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PREFACE

This thesis is an outgrowth of a term paper written

in a course for Dr, R. E. Greenwood of the Mathematics

Department of The University of Texas, The problem of linear

programming is that of maximizing or minimizing a linear

n

functional, f(X) ■ Z c.L, subject to a set of constraints,
J J

n

Z X.a.. » b. (1 « 1,2,...,m),
j=i

J 1

where n> m and and are constants. The simplex

method of Dantzig and the dual method of Lemke are methods of

solving this problem, Saaty and Gass have solved the problem

in which each is a linear function of a parameter t. This

paper formulates and solves the problem (1) in which each

is a parabolic function of a parameter t and (2) in which

each is a periodic function of a parameter t of the form

Cj
*h

i
sin t + cos t, where and are constants.
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CHAPTER I

THEORETICAL BACKGROUND

A. INTRODUCTION

The concept of linear programming is a relatively

new one; and the development of the techniques used

to attack it and related problems is occupying the time of

a great many contemporary mathematicians, particularly

those who are Interested in economic and industrial applica-

tions of mathematics. Physically, the problem is concerned

with "planning a complex of interdependent activities in the

best possible (optimal) fashion" jT]. Scheduling trains,

blending aviation gasolines, and allocating labor are only

a few examples of the type of problems which have been

formulated as linear programming problems. Mathematically,

the problem is the maximization or minimization of a linear

"functional" of a set of non-negative variables which are

subject to a set of linear inequalities or linear equations,

that is, finding x
■ (x ,x ~..,x ), such that f(x) • 2 c.x.

12 n

j-- I
d J

is a maximum (or minimum), > 0 (j = 1,2,...,n), and

n n

2 a. -x, K, b. (i ~ 1,2,,,,,m) or 2 a. .x, b.(i = !,<:,,,,,m),

j
J “■ 1

j=i
J

In order to understand the development and applica-

tion of the methods of handling such problems, one must first

1



become familiar to some extent with the theory of convex

l/\
sets in n-dimensional space and the theory of linear trans-

formations. One purpose of this chapter is to present

the theory from these two fields necessary to an understand-

ing of the linear programming problem. Following this

discussion and based on it will be a brief analysis of the

simplex method of solution. A more detailed presentation of

the simplex method and its procedure will be reserved until

Chapter 11. Finally, the last section of Chapter I will

be a statement and proof of the "duality theorem," a basic

theorem for linear programming.

B. DEFINITION OF TERMS

The first step in presenting any mathematical theory

is to define the terms used. Points or vectors will mean

points or vectors in n-dimensional space. Addition of points

is defined only for sets of points, each member of which

has the same number of components. The sum of two points

x3(x ,x , ..., x ) and y
■ (y.y . ...» y

n

) is then

12 a 12

x+y » (x +
y., x

+ y_, ...»
x

n

* y„). Multiplication of
1X22 ix u

~
- ~

a point x by a real number a is defined by the following

relationi ax = (ax .ax , ...»
ax).

12 n

The ray through the point x is defined as the set of

all points ax such that a >O. Charnes |TJ uses the symbol

2
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Lx,pJ to mean the set of all points x having the property P,

This notation will be used henceforth in this paper.

For example, the ray through the point xis ax|a > 0
.

If

/ \ / \
L- —J

x'
1

and x
u '

are two distinct points, the segment joining

x

{l)
and x

(a)
- [yX

(l)
�(1 - vOx

(a) U <7< ij .

A convex set is a "collection of points such that,

if x and y are any two points in the collection, the segment

joining them is also in the collection" jT] . An extreme

point of a convex set is a "point in a convex set which

does not lie on a segment joining some two other points of

the set" JT] .
If xis a point of the convex set K and

x(i), x

(m)
are the extreme points of the convex

set K, then x may be expressed as a "convex" linear combina-

tion of the extreme points* that is,

xmX x^ + X x

{i)
+

...
+X x^

12 «

m

where O<X. <1 and SX, ■l.
- 1 -

i-i
1

A convex set may also be defined as the locus of all points

which may be expressed as convex linear combinations of the

extreme points. A convex polyhedron is a "convex set which

may be generated from a finite number of points” jjT)
.

A cone is a collection of points such that if

x is in the collection, so is the ray through x. A convex
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polyhedral cone is a "cone generated by a convex polyhedron"

[T| , A convex polyhedral cone is obviously the set of all

linear combinations |\ + +
***

+ —®|
where x^

..., are the extreme points of the

convex polyhedron. In the first place, every point

in the convex polyhedron can be represented by an expression,

p^ x

(i)
+ +

...
+ where 0 < < 1 and

m

S |x,
* 1, Every point on a ray through any such point may

l-i

be expressed as a(u x^ +p.
x^ �

... +|i and hence

is a linear combination of

positive linear combination of these points may be expressed

as a positive multiple of a point in the convex polyhedron

and hence is a point of the convex polyhedral cone, as

x
- X + X +

...
+ X x^

12 m

.
...

.
i m m m

1
a. u. a.

i«i
1

i«i
1

i»i
1

where > 0.

"T is said to be a linear transformation if*

T(ax + bw) » aT(x) + bT(w) for all points x, w, and real
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numbers a, b" [TJ. A linear transformation is completely

determined by what It does to the unit vectors. The notation

will be used to denote the unit vectors,

e
(l)

- (1,0,0,,..,0) # e
( *>

= (0,1,0, ..., 0); e

(n)
- (0,0,...,1).

Now x * (x
,
x

,
x ) » x e + x a �

...
+ x

l a a i a n

Therefore, T(x) - x T(e
(j)

) + x T(e
(a)

) +
...

+
x T(e

(n)
).

1 2 &

Consequently, if T(e (i ■ 1,2, ..., n) are known, the

transformation will be uniquely determined,

•tM
*

L J ii ia in

I [.<*>] * y * + +
...

+

a^ n
e

<lTl;

.
y

(n)
.

Si
,(i) . .

...
. a

nn

.<"'- H|.

Every such linear transformation T is associated

with a matrix A. a a
... a

*
11 11 in

& 3.
0 0 0 Si

where A ■
21 22 2n

•

a
ni

a

ni
** * a

nn

It is also possible to have a linear transformation

from n-dimensional space into m-dlmensional space. For these



6

transformations, the associated matrix has n rows and m col-

umns. For example, fa "] is the matrix (column vector

— a 1

2

a « :
.

a

n__

in this case) associated with a linear transformation from

n-dimensional space into one-dimensional space. (A convenient

way of Indicating column vector A is to write A*, its

"transpose,” a row vector. The transpose A* of a matrix A

is the matrix obtained by interchanging the rows and columns

of A.) To every point xin n-dimensional space there corres-

ponds a unique point w in m-dimensional space into which x

is transforms by the linear transformation whose associated

matrix has n rows and m columns.

The statements in the next three paragraphs are from

matrix or vector theory and will be made and used in this

paper without proof.

"A linearly independent set of vectors (or points)

...,
is a set such that +

•••
+

the ’null vector’ (0, 0), for real numbers
Cj,

only if ** ■
...

* c " 0, Vectors not linearly

independent are linearly dependent.

"A consequence of linear independence is that, if a

point P
Q

« a 1*>

1

+ + a (where P^, ...,
is a

linearly independent set), then the
, ...»

are the only
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coefficients of the *
s in terms of which one can express

P
Q

as a sum of multiples of the i.e., as a 'linear

combination,'

"If the points are in an m-dimensional space, then

there are at most m points in a linearly independent set.

Such a set of m points (vectors) is called a basis of the

space. Every point of the space may be written (uniquely)

as a linear combination of the points of a basis" [T]
•

The following theorem is of importance in linear

programming t

"A linear transformation L from an n-dimensional

space U to an m-dimensional space W takes a convex poly-

hedron K into a convex polyhedron L(K), the image of K" [TJ .

The method of proof is (1) to show that the convexity

of L(K) follows from the convexity of K and (2) to show that

L(K) has at least one extreme point and no more extreme

points than K has. For a detailed proof one may consult the

Bibliography, Reference |T], or other references on linear

transformations and convex sets.

A linear functional f(x) la a linear transformation

which takas the points x ■ {x
t x, x

n
) of an n-

dimensional apace into one-dimensional space. For example,

n

f(x) ■ 2 c.x. is a linear functional. At the beginning
i«i

1 1

of this paper the problem of linear programming was stated
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as the problem of finding x * (x ,x , .... x ) such that (1)
12 n

n n

f(x) » Z c.x. is a maximum (or minimum), (2) Z a..x. < b.
J J

j*i
X J J " 1

n

(1 • 1,2, ...»
m) or Z a.,x, a b.(i ® 1,2, m), and (3)

jcl
J 1

n

x. > 0 (j » 1,2, n). If the restrictions Z a..x. <b.
j

j
XJ J 1

are in the form of inequalities instead of equations, they

may easily be converted into equations by adding to

each inequality another positive unknown whose coefficient

n

is unity. Then Z a,,x. <b, and x. > 0 becomes

j=l
ij J “ i J

~

n

Z a,-x,
+

x_. .
Sb. and x. > 0 and x

..
>O,

J n+i * i ~ n+i "

To every solution to the set of inequalities there

corresponds a solution to the set of equations for which

the value of the linear functional is the same. Hence one

may work with the set of equations only. Henceforth this

paper will use the notation of Charnes, and the unknowns will

be denoted by X *

...»
X

Q
) instead of x.

In order to clarify the discussion which follows

the set of equations will be written out in greater detail

here: X a + X a +
...

+ X a
® b

i 11 2 12 n in i

Xa +Xa +
...

+ X„a * b
i 2i 2 22 n in 2

Xa+Xa+... + X a * b ,

i sal 2 m 2 n mn m



The column vectors (b ,b
, ....

b ), (a ,a .....a .)
i a m *

11 21 nil

..., (a -

dimensional space. They will be denoted by ?
O

,P ,
,

respectively. The problem then la to find X » (X ,X , ...,X )
i 2 ft

such that X P + X P X P * P and for which f(X)
iiaa n n o

is a maximum (or minimum). The set of equations,

n

2 * (i - 1,2, ..., m),

may be considered a linear transformation from n-space into

m-space if each is replaced by Then the point

x
* (x ,x ~ •,,

x ) is transformed into w * (w ,w ~.,,w ).
i 2 n i 2 m

The matrix associated with this linear transformation is the

transpose of the matrix of coefficients of the equations.

This is true because the n unit vectors are transformed into

the n column vectors p
l

»
f>

2
» •••»

?
n

* For example, e^
»

(1,0, 0) is transformed into P^, To understand this,

recall that if x is an n-dimenslonal point, it is trans-

formed into w, where w ® x P + x P + ...+ x . Therefore,
112 2 n n

e

(i)
a (1,0, 0) is transformed into the point, +

+
...

+ * .In general e^ is transformed into

Now the matrix associated with a linear transformation

is the matrix whose element is the jth component of

the transform of the ith unit vector. In other words the ith

9
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row of the matrix is simply the components of the transform

of Hence the matrix associated with the transform

x P + x P +
...

+ x_P_ 8 w is the n x m matrix whose rows

xi 2 2 n n

are the This is obviously the transpose of the matrix

of coefficients of the set of aquations

xP +
x P +

...
+

x P *
.

ii 22 n n o

Henceforth, the following notation will be used: H

will denote n-dimensional space; W will denote m-dimensional

space; and L will denote the linear transformation whose

associated matrix is the transpose of the matrix of coeffi-

cients.

"Now the set of all vectors in U having non-negative

coordinates forms a convex polyhedral cone" JX] . The linear

transformation L takes this convex polyhedral cone of U

into a convex polyhedral cone of W. "A representative convex

set associated with a convex polyhedral cone is a convex set

generated by points, one on each edge of the cone" jT].

An edge of a convex polyhedral cone is the ray through one of

the extreme points of the convex polyhedron generating the

cone. Hence, any representative convex set may be thought of

as having generated the cone.

In the linear programming problem there is usually

n

more than one point X such that 2 *P
Q

and >o.
i*i
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The set of all such points will be denoted henceforth by A»

Such points are called "feasible" solutions. They do not

necessarily maximize or minimize the linear functional. It

will now be shown that Al is a convex set. If X^ and X^

are any two distinct points in A.» then l5 P
o

and

L(X
U)

) - P
Q

.
If o<|i < 1, then +(l - p)X

(a) J •

pL(X
(l)

) +(1 - p)L(X
(a)

) - |i?o

+(1 -p) - P
o

. Hence A

is a convex set.

C. STATEMENT AND PROOF OF A FUNDAMENTAL THEOREM

A theorem will now be proved which is basic to the

solution of the problem at hand:

"Theorem. A linear functional f(u) defined on a

convex polyhedron K takes on its max. (or min.) at an extreme

point of the convex set. If it takes on the max. (or min.)

at more than one point, then it takes the same value over the

whole convex set generated by those particular points.

"Proof. Suppose that x Is a point of the convex

set K for which f(x) is a max. (or min.). If xis an extreme

point, the first statement of the theorem is true. Suppose

that x is not an extreme point and that f(x) is a max, (or

min,). Then we may express xas a ’convex' combination

r

of extreme points of K, say , . ~, A
y

.
Thus sx ■ S /^A^

r

iaEl

where 0< V. < 1 (i » 1,2,...,r), and 2 •/. » 1.
1

i*i
1
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Then, because f is a linear functional, we have:

r ~] r

f(x) - f 2 y
j
,A
i

- 2 " “ax.

i*i I*l

Now, since the are all non-negative, we do not decrease

r

the sum 2 /.f(A. ) if for each f(A.) we substitute the

1-1
1 1 1

greatest of the values say f(A
k

) for some fixed k.

But then
r

f(x) < f(A ) 2 J » f(A )
K

i*l
1

so that, if f(x) is a max., the equals sign must hold so

that f( A
k

) * f(x) is a max. also,

r

"(If f(x) * 2 i/, f (A. ) * min,, then we do not

i«i
1 1

Increase the sum if we substitute the smallest of the values

f(A^ ), say f(A
m

), for some fixed m. Hence,

r

f(x) > f(A ) 2V. - f(A ). Hence, f(x) * f(A ).)
i-1

i m

"If f takes on a max. (or min.) for more than one

extreme point, say ..., i.e., * *

...
* f(A

k
) *M * max. (or min.), consider the convex

set formed from these points. If xis any point in this set,

k k

then x * 2 y. A. where o</. <1 and S/* 1 so that

i«l
1 1 1

i“l

k k k

f (x) * 2 y.f(A. ) * 2 y.M * M 2 y * M

1-1
11

i«i
1

i-1
1
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This completes the proof of the theorem" JT].

D. THE SOLUTIONS SPACE AND REQUIREMENTS SPACE

If K denotes the convex polyhedron In U generated

by the unit vectors, then "L(K), the set in W of all

transforms of points of K, is a convex polyhedron generated

by the points |T] . The cone generated by the *s in W

is the transform of the positive orthant of U, Charnes

refers to U as the "solutions space" and W as the "require-

ments space."

If Xis a point in A, then XP + X P +
...

+

11 2 2

X P - P . Also
n n o

X, X, \ 1

■■■■■" - P +
-• P +

...
� -----P„ - P

.

n i n 2 nnno

2 X. 2 X, 2 X. 2 X.

i»i
1

i-i
1

i-i i=i

Now if —~— is denoted by a, there exists a point aP
o

2 X.

l-i
1

on the ray through P
Q

and which is in L(K), the convex set

determined by the Also if _A. is a bounded set, then

a - ~

-y-
is bounded and hence has a maximum

ia*
* *

n

value a
u

and a minimum value a . To each solution X there
M m

corresponds a value a such that aP
Q

is in L(K) and such

that a < a < a
M .

m— M
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E. ASSURING THAT THE SOLUTION SET IS BOUNDED

It has been shown that is a convex set and that a

linear functional defined on a convex polyhedron takes on its

maximum or minimum at an extreme point of the convex polyhe-

dron. The next step is to show that is not only a convex

set but that it also has a finite number of extreme points.

Then if the solution set is known to be bounded, it is

a convex polyhedron. If the solution set is not bounded, it

may have a finite number of extreme points and still not

be a convex polyhedron. For example, the shaded space in the

drawing is a convex set having a finite number of extreme

points but not "generated by" a finite

number of points. Boundedness of the ///////

convex set is assured by appending the //// // / /

n+i rrVv
/ / / //

equation Z * B where \ .
,

is a new Iy//// / /
1= 1

1

\ //////

non-negative variable and B is an un- / / SS/

specified constant larger than the sum

of the coordinates of any extreme point, B does not need

to be specified beyond this. If the solution set is

not bounded, the addition of this new equation will add new

extreme points to the solution set, and these new extreme

points will involve B.
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F. THE EXTREME POINTS OF THE SOLUTION SET

Another theorem basic to an analysis of the linear

programming problem is the following: "X * X^)

is an extreme point of if, and only if, the non-zero

are the coefficients of linearly independent vectors |T] .

Its proof follows,

.

If X P + X P *
...

� X P « P
n

and the P.'a
112 a qqo i

(i 3 1,2, q) are linearly independent, then

X 3 (X ,X ,
X

, 0,0) is an extreme point of .

i a q

To prove this, one assumes that there exist two points X^ I'* 1 '*

and X
(a)

in and some number c such that o<c < 1

and X 3 cX^ +(1 -
c)X^ (in other words that Xis not an

extreme point of j\_) • Now since c and (1 -c) are positive,

all the coordinates of X^ and X are non-negative,

and the last (n -q) coordinates of X are zero, then the last

(n -q) coordinates of both X' and X^ must be zero.

Therefore, P
A

* X P +XP +
...

+ X P
*

oii 2 2 q q

3 X + X +
...

+ X
(l)

P
1122 q q

3 X � X
(a)

P +
...

+X
*

.

112 a q q

Since the q are linearly independent, then the expression

for P
q

in terms of them is unique. Hence X
t

*
1

3

(i 3 1,2, ..., q), and X is an extreme point of It should

be noted that q < m, where m is the number of equations, that
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is, the dimensionality of the vectors. This is true

because more than m vectors in m-dimensional space are neces-

sarily linearly dependent.

If X is an extreme point of_/\_, then in the expression

n

2 X.P, 3 the non-zero coordinates of X are coefficients

l-i
1 1 °

of linearly independent vectors . Assume that there are q

q

non-zero coordinates. Then 2 X. P, =
. Assume also that

l-i
1 1 0

the q vectors are linearly dependent. Then there exist

q

numbers c. such that 2 c.P. * 0 where not all of the c, are

1
i-i

1 1 1

zero. For any positive constant k,

q q q

P
n

« 2 X.P. 1k 2 c.P. * 2 (X. � kc. )P. .

°
I=l

11 “

l=i
1 1

i»i
1 11

Since all > 0, there exists a positive number k such that

+ and - are positive (i - 1,2, ,q).

Then X^ *(X �ko
,

X +kc
, ..., X �kc )

i r i z
f

q q

and X
(s)

®(X -ko
,

X -kc
,

....
X -kc )

i r j 2
*

q q

are points Also X * + X^ Therefore, the

{i = 1,2, ...,
q) must be coefficients of linearly

independent vectors because this is a contradiction of the

assumption that Xis an extreme point. It should be noted,
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as above, that q < m because more than m vectors In m-

dlmensional space are necessarily linearly dependent. Now,

since n is a finite number, the number of sets of linearly

independent vectors and hence the number of extreme points

is finite. Therefore, if the solution set is bounded, it

is a convex polyhedron. The functional takes on its optimal

value (maximum or minimum) at one of its extreme points.

G. FINDING A SECOND EXTREME POINT SOLUTION

FROM A KNOWN EXTREME POINT SOLUTION

The foundation has now been constructed upon which

the simplex procedure is based. The first step in this

procedure is to assume that a solution X, involving exactly

m non-zero components which are coefficients of linearly

independent vectors, is readily available. This is actually

no restriction on the problem, as will be explained in

Chapter 11. The components of this solution will be denoted

by X ,X , ...,
X and the corresponding column vectors

byP.P, .... P. Since these column vectors are linearly
l a m

independent, they form a basis of W (m-dimensional space).

All of the Pj' s (J “ 1,2, •••»
n ) may be expressed in

m

terms of them. For example, P, * 2 x. ,P.
.

The values x..

J J

are unique. The value of the functional determined by this

m

first "trial” solution X » , ~., X
m

) is z
o

» 2 c i^i*
i Si
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This solution is an extreme point of
,

and what is sought

is another extreme point of which, if possible, increases

the value of the functional. Let be some vector not in

the basis, P ,P
, ....

P
,

Then
i 2 m

P - 2 \ P � ftP - ftP

ac 1
v

Po - -ft J
t

*
lk

p
t

* ftp
k

.

(1-X) P 0 - J
j

(X 1 - * ftP
k

.

If > 0 and each (X
>i

- >O, then this will give an-

other solution. If >O, all - >O, and at least

one - then this is another extreme point of the

solution set because it involves a different set of linearly

independent vectors. To prove that these vectors are

linearly independent, let X
r

- x
rk

“°* Now assum ® the 3et

of vectors (1 * 1,2, ij i + rj i « k) is linearly

dependent. Then there exists a set of numbers and a number

m

not all zero, such that £ + d
k

P
k

* °* Kow d
k

0f
i *1

i+r
m

for if ■o, then S * 0 and at least one of the d
i

+ 0

i *l

if r

This is not possible because the (l " 1,2,,,,,m; i f r)
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are linearly independent. Thus f 0, and

Vic ■ J/'W
ifr

m -d.

P
k

* 2 ( "d
L
-)F

i-K
i-i

a
k

X

ifr

let -It = b . P ."b P .

a
k

x K

i»i
1 1

i+r

But P = sx. P .

i»i
1

Subtracting the expression involving from the expression

Involving gives:

0 *

*rk
P
r

* * ( *lk
- W

x®i

i+r

Now since the vectors .P
m

are linearly independent,

all the coefficients must vanish. In particular x
r}c

*O.

However, it has been assumed that X
r

> 0, fc- > C, and

X

X
r

- Therefore, « xrk
0, Hence the new set

of vectors (i * 1,2, ..., ij i fr{ i »k) is a linearly

independent set, and the new solution is an extreme point of

A-
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The problem now is to find a way of choosing so

that h- yO, all - €*:„ ) & t least one value

x
i

- *x
ik

■°-

The procedure followss

1, The solution X * (X ,X ,
X ) such that all X. > 0,

i
*

2
’

m. 1 ’

m

Z X.P. “ P
,

and P ,P
,

P are linearly independent is

Bl
*

O 1 2 m

assumed known. These m form a basis of W.

2. All the Pj' 3 (j * 1,2, ...» n) are expressed in terms

a

of the basis vectors. (P, * Zx, ,P,.)
J

i»i
x

*
1

3. Assume that for some value of J, say j = k, some

m

yOf that is, = Z and some x^' 3 are greater

than zero. For every > 0, is calculated.

4. £is assigned the smallest of these positive values.

If X
r
/x

rlc
is the smallest of the set, P° r °»

then # = \
r
/x Then all values - will be > 0.

Since "> 0 and &> 0, then if x^ k
£.O, then - Ox^ Jc

)>O.

On the other hand, if x
iJf

>O, then, because of the choice

of O as the smallest of those values which are

positive, every value of (P°r x
iJc

> 0) is Z Hence,

if *
lk

>O,

> 8,
x
ik
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x
ik -

**ik>

\ -

x
ik»

(X
i

‘ *x
ik

} °*

It will now be assumed that if (the replacing vector) has

been chosen such that some x
ik

>O, then ©■ « x
ik

or on ly

one value of ij that is, that - &x^ k
) * or on*y one

value of i, namely, i * r. Then a new basis has been uniquely

determined in which P, replaces P in the old basis. The
k r

case where - x
ik

* ® for more than one value of iis the

case of "degeneracy" and will be discussed in the next

chapter.

11l

5. Then Z - x + &P
k

P rov*des another extreme

i«i

point X* of the solution set _/± ,

* “ €hcik
(1 ■ 1,2, m).

K - *•

\[ * 0 (1 *m+l, m+ 2, ..., nj 1 k),

Notice that X* * 0.
r

Let z
Q

be the value of the functional determined by

<£, _

•

Xjand z
Q

,
the value determined by X

. Also define the symbol
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m

z. to mean 2 x

ii
c
i

anc* that these values depend upon

the solution being used or, more particularly, the set of m

linearly independent vectors (the basis) corresponding to the

solution.

*«
’ *

°l
V
l<

‘ ®*lk )c
l

*

1 1 iX I

m m

- S V, * 6<C
k

- .Vlt0 !*-
1 = 1 X ® 1

(1-2) z* =
z
o

+
- z

k
)-

H. DETERMINING WHETHER A GIVEN EXTREME

POINT SOLUTION IS OPTIMAL

The method outlined above allows one to find a

second extreme point of when one extreme point is given.

The only restriction is that for some
,

not a basis

vector, one of the values of >o. It will be shown

shortly that if this is not the case, then either the given

solution is optimal or there is no optimal solution (the

value of the functional is unbounded). When a new extreme

point has been found by the method outlined above, it is a

"better" solution than the first if, and only if,

{°k - »
k

) > 0 where kis the subscript of the new vector

introduced into the basis.



It is now advantageous to backtrack to the point

where it was assumed that a solution X had been found

involving exactly m non-zero components which were coeffi-

cients of m linearly independent vectors. These vectors

form a basis of W, and hence all of the column vectors

may be expressed in terms of them. This is done, and

all of the values (i « 1,2, i| j a 0,1,2, n)

m

are tabulated. Each z. ( 5 S x..c.) is then calculated
J x «l 1

and recorded, and then - is also calculated and

recorded for each value of j, The table of values is exam-

ined, and there are three possibilities.

I. F or some j, -Zj> 0, and for this j and

every i, O. It should be recalled here that

m

* w
j

is a solution for any & such that all -

—

an(*

& 0 and that the value of the functional for this solution

is z
Q

+
- Zj). Hence since all

x,y
£ 0 and - >o,

any positive value of £ will give a "feasible" solution. The

n+i

functional has no bound. (Appending the equation S X. * B,
i»i

1

where B was discussed in Section E of this chapter, automat-

ically eliminates the possibility of this case.)

11. For all j * 1,2,
..., n, c.. - <o, Then z

q

is the maximum value. Let X* be any another solution.

23
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M
9

Then P
n

■ 2 X, P, .
Let z* be the value of the functional

0

i-!
1 1 0

•
*

n

determined by X t that is, z * 2 c.X.
,

It will now be
°

i=i
1 1

shown that z
Q

z*. By assumption,

>cj for all j .

Also > 0.

n ,
n

,
n

,
m

Hence z = 2 X.c. < 2 z.X. = 2 X.( 2 x..c.)
i»i

1 1
i*i

1 1
i«i

1

j»i
J

m n
,

= 2 ( 2 X.x,.)c,,

j*i i*i
IJ I J

n
,

n
,

m m n
,

Now P
rt

3 2X. P. 3 2X. ( 2 x..P.) 3 2 ( 2 X.x,.)P..
I=l i=i j=i

J J
J=i i=i

1 J

m

Also P„ 3 2 X.P,. Since P ,P , ....
P form a basis of M,

0

jaj
i i i a m

the expression of P
Q

in terms of them is unique.

n
,

Therefore, { 2 X,x,,) 3 X..
1 J 1 J

Substituting this in the last expression for the right-hand

*
m

side of the inequality above yields z

o

< 2 X.c,, 3 z
,

°

j«i
J J °

Charnaa (after proving the above) states the follow-

P

ing optimality teat, "Let 2 3 P 0 be a solution

on p linearly independent vectors. Add m - p more to
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obtain a basis for tf. Express the remaining *

s in terms

of this basis. Then X »

...,
X

p
, 0,0) is

optimal, i,e,, yields the finite maximum of f(X) if all

c

j
*z

j
£ ES •

111. For some j, >Of for every such j and

some i, > 0. This Is the case which is dealt with by

introducing a new vector P
fc

into the basis and removing one

of the old basis vectors, (See preceding section.) If only

one vector is replaced by that is. If there is only one

vector, say P
r

,
such that

r
/x

J.jc

“ then the new solution

will be baaed on m linearly Independent vectors, which also

form a basis of K, In this case the value of the func-

tional for the new solution is larger than the value of the

functional for the first solution. Since the new solution

Involves vectors which form a basis of W, the whole process

may be repeated. If, at each stage, a solution involving

m linearly independent vectors is obtained, the process may

be continued. When I or II occurs, the problem is solved.

The third possibility cannot recur indefinitely because (l)

there are only a finite number of sets of m linearly

independent vectors in the set P
n

,
and (2) the

possibility of cycling or repeating any basis is eliminated

because each solution is assured different from all preced-

ing ones by the fact that each solution determines a value
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of the functional larger than those determined by all pre-

ceding solutions In the procedure. Hence I or II will

eventually occur, A difficulty which arises in practice is

that at some stage there will be fewer than m vectors

Involved in a solution, and hence the other vectors cannot

be expressed in terms of them. This is called ''degeneracy"

and will be discussed fully in Chapter 11,

I. STATEMENT OF THE DUALITY THEOREM

OF LINEAR PROGRAMMING

One of the fundamental theorems of this relatively

now branch of mathematics linear programming is known

as the "duality theorem." Consider the following linear

programming problem* minimize

n n

f * Z c.x, where Z a..x. >b. (i * 1,2, m)

and
Xj 0(J c 1,2, q)•

Its "dual" problem then is this* maximize

m m

g
* Z b.w. where Z a.,w. <c. (j • 1,2, ..., n)

I=l
1 x

I=l
1
”

J

and w
i

> 0 (i * 1,2, ...»
m).

The duality theorem states that if there is a finite solution

to either problem, then there is a finite solution to the

other and that the minimum of f is equal to the maximum of g.
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The proof which will be presented here is essentially

the proof given by Charnes in An Introduction to Linear

Programming. It will be necessary before presenting the proof

to clarify some of the matrix notation which will be used

in it.

J. EXPLANATION OF MATRIX NOTATION

Small letters without subscripts will be used to

designate column vectors. For example, x^
X

j

x* I
,

x
n

The same small letter with a prime will indicate the corres-

ponding row vector; that is, x* *
...,

More

generally, a prime on any symbol for a matrix indicates the

transpose of the matrix. Capital letters without subscripts

will denote matrices with more than one column and more

than one row, I will be used to mean the square matrix with

entries of unity in the ith row and column and entries

*100"

of zero everywhere else. I «* 010 or a similar matrix of

_

001_

another order, so long as it is square. If A and B are two

matrices with the same number of rows, [“ ■] means

the matrix obtained by writing A to the left of B; that is,



a a a a b b
n 12 13 14 ii la

A * a a a a> B = b b>
2 1 2 2 23 24 21 22

a a a a b b
3 1 32 33 34 3 1 3 2

C—\
a a a a b b

A> B »
11 12 13 14 11 12

—'
a a a a b b

21 22 23 24 21 22

a a a a b b
3 1 3 2 33 34 3 1 3 2

Multiplication of matrices is not commutative, and the product

AB is defined only when the number of columns in A is equal to

the number of rows in B. When this is the case, the element

in the ith row and jth column of the product matrix is the sum

of the products of corresponding elements in the ith row of A

and the jth column of B, If AB * C and (&
il

,a
i 2, ~,,

a
in

)

is the ith row of A and is the jth column of B, then

b
12 j

I
n

I— _J

c.
.

® Z a.,b, Obviously the number of rows in A is the
J*J

k s*!

same as the number of rows in C, and the number of columns in

B is the same as the number of columns in C. If X is any

square matrix whose rows (or columns) are linearly independ-

ent, then X" 1
will mean the square matrix of the same order

28
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such that XX"* 1
* I « X” 1

X, In matrix theory it is proved

that if the rows of a square matrix are linearly Independent,

the columns are linearly independent. Also it is proved

that only matrices which are square and have linearly inde-

pendent rows and columns have inverses. The inverse of a

matrix is unique. In the proof which follows, will mean

the same thing which it has meant throughout the discussion.

An m x n matrix means a matrix having m rows and n columns.

To say x > 0 means that each component Xj
> 0.

Nov the linear programming problem may be stated as t

minimise f • c’x, where x and c are n x 1 and x is subject to

Ax > b and x 0. A is mx n and bism x 1. Its dual

may bo stated as: maximize g = w'b, where w is m x 1 and w

is subject to w*A < c* and w > 0,

K. PROOF OF THE DUALITY THEOREM OF LINEAR PROGRAMMING

The first step in proving the theorem is to convert

the set of inequalities Ax b to the equivalent system

of equations: Ax - I a “ b. I is the mx m unit matrix;

a is m x 1: a >O. Now if x = (x ,x . a ,a ),
■— 12 O 1 ] u

then [*• -D x * b and [>• -] has (n + m) columns. In the

“

q

simplex procedure one finds X > 0 such that Z P,X. • P
,

j»i
J J

where q
* m + n. The column vectors in -I have been denoted
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by P
Q+l ,

P
n+2 » •••»

p
n+m

* A solution involving precisely

m P, *
a can be obtained by the simplex method. This solution

will involve the m column vectors P
,

P
,

.... P i that

V V q
m

m
* 2

is, P » S F, L, It is assumed that these column vectors
0

j-i q 3 3

are linearly independent. Hence every column vector may be

expressed in terms of them. The values in the following

expressions are calculated!

m

S x
il

P
o

U ■ 1»2, ...»
n + a).

3
l«i

q
i

m

Then the values z. » £ c x.. are then calculated.
3 ?! 11

aou [_*■ -I J ”

••••
p

n
’

P
n»l*

Pn+mj

■[>][«• *]«

where X is the m x n matrix whose (i,j) element (ith row and

jth column) is (i » 1,2, ...» mj j « 1,2, n),

I is the m x m matrix whose (i,J) element is x,
i,J + n

(i * 1 j-i j .. • , mf J s 1| 2| .• ~
m).

B is the matrix whose columns are P ,P
,

.... P

V V Sn
These are the basis vectors.

*“> w [-0 * (*,«• P
n+2

* •••>
Pn+mj

- fp
,

P P„ (l - BY.

L 1 j “I



Therefore, Y « -B” 1

,
and £x, Y |»| X, -B*"

1 ~| .

m

Also z

j
-

Xjj 0 » 1,2,
...» n),

3

j
“ c

j
* c

j
(j “ 1,2» ***’ n)t

2

j +n

=

i«i

C

«i Xl
»

n+J
(j " I>2

» •••»
m)

»

and c

n+j
»0 (j » 1,2, ..., m).

Let e** ■(e
, c

, ...,
c ).

Let /’ = (z - c
,

z - c
, ..., z„ - c ) » c** X - c’

i i a 2
*

n n'

and -w' = (i
B+l ,

*
n
*

a
, ....

.
nttt

) - -•*’

Let x*' 5 (X
,
\

, ..., X„ ) and P =b.
q q q„ o

a a

m

Then b - S P X. - Bx*.
l-i qi

1

For any feasible solution x of the first problem

(not necessarily optimal) and any feasible solution w

of its dual problem (not necessarily optimal) the following

things are true.

31
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Since Ax > b and w >O, then w*Ax > w'b. However,

w'A < c’, so c’x > w*Ax > w'b (since x > 0). This is true

of all solutions x to the first problem and all solutions w

to its dual. Therefore, min c'x > max w'b. If, for some

x and some w, w'b * c'x, then for this x and this w both c'x

and w'b are optimal (minimal for c'x and maximal for w'b).

This 1s true because for these values rain c'x < c'x • w'b <

max w'b < min c'x, and the equality sign holds throughout.

Hence min c'x = max w'b.

If it can be shown that In an optimal tableau for

the first problem, w = -(z
n+i , ...,

z
n+m

) satisfies

the conditions of the dual problem (w > 0 and w'A < c*)

and that w’b * c'x, then it will have been proved that if

a finite solution to the first problem exists, then

a finite solution to the dual problem exists and min c'x *

max w'b. It will then follow that if a solution

to the dual problem exists and is finite, then a solution

to the original problem exists and is finite and also

min c'x “ max w'b. In order to understand this, one needs

only to rewrite the two problems as follows:

(1) In place of the first problem write the equiv-

alent one, "maximize (-c'x) where -Ax < -b and x > 0."

(2) In place of the dual problem write "minimize

(-w'b) where -w'A > -c' and w' >O."
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It should also be noted that min (-w'b) * max w'b

and max((-x)c *x) * min c'x.

Hence if the above conditions can be shown to hold,

the theorem will be proved. In an optimal tableau for the

first problem,

2
j —cj

0 * 1,2, *..,
n m),

{ln the earlier text the optimal tableau was characterized

by the fact that z - c > 0 for all values of j. The

discussion there was for maximizing a functional. It is

obvious that if the functional is to be minimized then

z

j
“ S. 0 for all values of j.)

Therefor®, J< 0 and -w <O, hence w >O.

Now w'b » (c*
,B~ i

)b » (c^B^Hßx*)

- c*'x*

* min e'x.

Also «/* » c**X - c' and -V > 0 so that (since A « BX and

hence B“4
A « -X) *

o’ « c**X
-

J* - c*
,

B“ i A - �* « w*A -

•/> w*A.

This completes the proof.

To reduce a linear programming problem to the prob-

lem of finding any solution to a larger set of inequalities,

write the problem in the formj
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minimize f(x) * c'x where Ax > b and x > 0.

Then write down Its dual and the added restriction that

w*b > c’x. From this one may conclude that any method of

solving inequalities may be applied to linear programming

problems. However, such methods are usually more

cumbersome than the methods developed specifically for the

linear programming problem.

L. DUALITY IN OTHER FIELDS OF MATHEMATICS

The theorem just proved is called the duality

theorem of linear programming because of its similarity to

the duality principle in other fields of mathematics. One

classic illustration is the duality principle of projective

geometry. According to this principle, "all the theorems

of projective geometry occur in pairs, each similar to the

other, and, so to speak, identical in structure” ]_2j . A

theorem may be constructed from its "dual theorem” by inter

changing "dual elements," For example, If point and

line are dual elements, then interchanging them in one the-

orem will give its dual theorem, Pascal's Theorem

states that, "If the vertices of a hexagon lie alternately

on two straight lines, the points where opposite sides

meet are colllnear (See Reference jIQ, page 191,) Its

dual, Brianchon's Theorem, states that, "If the sides of a



35

hexagon pass alternately through two points, the lines .join-

ing opposite vertices are concurrent" {_2j .

The algebra of sets also has a duality principle.

(See Reference [2j, pages 108-112.) If, in any one

of the laws of the algebra of sets, the expressions, "is a

subset of," "the empty set," and "the union of,’* are inter-

changed respectively with the expressions, "contains as

a subset," "the universal set," and "the intersection of,"

then another one of the laws results.



CHAPTER II

TWO METHODS OF SOLUTION

A. INTRODUCTION

In Chapter I a theoretical background was developed

for attacking the linear programming problem. It will

be the purpose of this chapter to go Into two of the present

methods of solution in some detail. The first method,

which was introduced in Chapter I, is the simplex method.

Its discussion will be followed by a discussion of the "dual'’

method of 0. E. Lemke [3l.

B. FINDING AN INITIAL FEASIBLE EXTREME POINT SOLUTION

In Chapter I the theory behind the simplex method

was presented without going into the details of computation.

It was assumed that an initial feasible extreme point solu-

tion to the linear programming problem was readily available.

Recall that such a solution X * (X ,X , ....
X ) involves

12 n

precisely m non-zero components, which are the coefficients

of linearly independent vectors. (See Chapter I, Section G.)

In many problems the set of constraints is stated in terms

n

of inequalities of the forms 2a. ,X. <b. (i * 1,2, ..., m)

J»1
J

where all O. This set of inequalities is converted

36
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to a set of equations by adding a new non-negative variable

with coefficient unity to each inequality. The set then

n

becomes Z � X
n+i «

matrix of coefficients the last m column vectors are the

unit vectors of W (m-dimensional space). They are linearly

independent. Also, since all are >O, then denoting

these last m columns by P ~,P
.

the following
n+i n+2 n+m

m

is trues 2 b.P
..

“ P , P is the m-dimensional column
.
_,

x n+l o o
i*i

vector whose ith component is that is, the corresponding

row vector P* “ (b ,b , b). This is an initial
o 12 m

solution, and all column vectors may easily be expressed in

terms of the vectors P
~,? .

, If the constraints
n+i' n+a' ' n+m

are not so conveniently expressed, it is still possible to

get an Initial solution without having to determine a set of

m linearly Independent vectors from the set P^,P^,.•.,? n
,

where

whose components are a

2 j»
a

m j)« Suppose that the

set Of constraints is expressed as equations; that is,

n

Z a. .X, —b, (i B 1,2, ~,, m),

j»l
* 1

A related problem is now considered, A new variable is

attached to each equation. All the coefficients of the new

variables are either lor -1. If
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coefficient of the variable attached to the ith equation)

*l* If 0, then
n+i

* -1. The set of equations may

n+m

then be expressed Z *
n+l .

P
n+2 , • ••,

?
n+m

j“1
J J

are the unit vectors of W, some of them perhaps negative

m

unit vectors. Obviously, Z j^jf*n+i
“ Hence one is

provided with a solution in terms of m linearly independent

vectors (a ’'basic" solution) to this related problem. The

question arises of the exact relationship between the

two problems. Any solution to the original problem automat-

ically provides a solution to the related problem (with

X
~

* X
...

=
...

= X„
.

» 0), Assume that, by some manner,
zi+i n+ja.

it is possible to construct a new functional, f*, for the

related problem, such that, for any solution Involving only

the variables of the original problem, f'» f (the functional

of the original problem) and, for any solution involving at

least one of the "attached" variables, f* is less than

the minimum value of f (if f is to be maximized) or greater

than the maximum value of f (if f is to be minimized).

Maximum and minimum values of f exist since by appending

n

Z X. < B to the original problem one can assure boundedness
J

of the solution set. (See Chapter I, Section E.)

Then, if any solution to the original problem exists, the
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optimal solution to the original problem will be the optimal

n

solution to the related problem. If f * S 0.X,, then f*

i“i
1 1

n+m

will satisfy the above conditions if f* » f - M Z X.,
i»n+i

1

where M la a value so large that its appearance in the func-

tional makes it smaller than the minimum value of f.

(Obviously, this is for maximizing fj if f is to be minimized,

n n+m

then f* ■ Z c.X, + M 2 X..) There is no question of

i»i
x 1

i»n+i
1

the existence of values of M large enough because (1) the

solution set to the related problem can be made bounded

n+m

(by the addition of ZX, B*) and hence will have a finite

i»i
1

number of extreme points (some of them possibly involving B*),

and (2) the functional (this is not the functional to

be maximized or minimized but is the multiplier of M in f *)

n+m

Z X. has a finite minimum over all extreme points

i*=n+i

involving at least one positive > n). M then has some

n+m

value such that M( 2 X.) . is larger than

i«n+i
1 ffiin

n n

( £ cA. )
v

- ( 2 c.X. ) . .

1=!
+ 1 max

is£l
+ 1 min

There is always a solution to this related problem; and if a

solution exists to the original problematic optimal solution
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to the original problem will be the optimal solution to the

related problem.

It should be noted that, by the methods discussed in

the preceding paragraph, it is possible to find a basis of W

and a solution in terms of it. This solution does not

necessarily involve precisely m non-zero coordinates. When

it does not, it is a "degenerate" solution* and this will be

resolved now.

C. RESOLUTION OF DEGENERACY

Th® next difficulty to be resolved in the simplex

method is that of "degeneracy." In using the simplex method

one starts with a solution in terms of a set of m linearly

independent vectors in W, that is, in terms of a basis of W.

The process is carried out by replacing one vector ?
r

in the

set by a vector not in the set and obtaining a new solu-

tion in terms of the new set of vectors. This is done as

follows* if X *

(X^X^,.. ~X
Q

) is th© original solution and

> 0 (i * 1#2,,,.,m)l
# 2,,,.,m) and X

i
* 0 (i »m + 1, m +

m

then 2 * P
Q

and
•••»

are linearly independent

vectors forming a basis of W, that is, m-dimenslonal space.

Hence any m-dimensional vector may be expressed in terms of

m

them. In particular P, » 2 x.JP..
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Therefore,
m

P « 2 X,P. + GP, - GP,
oii k k

in m

» 2 X P - G 2 P- + GP
1 1

i*i
1 K

3 ** p
i

+

(See Chapter I, Section G, Equation 1-1.) If G> 0 and all

- —°» th® n this provides a solution. If Gis

taken to be the smallest positive value of and there

is only one value of which is equal to G, then

the new solution will have m positive coordinates; they will

be the coefficients of linearly independent Then the

process may be repeated. (Recall that is chosen to

increase the functional if possible. If z is the value of
o

the functional determined by the first solution, then the

value determined by the solution obtained when is brought

m

into the basis is z* *
2

0

+ where z
k

■ 2
x^c^,

I*l

(See Chapter I, Section G, Equation 1-2.) Two assumptions

have been made without being justified* (1) that the

original solution has precisely m non-zero coordinates and

(2) that at each stage there exists only one smallest value

N/X
ik*
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Again a related problem is considered. The

related problem will satisfy the above assumptions and will

yield the solutions to the original problem, ?
Q

in the

n

original problem is replaced by (P + Z e
J P,), where e is

0 J

unspecified but positive. The rest of the problem remains

unchanged. Now if X * (X ,X , ...,
X

,
0,0) is a

X St

solution to the original problem in terms of m linearly in-

dependent vectors, ,,,,
P

ffl
,

then

m n
.

n
.

Z (X. + Z x. ,e
J )P. * P + Z e

J P.,

i»i
1 1

j*i
J

This is true because

m

m

B Jp a Z X, .P.
,

n
,

n
.

m

Z e
J
P, ■ Ze

J
Z x,.P,,

j=i
J

j-i i=i
1

n ,
m n

,

Z e
J
P, « Z ( Z

j»i
J i»i j»l

J

m

Also P » Z P..
0

i-i
1 1



n
.

m n
.

Hence P + Z e
J P. - 2 (X. � Z e

J
x. ,)P, .

°

jsl
J

!•!
i

j.i
i

Now. if f (X) denotes the value of the functional
e

for a solution to the related problem where X is a solution

to the original problem, then

f (X) *-2 c.X. � 2 c.( 2 e
j
x..)

8
i«i

1 1
i«i

1

j«i

m n
.

m

= 2 e.X, + Z 2 x.,c.

i»i
1 1

j»j i»i
X J 1

m n
.

* Z c. X. + 2 e*' a
.

i-i
11

j-i
j

n
1

® + 2 e
J

z,
°

j.,
3

where z is the value of the functional determined by X.

n
1

Consider now the polynomial 2 e
,,
x. .. Any polyno-

j*i
J

mial in e is dominated by its lowest power if e is suffi-

ciently small. Consider the two polynomials in es

a(e) * a e � a e* +
...

+ a e*"1

iz q

b(e) « b e � b e 2 �
...

� b e
q

la q

where q is some finite number. Then

43



a(e) - b(e) « (a - b )e + (a - b )e‘:
+

...
+ (a - b )e q

.

11 22 q q

Let (a - b ) be the first non-zero coefficient in
3 S

this last line. Then

a(e) - b(e) « (a
g

- b
a
)(e

3

)(l + c
s+l

e
A

+ ®
a+2

®
2

+
•**

+ c
q®

q”S
)

where

.

-a i
- b

i

°1 =

a - b
‘

s s

Now let

o{e) S (1 + c
g+J

e
1

+ c

s+2
e

2
+

...
+ c

q
e

q"3

).

Then

a(e) - b(e) * (a - b >(e
3
)C(e).

S S

Now the limit of 0(e) as e approaches zero from the positive

side is unity. Hence there exists some positive number

e

Q

such that if 0< e < e
O
,

then C(e) >O. Therefore, for

C<e < e 0 the sign of jja(e) ** b(eiTj t^lo 3azae as tll9 si Sn

of (a - b ), and
3 3

a(e) > b(e) if and only if a
Q

b
,

s s

This result will be used later.

Now the first assumption which was mads and not

justified was that the first solution had exactly m non-zero

coordinates. It was shown in the preceding section of this

u
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chapter how it is possible to get a basis of W, but there was

no guarantee that, based on these vectors, all > 0.

In the corresponding e-problem, however, each component in

the solution will be greater than zero. Consider that

X * X
m

) the original solution. Then a solution

to the corresponding e-problem is

p
= ( IVIV ***’ Pm* °» •••»

0)

where

»
1

=X
i

+L s (i * 1,2, ««., m).

Also

nl. i
n

1
X. + 2 ,* X. � e + 2 e

J
x. ..

1

j»1 *• 1

j t* m+l

This last statement is true because

P, - (0)P + (0)P +
...

� (1)P, +
...

� (0)P .

112 1 m

Hence * 0 (j « 1,2, ..., mj j+ i) and x
jLi

*l. Since

1
n

i i
in the expression, e + 2 e is the smallest power

j*m+i

of e, then for e sufficiently small (since e is positive)

1 ■?

(e + 2 e
J x.,) is positive. Also all X. >0; therefor©,

j =m+l

.

n
.

n
.

all (X. + e + 2 e
J
x. .) 3 (X. + 2 e

J
x. ,)> 0

1
J-m+i

1J
J-i

J

(i * 1$ 2, .. ~ m).
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Hence the first solution to the e-problem has precisely m

non-zero components.

The next assumption was that at each stage there

exists only one smallest value where x
ik

>O.

n x

In the e-problem + 2 e
J

~ corresponds to X^A^
j *1

in the original problem. If Xj. A and \
g
Agj, are two

distinct values of and X
r
A

rk
x

gk ,
th® n obviously

there exist values of e small enough such that

U
r

* f xrk>(X
s

+

If XyAyfc *

3
/x

gk
then there exist only a finite number of

values of e such that

(X
r

* 0
3

x

rj
) - x

rk
• (X., *

r x
xk-

There exist only a finite number of solutions to the equation*

r *rk
- * x

.k
= 0

unless all the coefficients are identically zero. This is

not true in this case because the coefficients of e

r

and e

s

are lA
rk

and ~lA
sit

respectively. Hence if there is a

set of values * 1,2, *•*»
<*) which are all equal,

there exist values of e smaller than any preassigned value
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n
.

such that in the set (X, + Z e
J
x..) f x.

t
there exists

a unique minimum. Therefore, in the s-problem, the simplex

process replaces only one vector of the old basis by the

new vector being brought into the basis | at every stage the

solution will involve precisely m non-zero components.

An optimal solution to the a-problea automatically

provides an optimal solution to the original problem.

Assume that this is not truej that is, that

f .< X) '*«- S *S
J *1

is an optimal value of the functional for the e-problem,

but z
Q

is not the finite maximum of f(X). Then there exists

a solution X* to the original problem such that >z
0

where z'
0

is the value of the functional determined by X*
*

If all z

*

*s are based on the solution X* (X* is necessarily

an extreme point and hence may be expressed in terms of

n .

m linearly independent vectors), then f (X*) ® z* + S ©^z!.
9 °

j«i
J

n .

Since f (X) « z + Z Bje,8
j
e, is the optimal value of f

,
then

• °

j-i
3 e

ni. n
1 ,

* "Z e
J

z .
> z + S e

J
z..

°

J-i
j ” °

J-i
j

If e is sufficiently small, z,. > z*, but z < z', which is
o o



a contradiotion. Therefore, an optimal solution to the e-

problem automatically provides an optimal solution to the

original problem, and one may deal with this non-degenerate

e-problem. Actually, as will be demonstrated, it is not

ever necessary to specify the value of e.

D. DEVELOPMENT OF THE COMPUTATIONAL PROCEDURE

The first step in the actual simplex procedure is

to obtain a basis of V and a solution in terms of it to the

original problem. Then, in terms of this basis, for

all values of i and j are calculated, as well as all values

of z

j
and

Zj
” c

j•
XU these calculations are tabulated

in the first "tableau" as follows:

Column Vectors

Unit Hasis
p p p p p

Values Elements o i
***

j
* * *

k
* * *

n

c F X x «.»x.».. x •i • x

i i i 11 ij ik in

« t • • « • • « • ••• ••• • • * • • • • • • 000

c
i

P
i

X
i

x
ii

** * x

ij
** * x

lk
x
in

000 • • « * • • ••• ••• • • • 000 * • *

c x_ •• • x
• •• « X i •• • x

r r r n rj ric ra

f««•••000000000
« • 0 0 0 0 0 0 0 0 0 0

°m
?

m
Na x

mi
** * x

mj
** * x

mk
** * "San

f(X) 2 000 2j 000 ••• 2^

Dif•• jr(X) 2 *C 000 2 .**o
. •• 0 2■* “"C* 000 2 “*0

Terences
11 J j k k n

48
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In the section headed "Column Vectors” each column

represents a vector, and its elements are its coefficients

in terms of the basis vectors. The element in the ith row is

the coefficient of the ith vector, as indicated to the left

of each row in the column headed "Basis Elements,"

The next step is to examine the - c^) row. If

case I or case II Is found to be true, the problem is solved.

(See Chapter I, Section H.) If case 111 is true, a new

"tableau" must be calculated, A new vector must be chosen

to enter the new basis and replace some vector P^, Since

a
*

« 2 + #(c, -z, ) and a maximum value of the functional is
oo & x

being sought, the logical choice for is the vector whose

net difference (C
k

- .
k

) I. largest, hence whose (zy - o^)

is most negative. The next step is to determine ?
r

. Each X,^

is divided by its corresponding If this set of values

X^/X
ik

has a un^<l u ® sioimum among the ones such that >O,

then the vector corresponding to this value is P
r

, Suppose,

however, that there are several values (such that > 0)

of which are equal and smaller than all the others.

As the reader has already seen, their corresponding values in

the e-problem are not equal. If each element in the ith row

is divided by then these values will be the cooffi-

n
.

cients of the polynomial (X
i

� S e
J

Xjj) -f in ascending
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powers of e. It has been assumed that the are equal.

The second elements in each row, that is, the ar ®

compared. If they have a unique smallest value, its vector

is P
r

.
If not, the vectors corresponding to all except

these smallest values are eliminated and then the third ele-

ments are compared, and the process is continued until a

unique smallest value is obtained. Such a value must exist

in the first m elements. When corresponding elements

are compared, then vectors corresponding to any except the

smallest values may be eliminated, but the matrix of

the first m columns in the tableau is the m x m unit matrix.

Hence if has one of the minimum it will be

eliminated the first time because x /x
.

® 1/x
,

> 0 and
11 ik ik

XuAlk
* 0 * 2,3, Similarly, if has a min-

imum it will be eliminated on the second comparison.

In this first tableau the value which is a minimum

and has the largest value of i will determine P
r#

Mow P, and P have been determined, and a new

k r

tableau based on the new basis must be calculated. If

is the new value based on the new basis, then:

?
J

*

i^X

lj
P
l

+ X
kj

P
k * z

j
* + X

kj
C

k

i=fr ifr

(j * 1,2, n).
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P
k

= x
rk

P
r

+
#

ifr

m

Al s° Pj ■ E x

ij
P
i

(J ■ 1,2, ...,
n),

m

(2-1)
Pj

e +
x
rj

P
r

0 “ 1»2, >••)
n).

i+r

a

But, from above, x
rk

P
r

-?
k

- Z x^P^
i*8 !

i+r

1 » *i v

(2-2) P « P 2
-ii

P
x
rk

*
i»i

x
rk

x

i^r

Substituting this expression for P
r

in the expression for P

gives e

a rj a x.^
P
i

* 2 x
ij

P
i
+— P

k
* x

rj
2

*

P
iJ

i»i
x x

rk
* J

i=*i
x
rk

1

ifr i+r

(j « 1,2, ...» n);

U-3) - *rS

i^r

(j * 1,2, ••*, n).



E. THE SIMPLEX ALGORITHM

Since the expression for in terms of the new basis

is unique, the following algorithm is provided for calculat-

ing the new tableaut

x

rj
(2 'A) *ij ■

*IJ
* X

lk

(i * 2, •*•, mj i Vf j * I,*?, ••>, n) j

X

rj

(2-5) x
k j

*

x
(j m 1»2, ot| n).

an. n
,

Now 2 (X. + 2 e
J
x.

.
- ©x..)P. �&?.»? + 2 e

J
P.

i«i
1

j«i
i i ik 1 k o j

n
\

\ * 2 e
J
x

.

r

j-i
rj

and & * I
x
rk

n
.

n .

X � 2 . X � 2 .

. m n
.

r
j-i

r

j-i
r *

. • 2 (X. � 2 . x..)?. + P
k

i«i
1

J-i
x
rk

1 x
rk

K

m x
«v

n
«

x
rJ

.

n xri
t

•2X. - Xr + 2 e*(x
u

- j-i x
lk

) + +2 —i )P
fc

i«i
1 r x

rk
J

rk
x
rk j»i

x
rk

- 2 (X! � 2 e
J x* )P. � (X* � 2 e

j x’ )P.,
j_al

A AJ i «■
jml

*■

52
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and if is denoted by x*
o

» then the same algorithm may be

used for computing it as for computing the other x^, Also,

as may be easily proved, this same algorithm may be used to

compute the z, ~c, * - c^.) --(z
k

- c
k

).
x*k

When the new tableau is computed, it is again

examined to see whether case I, case 11, or case 111 applies.

If it is case 111, the process is repeated. Since there

are only a finite number of sets of m linearly independent

vectors and since, in the e-problem, each solution provides

a value of the functional larger than values of all preced-

ing solutions, there is no possibility of returning to

the same basis and "cycling"j hence case I or case II will

eventually be reached. Case I will be ruled out by append-

n+i

Ing the equation £X. * B, If the problem has no maximum,
i»i

1

then at some stage some other than X
Q+l

will involve B,

and the problem will be solved, (See Chapter I, Section E.)

F. DETERMINING ALL OPTIMAL SOLUTIONS

The problem now arises of determining all optimal

solutions when one optimal solution has been found. If the

solution set is bounded, the set of optimal solutions is

the set of all extreme points which yield this optimal value
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of the functional and the convex set determined by them.

Denote by X « X
m

, 0, . 0) the optimal solu-

tion reached through the simplex method, so that

X P + X F +
...

+ XP « P
.

i 1 22 mm o

Let «■. P. + £ P +.,.+& P = P
kkqq P P o

denote any other solution, Now

mm m

P. » Z x.
t

P, and P * Z x. P, and ... and P » Z x. P.
.

k
i=l

ik i q iai
iq i p

i=l
ip i

Therefore,

ia m m

€�. Z x.,P. + # Zx. P- +
...

+ & Zx. P. » P
.

k
i«i

ik 1 q
i*!

I? i P
istl

ip i °

However, the expression for in terms of P ,P
, ...,

P is
*eo i 2 m

unique. Hence,

#,x
,

�& x +.. *+ & x » X
k ik q iq P ip i

%x
,

+ x +~, +& x ■ X
k ak q aq P 2p 2

%X .
+£ X +

...
+ #_X * X_.

k mk q mq p mp m
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Multiplying each equation for by gives t

£,c x
,

�■& c x +...+£ c x =c X
k j ik q i iq p i ip x l

<X,c x +#ox � ...+£• c x ® c X
K 2 3k q 2 2q p 2 zp 2 2

V«x
«k

• \°mx
mq

*
...

«
pVp

" “mV

Adding up the equations on both sides gives

\ z
v

* +
...

+ €r_as » z
,

Kkqq P P 0

where z
Q

is the value of the functional determined by X and

the z.'s are based on P ,P
,

.... P
-

If z’ la the value of

j x' 2
* m o

the functional determined by (#.,& ,
.©• ), then

A 4 Jr

©v c- + c
+

...
+ ©• c * z*

,

kk qq pp o

Subtracting z
Q

from gives

•i -s
o

■ V“k - *k> * V#

«
"V* "*

* V°P *V’

(2-6) *
k

(»
k

- «
k

) * »„<«, - »

q
) *

•••
* V«p

* ,
p

) -

Now because all > 0 and all - z^) <O, the only

vectors which may be entered into the basis with positive
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coefficients are vectors for which (c, - z.) * 0. Sach of

these vectors is entered into the basis, and after each such

entry the new basis is "followed up" j that is, each other

vector whose (c. -a.) * 0 is entered to form still another

basis, rfhen all possible combinations of m linearly inde-

pendent vectors of the vectors, ~..,
and the vectors

Pj for which - )= 0, have been considered as bases,

then the extreme points of the optimal set will have been

found. The assumption has been made that the optimal set is

bounded, that is, has a finite number of extreme points.

n+l

This may be assured by appending the equation Z X. * B, If

i*i
1

the optimal solution set is not bounded, one of its extreme

points will involve B.

G. AN EXAMPLE SOLVED BY THE SIMPLEX METHOD

A simple example and its solution will be presented.

Problem* find x and y such that*

(1) -y - 3x < 6

(2) y + 3x < 15

(3) 7 - x< 2

U) y
� x< 7

(5) -IBy - 2x < 27

(6) x > 0

(?) y >0
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and such that z * y + 2x is a maximum. The problem will

first be solved by the simplex method, and then it will be

solved geometrically.

The first step is to convert the inequalities

to equations by adding a new non-negative variable to each

inequality. These new variables will be denoted by X
,

X
,

1 2

X
,

X
,

X
,

and y and x will henceforth be denoted by X
»* 4 5 6

and X respectively. The equations then ares

7

X - X - 3X - 6
1 6 7

X + X � 3X « 15
2 6 7

X+X- X * 2
3 6 7

X�X+ X » 7

4 6 7

X -18 X - 2X » 27.
5 6 7

The matrix of coefficients then isi

PPPPPPPF
12345670

1 0 0 0 0 -1 -3 6

01000 13 15

00100 1 -1 2

00010 117

0 0 0 0 1 -18 -2 27.

If one uses P
,

P
.....

P as the first basis, he may easily
l' 2 5

m

calculate the first tableau. Recall that *. » Z x^.c^.
* J *
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On page 59 are the three tableaus in the problem. Notice

that, in the first, has the most negative value of

- and hence becomes The positive values of x
i?

are x *3, x «1, and then X/x » 15/3 * 5 and
27 47 2 27

X/x ®7. Hence o*s and P is P
.

The second tableau
4 47 r 2

may now be calculated. The elements x| *
in it (where i is

the subscript of the basis vector and J of the column vec-

tor) are calculated from the elements in the first tableau

by the algorithm;

• !!i
X

ij
* x

ij
“

x
rk

x
ik

,

and x,. * -
.

x

rk

Since the are used in computing the other elements, it

is convenient to calculate them first. A check on the com-

putation is to calculate z! - by the algorithm and then

by r] - E

In the second tableau the only negative - is

a - c ® -1/3. Hence P becomes the new P, and P the new

6 6 6 «. A

P
r

, When the third tableau is completed, all a., - c..

are non-negative; hence, the solution is optimal. Since

Zt -

Cj
* 0 only for the basis vectors, there are no other

optimal solutions.



Tableau

Tableau II

Tableau 111

59

Tableau
>

c<5lumn Vectors

Unit Basis P P p P P P p p

Values Elements
O l 2 3 A 5 6 7

0 P
x

6 1 0 0 0 0 -1 -3

0 p
2

15 0 1 0 0 0 1 3

0 p
3

2 0 0 1 0 0 1 -1

0 P
JL

7 0 0 0 1 0 1 1

0 P

3
27 0 0 0 0 1 -18 -2

Z

J
0 0 0 0 0 0 0 0

Net Dif-

ferences

0 0 0 0 0 0 -1 -2

Tableau i [I Column Vectors

Unit Basis p P P P P p p F

Values Elements
0 i 2 3 4 5 6 7

0 P
X

21 1 1 0 0 0 0 0

2 P
7

5 0 1/3 0 0 0 1/3 1

0 p
3

7 0 1/3 1 0 0 4/3 0

0 p
A

2 0 -1/3 0 1 0 2/3 0

0 p

5
37 0 2/3 0 0 1 . -52/3 0

•l
10 0 2/3 0 0 0 2/3 2

Met Dif-

ferences

z

i
~ c

j
10 0 2/3 0 0 0 -1/3 0

Tableau [II Column Vectors

Walt Basis p P P P P P p p

Values Elements
0 1 2 3 A 5 6 7

0 P
1

21 1 1 0 0 0 c 0

2

A

P
7

U 0 1/2 0 -1/2 0 0 1

0 p 3 0 1 1 -2 0 0 0

1

>

p
6

3 0 -1/2 0 3/2 0 1 0

0 p

5

89 0 -8 0 26 1 0 0

z

i
11 0 1/2 0 1/2 0 1 2

Net Dif-

ferences

z

3
~

°4
11 0 1/2 0 1/2 0 0 0
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H. THE GEOMETRIC SOLUTION

To solve the problem geometrically, one starts by

drawing the two-dimensional graph on page 61, The shaded

area is the convex set determined by the inequalities.

The first extreme point solution corresponds to the origin.

The next extreme point solution, to (5,0); and the final

one, to (4,3). The family of lines y + 2x ® z is the

family of lines with slope -2. Maximizing the form y
+ 2x

over the convex set determined by the inequalities

corresponds to finding that point (or points) of the convex

set which lies on the line (of the family y + 2x ® z) which

has the largest possible y-interoept and still contains at

least one point of the convex set.

I. STATEMENT OF THE DUAL PROBLEM FROM

THE LINEAR PROGRAMMING PROBLEM

G. E. Lemke has devised a method of solving a linear

programming problem based on the duality theorem, a proof

of which was presented in Chapter I, Section K, Assume that

n

the linear programming problem is to minimize z « Z X.c,

J asj J J

n
d

subject to P “ Z X.P, and X. >0 (j * 1,2,,,,,n). Then
®»• J

”

J
m

its dual problem may be stated: to maximize * S w
i»

i = i
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where ■
...» bj and w* «

w
m

)»

m

subject to Pjw • Z < (j • 1,2, ..., n) and where

Pj *
a

m j) • Tli® primes on P
Q

, w, and in-

dicate that ?
o

, w, and are column vectors# and hence,

w', and p! are row vectors.

J. AN APPLICATION OF THE DUALITY THEOREM

It is easy to show that if, for some solution X to

the programming problem and some solution w to its dual

n

problem, P'w ® Z X.c., then w and X are optimal solutions to
°

j=l « «

the two problems. To do this, return to the vector notation

explained in Chapter I, Section J. In this notation X', c’,

Pj , w*, and (or b') represent row vectors (X
i
,X^,,.., X

Q
),

(t t** • p
c

n
) $

( a
1 j

» a 2 j»•• •»
a

jjij
)» »

w

a
»• • •»

w
m

)» an<*

(b^jb^,.,,,bm

) respectively. The corresponding symbols with-

out primes represent the corresponding column vectors, A

represents the m x n matrix ,P^,..., P
R

. Now the program-

ming problem may be stated* minimize c'X subject to AX * b

and X> 0. Its dual problem may be stated* maximize w’b

subject to w'a o'. Now for any solution X and solution

w, not necessarily optimal,
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AX » b.

Hence w’AX * w*b.

Also w’A c
*

.

Then, since X > 0, w*AX < c*X.

Therefore c*X > w'AX ■ w'b,

c'X > w'b,

min c*X > max w'b.

Hence, if for some X and some w,

c'X * w'b,

this X and this w are optimal solutions to both problems.

K. THE SOLUTION SET OF THE DUAL PROBLEM

The next step is to examine the set of '’feasible"

solutions to the dual problem. This set will be called _o_ .

Each inequality w'Pj represents a closed half space in

M {m-dimensional apace) bounded by the hyperplane *
,

A is then the convex polyhedron bounded by the n hyper-

planes, •c, (J * 1,2,,,,,n). It is assumed that n>m.

i 3 convex because, if and w are two points in jf)_ ,

then

wl ?
j -°s

w*p «C
c

•••, n),
2 j - j
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Hence if 0 < <l,

[*; * (1 - *>w[| p
j

* <*?} •<x - *k p
j

< �(i -

«o^

(j ~ 1,2, . .., n).

n *■ a polyhedron because its extreme points are

among those points in W which are the intersection

of m linearly independent hyperplanes of the n hyperplanes.

Obviously some of these points of intersection of m linearly

Independent hyperplanes may not lie in n ■
Those points

which do are called "extreme point solutions" of the

dual problem. How it has been proved (Chapter I, Section C)

that a linear functional defined over a convex polyhedron

takes on its optimal value at an extreme point of the convex

polyhedron. Hence, if, for some w and some X, w*b ■ c*X,

then w is an extreme point solution of JT •

L. THEORETICAL DEVELOPMENT OF THE DUAL METHOD

In presenting his dual method Lemke makes several

assumptions. They aret

(1) that every extreme point solution of jn repre-

sents the intersection of precisely m hyperplanes, that

is, that if for some set, P
r

,
?
r

, ...,
?
r

,
of m linearly

la a
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Independent vectors from the set, P ,P ,
P

,
the unique

i 2 n

point satisfying w*P » e (i * 1,2,
...,

m) is denoted
r
i

r
i

w
0» then, if w

Q

is in n. for any vector of the set,

P,P , ...»
P

n
,

and not in the set, P
r

,P
p

, ...,
P
r

,of
2

i a m

vectors, t Cj
but (this restriction can be re-

moved by a procedure similar to the resolution of degeneracy

in the simplex method)*

(2) that has at least one extreme point, that

is, that there exists at least one set of linearly independent

vectors, P
r

,
P
r

, • **,
P
r

, among the set, P ,P , ...,
P

,

12 m

such that c

j
(J ** 1,2, ...,

n) where equality

holds if (and, from assumption 1, only if) j * r
ffl

*

(3) that this set has been determined*

(4) that there exists a finite maximum value of w'b.

Proceeding from these assumptions, Lemke writes

down the sat of linearly independent vectors, ,?
r

,

la m

described in assumption 2, He relabels this set of vectors

as
a^,

a
, •••,

where a **

, •••, ) * ihe se

vectors form a basis of W (m-dimensional space). Hence

the vectors P
o

...,
?

n
may be expressed in terms of them.
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If P. =ft a � u a +
...

� U a

J >ll *2 3 “111 M.

and
P

#
* <P

x
*P

a
» VJ*

then **

•»*$
am|fi *

Now if a 1 is the inverse of a,a , ...»
a where

a 2 Ll 8 “

a

a
l

,a
2

, ...,
a

m

are row vectors, then ■ 0 if i f j and

“ 1 if i * j.

I*
_ -

10 0...

Also ! a ,a , ~., a„ 28 010, ~ ,
the mx m

i* m
'

a
m L J I*.

unit matrix, so that

r
- fa

1

?.! r
-

a 1 .■‘p3

a
a

. J a
a

p
: ? - : -

VV a
m H

hi m

a aPj a
u —

3

» £I Jp »

p.

Therefore a 1 *P*

a!p
j : p.

al3p
j

"

Pa-
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Finally « (a
I

P^)a i

+ (a
2

+
...

� (*
m

)a
ffl

and P. - 2 (a 1

?,)a,.
4 J 1

m
, 1

In particular P « 2 (a P )a..
0

i-i
01

Recall now that the are a linearly independent vectors

of the set P ,P - .... P * Therefore, if
12 n

a

x

P
o

>0 (i - 1,2, m),

than one is provided with a solution to the original pro-

gramming problem. Its corresponding value of the functional

is

a « 2 (&F )o_ .

0
i-i

° r
i

Bat «

ri
* - »;»!•

81
1

Hence z * 2 (a P ){w*a,).
°

i«i
o o i

Now P
Q

» 2 (a
i

P
o

)a
i

= (a
1

P
Q

)a
3

+ (a 2 P
Q

)a
2

+
...

+ U
m

F
0

)a
a

I*l

Notice that each quantity in parentheses is simply a scalar.



68

Hence » v'q

(a
1
?

0
)a

i

+ (a 2 P
0

)a
a

+
...

� (a
m

P
0

)a
m j

* (a
1
F

0
)w;a

i

� (a 2 P
o

)w;a
2

�
...

� (a
m

P
o )w;affi

=

i^
1

(al?
o

)(w
o

a
i

) =

V

Therefore, a solution w
o

to the dual problem and a solution X

(such that X. * 0 if i is not in the set, r ,r , ...,
r

,
and

3. i z m

X, ® a*T if i is in that set) have been found where
1 o

w
o

i>
o

*
w ok

“ c Hence, these are optimal solutions to both

problems,

m
i ±

Now suppose that, in P * 2 (a P )a., a F K 0 for
°

i«i
° 1 0

some i, say i -

sj that is, a

3

?
o

< 0. Now let w* - «; - Sa
3

.

Since * 0 for i £ j and » 1 for j * i, then for

any value of ■©■ it is true that

w’a. * w'a. - 6a
s

a. s w'a, » c if i+ s.
i o i i o i r^

Also, for any positive value of &, one may say that

w'a * w'a - 9a
s

a * c -& < c .

sos s r r
3 S

By assumption, if is not an then < c..

If for some such P
,

a
s

> 0, then for this value of j and

any positive value of &

■ ,?
j

■

%p

j
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If a 3f
j

0 for *ll Pj's, tllen w
*

would be a solution to

w’Pj (j » 1,2, ..., n)

for any positive 0-; and w*P
o

* w^P
Q

- 0a
3

P could be made

arbitrarily large (since a
3

P
o

< 0), contrary to assumption.

Hence there exists a value of j such that a 3 0. Then #

is chosen as the minimum of the values:

w*P. - c.

°J3
,

.

—n
— < a P

J
< 0) -

aBp
j

3

(Obviously, if a 3 °» then is not an because

a
s

a, » 0 for i s and a

s

a a 1.) Notice that all of the
X 3

values described above are positive because if is not

an then - < C by assumption,

w’P, - e.
OK k

Suppose then that O- * -•

• F
k

Then i'F
fc

-
- (!^~-C-*)a 3

P
k

-

V
a e

k

For any other a
s

< 0

D ...

“;?
k -°k w; f

3 -°3

a*P
k

“

a
3

Fj



Hence, multiplying through fay the negative number a P^,

and w;?
j

- ««*F
j

* **-*, ± •,*

It has already been shown that if a

s

>O, then <
*

Hence w' is a solution to the dual problem. Also, w'a, * c

_

1

(i » 1,2,
~,, mj if s) and w'a < c (from above),

s *
_

3

Summarizing, one may say thats

w* a < a i
s r ’

3

w'a, « c (i “ 1,2, mj i + s);
1 r

i

*’ P
k

*c
k »

and for any J, not in the set,

(1) if a

S

>O, then < e

jf

(2) if a

S

<C, then w'P, <
.

(The ©quality sign can hold if, and only if, for some j f k

W

o

?
J -°J

i
*

However, this possibility has been ruled out by assumption 1

70



and the fact that w'a
£

* e
r

(i * 1,2, mj i + s) and

w‘P
k

« c
k ,

if the

linearly independent.) Also, if these m vectors are linearly

Independent, a new extreme point solution has been found to

the dual problem, and the process may be repeated. It is a

simple matter to show that and the

(i x 1,2, mj i + s) are linearly independent.

(!) P
k

« Z (a
i

P
k

)a
i

.

(2) Assume that they are linearly dependent.

Th.a, for some number 3 4, not all zero,

a
k

?
k

*

1^1 d
l

a
l

“

if 3

(Note that the are scalars and the vectors.) Now since

the are linearly independent, if d
k

« 0, all other “ 0.

Hence d
k

f 0* Therefore, rewritings

a d.

\ " -s (<r)ai-
i-i k

ifs

Subtracting this expression for ?
k

from the one given by (1)s

2 (a
1

?*).! *
I (jt)., -0,

i«l
* i»i k

i+s

71



72

V*. * zu\ � ji)., - 0.

i+ s

Since the
*

s (1 * 1,2, m) are linearly independent,

all coefficients must vanish. In particular a 3 * 0,

contradicting the choice of a 3P
k

as negative. Hence, the

vectors and (i * 1,2, m; i f s) are linearly

independent, and a new basis of m-dimensional space has been

found.

Now, with the new basis, the process may be repeated.

Also w'P *w* P - £a
S

P > w’P since ft > G and a

S

P
m

< 0.
0000 o o o

Hence, at each stage the functional is increased. There are

only a finite number of extreme point solutions, and, due to

the increase of the functional at each stage, there can be

no repetition or cycling of extreme point solutions. A stage

will finally be reached where all (a*F
o

) 0, and the problem

will be solved.

M. RESOLUTION OF ASSUMPTIONS MADE IN SECTION L

It now remains only to clear up the assumptions of

Section L. Assumptions 2 and 4 may be disposed of easily.

By referring to the proof of the duality theorem in Chapter

I, Section K, one may see that if the programming problem has

an optimal solution, then its dual problem has an optimal

solution. Each of these solutions will be extreme points of
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their respective convex sets. Hence, if there exists no ex-

treme point solution of the dual problem, there exists no

extreme point solution of the programming problem. Also if

there exists no finite maximum to w'P
-

there exists no
o

finite minimum to c'X.

Assumption 3 was that a set of m linearly independ-

ent vectors, P
r

, , ~,,
P
r

,
had been determined from

1 2 m

the set, P ,P such that w'P. <c. and equality holds
i £ **

® J J

at least for j»r,r,,.,, r. This assumption is aome-
i Z M

what difficult to resolve. Lemke suggests a possible method.

Starting with any sat of m linearly independent vectors,

?
r

,?
r

, ...,
P
r

,
from the set, P,P ,

?
n

,
he first

lam
2

solves the set of m equations for the m-dlmensional point w
o

t

w
o

P
r

“ c
r

U “ I*2» 1 * 2
» •••»

o r
£

Now, the convex set of solutions n to the dual prob-

lem is independent of the vector P
Q

in the functional w*P
o

to

be maximized. Hence Lemke suggests that one minimize

_

n
_

n
_

z = 2 X.c., where X, > 0 and P ® 2 X.P., and ? is any vec-

«

~

j«i • •

tor which may be expressed as a positive linear combination

of the P
.

Then this provides a basic solution to the
r
i

new simplex problem. Finding an optimal solution to the new
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simplex problem will provide an extreme point solution to Jfl

The final unresolved assumption (number 1) was that

when “ ®
r

(i * 1»2, m) and the m a.* s are lin-

ri 1

early independent and w
q

is a point of then < if

j is not in the set, ,,,,
r

ffl
,

The difficulty which

arises when this restriction is removed is that there is then

a possibility of "cycling” in the process. Now suppose that

for some value of j, say q, not of the set, ..., r^,

w*P * c
o q q

and
a

s
P <O.

q

The increase in w
*

obtained by the dual method was (-<*a
s

P )
o o

Kp
i

- V
where & » min (a

B
P, < 0),

a

s
p «i

a

Hence one would be forced to choose

& » (w* F - c ) ~

a

s
P “ 0,

'
o q q' •

q

Hence there is no increase in the functional and no assurance

that "cycling" is ruled out. In order to resolve this situa-

tion Lemke poses an equivalent problem in which this situation

cannot occur. The procedure is analogous to the procedure

used to resolve degeneracy in the simplex method.
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SI is the set of all solutions to < c.

(j * 1,2, n). If e) 0, let Sl(>) be defined as the

set of all solutions to <
Cj

+ (j • 1,2, n).

It is possible to find e > 0 such that for 0 < e < o
o o

the extreme points of JTL( e) lie on precisely m of the hyper-

planes w
*

Pj
» c

,
+ (j * 1,2, n).

Let be linearly independent column

vectors forming a basis of W and such that each is one of

the P's (j * 1»2,
...,

n). Suppose also that w'(e) is
3

t

r

the solution to w*a, ® c + e (i “ 1,2, m).
1

i

m
.

If P. is not an a., then P. » 2 (a P.)a,.
J

1 J J
1

Hence » 2 ) J^(o)a^|

m
. f r~

* 2 (a
x
P.) c �e

1

.

i-i
j r

i

*

This last expression can be equal to + e
J

for at most n

values of e. If every which is not an is expressed in

this form and this is done for all possible bases, then

it can be seen that there exists a finite number of values

of e for which an extreme point of e) lies on more than

mof the hyperplanes * +
.

Hence if e
o

is some
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positive number smaller than the smallest such value of e,

then for 0< e< e
Q

maximizing w*P
Q

subject to

w
* p

j
< (j ® 1,2, n)

is a "non-degenerate" problem. Also if w
q

(s) is a maximum

extreme point solution to the non-degenerate dual problem,

w
o

(0) * w
o

is a maximum extreme point solution to the orig-

inal dual problem.

In the actual computation it is not necessary to spec-

ify e. When an extreme point solution w
q

to the dual problem

has been found, associated with the basis, a ,a ~..,a .

l a in

than the coefficients of ?
o

and the 's (j * 1,2,...,n) in

terms of this basis are recorded, along with the values

-c., in a tableau analogous to the simplex tableau.

This tableau is shown on page 77, The problem then becomes

degenerate if the value,

»;*, -

& ® min (a
3

P, <T 0),
• p

j

is taken on for mors than one value of j such that a
s

F. 0.

It should be noticed that this tableau is almost

the same as the corresponding simplex tableau in Section D

of this chapter; the entry is the same as . Hence,

the simplex algorithm could be used for calculating these
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entries in the next tableau. However, Lemke suggests that

using the inverse of each new basis and the original data has

some computational advantages in that errors are not cumula-

tive .

c

j >
c

i
** * c

k
c

n

’ a
i

P
o

P
i

*• ’
P

k
P

n

c
r

a
i

&l^
0

alp
j

*• •
&lf>

k
alp

n

c a a 2 P a
2

P ... a
2

P, a
2

P„
r2•o. i .

k
.

n

2 • • • • •

• •00 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

o a a
3

P a
3

P
•• •

a
s

P, a
3

P
r s.o.i . k . n

3 • 0 0 • •

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 • 0

* *

ia„ m n m„ m
a

c a s. P 6i P
••• €i P

*
• ••*•• 6t 1“

r m o i k n
2&

w'P.
- c. w’P w’P - c

....
w’P, - C. ....

w'P - c

o j j o o gi i ok k on a

Now a scheme will be demonstrated whereby the re-

placing vector will be uniquely determined, and no cycling

will occur. First, since the are linearly independent

vectors, then the are also linearly independent. (The

i
remember, are m-dimensional column vectors, and the a *s

are the row vectors of the inverse of the matrix

Q. mQ. « •# • « B. •

X 2 HI
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4

The independence of the a
'

s may be proved by matrix theory.)

Therefore, any m-dimensional row vector x* may be expressed

m
i

in terms of them as* x* « S (x'a,)a
x

,
In particular*

i*i
1

m . m
.

w' * 2 (w* a, )&
X

* Sc a
l

.

°
i-i

° 1
i-i

r
i

m
.

m r.
.

Also w *(e) * 2 (w*(e)a.)a
x

» Z(c � e
1

)&
i-i

1
i«i

r

i

m
j

® r, .

■2ca� Z e a |

i=l
r

i i=i

m i*

w*(e) * w* + Z e
-

.

o o

I*l

for o<e < e
Q

degeneracy cannot occur. If w
Q

(e) is not an

optimal solution, then for some s,

a

S
F < 0.

Also there exists another extreme point solution given by

w*(e) *
- (e)a

3

where fr
k
(e) " wo^ e^P

k ~ck“ e

*

for some unique value of k such that a <. 0.
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Using the value of w*(e) in terms of w*,
o o

[•a --3
—

Now degeneracy occurs in the original problem if for some

value, say qs .„ »_* * H
w P - c w P, -c,

o q q ok k

Q. 3 3
,

&3p
q

However, in the e-procedure, the corresponding value for q,

say becomes*

«•* - c

“

(a
1

? )/ 1
-

oq q
“

■6- (e) * + - ——

*
a

S
P a

S
?

q q

Again, as in the e-procedure in the simplex method, the two

polynomials, ©■ (e) and €k (e), can be compared term by term,
q K

The lowest power of e for which the coefficients in the two

polynomials differ determines whether or is to be the

replacing vector. No matter how many values of j exist for

which
w'P - cW o*j c

j

a
s

Pa

has the same value, there will always be a unique vector de-

termined by this method. The reasons are entirely analogous



to the reasons why there will be a unique vector replaced in

the simplex method when the e-procedure is employed, as in

Section C of this chapter.

N. AN EXAMPLE SOLVED BY THE DUAL METHOD

The problem worked in a preceding section by the

simplex method will now be worked by the dual method.

Starting from the statement of the problem in terms of equa-

tions, one may rephrase it as follows! minimize -X -2X
6 7

subject to

X - X - 3X - 6
1 6 7

X � X � 3X - 15
a 6 7

X+X- X « 2
3 6 7

X+X� X - 7
* 6 7

X -18 X - 2X » 27.
5 6 7

The coefficient matrix is again written out and the dual

problem may be stated from it.

Coefficient Matrix

PPPPPP PP

123*5 6 7 O

1 0 0 0 0 -1 -3 6

01000 1 3 15

00100 1 -1 2

00010 1 1 7

0 0 0 0 1 -18 -2 27

80
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The dual problem iss maximise 6w + 15w + 2w + 7w � 27w
1 2 3 4 5

subject toi

(X) w

i

<0

(2) w <0
2

(3) w <0
3

“

U) w < 0
4

(5) v < 0
3

(6) -w + w+w+w -18 w <-1
123 4 5

-

(7) -3w + 3w - w + w - 2w < -2,
1 2 3 4 3

“*

By trial and error on© may find an extreme point solu-

tion to this problem. The first obvious possibility would bo

the origin, that is, the solution to the first five con-

straints stated as equations. It may be easily verified that

this point does not satisfy the inequalities (6) and (7).

The next trial could be the solution to any four of the first

five constraints and on© of the last two expressed as

equations. Again, if one takes the first four constraints and

the sixth one and expresses them as equations, he can easily

verify that their solution does not satisfy the remaining two

constraints. Continuing in this manner, one can see that the

solution w* * (0, -1, 0,0, 0) to
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(1) w
A

- 0

(3) w * 0
3

(4) a 0

(5) w * 0
3

(6) -w + w
+

w + w- XBw » -1
13 3 4 5

does satisfy (2) w < 0
2

and (7) -3w + 3w - w � w - 2w -2.
1 2 3 4 5

Hence the original basis consists of f
,

P
,

F
,

P
,

and P j
13 4 3 6

that is, in the first stage, a s ?
,

a * P
,

a * P
,

12 3 3 4

a * P
,

and a * P . The next step is to calculate the in-
-43 3 6

verse of la
.

a
,

a
. a

,
a 1. Calculation of inverses will

I i 2 3 4 3j

be omitted here. Any method may be used.

STAGE I

a a a a a »

12343 Inverse

1000 -1 a 1 *IIOOO

00001 a 2 *O-1 100

01001 a 3 *O-1 0 10

00101 a 4 * 0 18 0 0 1

0001 -18 a 5 *OIOOO



The values are now calculated. Since a
2

P and a 3P
n

o o o

are negative, the problem is not finished. A

a ip
Q

»21

new basis must be decided unon and the process

a
2p

0

- -13

repeated. Either a or a may be the "replaced

a
3

P
o

»-8
2 3

vector," Since the functional of the dual

a*P
o

■ 297

problem is to be maximized and its increase in

a
3 ?

o
-15

the next stage is (-©a°P
o
), the logical choice

for a is that vector for which a°P is most negative,
s o

Hence a * a * F
. Deciding the "replacing vector" entails

3 2 3

calculating the quantities,

W
°

P
J '“a

j

Only those values of J for which is not in the present

basis need to be considered. (If is in the basis,

a

s

Pj *0 or 1.)

»;p
,
-

3 *S?
S <f

3 -°i

2-1-1 1

7-4-1 r

83
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Now 0- is the minimum of the quantities in the last column,

and — the replacing vector is the vector which cor-

responds to this value. Hence £ * 1/4 and * P^. A new

basis is now determined in which P replaces P in the old
7 3

basis, The process may now be repeated.

STAGE II

a°Pa=*Pa* P a = P a 3 P
11 37 34 45 56

The new value of « (0, -3/4, -1/4, 0,0), as may be easily

verified.

12345 Inverse

1 -3 00 -1 a 1 *llOOO

0 300 1 a 2 * 0 % 0 0

0-100 1 a? • 0 -f- 1 0

0 110 1 a 4 *O5 13 01

0 -2 0 1 -18 a 5 « 0 J. \ 0 0

a
x

P
rt

* 21 w'P. -c,
°s. 0 i J

J a
s

p w’P . c

a
J

?o - >1- 3 0 3 3
a

3
p.

a3j
0

’ -if

a*P
0

- 128 2 -f -i• i

a
’ P

o
*s

r
3 _i .i 1

2

, . a 3 “ a 3

and a - a - P .

Hence � “ f and P
k

' P 3 *
S J 4



STAGE 111

a»Pa=Pa» P a
* P a

= P
11 2 7 3 3 4 5 9 6

The new value of * (0, -1/2, 0, -1/2, 0).

a a a a a
T

12345 Inverse

1 -3 00 -1 a 1 » 1 1 0 0 0

03001 a
2 =ofo-f0

2 *

0-1101 a 3 *Oll -2 0

0 1001 a* * 0 -8 0 26 1

0 -2 0 1 -18 a 5 ■ 0 -f 0 0

a 1 * 21 Hence an optimal solution to the original

a
2 p ,

problem is: "3 21

3 p _ ,
K • 0

a P
Q

* 3 2

a
4 P

c
*B9 S- 3

a 5P
0

* 3 X 4 " °

\ * 89
9

7■X • 3
O

x
■ X * 4.

7

The ease with which this problem was solved is de-

ceiving, In most problems the calculation of the inverses

will be very time-consuming unless done on electronic

computers. However, there are straightforward methods of

calculating inverses which may be adapted to electronic

computers. This method, as noted before, has some computa-

tional advantages over the simplex method.



CHAPTER III

THE PROBLEM IN WHICH THE COST COEFFICIENTS

ARE LINEAR FUNCTIONS OF A PARAMETER

A. INTRODUCTION

The problem so far considered has been that of

minimizing (or maximizing) a linear functional subject to a

set of constraints. It has been shown that these con-

straints may always be expressed as a set of m linear equa-

tions in n unknowns, where n> m. The linear functional is

n

expressed in the following forms f(X) » 2 c.X,, where

j*i
3 3

the c.’s are constants and X = (X ,X ,
X ) is subject

J i 2

n

to the constraint S X.P, = P . P,P,P, .... P are m-

J j o o' i* a* n

dimensional vectors. Saaty and Gass have studied the problem

[XT in which the cost coefficients, that is, the are

linear functions of one or more parameters (t ,t , ...»
t ),

12 q

The one-parameter case has been completely resolved. When

parameters are introduced into the cost coefficients, the

matrix of coefficients P
,

P
,

P I of the con-

a “J

straint aquations is unaffected. Hence there are still a

finite number of feasible extreme point solutions; therefore,

there are a finite number of possible optimal solutions.

If the solution set is bounded, then for every value of the

86



parameter t or every set of values of the parameters

,,,,
the optimal solution or solutions will be

a subset of the set of feasible extreme point solutions,

which has a finite number of members.

B. THE ONE-PARAMETER CASE SOLVED BY

THE SIMPLEX METHOD

The one-parameter case will be considered first.

With every value of the parameter there will be associated

a set of one or more feasible extreme point solutions

which optimize the functional if the functional has an op-

timum value. In the discussion non-degeneracy will be

assumed. The degenerate problem may be handled by introduc-

ing the corresponding "e-problem," as in the simplex method.

Now the problem may be stated as followsi for every value

of the parameter t find the solution to

n

2 • P„J J 0

n

which maximizes f(X) * Z cA.
J •

where c,. ® � (j 85 1,2, n)

and all values of and are constants.
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Now assume that, for some fixed value t of the single

parameter t, a maximal solution has been found by the simplex

method. Also assume that the basis vectors of this maximal

solution are P ,P
,

P , Then if P. is any vector in the
12

7
m j

set P ,P , ••#,
P

,
then

i 2
n*

p
j

‘ j
l
«w

,
i

a

and z * 2 x, .c. . Now if the solution involving the vectors

J i=i
1

P ,P
, ...»

is maximal, then
i

*

2 'a

zj
** o (j * 1,2, «• •, n),

a

« Z
XijCi (J “ 1, *2, •• •, ®),

a

Zj
“

Cj
a

Cj (j “ 1,2, a),

a

z. - * S �
- (gj + tut) {j * 1,2, ...» n),

m m

-

Cj
* - gj)+ - hj)t (j » 1,2, n).

Now let

m

(3-15 Qj
** (j ~ »2 t •••» *0»

(3 ' 2) l3
J

= “ h 3 (3 “ 1»2 n).
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Then - � (J » 1,2, n),

and

(3-3)
Oj

+ >o (j « 1,2, n)

if the solution based on P ,P
, ~,,

P is maximal.
i

*

a
* 3 m

The set of inequalities (3-3) defines & convex set

of values of t. Let t and t be two points in
12

r

one-dimensional space which satisfy the inequalities (3-3).

Then >0 (j * 1,2, ...,
n)

and
Qj

+ >o (j * 1,2, ...,
n).

If 0 < e < 1, then

� * 0 (j * 1,2, ...» n),

(1 - *)aj � pj(l - $)t
2

>0 (J - 1,2, ...» n),

©a.�(!-*)«. + (^t
j

) >0 (j - 1,2, ..., n),

+ + U * e-)t >o, (J - 1,2,
...,

n).

Hence the set of points in one-dimensional space defined by

(3-3) is convex. It may take one of three forms if it

contains at least one point, and it has been assumed that it

contains one point.
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1. It may be a single point,

2. It may be a closed interval# that is, it may

consist of all the points t such that t<t < t, where t and

t are two fixed points and t >t.

3. It may be a "ray” or "half line"# that is, it

may consist of all points t such that, for some point t,

t< t or of all points t such that, for some point t, t > t_.

Notice that the meaning of "ray" employed here is different

from the definition of a ray in Chapter I, Section B, Hence

the term "half line" will be used.

Now each of the inequalities in (3-3) imposes either

an upper or a lower bound on t if f 0. If * 0, then

a. > 0 because it has been assumed that the solution is max-

imal for some value of t. Obviously, if is a basis vector

a
j

* Pj * °*

If (3, > 0, then t > •

3

If p. < 0, then t <
3

Now the upper limit of t imposed by the inequalities

(3-3) is the minimum of over the values of j for

which Pj < 0. The lower limit of t is the maximum of (

over the values of j for which > 0,



91

Let t = minimum of for < 0

and

t_ ~ maximum of for >o.

Then if t * t, the set of points satisfying (3-3) is this

single point. If t> t, then all points t such that

t<t < t satisfy (3-3). If Pj < 0 (j » 1,2, ...» n), then

all points t such that t < t satisfy (3-3); and if "> 0

(j * 1,2, ~,, n), then all points t such that t >;t satisfy

(3-3). Since it has been assumed that for some value of t

the solution based on the vectors P,P , ..., P_ is maximal,
i' *

m
'

t must be greater than or equal to t. If t were less than t,

there would b© no value of t which satisfied (3-3) and hence

no value of t for which the solution is maximal.

If
Uj

> 0 for all values of J such that is not

in the basis and pk = 0, then for t < t<, t the solution is

a unique maximal solution. This may be clarified by recall-

ing that introducing any vector into the solution with

positive coefficient €� increases the functional by &(c - z )

that is, decreases it by &(z -c). If t <t < t and
h *3

dj
> 0 for all values of j such that is not in the basis

and *o, then - c^) > 0 for all values of j such

that is not in the basis and all positive values of ©■, If

cij
a 0 for some value of j such that » 0 and is not a

basis vector, then introducing this vector into the basis to

q q
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form a new basis (by the simplex method) will yield another

optimal solution for the same interval of values of t.

The next step is to find the optimal solutions for

values of t greater than t and less than ;t. Let k be that

value of j such that

a 1 ak

Pj< 0
'

f>, P*

Unless the set of values of t for which the known solution

is maximal has no upper bound, there will always be at

least one such value. If there are several such values of

j, then k may be any one of them. The following argument

is for finding the maximal solutions for values of t

greater than t. An entirely analogous argument applies to

finding the maximal solutions for values of t less than t^.

°k
Now t »

-

Pk

and j$
k

< 0,

Hence + * 0.

There are two possibilities. Either cannot be introduced

into the basis by the simplex method because 0

(i « 1,2, m), or can be introduced into the basis by

the simplex method to form a new basis.
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If P
v

cannot be introduced into the basis because

x
ik

® (i • 1,2, m), then for t> t there is no

maximal solution; that is, the value of the functional is

unbounded. To understand this, recall that this is case I

of the simplex method. (See Chapter I, Section H.)

The solution which maximizes the functional for t < t < t

is a feasible solution (though not optimal) for t > t.

The x^ k
are unaffected by the value of t. Hence

x^ k
< 0

(i » 1,2,
...,

m). Also if t t,

then p
k
t < p

k
t (since P

k
<0)

and a
k

+ P
k
t < a

fc
+ skt$

k
t «0.

However, z
k

-c
k

*a
k

+ {$
k
t <O,

\-°
k

< °-

°k
-

% > °*

Hence if t> t and x^ k
<0 (1 * 1,2, m), then the

conditions for ease X of the simplex method are fulfilled;

and the functional has no maximal solution.

If can be introduced by the simplex method into

the basis to form a new solution, then for t * t this

new solution involving ?
k

is an alternate maximal solution.

This is true since t • 0. Mow if t< t,
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then £
k
t > t (aince < G),

* h% > °k
* ■ °*

z
k

- °k
*

“k
* V> °>

“k
-

°k > °-

°k - *k
< °-

Hence the feasible solution obtained by introducing into

the basis is not optimal for t < t. It has been shown that

the range of t for which any solution is optimal is either

a point, a closed interval of the real line, or a half line.

Therefore, t is the lower limit of the range of t for which

the new extreme point solution (obtained by introducing

into the basis) is maximal. If t is also the upper limit of

this new range of values, then this new solution is maximal

only for the point t * t. If there is another upper limit,

say t *, then the new solution is optimal for t<Tt<C t' .
If

there is no upper limit, then the new solution is optimal

for t •> t. The new range of values is obtained by construct-

ing the new simplex tableau and calculating the new values

of
Zj —Cj (j * 1,2, u).

If the set of values of t for which the new basis

is maximal is the one point t * t, then in the new set of
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Inequalities a, + {i.t > 0»
J J

a
j

a 1
max (

J
s min .

J
\

,
r

“i> c V pj <o i?

If the set of values of t for which the new basis

is maximal is the closed interval t < t< T*, then in the

new set of inequalities a. + {3.t ]s> Oi
w i

a

j
t “

o m^
x

r
) * new lower limit

Fj > Pj

a

j
and t 1 * R

® n

f
, ) * new upper limit,

Pj

In either case the new vector P, is again that vector such

that

,!i.
( .!i)

P
k

pj<°V

This vector is introduced to form another basis and to give

another feasible solution, and the simplex tableau is again

calculated. The process may be repeated. Each repetition

gives a new basis. There will be no cycling of bases

because the interval of values of t for which a particular

basis is maximal is convex, that is, has no discontinuities

or is continuous. There are a finite number of possible
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bases, and for every value of t either there is a maximal

solution or the functional is unbounded. Hence finally one

of two eventualities will occur. Either for some half line

t > some extreme point solution will be maximal, or for

some such half line there will be no maximal solution; that

is, the functional will be unbounded.

In order to complete the problem one finds, by an

entirely similar procedure, the maximal solutions for values

of t < t.

C. EQUIVALENCE OF THE DUAL AND SIMPLEX

METHODS IN THE ONE-PARAMETER CASE

It is not difficult to show that solving this

parameter problem by the dual method reduces to solving the

same set of inequalities to which the solution of the

problem by the simplex method reduces. Mow if the linear

programming problem is to maximize

n

f{\) * Z cA.

j*l J J

n

subject to Z PA. *• P
,

where P
,

P
, •••» P„ are m-

j«l
J u 01

dimensional column vectors, then its dual problem is to min-

imize w*P
0

subject to w'
Pj > (j • 1,2, n),

where w* is an m-dimensional row vector, {See Chapter 11,

Sections I and J.)
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In the dual method it is assumed that an initial

feasible extreme point solution has been found to the dual

problem. (See Chapter 11, Sections K and L.) In other words

it is assumed that a sat of ra linearly Independent vectors

P ,P
,

has been found such that w! » (w ,w ~..,w ),
t 2 J& O l 2 ®

the unique solution to the set of m linearly independent

equations • (i » 1»2, m), also satisfies the

constraints —c j
(j “ 1,2, n) to the dual prob-

lem. Now recall that in the dual method the column vectors

P ,P
, ...»

P are denoted by a ,a ,
a . respectively,

i' 2 m 12 m

and that the inverse of the matrix |a ,a , ..., a~j is
L i 2 ay

calculated. (See Chapter 11, Section L.) The rows of this

inverse are denoted by a
l

,a
3

, ..., a

l3l

.
It was also shown in

Chapter 11, Section L, that

P
o

‘ j.CI

'.)*!

and that if a*P
0

0 (i * 1,2,.,.,m), then an optimal solu-

tion to the original programming problem is X * (X ,X , ~.,X )
X 2 **

where

- a

i
P

o

(1 - 1,2, ...»
m)

and ■ 0 (i ■ m + 1, m + 2,
...,

n).

Now in solving the parameter problem by the dual

method one would assume that a set of m linearly independent
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vectors P
,
P

, ..., P
m

had been found (1) such that
x & J& o —■

’

where the have been defined above, and (2) such that

for some value of t, say t the solution w* to the m
o o

equations

(3-4) c c
i

* g
i

+ (i » 1,2, m)

also satisfies

Notice that this is an extreme point solution to the original

programming problem and that it is optimal only for those

values of t for which the second condition is true. Now w*
o

is a function of t, and equation (3-4) will be solved

explicitly for t. The vector and matrix notation of Chapter

I, Section J, will be employed. Then

w
'

P
i

*c
i

*g
i

+ h
i
t * i,2, m)

becomes pjj * c
m

)*

So w* P,P , ...» Pj a 1 “(c,c,..,, c) a 1 j
i* z

f *
n

a
a i 2

’ m

a
*

—*
•

•

• •

*m
#

a
a a

w' - w'flj -

••••
°

B
) a

*
•

I
a
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Now the constraints > (j * 1,2, n) may

be written*

...,
c
a

) a* >Oj <| • 1,2, n),

a

•i
“ 1»2

( • ••» *0 •

aip
3

(3-5)
a

i
fj

Recall (Chapter 11, Section L) that

m
.

m
.

P. - 2 (a
I
P,)a, - Z (a

1
?.)?.

J i»i *
1

i«i *> 1

m

and P. * Z x..P..
3

I*l ** *

Since P^, P
ffi

are linearly independent, the expression

for any m-dimensional vector (in particular ) in terms of

them is unique.

i
Therefore, a *x^

and the inequalities (3-5) may be writtenj
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(VV ****
C x

ij
-c

j
0 “ I*2, n),

X
4

2J

C
i

X

ij
+

°a x

z i
*

***
+ c

m
x

mj
-e

j
1

»
2

» ***»

Hence (j « 1,2, ...,
n)

and -

Cj > 0 (j « 1,2, ..., n).

This is precisely the same set of inequalities which

must be satisfied in solving the problem by the simplex

method. Hence the two methods are equivalent.

D. THE TWO-PARAMETER AND MULTI-PARAMETER PROBLEM

In Reference jjTj Saaty and Gass discuss the solution

to the multi-parameter problem, with particular emphasis on

the two-parameter case. The one-parameter problem was

to find the optimal solution or solutions for every point t

in one-dimensicnal space. The two-parameter problem is

to find the optimal solution or solutions for every point,
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is to find the optimal solution or solutions for every point

in n-dimensional space.

By the same method as that used in the one-parameter

case, it may be shown that the region in n-dimensional space

for which a particular extreme point solution is optimal is

a convex region. In two-dimensional space these regions are

convex polygons defined by a set of inequalities. If the

basis of the extreme point solution being considered is

~,,,Pm
,

then the inequalities which define the convex

region for which this solution is maximal are:

Zj
- c.. » � + 0 (j =m+l, m + 2, n).

The boundaries of this polygon ares

Q

j
+ + 3 0 (j » m + 1, m + 2, ..,, n).

Along the particular boundary + ® 0

the solution obtained by introducing into the basis by the

simplex method is an alternate optimal solution. By introduc-

ing into the basis and calculating the new simplex

tableau, one will arrive at a new set of defining inequali-

ties and hence determine a new convex region. However,

even if this is done for all boundaries and then for all the

boundaries of the new convex polygons at each stage, it

is possible to "reach an impasse without having considered all
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possible bases and their associated regions" jjT| .
The only

completely general method available now for solving the

n-parameter case is that of considering each possible basis

separately and the convex regions in n-dimensional space

determined by the inequalities

Zj
- > 0 <J «m+l, m+ 2, n)

for each basis. Obviously the length of time required in

most such problems would be prohibitive.

E. SOLUTION OF A ONE-PARAMETER PROBLEM

A one-parameter problem will now be solved. The

problem is to maximize (2 � t)y + (3 - 2t)x for all values of

t and subject to:

(1) y - x
< 2

(2) y
+

x < 6

(3) y + 4x < 16

(4) -33 y � 9x < -11.

The inequalities are first converted into equations

by adding a new non-negative variable to each inequality.

The matrix of the resulting set of equations is written below.

Each column is labeled as a vector. The column of coeffi-

dents of y is P
,

and the column of coefficients of x is P .

i 2

Henceforth, y and x will be denoted by X and X respectively \
1 2

the other variables will be X
,

X
,

X
,

and X
.

3 4 5 6
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P P P P P P P
12 3 4 3 6 0

1 -1 1 0 0 0 2

110 10 0 6

1 4 0 0 1 0 16

-33 9 0 0 0 1 -11

The next step is to assign t some particular value

and to find the maximal extreme point solution for this value

of t. For example let t » 1, Then by the simplex method one

may show that the following solution is maximal*

\ - U, 2,0, 0,4, 103).

Tableau I is the tableau based on P
.

P
.

P
.

and P and con-
i' a' y 6

responding to this solution. From this tableau one may also

determine the range of values of t for which this solution is

maximal. This range is determined by the inequalities*

z - c >O,
3 3

~

z - e >O,
A A

-

Now 2 - C *= t,
3 3

2 2

2 - C « -f-ft
A A

3 2

from Tableau I.

a

Hence - -f-, *

ji
P 3

a

and - f, “ 5 ‘
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Therefore, if 1/3 K t K 5, the solution

X ■ (4, 2,0, 0,4, 103) is optimal.

Introducing P into the basis gives a solution
4

which is an alternate optimal solution for t = 5* Calculat-

ing the new tableau. Tableau 11, allows one to determine the

range of values of t for which this solution

X * (2, 0,0, 4., 14-, 55) is optimal.

It may be easily verified from the inequalities

z - c >O,
2 2

”

a - c >0
3 3

“

that this solution is optimal if t >5.

Optimal solutions have now been found for all values

of t greater than or equal to 1/3, One may find optimal solu-

tions for values of t less than 1/3 by returning to Tableau I

and introducing the vector into the basis to form a new

solution by the simplex method. Opon this new basis Tableau

111 is calculated, and from the Inequalities

a - c >O,
4 4

z- c 0

5 3
"

one may see that this solution, that is,

X . (S-, o, 0, 4.7), is optimal if -*f < t <
-.
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Introducing into this last basis gives still

another extreme point solution

X - (£, ii, 1, o, 0).

It may be easily shown by calculating Tableau IV and the

inequalities

z - c >O,
3 5 ~

z - c >0
6 6 -

that this solution is optimal if t < Hence the problem

is solved. Below is a table of extreme point solutions with

corresponding values of t for which each solution is

optimal.

Tableau Number Solution From t a To t «

I X * (4, 2,0, 0,4, 103) f 5

II X - (2, 0,0, 4» 14, 55) 5 +oo

111 X - (f-, af. f, 0,0, 47) -f }■

IV X * (f-, if, 1,0, 0) -oo -f

c = 2 + t c * 3 - 2t c ~ 0

12 3

c = 0 c®o c s 0

4 3 6
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Tableau II

Tableau I

Unit

Values

Basis

Elements *o P
i

P
2

p

3

p P

5

P
6

2 + t P
1

A 1 0 1.
2

1
2

0 0

3 - 2t P
2

2 0 1 -i.
T

i.
r

0 0

0 P

5
A 0 0 1

2 2

1 0

0 P
6

103 0 0 21 12 0 1

Net

Differ-

ences

v°j
- 14 0 0 -i.

T

+ 2-t

1

2

-ft

0 0

Unit

Values

Basis

Elements
P

o

P
i

p
2

P

3

P
4

p

5

p
6

2 + t P
i

2 1 -1 1 0 0 0

0 P
4

4 0 2 -1 1 0 0

0 P
5

14 0 5 -1 0 1 0

0 P
6

55 0 -24 33 0 0 1

Net

Differ-

ences

V°J
_ 4

+2t

0 -5

+t

2

+ t

0 0 0
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Tableau XV
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1ableau III Column Vecttors

Unit

Values

Basis

Elements
F

o
p

1
P

a

p
3

P
4

P

5

P
6

2 + t P
1

L
3

1 0 0 f* •4
3

0

3 > 2t P
a

10
3

0 1 0 -3“
1

3
0

0 P
3

L
3

0 0 1
3

1
3

0

0 P
6

17 0 0 0 17 >11 1

Net

Differ-

ences

V
c

j
““

3

-It

0 0 0
3

+2t

1

3

-t

0

Tableau IV Column Vao1"-ors

Unit

Values

Basis

Elements
?

o

P
i

P
2

p
3

P
4

P
5

P
6

2 + t P
i

£
3

1 0 0 0 3>mn»i
47

£_
141

3 - 2t P
2

1 1

3
0 1 0 0 1I

47

i

141

0 P
3

1L
3

0 0 1 0 JL—
47 141*

0 P
4

1 0 0 0 1 _i£
47 47

Net

Differ- Vj
“

3
0 0 0 G » l_

141

eases -6t -H* ..•MnaMM.

141



CHAPTER IV

THE PROBLEMS IN WHICH THE COST COEFFICIENTS

ARE NONLINEAR FUNCTIONS OF A PARAMETER

A. INTRODUCTION

In Chapter 111 there was a discussion of the linear

programming problem in which the cost coefficients, that is,

the c^' s (j “ 1,2,,,,,n), are linear functions of a single

parameter t. In other words an optimal solution is sought

for every value of t, and c.,
* + (j * 1,2,...,n) where

gj
and are constants. In this chapter a similar problem

will bo discussed; however, the cost coefficients will not be

linear functions of t. In Section B the problem in which the

cost coefficients are parabolic functions of a single param-

eter will be discussed, while Section C will contain a

discussion of the problem in which the cost coefficients are

periodic functions of a single parameter.

B. THE PARABOLIC CASE

In many ways the parabolic case is similar to the

linear case. The first step is to assign a particular value

to t and for this value to find the maximal solution by

the simplex method. The next step is to determine for what

set of values of t the known extreme point solution is opti-

mal, This latter step is accomplished by solving the set of

inequalities,

108
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“ c

j
(j “

•••»
n )»

corresponding to the extreme point solution being considered.

Since the a,. *s (j ■ 1,2, ...,
n) are linear functions

of the c j*s and the c 1 s are parabolic functions of t, then

- may be written in the form,

(4-1) z. -Cj- Oj
+ pjt + /jt

2
(j « 1,2, n).

Now if the problem is to find a maximal solution

for every value of t and if a simplex tableau has been cal-

culated which gives a maximal solution for some particular

value of t, then the set of values of t for which this

solution is maximal is the set of values of t satisfying the

inequalities,

(4-2)
-Cj M + (3jt + v^t

2 >0 (j * 1,2, n).

The set of values of t satisfying any one of the inequalities

(4-2) takes one of four possible forms if it contains at

least one value. The particular form depends upon the con-

stants cu, py and .
The possibilities may be divided

into two groups, depending on whether */. is positive or neg-

ative. Let E ctj
+ Pjt + v^t

2
. Then the graph of

plotted against t will be concave upward if /. is positive

and concave downward if is negative. If the graph of (-t)



is concave upward, it either intersects the t-axis in two

places, is tangent to the t-axis, or lies entirely above the

t-axis. If the graph of y.j(t) is concave downward, it

either intersects the t-axis in two places or is tangent to

the t-axis. The possibility that the graph of

concave downward and lies entirely below the t-axis is ruled

out by the assumption that, for some value of t and every

value of j,

intersects the t-axis at two places, say at t * and t *t
$

where < then y^(-fc) >0 for every value of t except

those values between t and t
,

If y.(t) is concave upward
i 2 J

and is either tangent to the t-axis or entirely above it,

then y.j(t) for every value of t. If the graph of y^(t)
is concave downward and intersects the t-axis at two places,

say at t B t and t « t
,

where t t
,

then y. (t) >0
9

i 2 1 2*
*

for every value of t such that <t < t^, If the graph of

is concave downward and is tangent to the t-axis,

say at t* t, then y^(t) •oat t« t and (t) < 0 for every

other value of t. Obviously if is in the basis upon

which the simplex tableau is based, then *Pj *O.

(See Chapter 111, Section B.) To every value of j there

corresponds a set of values of t such that y.j(t) 0, Let

denote the set of values of t such that *£ 0, The table

110
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below is a list of all possible forms of and the direc-

tion of concavity and number of points of intersection with

the t-axis of each corresponding The last column in

the table is a list of the "complements" of the

that is, of the portions of the t-axis not contained in T^.

Direction Number of Inter- Description Description of

of section Points of T. Complement

Concavity of y.(t) With t-
**

of T.

of (t) axis** •*

Upward One or None The entire The empty set

t-axia

Upward Two The entire t- A finite open

axis except interval

a finite open

interval

Downward , One One point The entire

t-axis except

one point

Downward Two A finite The entire t-

closed inter- axis except a

val finite closed

interval

For those values of t which are common to all of the

(j « 1,2, n) the extreme point solution

under consideration is optimal. For those values of j such

that Pj is a basis vector, * 0 for all values of t.
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Hence if is a basis vector, is the entire t-axia. If

« 0 for some value of j such that P,. is not a basis vec-

tor, then is the half line defined by f 3| 0.

Those points t (points in one-dimensional space) which are

the "intersection" of the 's (J » 1,2, n) are

the points for which the given solution is optimal. Let T be

defined as this intersection of the (j » 1,2, .n).

How T may take one of several forms. It may be only a

single point. Obviously it cannot be larger than the small-

est of the sets T^, Tis assumed to contain at least one

point. If, for some value of j, Tj is a single point, then

T la also this point, T may contain a single closed inter-

val or several closed intervals. It may contain all of the

t-axis or all of the t-axis except one or more finite

open intervalsi this is obviously a case in which </, > 0

(j » 1,2, ...»
n). If < 0 for any value of j, then for

this value of j, (t,) is concave downward and contains

at moat a finite closed interval. Hence T contains no

points outside this interval. The reader may determine all

the possibilities of "intersections" of the by examining

the table of possible forms of .

Upon determining T for a given extreme point solu-

tion, one may proceed to determining the set of values of t
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for which another extreme point solution is optimal. The set

of values for which the first solution considered is optimal

is either the entire t-axis (in which case the problem is

solved), or it contains at least one end point. At this end

point * 0 for some value of j, say j •k. If may be

introduced into the basis by the simplex method, then intro-

ducing P
fc

into the basis to give a new extreme point solution

gives an alternate optimal solution at this end point. (See

Chapter 111, Section B.) Then by constructing the new

simplex tableau one may determine the set of values for which

the new solution is optimal. The process may be repeated

until for each value of t either an optimal solution has been

determined or the functional is known to have no optimum

value. If cannot be introduced into the basis by the sim-

plex method because for every value of i, < 0, then for

those values of t such that - * a
jc

+ + ® the

problem has no optimal solution. By referring to the column

labeled "Description of Complement of Tj" in the table on

page 111, one may see for what set of values the problem has

no maximal solution. In other words is the set of values

of t for which - t
2

and comple-

ment of this set of values is the set of values for which

-« « � � -v^t
2 ° and hence for which there is no



114

maximal solution. Aecall that this is case I of the simplex

method. (See Chapter I, Section H, and Chapter 111, Section

B.) An example of this type of problem will be worked in

Section D of this chapter.

C. THE PERIODIC CASE

The next case to be considered is the case in which

the cost coefficients the °j* s are periodic functions

of a single parameter. In other words, one such case could

be

cj ■gj
sin t + cos t (j « 1,2, n).

The problem is to determine an optimal solution to a linear

programming problem for every value of t. Again one starts

by assigning a value to t and determining an optimal solution

for this particular value of t by the simplex method. Then, as

before, one must determine for what set of values of t this

solution is optimal by solving the inequalities

x
cj

0 (j * 1,2, ...,
n).

This set of inequalities may be rewritten:

(4.-3) -

*Oj
sin t � cos t> 0 (j * 1,2, ..., n).

The inequalities (4-3) correspond to the inequalities (4-2) of

the parabolic case, (See Section Bof this chapter.)
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Solving the inequalities (4-3) entails first solving

the equations

(4-4) a,. sin t +
cos t « 0 (j * 1,2, ...,

n).

It is easily verified that the solution to these equations is

t = arctan The solution is multivalued, and the

values are spaced at intervals of n along the t-axis. Let t^

be defined as the solution to (4-4) such that 0 n, and

let t be defined as the solution to (4-4) such that
z

hi < t < 2n. In a manner similar to the parabolic case let
~

2

= sin t + cos t (j = 1,2, n). Now is

a continuous function of t: therefore, between t and t it
12

is either everywhere positive or everywhere negative. Except

for the special case in which t = C and hence t = rr
r

1 2

the value t - « is between t and t . Therefore, the sign of
12

determines the sign of throughout the interval

t < t < t . Now
i z

y (n) * a. sin n + p. cos n

d d J

» + (Jj(-l)

So, except for the special case mentioned above, the sign of

y.(t) between t and t is the sign opposite to the sign
J 12

of fi,. The sign of y.(t) between 0 and t and between t and

J d X 2
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2n is opposite to the sign of (t;) between and . The

special case of * 0 and » n implies that * 0. In

this case the sign of y.(t) between t and t is the same as

J i 2

the sign of a., and the sign of y,(t) between t and 2n is

j J 2

the opposite to the sign of cu , In other words the solution

between 0 and 2vt to any one of the inequalities (4-3) is

either an interval of the form t <t < t or two intervals
1~ ~ 2

of the forms o<t < t and t < t < 2n. Over the entire
--1 2

axis there are touching intervals of length n. For example,

the interval, t < t < t
,

is followed by the interval,
1~

~ 2

t < t < t + Hq and this interval is followed by the inter-
-2

~

“2

val, t + n<t < t � 2n, If one starts with the interval,
2

~

2

t t < t
,

and calls it interval number one and then
i— 2

proceeds to the right, numbering the succeeding intervals in

numerical order, then the solution to the inequality is

either the set of values of t in the even-numbered intervals

or the set of values of t in the odd-numbered intervals.

It is only necessary to determine the solution to

(4-3) in the interval 0< t 2n because (t.) is a periodic

function of t with a period of 2n for all values of j , After

the solution to each individual inequality of the set (4-3)

has been found, then the solution must be found to the entire

set. Let as in the parabolic case, be defined as the set
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of values of t such that 0 < t < 2tt and such that

in other words, the solution to one of the inequalities

(4-3). Then again T will denote the set of values of t com-

mon to all of the T^ *s or the "intersection" of the T^'s.
If is a basis vector for the extreme point solution under

consideration, then *O, (See Chapter 111, Section

B.) T may be only one point; it may be one closed interval.

In the parabolic case it is possible for T to be any number

of closed intervals. However, in the periodic case it

cannot be more than two intervals. This statement will now

be proved. The sets are of two possible forms. Either

is a closed interval of length tr, whose left end point is

greater than or equal to zero and whose right end point is

less than 2trj or is a pair of intervals, the sum of whose

lengths is n and such that (1) the first interval has zero

for a left end point and is closed on both ends and (2) the

second interval is closed on the left end and is open on

the right end and approaches 2n as a limit. In other words,

let t « arctan (-8./a,) and such that

ij y i

0< t < tr

-

and let t « arctan and such that

2 j <3 J

tr
< t

,

< 2tr.
“ 2 j
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Then t ,
« t ,

+ tis and T. is either the sat of points t
2j ij j

such that t -<t < % a
#

or f| is the set of points t such

that either o<t < t
.

or t .< t < 2v. Assume without
-

i j 2 j -

loss of generality that, for j * m + 1, m + 2, .q, is

one closed interval and that, for j » q + 1, q + 2, ..., n,

is the pair of intervals as described above. (Recall

that for those values of j (j * 1,2, ~,, m) such that

is a basis vector is identically zero and is the

entire interval, 0< t < 2ir.) Now T is that set of values

of t which satisfy the followings

t
,+

. <t < t
,

i,m+i a,m+i

t < t <: t
i,m+s - -

2 ,ai +
a

(4-5)

t <t < t
,

iq - ~ aq*

o<t < t
.

t- i»q+l

oct < t
- l,q+2

(4-6)

o<t < t
,

- - in

t . < t<T 2w

a»q+ i ~

t < t < 2n

2,q
+ s “

(4-7)

t < t < 2v.
zn

~~
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Let t be the maximum of the values
ir

***»
t
i q

and let t be the minimum of these values. Then, in order
is

’

to satisfy the Inequalities (4-5), a point t must satisfy

the conditions t < t < t
ir ——2 B

Let t be the minimum of the values
iv

t
i,q+ i

>
t
i,q+ **

t
m

and let t be the maximum of these values. Then, in order
iu

to satisfy the inequalities (4-6), a point t must satisfy

the conditions 0 < t <T t
iv

In order to satisfy the inequalities (4-7), a point t must

satisfy the conditions t <t < 2n,
2 u

If all of the are one-interval sets, that is,

may be defined by inequalities like the inequalities (4-5),

then Tis simply the closed interval, t <t < t
xr

~~

2s

If all of the are two-interval sets, that is,

may be defined by two sets of inequalities like (4-6)

and (4-7), then f is simply the two Intervals, 0 <t < t

and t <t < 2t».
2U

”

Now assume that some of the T^ ’s are one-interval

sets and some of the T,
*

s are two-interval sets. Then either
J

t < t or t < t iff contains at least one point,
ir iv 2 u

~
as
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Both of these inequalities cannot be true except in the

special case in which t « t ® t 9 t . This is true
ir is iv iu

because

t < t
ir iv

implies that t < t
,

ZT ~

2V

but t < t
23

” ZT

and t < t
2V

“

2U

Hence t < t < t < t
23 ZT

~

27 Z U

and the inequality V, % is satisfied only if the ©qual-

ity sign holds throughout. Similarly

t < t
2u

■“

as

implies that t t
,r

iu is
'

but t t
is ir

and t <1 t .

iv
3

iu

Hence t <. t 5s t <. t
iv

-

iu
” is ir

and the inequality t < t is satisfied only if the equal-
ir ~ iv

ity sign holds throughout. In this special case T is

the two points t and t ,
In all other cases if t t .

r
IT ZT it “ iv

then t > t and Tis the set of points t such that

2U 2 S

t <t < t i and if t < t
,

then t t and Tis the
ir “ iv 2u 28 ir iv

set of points t such that t <t < t ,

2 U ”23
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When one has determined T, the set of points for

which a particular extreme point solution is optimal, he is

ready to determine the set of values of t for which another

extreme point solution is optimal. The set of values

of t for which the first solution considered is optimal has

at least on© end point unless it is the entire Interval

®> I < 2n, in which case the problem is solved. At this

end point * 0 for some value of j, say j *k.

If may be introduced into the basis by the simplex method,

then introducing P,
£

into the basis to give a new extreme

point solution gives an alternate optimal solution at the

end point. Then by constructing the new simplex tableau

one may determine the set of values for which the new solu-

tion Is optimal. If cannot be introduced into the basis

by the simplex method because for every value of t, < 0,

then for those values of t such that

Zy -c,. « sin t � cos t< 0

the problem has no optimal solution. The set of these val-

ues such that 0 < t < 2n will be either an open interval

of length n or two intervals, the sum of whose lengths is n.

In other words it will be all those values such that

0 < t < 2n and which are not contained in By repeating



the processes outlined above, one will eventually determine

an optimal solution for every value of t or determine for

what values of t there is no optimal solution. In Section B

of this chapter a problem of the type outlined in this

section will be worked.

D. SOLUTION OF A PARABOLIC PROBLEM

The best way to understand the problems discussed

in Sections B and G of this chapter is to see the solution

of numerical problems. For example, consider the problem:

6

maximize f(X) * S cA,

j-i
J J

subject to

X + X + X + X *lO
12 3 4

—2X 6X 3X + X * —6
12 3 3

-15 X + 2OX -12 X + X - 120.
12 3 6

The coefficient matrix is

p p p P P P p
12 3 4 5 6 0

11110 0 10

-2-6-3 0 1 0 -6

-15 20 -12 0 0 1 120.

122
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As an example of the parabolic problem one may define the

cost coefficients as follows*

e

(

* -t
2

- 3t - 2

c * 2t 2
+ 4.t 1

3

t2
- t + 2

c » -4-t
2

+ 2t - 3

c “ -2t
2

+ t + 3.
6

The first step is to assign a value to t and to

solve the problem for this particular value. Let t * 1.

Then* c * 4# c a -6 1 c « 5: c « 4i c ** -5| c * 2.
i 2 3 4 *5 6

In order to start solving for an optimal solution for this

particular value of t it is necessary first to find any

extreme point solution. The first paragraph of Section B,

Chapter 11, provides the method for obtaining the solution.

A non-negative solution cannot be obtained in terms of the
�

unit vectors

by -P
,

then a non-negative solution is available, hot -P
5 5

be denoted by P and added to the coefficient matrix. Then
7

let c

?

be -M, a number discussed in Section B, Chapter 11.

Then, an entirely equivalent problem is the following*

maximize f(X) ® t> c.X, - MX
J •* 7
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subject to

P P P P P
12 3 4 5

11110

X -2 + X -6 + X -3 + X 0 + X 1
1 2 3 4 5

-15 20 -12 0 0

P P P
6 7 0

0 0 10

+ X 0 + X -1 * -6
6 7

1 0 120

Then the first extreme point solution is the solution in

terms of P
,

P
,

and P
,

Tableau I, on page 131, is the tab-
-4 6 7

leau corresponding to this solution. Proceeding by the

simplex method, one may calculate Tableaux 11, 111, IV, and V,

Since, in Tableau V, -
2>. 0 (j • 1,2, ~.,7), Tableau V

provides the optimal solution for t * 1. In order to find the

entire set of values for which this solution is optimal it is

necessary to solve the inequalities;

2 - C
> 0

2 2

z - c > 0

3 3
-

2 - C >O.
4 4

~
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Motion that z - o >0 is not Included. This is true
7 ?

“

because is not a vector in the original problem but was

only introduced to provide the initial extreme point

solution. Solving these inequalities entails first solving

the corresponding equations:

Z-O»X0� X c � X C - 0

2 2 52 5 62 6 12 1 2

* -4c + 35c + c - c

a 612

* -52t
a

� 32t + 120 « 0|

z-c»xo-*-xc + xc-c

5 5 53 5 65 6 13 1 3

« -c
+ 3o �

c *o

5 6 13

* -3t
a

- t + u - Cf

Z-C»XC* X c+x c - c

4 4 54 5 64 6 14 1 4

“ 2c + 15c � c - c

5 6 14

* ~Aot* + 22t +33-0,

Denoting z 3 - by one may make the following statements.

The solution to » 0 is t * —-—“ 1.36, ->1.22,

The solution to » 0 is t * • 1.29, -0,74.
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The solution to y
* 0 is t * 2, -2l- “ 2,00, -2,33.

3 *

Also

Therefore, is the set of points t such that

-1.22 < t < 1.86.

is the set of points t such that

-2.33 < t < 2.00.

is the set of points t such that

-0.74 < t < 1.29.

Notice that approximate values are used, finally T for

Tableau V is the set of values t such that

-0,74 < t < 1.29.

Since, at both end points of T for Tableau V, y
® 0,

the new tableau is constructed by introducing into

the basis by the simplex method. This gives a basis involving

P
,

F
,

and P
.

This is the basis of Tableau IV, Hence no

4 6* i

new tableau needs to be constructed.

From Tableau IV the following may be calculated:

z c s -132t
a

+ 76t + 196
2 2

z - c ■ -23t
2

+ lot + 33
3 3

z - c * 20t 2
- lit - 19.

3 5

Also y * 0 at t a A 1,54, -0.96.
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And y
* oat t • -1, » -1,00, 1.43.

3

And y
- 0 at t -

!Lz_zsHl L 1.29, -0,74.
5 4«

Now and are concave downward, and is concave upward.

Hence T
?

is the set of points t such that

-0.96 < t < 1.54.

is the set of points t such that

-1.00 < t < 1.43.

is the set of points t such that

either t*> 1.29 or t<£ -0,74.

For Tableau IV, T is the set of points common to T
,

T
,

and
2 3

T . In other words it is those points t such that

5

either 1.29 <t< 1.43 or -0.96 <t < -0.74.

At t » -0,96, * 0, so at this value of t intro-

ducing into the basis of Tableau IV will give a basis for

an alternate optimal solution. This basis turns out to be

P
,

P
,

and P
,

the basis of Tableau 11, Then from Tableau
4 6' a

II one may determine the set of values of t for which its ex-

treme point solution is optimal.

Z

X

~ C 1 ** “ - '-p'.

z - c * 43t
2 -28 t - 65.

3 3

z c * —2t 2
+ �

3 5 3 3
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Also y
i

» 0 at t * ~—« 1.54, -0.96$

and y
* 0 at t * i 1.60, -0.95|

3 43

|.

and y 5 »oat t * --~^jr.9 u g i >2.23, 3.06.

Since and are concave upward and is concave downward,

then T is the set of points t such that

either t>1.54 or t < -0.96.

is the set of points t such that

either t 1,60 or t < -0.95.

T is the set of points t such that

3

-2.23 < t < 3.06.

Finally, for Tableau 11, T is the set of points t such that

either -2.23 <t < -0.96 or 1.60 <t < 3.06.

At t * 1.60, * 0, Therefore, introducing into the basis

gives an alternate optimal solution at this point. Introduc-

ing P into Tableau II gives the basis P
,

P
,

and P
,

3 4 6 3

which is the basis of Tableau 111, The following calculations

are from Tableau 111.

a -c

i

•
2

- ift - 22.

z - c - -86t
2

+ 56t + 130.
3 2

z - c * 2-tpt
2

- - 8.
3 3 3 3
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Then - 0 at t » -1,00 • 1.43, -I.OOj

and y
* 0 at t * ~»1.60, -0,95;

and *oat t «
----

r7^C
— » -0.55, 1.17.

Also y and y are concave upward, and y is concave downward,
* 5 2

Hence is the set of points t such that

either t > 1,43 or t < -1,00.

is the set of points t such that

-0.95 < t < 1,60.

is the set of points t such that

either t > 1.17 or t < -0.55.

Then T for Tableau 111 is the set of points t such that

1.43 < t < 1.60.

Reviewing the various sets of values for which each

extreme point solution is optimal, one may see that for every

value of t except those values less than -2,23 and those

values greater than 3*06 an optimal solution has already bean

obtained. At t * -2.23, the optimal solution is the one

based on Tableau 11, and at t « 3.06, the optimal solution is

the same. Also, based on this tableau, y
* 0 at t * -2.23,

5

3,06. Hence introducing P into Tableau II gives a new

5

basis, which also determines an optimal solution for these
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two points. The new basis is P
,

P
,

and P
,

and the new

4 s a

tableau ia Tableau VI (see page 133). The following

calculations are based on this tableau.

z - c « 31t
2

- ift +

ii * z

z * "3'^t
a

—17 t

Z 6 ~ C 6 * s** “ a* “

Also * 0 at t * » -2.23, 3«06.

It is not difficult to verify the fact that there is no real

solution to y
* oor to y

* 0. Since y , y ,
and y

i 3 i' 6

are all concave upward, T and T are the same and are that
6

set of points t such that

either t>3.06 or t < -2.23.

To summarize the results, the table on page 131 has

been constructed. Approximate values have been used.

The exact values may be found in the text in fractional or

radical form.
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Left End Point

of the Interval

t • -oo

t - -2,23

t • -0.96

t * -0,74

t - 1.29

t • 1,43

t • 1,60

t - 3,06

Right End Point

of the Interval

t » -2,23

t * —0,96

t • -0,74

t • 1,29

t « 1,43

t • 1,60

t « 3,06

t • +vo

Tableau Which

Provides the

Optimal Solution

Tableau VI

Tableau XI

Tableau XV

Tableau V

Tableau IV

tableau 111

Tableau II

Tableau VI

Tableaul

Tableau II

Tableau I Column Vectors

Unit Basis P P F ? P p P p

Values Elements
O i 2 i 4 5 6 7

4 P
4

10 1 1 1 1 G 0 0

2 F
6

120 -15 20 -12 0 0 i 0

-H P

?

6 2 6 3 0 0 I

Mot

Differ- *j
*

°J
28C 01 50 -25 0 5 0 0

enoes -64* -2M -6a -3M +M

Tableau II Col;uan Vetstore

Unit 3aais P P P F P F P p

Values Elements © 1 a 3 4 3 6 7

4 P

4

9 X

3
0

1
2

1 X
a

0
“6

a P
6

100 „SLL
3

0 -22 0 LSI
3

1 .Xfi.
3

-6 P
2

1
L

3
1

X
a

0
~6

0 X
6

Nat

Differ- *

°i
230

3
0 -50 0 Xfi.

3
c -XX

3

enoes
� M
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Tableau 111

Tableau IV

Tableau V

Tableau III Column Vectors

Unit

Values

Basis

Elements

P

0

P
i

P
2

p
3

p
4

p
3

P
6

p
7

4 P
4

8
i

3
-1 0 1 1.

3

0
3

2 P

6
144 -7 44 0 0 -4 1 4

5 P
3

2
3

2 1 0 JL
3

0 i
3

Net

Differ-

ences

z

i
- a

i
330

3
100 0 0

3
0

3

+M

Tableau IV Column Vectors

Unit Basis P P P P ? p p p

Values Elements 0 i 2 3 4 5 6 7

4 P

4

7 0 -2 JL
3

1 1_
2

0
1

”2

2 P
6

165 0 65 LL
2

0 -UL
2

1 4i
2

4 P
1

3 1 3 a.

3

0
1

2
0 i.

2

Net

Differ-

ences
*1
'

°j 370 0 140 20 0 —1 c 0 15

+M

Tableau V Column Vectors

Unit Basis P P P p p P p p

Values Elements
o i 2 3 4 5 6 7

-5 P
5

14 0 -4 -1 2 1 0 -1

2 P
6

270 c 35 3 15 0 1 0

4 P
1

10 1 1 1 1 0 0 0

Net

Differ-

ences

* c
3

510 0 100 10 20 0 0 5

+M
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tableau VI

E. SOLUTION OF A PERIODIC PROBLEM

the same problem will be used to illustrate the case

in which the cost coefficients are periodic functions of t

except that of course the cost coefficients will be defined

differently. For example, one may define them as follows*

c *» sin t + cos t
1

c * 3 sin t - 2 oos t
2

c * -sin t + 5 cos t
3

c « -3 sin t + 4 cos t

c ■ -sin t - 3 cos t

c = 7 ain t + 3 cos t.
6

Again the first step is to assign a value to t and to

determine an optimal solution for this particular value of t.

Let t ® 0, Then* c * If c * -2f c » 5} o » 4f c * -3f
1 2 3 4 9

o 6 * 3* Using these values of

verify that Tableau V provides an optimal solution for t » 0

Tableau V] Co]Luan V«motors

Basis P P P
r~P~ P p rp p

Elements
0 i 2 3 4 5 6 7

P

4
A i

4
0 $.

5
1 0

1

”20
0

P
S

30 «UL
2

0 -li.
5

0 1 JL_

l©
-1

P
2

6 -2.
4

1 -.2-
S

0 0 1# 0
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by calculating the values, z - c , z - o
,

and z - c
,*

2 a’ 3 3 A V

which are all greater than zero. To find the entire set of

values of t for which Tableau V provides the optimal solu-

tion, one again solves the inequalities:

a - c >0
2 2

~

z - c >0
3 3

~

z - c >O,
4 4

&

As before, the corresponding equations must be solved first.

Then T
,

T
,

and T
,

the solutions to the individual
2 3 4

inequalities, will be determined, and from them T, the solu-

tion to the entire set of inequalities, can be determined,

s-c=xc+ x c + x c - c

2 2 32 3 62 6 12 1 2

34 247 sin t + 120 cos t » 0.

z-c a xc+xc+xc-c
3 3 53 5 63 6 131 3

« 24 sin t + 8 cos t » 0.

z-c*xc+xc+xc-c
4 4 54 3 64 6 14 1 4

* 107 sin t + 36 cos t » 0,

Again denoting -Cjby y, one may summarize the

results as follows*

the solution to « 0 is t * arctan

* arctan (-0,4858)

« 2.689, 5.831;
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the solution to y » 0 is t » arctan (-£■)
3 3

» arctan (-0.3333)

» 2.820, 5.962;

the solution to * 0 is t “ arctan (“Xot’)

** arctan (-0.3364)

* 2.817, 5.959.

At t ■ «, <O, <o, and < 0, Therefore, is the

set of points t such that

either 0< t < 2,689 or 5.831 <t < 2*.

is the set of points t such that

either o<t <1 2.820 or 5.962 <t < 2tr.

is the set of points t such that

either 0< t < 2.817 or 5.959 £t < 2tr.

Hence, for Tableau V, T is the set of points t such that

either 0< t < 2.689 or 5.962 <t < 2«.

At t « 2.689, y = 0} and at t a 5.962, y
* 0. Introducing

2 3

into Tableau V gives Tableau VII, and introducing

into Tableau V gives Tableau Till. The calculation of T for

each of these and for succeeding tableaux will be given in

tabular form on pages 136, 137, and 138*
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Results from Tablesu VII

For Tableau VII, T is the set of points t such that

2.689 < t < 3.821.

Results from Tableau VIII

For Tableau VIII, T is the set of points t such that

5.953 < t < 5.962.

la the results for Tableau VII, y * 0 at t * 3.821;
3

and introducing into Tableau VII gives Tableau IX, In the

results for Tableau VIII, y
» 0 at t * 5.958; and introduc-

-4

ing into Tableau VIII gives Tableau 111,

J y
j

“ Z

j
’ C

i

Solutions to

7j (t)
* 0

Conditions on

Points t Belong-

ing to

3 sin t - cos t
3 5 3 5

t » 0.680,
3.821

0.680 £ t <£ 3.821

4 sin t - cos t t * 1.497,
4.638

1.497 < t < 4.638

6 -*4-3- sin t - 008 t
3 5 3 5

t » 2.689,
5.831

2.689 < t <T 5.831

i y
J

"
- C

J

Solutions to

« 0

Conditions on

Points t Belong-

ing to

1 -24 sin t - 8 cos t t « 2.820,
5.962

2.820 < t < 5.962

2 223 sin t + 112 cos t t * 2.676,

5.818

0 < t < 2.676

5.818 < t < 2n

4 83 sin t + 28 cos t t ■ 2.816,

5.958

0 < t < 2.816

5.958 < t < 2ti
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flesulta from Tableau IX

itesults from Tableau 111

For Tableau IX, T is the set of points t such that

3.821 < t < 4.757.

At t ■ 4.757, y * 0| and introducing P into Tableau IX gives
4 4

Tableau VI, For Tableau 111, T is the set of points t such

that

5.854 < t < 5.958.

At t * 5,854, y, * Oj and introducing into Tableau HI give

Tableau 11.

iteauits rrom Tableau 1A

j y
J

’
-

°3
Solutions to

• 0

Conditions on

Points t Belong-

ing to T^.

1 sin t + &&
cos t t » 0.680,

3.821

0 < t < 0.680

3.821 < t < 2n

4 sin t - cos t t - 1.615,
4*757

1.615 < t < 4*757

6 '.AJUL ain i «
lliL

coa
3 2 3 2

t * 2.676,
5.818

2.676 < t < 5.818

i y
4

- Z
J

*

°4
Solutions to

« 0

Conditions on

Points t Belong-

lag to Tj

i si n t - cos t t - 2.813,
5.960

2,818 <.t < 5.960

2 306 sin t + 140 cos t t » 2.713, 0 < t < 2.713

5.854 5.854 <. t < 2ir

5 sin t - cos t t ■ 2.816,
5.958

2.816 < t «C 5.958
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Results from Tableau VI

Eesults from Tableau IX

For Tableau VI
f

T is the set of points t such that

4.757 < t < 5.743.

For Tableau 11, T is the set of points t such that

5.743 < t <L 5.854.

Summarising results, as in the parabolic case, on'

may see that for every value of t an optimal solution

has been determined. The results are shown in the table on

page 139.

3 y
3

“

*3
* c

3

Solutions to

(t) » 0

Conditions on

Points t Belong-

ing to

1 -2 sin t + 27 cos t t « 1.4-97,

4.638

0 t <£ 1.497

4.638 t < 2n

3 sin t + coa t t » 1.615,

4.757

0 < t C 1.615

4.757 C t < 2»

6 -7 sin t - cos t
5

t = 2.601,
5.743

2.601 < t <L 5.743

i y
j

■
-

°3
Solutions to

7j(t) « 0

Conditions on

Points t Belong-

ing to

i g i a t - cos t
3 3

t * 2.747,
5.888

2.747 C t < 5.888

3 -153 sin t - 70 cos t t « 2.713,

5-854

2.713 < * «g 5.854

5 sin t + cos t t « 2.601,

5.743

0 C t £ 2,601

5.743 < t cl 2«



Loft End Point Right End Point Tableau Which

of the Interval of th© Interval Provides the

Optimal Solution

t « 0 t « 2.689 Tableau V

t « 2.639 t - 3.821 Tableau VII

t « 3.821 t » 4.757 Tableau IX

t » 4.757 t * 5.743 Tableau VI

t » 5.743 t » 5.854 Tableau II

t » 5.854 t * 5.958 Tableau 111

t - 5.958 t ■ 5.962 Tableau VIII

t » 5.962 t • 2w Tableau V

These results are, of course, approximate values.

Tableau VII

139

Tableau VII Column Vectors

Basis P P F p P P P p

Elements
O 1 2 3 4 5 6 7

P
3U 0 0 ,LL 1

4
-1

3 7 3 5 7 3 5

P
2

M,

7
0 1 I...

3 3

2.
7

0 Jrwnp
3 5

0

P
1

16

7

1 0
3 2,

3 3

i.
7

0 ■muJpeg*
3 5

0
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Tableau VIII

Tableau IX

Tableau VII]
� Column Vectors

Basis P P P P P P P p

Elements O i 2 3 4 5 6 7

P
5

24 1 —3 0 3 1 0 -1

P
6

240 -3 32 0 12 0 1 0

P

3

10 1 1 1 1 0 0 0

Tableau IX Column Vectors

Basis P P P P P p p P

Elements 0 1 2 3 4 5 5 7

P JL 2JL 0 1 A 0 1
0

3 2 3 2 6 3 2

p u. £L 0 0 IX 1
3

-1
s 2 3 2 8 3 2

P UL 1 0 a. 0 1
0

2
2 3 2 s 3 2
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