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The concept of the Digital Twin describes the use of comprehensive

and authoritative digital models tailored to a unique physical asset that dy-

namically adapt as the asset evolves over time and are able to inform valuable

decisions. A key challenge is to make a digital twin truly predictive so that

it can be used to drive high-consequence decisions with quantified confidence.

Currently, this can only be achieved through high-fidelity physics-based mod-

els. These models are computationally expensive to solve and prohibitive to

use in a real-time context. Reduced-order modeling methods have emerged

as a powerful tool for enabling high-fidelity simulations with computationally

efficient models. This thesis aims to advance the framework for a predictive

digital twin for unmanned aerial vehicles using physics-based models and sci-

entific machine learning, as well as hardware experimentation. In particular,
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this work develops and demonstrates non-intrusive projection-based reduced-

order modeling strategies for aerodynamic loading that can be applied to an

unmanned aerial vehicle (UAV). In addition, this research presents an exper-

imental data collection and analysis methodology to further the evolution of

a digital-twin-enabled self-aware UAV. Self-awareness in this context refers to

the ability of the vehicle to collect information about itself and its surround-

ings and to use this information to alter the way it completes missions via

on-board dynamic decision-making. Emulation of wing damage states on the

hardware testbed produces data sets that can be used in conjunction with pre-

viously developed computational methods in order to enable classification of

the UAV structural state in flight. The two-way coupling between estimation

of the UAV structural state and dynamic mission replanning is a capability

that is critical for realizing the self-aware UAV concept.
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Chapter 1

Introduction

This chapter introduces the motivation behind research supporting

digital twins and their potential applications, and provides background on

reduced-order modeling concepts. Then, a description of the existing work

that is furthered in this thesis is given. These topics include the predictive

digital twin framework, the operator inference scientific machine learning ap-

proach, and the developed hardware testbed. Based on this work, the research

objectives for this thesis are presented.

1.1 Motivation

A digital twin is a comprehensive and authoritative model of a physical

asset that is tailored to a unique physical asset and adapts as the asset evolves

over time [1]. Predictive digital twin models for aircraft systems are required

to be predictive, reliable, and explainable. They must simulate previously

unseen scenarios, obey the laws of physics, have quantifiable uncertainty, and

utilize real-world operational parameters and quantities. High-fidelity multi-

physics air vehicle models substantiated by experimental ground and flight

test data serve as the basis for digital twin development. However, high-fidelity

1



models and large experimental databases are too complex and computationally

expensive for direct incorporation into a digital twin or for use in near real-time

decision making.

A recent approach [2] has shown that reduced-order modeling provides

a mathematical foundation for creating a predictive digital twin. A predic-

tive digital twin must be built upon a combination of data and physics based

models. In the digital twin setting, models must scale efficiently to the full

system level, admit an expressive parameterization of system properties (ge-

ometry, material properties, etc.), and be fast to update. The high-fidelity

physics-based models used in the system design phase, such as computational

fluid dynamics (CFD) and structural finite element method (FEM) models,

are too complex and computationally expensive to meet these requirements.

Reduced-order modeling is a mathematical approach to deriving surrogates

that retain much of the accuracy of the high-fidelity models, but via a lower

dimensional model that is much faster to solve. Thus, reduced-order modeling

is a key computational technology to operationalizing complex physics-based

models in the digital twin context.

The Digital Twin paradigm has seen increasing attention in recent

years. Digital twins can serve as an authoritative information source for a

unique physical asset, which facilitates accurate coupling and fusion of mul-

tiple models [3, 4] and ensures that current relevant information is available

to stakeholders. In addition, traditional approaches to aircraft certification,

fleet management, and sustainment rely on statistical distributions of mate-

2



rial properties, heuristic design philosophies, and assumed similarities between

physical testing and operational conditions [4]. Thus, digital twin applications

have been proposed as a replacement and/or complement to conventional en-

gineering practices in structural health monitoring and aircraft sustainment

[4, 5], simulation-based vehicle certification [4, 3], and fleet management [4, 6].

Additionally, outside of aerospace engineering, promising digital twin appli-

cation areas include healthcare [7], manufacturing [8], smart infrastructure

[9], and education [10]. Specifically in aircraft structural health monitoring,

proposed digital twin systems would be capable of mitigating damage or degra-

dation by activating self-healing mechanisms or by recommending changes in

mission profile to decrease loadings and increase both the life span and prob-

ability of mission success [4]. Inspired by all of these works, an approach

has recently been proposed to enable the concept of a self-aware unmanned

aerial vehicle (UAV) by constructing a predictive digital twin of the vehicle

[2]. A self-aware aerospace vehicle is one that can leverage online sensor data

to dynamically gather information about its structural health, and respond

intelligently by replanning its mission [11, 12].

1.2 Reduced Order Modeling

Accurately modeling a complete engineering system, as is needed to cre-

ate a digital twin, is possible with high-fidelity computational models. Physics-

based models based on discretized partial differential equations (PDEs), such

as CFD and finite-element analysis (FEA), can achieve this. In contrast with
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purely data-driven models, like neural networks, physics-based models offer a

greater degree of interpretability, reliability, and predictive capability. How-

ever, a CFD and FEA based digital twin then results in large computational

models that require significant high performance computing resources to solve.

In many applications, digital twins are required to provide near real-time in-

sights in order for them to be used effectively for operational decision making.

This requires the ability to rapidly adapt the computational model in the

face of changing model parameters, and rapidly evaluate the model to pro-

vide analysis and prediction. The use of purely high-fidelity physics-based

models quickly becomes computationally intractable in this type of real-time,

many-query context.

Model order reduction [13, 14, 15, 16] provides a mathematical foun-

dation for accelerating complex computational models so that they may be

operationalized in the digital twin context. Reduced-order modeling involves

investing upfront computational time during a training phase and the result-

ing reduced-order models (ROMs) can then be rapidly evaluated over para-

metric sweeps or during an online operational phase. ROMs combine the rich

information embedded in high-fidelity simulations with the efficiency of low-

dimensional surrogate models. Projection-based model reduction considers the

class of problems for which the governing equations are known and for which a

high-fidelity model is available [13, 14]. The goal is to derive a ROM that has

lower complexity and yields accurate solutions with reduced computation time.

Projection-based approaches define a low-dimensional manifold on which the
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dominant dynamics evolve. However, the intrusive nature of these methods

has limited their impact in practical applications. Non-intrusive model reduc-

tion methods instead derive the ROMs by fitting to simulation data without

requiring explicit access to the high-fidelity model operators. These meth-

ods are powerful and often yield good results, but since the approximations

are based on generic data-fit representations, they lack the mathematical the-

ory that would enable a user to determine whether a ROM can issue reliable

predictions in areas outside of the training data. Therefore, recent work has

formulated the ROM task through the lens of projection-based model reduc-

tion, but with a non-intrusive operator inference that learns the ROMs directly

from simulation output data without needing access to source code [17, 18, 19].

1.3 Predictive Digital Twins

The current digital twin in this approach is based on a high-fidelity

component-based reduced-order structural model of the airframe described in

detail in [2]. This model is capable of simulating the structural response of the

airframe and characterizing the structural limits of the aircraft in a range of

different structural damage states. The digital twin is enabled by dynamically

updating this structural model based on structural sensor data, and then using

the updated structural model for rapid analysis and prediction. Adaptation

of the digital twin is achieved by training interpretable machine learning clas-

sifiers on the output of the structural model, and then using these classifiers

online to rapidly infer which structural state best explains the observed sensor
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data [20].

As shown in Figure 1.1, a library of component-based ROMs is con-

structed during an offline phase. Building these ROMs requires training snap-

Offline:

Online:

Use model library to train a classifier that 
predicts asset state based on sensor data

Construct library of reduced-order models 
representing different asset states

sensor data

Analysis,
Prediction,
Optimization

updated digital twin

current digital twin

Figure 1.1: Digital twin approach: data-driven adaptation of component-based
reduced-order models (Figure credit: M. Kapteyn).

shots generated from high-fidelity FEM and CFD solvers. The ROMs then

provide a rapid simulation capability which is used to sample many different

scenarios (different vehicle health conditions, different operating conditions,

etc.). The ROM predictions from these scenarios form a large set of training

data, which can be used to train a machine learning classifier. In particu-

lar, optimal classification trees are used because they are scalable and lead to

highly interpretable machine learning outputs.

This model library can then be used during an online phase to rapidly

create, adapt, and evaluate reduced-order models in support of analysis, pre-

diction, and optimization. The online phase takes place when the vehicle is
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operating. Data from the onboard sensors are fed into the classifier. The

classifier identifies which ROMs in the model library best explain the sensed

data. These ROMs are then selected to comprise an updated digital twin,

and used to issue rapid predictions in support of a decision. In [20], it was

shown virtually via simulation that this approach could be used to diagnose a

compromised portion of the wing structure and adapt the vehicle’s trajectory

according to a dynamically updated flight envelope.

1.4 Scientific Machine Learning via Operator Inference

Reduced-order modeling is a crucial element in the creation of a pre-

dictive digital twin. It provides the rapid simulation capability that allows the

generation of sufficient data to train a machine learning classifier. Using high-

fidelity tools to sample enough scenarios would be computationally intractable.

Additionally, the ROMs are used to issue rapid predictions in support of the

online dynamic assessment of vehicle operation. The challenge here is that

there is a limited time (a fraction of a second) to issue the prediction.

Academically, reduced-order modeling has made considerable advances

in the past two decades, with many successes shown over a broad range of

problems in fluid dynamics, structures, acoustics, and thermal modeling. A

large class of ROM methods are projection based - in the training phase a

low-dimensional subspace is identified, and the ROM is derived by projecting

the high-fidelity model operators onto a low-dimensional subspace. In doing

so, the physics of the problem is embedded in the reduced-order representa-

7



tion. The drawback is that most projection-based ROM methods are intrusive,

meaning the projection of the high-fidelity operators onto the low-dimensional

subspace requires intrusive access and modification of the high-fidelity source

code. For this reason, non-intrusive model reduction methods have emerged

as alternatives that learn a model based on training data, without requiring

explicit access to the high-fidelity model operators. Machine learning methods

are non-intrusive and black-box, meaning that they operate only on simulation

output data without knowledge of the internals of the underlying high-fidelity

model. These approaches are limited in applicability to complex problems be-

cause generating enough training data is computationally expensive and the

complexity of problems with multi-physics interactions and high-dimensional

parameter spaces can be difficult to handle with generic approximations.

Recent work has developed a scientific machine learning approach called

operator inference that targets the combination of the convenience and flexibil-

ity of non-intrusive machine learning together with the physics-based structure

exploitation of reduced-order modeling [17, 18, 19, 21]. This creates the capa-

bility to learn predictive reduced-order models that provide approximate pre-

dictions of complex physical phenomena while exhibiting several orders of mag-

nitude computational speedup over high-fidelity simulations. This work for-

mulates the reduced-order modeling task through the lens of projection-based

model reduction, but with a non-intrusive operator inference that learns the

ROMs directly from simulation output data without needing access to source

code [17]. By maintaining the connection to projection-based model reduc-
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tion, some of the mathematical properties that give the ROMs their predictive

capabilities are retained. This approach has been demonstrated for simple

academic examples such as linear elasticity [17] and the compressible Euler

equations [21], as well as a complex rocket combustion application [18, 19]

that follows the implementation of the General Equation and Mesh Solver

(GEMS) CFD code [22]. The steps of the approach are: 1) Run simulations of

the high-fidelity code over representative scenarios to generate solutions (each

solution is called a “snapshot” and represents the predicted physical quantities

over the vehicle); 2) Identify low-dimensional structure in the snapshots, using

the proper orthogonal decomposition (POD) or other dimensionality reduction

technique, in combination with the physical insight drawn from the govern-

ing equations; 3) Project the snapshots onto the identified low-dimensional

subspace, to obtain reduced snapshots; 4) Solve a linear least-squares regres-

sion problem to identify the low-dimensional operators that define the ROM

that best match the reduced snapshots. All of these steps can be done non-

intrusively—that is, without requiring access to any of the high-fidelity model

source code.

1.5 Hardware Testbed

This section describes the aircraft testbed system created to begin work-

ing through the integration challenges presented by the self-aware vehicle tech-

nology. The testbed aircraft consists of a Telemaster aircraft kit (fuselage,

landing gear, empennage), but outfitted with custom-designed and manufac-
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tured carbon fiber wings with custom sensors and avionics (Pixhawk autopilot,

custom-built sensor boards, off-the-shelf power hardware). The fuselage-wing

joint consists of a metal tube fitting so that different wings can be swapped

onto the aircraft with minimal effort and in a rapid succession, such that mul-

tiple wings can be tested within a single flight test session. It was envisioned

that this capability would enable several wings – from a pristine ‘baseline’

wing configuration through progressively more damaged wings – to be tested

over the course of a single flight test, so that the same flight conditions and

platform could be used to both collect sensor data and to test the dynamic

data-driven algorithms in real flight conditions.

The driving design requirement of the testbed aircraft was that the wing

provide a structurally similar response to a larger, more advanced Low-Cost

Attritable Aircraft Technology (LCAAT) wing structure. Thus, even at the

smaller scale, the preferred structural design of the wing used techniques simi-

lar to that of the larger LCAAT wing (albeit with reduced flight performance).

The design criteria for the wings included: hollow carbon-fiber construction,

12-foot wingspan, plywood wing tip and root ribs, and inclusion of ailerons

and flaps. The wing uses a constant 9% thick airfoil section representative

of typical profiles at the mid-subsonic speed range (NACA 2309). The wing

structure is split into 4 bays where the boundaries of each are designated by

the plywood ribs. A split flaperon (carbon laid up over a foam core) is located

in the outer two bays. The wing spar was sized for a maximum tip deflection

in a 4G pull-up maneuver and the wing skins were sized for buckling in a 4G

10
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Figure 1.2: Schematic of the designed and manufactured wing structure.

pull-up maneuver. Finally, the wing was designed to have access panels on the

bottom skin so that any sensors, wiring, or other hardware could be placed

or modified after the wing has been constructed and assembled. Figure 1.2

contains a schematic of the wing structure.

Figure 1.3 shows the final manufactured aircraft during a series of flight

tests. The first flight test conducted for the testbed aircraft consisted of a full

Figure 1.3: The custom-built self-aware UAV hardware testbed.

system assembly and checkout at the field, as well as a maiden flight. The

maiden flight of the testbed aircraft was primarily used to verify that all flight

11



hardware functioned properly in-flight and to verify that the aircraft is fully

controllable and flies as anticipated. Thus, a relatively benign flight path was

flown – takeoff and climb to 300 ft above ground level, fly general racetrack

patterns with banks limited to 30 degrees for up to 6 minutes of flight time,

and a typical descent and landing.

Figure 1.4 shows the flight path of the aircraft during its maiden flight.

For this maiden flight the testbed aircraft was outfitted with a preliminary

Figure 1.4: Flight path recorded during the maiden test flight.

sensor suite consisting of twenty-four uniaxial strain gauges mounted on the

top surface of the right wing, as shown in Figure 1.2. However, analysis of

this data showed that the measured strain had a low signal-to-noise ratio, and

thus did not correlate well with z-acceleration (i.e., aircraft maneuver) data as

one would expect. Finite element simulations of the wing during the design

phase showed that differences in wing deflection caused by damage would be

12



much smaller than any differences due to varying aircraft maneuvers. Thus,

this result suggests that a more advanced sensing architecture is necessary in

order to detect damage in-flight.

1.6 Research Objectives

The objectives of this research aim to advance the framework for a

predictive digital twin for UAVs using physics-based models and scientific ma-

chine learning, and leverage a custom-built hardware testbed to support the

development of a digital-twin-enabled self-aware UAV.

Currently, the development of the digital twin has been focused on

purely structural models, but the concepts underlying this structural digital

twin can extend to aerodynamics as well. Information about the aerodynamic

state of the vehicle would improve the predictive capabilities of the digital twin

by enabling an accurate, physics-based prediction of the in-flight structural

loads. Therefore, on the modeling side of this work, the research objectives

are to: 1) obtain high-fidelity aerodynamic data for an appropriate test case;

2) establish a robust non-intrusive reduced-order modeling methodology and

demonstrate its utility in creating ROMs for the high-fidelity models without

access to source code; and 3) validate, evaluate, and demonstrate the efficient

simulation capabilities of the ROMs.

To date, the digital twin models have shown promising results in sim-

ulation. However, experimental investigations into the type of sensor-driven

damage detection and characterization required to achieve this functionality

13



have shown limited success. In particular, it has been shown that damage

detection and characterization place high demand on sensing capability and

robustness as well as computational efficiency of the data assimilation process,

even for limited damage cases on simplified wing structures [23, 24, 25]. Thus,

the need remains to validate the proposed digital-twin-enabled self-aware UAV

concept experimentally. To this end, this work also presents an experimental

methodology for data collection and demonstration of the digital twin concept.

Through experimentation with the hardware testbed, the research objectives in

this area are to: 1) develop a data acquisition architecture that produces high-

quality data capable of enabling the self-aware capability; 2) identify challenges

and limitations that might hinder the success of these computational meth-

ods when applied to experimental data; 3) develop strategies for adapting and

integrating the various computational methods to overcome these challenges;

and 4) successfully implement and validate these approaches on the testbed in

order to demonstrate the effectiveness of the end-to-end dynamic data-driven

application system.
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Chapter 2

Reduced Order Models via Operator Inference

This chapter describes the construction of reduced order models for

unsteady flow over an airfoil using the operator inference approach applied to

NASA’s FUN3D CFD solver [26]. First, the airfoil test case problem being

investigated is described in detail. Then, the necessary considerations for

creating the reduced order model are discussed. Finally, the results comparing

the reduced order model prediction to the full order model data are presented.

2.1 High Angle of Attack Unsteady Flow Case

This benchmark case [27] simulates flow over a 2D NACA 0012 airfoil

at a 45◦ angle of attack, as shown in Figure 2.1. The free stream Reynolds

number (4.8E6), Mach number (0.6), and speed of sound (340 m/s) are such

that the flow separates and creates an oscillatory wake. In this example,

lift oscillations occur at 450 Hz. To determine an appropriate time step, a

characteristic time, t*chr, is identified using the frequency of oscillation as t*chr =

1/f*chr = 1/450 Hz = 0.002222 s. The nondimensional characteristic time in

FUN3D is related to physical characteristic time by tchr = t*chra
*
ref(Lref/L

*
ref),

for compressible flow, where a*
ref is the reference (in this case, free stream)
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Figure 2.1: NACA 0012 airfoil at angle of attack of 45◦.

speed of sound, L*
ref is the reference length of the physical problem (in this

case, the chord), and Lref is the corresponding length in the grid (considered

nondimensional). In this example, the chord is 0.1 m and the corresponding

chord-in-grid is 1.0, so Lref/L
*
ref = 1.0/0.1 = 10 m-1. Thus, the nondimensional

characteristic time is tchr = (0.002222)(340)(10) = 7.555. If N time steps are

desired within the characteristic time, the time step size is given by ∆t =

tchr/N, and thus a time step size of 0.07555 seconds was chosen for 100 time

steps per lift cycle. The properties of this test case are summarized in Table

2.1.

Figure 2.2 shows the structured hex mesh used for CFD simulations.

The mesh includes 9728 hex cells, 19824 nodes, 49192 edges, and 6 boundaries

(3 Farfield Riemann, 2 Y=constant Symmetry Planes, and 1 viscous surface).
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Table 2.1: Properties of Unsteady Flow Case

Airfoil NACA 0012
Angle of Attack 45◦

Reynolds Number 4.8E6
Mach Number 0.6
Speed of Sound 340 m/s

Lift Oscillation Frequency 450 Hz
Chord Length 0.1 m

Time Steps per Lift Cycle 100
Nondimensional Time Step Size 0.07555 sec
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Figure 2.2: CFD domain mesh showing (a) the mesh out to the farfield and
(b) the mesh zoomed in on the airfoil.

This is a 2D problem, but the grid is adapted to a 3D domain with one

cell spanning the y-dimension to be compatible with the solver. The CFD

simulation was performed using NASA’s FUN3D suite of tools using a Spalart-

Allmaras turbulence model [28], and the time history data was exported to

use in constructing the reduced order model.
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2.2 Creation of Reduced Order Model

2.2.1 Setup

The operator inference approach to reduced order modeling targets

problems governed by systems of partial differential equations. A projection-

based ROM preserves the polynomial structure of a full-order model, and as

such, it is desirable for the governing equations of the system being modeled

to have this polynomial structure. A key feature of the operator inference

approach is that it gives complete flexibility in the set of physical variables

that define the ROM. Thus, the physical variables can be chosen to expose

the desired polynomial structure in the governing equations, and then the

snapshot data can be transformed into those variables.

The governing equations in this airfoil case are the Navier-Stokes equa-

tions for compressible flow, defined by the unsteady equations for conservation

of mass, momentum, and energy. In this example, the state variables are cho-

sen to be the specific volume variables: pressure, x-velocity, z-velocity, and

specific volume. The motivation for using these variables is that the conser-

vation equations for mass, momentum, and energy for viscous flow with no

source term become quadratic in these variables when written in the specific

volume form [18], and thus a ROM with a quadratic polynomial structure can

be expected to yield a good approximation to the dynamics [21].

The snapshot data was collected at uniform time intervals of ∆t =

.07555 for k = 100 time steps, which results in the snapshot matrix X ∈ Rn×k,

where the jth column is the solution trajectory at time tj and n = 39648 is
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the number of degrees of freedom in each CFD solution (n =
# of nodes

2
×

# of state variables =
19824

2
×4). Operator inference also requires Ẋ, the time

derivative of the data, which is approximated with finite differences. Since the

data comes from a quadratic polynomial model, the reduced model will have

the form ˙̂x(t) = ĉ + Âx̂(t) + Ĥ(x̂(t) ⊗ x̂(t)), where ⊗ is the column-wise

Kronecker product and ĉ, Â, and Ĥ are the reduced-order operators defining

the ROM.

2.2.2 Determining ROM Dimension

There is a maximum ROM size that should be chosen. If the size r is too

large, an “information limit” will be hit where more information (snapshots)

is needed because increases in r do not add information. This maximum can

be determined by examining the rank of the data matrix, D ∈ Rk×d(r) where

d(r) = 1 + r+
r(r + 1)

2
[19] for a quadratic ROM of order r. The data matrix

is the known data, projected to the r-dimensional subspace. In this quadratic

polynomial case, the data matrix is D = [1k X̂T (X̂ ⊗ X̂)T]. X̂ is the

projected data given by X̂ = VT
r X, where Vr is the POD basis of rank r

corresponding to the snapshot matrix X. As r increases, the data matrix will

reach a point at which it is no longer full column rank. The rank of the data

matrix for increasing ROM sizes can be seen in Figure 2.3, and from this study

it was determined that the maximum ROM size for this problem is r = 12.

To determine an appropriate dimension for the reduced model, the

singular values of the snapshot matrix are computed. An indicator for the
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Figure 2.3: Rank of the data matrix for increasing ROM sizes.

reduced dimension is the amount of energy captured by the first j singular

values, defined by κj =
∑j

i=1 σ
2
i∑n

i=1 σ
2
i
. Figure 2.4 shows this cumulative energy for the

singular value indices and computes the smallest indices j such that κj > 99%,

κj > 99.9%, and κj > 99.99%. These values are reached at j = 4, j = 6, and

j = 9 respectively. This suggests a size r = 6 would capture 99.9% of the

energy in the system, which is sufficient. Thus, a reduced dimension of r = 6

is chosen and the POD basis of rank r = 6 corresponding to the snapshot

matrix X is computed as the 6 leading left singular vectors.
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Figure 2.4: Cumulative energy of the singular values.

2.2.3 Regularization

In the operator inference approach, the operators are inferred by solving

the data-driven minimization problem: min
O

∥∥DOT −RT
∥∥2

F
, where D is the

data matrix defined in Section 2.2.2, O = [ĉ Â Ĥ] ∈ Rr×d(r) is the matrix

of unknown operators, and R = [ ˙̂x0
˙̂x1 ... ˙̂xk−1] ∈ Rr×k is the matrix

of projected time derivatives. This problem decouples into r independent

linear least-squares problems, one for each of the rows of the matrix O of

unknown operators. Each sub-problem is typically well-posed, but can also

be noisy due to error in the numerical estimation of time derivatives, the

truncation of the POD basis, or model misspecification. Thus, the ROMs can
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Table 2.2: Optimized regularization parameters for increasing ROM sizes.

ROM size Regularization Parameter
2 0.3711
4 1.2329
6 1.6730
8 2.7389
10 10.3598
12 12.4622

suffer from overfitting the operators to the data and exhibit poor predictive

performance over the time domain. To combat this, a Tikhonov regularization

[29, 30] is introduced to the sub-problems where a scalar hyperparameter λ

penalizes each entry of the inferred ROM operators, driving the ROM to global

stability. Thus, the minimization problem becomes: min
oi

‖Doi − ri‖22+‖Γoi‖22,

i = 1, ..., r, where oi is row i of O, ri is row i of R, and Γ = λId(r)×d(r).

The hyperparameter λ is chosen so that the resulting ROM minimizes error

over the training domain while maintaining a bound on the integrated POD

coefficients. This optimization problem is given by: min‖X̂− X̃‖ subject

to maxi,j|X̃i,j| ≤ B, B > 0, where X̃ is obtained by solving the least-squares

minimization problem for the unknown operators with regularizer λI and then

integrating the reduced model over the time domain, and B is the bound on

the integrated POD coefficients. B is chosen as a multiple (in this case, 1.5)

of the maximum absolute entry of the projected training data X̂. The results

of this optimization process for increasing ROM sizes for this problem can be

seen in Table 2.2. Since the ROM size chosen was r = 6, the regularization

parameter λ = 1.6730 was used in the construction of the reduced model.
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2.3 Results

The ROM was constructed and simulated over the time domain of 100

time steps and compared to the results from the full order model (FOM).

Figure 2.5 shows the predicted (ROM) and actual (FOM) pressure contours

at a few snapshots of the lifting period (additional snapshot pressure contours

are given in Appendix A.1). Pressure error contours are provided in Figure

2.6.

For the error analysis, the `2-norm errors between the snapshot data

and the predicted data are computed. This is broken down into the absolute

`2 error, given by e`2, abs = ||X −XROM||2, and the relative `2 error, given by

e`2, rel = ||X−XROM||2
||X||2 , where X is the FOM state variable data and XROM is the

state variable data predicted by the ROM. The absolute and relative `2 errors

were computed for each of the state variables and are shown in Figure 2.7.

The predicted and actual pressure distributions around the airfoil were

also compared. The FOM and ROM data for the state on the airfoil surface

was extracted, and the coefficient of pressure was plotted against the nondi-

mensional chord location. The FOM and ROM pressure distributions for a few

snapshots are shown in Figure 2.8, along with the absolute error on both the

upper surface and the lower surface (additional snapshot pressure distributions

are given in Appendix A.2).

It is difficult to see many differences between the predicted and actual

results in Figure 2.5, a testament to the performance of the ROM. The differ-
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ences between the FOM and ROM data in Figure 2.8 are nearly invisible, also

showing how well the ROM is able to predict over the time domain.

The pressure on the airfoil surface was then converted from the nondi-

mensional FOM and ROM output values to the dimensionalized values in kPa

and integrated over the airfoil surface to compute lift and induced drag for

both the FOM and ROM. As the airfoil is at an angle of attack of 45◦, the lift

and induced drag are equivalent. The comparison of the FOM and ROM lift

over time is shown in Figure 2.9.

Finally, the training data of 100 snapshots was used to build a ROM,

and then predict over a time domain of 300 time steps. Additional snapshot

data from the FOM was collected to compare to the ROM prediction. Figure

2.10 shows the lift over time for these 300 steps (the induced drag again would

be the same plot). The vertical black line indicates the boundary between

the training and testing data. This shows that the ROM predicts well in the

training regime, and is able to predict out past the training data sufficiently

well for another lifting cycle. However, on the third lifting cycle, the error

between the FOM and ROM lift starts to increase. Thus, the further from the

training regime, the poorer the predictive performance of the ROM.
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Figure 2.5: Predicted and actual pressure contours at snapshots.
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Figure 2.6: Pressure absolute error contours at snapshots.
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Figure 2.7: Absolute and relative `2 errors for the state variables.

27



0.0 0.2 0.4 0.6 0.8 1.0
x

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

C
p

FOM

ROM

0.0 0.2 0.4 0.6 0.8 1.0
x

0.000

0.002

0.004

0.006

0.008

0.010

C
p

A
b

so
lu

te
E

rr
or

Upper Surface

Lower Surface

(a) Time Step 1

0.0 0.2 0.4 0.6 0.8 1.0
x

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

C
p

FOM

ROM

0.0 0.2 0.4 0.6 0.8 1.0
x

0.000

0.002

0.004

0.006

0.008

0.010

C
p

A
b

so
lu

te
E

rr
or

Upper Surface

Lower Surface

(b) Time Step 50

0.0 0.2 0.4 0.6 0.8 1.0
x

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

C
p

FOM

ROM

0.0 0.2 0.4 0.6 0.8 1.0
x

0.000

0.002

0.004

0.006

0.008

0.010

C
p

A
b

so
lu

te
E

rr
or

Upper Surface

Lower Surface

(c) Time Step 100

Figure 2.8: Predicted and actual pressure distribution with errors at snapshots.
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Figure 2.9: Predicted and actual lift (same as induced drag) over time.
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Figure 2.10: Predicted and actual lift (same as induced drag) over time; solid
black vertical line indicates boundary between training and testing regimes.
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Chapter 3

Experimental Data Collection and Analysis

The maiden flight of the testbed aircraft revealed that a more advanced

sensing architecture is required to enable the self-aware UAV. This chapter 1

presents a recent effort to develop such an architecture. First, the bench-top

experimental setup used for this work as well as the sensing technology adopted

is described. Finally, results are presented that serve as a proof-of-concept for

the application of this sensing architecture to the self-aware UAV.

3.1 Experimental Setup and Sensor Technology

A bench-top experimental setup was developed with the hardware testbed

that enables controlled experiments and collection of realistic sensor data for

the aircraft. In the bench-top setup, the wings are mounted upside-down to a

wooden mount that mimics the fuselage. The opportunity also exists to mount

the electric motor from the testbed onto this fuselage mount in order to excite

vibrations in the wings that are characteristic of those expected in-flight. The

experimental setup for these tests is shown in Figure 3.1.

1Work from this chapter previously published in [31]. Setup, experiments, and analysis
performed by author in collaboration with M. Kapteyn and J. Pretorius.
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Figure 3.1: Experimental setup and wireless sensor used for data collection.

Based on the data collected during the validation test-flight, the deci-

sion was made to switch from the traditional uniaxial strain gauges mounted

on the top surface of the right wing, to a set of dual high frequency dynamic

strain sensors mounted on the bottom surface of the left wing. The primary
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motivation for this change was the improved signal-to-noise ratio. The wings

on the testbed vehicle are relatively flexible, so the strains observed in-flight

are typically dynamic with significant high frequency content. In this setting

the dynamic strain gauges provide increased sensitivity, as well as reduced

susceptibility to electromagnetic noise, and thus a higher signal-to-noise ratio.

The dynamic strain sensors used in this work are embedded in a set of

wireless, self-adhering sensor suites, one of which is shown in detail in Figure

3.1. In addition to the dynamic strain sensors, each wireless sensor includes

temperature, pressure, and humidity sensors, as well as a 3-axis accelerome-

ter and gyroscope. In addition, the sensors have a built-in analog-to-digital

converter, Bluetooth transmitter, and long-life battery. The wireless nature of

the sensors provides additional benefits such as reduced weight, system com-

plexity, and aerodynamic drag due to the absence of wires and other sensor

hardware. Preliminary data for this work was collected using one of these

wireless sensors, but the form factor and ease of installation would allow for

many of these sensors to be used.

3.2 Proof-of-Concept Results

As shown in Figure 3.1, there is a removable access panel, originally

intended for modifications to sensing hardware. However, this component

also allows the testbed to represent a scenario in which the access panel is

unintentionally left open or entirely detached. Customizing this panel also

allows for emulation of different structural states. For example, a flexible
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Table 3.1: Material properties of different access panel cases.

Material Thickness Elastic Modulus
Thick Carbon Fiber 1/16” 2400 ksi
Thin Carbon Fiber 1/32” 2400 ksi
PVC 1/16” 450 ksi
Nylon 1/16” 400 ksi

panel emulates a reduction in stiffness in the wing skin caused by damage or

degradation. In preliminary data collection, both the thickness and elastic

modulus of the panel were varied. In particular, the cases tested were carbon

fiber panels of two different thicknesses, a PVC panel, a nylon panel, and a

reference case with no access panel attached. The material properties of the

varying panels are provided in Table 3.1. In the preliminary data collection, a

small hammer is tapped at the impact location site (indicated in Figure 3.1) to

induce high frequency vibrations in the wing, and one of the wireless sensors

collects data through the vibration sensor at a sampling frequency of 5000

Hz. This hammer impact test is repeated using the different access panels

described in Table 3.1.

The goal of these experiments is to process the sensor data from the

hammer impact tests in order to extract features containing information about

the structural response of the wing, and demonstrate how these features can

be used to estimate the structural state of the wing, in this case represented by

the access panel properties. Figure 3.2 (top and middle respectively), show the

raw vibration sensor output for each of the panel cases and the vibration sensor

output for each case after filtering with a 250 Hz high-pass filter. The high-
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Figure 3.2: Preliminary experimental results. Top: Raw vibration sensor
output for each access panel case. Middle: High-pass filtered vibration sensor
output. Vertical offsets are added to better show the difference between cases.
Bottom: Integrated high-pass filtered sensor data (two repeated trials for each
case).
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pass filter cutoff frequency of 250 Hz is chosen as a hyperparameter where

meaningful discrimination between panel cases can be seen. The high-pass

filtered data shows that there is a variation of high frequency content between

each access panel case. This can be more clearly seen in Figure 3.2 (bottom),

which shows the integrated high-pass filtered sensor output for two trials of

each of the panel cases.

The integrated filter output shows a clear trend based on the access

panel stiffness. As the stiffness of the panel is reduced, the integrated filter

output is decreased with respect to time. The two trials show a fair degree of

consistency, however in future work more data will be collected to ensure con-

sistency and provide a more complete dataset. These preliminary experiments

demonstrate that the sensor architecture is capable of detecting differences in

the structural response of the wing, even when the difference in the underly-

ing structural state is small; in this case only the properties of the (relatively

small) access panel are varied.

In the future, the data collected using these bench-top experiments

will be integrated into the self-aware UAV system framework, which is sum-

marized by the information model shown in Figure 3.3. In this framework,

the experimental data will be used in conjunction with structural models to

train a classifier [2] in which features extracted from in-flight sensor data (in

this case the amount of high-frequency content) can be used to estimate the

structural state of the wing (in this case which access panel is attached to the

wing). Online, this classifier can be used as part of a digital twin that enables
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Figure 3.3: Information model for the proposed architecture.

condition-aware sensing and dynamic mission replanning, thus enabling the

UAV to become self-aware.
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Chapter 4

Conclusions

4.1 Research Summary

This research work advanced the framework for a predictive digital twin

for unmanned aerial vehicles. First, non-intrusive ROM methods that work ef-

ficiently with physics simulations where internal access to the simulation code

is unavailable were developed in application to unsteady flow over an airfoil.

The maximum ROM size and the need for regularization in the operator infer-

ence approach were investigated to achieve a ROM with satisfactory predictive

performance. The results comparing the reduced-order model prediction to the

full-order model data show that the ROM was capable of reconstructing the

time domain of the training data with very little error, and was able to ac-

curately predict out two additional lifting cycles. Thus, these aerodynamic

ROMs have the ability to improve the predictive capabilities of the digital

twin by enabling a rapid, accurate, physics-based prediction of the in-flight

aerodynamic loads.

In addition, this work presented an experimental data collection and

analysis method to support the development of a self-aware UAV. A sensor ar-

chitecture was developed that leverages wireless self-adhering dynamic strain
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sensors capable of measuring high frequency vibrations in the structural re-

sponse of the wing. Bench-top experiments were conducted and the resulting

data suggests that the degree of high-frequency content provides a useful fea-

ture for classifying the structural state of the wing. The development of a fully

functional aircraft system capable of generating high quality experimental data

serves as a key enabler towards validating and verifying a fully self-aware air-

craft system.

4.2 Future Research Directions

The reduced-order modeling work validated the operator inference ap-

proach as applied to aerodynamic ROMs. The next direction would be to

apply the developed framework to the larger scale problem of a 3D wing.

Once the ROM is validated against a single flight condition, the goal is to ex-

tend the methods to accept parametric changes in the flight conditions or wing

orientation. The goal for the final aerodynamic ROM is to take as input time-

dependent measurements of the wing displacements and the flight conditions,

and then compute time-dependent aerodynamic loading as output. Finally,

the coupling between aerodynamic ROMs and structural ROMs can be in-

vestigated, seeking to create fluid-structure interaction ROMs, which would

establish a robust digital twin in which multidisciplinary modeling enables

advanced, intelligent decision making.

Future work on the experimental side will focus on gathering additional

data sets, and further analysis of the data in order to extract additional fea-
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tures that can reliably inform classification of the wing structural state. Other

tests include ring-down response experiments to capture natural frequency in-

formation, forced vibration tests to examine the structural response of the wing

to vibrations induced by the aircraft’s electric motor, and load-displacement

tests to examine stiffness characteristics. While the preliminary experiments

utilized only one sensor, multiple sensors can be used, and features extracted

from different sensors can be added to the classifier in order to more reliably

estimate the severity of structural defects, and also estimate the location of

these defects.

These future research directions combine modeling and simulations

with hardware experimentation that work to enable the successful creation

of the robust, digital-twin-enabled self-aware UAV.
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Appendix A

Additional Snapshot Results

A.1 Pressure Contours
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Figure A.1: Continued below.
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Figure A.1: Continued below.
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Figure A.1: Continued below.
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Figure A.1: Continued below.
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Figure A.1: Predicted and actual pressure contours at additional snapshots
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A.2 Pressure Distributions
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Figure A.2: Continued below.
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Figure A.2: Predicted and actual pressure distribution with errors at addi-
tional snapshots.
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