Copyright

by

Humera Abdul Rafique

The Thesis Committee for Humera Abdul Rafique Certifies that this is the approved version of the following thesis:

Solvent reclaiming by sulfate precipitation for CO₂ capture

APPROVED BY SUPERVISING COMMITTEE:

Gary T. Rochelle, Supervisor

Issac C. Sanchez

Solvent reclaiming by sulfate precipitation for CO₂ capture

by

Humera Abdul Rafique, B.S.Ch.E

Thesis

Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Engineering

The University of Texas at Austin December 2011

Dedication

To my loving parents, my sister, and her family

Acknowledgements

I would like to firstly express my gratitude to my advisor Dr. Gary T. Rochelle without whom this thesis would not be possible. I'd like to thank him for his guidance, and his encouragement throughout my program at UT. His support always kept me motivated through the research involved in this project. He never let go of teaching opportunities of any sort. Because of him I come out of this program not only with enhanced chemical engineering skills but also presentation skills, and even networking skills with fellow researchers and industry reps.

I would like to thank the Luminant Carbon Management Program for funding this project.

I would also like to thank the Rochelle group members Stephanie Freeman, Fred Closman, Steven Fulk, Alex Voice, Lynn Li, Chao Wang, Eric Chen, Thu Nguyen, Mandana Ashouri, Sepideh Ziaii, Xi Chen, Peter Frailie, Robert Tsai, Jorge Plaza, Qing Xu, Stuart Cohen, David Van Wagener, and Omkar Namjoshi. I'd like to thank my mentors as an undergraduate in the Rochelle group: Marcus Hilliard and Andrew Sexton because of whose encouragement I came back to the program as a graduate student.

I'd really like to thank Maeve Cooney for all the administrative help during my time in the Rochelle group. She took care of everything in a timely manner and was a joy to talk to early in the mornings.

To my friends, Shehnila Sami and Yomna Nassar, and my sister Asma Rafique they supported me right till the end of my program.

Last, but definitely not the least, I would like to express my thanks to my parents. Without their support I would not be where I am right now.

Abstract

Solvent reclaiming by sulfate precipitation for CO₂ capture

Humera Abdul Rafique, M.S.E.

The University of Texas at Austin, 2011

Supervisor: Gary. T. Rochelle

Sulfate accumulates in the post-combustion CO_2 capture system and must be removed to re-use amine efficiently. Removal of sulfate from the amine-based postcombustion CO_2 capture system through a solvent reclaiming process may reduce CO_2 capture costs. This work determines the solubility of K_2SO_4 and Na_2SO_4 in 2 to 8 m PZ loaded with CO_2 and develops a thermodynamic and process model for the reclaiming process.

At 40°C the solubility of Na_2SO_4 in 8 m PZ with a CO_2 loading of 0.3 is 0.3 m Na_2SO_4 and that of K_2SO_4 is 0.1 m K_2SO_4 .

Sulfate solubility in PZ solutions is represented by the empirical models:

K₂SO₄: $ln(Ksp) = 10.53I^{0.3} - 0.98[PZ]_T - 3440/T - 2.42$ Na₂SO₄: $ln(Ksp) = 2.137I^{0.3} - 0.6505[PZ]_T - 826/T + 265$ where $[PZ]_T = 2^*$ (molality of PZ).

A K_2SO_4 and Na_2SO_4 solubility thermodynamic model was developed in the e-NRTL framework in the Fawkes model for $PZ/CO_2/H_2O$ in Aspen Plus[®].

The energy cost of the Na process when removing the equivalent of 100 ppm SO₂ from the flue gas, ranging from 0.1-0.5/ton CO₂, was practically the same as the K process(ranging from 0.1-0.8/ton CO₂). The K₂SO₄ recovered in the process can be used as fertilizer. However, the KOH will still cost 0.6/tonne CO₂. If it is not possible to sell the K₂SO₄ as fertilizer because of the impurities that may be present on the K₂SO₄ crystals, the chemical cost of the process would increase to 2/100. The chemical cost for the Na case is 0.7/100.

Table of Contents

List of Ta	bles	X
List of Fig	gures	xiv
Chapter 1	Introduction	1
1.0	Background and Motivation	1
1.1	Solvent reclaiming methods	3
1.2	Scope of work	4
Chapter 2	: Solubility of sulfate in Piperazine (PZ)	6
2.0	Introduction	6
2.1	Solid solubility Experimental Method	6
2.2	Analytical Techniques	8
	Cation Chromatography:	8
	Anion Chromatography:	9
	Total Inorganic Carbon Analyzer:	9
2.3	Experimental results	.10
2.4	Previous work and experimental method validity	.14
Chapter 3 Met	Solubility of Na ₂ SO ₄ and K ₂ SO ₄ in Piperazine (PZ) – Experimental hods Analysis.	.15
3.0	Comparison with literature data	.15
3.1	Comparison of Na_2SO_4 and K_2SO_4 solubility in CO_2 loaded PZ solu	tion .21
3.2	Solubility Product (Ksp) and empirical model	.23
Chapter 4 Aspe	Regression of interaction parameters in the electrolyte-NRTL model en Plus [®]	l in 29
4.0	electrolyte-NRTL model in Aspen Plus [®]	.29
4.1	Na ₂ SO ₄ - H ₂ O SYSTEM	.32
4.2	Experimental Data Regression	.33
4.3	K ₂ SO ₄ -PZ-CO ₂ -H ₂ O system	.35
4.4	Validation of K ₂ SO ₄ -PZ-CO ₂ Aspen Plus [®] Model	.40

4.5 Na ₂ SO ₄ -PZ-CO ₂ -H ₂ O Aspen Plus [®] Model	46
Chapter 5: Aspen Plus [®] Reclaiming Process Model	51
5.0 K ₂ SO ₄ Electrolyte-NRTL Process Simulation in Aspen Plus [®]	51
5.1 Na ₂ SO ₄ Electrolyte-NRTL Process Simulation in Aspen Plus [®]	57
5.3 Energy and Chemical Cost Estimation For K ₂ SO ₄ System	60
5.4 Energy and Chemical Cost Estimation For Na ₂ SO ₄ System	64
Chapter 6: Recommendations and conclusions	68
6.0 Experimental results	68
6.1 Process simulation results	69
Appendix A	71
Appendix B	73
B.0 Chromeleon Cation Chromatography program	73
B.0.1 Jason3 Auto.pgm	73
B.0.2 Stephanie3 Auto.pgm	74
B.1 Chromeleon Anion Chromatography program	76
B1.1 Anions.pgm	76
Appendix C	78
Appendix D	93
Simulation results	93
Vita	127

List of Tables

Table 2.1 Analytical Results for K2SO4 solid solubility experiments
Table 2.2 Analytical Results for Na ₂ SO ₄ solid solubility experiments 13
Table 2.3 Data comparison with Xu (2008)
Table 3.1 K ₂ SO ₄ regression statistical analysis 25
Table 3.2 Na2SO4 regression statistical analysis 27
Table 4.1 Aspen Plus [®] default binary interaction parameters
Table 4.2: K-salt values for K ₂ SO ₄ (Xu, 2008)
Table 4.3 Anhydrous Na ₂ SO ₄ solubility in H ₂ O (Linke, 1965) 32
Table 4.4: K-salt values for Na2SO4
Table 4.5: Electrolyte-molecule τ parameter pairs to be regressed
Table 4.6 Na_2SO_4 electrolyte-molecule τ parameter pairs to be regressed
Table 4.7 τ parameters for H ₂ O, K ⁺ SO ₄ ⁻² and H ₂ O, Na ⁺ SO ₄ ⁻² system (Chen et al.,
1982, 2011)
Table 4.8 $K_2SO_4 \tau$ Parameters regressed in Aspen Plus [®]
Table 4.9 Correlation Matrix in Aspen Plus [®] 38
Table 4.10 Literature values used to replace independent parameters 39
Table 4.11 Binary Interaction Parameters regressed for K ₂ SO ₄ -PZ-CO ₂ -H ₂ O system
Table 4.12 Final correlation matrix of the K ₂ SO ₄ -PZ-CO ₂ -H ₂ O system40
Table 4.13 Root Mean square error of K2SO4-PZ-CO2 data 42
Table 4.14 Variation in τ parameters for the Na ₂ SO ₄ -PZ-CO ₂ -H ₂ O system47

Table 5.1 Aspen Plus® modeling results for SO₄⁻² removal using KOH (Stoich

Table 5.3 Work and cost summary for sulfate reclaiming by KOH (stoichiometric

$$(K^+/SO_4^{-2} = 2)$$
, Excess SO_4^{-2} $(K^+/SO_4^{-2} = 1.3)$, and Excess K^+ $(K^+/SO_4^{-2} = 2.5)$

Table 5.4 Work and cost summary for the sulfate reclaiming by NaOH (Stoich

$$(Na^{+}/SO_{4}^{-2} = 2)$$
, Excess SO_{4}^{-2} ($Na^{+}/SO_{4}^{-2} = 1.9$), and Excess Na^{+}

Table D.2 Stream summary for
$$SO_4^{-2}$$
 reclaiming by KOH (stoichiometric case

Table D.3 Stream summary for SO₄⁻² reclaiming by KOH (stoichiometric case

Table D.5 Stream summary for SO_4^{-2} reclaiming by KOH (stoichiometric case

Table D.6 Stream summary for SO_4^{-2} reclaiming by KOH (excess SO_4^{-2} case (K ⁺ /SO ₄ ⁻²)
$^{2} = 1.3) - 50^{\circ}$ C100
Table D.7 Stream summary for SO_4^{-2} reclaiming by KOH (excess SO_4^{-2} case (K ⁺ /SO ₄ ⁻²)
$^{2} = 1.3) -60^{\circ}$ C101
Table D.8 Stream summary for SO_4^{-2} reclaiming by KOH (excess SO_4^{-2} case (K ⁺ /SO ₄ ⁻²)
$^{2} = 1.3) - 70^{\circ}$ C102
Table D.8 Stream summary for SO_4^{-2} reclaiming by KOH (excess SO_4^{-2} case (K ⁺ /SO ₄ ⁻²
$^{2} = 1.3$) -90°C103
Table D.9 Stream summary for SO_4^{-2} reclaiming by KOH (excess SO_4^{-2} case
$(K^+/SO_4^{-2} = 1.3) - 100^{\circ}C$
Table D.10 Stream summary for SO_4^{-2} reclaiming by KOH (excess K ⁺ case (K ⁺ /SO ₄ ⁻²
$= 2.5) -50^{\circ}$ C105
Table D.11 Stream summary for SO_4^{-2} reclaiming by KOH (excess K ⁺ case (K ⁺ /SO ₄ ⁻²
$= 2.5) -60^{\circ}$ C
Table D.12 Stream summary for SO_4^{-2} reclaiming by KOH (excess K ⁺ case (K ⁺ /SO ₄ ⁻²
$= 2.5) - 70^{\circ}$ C
Table D.13 Stream summary for SO_4^{-2} reclaiming by KOH (excess K ⁺ case (K ⁺ /SO ₄ ⁻²
$= 2.5) - 90^{\circ}$ C
Table D.14 Stream summary for SO_4^{-2} reclaiming by KOH (excess K ⁺ case (K ⁺ /SO ₄ ⁻²
$= 2.5) - 100^{\circ}$ C
Table D.15 Stream summary for SO ₄ ⁻² reclaiming by NaOH (stoichiometric case
$(Na^{+}/SO_{4}^{-2} = 2) - 50^{\circ}C111$
Table D.16 Stream summary for SO ₄ ⁻² reclaiming by NaOH (stoichiometric case
$(Na^{+}/SO_{4}^{-2} = 2) - 60^{\circ}C$ 112

Table D.17	Stream summary for SO ₄ ⁻² reclaiming by NaOH (stoichiometric case
	$(Na^{+}/SO_{4}^{-2} = 2) - 70^{\circ}C113$
Table D.18	Stream summary for SO ₄ ⁻² reclaiming by NaOH (stoichiometric case
	$(Na^{+}/SO_{4}^{-2} = 2) - 100^{\circ}C114$
Table D.19	Stream summary for SO ₄ ⁻² reclaiming by NaOH (excess SO ₄ ⁻² case
	$(Na^+/SO_4^{-2} = 1.9) - 50^\circ C115$
Table D.20	Stream summary for SO ₄ ⁻² reclaiming by NaOH (excess SO ₄ ⁻² case
	$(Na^+/SO_4^{-2} = 1.9) - 60^\circ C$ 116
Table D.21	Stream summary for SO ₄ ⁻² reclaiming by NaOH (excess SO ₄ ⁻² case
	$(Na^+/SO_4^{-2} = 1.9) - 70^\circ C$ 118
Table D.22	Stream summary for SO ₄ ⁻² reclaiming by NaOH (excess SO ₄ ⁻² case
	$(Na^+/SO_4^{-2} = 1.9) - 100^{\circ}C119$
Table D.23	Stream summary for SO4 ⁻² reclaiming by NaOH (excess Na ⁺ case
	$(Na^+/SO_4^{-2} = 2.04) - 50^{\circ}C$
Table D.24	Stream summary for SO4 ⁻² reclaiming by NaOH (excess Na ⁺ case
	$(Na^+/SO_4^{-2} = 2.04) - 60^{\circ}C.$ 121
Table D.25	Stream summary for SO4 ⁻² reclaiming by NaOH (excess Na ⁺ case
	$(Na^+/SO_4^{-2} = 2.04) - 70^{\circ}C.$ 122
Table D.26	Stream summary for SO4 ⁻² reclaiming by NaOH (excess Na ⁺ case
	$(Na^+/SO_4^{-2} = 2.04) - 100^\circ C.$ 123

List of Figures

Figure 1.1 7	Гурісаl amine absorption/stripping process (Xu, 2008)	2
Figure 2.1 S	Schematic of loading amine with CO ₂	6
Figure 2.2 S	Solid solubility experimental apparatus	7
Figure 3.1 S	Solubility of Na ₂ SO ₄ in H ₂ O, 8m PZ, and C ₂ H ₅ OH (Linke, 1965).	15
Figure 3.2 S	Solubility of K_2SO_4 in H_2O , 8 m PZ, and C_2H_5OH (Linke, 1965)	16
Figure 3.3 A	Abnormal solubility of Na ₂ SO ₄ in water (Linke, 1965)	17
Figure 3.4 C	Concentration of Potassium in PZ saturated to K ₂ SO ₄	18
Figure 3.5 C	Concentration of Sulfate in PZ solutions saturated to K2SO4	19
Figure 3.6 C	Concentration of CO ₂ in K ₂ SO ₄ - PZ solution	20
Figure 3.7 H	Effect of PZ concentration on solubility of Na ₂ SO ₄	21
Figure 3.8 C	Comparison of Na ₂ SO ₄ and K ₂ SO ₄ solubility in 8 m PZ	22
Figure 3.9	K ₂ SO ₄ solubility modeled with Xu, 2008 regression model	24
Figure 3.10	K ₂ SO ₄ solubility in 2 m to 8 m PZ solution	26
Figure 3.11	Na ₂ SO ₄ solubility in 2 m to 8 m PZ solution	27
Figure 4.1 F	Parity plot of Aspen Plus [®] model adjusted vs. experimental values	s of K^+ in
	5m PZ solution at temperatures between 23 - 80°C	41
Figure 4.2.	Solubility of K ₂ SO ₄ , curves predicted by Aspen Plus: points - 40)°C
	experimental data, solid line – Aspen Plus results for 2-8 m PZ a	at 0.4
	loading, dashed lines - Aspen Plus results for 2-8 m PZ at 0.3 lo	ading
		43
Figure 4.3 I	Dependence of Ksp error on temperature – K ₂ SO ₄ solubility in 2-8	8 m PZ;
	squares – 2 m PZ, triangles – 5 m PZ, diamonds – 8 m PZ	44

Figure 4.5 Dependence of Ksp error on CO₂ concentration - K₂SO₄ solubility in 2-8 m PZ; squares - 2 m PZ, triangles - 5 m PZ, diamonds - 8 m PZ ...46

- Figure 5.1 Reclaiming by K₂SO₄ crystallization for a CO₂ capture plant using 8 m PZ with a lean loading of 0.3 mol CO₂ / mol alkalinity out of the stripper bottoms– Stoichiometric case (K⁺/SO₄⁻² = 2): 60°C flowrates.......52

Figure 5.6 Change in equivalent work and ΔSO_4^{-2} with temperature for the three

$$K_2SO_4$$
 cases – stoichiometric (K⁺/SO₄⁻² = 2), Excess SO₄⁻² (K⁺/SO₄⁻² =

Chapter 1: Introduction

1.0 BACKGROUND AND MOTIVATION

The demand for energy is ever increasing and as fossil fuels continue to be burned to meet these increased demands, the atmospheric levels of carbon dioxide (CO₂) have risen which have in turn contributed to global warming. The International Energy Agency (IEA) has pointed out that the carbon emission due to energy production in 2010 was 30.6 gigatonnes, 5% higher than what was recorded in 2008 (IEA, 2011). With this escalation in greenhouse gases, CO₂ capture technology and its viability must be considered seriously.

 CO_2 removal from natural gas was first studied by Bottoms in 1930 (Bottoms, 1930). The use of aqueous amines to capture CO_2 in a related process of absorption stripping is shown in Figure 1.1.

Figure 1.1 Typical amine absorption/stripping process (Xu, 2008)

The process employs flue gas consisting of CO_2 , SO_2 , O_2 , and particulate matter entering the absorber at a temperature between 40-60°C and a pressure of 1 atm. The aqueous amine absorbs the CO_2 which is then sent to the stripper where it is regenerated, compressed, and ready to be used in different industrial and geological applications. Some applications of the CO_2 generated are Enhanced Oil Recovery (EOR) where the CO_2 is used to extract crude oil from wells as well as applications in the beverage industry for soft drinks.

 SO_2 (and SO_3) is also absorbed from the flue gas. It oxidizes readily to sulfate and accumulates in the solvent. Because the sulfate in the system hinders the absorption and stripping capacity of the amine, the sulfate in the solvent must be removed.

1.1 SOLVENT RECLAIMING METHODS

Thermal reclaiming, ion exchange, and electrodialysis are solvent reclaiming methods that have either been studied or employed in the gas treating industry.

Thermal reclaiming separates contaminants from the amine based on volatility. In a thermal reclaimer, the amine is evaporated to concentrate the solution. The concentrated solvent is treated with sodium hydroxide to remove heat stable salts. The vaporized amine is returned to the system. The nonvolatile sulfate sludge is removed as a waste stream for disposal.

Ion exchange uses cations immobilized on polymer resin to remove heat stable salts from the amine. In anion exchange, the heat stable salt anion is removed by replacing a hydroxide ion as shown in the following reaction:

$$(R_3NH^+) + (SO_4)^{-2} + (Resin)^+(OH)^- \rightarrow R_3N + (Resin)^+(SO_4)^{-2} + H_2O$$
 1.1

The ion exchange resin is then treated with caustic to regenerate the resin. Cations can be removed by a similar method with a cation exchange resin (Cummings A. L., 2007)

Electrodialysis uses membrane technology for the removal of heat stable salts. In electrodialysis, a potential is created by placing back to back cation and anion exchange resins. The amine solution is neutralized as it passes through the resin pack. However, fouling and replacement of membranes increases costs of the electrodialysis process (Rochelle, CO2 Capture by Aqueous Absorption, Fourth Quarterly Progress Report 2009, 2010).

Sulfate (SO_4^{-2}) is the main contaminant accumulated in the CO₂ capture system and needs to be dealt with exclusively. SO_4^{-2} removal through the addition of potassium hydroxide (KOH) or sodium hydroxide (NaOH) to a slip stream from the stripper as shown in Figure 1.1 is solvent reclaiming by neutralization. This was initially studied by Xu for monoethanolamine (MEA) of varying concentrations and for MEA/PZ. Xu measured the solubility of K_2SO_4 in CO_2 loaded amine systems using ionic conductivity and correlated it to an empirical model (Xu, 2008).

Aqueous piperazine (PZ) has been investigated as a novel amine solvent for CO_2 removal. The CO_2 absorption rate of aqueous PZ is more than double that of 7 m MEA, the baseline amine used in CO_2 capture. The amine volatility of the PZ solvent at 40 °C and atmospheric pressure ranges from 11 to 21 ppm. Thermal degradation is almost negligible up to a temperature of 150 °C, making it a much better solvent than MEA. Initial system modeling suggests that 8 m PZ will use 10 to 20% less energy than 7 m MEA. The fast mass transfer and low degradation rates suggest that PZ has the potential to be a preferred solvent for CO_2 capture (Freeman et. al, 2009). However, because pure makeup piperazine has a greater cost per pound than makeup MEA, PZ may have an economic disadvantage for use in CO_2 capture if high makeup rates are required.

1.2 SCOPE OF WORK

To effectively use PZ in large scale CO_2 capture, the solvent must be reclaimed and reused to reduce amine replacement costs. SO_x is the main impurity and needs to be removed to avoid reducing amine CO_2 capture capacity. Sulfate in the system can be easily removed using the neutralization methodology employed by Xu in 2008. However, the solubility of sulfate in PZ has not been studied previously.

This thesis focuses on the following two topics:

- A solid solubility experimental method measuring the solubility of K₂SO₄ and Na₂SO₄ in PZ solutions of varying concentrations.
- A process model of sulfate removal in Aspen Plus[®].

 K_2SO_4 is studied because it has the potential of being used as commercial fertilizer once precipitated in the reclaiming system. However, NaOH has the advantage of being less expensive. Thus, the solubility of Na₂SO₄ in PZ is studied for economic purposes. A process model and economic analysis of the reclaiming method is developed to determine the feasibility of the process using either KOH or NaOH.

Chapter 2: Solubility of sulfate in Piperazine (PZ)

2.0 INTRODUCTION

This chapter focuses on the experimental and analytical methods employed to determine the solubility of Na_2SO_4 and K_2SO_4 in 2-8 m PZ solutions. The solid solubility method is validated with data from Xu (2008). Xu correlated the solubility of the salt in the amine solution with the ionic strength. The solid solubility method used excess salt in a loaded PZ solution and the concentration of the salt in the solution is measured using ion chromatography.

2.1 SOLID SOLUBILITY EXPERIMENTAL METHOD

Loaded solutions were prepared from aqueous piperazine and CO_2 . 2, 5, and 8 m amine solutions were prepared gravimetrically using Sigma Aldrich[®] anhydrous piperazine (PZ) and Distilled de-ionized (DDI) water. The solution was then sparged with CO_2 gravimetrically as shown in Figure 2.1 below.

Figure 2.1 Schematic of loading amine with CO₂

For all experiments, CO₂ loading was defined as follows:

Loading (A) = $\frac{moles \ of \ CO2}{moles \ of \ equivalent \ amine}$

For PZ, moles of equivalent amine = 2*(molality of PZ).

Sulfate solid solubility was then measured by analysis of saturated liquid samples from an agitated slurry. 40 g of CO_2 loaded solution was placed in a 100 ml Ace Glass Incorporated[®] jacketed glass reactor. Excess sodium or potassium sulfate solid was added and the solution was agitated with a magnetic stirrer at 400 rpm. The jacketed reactor was heated by a water bath (Lauda[®]) as shown in Figure 2.2.

Figure 2.2 Solid solubility experimental apparatus

. The reactor was capped with a rubber stopper. A thermometer was inserted in the solution through the rubber stopper to measure the temperature of the solution. The temperature of the solution was varied between room temperature and 80 °C. Solution was sampled every hour at 10°C intervals using a filtered (0.45 μ m PTFE Fisherbrand[®])

syringe (Luer lok[®] tip). The syringe was at room temperature. Thus, the sample was diluted in DDI water immediately to prevent salt crystallization. An initial dilution of 10x was prepared. Further dilutions of 100x and 10000x were prepared for anion and cation chromatography, respectively. Experimental samples were analyzed for Na⁺, K⁺, SO_4^{-2} , CO_2 , and PZ concentrations using cation chromatography, anion chromatography, and TIC as detailed in the next section.

2.2 ANALYTICAL TECHNIQUES

The concentrations of Na⁺, K⁺ and PZ in the samples were analyzed using a cation chromatograph. CO_2 concentration in solution was determined using a Total Inorganic Carbon (TIC) Analyzer, and the SO_4^{-2} concentration was analyzed using an anion chromatograph.

Cation Chromatography: The cation IC was used to determine the concentration of Na⁺, K⁺, and PZ in experimental samples. A Dionex ICS-2500 instrument was used as previously described by Sexton (2008) and Freeman (2011) It consisted of:

- A CS17 IonPac column (containing ethylvinylbenzene cross-linked with 55% divinylbenzene resin as a separation medium)
- A 4-mm Cationic Self-Regenerating Suppressor (CSRS) to suppress anions
- Methanesulfonic acid (MSA) in the eluent

The method used for detecting cation concentrations was the 'Jason3Auto.pgm' method and 'Stephanie3Auto.pgm' method (attached in Appendix B). Calibrated samples of Na⁺, K⁺, and PZ were used to determine the amount of Na⁺, K⁺, and PZ present in the sampled solution. Na⁺, K⁺, and PZ peaked on the chromatograph at retention times of 9.3, 12.9, and 33.5 minutes respectively. *Anion Chromatography:* The anion IC was used to determine the concentration of SO_4^{-2} in the experimental samples. A Dionex ICS-3000 (as described by Sexton (2008) and Freeman (2011)) instrument was used and consisted of:

- AS15 IonPac column (containing ethylvinylbenzene cross-linked with 55% divinylbenzene resin with quaternary ammonium groups as a separation medium)
- 4-mm Anionic Self-Regenerating Suppressor (ASRS) used to suppress the cations
- Carbonate removal device (CRD) and carbonate removal from eluent generation.

The method used for detecting SO_4^{-2} concentrations was the 'Anions.pgm' (attached in Appendix B). KOH was used in the eluent and its concentration changed over the 35 minute time frame that the electrochemical detector (ECD) detected the concentration of the anions in the sample. SO_4^{-2} in particular peaked on the chromatograph at a retention time of 27.2 minutes.

Total Inorganic Carbon Analyzer: Quantification of CO₂ loading was performed using a total inorganic carbon analyzer. In this method, a sample is acidified with 30 wt % H₃PO₄ to release the CO₂ present in solution (Hilliard, 2008). The CO₂ is carried in the nitrogen carrier gas stream to the detector. PicoLog software was used to record the peaks produced from each sample. A calibration curve was prepared at the end of each analysis using a TIC standard mixture of K₂CO₃ and KHCO₃. The TIC method quantifies the total CO₂, CO₃, and HCO₃ present in solution. These species are in equilibrium in the series of reactions shown below:

$$CO_3^{-2} + 2H^+ \leftrightarrow HCO^{-3} + H^+ \leftrightarrow H_2CO_3 \leftrightarrow CO_2 + H_2O$$
 2.1

Acidification of the sample shifts the equilibrium toward CO_2 which bubbles out of solution and is detected in the analyzer (Rochelle et al., 2010). The TIC analysis helps identify whether loss of CO_2 was prevalent at higher temperatures of the experiment.

2.3 EXPERIMENTAL RESULTS

Eight solid solubility experiments were performed. The results are tabulated in Table 2.1 and Table 2.2 below.

	т (°С)	K⁺ (mmol/kgsol)	PZ (mmol/kgsol)	SO4 ⁻² (mmol/kgsol)	CO₂ (mmol/kgsol)
Exp 1	21	74	2151	33	3160
8m PZ	30	111	1869	47	2963
A = 0.3	40	171	2485	68	3731
	50	198	2465	87	3879
	60	191	2301	104	3638
	70	192	2185	122	3520
	80	246	2728	133	3994
Exp 2	21	38	2116	27	3154
8m PZ	30	94	2311	37	4587
A = 0.3	40	134	2565	57	3493
	50	164	3034	85	3810
	60	177	2938	90	3785
	70	108	1384 46		2148
	80	232	3525 115		4423
Exp 3	30	133	2867 57		3904
8m PZ	40	181	2939 81		3929
A = 0.4	50	250	3801	119	4735
	60	233	3121	3121 132	
	70	290	3543	137	4410
	80	242	2881	117	3706
Exp 4	23.0	779	1930	356	1172
2m PZ	31.0	854	1889	389	2177
A = 0.4	40.0	943	1856	430	2114
	50.0	1008	1828	467	1126
	60.0	1100	1910	516	1114
	70.0	1122	1785	519	1076
	80.0	1182	1901	560	1016
	70.0	1104	1917	520	1044
	60.0	985	1843	456	1027

Table 2.1 Analytical Results for K₂SO₄ solid solubility experiments

Exp 5	22.5	358	3030	150	2358
5m PZ	32.0	412	3098	175	2319
A = 0.4	40.0	447	3016	194	2297
	50.0	362	2259	165	2268
	60.0	556	3198	256	2211
	68.5	606	3293	279	2307
	80.0	624	2924	256	2200
	69.5	525	3183	238	2310
	60.0	463	3272	208	2270

Table 2.1 continued

	т (°С)	Na⁺ (mmol/kg)	PZ (mmol/kgsol)	SO4 ⁻² (mmol/kgsol)	CO₂ (mmol/kgsol)
Exp 6	25.2	1883	711	1143	1188
2m PZ	30.0	3305	1241	1070	1125
A = 0.4	40.0	3271	1298	1335	1121
	50.0	3102	1152	1096	1120
	59.0	3270	1267	1442	1091
	70.0	2919	1210	1282	1071
	80.0	3189	1289	1162	1087
	70.0	2855	1121	1014	941
	61.0	2957	1138	1292	1031
	50.0	3014	1290	1331	1057
Exp 7	25.0	1339	2229	730	2024
5m PZ	30.0	1002	1646	732	2200
A = 0.4	40.0	940	1439	721	2312
	50.5	1186	1842	664	2215
	61.0	1185	1936	711	2193
	70.0	1211	2254	736	2187
	80.0	1428	2301	771	2200
Exp8	23.5	647	2269	217	1037
8m PZ	30.0	753	3675	284	2178
A = 0.3	40.0	668	3852	354	2292
	50.5	638	2919	277	1715
	60.0	805	3953	299	2296
	80.5	681	3708	313	2182
	70.0	638	3882	331	2194
	60.0	563	3564	301	2079
	50.0	653	4046	337	2311

Table 2.2 Analytical Results for Na₂SO₄ solid solubility experiments

_

2.4 PREVIOUS WORK AND EXPERIMENTAL METHOD VALIDITY

The solubility of K_2SO_4 and Na_2SO_4 has been studied in solvents such as H_2O_5 , methanol, ethyl alcohol, and ammonia (Linke, 1965). Xu studied the solubility of K_2SO_4 in MEA, MEA/PZ and at some temperatures of PZ (Xu, 2008). There is no previous study of the solubility of Na_2SO_4 in PZ. Experimental data obtained was compared with the work of Xu (2008) to determine whether the results from the solid solubility method employed were comparable to that of published data.

K+ (mmol/kg Т K+ (mmol/kg sol) % Difference Experiment sol) (Xu, (°C) 2008) 8 m PZ A=0.3 5.7 80 261 246 8 m PZ A=0.3 40 176 171 2.8 8 m PZ A=0.4 80 273 242 11.5 8 m PZ A=0.4 40 159 181 -13.9

Table 2.3 Data comparison with Xu (2008)

Table 2.3 shows the percentage difference between the concentrations of K^+ obtained by Xu (2008) and those by the solid solubility method for 8m PZ at 0.3 loading and 0.4 loading at 40°C and 80°C. The concentrations of K^+ in 8 m PZ with 0.3 CO₂ loading at 80 °C were within 2-5% of the results obtained by Xu. However, the concentration of sulfate in 8 m PZ with 0.4 CO₂ loading at 80 °C was -14 to +11% different from Xu's values. This could be due to experimental error or analytical instrumentation error.

Once the solid solubility data was validated, the results were further analyzed and regressed. This analysis is presented in Chapter 3.

Chapter 3: Solubility of Na₂SO₄ and K₂SO₄ in Piperazine (PZ) – Experimental Methods Analysis

3.0 COMPARISON WITH LITERATURE DATA

The solubility of Na₂SO₄ and K₂SO₄ in various organic and inorganic solvents has been studied extensively. Caven and Johnston (1927, 1928), Wright (1927), Flottman (1928) and many others studied the solubility of K₂SO₄ in water. Schiff (1861), Barken (1955), Wright (1927), and Gerardin (1865) studied the solubility of K₂SO₄ in aqueous ethyl alcohol. Similarly, the Na₂SO₄ – H₂O system was originally studied by Berkeley in 1904. The Na₂SO₄ – H₂O – C₂H₅OH system was studied by Schreinemakers and deBaat in 1909 (Linke, 1965). While other systems have been studied, the solubility of the salt in H₂O and in aqueous C₂H₅OH systems will be compared here with the solubility of Na₂SO₄ and K₂SO₄ in PZ and K₂SO₄ in MEA from Xu, 2008.

Figure 3.1 Solubility of Na₂SO₄ in H₂O, 8m PZ, and C₂H₅OH (Linke, 1965)

Figure 3.2 Solubility of K₂SO₄ in H₂O, 8 m PZ, and C₂H₅OH (Linke, 1965)

Figure 3.1 and Figure 3.2 show how the solubility of Na_2SO_4 and K_2SO_4 vary in H_2O , 8m PZ, and C_2H_5OH respectively. The solubility of Na_2SO_4 does not seem to be temperature dependent but is more dependent on the organic nature of the solvent. However, the solubility of K_2SO_4 in C_2H_5OH has a more abnormal dependence on temperature. Abnormalities in solubility are normal for salts that exist in various hydrated forms. If the solubility of Na_2SO_4 in H_2O is observed for a wider range of temperature, a sharp increase in the solubility is observed up to $32^{\circ}C$. This is because Na_2SO_4 exists as Na_2SO_4 .10H₂O and then in its anhydrous form. Figure 3.3 below shows this change in state of the salt.

Figure 3.3 Abnormal solubility of Na₂SO₄ in water (Linke, 1965)

The concentrations of Na⁺, K⁺, and SO₄⁻² in the sampled solution were measured by cation chromatography and anion chromatography, respectively. Their concentrations were plotted against the inverse of temperature to determine the solubility dependence on temperature, ionic conductivity, CO₂ loading, and the organic nature of solvent used.

The first set of experiments carried out were that of K_2SO_4 in PZ. Figure 3.4 compares the solubility of K^+ in different solvent media; the solubility of K_2SO_4 in water (Linke, 1965), K_2SO_4 solubility in 7 m and 11 m MEA at 0.3 and 0.4 loading was obtained from Xu (2008), and the solubility of K_2SO_4 in PZ is from the solid solubility experimental method.

Figure 3.4 Concentration of Potassium in PZ saturated to K₂SO₄

Figure 3.5 Concentration of Sulfate in PZ solutions saturated to K2SO4

Figure 3.4 and Figure 3.5 both show that the solubility of K_2SO_4 in solution increases with increasing loading because of a greater concentration of carbamate and protonated amine in the system. The solubility of the sulfate also increases with the temperature of the solution. The solubility of K_2SO_4 , however, is lower in PZ than in MEA. This is because the ring-structured PZ is more organic in nature than MEA. A solvent reclaiming process would ideally require a large difference in solubility at different loadings to create a driving force to precipitate out the sulfate in the system. The concentration of CO_2 in solution at the various sampling temperatures was also analyzed using the Total Inorganic Carbon analysis method explained in Section 2.2. The raw data obtained were translated into mmol/kgsol and plotted against the inverse of temperature in Figure 3.6 below.

Figure 3.6 Concentration of CO_2 in K_2SO_4 - PZ solution

The reason for analyzing for CO_2 in PZ solutions is to determine if CO_2 was lost during the solid solubility experimental procedure. From Figure 3.6, a general observation can be made that at higher temperatures, some loss of CO_2 in solution does occur in higher piperazine concentrations.

3.1 Comparison of Na_2SO_4 and K_2SO_4 solubility in CO_2 loaded PZ solution

The second set of solid solubility experiments carried out were that of Na_2SO_4 in PZ. The solubility of Na_2SO_4 in PZ is graphed in Figure 3.7.

Figure 3.7 Effect of PZ concentration on solubility of Na₂SO₄

Figure 3.7 shows that the solubility of Na₂SO₄ in PZ solution is not as temperature dependent as it is amine concentration dependent. For 2 m and 5 m PZ, there is hardly any change in concentration of SO_4^{-2} as the temperature of the solution is increased from room temperature to 80 °C. For 8 m PZ, there is very little change in concentration of SO_4^{-2} present in solution with temperature increase. However, the concentration of SO_4^{-2} in solution increases from 354 mmol/kgsol for 8 m PZ at 40 °C to

721 mmol/kgsol for 5 m PZ and to 1335 mmol/kgsol for 2 m PZ. As expected, the solubility of Na_2SO_4 is the highest for water.

Figure 3.8 below compares solid solubility data for K_2SO_4 and Na_2SO_4 in 8 m PZ at 0.3 loading obtained from solid solubility experiments and literature data for solubility of the salts in water. The figure also contains data for solubility of K_2SO_4 in MEA obtained from Xu (2008).

Figure 3.8 Comparison of Na₂SO₄ and K₂SO₄ solubility in 8 m PZ

Figure 3.8 shows that the solubility of Na_2SO_4 in 8 m PZ is ten times greater than K_2SO_4 . If SO_4^{-2} is the main impurity in the CO_2 capture system, the amine removed for reclaiming can be concentrated to high PZ concentrations at high temperatures (without

affecting the solubility of SO_4^{-2} in PZ). This way SO_4^{-2} along with the other heat stable salts present can be removed together in a single thermal reclaiming procedure.

3.2 SOLUBILITY PRODUCT (KSP) AND EMPIRICAL MODEL

In the solubility work produced by Xu (2008), an empirical model was developed to predict the solubility of K_2SO_4 for amine aqueous solutions of 3.5 m to 11 m MEA, 4 to 10 m PZ, and 7 m MEA/2 m PZ for temperatures between 25 °C and 80 °C:

$$\ln(\text{Ksp}) = 7.82*I^{0.2} - 0.37[\text{amine}]_{\text{T}} - 2273.4/\text{T}(\text{K}) - 1.445$$
where:
3.1

I is the ionic strength,

 $[amine] = [MEA]^{+2} \cdot [PZ] \text{ with unit of } m \text{ (molal, mole per kg water) for } Xu, 2008$ For PZ only, [amine] = 2*(molality of PZ).Ksp,m for $K_2SO_4 = ([K^+],m)^{2*}([SO_4^{-2}],m)$

Ksp,m for $Na_2SO_4 = ([Na^+],m)^2 * ([SO_4^{-2}],m)$

Figure 3.9 K₂SO₄ solubility modeled with Xu, 2008 regression model

Figure 3.9 shows that the equation obtained by Xu, 2008 does not fit well for solubility of K_2SO_4 in PZ. For this reason, the solubility data obtained from the solid solubility method was regressed and a similar equation obtained for both the solubility of Na₂SO₄ and K₂SO₄ in PZ

Regressing the data obtained by the solid solubility experiments carried out for 2 m to 8 m PZ between 25 °C and 80 °C, the empirical model developed for the solubility of K_2SO_4 is given by equation 3.2 shown below:

$$\ln(\text{Ksp}) = 10.53 \times I^{0.3} - 0.98[\text{PZ}]_{\text{T}} - 3440/\text{T} - 2.42$$
 3.2

As with all experimental methods, there were errors associated with the solid solubility experimental method as well as the process of analyzing the samples.

Errors are associated with the scale used for gravimetrically preparing the solution and loading the CO₂. At higher temperatures during the course of the experiment, there are errors associated in transferring the sample using a syringe at room temperature to the vial for immediate dilution. This is the main source of error for any changes in PZ and CO₂ concentration over the course of the temperature (due to the evaporation of water and/or CO₂ when the rubber stopper is removed for sampling). Table 3.1 below shows the standard error associated with the coefficient of each parameter in equation 3.2.

Table 3.1 K₂SO₄ regression statistical analysis

	Coefficients	Standard Error	
Intercept	-2.42	4.86	
PZ (eq mol amine)	-0.98	0.046	
1/T (1/K)	-3440	668	
I ^{0.3}	10.5	2.66	

The standard error in the regression analysis is an estimate of the standard deviation of the coefficient or the precision with which the coefficient is measured. The experimental data was then fit to the equation and plotted as shown in Figure 3.10.

Figure 3.10 K₂SO₄ solubility in 2 m to 8 m PZ solution

Per Figure 3.10, even the empirical model shows that the equivalent amine concentration has a larger effect on the solubility of K_2SO_4 than ionic strength and temperature.

A similar equation was developed for the solubility of Na_2SO_4 in PZ as shown by equation 3.3 below:

$$\ln(Ksp) = 2.137*I^{0.3} - 0.6505*[PZ]_T - 826/T + 265$$
3.3

The experimental data was then fit to the equation and plotted as shown in Figure 3.11 below.

Figure 3.11 Na₂SO₄ solubility in 2 m to 8 m PZ solution

Table 3.2 below shows the standard error associated with the coefficient of each parameter in equation 3.3.

Table 3.2 Na₂SO₄ regression statistical analysis

	Coefficients	Standard Error		
Intercept	2.65	3.71		
PZ (eq mol amine	-0.651	0.059		
Т (1/К)	-826.0	420.2		
I ^{0.3}	2.14	1.96		

One main source of error in the solid solubility experimental method (particularly for solubility in Na_2SO_4 solubility experiments) is the error associated with the analytical equipment used. While the anion and cation IC worked without interruptions when samples were being analyzed, there were instances when the baseline was higher than expected, creating peaks bulkier or higher than anticipated. In the cation IC, a peak for Na was always present (even in Experiments 1 through 3) due to the Na⁺ present in either the analytical water used for the equipment or the vials used in the auto sampler. For this reason, when analyzing for Na⁺ in the last three experiments, special Na free vials provided by Dionex[®] were used.

Chapter 4: Regression of interaction parameters in the electrolyte-NRTL model in Aspen Plus[®]

4.0 ELECTROLYTE-NRTL MODEL IN ASPEN PLUS®

The electrolyte-NRTL model in Aspen Plus[®] was used to model the sulfate solubility data. For this work in particular, an activity based Aspen Plus[®] model with regressed thermodynamic data for PZ thermodynamically significant quantities such as Gibbs energy of formation (ΔG_f), heats of formation (ΔH_f), and heat capacities (C_p) were used. This model is primarily used to model MDEA/PZ and PZ CO₂ capture processes for the amine concentration range studied in the solid solubility experiments (Frailie & Marzuka, 2010).

The Aspen Plus[®] model uses an energy parameter, τ , and a non-randomness factor, α , to calculate the activity coefficient of the ionic species specified in the model. The thermodynamic calculations of the model depend on the ionic forces of the individual ionic species. The forces of the species can be long range forces or short range forces.

Chen et al. (1982) proposed an excess Gibbs energy equation for each of the short and long range interactions. Solubility of K_2SO_4 and Na_2SO_4 in CO_2 loaded PZ can be considered a high electrolyte concentrated solution. Short range interactions dominate regions of high electrolyte concentrations. The excess Gibbs energy (G) for such interactions is calculated below (Hilliard, 2005, Chen, 1982):

$$\frac{G_m^{*E,lc}}{RT} \sum_m Xm \, \frac{\sum_j X_j G_{jm} \tau_{jm}}{\sum_k X_k G_{km}} + \sum_c X_c \sum_{a'} \left(\frac{X_{a'}}{\sum_{a''} X_{a''}} \right) \frac{\sum_j G_{jc,a'c} \tau_{jc,a'c}}{\sum_k X_k G_{kc,a'c}} + \dots + \sum_a X_a \sum_{c'} \left(\frac{X_{c'}}{\sum_{c''} X_{c''}} \right) \frac{\sum_j G_{ja,a'c} \tau_{ja,a'c}}{\sum_k X_k G_{ka,a'c}}$$

$$4.1$$

Where:

$$G_{cm} \frac{\sum_{a} X_{a} G_{ca,m}}{\sum_{a'} X_{a'}}, \qquad G_{am} \frac{\sum_{c} X_{c} G_{ca,m}}{\sum_{c'} X_{c'}}$$

$$\alpha_{cm} \frac{\sum_{a} X_{a} \alpha_{ca,m}}{\sum_{a'} X_{a'}}, \qquad \alpha_{am} \frac{\sum_{c} X_{c} \alpha_{ca,m}}{\sum_{c'} X_{c'}}$$

$$G_{jc,a'c} = \exp(-\alpha_{jc,a'c} \tau_{jc,a'c}) \qquad G_{jc,c'a} = \exp(-\alpha_{jc,c'a} \tau_{jc,c'a})$$

$$G_{im} = \exp(-\alpha_{im} \tau_{im}) \qquad G_{ca,m} = \exp(-\alpha_{ca,m} \tau_{ca,m})$$

$$\tau_{ma,ca} = \tau_{am} - \tau_{ca,m} + \tau_{m,ca'} \qquad \tau_{mc,ac} = \tau_{cm} - \tau_{ca,m} + \tau_{m,ca'}$$

$$X_{i} = x_{i}C_{i} (C_{i} = Z_{i} \text{ for ions and } C_{i} = \text{ unity for molecules});$$

 α is the non randomness parameter;

 τ is the binary energy interaction parameter.

The τ parameter has default values in Aspen Plus[®] for the molecule-electrolyte and electrolyte-water pairs as shown in Table 4.1 below:

Table 4.1 Aspen Plus[®] default binary interaction parameters

Binary Interaction Pairs	τ value
Molecule – Electrolyte	10
Electrolyte – Molecule	-2
Electrolyte – Water	8
Water – Electrolyte	-4

The τ parameters are temperature dependent and are adjusted to fit the experimental data. The τ parameters are fitted using the following equations:

$$\tau_{m,ca} = C_{m,ca} + \frac{D_{m,ca}}{T} + E_{m,ca} \left[\frac{(T_{ref} - T)}{T} + ln \left(\frac{T}{T_{ref}} \right) \right]$$

$$4.2$$

$$\tau_{ca,m} = C_{ca,m} + \frac{D_{ca,m}}{T} + E_{ca,m} \left[\frac{(T_{ref} - T)}{T} + \ln\left(\frac{T}{T_{ref}}\right) \right]$$

$$4.3$$

C, D, and E are given as GMELCC, GMELCD, and GMELCE, respectively in Aspen Plus[®]. These interaction parameters are then used to calculate the activity coefficients, which in turn are used to calculate the Ksp of the salt in PZ.

The solubility product, Ksp, of a salt is calculated using activity coefficients in the following equation:

$$Ksp = x_{K^+}^2 * \gamma_{K^+}^2 * x_{SO_4^{-2}} * \gamma_{SO_4^{-2}}$$

$$4.4$$

where x is the mole fraction and

 γ is the activity coefficient of the ionic species.

The expression for the chemical equilibrium of the dissociation of the salt is given by Hilliard (2005):

$$\ln K = A + \frac{B}{T(K)} + C \ln T(K) + D(T(K))$$
4.5

The values for A, B, and C for K₂SO₄ are input into Aspen Plus[®] as K-SALT values as follows (Xu, 2008):

Table 4.2: K-salt values for K₂SO₄ (Xu, 2008)

K-SALT/1 (A)	265.7
K-SALT/1 (B)	-14954
K-SALT/1 (C)	-40.7

4.1 NA₂SO₄ - H₂O SYSTEM

For Na₂SO₄, experimental solubility data by Berkeley in 1904 and Richards and Yugve in 1918 between temperatures of 35°C and 200°C (Linke, 1965) are given in the Table 4.3 below.

Temperature (°C)	Gms of $Na_2SO_4/100$ gms H_2O
35	49.1
40	48.1
45	47.2
50	46.4
60	45.2
70	44.2
80	43.2
90	42.6
100	42.2
101.9	42.2
110	42
120	41.8
130	41.9
140	42
150	42.2
160	42.5
170	43
180	43.4
190	43.8
200	44.1

Table 4.3 Anhydrous Na₂SO₄ solubility in H₂O (Linke, 1965)

Data from Table 4.3 was used to regress the K-SALT values of the Na_2SO_4 -H₂O system. Table 4.4 shows the K-SALT values obtained for Na_2SO_4 .

Table 4.4: K-salt values for Na₂SO₄

K-SALT/1 (A)	-3457
K-SALT/1 (B)	130527
K-SALT/1 (C)	562.9
K-SALT/1 (D)	-0.649

4.2 EXPERIMENTAL DATA REGRESSION

The following molecules, cations, and anions are assumed to be present in the sulfate reclaiming system:

Molecules: H₂O, PZ, H⁺PZCOO⁻

Anions: SO4⁻², PZCOO⁻

Cations: H⁺PZ, K⁺/Na⁺

While a number of combinations of electrolyte-molecule pairs can be regressed,

this work focuses on those including K^+ / Na^+ and SO_4^{-2} . The combinations include:

Component i	Component j
K^{+}, SO_{4}^{-2}	H ⁺ PZCOO ⁻
H ⁺ PZCOO ⁻	K^{+} , SO_{4}^{-2}
PZCOO', K ⁺	H ₂ O
H ₂ O	PZCOO ⁻ , K ⁺
H ₂ O	H^+PZ , SO_4^{-2}
H ⁺ PZ, SO ₄ ⁻²	H ₂ O
K^{+}, SO_{4}^{-2}	PZ
PZ	K^{+}, SO_{4}^{-2}

Table 4.5: Electrolyte-molecule τ parameter pairs to be regressed

For Na_2SO_4 solubility, the following τ parameter pairs were varied to fit the experimental data:

Table 4.6 Na₂SO₄ electrolyte-molecule τ parameter pairs to be regressed

Component i	Component j
Na^{+}, SO_{4}^{-2}	H ⁺ PZCOO ⁻
H ⁺ PZCOO ⁻	Na ⁺ , SO ₄ ⁻²
PZCOO ⁻ , Na ⁺	H ₂ O
H ₂ O	PZCOO ⁻ , Na ⁺
Na ⁺ , SO ₄ ⁻²	PZ
PZ	Na ⁺ , SO_4^{-2}

Default values from Aspen Plus[®] were used for the τ parameters of H₂O, K⁺, SO₄⁻² pairs and those of H₂O, Na⁺, SO₄⁻² from Chen et. al (2011) as:

Table 4.7 τ parameters for H2O, $K^+SO_4^{-2}$ and H2O, $Na^+SO_4^{-2}$ system (Chen et al., 1982, 2011)

Component i	Component j	τ
H ₂ O	K^{+} , SO_{4}^{-2}	8
K^{+}, SO_{4}^{-2}	H ₂ O	-4
H ₂ O	Na ⁺ , SO ₄ ⁻²	8.012
Na ⁺ , SO ₄ ⁻²	H ₂ O	-3.903

$4.3\ K_2SO_4\text{-}PZ\text{-}CO_2\text{-}H_2O\ \text{SYSTEM}$

After regression of solid solubility experimental data for K_2SO_4 in 2-8 m PZ with CO_2 loadings of 0.3-0.4 mol/mol alkalinity in Aspen Plus[®], the following regression output was obtained for the K_2SO_4 system:

Parameter	Component i	Component j	Value (SI units)	Standard deviation
GMELCC/1	(K+,SO4-2)	PZ	-18.2	194
GMELCC/1	PZ	(K+,SO4-2)	2289.8	330000000
GMELCC/1	(K+,PZCOO-)	H2O	-9.1	207
GMELCC/1	H2O	(K+,PZCOO-)	0.3	1433
GMELCC/1	(K+,SO4-2)	HPZCOO	-0.1	3397
GMELCC/1	HPZCOO	(K+,SO4-2)	57.1	2800000
GMELCC/1	H2O	(PZH+,SO4-2)	11.0	106
GMELCC/1	(PZH+,SO4-2)	H2O	-4.5	68
GMELCD/1	(K+,SO4-2)	PZ	107.4	69700
GMELCD/1	(K+,PZCOO-)	H2O	898.1	74000
GMELCD/1	H2O	(K+,PZCOO-)	-1233.2	503000
GMELCD/1	H2O	(PZH+,SO4-2)	874.1	35200.1
GMELCD/1	(PZH+,SO4-2)	H2O	-136.4	23200
GMELCD/1	ΡZ	(K+,SO4-2)	233.6	33400000
GMELCD/1	(K+,SO4-2)	HPZCOO	87.4	1370000
GMELCD/1	HPZCOO	(K+,SO4-2)	220.4	45990000

Table 4.8 $K_2SO_4\tau$ Parameters regressed in Aspen $Plus^{\circledast}$

Table 4.8 includes the estimated standard deviation of each parameter from regression of experimental data. Since all of the standard deviations are high, relative to the actual values, some parameters were eliminated after analyzing the correlation matrix of the parameter pairs. The initial correlation matrix is given in Table 4.9 below:

τ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	1.00															
2	0.00	1.00														
3	0.07	0.00	1.00													
4	0.76	0.00	-0.22	1.00												
5	-0.41	0.01	-0.10	-0.16	1.00											
6	0.03	0.04	0.06	-0.08	-0.87	1.00										
7	-0.46	0.00	0.00	-0.36	-0.18	0.46	1.00									
8	0.56	0.00	0.03	0.44	0.13	-0.43	-0.99	1.00								
9	-1.00	0.00	-0.07	-0.75	0.40	-0.02	0.47	-0.57	1.00							
10	-0.07	0.00	-1.00	0.22	0.10	-0.06	0.01	-0.03	0.07	1.00						
11	-0.80	0.00	0.12	-0.99	0.21	0.04	0.37	-0.45	0.79	-0.12	1.00					
12	0.53	0.00	0.02	0.40	0.12	-0.43	-0.99	0.99	-0.54	-0.02	-0.41	1.00				
13	-0.63	0.00	-0.04	-0.48	-0.06	0.39	0.97	-0.99	0.63	0.04	0.49	-0.99	1.00			
14	0.00	0.00	0.00	0.00	0.01	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00		
15	0.29	-0.01	0.09	0.08	-0.99	0.94	0.28	-0.24	-0.28	-0.09	-0.13	-0.23	0.18	-0.01	1.00	
16	0.04	-0.70	0.00	0.03	0.07	-0.20	-0.09	0.09	-0.04	0.00	-0.03	0.09	-0.09	-0.70	-0.10	1.00

Table 4.9 Correlation Matrix in Aspen Plus[®]

The correlation coefficient for the parameter pair is a unitless number between 1 and -1. If the number is 1 or -1, then the parameters are said to be correlated and one of the parameters from the pair can then be eliminated. Parameters eliminated were replaced by Aspen Plus[®] default parameters and/or literature values. Some parameters from literature that were used are given in Table 4.10 below:

Binary Interaction Paramter	τ value
PZ/K ⁺ HCO₃ – GMELCC	7.27 (Hilliard, 2008)
K ⁺ SO ₄ ⁻² /MEA – GMELCC	-1.57 (Xu, 2008)
, K HCO₃/PZ – GMELCD	-7.85 (Hilliard, 2008)
K⁺CO₃ ⁻² /H₂O - GMELCC	-4.24 (Hilliard, 2005)
K⁺CO₃ ⁻² /H₂O - GMELCD	-96.3 (Hilliard, 2005)
H₂O/K⁺CO₃- GMELCD	0.12 (Hilliard, 2005)

Table 4.10 Literature values used to replace independent parameters

After elimination and substitution of parameters, three parameter pairs remained as given in Table 4.11 and the final correlation matrix is given in Table 4.12

Binary Interaction Pairs	Component i	Component j	Value (SI units)	Standard deviation
GMELCC/1	(K+,PZCOO-)	H2O	-4.6	2.7
GMELCC/1	HPZCOO	(K+,SO4-2)	12.0	137.7
GMELCC/1	(PZH+,SO4-2)	H2O	-4.8	0.6

Table 4.11 Binary Interaction Parameters regressed for K₂SO₄-PZ-CO₂-H₂O system

The sum of squares resulting from this regression was 1659.

The residual root mean square was 6.89.

Table 4.12 Final correlation matrix of the K₂SO₄-PZ-CO₂-H₂O system

Parameter	1	2	3
1	1		
2	0.392	1	
3	-0.75	-0.73	1

4.4 VALIDATION OF K₂SO₄-PZ-CO₂ Aspen Plus[®] Model

The K_2SO_4 -PZ-CO₂ Aspen Plus[®] model is validated in several different ways. First, a parity plot of the mass fraction of K⁺ in 5 m PZ solution between temperatures of 23-80°C is plotted as shown in Figure 4.1.

Figure 4.1 Parity plot of Aspen Plus[®] model adjusted vs. experimental values of K⁺ in 5m PZ solution at temperatures between 23 - 80°C

The root mean square of a data set is defined as:

Root mean square =
$$\sum_{i=1}^{k} \left[\frac{(Z_i - ZM_i)2}{K} \right]^{1/2}$$
 4.5

Where:

Z is the regressed property value

ZM is the corresponding experimental value from the data set

K is the number of data points.

Table 4.13 below shows the root mean square error of all the other parameters $(K^+, PZ, SO_4^{-2}, CO_2)$ regressed from the solid solubility experiments for 2-8 m PZ for temperatures between 23-80°C.

		Root Mean Square Error	
2m PZ	K⁺	0.0026	
	ΡZ	0.0202	
	SO4 ⁻²	0.0064	
	CO ₂	0.0071	
5m PZ	K ⁺	0.0008	
	ΡZ	0.0211	
	SO4 ⁻²	0.0003	
	CO ₂	0.0122	
8m PZ	K⁺	0.0018	
	ΡZ	0.0015	
	SO4 ⁻²	0.2284	
	CO ₂	0.2154	

Table 4.13 Root Mean square error of K₂SO₄-PZ-CO₂ data

The K₂SO₄ model was further validated by carrying out a flash calculation for 2-8 m PZ at 0.3 and 0.4 moles of CO₂/mol alkalinity and comparing the SO₄⁻² concentration with the experimental values. The solution was flashed at 40°C. Figure 4.2 shows Aspen Plus[®] calculated and measured experimental results.

Figure 4.2. Solubility of K₂SO₄, curves predicted by Aspen Plus: points - 40°C experimental data, solid line – Aspen Plus results for 2-8 m PZ at 0.4 loading, dashed lines - Aspen Plus results for 2-8 m PZ at 0.3 loading

In Figure 4.2 above, the lines show Aspen Plus[®] modeling results and the points show the solid solubility experimental data. From the results it can be deduced that the model predicts SO_4^{-2} solubility well at 8 m PZ and at 2 m PZ but less so at 5 m PZ.

The ratio of the solubility of the experimental data over the solubility of K_2SO_4 in water was plotted against temperature, PZ concentration and CO_2 loading as shown in Figure 4.3, Figure 4.4, and Figure 4.5. The Ksp error varies from -0.09 to 18.5.

Figure 4.3 Dependence of Ksp error on temperature – K₂SO₄ solubility in 2-8 m PZ; squares – 2 m PZ, triangles – 5 m PZ, diamonds – 8 m PZ

GMELCD parameters, which are the temperature dependent parameters, were eventually eliminated from the regression. Because of the elimination, the slight temperature dependence seen from experimental data in Section 3.2 may not be seen in the Aspen Plus[®] Model.

Figure 4.4 Dependence of Ksp error on PZ concentration K_2SO_4 solubility in 2-8 m PZ; squares – 2 m PZ, triangles – 5 m PZ, diamonds – 8 m PZ

Figure 4.5 Dependence of Ksp error on CO₂ concentration - K₂SO₄ solubility in 2-8 m PZ; squares - 2 m PZ, triangles - 5 m PZ, diamonds - 8 m PZ

The data in Figure 4.4 and Figure 4.5 come close to 1 for the 8 m PZ data set. That may be because there were three experiments carried out for 8 m PZ where as just one experiment for 2 and 5 m PZ. More experimental points could have reduced the error on the 2 and 5 m PZ data.

4.5 NA₂SO₄-PZ-CO₂-H₂O ASPEN PLUS[®] MODEL

Solid solubility experimental data for Na_2SO_4 in 2-8 m PZ with CO_2 loading of 0.3 to 0.4 mol/mol alkalinity were initially fitted to regress the τ parameters shown in Table 4.6. After continuous similar substitution and elimination of parameters as with the K_2SO_4 regression, a sensitivity analysis on the τ parameters was carried out to fit the

experimental data. Default parameters were set for each GMELCC and GMELCD interaction pairs and one pair varied at a time to determine its effect on the model. Table 4.14 shows the variation in parameters. GMELCD pair parameters were set to 0. The corresponding models obtained from the sensitivity analysis are shown in Appendix C. The base case fit of the model is shown in Figure 4.6

Parameter	Component i	Component j	Default value	Change in Value (single change)
GMELCC/1	(NA+,SO4-2)	PZ	-2	-1/ -4
GMELCC/1	PZ	(NA+,SO4-2)	10	7/ 11
GMELCC/1	(NA+,PZCOO-)	H2O	-4	-2/ -6
GMELCC/1	H2O	(NA+,PZCOO-)	8	6/ 10
GMELCC/1	(NA+,SO4-2)	HPZCOO	-2	0/ -4
GMELCC/1	HPZCOO	(NA+,SO4-2)	10	8/ 12
GMELCC/1	(PZH+,SO4-2)	H2O	-4	-2/-5
GMELCC/1	H2O	(PZH+,SO4-2)	8	5/9

Table 4.14 Variation in τ parameters for the Na₂SO₄-PZ-CO₂-H₂O system

Figure 4.6 Base case fit of the Na₂SO₄-PZ-CO₂-H₂O Aspen Plus[®] Model. Points – experimental data at 60°C, Curves - Aspen Plus[®] Model solubility prediction

The PZH⁺, $SO_4^{-2}/H_2O\tau$ parameter was the only parameter that greatly affected the solubility of Na₂SO₄ in solution when varied from its default value of -4. The τ parameter was varied to determine a fit with the experimental values in 8 m PZ solubility.

Similar to K_2SO_4 , the Na_2SO_4 model was further validated by carrying out a flash calculation for 2-8 m PZ at 0.3 and 0.4 moles of CO_2 /mol alkalinity and comparing the model SO_4^{-2} concentration with the experimental values. The solution was flashed at 60°C and plotted in Figure 4.7 below.

Figure 4.7 Solubility of Na₂SO₄ in PZ, curve predicted by Aspen Plus[®]: points - 60°C experimental data, solid line – Aspen Plus results for 2-8 m PZ at 0.4 loading, dashed lines - Aspen Plus[®] results for 2-8 m PZ at 0.3 loading for parameter PZH+SO₄⁻²/H₂O = -5

The model results work well for 8 m PZ but underpredict the solubility in 2 and 5 m PZ. This could be because there may be two or three combined parameters (including the PZH⁺SO₄⁻²/H₂O parameter) that predict the data better than just one parameter alone. Regression of the experimental data in Aspen Plus[®] did not predict the right combination of the parameters which lead to a sensitivity analysis of the effect of each individual parameter on the solubility of the salt. During the regression analysis, it was noticed that while regressing the τ parameters, the model shifted the Na⁺ and SO₄⁻² experimental data. The trends in the model are, however, similar to those from experimental results in that

the concentration of amine has a greater effect on the solubility of Na_2SO_4 than CO_2 loading of the solution.

The thermodynamic models developed for K_2SO_4 and Na_2SO_4 were used to develop SO_4^{-2} removal by KOH or NaOH reclaiming processes. These models and their results are discussed in Chapter 5.

Chapter 5: Aspen Plus[®] Reclaiming Process Model

5.0 K₂SO₄ Electrolyte-NRTL Process Simulation in Aspen Plus[®]

The regression model developed in the e-NRTL framework in Aspen Plus[®] (as described in Chapter 4) was used to simulate a sulfate reclaiming process. Figure 5.1 shows an Aspen Plus[®] model using KOH to reclaim sulfate as K_2SO_4 . A similar model was developed using NaOH to reclaim Na₂SO₄.

The basis of the model is a CO_2 capture plant that employs 8 m PZ at a lean loading of 0.3 moles CO_2 / mol alkalinity. The flue gas contains 12.38% CO_2 and the CO_2 removal rate is 90%.

A slip stream of the hot lean feed from the stripper at 150°C and 12 atm is flashed though a three-stage flash system. Here CO_2 and H_2O are evaporated and the CO_2 compressed in a two stage compressor. Water is condensed in the pre-cooler and the intercoolers of the compressor. 50% KOH or NaOH is then fed to crystallize the sulfate present in the system. The SO_4^{-2} solids are removed in the separator and the amine is returned to the absorption/stripping process. The reclaiming process has the advantage of removing a significant amount of CO_2 in the process.

There are several areas of the system where the H_2O removed in the process can be re-used. The removal of H_2O concentrates the PZ solution recycled back into the process. The solvent can be diluted back to 8 m PZ using the H_2O removed in the reclaiming process. The H_2O can also be used to wash the crystallized sulfate crystals.

Figure 5.1 Reclaiming by K_2SO_4 crystallization for a CO_2 capture plant using 8 m PZ with a lean loading of 0.3 mol CO_2 / mol alkalinity out of the stripper bottoms– Stoichiometric case (K⁺/SO₄⁻² = 2): 60°C flowrates

Three cases were studied at crystallizer temperatures of 50-100°C:

Stoichiometric case with K⁺/SO₄⁻² = 2
Excess sulfate case with K⁺/SO₄⁻² = 1.3
Excess K⁺ case with K⁺/SO₄⁻² = 2.5
The process input for a 8m PZ, 0.3 loaded CO₂ capture process was as follows:
Stream input:
Feed (at 150°C and 5 atm):
55.86 mol/s H₂O
4.8 mol/s CO₂
8 mol/s CO₂
8 mol/s PZ
For Stoichiometric case: 0.2 mol/s K₂SO₄ and 0.1 mol/s H₂SO₄
Excess potassium: 0.4 mol/s K₂SO₄ and 0.1 mol/s KOH

The temperature profile between the flash stages was adjusted to be symmetric to minimize the equivalent CO_2 compression work as the temperature of the crystallizer was varied.

The design spec for the simulation was set as follows:

K⁺ in steam IN and SLURRY are equal to each other

Flash: T= 117-133.3°C, Q=0

Flash 2: T= 83.4-96.7°C, Q=0

Flash 3: 50-100°C, Q=0

Crystallizer: Q=0

Pressure of streams VENT 2 and V are equal

Pressure of streams VENT and V2 are equal

Pressures in Flash3 = Crystallizer = Cond1
Complete simulation results of all cases and sub-cases are given in Appendix D. A summary of the cases is given in Table 5.1.

Case	т (°С)	∆SO₄ ⁻² (mol/kgsolvent)	K ₂ SO ₄ in slurry (mol/s)	CO ₂ compressed (mol/s)
Stoich	100	0	0	1.378
Stoich	90	0.010	0.019	1.389
Stoich	70	0.041	0.079	1.352
Stoich	60	0.057	0.110	1.313
Stoich	50	0.072	0.140	1.268
Excess SO ₄ ⁻²	100	0.043	0.083	1.466
Excess SO ₄ ⁻²	90	0.058	0.114	1.493
Excess SO ₄ ⁻²	70	0.090	0.175	1.450
Excess SO ₄ ⁻²	60	0.106	0.207	1.409
Excess SO ₄ ⁻²	50	0.122	0.237	1.362
Excess K ⁺	100	0	0	1.345
Excess K ⁺	90	0.010	0.020	1.359
Excess K ⁺	70	0.039	0.076	1.315
Excess K ⁺	60	0.055	0.107	1.277
Excess K ⁺	50	0.071	0.138	1.233

Table 5.1 Aspen Plus® modeling results for SO_4^{-2} removal using KOH (Stoich (K⁺/SO₄⁻² = 2), Excess SO_4^{-2} (K⁺/SO₄⁻² = 1.3), and Excess K⁺ (K⁺/SO₄⁻² = 2.5))

In Table 5.1, ΔSO_4^{-2} is the difference in the number of moles of SO_4^{-2} entering the system and that leaving the slurry in moles/kg of process solvent. For the stoichiometric case and the excess K⁺ case, no SO_4^{-2} precipitated in the slurry at 100°C. The solubility of K₂SO₄ increases with temperature. Also, there is less driving force and less solvent recirculation in the process system at higher temperatures. Thus, less SO₄⁻² precipitates at higher temperatures and close to 100°C for the two cases. However, there is some

precipitation in the excess SO_4^{-2} case at 100°C. This is also shown graphically in Figure 5.2

Figure 5.2 Change in ΔSO_4^{-2} with final flash temperature for the three K₂SO₄ cases – stoichiometric (K⁺/SO₄⁻² = 2), Excess SO₄⁻² (K⁺/SO₄⁻² = 1.3), and Excess K⁺ (K⁺/SO₄⁻² = 2.5)

 CO_2 is removed in each flash stage of the process system. While the total number of moles for CO_2 compressed remains constant for the different sub-cases within each process case, the amount of CO_2 removed at each flash stage varies, lowering the CO_2 loading. Water vapor is removed in each flash stage as well concentrating the PZ in the solvent. However, the amount removed remains fairly constant at each stage. Figure 5.3 shows how the CO_2 loading and PZ concentration changes at each flash stage for the stoichiometric case at 60°C.

Figure 5.3 Change in CO₂ loading and PZ concentration between flash stages for the stoichiometric case at 60°C for K₂SO₄ stoichiometric case ($K^+/SO_4^{-2} = 2$) – dashed line – PZ concentration, solid line - CO₂ loading

Figure 5.3 shows that the CO_2 loading changes more across the higher temperature flash stage than at the lower temperature flash stages while the PZ concentration changes at the same rate. The partial pressure of CO_2 is higher at higher temperatures and drops a lot faster with temperature than that of water vapor. The heat capacity of a liquid is higher at higher temperatures. Thus, there is more heat available to remove more total vapor at the higher temperature flash stage than the lower temperature flash stages.

5.1 NA₂SO₄Electrolyte-NRTL Process Simulation in Aspen Plus[®]

A similar reclaiming process was simulated for the Na₂SO₄ system.

Three cases were also studied at crystallizer temperatures of 50-100°C:

Stoichiometric case with $Na^+/SO_4^{-2} = 2$

Excess sulfate case with $Na^+/SO_4^{-2} = 1.9$

Excess Na^+ case with $Na^+/SO_4^{-2} = 2.04$

The process input for an 8m PZ, 0.3 loaded CO₂ capture process was as follows Stream input:

Feed (at 150°C and 16 atm):

55.86 mol/s H₂O

 4.8 mol/s CO_2

8 mol/s PZ

For Stoichiometric case: 2.3 mol/s Na₂SO₄

Excess sulfate: 2.24 mol/s Na₂SO₄ and 0.07 mol/s H₂SO₄

Excess potassium: 2.3 mol/s Na₂SO₄ and 0.1 mol/s NaOH

The design conditions and specifications of the blocks were kept the same as

stated in Section 5.1. A summary of the process result is given in Table 5.2 below.

Table 5.2 Aspen Plus® modeling results for SO_4^{-2} removal using NaOH (Stoich case $(Na^+/SO_4^{-2} = 2)$, Excess SO_4^{-2} case $(Na^+/SO_4^{-2} = 1.9)$, and Excess Na^+ case $(Na^+/SO_4^{-2} = 2.04)$

Case	т (°С)	ΔSO₄ ⁻² (mol/kgsolvent)	Na₂SO₄ in slurry (mol/s)	CO2 compressed (mol/s)
Stoich	100	0.032	0.0712	1.041
Stoich	70	0.050	0.1118	1.012
Stoich	60	0.044	0.0987	0.990
Stoich	50	0.032	0.0714	0.966
Excess SO ₄ ⁻²	100	0.038	0.1169	1.084
Excess SO ₄ ⁻²	70	0.056	0.1576	1.055
Excess SO ₄ ⁻²	60	0.051	0.1446	1.033
Excess SO ₄ ⁻²	50	0.038	0.1171	1.009
Excess Na ⁺	100	0.033	0.0736	1.000
Excess Na ⁺	70	0.051	0.1136	0.970
Excess Na ⁺	60	0.045	0.1000	0.948
Excess Na ⁺	50	0.032	0.0718	0.924

The ΔSO_4^{-2} in the system as a function of temperature behaves differently in the Na⁺ case than the K⁺ case.

Figure 5.4 Change in ΔSO_4^{-2} with final flash temperature for the three Na₂SO₄ cases – stoichiometric case (Na⁺/SO₄⁻² = 2), Excess SO₄⁻² case (Na⁺/SO₄⁻² = 1.9), and Excess Na⁺ case (Na⁺/SO₄⁻² = 2.04)

The ΔSO_4^{-2} reaches a maximum at approximately 70°C and then decreases again. A reason for this may be that because the solvent is saturated with Na₂SO₄, which remains fairly constant with temperature. It may be that the NaOH reacts more readily with the PZ species that contribute to the ionic strength of the solvent (PZH⁺ and/or PZCOO⁻) than the SO₄⁻².

Figure 5.5 Change in CO₂ loading and PZ concentration between flash stages for Na₂SO₄ Excess SO₄⁻² case (Na⁺/SO₄⁻² = 1.9) at 70°C - dashed line – PZ concentration, solid line CO₂ loading

5.3 Energy and Chemical Cost Estimation For K_2SO_4 System

The equivalent work that is lost in the reclaiming process per mole of sulfate comprises of the equivalent work lost in the main process, the work from the compressor, and the work benefitted from the CO_2 compressed during the reclaiming process. The equivalent work lost in the process is given by equation 5.1:

$$W_{eq1} = m * 0.75 * \int_{Tref}^{T} \frac{T - Tref}{T} * C_{p} * dT$$
 5.1

Where m is the feed rate in kg/s

 C_p is = average heat capacity of the feed 3.54 kJ/kgK (Xu, 2008)

The equivalent work that is saved results from CO_2 produced here rather than in the main process is given by

$$W_{eq2} = \left(\frac{moles}{s} of \ CO2 \ produced * 35 \frac{kJ}{mol} CO2\right)$$
 5.2

Van Wagener (Van Wagener, 2011) regressed a compressor correlation to calculate the work from the compressor:

$$W_{comp} = 4.572 * \ln\left(\frac{150}{Pin}\right) - 4.096$$
 5.3

where P_{in} in the compressor feed vapor coming from the highest pressure stage in bar (Van Wagener, 2011).

Using a typical electricity cost of 65/MWh and the ratio of CO_2 to SO_2 in the flue gas, the cost of sulfate removal in 700 con be calculated.

The equivalent work and energy costs are summarized in Table 5.3 below for the K_2SO_4 case and shown graphically in Figure 5.6.

Case	т (°С)	W _{comp} (MJ/mol K₂SO₄ in slurry)	W _{eq1} (MJ/mol K₂SO₄ in slurry)	W _{eq2} (MJ/mol K₂SO₄ in slurry)	W _{eq} MJ/mol K₂SO₄ in slurry	Energy cost (\$/tonCO ₂)
Stoich	100	0	0	0	0	0
Stoich	90	1.55	3.29	2.57	2.26	0.833
Stoich	70	0.43	0.92	0.60	0.75	0.277
Stoich	60	0.32	0.70	0.42	0.60	0.223
Stoich	50	0.27	0.57	0.32	0.52	0.191
Excess SO ₄ ⁻²	100	0.34	0.65	0.62	0.37	0.135
Excess SO ₄ ⁻²	90	0.28	0.54	0.46	0.36	0.132
Excess SO ₄ ⁻²	70	0.21	0.42	0.29	0.34	0.124
Excess SO ₄ ⁻²	60	0.18	0.37	0.24	0.32	0.118
Excess SO ₄ ⁻²	50	0.17	0.34	0.20	0.31	0.113
Excess K ⁺	100	0	0	0	0	0
Excess K ⁺	90	1.45	3.16	2.41	2.20	0.810
Excess K ⁺	70	0.44	0.97	0.61	0.80	0.294
Excess K ⁺	60	0.32	0.72	0.42	0.63	0.231
Excess K ⁺	50	0.26	0.58	0.31	0.53	0.194

Table 5.3 Work and cost summary for sulfate reclaiming by KOH (stoichiometric $(K^+/SO_4^{-2} = 2)$, Excess $SO_4^{-2} (K^+/SO_4^{-2} = 1.3)$, and Excess $K^+ (K^+/SO_4^{-2} = 2.5)$)

Figure 5.6 Change in equivalent work and ΔSO_4^{-2} with temperature for the three K₂SO₄ cases – stoichiometric (K⁺/SO₄⁻² = 2), Excess SO₄⁻² (K⁺/SO₄⁻² = 1.3), and Excess K⁺ (K⁺/SO₄⁻² = 2.5)

Adding sulfate increases the capacity and lowers the equivalent work of the process. The stoichiometric case and excess K^+ case show a minimum work requirement between 65-70°C. This could be an optimized temperature to run the reclaimer for the two conditions.

The energy cost of the system is given by:

Energy cost=
$$\frac{\text{Weq kJ}}{\text{mol SO2}} \frac{1e-04 \text{ mol SO2}}{12.4\% \text{mol CO2}^{*90\%}} \frac{\text{mol CO2}}{44.01\text{ g}} \frac{1e6\text{g}}{\text{tonne}} \frac{\text{MWhr}}{3.6e6 \text{ kJ}} \frac{\$65}{\text{MWhr}}$$
 5.4

The energy cost in f cost in CO_2 is directly proportional to the increase in temperature of the last flash stage. However, this is still a small number compared to a typical CO₂ capture cost of 50/tonne.

Two chemical costs based on different assumptions were calculated. The first assumption is that the K_2SO_4 precipitated can be sold as fertilizer. For this, a price of \$200/ton of K_2SO_4 fertilizer was use (ICIS, 2011). The second assumption is that the K_2SO_4 is removed and treated in a waste water treatment facility. For this case, a price of \$0 was used. A cost of \$40/100 lb of KOH was used (ICIS, 2011). This is equivalent to:

$$\frac{\$40}{100\text{lb KOH}} \frac{56 \text{ g}}{\text{gmol}} \frac{1 \text{ lb}}{454 \text{ g}} = \frac{\$0.049}{\text{gmol K}^+} = \frac{\$0.098}{\text{gmol SO}_4^{-2}} 5.5$$

The chemical cost in \$/ton of CO₂ was calculated using the following equation:

Chemical cost=
$$\frac{\$}{\text{mol SO2}} \frac{1e-04 \text{ mol SO2}}{12.38\% \text{mol CO2}*90\%} \frac{\text{mol CO2}}{44.01g} \frac{1e6g}{\text{tonne}}$$
 5.6

The chemical cost if the K_2SO_4 is recovered in the process is used as fertilizer is \$0.6/tonne CO₂. However, if this is not possible because of the impurities that may be present on the K_2SO_4 crystals, the chemical cost would increase to \$2 / tonne CO₂

5.4 ENERGY AND CHEMICAL COST ESTIMATION FOR NA2SO4 SYSTEM

The equivalent work and energy costs for the Na₂SO₄ system are summarized in the Table 5.4 below and shown graphically in Figure 5.6

Case	т (°С)	W _{comp} (MJ/moles Na₂SO₄ in slurry)	W _{eq1} (MJ/moles Na₂SO₄ in slurry)	W _{eq2} (MJ/mol Na ₂ SO ₄ in slurry)	W _{eq} MJ/mol Na₂SO₄ in slurry	Energy cost (\$/tonCO2)
Stoich	100	0.3	0.9	0.5	0.6	0.236
Stoich	70	0.2	0.8	0.3	0.7	0.246
Stoich	60	0.3	0.9	0.4	0.8	0.305
Stoich	50	0.4	1.3	0.5	1.2	0.449
Excess SO ₄ ⁻²	100	0.2	0.5	0.3	0.4	0.147
Excess SO ₄ ⁻²	70	0.2	0.5	0.2	0.5	0.176
Excess SO ₄ ⁻²	60	0.2	0.6	0.2	0.6	0.209
Excess SO ₄ ⁻²	50	0.3	0.8	0.3	0.7	0.275
Excess Na ⁺	100	0.3	0.9	0.5	0.6	0.239
Excess Na ⁺	70	0.2	0.7	0.3	0.7	0.247
Excess Na ⁺	60	0.3	0.9	0.3	0.8	0.305
Excess Na ⁺	50	0.4	1.3	0.5	1.2	0.450

Table 5.4 Work and cost summary for the sulfate reclaiming by NaOH (Stoich $(Na^+/SO_4^{-2} = 2)$, Excess SO_4^{-2} $(Na^+/SO_4^{-2} = 1.9)$, and Excess Na^+ $(Na^+/SO_4^{-2} = 2.04)$

Figure 5.7 Change in equivalent work and ΔSO_4^{-2} with temperature for the three Na₂SO₄ cases – stoichiometric (Na⁺/SO₄⁻² = 2), Excess SO₄⁻² (Na⁺/SO₄⁻² = 1.9), and Excess Na⁺ (Na⁺/SO₄⁻² = 2.04)

Similar to K^+ , adding sulfate increases the capacity and lowers the equivalent work of the Na₂SO₄ precipitation process. All cases show a minimum work requirement between 65-70°C. This could be an optimized temperature to run the reclaimer for if SO₄⁻² is to be removed using NaOH.

The energy cost of the Na process, ranging from $0.1-0.5/\text{ton CO}_2$ is the same order of magnitude as the K⁺ case (ranging from $0.1-0.8/\text{ton CO}_2$).

The price of 50 wt% NaOH is \$450/short ton of NaOH (ICIS, 2011). The solids from the crystallizer are most likely to be treated in wastewater treating. For this reason, the cost for Na₂SO₄ is \$0. The chemical cost in \$/tonne of CO₂ calculated by Equation 5.5 is \$0.7 / tonne of CO₂. This is less than compared to the chemical cost for the K⁺ case if the K₂SO₄ crystals cannot be sold as fertilizer. This is one of the reasons why it may be cheaper to use NaOH to remove sulfate in the reclaiming process rather than KOH. Another reason why removal process may be cheaper for the Na case is that the process requires less equivalent work compared to the K case because less solvent is required in the process reducing the size of the equipment and the capital cost of the project.

 SO_4^{-2} crystals removed from the crystallizer are impure. Impurities such as nitrosamines and PZ may be attached to the crystals that would need to be washed off. For 100 ppm removal of K₂SO₄ and 20 wt% of 8 m PZ of impurity attached to the SO₄⁻² crystals, the cost of PZ loss can be estimated as follows:

\$3	(0.2)*(0.4)lb PZ (1e-4)mol SO2	174 lb solids	1gmolCO2	1e6 g
lb PZ	(0.8 solids)(12.38% gmol CO2)*(90% removal)	lbmol solids	44.01 g	ton CO2
=\$	2.3			5.7
tonn	e CO2			

In the above equation, the cost of PZ is assumed to be \$3/lb of PZ. If 50 wt% of 8 m PZ of impurities are attached to the SO_4^{-2} crystals, a PZ loss of \$9.4/tonne CO_2 is estimated. Both these costs of loss of PZ are high. If such a small amount of PZ lost is expensive, it will be far more expensive to replace amine solvent if it is not reclaimed and reused. The solids from the crystals should be washed and sent back to the process to reduce PZ replacement costs.

Chapter 6: Recommendations and conclusions

Sulfate accumulates in the post-combustion CO₂ capture system and must be removed to re-use amine efficiently. Removal of sulfate from the amine-based postcombustion CO₂ capture system through a solvent reclaiming process may reduce CO₂ capture costs. Solvent reclaiming by solids precipitation requires the knowledge of the solubility of sulfate in PZ solution. Solid solubility experiments determined the solubility of K₂SO₄ and Na₂SO₄ in 2-8 m CO₂ loaded PZ solutions. Data regression gave an empirical equation to determine the solubility of sulfate over a range of PZ concentrations. Aspen Plus[®] process simulations determined the amount of sulfate that can be removed from a process using 8m PZ with a lean loading of 0.3 mol CO₂/mol alkalinity. The results from the simulation determined the energy cost and economics of the reclaiming process.

6.0 EXPERIMENTAL RESULTS

At 40°C the solubility of Na_2SO_4 in 8 m PZ with a CO_2 loading of 0.3 is 0.3 m Na_2SO_4 and that of K_2SO_4 is 0.1 m K_2SO_4 .

The solubility of both K_2SO_4 and Na_2SO_4 in aqueous PZ increased with CO_2 loading and decreased with increasing PZ. At higher CO_2 loading, the solvent is more ionic since it contains greater concentrations of carbamate and protonated amines. As a result, salt crystals are more soluble in the solution. In addition, sulfate solubility decreased as the organic nature and concentration of the solvent increased. There was minimal effect of temperature on the solubility of K_2SO_4 and almost no effect of temperature on the solubility of Na_2SO_4 in PZ.

Sulfate solubility in PZ solutions is represented by the empirical models:

K₂SO₄: $ln(Ksp) = 10.53I^{0.3} - 0.98[PZ]_T - 3440/T - 2.42$

Na₂SO_{4: $ln(Ksp) = 2.137I^{0.3} - 0.6505[PZ]_T - 826/T + 265$}

Where Ksp is the solubility product of a salt

I is the ionic strength

and $[PZ]_T = 2^*$ (molality of PZ)

The experiments were carried out at loadings of 0.3 and 0.4 moles of CO₂/mol of alkalinity and at concentrations of 2-8 m PZ. The sulfate containing PZ solution is flashed in the reclaiming process resulting in a higher PZ concentration at lower loadings. It is recommended that more experiments be carried out at leaner loadings and at higher PZ concentrations for sulfate solubility analysis closer to the proposed reclaiming process.

6.1 PROCESS SIMULATION RESULTS

A K₂SO₄ and Na₂SO₄ solubility thermodynamic model was developed in the e-NRTL framework in PZ Fawkes Aspen Plus[®] model. Reclaiming processes for removal of SO₄⁻² with KOH and NaOH were simulated using the thermodynamic model developed. The K₂SO₄ thermodynamic model developed in Aspen Plus seemed to fit the experimental data obtained from the solid solubility experiments. However, the Na₂SO₄ regression in Aspen Plus[®] did not fit the experimental data as well as K case did. The trends obtained from the model were similar to those obtained in experimental work.

The energy cost of the Na process, ranging from 0.1-0.5/ton CO₂ is in the same order of magnitude as the K⁺ case (ranging from 0.1-0.8/ton CO₂).

The K_2SO_4 recovered in the process can be used as fertilizer. However, the KOH will still cost \$0.6/tonne CO₂. If it is not possible to sell the K_2SO_4 as fertilizer because of the impurities that may be present on the K_2SO_4 crystals, the chemical cost would increase to \$2/tonne CO₂.

The chemical cost in $\frac{1}{000}$ for the Na case is 0.7/tonne of CO₂. This is less than compared to the chemical cost for the K case if the crystals cannot be sold as fertilizer and one of the reasons why it may be cheaper to use NaOH to remove sulfate in the reclaiming process rather than KOH.

For 100 ppm removal of SO_4^{-2} and 20 wt% of 8 m PZ of impurity attached to the SO_4^{-2} crystals, the cost of PZ loss is \$2.3/tonne CO₂. If 50 wt% of 8 m PZ of impurities are attached to the SO_4^{-2} crystals, a PZ loss of \$9.4/tonne CO₂.SO₄⁻² crystals removed from the crystallizer are impure. Impurities such as nitrosamines and PZ may be attached to the crystals that would need to be washed off.

Removing SO_4^{-2} exclusively in a neutralization process than with the other heat stable salts in a thermal reclaiming process prevents the thermal reclaiming heat exchanger to be exposed to SO_4^{-2} solids. The crystallizer employed in the process is also at ambient pressures which reduces the cost of the SO_4^{-2} removal process proposed.

In conclusion, removing SO_4^{-2} by neutralization with either KOH or NaOH is a straight forward method that can be employed in the post combustion CO_2 capture system. It has the advantage of removing more CO_2 and re-using a relatively clean solvent back to the absorber, reducing the cost of replacing expensive solvents used for CO_2 capture.

Appendix A

Table A.0 Experimental Apparatus

Equipment	Supplier
100 ml Jacketed Beaker Reactor	Chemglass®
Rubber Stopper	Fisherbrand [®]
Thermometer	Fisherbrand [®]
Stir bar	Fisherbrand [®]
Tubing	Tygon [®] - 3603
Heater and water bath	Lauda [®] Ecoline E-100
Nonsterile; PTFE; Pore size: 0.45µm;	
Diameter: 25mm filter	Fisherbrand®
3mL; 0.10mL graduation luer lok syringes	BD Medical [®]
6 dram, 22.2 ml clear glass vials	Fisherbrand [®]
10ml, 2ml Pipettes	Eppendorf [®] Research
250 ml CO ₂ loader and frit	Wilmad [®] labglass
500 ml Bottles	Wheaton®
Cation Chromatograph	Dionex ICS-2100
Anion Chromatograph	Dionex ICS-3000
Total Inorganic Carbon Analyzer	Horiba PIR 2000, PICOlog

Table A.1 Chemicals Used

Chemical	Supplier
Piperazine	Sigma-Aldrich [®]
Anhydrous Sodium Sulfate	Fisher Scientific [®]
Potassium Sulfate	Fisher Scientific [®]
Carbon Dioxide	Matheson [®] Co.

Appendix B

B.0 CHROMELEON CATION CHROMATOGRAPHY PROGRAM

B.0.1 Jason3 Auto.pgm

;Sampler	AcquireExclusiveAccess		
	;Sampler_DiverterValve.Position	_1	
	Pressure.LowerLimit =	200 [psi]	
	Pressure.UpperLimit =	3000 [psi]	
	%A.Equate =	"%A"	
	CR_TC =	On	
	;Flush	Volume = 100	
	;Wait	FlushState	
	;NeedleHeight =	0 [mm]	
	;CutSegmentVolume =	0 [µl]	
	;SyringeSpeed =	-1	
	;TrayTemperature =	Off	
	;CycleTime =	0 [min]	
	;Flush	Volume = 100	
	;Wait	FlushState	
	;NeedleHeight =	2 [mm]	
	;CutSegmentVolume =	0 [µl]	
	;SyringeSpeed =	3	
	;TrayTemperature =	10	
	;CycleTime =	0 [min]	
	WaitForTemperature =	False	
	Data_Collection_Rate =	5.0 [Hz]	
	CellTemperature.Nominal =	30.0 [°C]	
	ColumnTemperature.Nominal =	30.0 [°C]	
	Suppressor_Type =	CSRS_4mm	
	; Pump_ECD.H2SO4 =	0.0	
	; Pump_ECD.MSA =	38.5	
	; Pump_ECD.Other eluent =	0.0	
	; Pump_ECD.Recommended Current	=	136
	Suppressor_Current =	136 [mA]	
	ECD_Total.Step =	0.20 [s]	
	ECD_Total.Average =	Off	
	Wait	SampleReady	
	;Wait	SampleReady	
	Flow =	1.20 [ml/min]	
0.000	Concentration =	5.50 [mM]	
	Autozero		

	;Load ;Wait ;Wait Inject	CycleTimeState StartRun
	;Wait ECD_1.AcqOn ECD_Total.AcqOn ;Sampler.ReleaseExclusiveAccess	InjectState
	Concentration = Pump_ECD_Relay_2.Closed	Duration=10.00
0.100	Pump_ECD_Relay_1.State	Closed
1.000	Pump_ECD_Relay_1.State	Open
2.300	Pump_InjectValve.InjectPosition	Duration=60.00
10.000	Concentration =	5.50 [mM]
10.001	Concentration =	11.00 [mM]
15.000	Concentration =	11.00 [mM]
20.000	Concentration =	38.50 [mM]
28.000	ECD_1.AcqOff ECD_Total.AcqOff Concentration = End	38.50 [mM]
B.0.2 Stepha	nie3 Auto.pgm	
Pressure.	LowerLimit = Pressure.UpperLimit = %A.Equate = CP TC -	200 [psi] 3000 [psi] "%A" On
	DeliverSpeed = DelayVolume = FlushFactor = Sampler LoadPosition	4.0 [ml/min] 125 [µl] 10
	DeliverSample EndSamplePrep	Volume=1666
	Data_Collection_Rate = CellTemperature.Nominal =	5.0 [Hz] 30.0 [°C]

Temperature.Nominal = ssor_Type = _ECD.H2SO4 = _ECD.MSA = _ECD.Other eluent = _ECD.Recommended Curren ssor_Current = L_Pressure.Average =	30.0 [°C] CSRS_4mm 0.0 38.5 0.0 t = 57 77 [mA] On 0.50 [ml/min]
ro tration = = AcqOn L_Pressure.AcqOn tration = =	5.50 [mM] 5 CycleTimeState 5.50 [mM] 5
verlap	
cration =	5.50 [mM] 5
cration = =	11.00 [mM] 5
cration =	11.00 [mM] 5
cration =	38.50 [mM] 5
cration =	38.50 [mM] 5
cration =	5.50 [mM] 5
AcqOff tration = = L_Pressure.AcqOff	5.50 [mM] 5
	<pre>ssor_Type = _ECD.H2SO4 = _ECD.MSA = _ECD.Other eluent = _ECD.Recommended Curren ssor_Current = L_Pressure.Average = contration = = verlap tration = = cration = cration = = cration = cration = cra</pre>

End

B.1 CHROMELEON ANION CHROMATOGRAPHY PROGRAM

B1.1 Anions.pgm

Sampler.AcquireExclusiveAccess Sampler DiverterValve.Position 2 Column_TC.AcquireExclusiveAccess Compartment_TC.AcquireExclusiveAccess Pressure.LowerLimit = 200 [psi] Pressure.UpperLimit = 3000 [psi] 6.00 [ml/min²] MaximumFlowRamp = %A.Equate = "%A" $CR_TC =$ Οn Flush Volume = 250Wait FlushState NeedleHeight = 2 [mm] CutSegmentVolume = 10 [µl] SyringeSpeed = 4 CycleTime = 0 [min] WaitForTemperature = False Data Collection Rate = 5.0 [Hz] Temperature_Compensation = 1.7 [%/°C] CellHeater.Mode = On CellHeater.TemperatureSet = 35.00 [°C] Column TC.Mode = On Column_TC.TemperatureSet = 30.00 [°C] Compartment_TC.Mode = On Compartment_TC.TemperatureSet = 30.00 [°C] ASRS 4mm Suppressor2.Type = 179 [mA] Suppressor2.CurrentSet = 1.600 [ml/min] Flow = Pump_2.Curve = 5 SampleReady Wait ;Wait Column_TC.TemperatureState ;Wait Compartment_TC.TemperatureState ;Wait Column_TC.TemperatureState ;Wait Compartment_TC.TemperatureState ; Suppressor1.Carbonate = 0.0 ; Suppressor1.Bicarbonate = 0.0 ; Suppressor1.Hydroxide = 45.0 ; Suppressor1.Tetraborate = 0.0 ; Suppressor1.Other eluent = 0.0 179 ; Suppressor1.Recommended Current = -6.100 45.00 [mM] Concentration = EGC 1.Curve = 5

-6.000	Concentration = EGC_1.Curve =	2.00 [mM] 5
0.000	CDetl.Autozero Load	
	Wait	CycleTimeState
	Wait Pump_2_Pressure.AcqOn CD_1.AcqOn	InjectState
	CD_1_Total.AcqOn Sampler.ReleaseExclusiveAccess Compartment_TC.ReleaseExclusive Column_TC.ReleaseExclusiveAcces	Access s
10.000	;ompartment_TC.ReleaseExclusive ;column_TC.ReleaseExclusiveAcce	Access ss
17.000	Concentration = EGC_1.Curve =	2.00 [mM] 5
25.000	Concentration = EGC_1.Curve =	45.00 [mM] 5
35.000	Concentration = Pump_2_Pressure.AcqOff CD_1.AcqOff CD 1 Total.AcqOff	45.00 [mM]
	EGC_1.Curve = End	5

Figure C.1 Solubility of Na₂SO₄ in PZ, curve predicted by Aspen Plus[®]: points - 60°C experimental data, solid line – Aspen Plus results for 2-8 m PZ at 0.4 loading, dashed lines - Aspen Plus[®] results for 2-8 m PZ at 0.3 loading for parameter Na+SO₄⁻²/PZ = -1

Appendix C

Figure C.2 Solubility of Na₂SO₄ in PZ, curve predicted by Aspen Plus[®]: points - 60°C experimental data, solid line – Aspen Plus results for 2-8 m PZ at 0.4 loading, dashed lines - Aspen Plus[®] results for 2-8 m PZ at 0.3 loading for parameter Na+SO₄⁻²/PZ = -4

Figure C.3 Solubility of Na₂SO₄ in PZ, curve predicted by Aspen Plus[®]: points - 60°C experimental data, solid line – Aspen Plus results for 2-8 m PZ at 0.4 loading, dashed lines - Aspen Plus[®] results for 2-8 m PZ at 0.3 loading for parameter PZ/ Na+SO₄⁻² = 7

Figure C.4 Solubility of Na₂SO₄ in PZ, curve predicted by Aspen Plus[®]: points - 60°C experimental data, solid line – Aspen Plus results for 2-8 m PZ at 0.4 loading, dashed lines - Aspen Plus[®] results for 2-8 m PZ at 0.3 loading for parameter PZ/ Na+SO₄⁻² = 11

Figure C.5 Solubility of Na₂SO₄ in PZ, curve predicted by Aspen Plus[®]: points - 60°C experimental data, solid line – Aspen Plus results for 2-8 m PZ at 0.4 loading, dashed lines - Aspen Plus[®] results for 2-8 m PZ at 0.3 loading for parameter Na+PZCOO-/H2O

Figure C.6 Solubility of Na₂SO₄ in PZ, curve predicted by Aspen Plus[®]: points - 60°C experimental data, solid line – Aspen Plus results for 2-8 m PZ at 0.4 loading, dashed lines - Aspen Plus[®] results for 2-8 m PZ at 0.3 loading for parameter Na+PZCOO-/H2O = -6

Figure C.7 Solubility of Na₂SO₄ in PZ, curve predicted by Aspen Plus[®]: points - 60°C experimental data, solid line – Aspen Plus results for 2-8 m PZ at 0.4 loading, dashed lines - Aspen Plus[®] results for 2-8 m PZ at 0.3 loading for parameter H2O /Na+PZCOO-= 10

Figure C.8 Solubility of Na₂SO₄ in PZ, curve predicted by Aspen Plus[®]: points - 60°C experimental data, solid line – Aspen Plus results for 2-8 m PZ at 0.4 loading, dashed lines - Aspen Plus[®] results for 2-8 m PZ at 0.3 loading for parameter H2O /Na+PZCOO-= 6

Figure C.9 Solubility of Na₂SO₄ in PZ, curve predicted by Aspen Plus[®]: points - 60°C experimental data, solid line – Aspen Plus results for 2-8 m PZ at 0.4 loading, dashed lines - Aspen Plus[®] results for 2-8 m PZ at 0.3 loading for parameter Na+SO4-2/HPZCOO = 0

Figure C.10 Solubility of Na₂SO₄ in PZ, curve predicted by Aspen Plus[®]: points - 60°C experimental data, solid line – Aspen Plus results for 2-8 m PZ at 0.4 loading, dashed lines - Aspen Plus[®] results for 2-8 m PZ at 0.3 loading for parameter Na+SO4-2/HPZCOO = -4

Figure C.11 Solubility of Na₂SO₄ in PZ, curve predicted by Aspen Plus[®]: points - 60°C experimental data, solid line – Aspen Plus results for 2-8 m PZ at 0.4 loading, dashed lines - Aspen Plus[®] results for 2-8 m PZ at 0.3 loading for parameter HPZCOO / Na+SO4-2 = 12

Figure C.12 Solubility of Na₂SO₄ in PZ, curve predicted by Aspen Plus[®]: points - 60°C experimental data, solid line – Aspen Plus results for 2-8 m PZ at 0.4 loading, dashed lines - Aspen Plus[®] results for 2-8 m PZ at 0.3 loading for parameter HPZCOO / Na+SO4-2 = 8

Figure C.13 Solubility of Na₂SO₄ in PZ, curve predicted by Aspen Plus[®]: points - 60°C experimental data, solid line – Aspen Plus results for 2-8 m PZ at 0.4 loading, dashed lines - Aspen Plus[®] results for 2-8 m PZ at 0.3 loading for parameter H2O/PZH+SO4-2 = 5

Figure C.14 Solubility of Na₂SO₄ in PZ, curve predicted by Aspen Plus[®]: points - 60°C experimental data, solid line – Aspen Plus results for 2-8 m PZ at 0.4 loading, dashed lines - Aspen Plus[®] results for 2-8 m PZ at 0.3 loading for parameter H2O/PZH+SO4-2 = 9

Figure C.15 Solubility of Na₂SO₄ in PZ, curve predicted by Aspen Plus[®]: points - 60°C experimental data, solid line – Aspen Plus results for 2-8 m PZ at 0.4 loading, dashed lines - Aspen Plus[®] results for 2-8 m PZ at 0.3 loading for parameter PZH+SO4-2 /H2O = -5

Figure C.16 Solubility of Na₂SO₄ in PZ, curve predicted by Aspen Plus[®]: points - 60°C experimental data, solid line – Aspen Plus results for 2-8 m PZ at 0.4 loading, dashed lines - Aspen Plus[®] results for 2-8 m PZ at 0.3 loading for parameter PZH+SO4-2 /H2O = -2

Figure C.17 Solubility of Na₂SO₄ in PZ, curve predicted by Aspen Plus[®]: points - 60°C experimental data, solid line – Aspen Plus results for 2-8 m PZ at 0.4 loading, dashed lines - Aspen Plus[®] results for 2-8 m PZ at 0.3 loading for parameters PZH+SO4-2 /H2O = -6, H2O/Na+PZCOO- = 11

Figure C.18 Solubility of Na₂SO₄ in PZ, curve predicted by Aspen Plus[®]: points - 60°C experimental data, solid line – Aspen Plus results for 2-8 m PZ at 0.4 loading, dashed lines - Aspen Plus[®] results for 2-8 m PZ at 0.3 loading for parameters PZH+SO4-2 /H2O = -5, H2O/Na+PZCOO- = 10

Appendix D

SIMULATION RESULTS

Table D.1 Stream summary for SO_4^{-2} reclaiming by KOH (stoichiometric case (K⁺/SO₄⁻² = 2) -50°C

		1	BTMS 2	BTMS 3	CO2	FEED	H2O	H2O1	H2O2	IN	КОН	SLUR RY	v	V1	V2	VENT	VENT 2	VENT 3	VENT 4
From		CON D1	FLAS H2	FLAS H3	CON D3	FLAS H	CON D1	CON D2	CON D3			CRYS T	COM P1	CON D2	COM P2	FLAS H	FLAS H2	CRYS T	FLAS H3
То		COM P1	FLAS H3	CRYS T		FLAS H2				FLAS H	CRY ST		CON D2	COM P2	CON D3	CON D3	CON D2	CON D1	CON D1
Substream: MIXED																			
Phase:		Vapo r	All	All	Vapo r	Liqui d	Liqui d	Liqui d	Liqui d	Liqui d	Liqui d	All	All	Vapo r	All	Vapo r	Vapo r	Vapo r	Vapo r
Component Fraction	Mole																		
H2O		0.74	0.84	0.83	0.25	0.85	1.00	1.00	0.99	0.85	0.61	0.83	0.74	0.26	0.26	0.79	0.94	0.99	0.99
CO2		0.26	0.00	0.00	0.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.26	0.74	0.74	0.21	0.06	0.01	0.01
HCO3-		0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO3		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H+		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OH-		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K+		0.00	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.20	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZ		0.00	0.04	0.04	0.00	0.03	0.00	0.00	0.00	0.02	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZCOO-2		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZCOO-		0.00	0.04	0.04	0.00	0.03	0.00	0.00	0.00	0.03	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZH+		0.00	0.05	0.05	0.00	0.05	0.00	0.00	0.00	0.05	0.00	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00

HPZCOO		0.00	0.02	0.02	0.00	0.02	0.00	0.00	0.00	0.02	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K2SO4		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SO4-2		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K2SO4-02		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
КОН		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H2SO4		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mole Flow	MOL/H R	633	2011 25	1851 64	6053	2172 97	1551 8	1607 3	1258 9	2310 96	513 8	1894 44	633	1470	1470	1723 4	1695 7	596	1557 7
Mass Flow	KG/HR	16	6229	5942	228	6563	282	295	234	6970	113	6044	16	55	55	407	334	11	287
Volume Flow	CUM/S EC	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	1
Temperature	С	40	83	50	40	117	40	40	40	150	40	50	238	40	271	117	83	50	50
Pressure	КРА	10	47	10	30	190	10	28	30	1216	101	10	47	28	190	190	47	10	10
Vapor Fraction		1	0	0	1	0	0	0	0	0	0	0	1	1	1	1	1	1	1
Liquid Fraction		0	1	1	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0
Solid Fraction		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table D.2 Stream summary for SO_4^{-2} reclaiming by KOH (stoichiometric case $(K^+/SO_4^{-2} = 2) - 60^{\circ}C$

	1	BTMS	BTMS	CO2	FFFD	Н2О	H2O	H2O2	IN	кон	SLUR	v	V1	V2	VENT	VENT	VEN	VENT
	-	2	3	001			1				RY		• -	•=		2	T3	4
From	CON	FLAS	FLAS	CON	FLAS	COND	CON	COND			CRYS	CO	CON	COM	FLAS	FLAS	CRY	FLAS
FIOIII	D1	H2	H3	D3	Н	1	D2	3			Т	MP1	D2	P2	Н	H2	ST	H3
То	CO	FLAS	CRYS		FLAS				FLAS	CRYS		CON	COM	CON	COND	COND	CON	COND
10	MP1	H3	Т		H2				Н	Т		D2	P2	D3	3	2	D1	1
Substream:																		
MIXED																		

Phase:		Vap or	All	All	Vapo r	Liquid	Liquid	Liqui d	Liquid	Liquid	Liqui d	All	All	Vapo r	All	Vapor	Vapor	Vap or	Vapor
Component Mole Fraction																			
H2O		0.45	0.84	0.84	0.25	0.85	1	0.99	0.99	0.85	0.61	0.83	0.45	0.26	0.26	0.77	0.92	0.98	0.98
CO2		0.55	0	0	0.75	0	0	0	0	0	0	0	0.55	0.74	0.74	0.22	0.07	0.02	0.02
HCO3-		0	0	0	0	0.01	0	0	0	0.02	0	0	0	0	0	0	0	0	0
CO3		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H+		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OH-		0	0	0	0	0	0	0	0	0	0.2	0	0	0	0	0	0	0	0
К+		0	0.01	0	0	0.01	0	0	0	0.01	0.2	0.01	0	0	0	0	0	0	0
PZ		0	0.04	0.04	0	0.03	0	0	0	0.02	0	0.04	0	0	0	0	0	0	0
PZCOO-2		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PZCOO-		0	0.04	0.04	0	0.03	0	0	0	0.03	0	0.04	0	0	0	0	0	0	0
PZH+		0	0.05	0.05	0	0.05	0	0	0	0.05	0	0.05	0	0	0	0	0	0	0
HPZCOO		0	0.02	0.02	0	0.02	0	0	0	0.02	0	0.02	0	0	0	0	0	0	0
K2SO4		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SO4-2		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
K2SO4-02		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
кон		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H2SO4		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mole Flow	MOL/ HR	450. 17	2047 35.6	1902 43.2	6266 .71	2189 32.9	1414 5.85	138 70	1097 9.63	2310 96.3	4066 .91	1937 15.6	450. 17	1763 .85	1763 .85	1554 0.05	1523 1.04	398. 2	1422 4.23
Mass Flow	KG/H R	14.5 2	6289. 1	6024. 11	235. 77	6595. 38	257.8 7	255. 28	204.3 7	6970	89.2 3	6105. 94	14.5 2	65.5 3	65.5 3	374.6 2	306.2 9	7.4	264.9 9
Volume Flow	CUM/ SEC	0.02	0	0	0.15	0	0	0	0	0		0	0.01	0.05	0.01	0.07	0.21	0.02	0.67
Temperature	С	40	90	60	40	120	40	40	40	150	40	60.11	196. 34	40	288. 78	120	90	60.1 1	60
Pressure	КРА	16.3 5	61.64	16.35	30	214.5 6	16.35	28	30	1215. 9	101. 33	16.35	61.6 4	28	214. 56	214.5 6	61.64	16.3 5	16.35
Vapor Fraction		1	0	0	1	0	0	0	0	0	0	0	1	1	1	1	1	1	1

Liquid Fraction	0	1	1	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0
Solid Fraction	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table D.3 Stream summary for SO_4^{-2} reclaiming by KOH (stoichiometric case (K⁺/SO₄⁻² = 2) – 70°C

		BTM	BTM				H2O	H2O			SLUR				VEN	VENT	VEN	VENT	
	1	S2	\$3	CO2	FEED	H2O	1	2	IN	кон	RY	V	V1	V2	Т	2	T3	4	
	CON	FLAS	FLAS	CON	FLAS	CON	CON	CON			CRYS	СОМ	CON	СОМ	FLAS	FLAS	CRYS	FLAS	1
From	D1	H2	H3	D3	Н	D1	D2	D3			Т	P1	D2	P2	Н	H2	Т	H3	L
	COM	FLAS	CRYS		FLAS				FLAS	CRY		CON	COM	CON	CON	CON	CON	CON	ł
То	P1	H3	Т		H2				Н	ST		D2	P2	D3	D3	D2	D1	D1	
Substream: MIXED																			
	Vapo	Liqui		Vapo	Liqui	Liqui	Liqui	Liqui	Liqui	Liqu			Vapo		Vapo	Vapo	Vapo	Vapo	1
Phase:	r	d	All	r	d	d	d	d	d	id	All	All	r	All	r	r	r	r	l
Component Mole																			1
Fraction																			1
H2O	0.29	0.84	0.84	0.25	0.85	1	0.99	0.99	0.85	0.61	0.84	0.29	0.26	0.26	0.75	0.91	0.97	0.97	
CO2	0.71	0	0	0.75	0	0	0	0	0	0	0	0.71	0.74	0.74	0.25	0.09	0.03	0.03	
HCO3-	0	0	0	0	0.01	0	0	0	0.02	0	0	0	0	0	0	0	0	0	
CO3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
H+	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
OH-	0	0	0	0	0	0	0	0	0	0.2	0	0	0	0	0	0	0	0	
K+	0	0.01	0.01	0	0.01	0	0	0	0.01	0.2	0.01	0	0	0	0	0	0	0	
PZ	0	0.04	0.04	0	0.03	0	0	0	0.02	0	0.04	0	0	0	0	0	0	0	
PZCOO-2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

PZCOO-		0	0.03	0.04	0	0.03	0	0	0	0.03	0	0.04	0	0	0	0	0	0	0
PZH+		0	0.05	0.05	0	0.05	0	0	0	0.05	0	0.05	0	0	0	0	0	0	0
HPZCOO		0	0.02	0.02	0	0.02	0	0	0	0.02	0	0.02	0	0	0	0	0	0	0
K2SO4		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SO4-2		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
K2SO4-02		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
кон		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H2SO4		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	MOL/	490.	2083	1954		2205	1258	1178		2310	292	1979				1385	1340		1287
Mole Flow	HR	64	31	09	6453	26	2	0	9424	96	5	61	491	2072	2072	7	7	232	1
Mass Flow		17.9	6252	6109	242	6628	220	217	176	6970	64	6169	19	77	77	242	277	4	244
10185511000		0	0352	0108	243	0028	230	217	170	0970	04	0108	10		,,	342	277	4	244
Volume Flow	SEC	0.01	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
Temperature	с	40	97	70	40	123	40	40	40	150	40	70	167	40	307	123	97	70	70
Pressure	КРА	25.9 3	81	26	30	243	26	28	30	1216	101	26	81	28	243	243	81	26	26
Vapor Fraction		1	0	0	1	0	0	0	0	0	0	0	1	1	1	1	1	1	1
Liquid Fraction		0	1	1	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0
Solid Fraction		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table D.4 Stream summary for SO_4^{-2} reclaiming by KOH (stoichiometric case (K⁺/SO₄⁻² = 2) –90°C

		BTM	BTM				H2O	H2O			SLUR					VENT	VENT	VENT
	1	S2	S3	CO2	FEED	H2O	1	2	IN	КОН	RY	V	V1	V2	VENT	2	3	4
	CON	FLAS	FLAS	CON	FLAS	CON	CON	CON			CRYS	COM	CON	COM	FLAS	FLAS	CRYS	FLAS
From	D1	H2	H3	D3	н	D1	D2	D3			т	P1	D2	P2	н	H2	Т	H3
	COM	FLAS	CRYS		FLAS				FLAS	CRY		CON	COM	CON	CON	CON	CON	CON
То	P1	H3	Т		H2				Н	ST		D2	P2	D3	D3	D2	D1	D1
Substream: MIXED																		

Phase: r d All r d<
Component Mole Fraction Image: Mole Fraction Image:
H2O 0.12 0.85 0.84 0.25 0.85 0.99 0.99 0.85 0.61 0.84 0.12 0.26 0.26 0.70 0.85 0.93 0.7 CO2 0.88 0.00 0.00 0.75 0.00<
CO2 0.88 0.00 0.00 0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.88 0.74 0.74 0.30 0.14 0.06 0.00 HCO3- 0.00 0.01 0.00 0.01 0.00 0.
HCO3- 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.02 0.00 </td
CO3 0.00 <t< td=""></t<>
H+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
OH- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
K+ 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.0
PZ 0.00 0.04 0.04 0.00 0.03 0.00 0.00 0.00
PZCOO-2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
PZCOO- 0.00 0.03 0.03 0.00 0.03 0.00 0.00 0.0
PZH+ 0.00 0.05 0.05 0.00 0.05 0.00 0.00 0.0
HPZCOO 0.00 0.02 0.02 0.00 0.02 0.00 0.00 0.
K2SO4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
SO4-2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
K2SO4-02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
КОН 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
H2SO4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
MOL/ 2152 2058 2240 2310 2065 1019
Mole Flow HR 700 60 70 6628 12 9230 8095 6085 96 699 07 700 2759 2759 9991 4 27 99
Mass Flow KG/HR 29 6485 6287 249 6709 170 150 114 6970 15 6302 29 103 103 261 224 1 15
Volumentow LC 0 <th< td=""></th<>
Prossure KPA 61 128 61 20 227 61 28 20 126 101 61 128 28 27 227 227 128 61 6
Flessure NFA 01 150 01 50 527 01 20 50 1210 101 01 150 28 327 327 138 01 0 Vanor Eraction 1 0 0 1 0 0 0 0 0 1 <td< td=""></td<>

Table D.5 Stream summary for SO_4^{-2} reclaiming by KOH (stoichiometric case (K⁺/SO₄⁻² = 2) -100°C

			BTM	BTM				H2O	H2O			SLUR					VENT	VENT	VENT
		1	S2	S3	CO2	FEED	H2O	1	2	IN	КОН	RY	V	V1	V2	VENT	2	3	4
		CON	FLAS	FLAS	CON	FLAS	CON	CON	CON			CRYS	COM	CON	COM	FLAS	FLAS	CRYS	FLAS
From		D1	H2	H3	D3	H	D1	D2	D3			Т	P1	D2	P2	Н	H2	Т	H3
Ta		COM	FLAS	CRYS		FLAS				FLAS	CRY		CON	COM	CON	CON	CON	CON	CON
10		PI	H3	1		HZ				н	51		DZ	PZ	D3	D3	DZ	DI	DI
Substream: MIXED		Mana	Liqui	Liqui	Vana	Liqui	Liqui	Liqui	Liqui	Liqui	Linu	Liqui		Vana		Vana	Vana	Vana	Vana
Phase:		vapo r	d	d	vapo r	d	d	d	d	d	id	d	All	vapo r	All	vapo r	vapo r	vapo r	r
Component Mole Fraction																			
H2O		0.08	0.85	0.85	0.25	0.85	0.99	0.99	0.99	0.85	0.61	0.85	0.08	0.26	0.26	0.66	0.82	0.90	0.90
CO2		0.92	0.00	0.00	0.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.92	0.74	0.74	0.34	0.18	0.09	0.09
HCO3-		0.00	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO3		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H+		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OH-		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K+		0.00	0.01	0.01	0.00	0.01	0.00	0.00	0.00	0.01	0.20	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZ		0.00	0.04	0.04	0.00	0.03	0.00	0.00	0.00	0.02	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZCOO-2		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZCOO-		0.00	0.03	0.03	0.00	0.03	0.00	0.00	0.00	0.03	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZH+		0.00	0.05	0.04	0.00	0.05	0.00	0.00	0.00	0.05	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HPZCOO		0.00	0.02	0.02	0.00	0.02	0.00	0.00	0.00	0.02	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K2SO4		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SO4-2		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K2SO4-02		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
КОН		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H2SO4		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	MOL/		2185	2109		2255				2310		2109							
Mole Flow	HR	821	91	74	6573	19	7554	6183	4664	96	1	69	821	3013	3013	8253	8410	6	8401
Mass Flow	KG/HR	34	6554	6380	247	6747	140	115	87	6970	0	6380	34	112	112	223	193	0	174
Volume Flow	CUM/S EC	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
Temperature	С	40	117	100	40	133	40	40	40	150	40	100	110	40	378	133	117	100	100
Pressure	KPA	92	181	92	30	381	92	28	30	1216	101	92	181	28	381	381	181	92	92
Vapor Fraction		1	0	0	1	0	0	0	0	0	0	0	1	1	1	1	1	1	1
Liquid Fraction		0	1	1	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0

			BTM	BTM				H2O	H2O			SLUR					VENT	VENT	VENT
		1	S2	S3	CO2	FEED	H2O	1	2	IN	КОН	RY	V	V1	V2	VENT	2	3	4
		CON	FLAS	FLAS	CON	FLAS	CON	CON	CON			CRYS	COM	CON	COM	FLAS	FLAS	CRYS	FLAS
From		D1	H2	H3	D3	Н	D1	D2	D3			Т	P1	D2	P2	Н	H2	Т	H3
_		COM	FLAS	CRYS		FLAS				FLAS	CRY		CON	COM	CON	CON	CON	CON	CON
То		P1	H3	T		H2				Н	ST		D2	P2	D3	D3	D2	D1	D1
Substream: MIXED																			i
Dhasa		Vapo			Vapo		Liqui	Liqui	Liqui	Liqui	Liqu			Vapo		Vapo	Vapo	Vapo	Vapo
Phase:		r	All	All	r	All	a	a	a	a	Id	All	All	r	All	r	r	r	r
Eraction																			
H2O		0 74	0.84	0.84	0.25	0.85	1.00	1.00	0 99	0.85	0.61	0.83	0 74	0.26	0.26	0.77	0.94	0 99	0.99
CO2		0.26	0.00	0.00	0.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.26	0.74	0.74	0.22	0.06	0.01	0.01
HCO3-		0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO3		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H+		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OH-		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K+		0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.20	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZ		0.00	0.04	0.04	0.00	0.03	0.00	0.00	0.00	0.02	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZCOO-2		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZCOO-		0.00	0.04	0.04	0.00	0.03	0.00	0.00	0.00	0.03	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZH+		0.00	0.05	0.05	0.00	0.05	0.00	0.00	0.00	0.05	0.00	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HPZCOO		0.00	0.02	0.02	0.00	0.02	0.00	0.00	0.00	0.02	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K2SO4		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SO4-2		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K2SO4-02		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
КОН		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H2SO4		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	MOL/		2017	1860		2181	1590	1599	1195	2314	872	1929				1692	1692		1545
Mole Flow	HR	714	49	65	6500	50	3	7	6	73	3	02	714	1593	1593	3	1	1185	5
Mass Flow	KG/HR	18	6263	5978	245	6598	289	293	222	7005	191	6147	18	59	59	408	335	22	285

Та	hle D 6 Stream summary	for SO-2 red	laiming by	KOH (av case	SO^{-2} case	$(K^{+}/SO)^{-2} - 1$	3) 50°C
1 a	Die D.0 Sucam summary	101 504 100	ianning Uy .	KOII (CACCSS	504 case	(K / 504 - 1)	

	CUM/S									1									
Volume Flow	EC	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	1
Temperature	С	40	83	50	40	117	40	40	40	150	40	50	239	40	274	117	83	50	50
Pressure	KPA	10	47	10	30	194	10	28	30	1216	101	10	47	28	194	194	47	10	10
Vapor Fraction		1	0	0	1	0	0	0	0	0	0	0	1	1	1	1	1	1	1
Liquid Fraction		0	1	1	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0
Solid Fraction		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table D.7 Stream summary for SO_4^{-2} reclaiming by KOH (excess SO_4^{-2} case (K⁺/SO₄⁻² = 1.3) -60°C

		BTM	BTM				H2O	H2O			SLUR					VENT	VENT	VENT
	1	S2	S3	CO2	FEED	H2O	1	2	IN	КОН	RY	V	V1	V2	VENT	2	3	4
	CON	FLAS	FLAS	CON	FLAS	CON	CON	CON			CRYS	COM	CON	COM	FLAS	FLAS	CRYS	FLAS
From	D1	H2	H3	D3	Н	D1	D2	D3			Т	P1	D2	P2	Н	H2	Т	H3
	СОМ	FLAS	CRYS		FLAS				FLAS	CRY		CON	COM	CON	CON	CON	CON	CON
То	P1	H3	Т		H2				Н	ST		D2	P2	D3	D3	D2	D1	D1
Substream: MIXED																		
	Vapo			Vapo		Liqui	Liqui	Liqui	Liqui	Liqu			Vapo		Vapo	Vapo	Vapo	Vapo
Phase:	r	All	All	r	All	d	d	d	d	id	All	All	r	All	r	r	r	r
Component Mole																		
Fraction																		
H2O	0.45	0.84	0.84	0.25	0.85	1.00	0.99	0.99	0.85	0.61	0.84	0.45	0.26	0.26	0.75	0.92	0.98	0.98
CO2	0.55	0.00	0.00	0.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.55	0.74	0.74	0.24	0.08	0.02	0.02
HCO3-	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H+	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OH-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K+	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.20	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZ	0.00	0.04	0.04	0.00	0.03	0.00	0.00	0.00	0.02	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZCOO-2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZCOO-	0.00	0.03	0.04	0.00	0.03	0.00	0.00	0.00	0.03	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZH+	0.00	0.05	0.05	0.00	0.05	0.00	0.00	0.00	0.05	0.00	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HPZCOO	0.00	0.02	0.02	0.00	0.02	0.00	0.00	0.00	0.02	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K2SO4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SO4-2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K2SO4-02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
КОН	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

H2SO4		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	MOL/		2053	1910		2198	1447	1374	1035	2314	762	1972				1523	1519		1412
Mole Flow	HR	500	27	80	6724	16	0	8	9	73	3	42	500	1905	1905	3	9	873	4
Mass Flow	KG/HR	16	6323	6059	253	6630	264	253	193	7005	167	6210	16	71	71	375	308	16	264
	CUM/S																		
Volume Flow	EC	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	1
Temperature	С	40	90	60	40	120	40	40	40	150	40	60	197	40	292	120	90	60	60
Pressure	KPA	16	62	16	30	219	16	28	30	1216	101	16	62	28	219	219	62	16	16
Vapor Fraction		1	0	0	1	0	0	0	0	0	0	0	1	1	1	1	1	1	1
Liquid Fraction		0	1	1	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0
Solid Fraction		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table D.8 Stream summary for SO_4^{-2} reclaiming by KOH (excess SO_4^{-2} case (K⁺/SO₄⁻² = 1.3) – 70°C

	1	BTM	BTM	CO2	FEED	H2O	H2O	H2O	IN	КОН	SLUR	V	V1	V2	VENT	VENT	VENT	VENT
		S2	S3				1	2			RY					2	3	4
From	CON	FLAS	FLAS	CON	FLAS	CON	CON	CON			CRYS	COM	CON	COM	FLAS	FLAS	CRYS	FLAS
	D1	H2	H3	D3	Н	D1	D2	D3			Т	P1	D2	P2	Н	H2	Т	H3
То	COM	FLAS	CRYS		FLAS				FLAS	CRY		CON	COM	CON	CON	CON	CON	CON
	P1	H3	Т		H2				Н	ST		D2	P2	D3	D3	D2	D1	D1
Substream: MIXED																		
Phase:	Vapo	All	All	Vapo	Liqui	Liqui	Liqui	Liqui	Liqui	Liqu	All	All	Vapo	All	Vapo	Vapo	Vapo	Vapo
	r			r	d	d	d	d	d	id			r		r	r	r	r
Component Mole																		
Fraction																		
H2O	0.28	0.85	0.84	0.25	0.85	1.00	0.99	0.99	0.85	0.61	0.84	0.28	0.26	0.26	0.73	0.90	0.97	0.97
CO2	0.72	0.00	0.00	0.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.72	0.74	0.74	0.27	0.10	0.03	0.03
HCO3-	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H+	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OH-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K+	0.00	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.20	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZ	0.00	0.04	0.04	0.00	0.03	0.00	0.00	0.00	0.02	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZCOO-2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZCOO-	 0.00	0.03	0.04	0.00	0.03	0.00	0.00	0.00	0.03	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZH+	0.00	0.05	0.05	0.00	0.05	0.00	0.00	0.00	0.05	0.00	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00

PZH+2		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HPZCOO		0.00	0.02	0.02	0.00	0.02	0.00	0.00	0.00	0.02	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K2SO4		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SO4-2		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K2SO4-02		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
КОН		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H2SO4		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mole Flow	MOL/	539	2090	1962	6919	2214	1281	1159	8822	2314	645	2015	539	2234	2234	1355	1333	589	1279
	HR		06	16		18	7	3		73	2	98				6	2		8
Mass Flow	KG/HR	20	6386	6143	260	6663	234	214	165	7005	142	6274	20	83	83	342	277	11	243
Volume Flow	CUM/S	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
Tomporaturo	C	40	07	70	40	172	40	40	40	150	40	70	160	40	211	172	07	70	70
Temperature	Ľ	40	97	70	40	125	40	40	40	150	40	70	100	40	511	125	97	70	70
Pressure	KPA	26	82	26	30	249	26	28	30	1216	101	26	82	28	249	249	82	26	26
Vapor Fraction		1	0	0	1	0	0	0	0	0	0	0	1	1	1	1	1	1	1
Liquid Fraction		0	1	1	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0
Solid Fraction		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table D.8 Stream summary for SO_4^{-2} reclaiming by KOH (excess SO_4^{-2} case (K⁺/SO₄⁻² = 1.3) -90°C

		BTM	BTM				H2O	H2O			SLUR					VENT	VENT	VENT
	1	S2	S3	CO2	FEED	H2O	1	2	IN	КОН	RY	V	V1	V2	VENT	2	3	4
	CON	FLAS	FLAS	CON	FLAS	CON	CON	CON			CRYS	COM	CON	COM	FLAS	FLAS	CRYS	FLAS
From	D1	H2	H3	D3	Н	D1	D2	D3			Т	P1	D2	P2	Н	H2	Т	H3
	COM	FLAS	CRYS		FLAS				FLAS	CRY		CON	СОМ	CON	CON	CON	CON	CON
То	P1	H3	Т		H2				н	ST		D2	P2	D3	D3	D2	D1	D1
Substream: MIXED																		
	Vapo			Vapo	Liqui	Liqui	Liqui	Liqui	Liqui	Liqu			Vapo		Vapo	Vapo	Vapo	Vapo
Phase:	r	All	All	r	d	d	d	d	d	id	All	All	r	All	r	r	r	r
Component Mole																		
Fraction																		
H2O	0.12	0.85	0.85	0.25	0.85	0.99	0.99	0.99	0.85	0.61	0.85	0.12	0.26	0.26	0.67	0.84	0.93	0.93
CO2	0.88	0.00	0.00	0.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.88	0.74	0.74	0.33	0.15	0.06	0.07
HCO3-	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H+	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OH-	 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

K+		0.00	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.20	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZ		0.00	0.04	0.04	0.00	0.03	0.00	0.00	0.00	0.02	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZCOO-2		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZCOO-		0.00	0.03	0.03	0.00	0.03	0.00	0.00	0.00	0.03	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZH+		0.00	0.05	0.04	0.00	0.05	0.00	0.00	0.00	0.05	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HPZCOO		0.00	0.02	0.02	0.00	0.02	0.00	0.00	0.00	0.02	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K2SO4		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SO4-2		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K2SO4-02		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
кон		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H2SO4		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	MOL/		2160	2065		2248				2314	418	2102					1008		
Mole Flow	HR	754	86	35	7120	11	9294	7838	5579	73	5	49	754	2957	2957	9777	1	169	9911
Mass Flow	KG/HR	31	6518	6319	268	6743	171	146	104	7005	92	6408	31	110	110	262	225	3	199
	CUM/S																		
Volume Flow	EC	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
Temperature	С	40	110	90	40	130	40	40	40	150	40	90	127	40	360	130	110	90	90
Pressure	KPA	61	140	61	30	340	61	28	30	1216	101	61	140	28	340	340	140	61	61
Vapor Fraction		1	0	0	1	0	0	0	0	0	0	0	1	1	1	1	1	1	1
Liquid Fraction		0	1	1	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0
Solid Fraction		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table D.9 Stream summary for SO_4^{-2} reclaiming by KOH (excess SO_4^{-2} case (K⁺/SO₄⁻² = 1.3) -100°C

	1	BTM	BTM	CO2	FEED	H2O	H2O	H2O	IN	КОН	SLUR	V	V1	V2	VENT	VENT	VENT	VENT
		S2	S3				1	2			RY					2	3	4
From	CON	FLAS	FLAS	CON	FLAS	CON	CON	CON			CRYS	COM	CON	COM	FLAS	FLAS	CRYS	FLAS
	D1	H2	H3	D3	Н	D1	D2	D3			Т	P1	D2	P2	Н	H2	Т	H3
То	COM	FLAS	CRYS		FLAS				FLAS	CRY		CON	COM	CON	CON	CON	CON	CON
	P1	H3	Т		H2				Н	ST		D2	P2	D3	D3	D2	D1	D1
Substream: MIXED																		
Phase:	Vapo	All	All	Vapo	Liqui	Liqui	Liqui	Liqui	Liqui	Liqu	All	All	Vapo	All	Vapo	Vapo	Vapo	Vapo
	r			r	d	d	d	d	d	id			r		r	r	r	r
Component Mole																		
Fraction																		
H2O	0.08	0.85	0.85	0.25	0.85	0.99	0.99	0.99	0.85	0.61	0.85	0.08	0.26	0.26	0.63	0.80	0.90	0.89
CO2	0.92	0.00	0.00	0.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.92	0.74	0.74	0.36	0.20	0.09	0.10

HCO3-		0.00	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO3		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H+		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OH-		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K+		0.00	0.01	0.01	0.00	0.01	0.00	0.00	0.00	0.01	0.20	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZ		0.00	0.04	0.04	0.00	0.03	0.00	0.00	0.00	0.02	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZCOO-2		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZCOO-		0.00	0.03	0.03	0.00	0.03	0.00	0.00	0.00	0.03	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZH+		0.00	0.05	0.04	0.00	0.05	0.00	0.00	0.00	0.05	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HPZCOO		0.00	0.02	0.02	0.00	0.02	0.00	0.00	0.00	0.02	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K2SO4		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SO4-2		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K2SO4-02		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
КОН		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H2SO4		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mole Flow	MOL/	884	2194	2117	6994	2262	7456	5869	4250	2314	306	2145	884	3246	3246	8026	8264	37	8335
	HR		96	26		53				73	2	14							
Mass Flow	KG/HR	37	6590	6416	263	6783	138	110	80	7005	67	6482	37	121	121	222	193	1	174
Volume Flow	CUM/S	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
	EC																		
Temperature	С	40	117	100	40	133	40	40	40	150	40	100	111	40	384	133	117	100	100
Pressure	KPA	92	184	92	30	396	92	28	30	1216	101	92	184	28	396	396	184	92	92
Vapor Fraction		1	0	0	1	0	0	0	0	0	0	0	1	1	1	1	1	1	1
Liquid Fraction		0	1	1	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0
Solid Fraction		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table D.10 Stream summary for SO_4^{-2} reclaiming by KOH (excess K⁺ case (K⁺/SO₄⁻² = 2.5) – 50°C

		BTM	BTM				H2O	H2O			SLUR					VENT	VENT	VENT
	1	S2	S3	CO2	FEED	H2O	1	2	IN	КОН	RY	V	V1	V2	VENT	2	3	4
	CON	FLAS	FLAS	CON	FLAS	CON	CON	CON			CRYS	COM	CON	COM	FLAS	FLAS	CRYS	FLAS
From	D1	H2	H3	D3	н	D1	D2	D3			т	P1	D2	P2	Н	H2	Т	H3
	COM	FLAS	CRYS		FLAS				FLAS	CRY		CON	COM	CON	CON	CON	CON	CON
То	P1	H3	т		H2				н	ST		D2	P2	D3	D3	D2	D1	D1
Substream: MIXED																		
	Vapo			Vapo	Liqui	Liqui	Liqui	Liqui	Liqui	Liqu			Vapo		Vapo	Vapo	Vapo	Vapo
Phase:	r	All	All	r	d	d	d	d	d	id	All	All	r	All	r	r	r	r

Component Mole Fraction																			
H2O		0.74	0.84	0.83	0.25	0.85	1.00	1.00	0.99	0.85	0.61	0.83	0.74	0.26	0.26	0.80	0.94	0.99	0.99
CO2		0.26	0.00	0.00	0.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.26	0.74	0.74	0.20	0.05	0.01	0.01
HCO3-		0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO3		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H+		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OH-		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
К+		0.00	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.20	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZ		0.00	0.04	0.04	0.00	0.03	0.00	0.00	0.00	0.02	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZCOO-2		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZCOO-		0.00	0.04	0.04	0.00	0.03	0.00	0.00	0.00	0.03	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZH+		0.00	0.05	0.05	0.00	0.05	0.00	0.00	0.00	0.05	0.00	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HPZCOO		0.00	0.02	0.02	0.00	0.02	0.00	0.00	0.00	0.02	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K2SO4		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SO4-2		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K2SO4-02		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
КОН		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H2SO4		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	MOL/		2015	1853		2178	1552	1615	1279	2318	507	1898				1733	1701		1566
Mole Flow	HR	601	37	75	5883	39	4	1	3	09	4	68	601	1412	1412	0	0	482	4
Mass Flow	KG/HR	15	6249	5961	221	6583	282	296	238	6990	111	6063	15	52	52	407	334	9	288
	CUM/S	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	1
Tomporature		0	0	50	10	117	10	10	10	150	40	50	229	0	260	117	0	50	1
Dressure		40	83	50	40	117	40	40	40	1210	40	50	238	40	209	117	83	50	50
Vapar Fractice	КРА	10	47	10	30	0	10	28	30	1210	101	10	47	28	188	188	47	10	10
vapor Fraction		1	0	0	1	0	0	0	0	0	0	0	1	1	1	1	1	1	1
		0	1	1	0	1	1	1	1	1		1	0	0	0	0	0	0	0
Solid Fraction		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table D.11 Stream summary for SO_4^{-2} reclaiming by KOH (excess K⁺ case (K⁺/SO₄⁻² = 2.5) -60°C

	1	BTM S2	BTM S3	CO2	FEED	H2O	H2O 1	H2O 2	IN	КОН	SLUR RY	v	V1	V2	VENT	VENT 2	VENT 3	VENT 4
From	CON D1	FLAS H2	FLAS H3	CON D3	FLAS H	CON D1	CON D2	CON D3			CRYS T	COM P1	CON D2	COM P2	FLAS H	FLAS H2	CRYS T	FLAS H3

То		COM P1	FLAS H3	CRYS T		FLAS H2				FLAS H	CRY ST		CON D2	COM P2	CON D3	CON D3	CON D2	CON D1	CON D1
Substream: MIXED			115										02		23		02		
Phase:		Vapo r	All	All	Vapo r	Liqui d	Liqui d	Liqui d	Liqui d	Liqui d	Liqu id	All	All	Vapo r	All	Vapo r	Vapo r	Vapo r	Vapo r
Component Mole Fraction																			
H2O		0.45	0.84	0.84	0.25	0.85	1.00	0.99	0.99	0.85	0.61	0.83	0.45	0.26	0.26	0.78	0.93	0.98	0.98
CO2		0.55	0.00	0.00	0.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.55	0.74	0.74	0.22	0.07	0.02	0.02
HCO3-		0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO3		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H+		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OH-		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K+		0.00	0.01	0.01	0.00	0.01	0.00	0.00	0.00	0.01	0.20	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZ		0.00	0.04	0.04	0.00	0.03	0.00	0.00	0.00	0.02	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZCOO-2		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZCOO-		0.00	0.04	0.04	0.00	0.03	0.00	0.00	0.00	0.03	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZH+		0.00	0.05	0.05	0.00	0.05	0.00	0.00	0.00	0.05	0.00	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HPZCOO		0.00	0.02	0.02	0.00	0.02	0.00	0.00	0.00	0.02	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K2SO4		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SO4-2		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K2SO4-02		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
КОН		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H2SO4		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mole Flow	MOL/ HR	429	2051 93	1905 19	6092	2194 87	1414 9	1394 8	1117 0	2318 09	393 8	1941 04	429	1694	1694	1562 9	1526 2	306	1429 9
Mass Flow	KG/HR	14	6310	6044	229	6616	258	257	208	6990	86	6124	14	63	63	374	306	6	266
Volume Flow	CUM/S EC	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	1
Temperature	С	40	90	60	40	120	40	40	40	150	40	60	196	40	287	120	90	60	60
Pressure	KPA	16	61	16	30	212	16	28	30	1216	101	16	61	28	212	212	61	16	16
Vapor Fraction		1	0	0	1	0	0	0	0	0	0	0	1	1	1	1	1	1	1
Liquid Fraction		0	1	1	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0
Solid Fraction		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table D.12 Stream summary for SO_4^{-2} reclaiming by KOH (excess K⁺ case (K⁺/SO₄⁻² = 2.5) – 70°C

			BTM	BTM				H2O	H2O			SLUR					VENT	VENT	VENT
		1	S2	S3	CO2	FEED	H2O	1	2	IN	КОН	RY	V	V1	V2	VENT	2	3	4
		CON	FLAS	FLAS	CON	FLAS	CON	CON	CON			CRYS	COM	CON	COM	FLAS	FLAS	CRYS	FLAS
From		D1	H2	H3	D3	Н	D1	D2	D3			Т	P1	D2	P2	Н	H2	Т	H3
т.		COM	FLAS	CRYS		FLAS				FLAS	CRY		CON	COM	CON	CON	CON	CON	CON
10		PI	H3	1		HZ				н	51		DZ	PZ	D3	D3	DZ	DI	DI
Substream: MIXED		Maria	Linui		Mana	1.1	1.1.4.1	1 tau st	1.1	1.1.4.1.1	1.1.1.1.1	1		Maria		Maria	Maria	Mana	Mana
Phase:		vapo r	d	All	vapo r	d	d	d	d	d	id	All	All	vapo r	All	vapo r	vapo r	vapo r	r
Component Mole Fraction																			
H2O		0.29	0.84	0.84	0.25	0.85	1.00	0.99	0.99	0.85	0.61	0.84	0.29	0.26	0.26	0.76	0.91	0.97	0.97
CO2		0.71	0.00	0.00	0.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.71	0.74	0.74	0.24	0.09	0.03	0.03
HCO3-		0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO3		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H+		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OH-		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K+		0.00	0.01	0.01	0.00	0.01	0.00	0.00	0.00	0.01	0.20	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZ		0.00	0.04	0.04	0.00	0.03	0.00	0.00	0.00	0.02	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZCOO-2		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZCOO-		0.00	0.03	0.04	0.00	0.03	0.00	0.00	0.00	0.03	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZH+		0.00	0.05	0.05	0.00	0.05	0.00	0.00	0.00	0.05	0.00	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HPZCOO		0.00	0.02	0.02	0.00	0.02	0.00	0.00	0.00	0.02	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K2SO4		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SO4-2		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K2SO4-02		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
КОН		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H2SO4		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	MOL/		2087	1957		2210	1259	1190		2318	278	1982				1393	1347		1292
Mole Flow	HR	469	91	10	6276	93	4	2	9600	09	0	99	469	1992	1992	8	4	169	5
Mass Flow	KG/HR	17	6372	6128	236	6649	230	220	179	6990	61	6186	17	74	74	341	277	3	244
Volume Flow	CUM/S EC	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
Temperature	С	40	97	70	40	123	40	40	40	150	40	70	167	40	305	123	97	70	70
Pressure	КРА	26	81	26	30	240	26	28	30	1216	101	26	81	28	240	240	81	26	26
Vapor Fraction		1	0	0	1	0	0	0	0	0	0	0	1	1	1	1	1	1	1
Liquid Fraction		0	1	1	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0

			BTM	BTM				H2O	H2O			SLUR					VENT	VENT	VENT
		1	S2	S3	CO2	FEED	H2O	1	2	IN	КОН	RY	V	V1	V2	VENT	2	3	4
_		CON	FLAS	FLAS	CON	FLAS	CON	CON	CON			CRYS	COM	CON	COM	FLAS	FLAS	CRYS	FLAS
From		D1	H2	H3	D3	Н	D1	D2	D3			Т	P1	D2	P2	Н	H2	Т	H3
Ta		COM	FLAS	CRYS		FLAS				FLAS	CRY		CON	COM	CON	CON	CON	CON	CON
		PI	H3	1		HZ				н	51		DZ	PZ	D3	D3	DZ	DI	DI
Substream: MIXED		Mana	Liqui		Vana	Liqui	Liqui	Liqui	Liqui	Liqui	Liqu			Vana		Mana	Vana	Vana	Vana
Phase:		vapo r	d	All	vapo r	d	d	d	d	d	id	All	All	vapo r	All	vapo r	vapo r	vapo r	vapo r
Component Mole		-	-			-		-	-	-				-		-			
Fraction																			
H2O		0.12	0.85	0.84	0.25	0.85	0.99	0.99	0.99	0.85	0.61	0.84	0.12	0.26	0.26	0.70	0.86	0.93	0.93
CO2		0.88	0.00	0.00	0.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.88	0.74	0.74	0.30	0.14	0.06	0.06
HCO3-		0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO3		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H+		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OH-		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
К+		0.00	0.01	0.01	0.00	0.01	0.00	0.00	0.00	0.01	0.20	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZ		0.00	0.04	0.04	0.00	0.03	0.00	0.00	0.00	0.02	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZCOO-2		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZCOO-		0.00	0.03	0.03	0.00	0.03	0.00	0.00	0.00	0.03	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZH+		0.00	0.05	0.05	0.00	0.05	0.00	0.00	0.00	0.05	0.00	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZH+2		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HPZCOO		0.00	0.02	0.02	0.00	0.02	0.00	0.00	0.00	0.02	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K2SO4		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SO4-2		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K2SO4-02		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
КОН		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H2SO4		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	MOL/		2157	2063		2246				2318		2070				1005	1025		
Mole Flow	HR	671	79	10	6485	27	9270	8213	6200	09	727	12	671	2665	2665	9	0	20	9956

Table D.13 Stream summary for SO_4^{-2} reclaiming by KOH (excess K⁺ case (K⁺/SO₄⁻² = 2.5) – 90°C

Mass Flow	KG/HR	27	6505	6307	244	6729	171	153	116	6990	16	6322	27	99	99	261	224	0	198
	CUM/S																		
Volume Flow	EC	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
Temperature	С	40	110	90	40	130	40	40	40	150	40	90	126	40	351	130	110	90	90
Pressure	КРА	61	137	61	30	323	61	28	30	1216	101	61	137	28	323	323	137	61	61
Vapor Fraction		1	0	0	1	0	0	0	0	0	0	0	1	1	1	1	1	1	1
Liquid Fraction		0	1	1	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0
Solid Fraction		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table D.14 Stream summary for SO_4^{-2} reclaiming by KOH (excess K⁺ case (K⁺/SO₄⁻² = 2.5) – 100°C

		BTM	BTM				H2O	H2O			SLUR					VENT	VENT	VENT
	1	S2	S3	CO2	FEED	H2O	1	2	IN	КОН	RY	V	V1	V2	VENT	2	3	4
	CON	FLAS	FLAS	CON	FLAS	CON	CON	CON			CRYS	COM	CON	COM	FLAS	FLAS	CRYS	FLAS
From	D1	H2	H3	D3	Н	D1	D2	D3			Т	P1	D2	P2	Н	H2	Т	H3
	COM	FLAS	CRYS		FLAS				FLAS	CRY		CON	COM	CON	CON	CON	CON	CON
То	P1	H3	Т		H2				Н	ST		D2	P2	D3	D3	D2	D1	D1
Substream: MIXED																		
	Vapo	Liqui	Liqui	Vapo	Liqui	Liqui	Liqui	Liqui	Liqui	Liqu	Liqui		Vapo		Vapo	Vapo	Vapo	Vapo
Phase:	r	d	d	r	d	d	d	d	d	id	d	All	r	All	r	r	r	r
Component Mole Fraction																		
H2O	0.08	0.85	0.84	0.25	0.85	0.99	0.99	0.99	0.85	0.61	0.84	0.08	0.26	0.26	0.67	0.82	0.90	0.91
CO2	0.92	0.00	0.00	0.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.92	0.74	0.74	0.33	0.17	0.09	0.09
HCO3-	0.00	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H+	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
OH-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K+	0.00	0.01	0.01	0.00	0.01	0.00	0.00	0.00	0.01	0.20	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZ	0.00	0.04	0.04	0.00	0.03	0.00	0.00	0.00	0.02	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZCOO-2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZCOO-	0.00	0.03	0.03	0.00	0.03	0.00	0.00	0.00	0.03	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PZH+	0.00	0.05	0.04	0.00	0.05	0.00	0.00	0.00	0.05	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HPZCOO	0.00	0.02	0.02	0.00	0.02	0.00	0.00	0.00	0.02	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K2SO4	 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SO4-2	 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K2SO4-02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

кон		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
H2SO4		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	MOL/		2191	2114		2261				2318		2114							
Mole Flow	HR	795	60	99	6415	61	7600	6276	4758	09	1	95	795	2932	2932	8272	8451	6	8422
Mass Flow	KG/HR	33	6576	6402	241	6768	141	117	89	6990	0	6401	33	109	109	222	193	0	174
	CUM/S																		
Volume Flow	EC	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
Temperature	С	40	117	100	40	133	40	40	40	150	40	100	110	40	375	133	117	100	100
Pressure	KPA	91	180	91	30	376	91	28	30	1216	101	91	180	28	376	376	180	91	91
Vapor Fraction		1	0	0	1	0	0	0	0	0	0	0	1	1	1	1	1	1	1
Liquid Fraction		0	1	1	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0
Solid Fraction		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table D.15 Stream summary for SO_4^{-2} reclaiming by NaOH (stoichiometric case (Na⁺/SO₄⁻² = 2) – 50°C

		BTM	BTM				H2O	H2O		NAO	SLUR				VEN	VENT	VEN	VENT
	1	S2	S3	CO2	FEED	H20	1	2	IN	Н	RY	V	V1	V2	Т	2	T3	4
	CON	FLAS	FLAS	CON	FLAS	CON	CON	CON			CRYS	COM	CON	COM	FLAS	FLAS	CRYS	FLAS
From	D1	H2	H3	D3	Н	D1	D2	D3			TL	P1	D2	P2	Н	H2	TL	H3
	COM	FLAS	CRYS		FLAS				FLAS	CRYS		CON	COM	CON	CON	CON	CON	CON
То	P1	H3	TL		H2				Н	TL		D2	P2	D3	D3	D2	D1	D1
Substream: MIXED																		
	Vapo			Vapo	Liqui	Liqui	Liqui	Liqui	Liqui	Liqui			Vapo		Vapo	Vapo	Vapo	Vapo
Phase:	r	All	All	r	d	d	d	d	d	d	All	All	r	All	r	r	r	r
Component Mole Fraction																		
H2O	0.86	0.76	0.74	0.25	0.77	1	0.99	0.99	0.77	0.32	0.74	0.86	0.26	0.26	0.84	0.96	0.99	0.99
CO2	0.14	0	0	0.75	0	0	0	0	0	0	0	0.14	0.74	0.74	0.15	0.04	0.01	0.01
HCO3-	0	0	0	0	0	0	0	0	0.01	0	0	0	0	0	0	0	0	0
CO3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H+	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OH-	0	0	0	0	0	0	0	0	0	0.34	0	0	0	0	0	0	0	0
PZ	0	0.01	0.01	0	0.01	0	0	0	0	0	0.02	0	0	0	0	0	0	0
PZCOO-2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PZCOO-	0	0.05	0.06	0	0.05	0	0	0	0.04	0	0.06	0	0	0	0	0	0	0
PZH+	0	0.06	0.06	0	0.05	0	0	0	0.05	0	0.06	0	0	0	0	0	0	0
HPZCOO	 0	0.01	0.01	0	0.01	0	0	0	0.01	0	0	0	0	0	0	0	0	0

SO4-2		0	0.04	0.04	0	0.03	0	0	0	0.03	0	0.04	0	0	0	0	0	0	0
NA2SO-01		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NA+		0	0.07	0.08	0	0.07	0	0	0	0.07	0.34	0.08	0	0	0	0	0	0	0
NA2SO-02		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H2SO4		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NAOH		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	MOL/		2193	2030		2377	1614	1814	1505	2537		2041				1877	1835		1659
Mole Flow	HR	825	82	37	4611	25	7	4	9	69	1517	79	825	972	972	4	1	406	3
Mass Flow	KG/HR	18	7251	6947	173	7603	294	334	280	8021	29	6969	18	36	36	417	352	7	305
	CUM/																		
Volume Flow	SEC	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	1
Temperature	С	40	83	50	40	117	40	40	40	150	40	50	248	40	248	117	83	50	50
Pressure	KPA	9	41	9	30	161	9	28	30	1621	101	9	41	28	161	161	41	9	9
Vapor Fraction		1	0	0	1	0	0	0	0	0	0	0	1	1	1	1	1	1	1
Liquid Fraction		0	1	1	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0
Solid Eraction	1		•	-	0	•			•			0	0		0	0	0	0	0

Table D.16 Stream summary for SO_4^{-2} reclaiming by NaOH (stoichiometric case (Na⁺/SO₄⁻² = 2) – 60°C

		BTM	BTM				H2O	H2O		NAO	SLUR				VEN	VENT	VEN	VENT
	1	S2	S3	CO2	FEED	H20	1	2	IN	Н	RY	V	V1	V2	Т	2	Т3	4
	CON	FLAS	FLAS	CON	FLAS	CON	CON	CON			CRYS	СОМ	CON	СОМ	FLAS	FLAS	CRYS	FLAS
From	D1	H2	H3	D3	Н	D1	D2	D3			TL	P1	D2	P2	Н	H2	TL	H3
	COM	FLAS	CRYS		FLAS				FLAS	CRYS		CON	COM	CON	CON	CON	CON	CON
То	P1	H3	TL		H2				н	TL		D2	P2	D3	D3	D2	D1	D1
Substream: MIXED																		
	Vapo			Vapo	Liqui	Liqui	Liqui	Liqui	Liqui	Liqui			Vapo		Vapo	Vapo	Vapo	Vapo
Phase:	r	All	All	r	d	d	d	d	d	d	All	All	r	All	r	r	r	r
Component Mole																		
Fraction																		
H2O	0.52	0.76	0.74	0.25	0.77	1	0.99	0.99	0.77	0.32	0.74	0.52	0.26	0.26	0.83	0.95	0.99	0.99
CO2	0.48	0	0	0.75	0	0	0	0	0	0	0	0.48	0.74	0.74	0.17	0.04	0.01	0.01
HCO3-	0	0	0	0	0	0	0	0	0.01	0	0	0	0	0	0	0	0	0
CO3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H+	 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OH-	0	0	0	0	0	0	0	0	0	0.34	0	0	0	0	0	0	0	0
PZ	 0	0.01	0.01	0	0.01	0	0	0	0	0	0.02	0	0	0	0	0	0	0

PZCOO-2		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PZCOO-		0	0.05	0.05	0	0.05	0	0	0	0.04	0	0.06	0	0	0	0	0	0	0
PZH+		0	0.06	0.06	0	0.05	0	0	0	0.05	0	0.06	0	0	0	0	0	0	0
HPZCOO		0	0.01	0.01	0	0.01	0	0	0	0.01	0	0.01	0	0	0	0	0	0	0
SO4-2		0	0.04	0.04	0	0.03	0	0	0	0.03	0	0.04	0	0	0	0	0	0	0
NA2SO-01		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NA+		0	0.07	0.08	0	0.07	0	0	0	0.07	0.34	0.08	0	0	0	0	0	0	0
NA2SO-02		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H2SO4		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NAOH		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	MOL/		2231	2079		2394	1541	1567	1330	2537		2094				1697	1653		1524
Mole Flow	HR	323	17	23	4724	89	2	2	8	69	2098	93	323	1123	1123	9	3	522	9
Mass Flow	KG/HR	10	7316	7034	178	7637	282	289	248	8021	41	7065	10	42	42	384	321	10	282
	CUM/																		
Volume Flow	SEC	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	1
Temperature	С	40	90	60	40	120	40	40	40	150	40	60	200	40	265	120	90	60	60
Pressure	KPA	14	54	14	30	182	14	28	30	1621	101	14	54	28	182	182	54	14	14
Vapor Fraction		1	0	0	1	0	0	0	0	0	0	0	1	1	1	1	1	1	1
Liquid Fraction		0	1	1	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0
Solid Fraction		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table D.17 Stream summary for SO_4^{-2} reclaiming by NaOH (stoichiometric case (Na⁺/SO₄⁻² = 2) – 70°C

		BTM	BTM				H2O	H2O		NAO	SLUR				VEN	VENT	VEN	VENT
	1	S2	S3	CO2	FEED	H20	1	2	IN	Н	RY	V	V1	V2	Т	2	Т3	4
	CON	FLAS	FLAS	CON	FLAS	CON	CON	CON			CRYS	COM	CON	COM	FLAS	FLAS	CRYS	FLAS
From	D1	H2	H3	D3	н	D1	D2	D3			TL	P1	D2	P2	Н	H2	TL	H3
	СОМ	FLAS	CRYS		FLAS				FLAS	CRYS		CON	COM	CON	CON	CON	CON	CON
То	P1	H3	TL		H2				Н	TL		D2	P2	D3	D3	D2	D1	D1
Substream: MIXED																		
	Vapo			Vapo	Liqui	Liqui	Liqui	Liqui	Liqui	Liqui			Vapo		Vapo	Vapo	Vapo	Vapo
Phase:	r	All	All	r	d	d	d	Ь	Ь	Ь	ΔIJ		r		r	r	r	r
Component Mole					-	-		u	u	u	7.01			70				
Fraction								5	3	u	,							
Fraction H2O	0.33	0.76	0.75	0.25	0.77	1	0.99	0.99	0.77	0.32	0.75	0.33	0.26	0.26	0.81	0.94	0.98	0.98
Fraction H2O CO2	0.33	0.76	0.75 0	0.25 0.75	0.77	1 0	0.99	0.99	0.77 0	0.32	0.75	0.33	0.26	0.26	0.81	0.94	0.98	0.98

CO3		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H+		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OH-		0	0	0	0	0	0	0	0	0	0.34	0	0	0	0	0	0	0	0
PZ		0	0.01	0.02	0	0.01	0	0	0	0	0	0.02	0	0	0	0	0	0	0
PZCOO-2		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PZCOO-		0	0.05	0.05	0	0.05	0	0	0	0.04	0	0.05	0	0	0	0	0	0	0
PZH+		0	0.06	0.06	0	0.05	0	0	0	0.05	0	0.06	0	0	0	0	0	0	0
HPZCOO		0	0.01	0.01	0	0.01	0	0	0	0.01	0	0.01	0	0	0	0	0	0	0
SO4-2		0	0.04	0.04	0	0.03	0	0	0	0.03	0	0.04	0	0	0	0	0	0	0
NA2SO-01		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NA+		0	0.07	0.07	0	0.07	0	0	0	0.07	0.34	0.08	0	0	0	0	0	0	0
NA2SO-02		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H2SO4		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NAOH		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	MOL/		2269	2130		2412	1407	1356	1157	2537		2148				1518	1460		1389
Mole Flow	HR	311	76	36	4830	40	3	4	6	69	2375	30	311	1287	1287	1	0	536	0
Mass Flow	KG/HR	11	7383	7124	182	7671	258	251	216	8021	46	7160	11	48	48	350	288	10	259
	CUM/																		
Volume Flow	SEC	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
Temperature	С	40	97	70	40	123	40	40	40	150	40	70	168	40	282	123	97	70	70
Pressure	KPA	23	70	23	30	204	23	28	30	1621	101	23	70	28	204	204	70	23	23
Vapor Fraction		1	0	0	1	0	0	0	0	0	0	0	1	1	1	1	1	1	1
Liquid Fraction		0	1	1	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0
Solid Fraction		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table D.18 Stream summary for SO_4^{-2} reclaiming by NaOH (stoichiometric case (Na⁺/SO₄⁻² = 2) – 100°C

		BTM	BTM				H2O	H2O		NAO	SLUR				VEN	VENT	VEN	VENT
	1	S2	S3	CO2	FEED	H20	1	2	IN	н	RY	V	V1	V2	Т	2	Т3	4
	CON	FLAS	FLAS	CON	FLAS	CON	CON	CON			CRYS	COM	CON	COM	FLAS	FLAS	CRYS	FLAS
From	D1	H2	H3	D3	н	D1	D2	D3			TL	P1	D2	P2	Н	H2	TL	H3
	СОМ	FLAS	CRYS		FLAS				FLAS	CRYS		CON	COM	CON	CON	CON	CON	CON
То	P1	H3	TL		H2				Н	TL		D2	P2	D3	D3	D2	D1	D1
Substream: MIXED																		
	Vapo	Liqui		Vapo	Liqui	Liqui	Liqui	Liqui	Liqui	Liqui			Vapo		Vapo	Vapo	Vapo	Vapo
Phase:	r	d	All	r	d	d	d	d	d	d	All	All	r	All	r	r	r	r
Component Mole																		

Fraction																			
H2O		0.09	0.77	0.77	0.25	0.78	0.99	0.99	0.99	0.77	0.32	0.76	0.09	0.26	0.26	0.73	0.89	0.95	0.95
CO2		0.91	0	0	0.75	0	0	0	0	0	0	0	0.91	0.74	0.74	0.27	0.11	0.04	0.05
HCO3-		0	0	0	0	0.01	0	0	0	0.01	0	0	0	0	0	0	0	0	0
CO3		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H+		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OH-		0	0	0	0	0	0	0	0	0	0.34	0	0	0	0	0	0	0	0
PZ		0	0.01	0.02	0	0.01	0	0	0	0	0	0.02	0	0	0	0	0.01	0.01	0
PZCOO-2		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PZCOO-		0	0.05	0.05	0	0.04	0	0	0	0.04	0	0.05	0	0	0	0	0	0	0
PZH+		0	0.05	0.05	0	0.05	0	0	0	0.05	0	0.05	0	0	0	0	0	0	0
HPZCOO		0	0.01	0.01	0	0.01	0	0	0	0.01	0	0.01	0	0	0	0	0	0	0
SO4-2		0	0.03	0.04	0	0.03	0	0	0	0.03	0	0.03	0	0	0	0	0	0	0
NA2SO-01		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NA+		0	0.07	0.07	0	0.07	0	0	0	0.07	0.34	0.07	0	0	0	0	0	0	0
NA2SO-02		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H2SO4		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NAOH		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	MOL/		2387	2294		2470				2537		2307							
Mole Flow	HR	465	26	96	4967	58	8921	7876	5882	69	1513	62	465	1863	1863	9021	9322	172	9260
Mass Flow	KG/HR	19	7596	7414	187	7793	166	147	110	8021	29	7440	19	69	69	228	197	3	182
Volumo Flow	CUM/	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
Tomporature		40	117	100	40	122	40	40	40	150	40	100	107	40	248	122	117	100	100
Drossuro		40	117	70	40	216	40	40	40	1621	40	70	107	40	216	216	117	70	70
Vapor Fraction	KPA	1	152	79	1	0	79	20	50	1021	101	/9	152	1	1	1	152	1	1
		1	0	0	1	0	0	0	0	0	0	0	1	1	1	1	1		1
Liquid Fraction		0	1	1	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0
Solid Fraction		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table D.19 Stream summary for SO_4^{-2} reclaiming by NaOH (excess SO_4^{-2} case (Na⁺/SO₄⁻² = 1.9) – 50°C

		BTM	BTM				H2O	H2O		NAO	SLUR				VEN	VENT	VEN	VENT
	1	S2	S3	CO2	FEED	H20	1	2	IN	Н	RY	V	V1	V2	Т	2	Т3	4
	CON	FLAS	FLAS	CON	FLAS	CON	CON	CON			CRYS	COM	CON	COM	FLAS	FLAS	CRYS	FLAS
From	D1	H2	H3	D3	Н	D1	D2	D3			TL	P1	D2	P2	Н	H2	TL	H3
То	СОМ	FLAS	CRYS		FLAS				FLAS	CRYS		CON	СОМ	CON	CON	CON	CON	CON

		P1	H3	TL		H2				н	TL		D2	P2	D3	D3	D2	D1	D1
Substream: MIXED																			
		Vapo			Vapo		Liqui	Liqui	Liqui		Liqui			Vapo		Vapo	Vapo	Vapo	Vapo
Phase:		r	All	All	r	All	d	d	d	All	d	All	All	r	All	r	r	r	r
Component Mole Fraction																			
H2O		0.86	0.76	0.74	0.25	0.77	1	0.99	0.99	0.77	0.32	0.74	0.86	0.26	0.26	0.84	0.96	0.99	0.99
CO2		0.14	0	0	0.75	0	0	0	0	0	0	0	0.14	0.74	0.74	0.16	0.04	0.01	0.01
HCO3-		0	0	0	0	0	0	0	0	0.01	0	0	0	0	0	0	0	0	0
CO3		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H+		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OH-		0	0	0	0	0	0	0	0	0	0.34	0	0	0	0	0	0	0	0
PZ		0	0.01	0.01	0	0.01	0	0	0	0	0	0.02	0	0	0	0	0	0	0
PZCOO-2		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PZCOO-		0	0.05	0.06	0	0.05	0	0	0	0.04	0	0.06	0	0	0	0	0	0	0
PZH+		0	0.06	0.06	0	0.06	0	0	0	0.06	0	0.06	0	0	0	0	0	0	0
HPZCOO		0	0.01	0.01	0	0.01	0	0	0	0.02	0	0	0	0	0	0	0	0	0
SO4-2		0	0.04	0.04	0	0.04	0	0	0	0.03	0	0.04	0	0	0	0	0	0	0
NA2SO-01		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NA+		0	0.07	0.08	0	0.07	0	0	0	0.06	0.34	0.08	0	0	0	0	0	0	0
NA2SO-02		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H2SO4		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NAOH		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mole Flow	MOL/ HR	866	2194 95	2031 54	4815	2378 86	1617 4	1812 7	1481 4	2537 33	1814	2045 12	866	1017	1017	1868 6	1833 6	487	1658 1
Mass Flow	KG/HR	19	7267	6963	181	7620	295	333	275	8038	35	6989	19	38	38	419	352	9	305
Volume Flow	CUM/ SEC	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	1
Temperature	С	40	83	50	40	117	40	40	40	150	40	50	248	40	249	117	83	50	50
Pressure	KPA	9	41	9	30	163	9	28	30	1621	101	9	41	28	163	163	41	9	9
Vapor Fraction		1	0	0	1	0	0	0	0	0	0	0	1	1	1	1	1	1	1
Liquid Fraction		0	1	1	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0
Solid Fraction		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table D.20 Stream summary for SO_4^{-2} reclaiming by NaOH (excess SO_4^{-2} case (Na⁺/SO₄⁻² = 1.9) – 60°C

			BTM	BTM				H2O	H2O		NAO	SLUR				VEN	VENT	VEN	VENT
		1	S2	S3	CO2	FEED	H20	1	2	IN	н	RY	V	V1	V2	Т	2	Т3	4
		CON	FLAS	FLAS	CON	FLAS	CON	CON	CON			CRYS	СОМ	CON	СОМ	FLAS	FLAS	CRYS	FLAS
From		D1	H2	H3	D3	H	D1	D2	D3			TL	P1	D2	P2	Н	H2	TL	H3
Ta		COM	FLAS	CRYS		FLAS				FLAS	CRYS		CON	COM	CON	CON	CON	CON	CON
10		P1	□3	IL.		п∠				п			DZ	P2	03	03	DZ	DI	
Substream: MIXED		Vana			Vana		Liqui	Liqui	Liqui		Liqui			Mana		Vana	Vana	Vana	Vana
Phase:		r	All	All	r	All	d	d	d	All	d	All	All	r	All	r	vapo r	vapu r	r
Component Mole Fraction																			
H2O		0.52	0.76	0.75	0.25	0.77	1	0.99	0.99	0.77	0.32	0.74	0.52	0.26	0.26	0.82	0.95	0.99	0.99
CO2		0.48	0	0	0.75	0	0	0	0	0	0	0	0.48	0.74	0.74	0.17	0.05	0.01	0.01
HCO3-		0	0	0	0	0	0	0	0	0.01	0	0	0	0	0	0	0	0	0
CO3		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H+		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OH-		0	0	0	0	0	0	0	0	0	0.34	0	0	0	0	0	0	0	0
PZ		0	0.01	0.01	0	0.01	0	0	0	0	0	0.02	0	0	0	0	0	0	0
PZCOO-2		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PZCOO-		0	0.05	0.05	0	0.05	0	0	0	0.04	0	0.05	0	0	0	0	0	0	0
PZH+		0	0.06	0.06	0	0.05	0	0	0	0.06	0	0.06	0	0	0	0	0	0	0
HPZCOO		0	0.01	0.01	0	0.01	0	0	0	0.02	0	0.01	0	0	0	0	0	0	0
SO4-2		0	0.04	0.04	0	0.03	0	0	0	0.03	0	0.04	0	0	0	0	0	0	0
NA2SO-01		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NA+		0	0.07	0.07	0	0.07	0	0	0	0.06	0.34	0.08	0	0	0	0	0	0	0
NA2SO-02		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H2SO4		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NAOH		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	MOL/		2232	2080		2397	1546	1563	1306	2537		2098				1688	1652		1524
Mole Flow	HR	339	27	44	4929	33	4	3	2	33	2399	28	339	1173	1173	5	6	598	1
Mass Flow	KG/HR	10	7332	7050	185	7653	283	288	243	8038	46	7085	10	44	44	385	322	11	282
Volume Flow	CUM/ SEC	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	1
Temperature	С	40	90	60	40	120	40	40	40	150	40	60	200	40	266	120	90	60	60
Pressure	KPA	14	54	14	30	183	14	28	30	1621	101	14	54	28	183	183	54	14	14
Vapor Fraction		1	0	0	1	0	0	0	0	0	0	0	1	1	1	1	1	1	1
Liquid Fraction		0	1	1	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0

Solid Fraction 0	0
--	---

			BTM	BTM				H2O	H2O		NAO	SLUR				VEN	VENT	VEN	VENT
		1	S2	\$3	CO2	FEED	H20	1	2	IN	Н	RY	v	V1	V2	Т	2	T3	4
		CON	FLAS	FLAS	CON	FLAS	CON	CON	CON			CRYS	COM	CON	COM	FLAS	FLAS	CRYS	FLAS
From		D1	H2	H3	D3	Н	D1	D2	D3			TL	P1	D2	P2	Н	H2	TL	H3
		COM	FLAS	CRYS		FLAS				FLAS	CRYS		CON	COM	CON	CON	CON	CON	CON
То		P1	H3	TL		H2				н	TL		D2	P2	D3	D3	D2	D1	D1
Dhara		Vapo			Vapo		Liqui	Liqui	Liqui		Liqui			Vapo		Vapo	Vapo	Vapo	Vapo
Phase:		r	All	All	r	All	a	a	a	All	a	All	All	r	All	r	r	r	r
Eraction																			
H2O		0 33	0.76	0.75	0.25	0.77	1	0 99	0 99	0.77	0.32	0.75	0 33	0.26	0.26	0.81	0.94	0.98	0.98
CO2		0.55	0	0	0.25	0	0	0.55	0.55	0	0.52	0.75	0.55	0.20	0.20	0.01	0.06	0.01	0.02
HCO3-		0	0	0	0	0	0	0	0	0.01	0	0	0	0	0	0	0	0	0
CO3		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H+		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OH-		0	0	0	0	0	0	0	0	0	0.34	0	0	0	0	0	0	0	0
PZ		0	0.01	0.02	0	0.01	0	0	0	0	0	0.02	0	0	0	0	0	0	0
PZCOO-2		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PZCOO-		0	0.05	0.05	0	0.05	0	0	0	0.04	0	0.05	0	0	0	0	0	0	0
PZH+		0	0.06	0.06	0	0.05	0	0	0	0.06	0	0.06	0	0	0	0	0	0	0
HPZCOO		0	0.01	0.01	0	0.01	0	0	0	0.02	0	0.01	0	0	0	0	0	0	0
SO4-2		0	0.04	0.04	0	0.03	0	0	0	0.03	0	0.04	0	0	0	0	0	0	0
NA2SO-01		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NA+		0	0.07	0.07	0	0.07	0	0	0	0.06	0.34	0.08	0	0	0	0	0	0	0
NA2SO-02		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H2SO4		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NAOH		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	MOL/		2270	2131		2415	1411	1352	1133	2537		2151				1508	1460		1388
Mole Flow	HR	326	83	58	5036	65	8	3	1	33	2675	72	326	1345	1345	3	0	604	0
Mass Flow	KG/HR	12	7399	7140	189	7688	259	250	211	8038	52	7180	12	50	50	351	289	11	259
	CUM/	_	_			_	_		_	_		_		_	_	_	_	_	
Volume Flow	SEC	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
Temperature	C	40	97	70	40	123	40	40	40	150	40	70	168	40	283	123	97	70	70

Table D.21 Stream summary for SO_4^{-2} reclaiming by NaOH (excess SO_4^{-2} case (Na⁺/SO₄⁻² = 1.9) – 70°C

Pressure	КРА	23	71	23	30	206	23	28	30	1621	101	23	71	28	206	206	71	23	23
Vapor Fraction		1	0	0	1	0	0	0	0	0	0	0	1	1	1	1	1	1	1
Liquid Fraction		0	1	1	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0
Solid Fraction		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table D.22 Stream summary for SO_4^{-2} reclaiming by NaOH (excess SO_4^{-2} case (Na⁺/SO₄⁻² = 1.9) – 100°C

			BTM	BTM				H2O	H2O		NAO	SLUR				VEN	VENT	VEN	VENT
		1	S2	S3	CO2	FEED	H20	1	2	IN	Н	RY	V	V1	V2	Т	2	Т3	4
		CON	FLAS	FLAS	CON	FLAS	CON	CON	CON			CRYS	COM	CON	COM	FLAS	FLAS	CRYS	FLAS
From		D1	H2	H3	D3	Н	D1	D2	D3			TL	P1	D2	P2	Н	H2	TL	H3
		COM	FLAS	CRYS		FLAS				FLAS	CRYS		CON	COM	CON	CON	CON	CON	CON
То		P1	H3	TL		H2				Н	TL		D2	P2	D3	D3	D2	D1	D1
Substream: MIXED																			
Dhaca		Vapo	A II	A 11	Vapo	Liqui	Liqui	Liqui	Liqui	A 11	Liqui		A 11	Vapo	A 11	Vapo	Vapo	Vapo	Vapo
Component Mole		I	All	All	I	u	u	u	u	All	u	All	All	I	All	I	I	I	1
Fraction																			
H2O		0.09	0.77	0.77	0.25	0.78	0.99	0.99	0.99	0.77	0.32	0.77	0.09	0.26	0.26	0.72	0.88	0.95	0.94
CO2		0.91	0	0	0.75	0	0	0	0	0	0	0	0.91	0.74	0.74	0.28	0.11	0.04	0.05
HCO3-		0	0	0	0	0.01	0	0	0	0.01	0	0	0	0	0	0	0	0	0
CO3		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H+		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OH-		0	0	0	0	0	0	0	0	0	0.34	0	0	0	0	0	0	0	0
PZ		0	0.01	0.02	0	0.01	0	0	0	0	0	0.02	0	0	0	0	0.01	0.01	0
PZCOO-2		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PZCOO-		0	0.05	0.05	0	0.04	0	0	0	0.04	0	0.05	0	0	0	0	0	0	0
PZH+		0	0.05	0.05	0	0.05	0	0	0	0.06	0	0.05	0	0	0	0	0	0	0
HPZCOO		0	0.01	0.01	0	0.01	0	0	0	0.02	0	0.01	0	0	0	0	0	0	0
SO4-2		0	0.03	0.04	0	0.03	0	0	0	0.03	0	0.03	0	0	0	0	0	0	0
NA2SO-01		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NA+		0	0.07	0.07	0	0.07	0	0	0	0.06	0.34	0.07	0	0	0	0	0	0	0
NA2SO-02		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H2SO4		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NAOH		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mole Flow	MOL/ HR	484	2388 43	2295 98	5171	2474 21	8927	7826	5670	2537 33	1811	2311 17	484	1942	1942	8933	9330	204	9252

Mass Flow	KG/HR	20	7612	7429	195	7810	166	146	106	8038	35	7461	20	72	72	228	198	4	182
	CUM/																		
Volume Flow	SEC	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
Temperature	С	40	117	100	40	133	40	40	40	150	40	100	107	40	351	133	117	100	100
Pressure	KPA	79	153	79	30	322	79	28	30	1621	101	79	153	28	322	322	153	79	79
Vapor Fraction		1	0	0	1	0	0	0	0	0	0	0	1	1	1	1	1	1	1
Liquid Fraction		0	1	1	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0
Solid Fraction		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table D.23 Stream summary for SO_4^{-2} reclaiming by NaOH (excess Na⁺ case (Na⁺/SO₄⁻² = 2.04) – 50°C

		BTM	BTM				H2O	H2O		NAO	SLUR				VEN	VENT	VEN	VENT
	1	S2	S3	CO2	FEED	H20	1	2	IN	н	RY	V	V1	V2	Т	2	Т3	4
	CON	FLAS	FLAS	CON	FLAS	CON	CON	CON			CRYS	COM	CON	COM	FLAS	FLAS	CRYS	FLAS
From	D1	H2	H3	D3	Н	D1	D2	D3			TL	P1	D2	P2	Н	H2	TL	H3
	COM	FLAS	CRYS		FLAS				FLAS	CRYS		CON	COM	CON	CON	CON	CON	CON
То	P1	H3	TL		H2				Н	TL		D2	P2	D3	D3	D2	D1	D1
Substream: MIXED																		
	Vapo			Vapo	Liqui	Liqui	Liqui	Liqui	Liqui	Liqui			Vapo		Vapo	Vapo	Vapo	Vapo
Phase:	r	All	All	r	d	d	d	d	d	d	All	All	r	All	r	r	r	r
Component Mole Fraction																		
H2O	0.87	0.75	0.74	0.25	0.77	1	0.99	0.99	0.77	0.32	0.74	0.87	0.26	0.26	0.85	0.96	0.99	0.99
CO2	0.13	0	0	0.75	0	0	0	0	0	0	0	0.13	0.74	0.74	0.14	0.03	0.01	0.01
HCO3-	0	0	0	0	0	0	0	0	0.01	0	0	0	0	0	0	0	0	0
CO3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H+	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OH-	0	0	0	0	0	0	0	0	0	0.34	0	0	0	0	0	0	0	0
PZ	0	0.01	0.01	0	0.01	0	0	0	0	0	0.02	0	0	0	0	0	0	0
PZCOO-2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PZCOO-	0	0.05	0.06	0	0.05	0	0	0	0.04	0	0.06	0	0	0	0	0	0	0
PZH+	0	0.06	0.06	0	0.05	0	0	0	0.05	0	0.06	0	0	0	0	0	0	0
HPZCOO	0	0.01	0.01	0	0.01	0	0	0	0.01	0	0	0	0	0	0	0	0	0
SO4-2	0	0.04	0.04	0	0.03	0	0	0	0.03	0	0.04	0	0	0	0	0	0	0
NA2SO-01	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NA+	0	0.07	0.08	0	0.07	0	0	0	0.07	0.34	0.08	0	0	0	0	0	0	0
NA2SO-02	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

H2SO4		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NAOH		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	MOL/		2197	2033		2381	1623	1821	1535	2544		2045				1891	1842		1663
Mole Flow	HR	782	33	49	4412	88	4	6	3	79	1526	01	782	929	929	5	3	407	7
Mass Flow	KG/HR	17	7265	6960	166	7618	296	335	286	8035	30	6982	17	35	35	417	353	7	305
	CUM/																		
Volume Flow	SEC	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	1
Temperature	С	40	83	50	40	117	40	40	40	150	40	50	248	40	247	117	83	50	50
Pressure	KPA	9	41	9	30	160	9	28	30	1621	101	9	41	28	160	160	41	9	9
Vapor Fraction		1	0	0	1	0	0	0	0	0	0	0	1	1	1	1	1	1	1
Liquid Fraction		0	1	1	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0
Solid Fraction		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table D.24 Stream summary for SO_4^{-2} reclaiming by NaOH (excess Na⁺ case (Na⁺/SO₄⁻² = 2.04) – 60°C

		BTM	BTM				H2O	H2O		NAO	SLUR				VEN	VENT	VEN	VENT
	1	S2	S3	CO2	FEED	H20	1	2	IN	Н	RY	V	V1	V2	Т	2	T3	4
	CON	FLAS	FLAS	CON	FLAS	CON	CON	CON			CRYS	COM	CON	COM	FLAS	FLAS	CRYS	FLAS
From	D1	H2	H3	D3	Н	D1	D2	D3			TL	P1	D2	P2	Н	H2	TL	H3
	COM	FLAS	CRYS		FLAS				FLAS	CRYS		CON	COM	CON	CON	CON	CON	CON
То	P1	H3	TL		H2				Н	TL		D2	P2	D3	D3	D2	D1	D1
Substream: MIXED																		
	Vapo			Vapo	Liqui	Liqui	Liqui	Liqui	Liqui	Liqui			Vapo		Vapo	Vapo	Vapo	Vapo
Phase:	r	All	All	r	d	d	d	d	d	d	All	All	r	All	r	r	r	r
Component Mole Fraction																		
H2O	0.52	0.76	0.74	0.25	0.77	1	0.99	0.99	0.77	0.32	0.74	0.52	0.26	0.26	0.84	0.95	0.99	0.99
CO2	0.48	0	0	0.75	0	0	0	0	0	0	0	0.48	0.74	0.74	0.16	0.04	0.01	0.01
HCO3-	0	0	0	0	0	0	0	0	0.01	0	0	0	0	0	0	0	0	0
CO3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H+	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OH-	0	0	0	0	0	0	0	0	0	0.34	0	0	0	0	0	0	0	0
PZ	0	0.01	0.02	0	0.01	0	0	0	0	0	0.02	0	0	0	0	0	0	0
PZCOO-2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PZCOO-	0	0.05	0.06	0	0.05	0	0	0	0.04	0	0.06	0	0	0	0	0	0	0
PZH+	0	0.06	0.06	0	0.05	0	0	0	0.05	0	0.06	0	0	0	0	0	0	0
HPZCOO	0	0.01	0.01	0	0.01	0	0	0	0.01	0	0	0	0	0	0	0	0	0

SO4-2		0	0.04	0.04	0	0.03	0	0	0	0.03	0	0.04	0	0	0	0	0	0	0
NA2SO-01		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NA+		0	0.07	0.08	0	0.07	0	0	0	0.07	0.34	0.08	0	0	0	0	0	0	0
NA2SO-02		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H2SO4		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NAOH		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	MOL/		2234	2082		2399	1547	1577	1359	2544		2098				1711	1660		1529
Mole Flow	HR	307	77	39	4523	61	7	3	3	79	2124	30	307	1075	1075	3	3	528	2
Mass Flow	KG/HR	9	7330	7047	170	7652	283	291	253	8035	41	7079	9	40	40	383	322	10	283
	CUM/																		
Volume Flow	SEC	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	1
Temperature	С	40	90	60	40	120	40	40	40	150	40	60	200	40	263	120	90	60	60
Pressure	KPA	14	54	14	30	180	14	28	30	1621	101	14	54	28	180	180	54	14	14
Vapor Fraction		1	0	0	1	0	0	0	0	0	0	0	1	1	1	1	1	1	1
Liquid Fraction		0	1	1	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0
Solid Fraction		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table D.25 Stream summary for SO_4^{-2} reclaiming by NaOH (excess Na⁺ case (Na⁺/SO₄⁻² = 2.04) – 70°C

		BTM	BTM				H2O	H2O		NAO	SLUR				VEN	VENT	VEN	VENT
	1	S2	S3	CO2	FEED	H20	1	2	IN	Н	RY	V	V1	V2	Т	2	Т3	4
	CON	FLAS	FLAS	CON	FLAS	CON	CON	CON			CRYS	СОМ	CON	COM	FLAS	FLAS	CRYS	FLAS
From	D1	H2	H3	D3	Н	D1	D2	D3			TL	P1	D2	P2	Н	H2	TL	H3
	COM	FLAS	CRYS		FLAS				FLAS	CRYS		CON	COM	CON	CON	CON	CON	CON
То	P1	H3	TL		H2				Н	TL		D2	P2	D3	D3	D2	D1	D1
Substream: MIXED																		
	Vapo			Vapo	Liqui	Liqui	Liqui	Liqui	Liqui	Liqui			Vapo		Vapo	Vapo	Vapo	Vapo
Phase:	r	All	All	r	d	d	d	d	d	d	All	All	r	All	r	r	r	r
Component Mole																		
H20	0.22	0.76	0.75	0.25	0.77	1	0.00	0 00	0.77	0.22	0.75	0.22	0.26	0.26	0.82	0.04	0.08	0.08
1120	0.33	0.70	0.75	0.25	0.77	1	0.99	0.99	0.77	0.32	0.75	0.33	0.20	0.20	0.62	0.94	0.98	0.98
02	0.67	0	0	0.75	0	0	0	0	0	0	0	0.67	0.74	0.74	0.17	0.05	0.01	0.02
HCO3-	0	0	0	0	0	0	0	0	0.01	0	0	0	0	0	0	0	0	0
CO3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H+	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OH-	0	0	0	0	0	0	0	0	0	0.34	0	0	0	0	0	0	0	0
PZ	0	0.01	0.02	0	0.01	0	0	0	0	0	0.02	0	0	0	0	0	0	0

PZCOO-2		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PZCOO-		0	0.05	0.05	0	0.05	0	0	0	0.04	0	0.05	0	0	0	0	0	0	0
PZH+		0	0.05	0.06	0	0.05	0	0	0	0.05	0	0.05	0	0	0	0	0	0	0
HPZCOO		0	0.01	0.01	0	0.01	0	0	0	0.01	0	0	0	0	0	0	0	0	0
SO4-2		0	0.04	0.04	0	0.03	0	0	0	0.03	0	0.04	0	0	0	0	0	0	0
NA2SO-01		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NA+		0	0.07	0.08	0	0.07	0	0	0	0.07	0.34	0.08	0	0	0	0	0	0	0
NA2SO-02		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H2SO4		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NAOH		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	MOL/		2273	2133		2417	1413	1366	1184	2544		2151				1530	1466		1393
Mole Flow	HR	297	48	58	4628	22	9	8	9	79	2414	83	297	1235	1235	8	7	546	2
Mass Flow	KG/HR	11	7397	7137	174	7686	260	253	221	8035	47	7174	11	46	46	349	289	10	260
	CUM/																		
Volume Flow	SEC	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
Temperature	С	40	97	70	40	123	40	40	40	150	40	70	168	40	280	123	97	70	70
Pressure	KPA	23	70	23	30	202	23	28	30	1621	101	23	70	28	202	202	70	23	23
Vapor Fraction		1	0	0	1	0	0	0	0	0	0	0	1	1	1	1	1	1	1
Liquid Fraction		0	1	1	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0
Solid Fraction		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table D.26 Stream summary for SO_4^{-2} reclaiming by NaOH (excess Na⁺ case (Na⁺/SO₄⁻² = 2.04) – 100°C

		BTM	BTM				H2O	H2O		NAO	SLUR				VEN	VENT	VEN	VENT
	1	S2	S3	CO2	FEED	H20	1	2	IN	Н	RY	V	V1	V2	Т	2	Т3	4
	CON	FLAS	FLAS	CON	FLAS	CON	CON	CON			CRYS	COM	CON	COM	FLAS	FLAS	CRYS	FLAS
From	D1	H2	H3	D3	Н	D1	D2	D3			TL	P1	D2	P2	н	H2	TL	H3
	СОМ	FLAS	CRYS		FLAS				FLAS	CRYS		CON	COM	CON	CON	CON	CON	CON
То	P1	H3	TL		H2				Н	TL		D2	P2	D3	D3	D2	D1	D1
Substream: MIXED																		
	Vapo	Liqui		Vapo	Liqui	Liqui	Liqui	Liqui	Liqui	Liqui			Vapo		Vapo	Vapo	Vapo	Vapo
Phase:	r	d	All	r	d	d	d	d	d	d	All	All	r	All	r	r	r	r
Component Mole																		
Fraction																		
H2O	0.09	0.77	0.76	0.25	0.78	0.99	0.99	0.99	0.77	0.32	0.76	0.09	0.26	0.26	0.74	0.89	0.95	0.95

CO2		0.91	0	0	0.75	0	0	0	0	0	0	0	0.91	0.74	0.74	0.25	0.1	0.04	0.05
HCO3-		0	0	0	0	0	0	0	0	0.01	0	0	0	0	0	0	0	0	0
CO3		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H+		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OH-		0	0	0	0	0	0	0	0	0	0.34	0	0	0	0	0	0	0	0
PZ		0	0.01	0.02	0	0.01	0	0	0	0	0	0.02	0	0	0	0	0.01	0.01	0
PZCOO-2		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PZCOO-		0	0.05	0.05	0	0.05	0	0	0	0.04	0	0.05	0	0	0	0	0	0	0
PZH+		0	0.05	0.05	0	0.05	0	0	0	0.05	0	0.05	0	0	0	0	0	0	0
HPZCOO		0	0.01	0.01	0	0.01	0	0	0	0.01	0	0.01	0	0	0	0	0	0	0
SO4-2		0	0.03	0.04	0	0.03	0	0	0	0.03	0	0.03	0	0	0	0	0	0	0
NA2SO-01		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NA+		0	0.07	0.07	0	0.07	0	0	0	0.07	0.34	0.07	0	0	0	0	0	0	0
NA2SO-02		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H2SO4		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NAOH		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mole Flow	MOL/	448	2391 60	2298 59	4769	2475 87	8988	7989	6102	2544 79	1564	2311 65	448	1793	1793	9115	9382	182	9302
Mass Flow	KG/HR	19	7611	7428	179	7808	167	149	114	8035	30	7455	19	67	67	227	198	4	182
1010351100	CUM/	15	7011	7120	175	7000	107	115		0035	50	7155	15	07	07	227	150		102
Volume Flow	SEC	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
Temperature	С	40	117	100	40	133	40	40	40	150	40	100	107	40	345	133	117	100	100
Pressure	KPA	79	151	79	30	311	79	28	30	1621	101	79	151	28	311	311	151	79	79
Vapor Fraction		1	0	0	1	0	0	0	0	0	0	0	1	1	1	1	1	1	1
Liquid Fraction		0	1	1	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0
Solid Fraction		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bibliography

Bottoms, R. R. (1930). Patent No. Patent 1783901. U.S. .

Chen, C.-C. B. (1982). Local Composition Model for Excess Gibbs: Part I: Single Solvent, Single Completely Dissociated Electrolyte Systems. *AlChE Journal - Volume 28 Issue 4*, 588-596.

Cummings A. L., S. G. (2007). ADVANCES IN AMINE RECLAIMING – WHY THERE'S NO EXCUSE TO OPERATE A DIRTY AMINE SYSTEM. Laurance Reid Gas Conditioning Conference.

Frailie, P., & Marzuka, F. (2010). *Modeling MDEA/PZ*. Austin, TX: Greenhouse Gas Technology Class Fall 2010 Report.

Freeman, S. A., Dugas, R., Wagner, D. V., Ngyuen, T., & Rochelle, G. T. (2009). Carbon dioxide capture with concentrated, aqueous piperazine. *Energy Procedia -Volume 1, Issue 1*, 1489-1496.

Freeman, S. (2011). *Thermal Degradation and Oxidation of Aqueous Piperazine for Carbon Dioxide Capture*. PhD Dissertation - The University of Texas.

Hilliard, M. (2008). A Predictive Thermodynamic Model for an Aqueous Blend of Potassium Carbonate, Piperazine, and Monoethanolamine for Carbon Dioxide Capture from Flue Gas. PhD Dissertation - The University of Texas.

Hilliard, M. (2005). Thermodynamics of Aqueous Piperazine/Potassium Carbonate/Carbon Dioxide Characterized by the Electrolyte. M.S Thesis - The University of Texas.

ICIS. (2011). *ICIS.com Chemical Price Reports*. Retrieved August 8, 2011, from ICIS: http://www.icis.com/StaticPages/a-e.htm#C
IEA. (2011, May 30). *Internation Energy Agency*. Retrieved July 03, 2011, from Prospect of limiting the global increase in temperature to 2°C is getting bleaker: http://www.iea.org/index_info.asp?id=1959

Linke. (1965). Solubilities of Inorganic and meal organic compounds. American Chemical Society.

Rochelle, G. T. (2009). Amine scrubbing from CO2 capture. Science, 1652-1654.

Rochelle, G. T. (2010). CO2 Capture by Aqueous Absorption, Fourth Quarterly Progress Report 2009. Luminant Carbon Management Program. The University of Texas.

Sexton, A. (2008). *Amine Oxidation in CO2 Capture Processes*. Austin, TX: PhD Dissertation - The University of Texas at Austin.

Van Wagener, D. H. (2011). Stripper configurations for CO2 capture by aqueous monoethanolamine and piperazine. *Energy Procedia - Volume 4*, 1323-1330.

Xu., Q. (2008). Solvent reclaiming by crystallization of Potassium Sulfate. Austin:M. S. Thesis - The University of Texas at Austin.

Yana, Y. C.-C. (2011). Thermodynamic representation of the NaCl +Na2SO4+H2O system with electrolyte NRTL model. *Fluid Phase Equilibria*, 149-161.

Vita

Humera Abdul Rafique graduated from the University of Texas with a Bachelors Degree in Chemical Engineering in December 2006. During her undergraduate career, she completed two co-op terms at Advanced Micro Devices (AMD) as a Chemical Engineer in the Environmental, Health, and Safety department. She then worked as a Process Engineer at Fluor in the Houston, TX and Calgary, AB locations before joining the Chemical Engineering graduate program at the University of Texas in January 2010.

Permanent e-mail address: humerar@gmail.com

This thesis was typed by the author.