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In order to gain additional data to judge the fidelity of the developed model for the 

determination of the fuel isotope inventory for fresh and irradiated fuel, we located 

Reference [30] which could provide us another benchmark problem.  Different isotope 

inventories were then calculated using the modified V:BUDS code based on the input 

parameters of Reference [30] benchmark problem. The results of these calculations are 

included in Table 3.1-20.  The same calculations were performed using the original 

V:BUDS code (single fuel region) and the results are summarized in Table 3.1-21. The 

benchmark values for the isotope inventories following a 37 MWd/kg of burnup from 

Reference [30] are included in Table 3.1-10 of section 3.1.13.   

 

Table 3.1- 20: Plutonium Isotopic Mass Fractions after 37 MWd/kg Burnup within 
the Fuel Using the Developed Methodology 

 

No. of fuel 

sub-regions 

238Pu / 

Total Pu 

239Pu / 

Total Pu 

240Pu / 

Total Pu 

241Pu / 

Total Pu 

242Pu / 

Total Pu 

Total Pu / Total 

fuel mass 

2 2.14% 43.63% 31.57% 15.30% 7.35% 3.582% 

3 2.04% 43.60% 33.43% 13.59% 7.34% 3.568% 

4 1.97% 43.96% 34.17% 12.59% 7.30% 3.587% 
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Table 3.1- 21: Plutonium Isotopic Mass Fractions after 37 MWd/kg Burnup 
within Single Region Fuel (Original V:BUDS) 

 

238Pu / 

Total Pu 

239Pu / 

Total Pu 

240Pu / 

Total Pu 

241Pu / 

Total Pu 

242Pu / 

Total Pu 

Total Pu / Total 

fuel mass 

2.13% 46.60% 28.85% 15.71% 6.70% 3.771% 

 

 

3.1-15 Analysis of the Results from the Developed Methodology and Discussions 

 

In this section, we will compare the calculated multiplication factor and the isotope 

inventory for fresh and irradiated fuel based on the modified V:BUDS computer code to 

those from the benchmark problems. A comparison will also be provided against the 

single fuel region model using the original V:BUDS computer code. A discussion will be 

provided for each of the comparisons on the effectiveness of the proposed methodology.  

 

Multiplication factor for the fresh fuel is depicted in Figure 3.1-18 using the results from 

Table 3.1-12 and compared to benchmark value from Reference [28] and the results from 

the original V:BUDS as included in Table 3.1-16. 
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Figure 3.1- 18: Multiplication Factor for Fresh Fuel 

 
 

Examination of the results from Figure 3.1-18 indicates an excellent agreement between 

the developed model and the benchmark problem for the two fuel sub-regions. In this 

model, the predicted multiplication factor deviates the benchmark value by about 1% for 

the 2 fuel sub-regions. By increasing the number of fuel sub-regions especially beyond 

four, the deviation increases and reaches 13.2% for 12 fuel sub-regions.  This illustrates 

the issue of increased inaccuracies as the fuel sub-region characteristic length decreases 

when compared to the mean free path of the neutrons in the fuel as discussed in section 

3.1-11. The single fuel model using the original V:BUDS computer code results in a 

multiplication factor that deviates the benchmark value by 2.59% which is also in good 

agreement with the benchmark value.  These comparison results are shown in Table 3.1-

22. 
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Table 3.1- 22: Comparison of Multiplication Factor from the Developed 
Methodology vs. the Benchmark Value for the Fresh Fuel 

 
Number of 

Fuel Sub-

Regions 

% difference between 

Developed Model and 

the Benchmark 

% difference between 

Single Fuel Region and 

the Benchmark 

2 1.19 -2.59 

3 3.12 
 

-2.59 

4 0.88 -2.59 

5 0.74 -2.59 

6 -5.33 -2.59 

8 -9.60 -2.59 

10 -11.95 
 

-2.59 

12 -13.21 -2.59 

 

 

Multiplication factor for the several irradiated fuels are also depicted in Figures 3.1-19, 

3.1-20, and 3.1-21 based on the results from Tables 3.1-13, 3.1.14, and 3.1-15. The 

results are compared to benchmark value and the calculated multiplication factors from 

the original V:BUDS which were included in Table 3.1-16 in order to analyze the 

accuracy of the developed model for irradiated fuels as well. 
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Figure 3.1- 19: Multiplication Factor for 20 MWd/kg Irradiated Fuel 
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1.15
1.16
1.17
1.18
1.19
1.2

1.21

2 3 4

Number of Fuel Sub_Regions

k 
fa

ct
or

r

k factor from developed methodology
k factor (Benchmark)
k factor from original V:BUDS (Single Fuel Region)

 

Figure 3.1- 20: Multiplication Factor for 40 MWd/kg Irradiated Fuel 
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Multiplication Factor for 60 MWd/kg Irradiated Fuel
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Figure 3.1- 21: Multiplication Factor for 60 MWd/kg Irradiated Fuel 

 
 

Again, based on examination of the results from Figure 3.1-19 through 3.1-21 we observe 

an excellent agreement between the developed model and the benchmark problem for the 

discussed 2 fuel sub-regions. The predicted multiplication factor based on the developed 

model is about 1% of the value from the benchmark problem for all levels of irradiation 

for 2 fuel sub-regions.  The single fuel region area based on the original V:BUDS model 

renders deviations of 2.96%, 3.33% and 3.70%  for 20 MWd/kg, 40 MWd/kg and 60 

MWd/kg fuel irradiations respectively. Therefore, the developed methodology provides 

an enhanced accuracy when compared to the single fuel region model as can be seen 

from Figures 3.1-18 through 3.1-21.  The comparison results are included in the Table 

3.1-23. 
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Table 3.1- 23: Comparison of Multiplication Factor from the Proposed 
Methodology vs. the Benchmark Value for Irradiated Fuel 

 
Number of 

Fuel Sub-

Regions 

Fuel 

Irradiation  

(MWd/kg) 

% difference between 

Developed Model and the 

Benchmark 

% difference between the 

Single Fuel Region and 

the Benchmark 

20 0.46 -2.96 

40 -0.72 -3.33 

2 

60 -2.12 -3.70 

20 1.84 -2.96 

40 -0.04 -3.33 

3 

60 -1.77 -3.70 

20 -0.90 -2.96 

40 -2.92 -3.33 

4 

60 -4.64 -3.70 

 

 

Now, we will turn our attention to evaluation of the adequacy of our proposed model in 

regards to determination of isotope inventory calculations and their comparisons with the 

identified benchmark problems. To accomplish this purpose, we will plot the isotopic 

inventory of several calculated isotopes from the proposed methodology. We will use a 

single plot for each isotope in order to perform the desired comparisons and also for the 

benefit of understanding the adequacy of the original and the modified V:BUDS 
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computer code in regards to calculation of each isotope inventory versus the total actinide 

calculations for a given fuel and burnup. 

 

A typical plot for the isotope inventory calculations for 235U is depicted in Figure 3.1-22. 

This figure also shows the results of the benchmark problem and one region fuel model 

from the original V:BUDS. The results for other isotopes are included in Appendix C. 
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Figure 3.1- 22: 235U Isotope Inventory Using OECD/NEA Phase IV-B Benchmark 
 

The percentage of differences between the developed model and the single region fuel 

model versus the benchmark problem values are calculated. The results for 235U are 

depicted in Tables 3.1-24  Similar results for isotopes 234U, 236U, 238U, 238Pu, 239Pu, 240Pu, 

241Pu, 242Pu , 237Np, 241Am, and 243Am are calculated included in Appendix B as Tables 

B.3.1-1 through B.3.1-11. 
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Table 3.1- 24: Comparison of 235U Isotope Inventory from the Proposed 
Methodology vs. the OECD/NEA Phase IV-B Benchmark 

 
Number of 

Fuel Sub-

Regions 

% difference between the 

developed model and the 

Benchmark 

% difference between the 

Single Fuel Region and the  

Benchmark 

2 -1.43 -3.43 

3 -0.26 -3.43 

4 -0.31 -3.43 

 

 

Examination of Figures 3.1-22 and C.3.1-1 through C.3.1-11, Tables 3.1-24, and Tables 

B.3.1-1 through B.3.1-11 reveal that our developed model provides very good results for 

the subject isotopes for the discussed two fuel sub-regions.  

 

Since the isotope inventory calculations are very methodology sensitive and largely 

dependant upon the codes used for the purpose, we perform additional benchmarking to 

ensure that our model predicts the overall actinide inventory within an irradiated fuel 

with a high degree of fidelity. We use Reference [30] since it has a well defined pin cell 

and the overall percentage of important actinides is provided for an irradiated fuel. We 

will refer to this benchmark problem as Weaver-Herring benchmark. The results of the 

comparisons with the Weaver-Herring benchmark problem are depicted for the mass 

percentage of total plutonium isotopes within the fuel and the mass percentage of 239Pu to 
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the total plutonium contents within the fuel in Figures 3.1-23 and 3.1-24. Additional 

results from benchmarking against the Weaver-Herring are shown in Appendix C.   The 

Weaver-Herring benchmark problem and its fuel pin parameters are defined within 

Tables 3.1-9 and 3.1-10 of section 3.1.13.   
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Figure 3.1- 23: Mass Percentage of Plutonium Isotopes to Total Fuel Mass in Fuel 
with BU=37 MWd/kg Using Weaver-Herring Benchmark 
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Figure 3.1- 24: Mass Percentage of 239Pu to total Pu Isotopes in Fuel with BU=37 
MWd/kg Using Weaver-Herring Benchmark 

 

 

Table 3.1- 25: Comparison of Mass Percentage of Total Plutonium Isotopes to Total 
Fuel Mass Using Weaver-Herring Benchmark 

 

Number of 

Fuel Sub-

Regions 

% difference between the 

Developed Model and 

Weaver-Herring Benchmark 

% difference between the 

Single Fuel Region and 

Weaver-Herring Benchmark

2 1.19 6.53 

3 0.79 6.53 

4 1.33 6.53 
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In addition to Figure 3.1-23 and  3.1-24, Table 3.1-25 is prepared to provide the 

deviations for the percentage mass of total plutonium isotopes to the fuel mass between 

the developed methodology and a single fuel region model and Weaver-Herring [30] 

benchmark values. Table 3.1-25 shows that there is an excellent agreement between our 

proposed model and the benchmark value. The deviation is calculated to be about 1% vs. 

6.5% provided by the single region fuel model. Therefore, our model represents a very 

good capability in calculating the total mass of plutonium isotopes in the irradiated fuel.  

 

Also, review of Figure 3.1-24 and C.3.1-12 through C.3.1-15 show that the proposed 

model provides reasonable values for individual plutonium isotopes especially for 239Pu. 

The provided values from two sub-region fuel model are generally similar or better than 

those provided by single region fuel model.  

 

3.1-16 Conclusions for the Proposed Methodology 

 

Results of our calculations indicate that the proposed methodology using the modified 

V:BUDS computer code yields an excellent agreement with the OECD/NEA benchmark 

problem in regards to the multiplication factor for fresh and irradiated fuels for small 

number of fuel sub-regions. The number of fuel sub-regions should be selected such that 

the characteristic length or mean chord length of the fuel sub-region is similar to or larger 

than the mean free path for the neutrons within the fuel, otherwise, inaccuracies will be 

introduced into the calculations due to the imposed boundary conditions at each fuel sub-
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region.  The error associated with the developed model is 1.19% for the multiplication 

factor of a fresh fuel versus 2.59% error resulted from the original model. The errors 

associated with the irradiated fuel are 0.46%, 1.84%, and 0.90% for 20 MWd/kg, 40 

MWd/kg and 60 MWd/kg burnup respectively. These errors compare favorably against 

the errors from the original model that are computed to be 2.96%, 3.33% and 3.70% 

respectively. 

 

Also, the proposed methodology provides an excellent prediction of the percentage of 

total mass of plutonium isotopes to the total mass of the fuel for a given irradiation level. 

This is an indication of how well our model can identify the burning of plutonium in the 

MOX fuels in the existing reactors. The level of agreement between the calculated 239Pu 

between the proposed model and the benchmark problems is also very good. This fact 

can be used to conclude that our model is a good tool for study of any fuel form in which 

neutron mean free path’s are short such as thermal reactor transmuter fuel.  

 

The error analysis from our developed methodology provides values of 1.43% and 1.19% 

for the 235U content and ratio of 239Pu to the total value of plutonium within the irradiated 

fuel.  These errors compare favorably to those from the original model that are computed 

at 3.43% and 6.53% respectively.  As discussed earlier, the calculated values from the 

developed methodology approaches the benchmark values to within about 1%. It is noted 

that the model value will not approach the exact benchmark value due to the errors 

introduced by the imposed boundary conditions at each of the sub-regions. 



 
 
 
 

115

3.2 Complex Problem # 2 

3.2.1 Scope/Statement of Problem 

 

In current reactor calculations, similar reactor fuel elements are arranged in a periodic 

manner so that the core system is regarded as being made up of a number of identical unit 

cells. A unit cell in the current literature is depicted in Figure 3.2-1. 

 

 

Figure 3.2- 1: Current Reactor Unit Cell Model 
 

In the above current case, the spatial distribution of the neutron flux in the reactor has a 

periodic structure which can be found by computing the flux within a unit cell. Currently, 

collision probability theory is used to solve neutron transport equation to obtain fluxes in 

a unit cell for a moderator/coolant and fuel regions by decoupling the spatial and energy 

effects using the region to region transmission probabilities 0Π  and 1Π . Similar to 
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problem 1, fluxes are taken to be uniform in each of the two regions in the cell. In this 

case, it is noted that all unit cells within the reactor core are similar and hence the net 

neutron leakage across the outer boundary of each unit cell is zero.  These methods are 

sometimes synthesized with relatively simple whole-core calculations where the lattice 

structure is homogenized.  Such calculations can provide the flux profile throughout the 

reactor; the flux in each unit cell that comprises the reactor is assumed to follow the 

profile determined by the collision probability calculations but with magnitude set by the 

whole-core calculation. 

 

This approach suffers when the composition of individual unit cells is sufficiently diverse 

that a homogenized whole-core calculation would be in significant error.  For instance, 

there are several Department of Energy proposals to use weapons grade plutonium in the 

form of Mixed Oxide Fuel (MOX) within power reactors where the fuel is generally 

Uranium Oxide (UOX).  The burning of MOX fuel has already been a reality in Europe 

for decades, as described in Reference [11]; MOX fabricated from weapons-grade 

plutonium is an extreme case, though, since very sharp local gradients in the neutron flux 

are possible with fuel of such high fissile content.  Collision probability theory as 

developed for the identical unit cells will not be adequate for the cases such fuel is burned 

inside the reactor in addition to UOX fuel. This is due to the fact that zero neutron 

leakage assumption across the unit cell’s outer boundary will not hold true any longer.   

This dissertation develops a methodology to solve the flux equations as derived in 

equations 3.1-8 and 3.1-9 by developing equivalent 0Π  and 1Π  for each of the cells 
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containing UOX and MOX fuels within the supercell as depicted in Figure 3.2-2. The 

fidelity of this modeling will then be evaluated by comparing the results to benchmark 

problem as identified in Reference [18]. Since the main interest of this problem is the 

study of the plutonium burning within a reactor core, the isotope inventory calculations 

for the transmuter pin will be of main interest in our benchmarking process.  

 

 

Figure 3.2- 2: Reactor Supercell Model Containing UOX and MOX Cells 

 

 Supercell  

UOX 
(UO2) 
fuel 

MOX (Mixed Oxide) 
fuel or Transmuter 1M 0M 1U 0U Fuel =region 0 

Moderator/Coola
nt = region 1 
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3.2.2 Background/Introduction 

 

Currently, collision probability theory is used to solve the decoupled energy and spatial 

fluxes in the fuel and moderator/coolant regions for the unit cell within a heterogeneous 

reactor core with one type of fuel.  Each unit cell is assumed to consist of a lumped fuel 

region and moderator/coolant region that surrounds the fuel. The unit cells are all 

identical such that neutron leakage across the outer boundary of the unit cell is zero. This 

assumption is a valid one especially for large cores and the unit cells away from core 

boundaries.  

 

There are a number of cases arising in advanced reactor and fuel cycle studies where 

strongly dissimilar unit cells exist in close proximity. In this case, substantial net leakage 

exists between the unit cells. Hence, the assumption of zero net neutron leakage across 

outer boundaries of the unit cells will not deliver reasonably accurate fluxes in the fuel 

and moderator/coolant regions. Therefore we can not get accurate flux distributions by 

solving the energy and spatially decoupled transport equations independently for each 

unit cell with different fuel regions.  The solution presented here is designed to address 

the issue of net neutron leakage across the unit cell boundaries and provide a means 

where collision probability theory can be used to solve for the fluxes in different regions. 

 

This approach has many practical applications that include: (1) study of burning PuO2 

fuel in power reactors that use UO2 as their main fuel source in an attempt to dispose 
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weapon grade plutonium, (2) the use of uranium-free ‘inert matrix’ fuel consisting of 

recycled transuranics embedded in a (typically ZrO2 based) matrix.  and (3) study of 

using future reactors, especially fast-spectrum systems in which target or breeding fuel 

pins may be mixed with the driver lattice, in further processing of spent fuel for the 

purpose of burning the long half life actinides and heat generating fission products. The 

increased fidelity obtained from burnup calculations performed using the proposed 

methodology benefits (1) studies for increasing the storage capacity of spent fuel per cask 

for the purpose of long term storage in storage facilities such as Yucca Mountain and (2) 

nuclear non-proliferation studies on spent reactor fuel. 

 

3.2.3 Developed Definitions for Solving Complex Problem Number 2 

 

The methodology uses a collision probability theory with modified transmission and 

escape probabilities for each uniform region of a UOX and a MOX cell.  The UOX and 

MOX notation is retained for convenience, but of course the approach applies to any two 

unit cell types within a reactor.  The cells include four uniform flux regions: 

moderator/coolant for the two fuel types (UOX and MOX) and the two fuel regions. In 

the subject problem, the reactor core is taken to consist of a uniform cluster of 9 cells 

(supercell) as shown in Figure 3.2-2 (infinite cylindrical fuel pins) although the method 

generalizes to any periodic supercell configuration. 
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First, we define the following transmission and escape probabilities and then we identify 

and/or develop mathematical expressions for the defined terms. 

 

Transmission probabilities in the four regions as depicted in Figure 3.2-2 are notated 

,,, 010 UMM TTT  and UT1 .  Escape probabilities in the four regions are shown as 

,,, 010 UMM PPP  and UP1 . 

 

We define each of the above parameters as follows; 

  

MT0  = Probability that a neutron entering MOX fuel region is transmitted without 

interaction. 

MT1  = Probability that a neutron entering moderator/coolant in a cell with MOX fuel is 

transmitted without interaction.  

 

UT0 and UT1 are defined similarly for UOX type fuel. 

 

MP0  = Probability that a neutron having had its last interaction in the MOX fuel, will 

escape the fuel without further interaction. 

 

MP1  = Probability that a neutron, having had its last interaction in moderator/coolant of a 

cell with MOX fuel, will escape the moderator/coolant without further interaction.  
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UP0 and UP1  are defined similarly for UOX type fuel. 

 

At any given neutron energy, MP1  and UP1  (the probabilities that neutrons born in the 

moderator surrounding the MOX and UOX, respectively, will escape the moderator 

region without interaction) are equal, and also MT1  and UT1  are equal.  This is because the 

moderator surrounding the MOX and UOX is composed of the same material, typically 

the reactor coolant fluid. 

 

UM PP 11 =    (from now on called UM PPP 111 == )    (Eqn: 3.2-1) 

 

UM TT 11 =    (from now on called UM TTT 111 == )    (Eqn: 3.2-2) 

 

Second, we introduce the following probabilities; 

 

i0Π  = probability that a neutron appearing in fuel region of fuel type i (i=UOX or 

i=MOX) at energy E undergoes its next interaction in moderator/coolant region of 

that cell. 

 

i1Π  = probability that a neutron appearing in moderator/coolant region of a cell with 

fuel type of i (i=UOX or i=MOX) at energy E undergoes its next interaction in 

fuel region of that cell. 
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Based on these definitions, we develop expressions for i0Π  and i1Π  in the following 

sections. 

 

3.2.4 Methodology for Derivation of U0Π    

 

Figure 3.2-2 is used to derive the escape probabilities MUU 010 ,, ΠΠΠ , and M1Π  in 

accordance with the definitions as described in section 3.2.3. We will derive the subject 

escape probabilities within a supercell in a general manner by assuming that each 

supercell consists of UN  UOX fuel pins and MN  MOX fuel pins. In this case, the 

supercell will contain a total of MUT NNN +=  sub-cells. The following derivations will 

be based on two assumptions that there is zero net neutron leakage across the boundaries 

of the supercell and that a neutron leaving a cell with UOX fuel pin has a 
T

U

N
N

chance to 

arrive at a UOX cell and a 
T

M

N
N chance to arrive at a MOX cell. The second assumption in 

regards to the probability distribution is consistent with the first assumption since 

1=+
T

M

T

U

N
N

N
N

. It is noted that the probability distribution assumption varies from the 

strict definitions since a neutron that leaves a UOX fuel pin has 
1
1

−
−

T

U

N
N

chance to arrive 

to another UOX cell and  
1−T

M

N
N chance to arrive at the MOX cell within the supercell. 
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However, our simplifying assumption for neutron distribution probabilities does not 

factor in the exact location of the UOX and MOX cells within the supercell and assigns 

equal weighing to all of the UOX and MOX cells.  Therefore the probability distributions 

are not geometry sensitive and the consideration that any neutron entering the supercell 

has a chance to enter a UOX or MOX cell based on the number of UOX or MOX cells 

within the supercell, we choose to use the 
T

U

N
N

and  
T

M

N
N distribution but we note that this 

is not the only valid choice for the escape probabilities. The adequacy of this assumption 

and overall methodology will be assessed through the benchmarking process. 

 

 The definition and notation for transmission and escape probabilities are the same as 

those as defined in the statement of the problem. 
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(Eqn: 3.2-3) 

Equation 3.2-3 can be rearranged in order to visualize the patterns of similar terms for 

any further simplification. 
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(Eqn: 3.2-4) 
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Equation 3.2-4 reveals similar term patterns that helps us to depict the subject equation in 

a much more compact form. 
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          (Eqn: 3.2-5) 

The first two terms inside the brackets of Equation 3.2-5 can be further simplified. 
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(Eqn: 3.2-6) 
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Equation 3.2-6 is the desired escape probability from UOX fuel. However, it can be noted 

that the contributions from the third, fourth and subsequent terms inside the brackets of 

Equation 3.2-6 are of higher order in the probabilities when compared to the first two 

terms of the subject bracket. For example, the first term inside the brackets of equation 

3.2-6 is in the order of magnitude of 1. The second term is in the order of magnitude of 

third power of a representative transmission probability. The third term is in the order of 

fifth power of a representative transmission probability. Given a typical transmission 

probability, it can be easily deduced that the third term is considerably smaller than the 

second term. This will also be true for the fourth term inside the brackets of equation 3.2-

6 which is in the order of seventh power of a representative transmission probability. 

Hence, the third, fourth and subsequent terms inside the brackets of equation 3.2-6 can be 

neglected at the cost of ignoring particle tracks that traverse multiple cells before 

colliding once again. This simplification is similar to the Wigner approximation [3, 5] as 

used in lattices with uniform unit cells with single fuel type.  The simplification basically 

translates to considering the interactions of a neutron escaping from a given unit cell with 

immediate neighboring unit cells.  After replacing UT1 with 1T , equation 3.2-6 is therefore 

reduced to:  
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For demonstration purposes, we will compare the values of U0Π  calculated from 

equation 3.2-7 for several given values of Σ for MOX fuel ( )MOXΣ  and 1T value of 0.5 

with 0Π calculated from the original model as shown in equation 3.1-3. U0Π  and 0Π are 

plotted versus ( )UOXUOX RΣ values.  The results are depicted in Figure 3.2-3. 

 

 

PI_0_UOX for Supercell vs. PI_0 from Original Single UOX 
Cell (T1=0.5)
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Figure 3.2- 3:  Comparison of Escape Probabilities from UOX fuel within the 
Supercell based on Developed Methodology and the UOX fuel in a Single Cell from 

the Original Methodology for T1=0.5 
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Examination of Figure 3.2-3 indicates that  U0Π  is not very sensitive to ( )MOXΣ  

especially for values of above 0.1; the MOX pin becomes essentially black to neutrons as 

its cross section becomes large. Also, U0Π  values are always less than 0Π from the single 

cell. This is a correct result since some of the neutrons that escape the UOX fuel have 

their next interaction in the MOX fuel within the supercell and hence there are less 

neutrons to interact with the moderator. For large values of ( )UOXUOX RΣ , the values of 

U0Π  and 0Π approach each other which is another indication for the validity of the 

derived equation 3.2-7. This is due to the fact that at large ( )UOXUOX RΣ values, fewer 

neutrons escape the UOX fuel and hence there are smaller numbers of neutrons available 

to interact with the moderator or the MOX fuel.  Therefore, Figure 3.2-3 indicates the 

reasonableness of the derived equation 3.2-7. 

 

U0Π  and 0Π are also plotted based on similar parameters as those for Figure 3.2-3 except 

for 1T  value of 0.1 in order to observe the effects of 1T  on the escape probabilities. As 

can be seen from Figures 3.2-3 and 3.2-4, a decrease in transmission probability in the 

coolant/moderator results in an increase in the escape probabilities. This is in accordance 

with our expectation since with decrease in moderator/coolant transmission probability a 

higher number of neutrons will collide with the coolant/moderator. 
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PI_0_UOX for Supercell vs. PI_0 from Original Single UOX 
Cell (T1=0.1)
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Figure 3.2- 4:  Comparison of Escape Probabilities from UOX fuel within the 
Supercell based on Developed Methodology and the UOX fuel in a Single Cell from 

the Original Methodology for T1=0.1 

 

 

3.2.5 Methodology for Derivation of M0Π    

 

The methodology for derivation of M0Π  is the same as that for U0Π and is not repeated 

here. The form of M0Π  is similar to Equation 3.2-7 and is depicted in Equation 3.2-8. 
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11   (Eqn: 3.2-8) 

 

 Again, for demonstration purposes, we will compare the values of M0Π  calculated from 

equation 3.2-8 for several given values of Σ for UOX fuel ( )UOXΣ  and 1T value of 0.5 

with 0Π calculated from the original model as shown in equation 3.1-3. M0Π  and 0Π are 

plotted versus ( )MOXMOX RΣ values.  The results are depicted in Figure 3.2-5. 

 

Comparison of Figures 3.2-3 and 3.2-5 reveals the differences between the escape 

probabilities from UOX and MOX fuels due to the difference in the number of these fuels 

within the supercell. This difference is more pronounced for the larger ( )UOXUOX RΣ  

values and smaller ( )MOXMOX RΣ  values.  
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PI_0_MOX for Supercell vs. PI_0 from Original Single MOX 
Cell (T1=0.5)
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Figure 3.2- 5:  Comparison of Escape Probabilities from MOX fuel within the 
Supercell based on Developed Methodology and the MOX fuel in a Single Cell from 

the Original Methodology for T1=0.5 

 

 

3.2.6 Derivation of MUU PTP 000 ,, and MT0  

 

The subject escape and transmission probabilities for infinite cylinders have been derived 

in several references such as [9], [10] and [36] and are discussed within the statement of 
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Problem 1 of this dissertation. Hence we will just present the results for these terms from 

reference [10]. 
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          (Eqn: 3.2-9) 

( ) UUUU PRT 00 1 Σ−=         (Eqn: 3.2-10) 

 

In Equations 3.2-9 and 3.2-10, UΣ  is the UOX fuel total macroscopic interaction cross 

section, and UR is the radius of UOX fuel.  Equations 3.2-9 and 3.2-10 are also valid for 

the MOX fuel when the properties and dimensions of MOX fuel are used. Value of c is 

taken to be 0.3567 from reference [10]. Note that Equation 3.2-9 constitutes a rational 

approximation to the true escape probability.  The rational approximation preserves the 

limiting behavior as ( )UOXUOX RΣ  approaches zero and infinity, but it requires many fewer 

floating point operations to compute than do the modified Bessel functions in the analytic 

expression for UP0 . 

 

Examination of equation 3.2-9 indicates that transmission probability through a fuel rod 

is a function of ( )RΣ  for that fuel. The term Σ is then a function of the fuel burnup and 

the energy of the neutron traversing the fuel. Consequently, MUMU PPTT 0000 ,,, and hence 
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U0Π and M0Π are functions of the fuel burnup and neutron energy level. The V:BUDS 

algorithm calculates the escape probability 0Π  for an energy group at a given burnup for 

a given fuel type. In order to code equation 3.2-7 into V:BUDS in order to get the desired 

fuel isotopic content for UOX fuel, we need to supply V:BUDS with values of MT0  for 

all the energy groups at a given burnup value so the proper values of U0Π can be 

calculated at energy group and burnup value. To accomplish this purpose, the MOX cell 

is modeled in the V:BUDS and it is run for a given burnup value. The escape probability 

MT0 for each energy group and burnup value is written into a text file. Then the UOX cell 

is modeled in V:BUDS with the above text file included and the code is run. The result of 

the run determines the isotopic content of the UOX fuel as well as the UT0  needed for a 

second iteration of the MOX fuel simulation.  This UT0  is written to a text file and the 

same procedure is used to obtain the isotopic contents for the MOX fuel. 

 

The accuracy and validity of our modeling can be judged based on the comparison with 

benchmark values as included in section 3.2-7.  

 

3.2.7 Selection of Benchmarking Problem 

 

Our literature survey indicated that Reference [18] included results from neutronic 

analysis of several supercell configurations that are directly applicable to the scope of our 

problem. Reference [18] provided the results on the isotopic inventory of a transmuter 
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(MOX) pin that is located in the center of a nine pin supercell as well as the isotopic 

inventory of the UOX pins in terms of the fuel burnup. The supercell and its parameters 

from Reference [18] are included in Figure 3.2-3 and Tables 3.2-1 and 3.2-2. We will use 

these specifications for benchmarking purposes and compare the results from our work 

against the results from Reference [18] in order to verify the adequacy of our model.   

 

 

 

Figure 3.2- 6: Nine Pin Supercell Model For Benchmarking [Ref. 18] 
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Table 3.2- 1: Benchmark Problem Fuel Parameters [18] 

 

Fuel Parameter 

Fuel pin radius = 0.4096 cm 

Pellet height = 1.5 cm (not relevant) 

Pin pitch = 1.27 cm 

Densities:  ThO2 :  10.0 g/cm3 

                   UO2  :   11.0 g/cm3 

                   [Pu-MA]O2 :  12.0 g/cm3 

                   ZrO2 :  5.39 g/cm3 

The overall density for transmuter pin is a linear combination of 

the atomic fractions of the constituents. 
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Table 3.2- 2: Contents of UO2 and Th-U-Pu-MA pins in the Benchmark 

Problem [18] 

 

Pin in the Supercell Initial Isotopic Inventory 

UO2 fuel pin 235U       4.95 %  

 238U       95.05 %  

Th-U-Pu-MA transmuter pin Th = 82 wt%, U = 12 wt%,  Pu-MA = 6 wt% 

Isotopic contents of U are; 

234U       0.027% 

235U       0.908% 

236U       0.578% 

238U       98.487% 

Isotopic contents of Pu-MA are;    

237Np     6.03% 

238Pu      1.77% 

239Pu       49.0% 

240Pu       21.71% 

241Pu       3.29% 

242Pu       5.90% 

241Am      10.79% 

243Am      1.32% 
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 3.2.8 Results of the Developed Methodology and Comparison to the Benchmark 

 

Now, we can obtain the isotopic inventory of the UOX and MOX fuels for a given 

burnup using the developed methodology. The results are plotted in Figures 3.2-7 through 

3.2-15. 
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Figure 3.2- 7: Ratio of 239Pu masses to the total plutonium mass versus burnup in 
the transmuter pin 
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Figure 3.2- 8: Ratio of 238Pu masses to the total plutonium mass versus burnup in 
the transmuter pin 

 
 
Figures 3.2-7 and 3.2-8 show the ratio of the mass of 239Pu and 238Pu to the total mass of 

the plutonium in the transmuter pin verses the fuel burnup. The same ratios from the 

benchmark problem [18] are also depicted. Evaluation of these results indicates an 

excellent agreement between our methodology and the benchmark for 239Pu isotope ratio. 

The agreement is also good for 238Pu for low burnup values. The deviation for 238Pu ratio 

from the benchmark value gradually increases with increased fuel burnup.  Studies of 

other references such as [16] indicate that V:BUDS provides good agreements for 

generation of 238Pu and 243Am for the MOX fuel burnup when compared to other 

sophisticated and validated codes such as Monteburn. Hence we deduce that our model 

can also produce good results for 238Pu and 243Am when compared to other benchmark 

computer codes.  As can be deduced from the theory of burning the transmuter pin, the 
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239Pu is destroyed during the process and 238Pu is generated which are both beneficial 

from the non-proliferation stand point. Both 239Pu and 238Pu ratios as shown in Figures 

3.2-7 and 3.2-8 depict this behavior which validates the theory of our modeling concept. 

In addition, Figures 3.2-7 and 3.2-8 depict the 239Pu and 238Pu isotopic ratio to the total 

plutonium content of the fuel for the same MOX fuel and parameters using the original 

V:BUDS code. In this case, the subject MOX fuel is not neutronically coupled to the 

other fuel type within the supercell. We performed this exercise in order to get an insight 

to the effects of neutronic coupling between the MOX and UOX fuels on the amount of 

plutonium contents of the fuel.  Figures 3.2-7 and 3.2-8 indicate that the results from 

neutronically uncoupled MOX fuel deviates drastically from the benchmark values and 

hence it does not accurately calculate the plutonium content ratios.  We also show the 

results from the neutronically uncoupled MOX fuel using the original V:BUDS code in 

the following Figures in order to gain further understanding of isotopic inventory within a 

transmuter pin for several burnup conditions.  
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Figure 3.2- 9: Ratio of mass of 237Np to its initial mass in the transmuter pin versus 
fuel burnup 
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Figure 3.2- 10: Ratio of mass of 241Am to its initial mass in the transmuter pin versus 
fuel burnup 
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Figure 3.2- 11: Ratio of mass of 243Am to its initial mass in the transmuter pin versus 
fuel burnup 

 

Figures 3.2-9 and 3.2-10 show the ratio of mass of 237Np and 241Am to their values prior 

to initiation of the burnup versus the burnup. These plots represent the mass inventory of 

the subject isotopes in the transmuter pin versus burnup. Again, there is a good agreement 

between our model and the benchmark values. This agreement is especially very good for 

237Np and 241Am.  Again, the behavior of the subject isotope ratios indicates the validity 

of our supercell modeling concept. It is noted that the subject isotopic ratios derived from 

our work and the ratios derived from the neutronically uncoupled MOX fuel are very 

close due to the fact that these are not absolute masses of the isotopes but are the ratios of 

the isotopes at a given burnup and its original mass and hence the neutronic coupling is 

not a factor in determination of these ratios.  As discussed previously, the results for 

243Am as shown in Figure 3.2-11 deviates from the benchmark problem at higher burnup 
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values, however, our model provides a good agreement when compared to other 

benchmark problem for 243Am [16]. 
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Figure 3.2- 12: Ratio of mass of 239Pu to its initial mass in the transmuter pin versus 
fuel burnup 
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Figure 3.2- 13: Ratio of mass of 240Pu to its initial mass in the transmuter pin versus 
fuel burnup 
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Figure 3.2- 14: Ratio of mass of 241Pu to its initial mass in the transmuter pin versus 

fuel burnup 
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Figure 3.2- 15: Ratio of mass of 242Pu to its initial mass in the transmuter pin versus 

fuel burnup 
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Figures 3.2-12 through 3.2-15 also show the ratio of mass of 239Pu, 240Pu, 241Pu, and 242Pu 

to their values prior to initiation of the burnup versus the burnup. These plots represent 

the mass inventory of the subject isotopes in the transmuter pin versus burnup. Our model 

represents an excellent agreement with the benchmark values for the subject isotopes.  

 

Now we will turn our attention to the UO2 fuel cells and compare the results to the 

benchmark problem. 
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Figure 3.2- 16: Mass of 239Pu and 241Pu in the UO2 fuel versus fuel burnup 
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Figure 3.2-16 depicts the mass of 239Pu and 241Pu in the UO2 fuel pins versus the burnup. 

The calculated values using our methodology and model closely corresponds with the 

benchmark problem values.  

 

As a last step for this problem, we will attempt to observe any differences in neutron 

energy spectra for a fuel pin between a case when it is neutronically coupled with fuel pin 

of a different type and a case when the fuel pin has no net neutronic coupling with any 

other fuel pin, i.e., all of the unit cells contain the same fuel type.  The parameters of the 

benchmark problem [30] with fresh fuel conditions will be used for this demonstration. 

For this purpose, we will obtain the neutron energy spectra for the MOX and UOX using 

the original V:BUDS code and a single unit cell parameters. These will represent the 

uncoupled neutron energy spectra.  Then, we will use the developed methodology with 

problem two and plot the neutron energy spectra for the MOX and UOX fuel pins using 

the unit cell parameters from the benchmark.  This will represent the coupled neutron 

energy spectra for each of the fuel types. The coupled and uncoupled neutron energy 

spectra for each fuel type are then superimposed in order to reveal the differences in the 

spectra due to the neutronic coupling effects.  The results are depicted in Figures 3.2-17 

and 3.2-18.  
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Figure 3.2- 17: Comparison of Neutron Energy Spectra for Neutronically Coupled 
and Uncoupled MOX Fuel 
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Figure 3.2- 18: Comparison of Neutron Energy Spectra for Neutronically Coupled 
and Uncoupled UOX Fuel 

 

Figure 3.2-17 indicates that the coupling effects for the MOX fuel is increase in neutron 

flux in the fast neutron region of the spectrum. However, for the UOX fuel type, the 

coupling slightly decreases the neutron flux in the fast and epithermal regions. This is due 

to the fact that the fresh UOX fuels for this problem are the driver pins and hence the fast 

and epithermal neutrons are decreased in number in order to drive the MOX fuel pin and 

keep the supercell cell at its reactivity level.  
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3.2.9 Discussion of Results 

 

Our developed methodology provides excellent results in regards to calculation of the 

isotopic inventories of the UOX and MOX or transmuter fuel pins as a function of the 

fuel burnup. Generally, the results of calculated isotope inventories are within 5% or less 

of values from the benchmark problems.  Based on these results, we conclude that the 

model is a reliable tool for the study of burning plutonium-bearing and other strongly 

heterogeneous fuel loadings in typical power reactors and the fuel cycle studies. This 

model provides answers to desired isotopic constituents of UOX and MOX fuel pins with 

minimal amount of inputs to the V:BUDS computer code and the results are obtained 

with only few seconds of computer run time.  
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4. Conclusions 

 

The work contained in this dissertation expands the collision probability theory and its 

applications in the study of fuels exhibiting sharp flux and power gradients as well as 

heterogeneous reactor cores. These scenarios are common in many of the advanced 

reactor and fuel cycle concepts proposed under the Global Nuclear Energy Partnership 

and other efforts to develop next-generation nuclear technologies capable of deep fuel 

burn and actinide transmutation.  The work has been presented within the structure of two 

analyzed problems. 

 

In the first problem, the current neutron transport equations for a unit cell configuration 

has been expanded to consider the fuel region as a multi-region area in order to address 

the shortcomings of the current theory where the entire fuel region is considered as a 

single lump and treated as one uniform medium. The single fuel region simplification 

results in assumptions that the neutron flux and material properties are uniform 

throughout the fuel region which in turn disregards the effects of spatial fuel self 

shielding.  Spatial self shielding becomes an important driver of reactor physical behavior 

when the neutron mean free path in the fuel pins becomes small.  This situation most 

typically arises in mixed-oxide or inert matrix fuels in water reactors, where plutonium 

and other constituents interact very strongly with low-energy neutrons. 
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In this work, the fuel region is divided into a series of annular sub-regions and 

mathematical expressions are derived for the transmission and escape probabilities for 

each of these sub-regions. Then these sub-regional probabilities are combined in a 

manner that accounts for the neutron flux variation across the fuel sub-regions in order to 

derive a single escape probability from the entire fuel region in a given fuel cell.  

Therefore an effective flux profile is obtained that accounts for the effects of the self 

shielding within the fuel. The developed methodology enables us to use the V:BUDS 

computer code as a base and it is enhanced to include the above stated procedure.  

 

The results of this work are compared to two benchmark problems. The results indicate 

the existence of good agreement between our work and the benchmark problems for the 

multiplication factors and inventories of radionuclides as a function of fuel burnup when 

the number of fuel calculation of multiplication sub-regions is relatively small.  In these 

cases, it also provides improvements for multiplication factors and inventories of isotopes 

of importance in the fuel cycle and nuclear non-proliferation studies such as 235U, 239Pu,  

241Pu and 242Pu over the original single fuel region model results.  The variance between 

the results and the benchmark problems increases with increasing number of fuel sub-

regions. Hence the developed work offers improvements over the existing methodology 

provided that representative distances within a fuel sub-region is in the same order of 

magnitude as the average mean free path of neutrons.  
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The error associated with the developed methodology is 1.19% for the multiplication 

factor of a fresh fuel versus 2.59% error that is resulted from the original model. The 

errors associated with the irradiated fuel are 0.46%, 1.84%, and 0.90% for 20 MWd/kg, 

40 MWd/kg and 60 MWd/kg burnup respectively. These errors compare favorably 

against the errors from the original model that are computed to be 2.96%, 3.33% and 

3.70% respectively. 

 

In regards to the capabilities of the developed methodology for the estimation of the 

isotopic content of fuel, the error analysis provides values of 1.43% and 1.19% for the 

235U content and ratio of 239Pu to the total value of plutonium within the irradiated fuel.  

These errors compare favorably to those from the original model that are computed at 

3.43% and 6.53% respectively.   

 

The above methodology addresses the main shortcoming of the existing theory and 

provides improvements in regards to calculation of isotopic inventory as a function of 

fuel burnup.  These improvements in the isotopic inventory result in higher-fidelity 

results suitable for fuel cycle and nuclear non-proliferation studies with essentially no 

additional execution time. The methodology will also help in better optimization of the 

spent fuel storage casks, temporary and permanent storage facilities via providing more 

accurate estimation of heat generating radionuclides. 
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Therefore, the developed methodology improves the capabilities of the current collision 

probability theory in predicting the multiplication factors and fuel isotopic contents by a 

factor of approximately 2 which corresponds to a minimum of 50% reduction in the 

calculated subject values. 

 

In the second problem, collision probability theory has been extended to lift the zero net 

neutron leakage across the fuel cell boundaries assumption that was present in the initial 

methodology. The existing theory assumed that the reactor core is loaded with a single 

type of nuclear fuel and hence is not adequate for inclusion of multiple types of fuel 

where strong heterogeneity is introduced within a fuel lattice.  The zero net neutron 

leakage assumption operates on a premise that the neutronic coupling between the fuel 

elements within the fuel lattice is so weak that local flux profiles can be accurately 

treated using a single unit cell with reflecting boundary conditions. The developed 

methodology derives escape probabilities that account for this neutronic coupling 

between the elements.  The results of this methodology was compared to benchmark 

problems and found to be in excellent agreement.  The most important application of the 

developed methodology is to determine the isotopic content of different fuel materials 

when they are included within a reactor such as those for the purpose of burning reactor / 

weapon grade plutonium within civilian power reactors.  Again this improvement in 

fidelity comes at minimal expense in model execution time.  The developed methodology 

will allow us to easily evaluate the design of different MOX or inert matrix fuel (IMF) 
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types for the purpose of depleting its plutonium contents and render radionuclides that are 

consistent with the nuclear non-proliferation criteria. 

 

The developed methodology improves the results of isotopic inventory calculations 

within a strongly heterogeneous fuel lattice by almost an order of magnitude in some 

cases. This improvement is the result of incorporations of the neutronic coupling effects 

between the fuel elements with the fuel lattice. For example, the errors associated with 

the ratio of the 239Pu to the overall fuel plutonium content is decreased from 25.5% at a 

typical burnup of 20 MWd/kg when calculated by the original theory to 2.5% when the 

developed methodology is used.  

 

In summary, we have developed a new methodology that allows collision probability 

theory to operate at higher fidelity for diverse reactor core and fuel content 

configurations.    
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APPENDIX A 

Results for Isotope Inventories Using Modified V:BUDS Based on Reference [29] 

Benchmark Input Parameters
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Table A.3.1- 1: Modified V:BUDS Isotope Inventory and OECD/NEA Phase IV-B 
Benchmark Results for Irradiated MOX fuel ( Number of Fuel Sub-regions = 3) 

 
Number of Fuel 

Sub-Regions 

(NRING) 

Nuclide Number Density 

[atm/barn.cm] 

Benchmark 

Number Density 

[atm/barn.cm] 

Developed Methodology 

234U 5.3603E-7 5.899E-7 

235U 4.3896E-5 4.378E-5 

236U 2.5160E-6 2.145E-6 

238U 2.1157E-2 2.117E-2 

238Pu 4.1350E-5 4.019E-5 

239Pu 8.0727E-4 7.897E-4 

240Pu 4.7367E-4 4.898E-4 

241Pu 2.1899E-4 1.906E-4 

242Pu 1.3465E-4 1.375E-4 

237Np 1.1947E-6 1.07E-6 

241Am 8.7782E-6 8.433E-6 

3 

243Am 1.7080E-5 1.173E-5 
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Table A.3.1- 2: Modified V:BUDS Isotope Inventory and OECD/NEA Phase IV-B 
Benchmark Results for Irradiated MOX fuel ( Number of Fuel Sub-regions = 4) 

 
Number of Fuel 

Sub-Regions 

(NRING) 

Nuclide Number Density 

[atm/barn.cm] 

Benchmark 

Number Density 

[atm/barn.cm] 

Developed Methodology 

234U 5.3603E-7 5.938E-7 

235U 4.3896E-5 4.376E-5 

236U 2.5160E-6 2.069E-6 

238U 2.1157E-2 2.117E-2 

238Pu 4.1350E-5 3.994E-5 

239Pu 8.0727E-4 7.939E-4 

240Pu 4.7367E-4 4.951E-4 

241Pu 2.1899E-4 1.821E-4 

242Pu 1.3465E-4 1.387E-4 

237Np 1.1947E-6 1.052E-6 

241Am 8.7782E-6 8.307E-6 

4 

243Am 1.7080E-5 9.864E-6 
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 APPENDIX B 

Comparison for Isotope Inventory from the Proposed Methodology vs. the 

OECD/NEA Phase IV-B Benchmark 
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Table B.3.1- 1: Comparison of 234U Isotope Inventory from the Proposed 
Methodology vs. the OECD/NEA Phase IV-B Benchmark 

 
Number of 

Fuel Sub-

Regions 

% difference between the 

developed model and the 

Benchmark 

% difference between the 

Single Fuel Region and the  

Benchmark 

2 7.53 2.66 

3 10.05 2.66 

4 10.78 2.66 

 

 

Table B.3.1- 2: Comparison of 236U Isotope Inventory from the Proposed 
Methodology vs. the OECD/NEA Phase IV-B Benchmark 

 
Number of 

Fuel Sub-

Regions 

% difference between the 

developed model and the 

Benchmark 

% difference between the 

Single Fuel Region and the  

Benchmark 

2 -2.82 12.72 

3 -14.75 12.72 

4 -17.77 12.72 
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Table B.3.1- 3: Comparison of 238U Isotope Inventory from the Proposed 
Methodology vs. the OECD/NEA Phase IV-B Benchmark 

 
Number of 

Fuel Sub-

Regions 

% difference between the 

developed model and the 

Benchmark 

% difference between the 

Single Fuel Region and the  

Benchmark 

2 0.06 -0.08 

3 0.06 -0.08 

4 0.06 -0.08 

 

 

Table B.3.1- 4: Comparison of 238Pu Isotope Inventory from the Proposed 
Methodology vs. the OECD/NEA Phase IV-B Benchmark 

 
Number of 

Fuel Sub-

Regions 

% difference between the 

developed model and the 

Benchmark 

% difference between the 

Single Fuel Region and the  

Benchmark 

2 -2.01 -1.96 

3 -2.81 -1.96 

4 -3.41 -1.96 
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Table B.3.1- 5: Comparison of 239Pu Isotope Inventory from the Proposed 
Methodology vs. the OECD/NEA Phase IV-B Benchmark 

 

 

 

 

Table B.3.1- 6: Comparison of 240Pu Isotope Inventory from the Proposed 
Methodology vs. the OECD/NEA Phase IV-B Benchmark 

 
Number of 

Fuel Sub-

Regions 

% difference between the 

developed model and the 

Benchmark 

% difference between the 

Single Fuel Region and the  

Benchmark 

2 1.55 -0.42 

3 3.41 -0.42 

4 4.52 -0.42 

 

Number of 

Fuel Sub-

Regions 

% difference between the 

developed model and the 

Benchmark 

% difference between the 

Single Fuel Region and the  

Benchmark 

2 -2.70 0.88 

3 -2.18 0.88 

4 -1.66 0.88 
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Table B.3.1- 7: Comparison of 241Pu Isotope Inventory from the Proposed 
Methodology vs. the OECD/NEA Phase IV-B Benchmark 

 
Number of 

Fuel Sub-

Regions 

% difference between the 

developed model and the 

Benchmark 

% difference between the 

Single Fuel Region and the  

Benchmark 

2 -6.02 -2.64 

3 -12.96 -2.64 

4 -16.85 -2.64 

 

 

Table B.3.1- 8: Comparison of 242Pu Isotope Inventory from the Proposed 
Methodology vs. the OECD/NEA Phase IV-B Benchmark 

 
Number of 

Fuel Sub-

Regions 

% difference between the 

developed model and the 

Benchmark 

% difference between the 

Single Fuel Region and the  

Benchmark 

2 1.15 0.40 

3 2.12 0.40 

4 3.01 0.40 
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Table B.3.1- 9: Comparison of 237Np Isotope Inventory from the Proposed 
Methodology vs. the OECD/NEA Phase IV-B Benchmark 

 
Number of 

Fuel Sub-

Regions 

% difference between the 

developed model and the 

Benchmark 

% difference between the 

Single Fuel Region and the  

Benchmark 

2 -0.23 18.77 

3 -10.44 18.77 

4 -11.94 18.77 

 

 

Table B.3.1- 10: Comparison of 241Am Isotope Inventory from the Proposed 
Methodology vs. the OECD/NEA Phase IV-B Benchmark 

 
Number of 

Fuel Sub-

Regions 

% difference between the 

developed model and the 

Benchmark 

% difference between the 

Single Fuel Region and the  

Benchmark 

2 -2.53 -3.74 

3 -3.93 -3.74 

4 -5.37 -3.74 
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Table B.3.1- 11: Comparison of 243Am Isotope Inventory from the Proposed 
Methodology vs. the OECD/NEA Phase IV-B Benchmark 

 
Number of 

Fuel Sub-

Regions 

% difference between the 

developed model and the 

Benchmark 

% difference between the 

Single Fuel Region and the  

Benchmark 

2 -11.18 -0.53 

3 -31.32 -0.53 

4 -42.25 -0.53 
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APPENDIX C 

Isotope Inventory Plots from the Proposed Methodology vs. the OECD/NEA Phase 

IV-B Benchmark 



 
 
 
 

165

 

U-234 Isotope Inventory

5.00E-07

5.50E-07

6.00E-07

1 2 3 4 5

Number of Fuel Sub-Regions

U
-2

34
 In

ve
nt

o
at

m
/b

ar
n/

cm

Isotope Inventory from developed methodology

Isotope Inventory from Benchmark

Isotope Inventory from original V:BUDS (Single Fuel Region)

 

Figure C.3.1- 1:  234U Isotope Inventory Using OECD/NEA Phase IV-B Benchmark 
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Figure C.3.1- 2:  236U Isotope Inventory Using OECD/NEA Phase IV-B Benchmark 
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Figure C.3.1- 3:  238U Isotope Inventory Using OECD/NEA Phase IV-B Benchmark 
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Figure C.3.1- 4:  238Pu Isotope Inventory Using OECD/NEA Phase IV-B Benchmark 
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Figure C.3.1- 5:  239Pu Isotope Inventory Using OECD/NEA Phase IV-B Benchmark 
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Figure C.3.1- 6: 240Pu Isotope Inventory Using OECD/NEA Phase IV-B Benchmark 
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Pu-241 Isotope Inventory
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Figure C.3.1- 7:  241Pu Isotope Inventory Using OECD/NEA Phase IV-B Benchmark 
 
 
 
 

Pu-242 Isotope Inventory

1.340E-04
1.360E-04
1.380E-04
1.400E-04

1 2 3 4 5

Number of Fuel Sub-Regions

Pu
-2

42
 

In
ve

nt
or

yr
y

at
m

/b
ar

n/
cm

Isotope Inventory from developed methodology

Isotope Inventory from Benchmark

Isotope Inventory from Original V:BUDS (Single Fuel Region)

 

Figure C.3.1- 8:  242Pu Isotope Inventory Using OECD/NEA Phase IV-B Benchmark 
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Figure C.3.1- 9:  237Np Isotope Inventory Using OECD/NEA Phase IV-B Benchmark 
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Figure C.3.1- 10:  241Am Isotope Inventory Using OECD/NEA Phase IV-B 
Benchmark 
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Am-243 Isotope Inventory
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Figure C.3.1- 11:  243Am Isotope Inventory Using OECD/NEA Phase IV-B 
Benchmark 
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Figure C.3.1- 12: Mass Percentage of 238Pu to total Pu Isotopes in Fuel with BU=37 
MWd/kg Using Weaver-Herring Benchmark 
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Mass Percentage of Pu-240 vs. Total Pu in Fuel with BU=37 MWd/kg
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Figure C.3.1- 13: Mass Percentage of 240Pu to total Pu Isotopes in Fuel with BU=37 
MWd/kg Using Weaver-Herring Benchmark 

 

 
 
 

Mass Percentage of Pu-241 vs. Total Pu in Fuel with BU=37 MWd/kg

10

12
14

16

18

1 2 3 4 5

Number of Fuel Sub-regions

%
 P

u2
41

 in
 T

ot
al

 
Pu

Developed Methodology
Benchmark Value (Weaver-Herring)
One Region Fuel (Original V:BUDS)

 

Figure C.3.1- 14: Mass Percentage of 241Pu to total Pu Isotopes in Fuel with BU=37 
MWd/kg Using Weaver-Herring Benchmark 
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Mass Percentage of Pu-242 vs. Total Pu in Fuel with BU=37 MWd/kg
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Figure C.3.1- 15: Mass Percentage of 242Pu to total Pu Isotopes in Fuel with BU=37 
MWd/kg Using Weaver-Herring Benchmark 
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