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Semiconductor manufacturing is one of the most complex existing manufacturing 

systems. It requires constant improvement to meet demands and expectations. This 

dissertation studies semiconductor manufacturing under three main topics, preventive 

maintenance scheduling, lot size management and AMHS scheduling. We first provide 

an optimization based decomposition algorithm and a heuristic algorithm to solve 

preventive maintenance scheduling problem along with direct optimization. Then, we 

develop an analytic tool to investigate and find optimal lot sizes to run in a manufacturing 

environment to minimize cycle time. Finally, we propose an optimization based AMHS 

scheduling algorithm and compare its performance to a myopic algorithm. 
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 Chapter 1:  Introduction 

The first phase of industrial revolution started with textile industry. The textile 

industry was naturally the most common sector around the world. The second phase of 

the industrial revolution witnessed iron founding and metal manufacturing in general. 

Each phase has brought more powerful and more technological tools to various industrial 

sectors. With these changes, the modern manufacturing era made a quick start. As 

necessities bore inventions, inventions also made themselves new necessities. These 

manufactured products have been used widely in our daily lives. Although we have not 

recently witnessed the drastic changes in manufacturing technologies of 19th century, we 

have been not only witnesses but also actors of another important phase of the industrial 

revolution which put a signature on the post-modern era, semiconductor manufacturing. 

Semiconductor devices dominate all our lives and they have brought a great degree of 

dependency for sustaining life in our enormously populated and globalized world in the 

21st century. 

Semiconductor manufacturing applications are everywhere in life from our 

computers to cars, mobile phones to microwave ovens. We depend on it for our 

communication, education, entertainment and business. Semiconductor manufacturing is 

probably the most complex and advanced type of manufacturing that currently exists. 

Theoretically, there is not a boundary on its improvement. It requires the utmost degree 

of excellence in manufacturing and continuous improvement in technology to satisfy 

consumer demand and needs.  

In its execution, the complexity of semiconductor manufacturing and the scale of 

production engender countless problems. While it has conventionally been an area of 

expertise for chemical and electrical engineers, increased complexity over time has 
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required new set of capabilities. Therefore, semiconductor manufacturing has been one of 

the major areas in which the expertise of industrial engineers and operations researchers 

is needed. The applications have been so diverse that they range from integer 

programming implementations to queueing theory analysis.  

This dissertation focuses on planning and scheduling in a context which spans a 

wide set of implementation areas on three main topics under the umbrella of 

semiconductor manufacturing. Chapter 2 studies preventive maintenance scheduling in 

semiconductor manufacturing, at the machine level. Chapter 3 incorporates production 

lots into the picture and turns its focus to lot size management, critically analyzing small 

lot size manufacturing efforts. A third dimension, the movement of lots, is added in the 

Chapter 4 as automated material handling (AMHS) scheduling in semiconductor 

manufacturing. Our wide spanning approach to the planning and scheduling problem is a 

result of complex and constantly evolving nature of semiconductor manufacturing. Each 

problem has been the main focus in the industry during the time frame they have been 

studied. Starting the research with preventive maintenance scheduling has helped learn 

equipment and manufacturing environment and has been a very good introductory to the 

industry suppliers and manufacturers for us. While the research on lot size management 

has provided us an extensive knowledge on factory dynamics, material handling research 

has helped us close open ends within separate levels of operations in the production 

environment.  

Semiconductor manufacturing has its own unique terminology. This dissertation 

only deals with wafer fabrication, which is front end of semiconductor manufacturing. 

Therefore, the terminology contains wafer fabrication related definitions. A 

manufacturing plant is usually called a fab, a machine is called a tool, and a production 
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unit is called a wafer. A group of wafers, called a lot, is moved in a carrier called FOUP 

(Front Opening Unified Pod). The size of these lots is fixed and it usually varies from 1 

to 25. Each specific operation on a wafer is called step. A route or flow specifies the pre-

defined sequence of tool visits taken by a lot. A route consists of 500 steps on average. 

Each step is a combination of a number of sub-operations. Tools are grouped in tool 

groups according to their capabilities. There are 50 tool groups on average in a fab and a 

typical fab consists of about 700 tools. An average 300-mm processor chip fab is capable 

of processing 30000 wafers in a month. Each tool group is visited multiple times. 

Therefore, a route consists of reentrant flows.  

The costs of the tools are very high in semiconductor manufacturing. Depending 

on its capabilities, current tool price can be up to $100 million. Therefore, tools need to 

be under a strict maintenance regime to keep them running a healthy and long processing 

life. Also, since breakdowns of tools interrupt production unexpectedly, scheduled 

(preventive) maintenance tasks are employed to limit the occurrence of unscheduled 

down times. From a planner’s point of view, a preventive maintenance task acts like a 

production lot and uses a part of the capacity on a tool except that there is no wafer 

output from this use. Employing a preventive maintenance task at a certain time on a 

certain tool means that a part of the tool’s capacity is going to be unavailable for actual 

wafer processing. The capacity loss due to scheduling of preventive maintenance tasks on 

a tool group causes fluctuations on the available capacity of the tool group. For planning 

purposes, a smooth capacity profile over time is preferred. An effective way to provide a 

smooth capacity profile is controlling the maximum capacity loss due to preventive 

maintenance scheduling. 
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In Chapter 2, we propose a mixed integer programming formulation to model 

preventive maintenance scheduling on a tool group, which aims to find a feasible 

schedule for preventive maintenance tasks within a certain planning period while 

minimizing the maximum capacity loss on the tool group. We develop three different 

algorithms to solve the problem. One way is that we try to solve this problem with direct 

optimization. In another algorithm, we decompose the problem such that the problem 

reduces to solving a preventive maintenance scheduling problem for each tool, then the 

tool schedules are combined iteratively to minimize the maximum capacity loss. Our 

third algorithm is a computationally efficient heuristic based on the idea of scheduling 

task with largest capacity loss to the time period the least accumulated capacity loss 

within the planning horizon. Which of these three algorithms works best depends on the 

particular planning environment. Having a daily or weekly planning horizon, different 

levels of variation on capacity loss, and varying processing times of the preventive 

maintenance task all affect the performance of these algorithms. Thus, in Chapter 2, we 

also undertake a detailed experimental study. 

The manufacturing environment in the semiconductor industry is open to 

continuous improvement efforts. Usually the ultimate aim is to minimize cycle time in a 

fab. A large portion of cycle time goes to activities that are not related to actual 

processing, such as waiting and handling. Since recent lean manufacturing efforts in 

semiconductor manufacturing require the elimination of waste, the waiting time of wafers 

is targeted for reduction. Since wafers are carried in lots, some portion of delay is caused 

by wafers waiting for the entire lot to complete processing after each step. The current 

convention of the 25 wafer lot size serves as a base to start with for further improvement 

efforts using lot size management. While some in the industry prefer lot size reduction in 
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order to reduce cycle time, others believe that running large lot sizes helps control system 

variation. In fact, the system parameters have a nuanced effect on the performance of a 

various lot sizes. 

In Chapter 3, we analyze the effect of lot size on cycle time. Although there have 

been a number of studies regarding lot size reduction in the literature, these studies are 

mostly simulation based. We introduce an analytic model which uses queueing theory, 

and depends on alternative lot sizes and technology levels, to represent a slice of the 

manufacturing flow. We use some approximation techniques to provide a closed form 

analytic formulation for cycle time. A simulation study confirms the validity of the 

approximation. We give a detailed analysis of the behavior of cycle time under varying 

conditions. For several special cases, we derive optimal lot sizes. 

Moving lots from tools to tools and between storage areas and tools after every 

step creates a challenging problem. Improvements and changes in fab layouts force 

material handling methods to transform drastically over time. While manual material 

handling was common in the early days of semiconductor manufacturing, increased wafer 

sizes make it difficult for human operators to carry the lots. Most up-to-date systems run 

fully automated material handling systems. The layout of a material handling system can 

vary greatly, depending on the fab layout and production requirements. The spine layout 

in Figure 1.1 is a very common one in which major tracks surround the receiving ends of 

tool groups in the inner loop. Smaller tracks are built which serve the tools in a tool 

group. These tracks constitute outer loops. Each tool has some limited space for storage 

which is called tool buffer. The common storage place for a tool group is called stocker, 

which is placed by the tracks of inner loop. Stockers have a large capacity, and in most 

cases they can be assumed practically uncapacitated.  Lots are carried in FOUPS 
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traveling via various types of vehicles. Automated guided vehicles, over head transports 

and conveyor belts are examples of some of these vehicle types. AMHS design in 

semiconductor manufacturing is a very large study area by itself. 

 

Figure 1.1 Sample AMHS layout in a fab 

Managing the movement of vehicles and lots is an important problem. Improving 

the technology and scale of manufacturing adds to the complexity of lot and vehicle 

movements. There are numerous applications of lot and vehicle dispatching in the 

literature, and many of the proposed dispatching algorithms aim to minimize conflicts in 

vehicle traffic and congestion in the system. A significant portion of these studies are in 

parallel with AMHS design. Although industrial algorithms perform very well, they have 

a major drawback in the limited scope of the solutions they provide. Despite varying 

methodology, most of these algorithms can be classified as myopic since they have 

limited information availability due to the information structure of the fab shop floor. 

Conventionally, the information infrastructures of production and AMHS are surprisingly 

separate, meaning that their corresponding systems operate independently practically all 
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the time. Information sharing occurs between the two separate systems only when an 

entity of one system becomes available to the other. For example, the AMHS system sees 

a lot only when it becomes available to be picked up (e.g., at a tool). On the other hand, a 

vehicle becomes visible to the production system only when it is available for pickup. 

However, there have been recent efforts among the suppliers of the industry to increase 

the degree of information sharing between the two systems. The main effort is to provide 

some visibility and information availability ahead of time. Although the window of this 

visibility is measured only in minutes, it brings new opportunities for higher quality 

solutions. In Chapter 4, we propose an optimization based algorithm which solves the lot-

vehicle assignment problem for each visibility period in real time. Since the algorithm 

contains some consideration of future decisions, it does not suffer from the myopia of 

most conventional algorithms. In short, we present this optimization based look-ahead 

scheduling approach to the problem rather than relying solely on a one lot, one vehicle at 

a time dispatching approach. We evaluate the look-ahead approach using a version of the 

myopic algorithm as a benchmark. We run an extensive experimental design to analyze, 

evaluate and compare the performance of the look-ahead and myopic algorithms. 

Since the content of each chapter is essentially independent from the others, each 

chapter is largely self-contained and hence can be read separately. After next three 

chapters, the dissertation is closed with a novel conclusion. 
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 Chapter 2:  Preventive Maintenance Scheduling 

Planning and scheduling preventive maintenance tasks in semiconductor 

manufacturing wafer fabrication facilities (fabs for short) is a very important activity due 

to high equipment costs and the risk of losing expensive capacity due to potential 

unexpected down times. PM activities and their schedule (when, and in what combination 

they are carried out) directly affect the fab performance, especially throughput, cycle time 

and Work-In-Process (WIP) inventory levels. Moreover, fabs usually operate with the 

goal of achieving weekly or daily production targets. The way that the PM tasks are 

scheduled might determine whether the fab can achieve these targets or not. Hence, the 

preventive maintenance planning and scheduling problem addressed in this paper is an 

important problem in semiconductor manufacturing. As a highly complex process due to 

its size, intricate interactions among elements of the system, machine/tool dedication and 

reentrant flow, semiconductor manufacturing planning and scheduling decisions are 

typically handled in a hierarchical manner. We envision a similar framework here by 

modeling, solving, and analyzing the overall PM planning and scheduling problem in a 

hierarchy of two levels, in which higher level feeding its output (PM planning) to the 

lower level to produce a detailed PM schedule (PM scheduling). In this paper, we focus 

on the lower level of the hierarchy, detailed PM scheduling.  

The semiconductor manufacturing environment consists of tool (or machine) 

groups in which individual tools of similar production capabilities are grouped together. 

Different types of wafers (or product types in general) are processed through the tools by 

visiting a tool in each tool group. One essential aspect of semiconductor manufacturing is 

its reentrant (or recirculation) nature: Wafers come back to a tool group many times for 

additional processing (to complete additional operational steps to make the photo layers 
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on the wafer one after another) before they leave the fab. This is called loop, which 

consists of a series of operations starting and ending at the same tool. The main reason 

for “looping” is that expensive tools are not dedicated to the layers, as this would require 

enormous amount of capital. There are other complexities of semiconductor 

manufacturing essential for any reasonable modeling and analysis. Approaches developed 

for semiconductor manufacturing planning and scheduling try to capture these issues in 

one of the levels of decision making hierarchy. We follow a similar route by taking these 

issues into account on the lower level of the PM decision making hierarchy, tool group 

PM scheduling problem (For more in-depth discussion on higher level PM planning, see 

Yao et al. (2001) and Yao et al. (2004)). 

The tool group PM scheduling model deals with scheduling given PM tasks 

(given in the output of a higher-level PM plan) on individual tools within a specific tool 

group during a relatively short planning horizon. The idea is to run the model at the 

beginning of every planning horizon (e.g., everyday or every week) for each tool group 

using the assignments dictated by the higher level PM planning model solution. The main 

output of the tool group PM scheduling model is a detailed PM schedule that shows the 

best times to perform the PM tasks on each tool during the planning horizon. In this 

model, multi-tasking (i.e., carrying out multiple PM activities at the same time) is 

allowed. Objectives may vary in the model depending on the operational issues to be 

addressed. In our study, we aim to control the pattern of capacity loss due to PM 

allocation on the tool group. Therefore, in our mathematical model, we use minimization 

of the maximum capacity loss throughout the planning horizon as an objective. This 

objective function helps control production capacity fluctuation in the tool group and 

limits variation in the capacity over planning horizon.  
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Next, we present a compilation of literature on preventive maintenance 

scheduling in semiconductor manufacturing. Afterwards, we provide more details on the 

tool group PM scheduling model with a mixed integer programming (MIP) approach. 

Then, we present a decomposition based heuristic solution approach for the problem. For 

larger problems, we also propose a heuristic.  

2.1 LITERATURE REVIEW 
PM scheduling in the semiconductor manufacturing literature is relatively new 

topic. Since the main cost factor is equipment and any unexpected delay in the production 

flow due to equipment failures may affect the bottom line due to increased cycle times 

and decreased customer satisfaction, PM planning and scheduling has become 

increasingly more important, attracting new research. 

Charles et al. (2003) demonstrate the importance of scheduling considerations in 

the optimization of PM strategies in a semiconductor manufacturing environment. They 

use an object oriented simulator. While they mainly focus on preventive and corrective 

maintenance, they also take residual breakdowns into account since they still take place 

despite the scheduled preventive maintenance tasks. 

Performing a PM task can be either calendar based (e.g., every 30 days) or event 

based (e.g., between every 100 wafers processed on a tool). A calendar-based method is 

typically preferred to an event based one because the former is relatively easy to interpret 

and take action. Chih-Hong and Shih-Chao (2002), and Ramirez-Hernandez and 

Fernandez-Gaucherand (2003) study conversions from an event-based system (which 

may be needed in the fab due to PM task specifications) to calendar-based conversions 

and forecasting methods (which may be used in the PM modeling and scheduling 

system). Chih-Hong and Shih-Chao (2002) propose a new forecasting method based on 

weighted evaluation of “long period average daily movement” and “short period average 
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daily movement” data extracted from the real time wafer movement data coming from 

automated databases. Ramirez-Hernandez and Fernandez-Gaucherand (2003) propose a 

mathematical model and an algorithm to convert event-based PM tasks to calendar-based 

ones.  

Markov decision processes are also used in similar contexts as a modeling tool for 

PM scheduling in semiconductor manufacturing. Sloan and Shantikumar (2000) examine 

production and maintenance models together with the situation in which the equipment 

condition affects different products in different ways. They develop a Markov Decision 

Process (MDP) model for a single machine, multi product environment. They solve a 

linear programming (LP) model to find the combined product and maintenance schedule. 

Their results show that the improvement provided by the combined schedule becomes 

more significant as the products become more diverse (more product types) and that the 

most of the increase is due to changing the production schedule rather than the 

maintenance schedule. Yao et al. (2005) study the problem of jointly optimizing PM and 

production policies with non-negligible and stochastic maintenance times. They also 

formulate the problem as a MDP model. Their results show that when inventory is below 

a certain point, the optimal policy is either to perform a PM task or to produce at the 

maximal production rate; when inventory is above a certain point, the optimal action is 

either to carry out the PM task or not to produce at all. In between these inventory levels, 

they analyze different settings and propose corresponding optimal control policies. 

A different approach to PM scheduling is adding work-in-process (WIP) 

inventory control to the model with appropriate objective function. Important 

contributions in this regard are due to Yao et al. (2001, 2004 and 2005). They propose a 

structure that separates the overall PM problem into two levels, one being higher level, 
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and the other being lower level. While the fab-wide higher level problem schedules PM 

tasks over a longer time horizon, the lower level problem considers scheduling PM tasks 

across a group of cluster tools over a shorter horizon. They mainly focus on the lower 

level problem, which they model as a MIP model that takes WIP levels into account.  

They run a simulation model to compare the performance of the output of the MIP model 

with the actual fab PM schedules, and observe that the MIP model output outperforms the 

actual PM schedules in performance measures such as the average number of wafers 

completed on each tool and the average WIP on each tool. Our study follows their path 

and focuses on the lower level problem using a more detailed and flexible model. 

2.2 TOOL GROUP PM SCHEDULING PROBLEM 
The tool group PM scheduling model takes the planning horizon, PM tasks, and 

tool group assignments, and assigns all PM tasks on individual tools in each tool group 

over the planning horizon. 

The goal of the tool group PM scheduling model is to control the capacity loss 

due to PM tasks. We formulate this as an objective function that minimizes the maximum 

capacity loss across all time periods within the tool group. This helps control fluctuations 

in the capacity levels over the planning horizon, which in turn helps achieve smoother 

WIP levels over time.  

Each PM task is associated with a tool. When a task is performed on a tool, it 

decreases the production capacity of the tool by a certain percentage. The main reason 

that the tool may be still available for production during PM (though at less than 100% 

capacity) is that the most wafer processing tools have multiple chambers and while PM is 

carried on one or more of the chambers, the others may continue to process wafers. The 

new percentage of the tool capacity incurring by performing a task on that tool is called 
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PM task availability. The percentage decrease in production capacity due to a task 

allocation is called PM task unavailability.  

More than one task is allowed to be performed at the same time on a tool. Also, 

more than one tool can be performing PM tasks at the same time in a tool group. (For this 

model, we assume that we have sufficient PM resources that would carry out multiple 

PM tasks in parallel). The total capacity loss on a tool in a time period is calculated by 

adding up the unavailabilities caused by the PM tasks performed on that tool at that time 

period. This method leads to linear calculation of the capacity loss in the tool group, 

which results from direct effect of unavailability of each PM task scheduled. As an 

example from the fab, the linear calculation method follows from the strategic decision 

that requires one chamber to be dedicated for one PM task. While that chamber stops 

production, the rest can continue to use their overall capacity, or other PM tasks can be 

performed while a PM task being implemented in one of the chambers.  

We assume an initial capacity profile of the tool group, which is the collection of 

capacity levels over time periods of the planning horizon. All the capacity loss due to PM 

task allocation is subtracted from this initial capacity profile to form a final capacity 

profile. The initial capacity profile is assumed given (typically 100% in all periods), and 

we seek to minimize the maximum capacity loss from this profile while obtaining the 

final capacity profile.  

The mathematical model introduced in the next section explains components of 

the PM task scheduling problem in more detail. We present a sample PM task assignment 

problem after explaining the mathematical model to depict how the system works. 
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2.3 MATHEMATICAL MODEL – THE MAIN PROBLEM 
We now present a mixed integer programming (MIP) formulation for the optimal 

assignments of PM tasks on the tools of a tool group. We assume that the tasks are to be 

scheduled over a short term horizon, such as a day or a week. We assume that the time 

horizon is divided into T time periods of equal length (say, hourly time periods). Each 

tool i in the tool group has ni PM tasks to be scheduled during the horizon. Tool i’s kth 

task is denoted by pair (i,k). We denote the set of tool i’s tasks by Ki. Task (i,k) has a 

length of pik units (in the same units as the time periods, say in hours). Each tool has a 

production capacity si (in units/hour), representing at most how many wafers tool i can 

process in an hour when the tool is 100% available. Task (i,k) has availability fik, which 

shows the portion of number of wafers processed by tool i in an hour if task (i,k) is 

scheduled in that hour. That is, task (i,k) reduces the tool’s full (100%) availability to 

100fik% causing a capacity loss. 

 The main decision variable Xikt (defined for all tool-task pairs (i,k), and time 

periods t) is 1 if task (i,k) is scheduled to start at time period t; 0 otherwise. Another 

binary decision variable, Yikt, is a transformation of Xikt, and it is 1 if task (i,k) is being 

performed in time period t, 0 otherwise. The conversion between Xikt and Yikt is handled 

through the following constraints: 
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The decrease in the capacity level (capacity loss) due to scheduled PM tasks is 

calculated in the following constraints, which keep track of the maximum capacity loss 

across time periods in the decision variable, W:  

.,)1( TtsYfW
Ii

i
Kk

iktik
i

∈∀⎥
⎦

⎤
⎢
⎣

⎡
−≥∑ ∑

∈ ∈

   (2.3) 

 There is a physical limit on how many tasks can be assigned in a time period on a 

tool. The summation of unavailabities of all PM tasks assigned in a time period on a tool 

should not exceed 100% as captured in the following constraints: 

.,,1)1( TtiYf
iKk

iktik ∈∀≤−∑
∈

    (2.4) 

 Necessary binary and non-negativity constraints are given as follows: 

.0
,,,,1or  0

,,,,1or  0

≥
∈∈∀=

∈∈∀=

W
TtKkiY

TtKkiX

iikt

iikt

    (2.5) 

 However, we can replace constraints (2.5) by the following since iktY  values are 

directly related to the values of iktX . 

    
.0

,,,,0

,,,,1or  0

≥
∈∈∀≥

∈∈∀=

W
TtKkiY

TtKkiX

iikt

iikt

    (2.6) 

 The objective function of the MIP model is to minimize the maximum capacity 

loss over the planning horizon:  

min W .    (2.7)  

 Then, the optimization problem is to minimize (2.7) subject to constraints (2.1-

2.4) and (2.6).  
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2.3.1 Numerical Example 
We use a hypothetical example with 5 tools and 10 PM tasks. Table 2.1 shows the 

data associated with the example. This data is also used later in the paper to illustrate the 

heuristic algorithms developed for this problem. 

Table 2.1 Task data of sample problem instance 

  Process Time Availability (%) 

Tool 1 
Task 1 3 60
Task 2 2 80 
Task 3 2 40 

Tool 2 Task 1 1 0
Task 2 2 80

Tool 3 Task 1 3 60

Tool 4 Task 1 1 20
Task 2 2 40

Tool 5 Task 1 2 80
Task 2 1 20

  

Tool capacities are same and equal to 100 units (say wafers) per time period. We 

solve this problem over a 12-hour planning horizon, representing a shift. Figure 2.1 

depicts the corresponding Gantt chart for PM tasks and lists the capacity losses after PM 

tasks are scheduled according to the optimal MIP solution. 
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Time Periods 1 2 3 4 5 6 7 8 9 10 11 12 
Capacity Loss 100 80 60 100 40 60 80 20 100 100 40 80 
      

Tool 1 
Task 1         
Task 2         
Task 3     

      

Tool 2 Task 1         
Task 2         

      
Tool 3 Task 1         
      

Tool 4 Task 1         
Task 2         

      

Tool 5 Task 1         
Task 2         

Figure 2.1 Gantt chart showing the optimal PM schedule 

 The maximum capacity loss is 100 wafers. While tasks are usually distributed 

along the planning horizon, in some periods there are multiple tasks being processed on 

the same tool, as in time periods 5 and 6 on Tool 1, or across tools as it is most of the 

time. 

 By Theorem 1, we show that the PM scheduling problem represented with the 

MIP mathematical model is computationally intractable even when the problem is 

simplified with unit-length tasks and one tool in the tool group. 

Theorem 1: The PM scheduling problem is NP-hard. 

Proof: Consider the setting where we seek to schedule multiple PM tasks each with unit 

processing time (e.g., 1 hour) on a single tool. Assume that we have n tasks (n > 2) and 

the planning horizon is 3 (hourly) time periods. We now show that minimizing maximum 

capacity loss in this setting while scheduling PM tasks on a single tool over 3 time 

periods is equivalent to minimizing makespan while scheduling n jobs on 3 parallel 
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machines (P3||Cmax). Analogy between the two problems can be observed by showing the 

equivalent parameters in each problem. Time periods in the PM scheduling problem are 

analogous to the parallel machines in the makespan problem. PM tasks are analogous to 

jobs in the makespan problem in which each job has a processing time equivalent to the 

corresponding task’s unavailability. Capacity losses in the PM problem denote the 

completion times of jobs in the makespan problem. Therefore, the objective of 

minimizing maximum capacity loss becomes equivalent to minimizing makespan in 

P3||Cmax. If we rotate the capacity loss chart of a PM task schedule 90 degrees clockwise, 

we obtain a picture analogous to the Gantt chart of the parallel machines in the makespan 

problem. Since P3||Cmax is an NP-hard problem (Pinedo, 2008) and it corresponds to a 

simple version of the PM scheduling problem, the more general PM scheduling problem 

is NP-hard. □ 

 In the next section we propose a tool-based decomposition method to solve the 

same problem. Then, we propose a greedy heuristic algorithm that aims to find a high-

quality schedule quickly in large problems. After introducing alternative solution 

methods, we compare performances of all three methods with an extensive experimental 

study. 

2.4 TOOL DECOMPOSITION PROBLEM 
The direct optimization of the MIP problem takes excessive amount of solution 

time to prove optimality for large problems. Therefore, we propose a decomposition 

based heuristic algorithm to solve the PM scheduling problem. We decompose the 

problem with respect to tools, solving a tool-level task assignment problem for each tool 

independently. In the MIP formulation, the only set of constraints that combine the tool 

capacity loss contributions is (1.3), maximum capacity loss calculation. By keeping the 
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constraints for each tool the same and revising (1.3), we obtain the task assignment 

problem for each tool.  

The tool-level problem assigns PM tasks of a tool on a limited planning horizon, 

which is assumed to represent only a portion of the overall planning horizon of the 

original problem. Then these independent tool loads are combined over the whole 

planning horizon. The motivation behind this is that more uniformly distributed 

unavailabilities of task assignments over time likely result in more uniform capacity 

losses which will keep the maximum capacity loss under control. To this end, the 

proposed tool based decomposition scheme solves the problem first by spreading 

unavailability on a tool over a pre-defined (and shorter) planning horizon at the tool level, 

and then combining these tool-level schedules together over the whole planning horizon. 

Limiting the horizon at the tool level helps balance unavailability and lower the overall 

maximum capacity loss as explained below.  

The main difference of the tool problem from the overall MIP formulation is that 

the horizon Ti of the tool problem is the allocated portion of (hence shorter than) the 

overall planning horizon, T. The tool-level horizon is allocated proportional to the tool’s 

unavailability contribution, ∑
∈

−=
iKk

ikiki pfU )1( , with respect to the total unavailability, 

∑∑
∈ ∈

−=
Ii Kk

ikik
i

pfU )1( , as below, 

[ ] .,maxmax
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎥
⎤

⎢⎢
⎡=

∈
T

U
UpT i

ikKki
i

    (2.8) 

The unavailability created by a PM task on a tool has a significant role in 

constructing the decomposition based algorithm. There is an analogy between the 

unavailability of a PM task and a brick in the sense that the latter is used to build a wall 
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as the PM task unavailabilities result in capacity losses in the “wall.” The length 

(horizontal side) of a brick corresponds to the processing time of a PM task ( ikp ) and the 

height (vertical side) of a brick is analogous to unavailability caused by PM task per unit 

time. These bricks are put on top of or next to each other to build a wall, whose 

maximum height represents the maximum capacity loss. The total horizontal length in the 

decomposition problem is limited by the tool-level planning horizon, iT , defined for each 

tool. We conjecture that if every tool gets a planning horizon (horizontal length) that is 

proportional to its bricks’ total side area (i.e., the total unavailability caused by its tasks), 

then the walls (capacity losses) independently built by these tools will have similar 

heights and this uniformity will produce a near-optimal solution for the original problem 

when these pieces are combined horizontally (side by side) to have a capacity loss “wall” 

for the tool group. 

The mixed integer programming formulation of the decomposition problem 

follows from the main problem. iT  is added as a new parameter to this problem as 

defined above. Our new variables are itB , capacity loss on tool i at time t, and iB  , 

maximum capacity loss on tool i .  

Assignment constraints of the tool decomposition problem are obtained by 

rewriting assignment constraints of the main problem for tool i , 

.,,
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   (2.9) 
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Capacity loss for each time period and maximum capacity loss calculation 

constraints are similar to the maximum capacity loss calculation constraints of the main 

problem, 

.,

,,)1(

iiti

i
Kk

iktikiit

TtBB

TtYfsB
i

∈∀≥

∈∀−= ∑
∈    (2.10) 

The feasibility constraint for tool i is as follows, 

.,1)1( i
Kk

iktik TtYf
i

∈∀≤−∑
∈

    (2.11) 

Binary and non-negativity constraints are as before, 

    

.0
,,0

,,, 0

,,,1or  0

≥
∈∀≥

∈∈∀≥
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i

iit
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iiikt

B
TtB

TtKkY
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    (2.13) 

The objective function is the minimization of maximum capacity loss,  

min iB .    (2.14) 

2.5 MASTER PROBLEM 
We need a master problem to combine the schedules of tool level problems by 

minimizing the maximum capacity loss. itB  values from the tool decomposition problems 

are given as input to the master problem. TtTlIiZ iilt ∈∈∈ ,,,  is the new set of binary 

variables each denoting whether block l  of tool i is put on time period t or not. A block is 

a load of (potentially multiple) PM tasks assigned together in a time period in the solution 

of a tool problem. There are iT  blocks resulting from a tool problem. Therefore, l  ranges 

from 1 to iT .  
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PM blocks of tools are assigned with the following constraints, 
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  (2.15) 

Capacity loss calculation is made over the tool-level capacity losses, 
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TtWW

TtZBdW

t
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∈∀+= ∑∑
∈ ∈    (1.16) 

Binary and non-negativity constraints are as follows, 
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   (2.17) 

Objective function is to minimize the maximum capacity loss,  

min W .    (2.18) 

The overall decomposition algorithm works by solving the tool level problems 

first, then solving the master problem at the end. The maximum of the objective function 

values of the tool problems is a lower bound to the master problem: 

1. Initialize iT  for all i according to (2.8).  

2. For each tool i , solve the corresponding tool-level decomposition problem 

(modeled by equations (2.9-2.11,2.13,2.14)). If problem i  reports no feasible 

solution, increase its time horizon allocation (i.e., assign 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
← ∑∑

∈ ∈

TpT
Ii Kk

iki
i

,min ) and solve the problem again. If the problem is still 

infeasible, STOP, and report that the overall problem is infeasible. 
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3. Solve the master problem (modeled by equations (2.15-2.18)), and report the 

solution. 

One of the two reasons why infeasibility occurs in the decomposition algorithm is 

the limited planning horizon in the tool problem. When the horizon for tool i is revised 

with ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
← ∑∑

∈ ∈

TpT
Ii Kk

iki
i

,min , the only reason left for infeasibility would be the tool’s 

available capacity constraints (2.11) of the tool problem. Considering a longer horizon (as 

long as the original problem’s horizon as in constraint set (2.4)) gives the tool problem 

the opportunity to detect if the original problem is infeasible. 

2.5.1 Numerical Example 
We use the same numerical example introduced earlier to show an alternative 

solution obtained by the decomposition algorithm. Each tool solves its own PM task 

allocation problem in its limited planning horizon first. We obtain the Gantt charts in 

Figure 2.2 (note the differences in horizons allocated to each tool). Total time horizons 

allocated to each tool is 15 which is greater than 12. This is because of the granularity. 

Since we cannot allocate a fractional time period to a tool, all fractions are rounded to its 

floor. The capacity losses due to these PM task assignments over the planning horizons of 

tools are also shown in Figure 2.2.
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Time Periods 1 2 3 4
Capacity Loss 100 100 60 20 

Tool 1 
Task 1
Task 2         
Task 3     

 
Capacity Loss 20 20 60 

Tool 2 Task 1
Task 2

 
Capacity Loss 40 40 40 
Tool 3 Task 1
 
Capacity Loss 60 60 80 

Tool 4 Task 1
Task 2

 
Capacity Loss 20 100 

Tool 5 Task 1
Task 2

Figure 2.2 Gantt charts of the optimal tool level solutions 

 Taking the capacity losses obtained from the tool level solutions as “blocks,” the 

master problem combines them without breaking their pattern over time and squeezes 

them into 12 time periods. The resulting capacity loss profile and Gantt Chart is in Figure 

2.3 (DA stands for “decomposition algorithm”).  

The maximum capacity loss is 100, which is the same as the value of the MIP 

solution. The DA capacity loss profile has more variance than the capacity loss profile of 

MIP solution. 
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Time Periods 1 2 3 4 5 6 7 8 9 10 11 12
Capacity Loss 20 20 100 0 100 100 60 60 100 100 100 100
      

Tool 1 
Task 1         
Task 2                         
Task 3             

      

Tool 2 Task 1         
Task 2         

      
Tool 3 Task 1         
      

Tool 4 Task 1         
Task 2         

      

Tool 5 Task 1         
Task 2         

Figure 2.3 Gantt chart of DA Solution 

2.6 HEURISTIC ALGORITHM 
As the problem is NP-hard, it is no surprise that solving the MIP model for an 

optimal PM schedule takes an excessive amount of time, especially as the number of 

tasks increases, and even more so as each tool has increasing number of tasks to be 

scheduled. This results in a challenge in a production environment where scheduling and 

planning decisions change dynamically and manufacturing needs prompt solutions. 

Although the decomposition algorithm is an attempt to resolve this computational 

problem, we cannot guarantee that it can work efficiently on every type of problem, as its 

success also inherently depends on solving integer programming problems (both tool and 

master problems) efficiently. Therefore, we focus on developing a fast heuristic 

algorithm. The heuristic is based on the idea of filling deep “cavities” in the capacity loss 

profile by first scheduling the tasks that cause larger capacity losses in those cavities. 

That way, the tasks that have large effects on the capacity loss profile are assigned first. 
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This idea is based on the Longest Processing Time (LPT) rule logic used in the analogous 

parallel machine makespan problem (Graham, 1969).  

 Suppose PM tasks are sorted in non-increasing order of their capacity loss 

contributing to the common capacity loss profile. The tasks in this order are re-indexed 

with ∑
∈

=
Ii

iNv ,...,1 ; the smaller the index, the bigger the capacity loss. The capacity loss 

is calculated as ( ) iiik Kkisf ∈∀− , ,1 . Let pv denote the processing time, and let fv denote 

the availability of the vth task. Also, let i(v) denote the tool which vth task is assigned. We 

use variable Wt as the capacity loss level in time period t, which is initialized to be 0 

before any PM tasks are scheduled. The steps of the heuristic are as follows. 

1. Initialize the task to be scheduled: 1←v  

Initialize tWt ∀=  0, tWt ∀= ,0  

Initialize unavailabilities of tools for each time period: Iittiu ∈∀= , ,0),( . 

2. Update the unavailabilities of the tool for each time period: 

( ) 1 ,1)),(()),(( +−<−+← vv pTtftviutviu .  

3. Calculate the accumulated capacity loss over the task processing time, 

{ }

o.w. ,

,1,...,,1)),((:t ,
1

∞=

−+=≤∈∀= ∑
−+

=

t

v

pt

t
t

W

pviuWW
v

δδααδ
τ

τ  

4. Find the time period in which task v is to start, ( )t
Tt

Wt
∈

= minargmin .  

If ( ) ∞<tWmin  Update the capacity loss profile: 

( ) 1,..., ,1 minmin)( −+=−+← vvivtt ptttsfWW . Schedule task v to tool i(v) as 

starting at time period mint .  

Else, stop and report that no feasible solution is found.  
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5. If ∑
∈

=
Ii

iNv , stop and report the schedule. Otherwise, set 1+← vv , and go to 

Step 2. 

2.6.1 Numerical Example 
The same sample data used in numerical examples of the MIP model is utilized 

for the heuristic algorithm. Resulting capacity losses and Gannt Chart from the solution 

of heuristic algorithm (we use the acronym “HA” for “heuristic algorithm”) is in Figure 

2.4. 

 Although the maximum capacity loss is the same as that of the MIP solution, the 

heuristic algorithm has a different solution (alternative optimal solution). This solution 

has less variance of capacity losses over time periods mainly due to the structure of the 

heuristic algorithm (since tasks are allocated starting from the largest capacity lost task to 

the smallest capacity lost task, deviation of capacity losses have a tendency to be lower 

than another method). 
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Time Periods 1 2 3 4 5 6 7 8 9 10 11 12
Capacity Loss 40 40 80 60 60 80 80 100 100 60 60 80
      

Tool 1 
Task 1         
Task 2                         
Task 3             

      

Tool 2 Task 1         
Task 2         

      
Tool 3 Task 1         
      

Tool 4 Task 1         
Task 2         

      

Tool 5 Task 1         
Task 2         

Figure 2.4 The Gantt chart of the HA solution 

2.7 THEORETICAL INSIGHTS ON DECOMPOSITION APPROACH 
We now build several theorems to find lower and upper bounds to the optimal 

maximum capacity loss using the decomposition approach for special cases of the 

problem. We first list three assumptions to specify these cases.  

• A1 denotes the assumption of unit task times, iik KkIip ∈∈∀= ,,1 .  

• A2 is the assumption for the same availability per unit time value for all 

PM tasks, iik KkIiff ∈∈∀= ,, .  

• A3 is the integer value assumption for the tool planning horizons, i.e., 

IiT
U
UT i

i ∈∀Ζ∈= + , .  

For all the theorems and their corollaries, we further assume that tools have the 

same production capacity per unit time, Iissi ∈∀= , . Also, we assume that the problem 

data is consistent to find feasible solutions (such as task processing times are not greater 
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than the planning time horizon, total capacity of a tool is enough to handle all PM tasks 

allocated to give a feasible PM task allocation, etc.). 

All the theorems in this section utilize the tool decomposition structure. While 

they do not have direct implications or relations to the decomposition algorithm, they 

provide analytical insights to the decomposition structure and provide analytical bounds 

for corresponding special cases. 

Theorem 2 gives the simplest representation of the wall building analogy. 

Theorem 2: Assume A1, A2, and A3 hold. The decomposition structure gives an optimal 

solution to the original problem. The optimal maximum capacity loss, *uW , is 

sf
T

K
W Ii

i
u )1(* −

⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡
=
∑
∈ .    (2.19) 

Proof: A1 and A2 are related to the problem input and we can find an optimal solution to 

the problem by considering the problem over the full planning horizon, T . The most 

straight forward solution to this problem is to assign individual tasks over periods row by 

row (starting from the first period, filling a row of tasks until all time periods have one 

task, and then assigning the remaining tasks, if any, to the first period again in the next 

row until all tasks are assigned). The maximum capacity loss value for this solution is 

given in (1.19). (The theorem claims that the tool based decomposition approach would 

reach the same solution.) A similar logic can be applied to each tool independently to find 

a solution for the tool level problem. On each tool i , we assign the tool’s tasks as 

mentioned previously, but this time over iT  periods. The maximum capacity loss on the 

tool is sf
T
K

W
i

iu
i )1(* −⎥

⎥

⎤
⎢
⎢

⎡
= . If we replace iT  with its value, T

K
K

Ii
i

i

∑
∈

 (under the unit 
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processing time and same availability assumptions), then the maximum capacity loss on 

tool i , *u
iW , equals to sf

T

K
Ii

i

)1( −
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡∑
∈ . This value is the same for all tools since it does 

not depend on i . Since TT
Ii

i =∑
∈

, we can put independent tool loads consecutively one 

after another in any order on the combined planning horizon, T , without any overlap. 

Then the maximum capacity loss value for the overall combined schedule would be the 

same as one tool’s, sf
T

K
Ii

i

)1( −
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡∑
∈ , which is equal to the optimal solution value found 

earlier. □ 

If we relax the same availability assumption, A2, then we cannot prove 

optimality. However, this approach leads to a lower bound. Then, we can build a feasible 

solution from this lower bound solution and produce an optimality gap for the feasible 

solution:  

Theorem 3: Assume A1 and A3 hold and maximum unavailability among all tasks is less 

than the average unavailability of all tasks over time, ( )
T
UfikKkIi i

≤−
∈∈

1max
,

. The 

decomposition structure produces the following lower bound to the MIP problem,  

T
sUW ≥* .     (2.20) 

Proof: We first find a direct combinatorial lower bound to the problem. The logic would 

be to distribute the total unavailability uniformly among the time periods in the horizon. 

Adding the capacity losses, we obtain 
T
sU . The same logic applies to each tool level 

problem independently. At tool i , we distribute the total unavailability over iT  periods. 



 31

The lower bound on the maximum capacity loss on the tool is 
i

iu
i T

sUW ≥* . If we replace 

iT  with its value, T
U
Ui , then the lower bound equals to 

T
sU . This value is the same for 

all the tools i . Since TT
Ii

i =∑
∈

, we can put independent tool loads one after another on 

the combined planning horizon, T , in any order without any overlap. Then the lower 

bound on the maximum capacity loss for the overall combined schedule would be the 

same as one tool’s, 
T
sU , which is the same as the combinatorial bound calculated earlier. 

We exclude the maximum unavailability being higher than the average unavailability to 

reduce ambiguity in the lower bound with adding an extra term for excluded cases. 

Without this exclusion, lower bound would be ( ) ⎥⎦
⎤

⎢⎣
⎡ −≥

∈∈ T
sUfW i

ikKkIi i

,1maxmax
,

* . In the 

computational experiments, only around 25% of the experimental instances have the 

possibility to have maximum unavailability greater than the average unavailability over 

time.□ 

Corollary 1: If all the assumptions in Theorem 3 hold, then we obtain the following 

upper bound from the lower bound found in Theorem 3: 
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Proof: We construct an upper bound using the lower bound in Theorem 3. At tool i , we 

take the task with the maximum unavailability out and find a looser lower bound, 

( )[ ]

i

ikKki

i T

fssU
W i

−−
≥ ∈

1max
* , which is equal to the average unavailability of remaining 

tasks over tool’s planning horizon, iT . A feasible PM task schedule can be obtained 
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assigning the largest unavailability PM task first to the time period with the least capacity 

loss (we do not assign the task with the largest availability since we also excluded it in 

the new lower bound). The deviations of the capacity loss values for each time period 

from the new lower bound obtained cannot be greater than the unavailability created by 

the largest unavailability PM task. Therefore, if we add the capacity loss due to the 

unavailability of this task, we obtain an upper bound. Then the upper bound is 

( )[ ]
( )[ ]ikKk
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i fs
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* .  

The rest is mathematically rearranging the inequality so that we can obtain (2.21), as we 

illustrate below: 
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Replacing iT  with its value, T
U
Ui , we obtain 
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The maximum of the tool lower bounds represents an upper bound for the overall 

problem, ( )** max iIi
WW

∈
≤ . Hence, we obtain (2.21) as follows: 
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Corollary 2: If all the assumptions in Theorem 3 hold, then the upper bound’s relative 

optimality gap is as follows: 
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Proof: We obtain the gap by subtracting the lower bound found in Theorem 3, (2.20), 

from the upper bound calculated in Corollary 1, (2.21), and divide this value to the lower 

bound, (2.20), to find the relative optimality gap in (2.22). □ 

Theorem 4: Assume A2 and A3 hold and ( ) IiTp iikKk i

∈∀≤
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,max . The decomposition 

structure produces the following lower bound,  
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Proof: We first find a direct combinatorial lower bound to the problem. The logic would 

be to distribute the total unavailability uniformly among the time periods in the horizon. 

Adding the capacity losses, we obtain 
T
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Ii Kk
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i

∑∑
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− )1(
. The same logic applies to each 

tool level problem independently. At tool i , we distribute the total unavailability over iT  

periods. The lower bound on the maximum capacity loss level on the tool is 
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equals to 
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, we 

can put independent tool loads one after another on the combined planning horizon, T , in 

any order without any overlap. Then the lower bound on the maximum capacity loss for 

the overall combined schedule would be the same as one tool’s, 
T
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Ii Kk
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− )1(
, which 

is the same as the combinatorial bound calculated earlier. □ 

Corollary 3: If all the assumptions in Theorem 4 hold, then we obtain the following 

upper bound: 
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Proof: We construct a feasible solution by assigning the longest task to the smallest 

indexed time period with the lowest capacity loss first on a tool (similar logic as we 

obtain an optimal solution in Theorem 2). Then the upper bound on tool i  

becomes ( )sf
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the tool group.□ 

Corollary 4: If all the assumptions in Theorem 4 hold, then the upper bound’s relative 

optimality gap is as follows: 
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Proof: We obtain the gap by subtracting the lower bound found in Theorem 4, (2.23), 

from the upper bound calculated in Corollary 3, (2.24), and divide this value to the lower 

bound, (2.23), to find the relative optimality gap in (2.25).□ 

If we further relax the uniform availability assumption, then we get a very loose 

lower bound. We can still obtain an upper bound and a loose optimality gap out of this 

lower bound. 

Theorem 5: Assume A3 holds and maximum unavailability among all tasks is less than 

the average unavailability of all tasks over time, ( )
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,max . The decomposition structure gives a lower bound to 

the MIP problem. 
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Proof: We follow a similar logic used in the previous theorems. The combinatorial lower 

bound is 
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, found by distributing the total unavailability over the  

planning horizon, T . In the decomposition structure, we can similarly distribute the load 

which comes from unavailability caused by PM tasks over planning horizon, iT  and find 

a lower bound for tool decomposition problem, that is 
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one after another on the combined planning horizon, T , in any order without any overlap. 

Then the lower bound on the maximum capacity loss for the overall combined schedule is 

that same as any one of the tools’, 
T

sfp
Ii Kk
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∑∑
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− )1(
, which leads to the same bound as 

the combinatorial bound.□ 

The upper bound and optimality gaps are found in the following corollaries. 

Corollary 5: If all assumptions for Theorem 5 hold, then we get following upper bound: 
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Proof: The construction of an upper bound is similar to Corollary 2. Exclude the task 

with highest unavailability per time period. Form a new looser lower bound. Add 

excluded task on top and obtain an upper bound for the optimal value. □ 

Corollary 6: If all assumptions for Theorem 5 hold, then we get following relative 

optimality gap: 
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Proof: Similar to Corollary 2’s proof. □ 

 For more general cases of the problem, while upper bounds are not valid any 

more, lower bounds become very loose. However, it is worth to further investigate the 

theoretical contribution of tool decomposition approach to the PM assignment problem. 

 In the next section, we present a heuristic algorithm to solve large scale PM task 

problems within relatively short computational time since both MIP and decomposition 

algorithm approaches may take excessive amounts of time for large scale problems as 

they are both based on solving the integer programming models. 

2.8 COMPUTATIONAL EXPERIMENTS 
We have designed a set of experiments to analyze the behavior of alternative 

formulations and solution methods. We use 5 factors each with 2 levels. Table 2.2 lists 

these factors and their levels.  
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Table 2.2 Experimental factors and their levels 

Experimental Factors Levels

 Planning Horizon - Daily (24 hours)
- Weekly (168 hours) 

 Number of Tools - 10
- 30 

 Task/Tool Ratio 

- 2 (20 tasks for 10 tools and 60 tasks 
for 30 tools) 

- 4 (40 tasks for 10 tools and 120 
tasks for 30 tools) 

 Processing Times - Discrete Uniform [1,3] (hours)
- Discrete Uniform [1,7] (hours) 

 Availabilities - One of 60%, 80% 
- One of 0%, 20%, 40%, 60%, 80% 

 

Experiments are mainly set to understand the behavior of the three proposed 

methods, (1) direct optimization of the MIP model, (2) the decomposition-based 

algorithm, and (3) the heuristic algorithm, for different settings in a fab. Therefore data 

sets represent fairly realistic settings of a semiconductor fab. Daily and weekly PMs are 

the most common types of time-based PMs. Tool families may contain from a handful of 

tools to 50 or more tools. Therefore our proposed values represent a variety of realistic 

fab settings. Availability data is based on the number of chambers a tool has. Having five 

chambers is a typical situation for a tool in a semiconductor fab. Therefore availability 

levels in the experimental design are proportional to the number of chambers shut down 

at the same time for maintenance. We create 5 instances for each experimental point 

(combination of levels of experimental factors) and solve each instance with all solution 

methods. There are 160 problem instances in total solved across 32 experimental points. 

We formulate the MIP models in GAMS (Rosenthal 2007) and solve them using CPLEX 

9.0 (ILOG 2003). We set a 1 hour limit for solution time. Heuristic algorithm is coded in 

Java (Sun Microsystems 2009). 
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If the decomposition algorithm gives the same or better objective function value 

as the overall MIP within the same solution time or faster in majority of the cases for an 

experimental point, then we can conclude that the decomposition algorithm works better 

as compared to the direct optimization of the overall MIP model for that specific 

experimental point. Similar arguments are valid for comparison of solutions of the 

heuristic algorithm and the direct optimization of the overall MIP.  

We first compare the decomposition algorithm and the direct optimization of the 

MIP model for all experimental points. Since we run the heuristic algorithm only for 

weekly instances, we discuss its comparison with the optimization based methods 

separately after the comparison of the direct optimization and the decomposition 

algorithm.  

The decomposition algorithm reports the same objective function value as the 

direct optimization’s value and works faster than or as fast as MIP in 75 instances out of 

all 160 instances. Table 2.3 summarizes percentage gaps between the capacity loss values 

of direct optimization and decomposition averaged over individual instances on each 

experimental point (percentage gap = 100x(capacity loss of decomposition-capacity loss 

of direct optimization)/capacity loss of direct optimization). Table 2.4 compares the 

average solution times between the direct optimization and the decomposition algorithm.
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Table 2.3 Average percentage gaps between the objectives of the direct optimization and 

decomposition algorithm 

  Process Time ~ Discrete Uniform [1,3] Process Time ~ Discrete Uniform [1,7] 

Planning 
Horizon 

Number of 
Tools/Number of 

Tasks 

Availability ~ 
60% or 80% 

Availability ~ 0%, 20%, 
40%, 60% or 80% 

Availability ~ 
60% or 80% 

Availability ~ 0%, 20%, 
40%, 60% or 80% 

1 Day 
10/20 13.33 3.33 7.33 6.49 
10/40 19.33 9.30 5.89 13.02 

1 Week 
10/20 0 0 0 0 
10/40 0 0 16.67 0 

1 Day 
30/60 0 1.25 0 2.00 

30/120 2.50 1.25 1.96 5.12 

1 Week 
30/60 0 0 37.50 N/A 

30/120 33.33 N/A N/A N/A 

 

Table 2.4 Average solution times of the direct optimization and decomposition algorithm 
in seconds (MIP: the direct optimization, DA: the decomposition algorithm) 

  Process Time ~ Discrete Uniform [1,3] Process Time ~ Discrete Uniform [1,7] 

  Availability ~ 
60% or 80% 

Availability ~ 0%, 
20%, 40%, 60% or 

80% 

Availability ~ 
60% or 80% 

Availability ~ 0%, 
20%, 40%, 60% or 

80% 

Planning 
Horizon 

Number of 
Tools/Number of 

Tasks 
MIP DA MIP DA MIP DA MIP DA 

1 Day 
10/20 3206.74 720.55 2160.38 755.81 3600.00 900.00 3600.00 545.37 

10/40 2160.11 1128.45 2881.13 1582.54 3600.00 454.29 3600.00 90.81 

1 Week 
10/20 1017.55 13.54 1723.55 10.03 635.99 56.74 3142.73 29.75 

10/40 1040.48 214.19 3600.00 39.77 973.04 2437.55 2853.04 1309.94 

1 Day 
30/60 2880.60 2885.40 3600.00 3600.00 2880.14 2977.90 3600.00 3600.00 

30/120 3600.00 3600.00 2882.67 3600.00 3600.00 3600.00 2896.37 3600.00 

1 Week 
30/60 1142.57 126.26 3600.00 39.69 2719.13 206.63 2708.86 3600.00 

30/120 3600.00 2906.25 2836.70 3600.00 3600.00 3600.00 3600.00 3600.00 

 

Since in some of the instances either the direct optimization or the decomposition 

algorithm cannot find a feasible solution in 3600 seconds, we use the averages of the 

remaining instances while preparing Table 2.3. However solution times listed in Table 

2.4 are averages of all instances whether or not any solution method could find a feasible 

solution. For the experimental points where the direct optimization or the decomposition 

algorithm cannot find a feasible solution in an hour of solution time, we enter “N/A.” 
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Table 2.3 lists many cases (75 out of 160) where the gap between the direct 

optimization’s objective value and the decomposition algorithm’s value is 0%.   Direct 

optimization proves optimality in 38 out of these instances. Therefore, the decomposition 

algorithm also reaches the optimal value in the same instances where it works faster than 

the direct optimization. In such cases, decomposition algorithm is almost 60% faster than 

the direct optimization (1052 seconds vs. 430 seconds). 

Planning Horizon: While the direct optimization works better for daily PM 

scheduling, the decomposition algorithm shows a faster performance for weekly 

problems. The decomposition algorithm gives same result as the direct optimization’s 

objective function value in 45 instances of 80 weekly instances, of which 42 of them 

shows that the decomposition algorithm is working faster. Overall, relative gap between 

the methods is 7.29% in weekly planning for the cases where the direct optimization and 

the decomposition algorithm can find feasible solution in an hour. However, in 

considerable amount of cases, the decomposition algorithm cannot find an optimal 

solution for weekly planning instances. MIP solves 85% of such cases. 

Number of Tools: The decomposition algorithm dominates 10 tool instances. In 

46 of 51 instances where relative gap is 0%, the decomposition algorithm works faster. 

While the direct optimization solves 10 tool instances in 2487 seconds on average, the 

decomposition algorithm spends 643 seconds on average. Relative gap for 10 tool 

instances is 5.92%. The direct optimization of MIP and the decomposition algorithm 

spend very close amount of time on average for 30 tool instances. However, the 

decomposition algorithm has problem to find feasible solution in limited amount of time. 

Therefore, the direct optimization is preferable for 30 tool instances. 
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Task/Tool Ratio: The decomposition algorithm shows good performance in 

majority of the instances of 10 tool 20 task instances and 30 tool 60 task instances. 

However, as the number of tasks per tool increases, direct optimization of the original 

MIP model starts to show better performance. Among 80 instances of 10 tool, 40 task, 

and 30 tool, 120 task instances, the decomposition algorithm gives the same objective 

function value as that of the direct optimization of the MIP model, and only in 20 of them 

it works faster than the direct optimization. The decomposition algorithm gives close 

results to the direct optimization’s value (relative gap is 4.75%) for lower task/tool ratio 

in a shorter amount of time (1254 seconds vs. 2639 seconds). 

Processing Times: The decomposition algorithm works faster for both high and 

low variability instances. However, it works better in low variability case because relative 

gap is smaller (5.58%) and it faces infeasibility problem in limited amount of solution 

time in high variability instances. 

Availabilities: The decomposition algorithm is working better in higher 

variability cases while the direct optimization of the MIP is more reliable for lower 

variability cases. 

Among all the experimental points, the decomposition algorithm works best when 

there is weekly planning horizon with 10 tools and 20 tasks. The decomposition 

algorithm can be replaced with the direct optimization of the MIP, in most of the 

instances of weekly planning with 30 tools and 120 tasks. 

Figure 2.5 depicts effects of dual experimental factor interactions. There are low 

and high levels of each of five factors given in Table 2.2. For every interaction of each 

level of each factor, we list on which solution method (the direct optimization of the MIP 

or the decomposition algorithm) works better. Every quarter square in the table 
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corresponds to 60 instances. If at least half of these instances result for the favor of the 

decomposition algorithm (it means the relative bound between the results of the 

decomposition algorithm and the direct optimization of the MIP is 0% but the 

decomposition algorithm ends faster than the direct optimization), then we conclude that 

the decomposition algorithm works for that interaction. Otherwise, we state that the direct 

optimization of the MIP works better. 

 

  

 

The direct optimization works best when there is high task/tool ratio and tool 

count is large. Also, cases with daily planning in a high task/tool ratio are the ones where 

MIP works better. 
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Figure 2.5 Interactions of experimental factors 
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 The decomposition algorithm shows its best performance with the interaction of 

low task/tool ratio and low processing time variation. It also works significantly better 

when there is low task/tool ratio and small number of tools or low availability variation. 

Since the weekly instances are usually bigger in scale, the optimization based 

methods ((both the overall model and the tool–based decomposition models) take 

excessive amount of solution time. Daily scheduling instances are taken care with both 

optimization based methods. Therefore we ran experiments for the heuristic algorithm, 

for the cases of weekly schedules. The heuristic algorithm overcomes solution time 

problem efficiently although it does not guarantee high quality results in all instances. 

Heuristic algorithm is coded in Java programming language (Sun Microsystems 2009).  

 The heuristic algorithm works more efficient than MIP in 65 instances of 80 

weekly scheduling instances (instances with 168 hours). It means that the heuristic 

algorithm reaches the same result as the direct optimization’s value in a shorter amount of 

time. In 5 of these cases, CPLEX (ILOG 2003) cannot even find a feasible solution in an 

hour of computation time to the original MIP model, but the heuristic algorithm reports 

its best solution within 40 seconds in the worst case. The heuristic usually finds a feasible 

solution less than a second. While Table 2.5 shows percentage gaps between the heuristic 

algorithm objective and the MIP objective along with the gaps between the 

decomposition algorithm and the heuristic algorithm, each averaged over instances of 

each experimental point, Table 2.6 shows the average solution times among these three 

solution methods. 
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Table 2.5 Percentage gaps of averages of upper bound values of weekly planning horizon 
instances of the direct optimization of the MIP, the decomposition 

algorithm, and the heuristic algorithm results (MIP: the direct optimization 
of the MIP, DA: the decomposition algorithm, HA: the heuristic algorithm) 

  Process Time ~ Discrete Uniform [1,3] Process Time ~ Discrete Uniform [1,7] 

  Availability ~ 60% or 
80% 

Availability ~ 0%, 20%, 
40%, 60% or 80% 

Availability ~ 60% or 
80% 

Availability ~ 0%, 20%, 
40%, 60% or 80% 

Planning 
Horizon 

Number of 
Tools/Number of 

Tasks 
MIP-
DA 

MIP
-HA 

DA-
HA 

MIP-
DA 

MIP-
HA 

DA-
HA 

MIP-
DA 

MIP-
HA 

DA-
HA 

MIP-
DA 

MIP-
HA 

DA-
HA 

1 Week 
10/20 0 0 0 0 0 0 0 0 0 0 0 0 

10/40 0 0 0 0 0 0 16.67 0 -11.11 0 0 0 

1 Week 
30/60 0 0 0 0 0 0 37.50 12.50 -20.00 N/A 23.33 N/A 

30/120 33.33 0 -25.00 N/A 40.00 N/A N/A 6.67 N/A N/A 12.78 N/A 

 

Table 2.6 Average of solution times of weekly planning horizon instances of the direct 
optimization of the MIP, the decomposition algorithm and the heuristic 
algorithm in seconds (MIP: the direct optimization of the MIP, DA: the 

decomposition algorithm, HA: the heuristic algorithm) 

  Process Time ~ Discrete Uniform [1,3] Process Time ~ Discrete Uniform [1,7] 

  Availability ~ 60% or 80% Availability ~ 0%, 20%, 40%, 60% 
or 80% Availability ~ 60% or 80% Availability ~ 0%, 20%, 40%, 60% 

or 80% 

Planning 
Horizon 

Number of 
Tools/Numb
er of Tasks 

MIP DA HA MIP DA HA MIP DA HA MIP DA HA 

1 Week 
10/20 1017.55 13.54 0.88 1723.55 10.03 0.76 635.99 56.74 1.17 3142.73 29.75 1.14 

10/40 1040.48 214.19 2.52 3600.00 39.77 2.32 973.04 2437.55 3.03 2853.04 1309.94 2.94 

1 Week 
30/60 1142.57 126.26 7.50 3600.00 39.69 7.02 2719.13 206.63 9.70 2708.86 3600.00 10.29 

30/120 3600.00 2906.25 23.70 2836.70 3600.00 24.24 3600.00 3600.00 34.44 3600.00 3600.00 36.74 

 

 Table 2.5 also indicates that in many cases (65/80) the heuristic algorithm reaches 

the same result as the direct optimization of the MIP, but in a shorter solution time as 

Table 2.6 shows. In 37 of these 65 solutions, the direct optimization of the MIP proves 

optimality. It means that, the heuristic algorithm also gives optimal solution in these 37 

cases. 

The heuristic algorithm works better than the direct optimization of MIP for all 

instances with 10 tools: It gives the same objective values as MIP within 3 seconds.  

 There are cases in which MIP beats the heuristic algorithm, namely instances with 

30 tools and high processing time and availability variation, and instances 30 tools and 
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120 tasks with low processing time variation and high availability variation. Using the 

heuristic algorithm can be still advantageous in some of these cases due to its significant 

reduction in computation time. 

 For all weekly PM scheduling problem instances, the heuristic algorithm clearly 

beats the decomposition algorithm. In all the cases, the heuristic algorithm finds solutions 

with same or lower objective values than those of the decomposition algorithm within a 

fraction of computation time used by the latter.  

 The heuristic algorithm is the most practical algorithm to solve weekly PM 

scheduling problems among all three solution methods. While the direct optimization of 

the MIP works better for some daily PM scheduling problems, the decomposition 

algorithm is preferred when there is lower processing time variability, availability 

variability, tool count or task/tool ratio. Overall, none of the algorithms dominates the 

other two consistently in all experimental points.  

2.9 CONCLUSION 
Assigning PM tasks over a tool group in a semiconductor fab is a hard problem. 

Formulating and solving this problem with mixed integer programming is not sufficient 

for all the cases due to the long solution times. Therefore, we developed a tool based 

decomposition algorithm to solve the medium to large scale PM scheduling problems in 

which the direct optimization is not fast enough. We also developed a heuristic algorithm 

inspired by the analogy between the PM problem and the parallel machine job scheduling 

problem for even larger problems. 

 Our experimental design represents fairly realistic fab conditions with tool and 

PM task characteristics. Our analysis over different situations helped us find out which 

solution method is preferable for which cases. Since the decomposition algorithm offers 
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tool based PM schedules, it works well to find a high-quality feasible solution for each 

tool faster while the direct optimization is a more holistic approach. For weekly PM 

scheduling, the heuristic algorithm beats the other two solution methods by finding good 

feasible solutions in a matter of few seconds.  

Our next step will be to refine the master problem of the decomposition algorithm 

to make it work faster and find ways to decrease the solution times for both the direct 

optimization and the decomposition algorithm
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 Chapter 3:  Lot Size Management 

Semiconductor wafers conventionally travel in a wafer fabrication facility (fab) in 

fixed lot sizes. Wafers move in lots between storage areas and tools (machines in fabs are 

called “tools”) in a fab for various reasons. Therefore, lots in a semiconductor fab behave 

as what are traditionally called “transfer batches.” One reason to move material in lots is 

to decrease the load on the material handling system in the fab. Also, carrying the same 

type of wafers together in a lot potentially decreases the number of setups. It is easier to 

follow the movement of a lot of wafers rather than to follow them separately. Lot sizes do 

not typically change as the lots move within the fab, except when batches (of lots) are 

formed in batch processing tools. The current convention in wafer fabrication is a lot size 

of 25 wafers. Carriers in semiconductor manufacturing are called FOUPs (Front Opening 

Unified Pods). Every FOUP is identical and designed to carry a maximum of 25 wafers, 

which facilitates the fixed lot size used in many fabs. Semiconductor manufacturers are 

currently investigating the advantages and disadvantages of moving to a smaller lot size. 

Using a different fixed lot size has varying tradeoffs, some of which are investigated 

here.   

In semiconductor manufacturing, many industry practices are based on the 

common understanding of the actors of the industry. This common understanding directs 

equipment suppliers to manufacture tools under agreed conditions. As in the lot size case, 

usually FOUPs are designed to carry 25 wafers at most. Similarly, tools are designed to 

work efficiently with 25 wafers. However, company needs and purposes are changing 

and many companies are moving in different directions with respect to lot sizing. They 

ask suppliers to design different FOUPs or tools for their needs, which generates 
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additional costs. It is also crucial to incorporate the effect of technology improvements 

when analyzing lot sizing decisions made by companies.  

The main motivation for companies wishing to reduce lot sizes is that the “wait-

to-batch” time for lots (wafers waiting each other to keep the lot in tact) is reduced when 

lot sizes are smaller. (Note that the term “wait-to-batch” typically refers to forming a 

batch from jobs, which translates into forming a lot from wafers in semiconductor 

manufacturing). This raises a question that occupies many managers in the industry: Will 

a lot size decrease directly result into a corresponding over all cycle time reduction? A 

cycle time decrease yields the benefit of responding more quickly to changes in the 

consumer market. However, the lower inventories which invariably result from lower 

cycle times also may limit a company’s ability to quickly satisfy short-term demand 

spikes. Therefore, some companies prefer to hold higher inventories in order to avoid 

losing their edge in demand satisfaction. 

Our ultimate aim is to design a tool that decides on the lot size which minimizes 

the cost (or cycle time) in different production environments. As a first step in designing 

such a tool, we analyze the effect of lot size and technology on cycle time using a stylized 

queueing model. In our models below, the lot size is a positive integer n, while m 

represents the technology level. This technology parameter encapsulates the effects of 

first wafer delay (FWD), setup, throughput rate, etc., on the tool.  We assume that these 

effects are manifested in the processing time of lots. FWD is conventionally equal to the 

overall processing time of one single wafer on the tool (going through all the chambers in 

the predefined sequence of sub-processes). In a way, FWD occurs because cascading of 

wafers is not possible for the amount of time it takes to make sure that the first wafer is 

processed according to specifications and that tool adjustments are done for the 
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remaining wafers in the lot if needed. When a lot is introduced to the system, no wafer 

emerges from the tool for a time interval equal to the FWD. After waiting for FWD units 

of time, wafers are processed with the same rate as the tool’s production rate. Decreasing 

FWD is an important part of decreasing raw processing time and cycle time. Also, in this 

case setups can be a concern, too, since increasing number of lots may increase the 

number of possible setups.  

In the next section, we give a literature review on modeling and measuring 

semiconductor fab performance and the effects of lot size. The queueing model is 

presented and analyzed in Sections 3.2 and 3.3. Section 3.4 focuses on the case where 

there is a fixed technology in the fab. Section 3.5 includes comparison of the 

approximation for the fixed technology with simulation. We analyze lot size 

characteristics in this special case in Section 3.6. We conclude our work after presenting 

optimal lot size expressions for special cases in Section 3.7.  

3.1 LITERATURE REVIEW 
Cycle time and WIP reduction is a major focus in semiconductor manufacturing. 

There is a considerable amount of literature on measuring, evaluating and improving 

cycle time in semiconductor manufacturing. Simulation is one of the most important tools 

to model and to measure performance in a semiconductor fab. Detailed simulation 

execution times can be very long. How much detail to retain in a simulation model is a 

complex issue. Hung and Leachman (1999) show that accurate estimates of total cycle 

time and equipment utilization may be obtained using reduced fabrication simulation 

models that replace operations at low utilization workstations with fixed time lags. The 

criterion they use for deleting workstations from the model is the standard deviation of lot 

waiting time. Hunter et al. (2002) build a full scale fab simulation model from 

SEMATECH data to run special scenarios showing the effects of eliminating 
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maintenance and changing product types. Comparison of the full scale model to a small 

scale model built and validated with the same data set shows the inadequacy of the small 

scale model. Sivakumar and Chong (2001) provide a preliminary analysis of the effect of 

lot release controls, heuristic dispatching rules, elimination of selected processes, 

material handling time, setup time, and machine up time on the selected output variables 

of throughput, cycle time and cycle time spread. The focus is backend manufacturing, 

i.e., IC packaging and assembly, and IC burn-in and functional test. Lou and Kager 

(1989) suggest using flow rate control to model the wafer fabrication job shop. They 

present a robust control policy for shop level scheduling in the semiconductor wafer 

fabrication facility to reduce WIP. Wood (1996) studies integrated process tools. 

Integrated tools consist of several process modules connected around a central handler 

such that the modules can process several wafers from the same lot simultaneously. 

Wood introduces simple, intuitive models of the cycle throughput and wafer cost of the 

integrated tools. Tool operations are aggregated under two measurable parameters. The 

incremental cycle time is the average increase in cycle time resulting from a lot size 

increment of one wafer and the fixed cycle time is the portion of cycle time that is 

independent of lot size. These parameters help estimate tool cycle time, throughput, and 

cost per wafer using Wood’s models. In Wood (1997) it is claimed that single wafer 

processing and integrated tools present an opportunity to decrease cycle time by 50% in 

semiconductor fabs. Such decreases also imply that optimal cycle times can be achieved 

with smaller lot sizes. Chen et al. (1998) study the problem of production planning and 

setup scheduling of multiple products in a facility which runs a single product type at a 

time. The objective is to determine the setup schedule and production rate that minimize 

the average total costs, which include the inventory, backlog and setup costs for each 
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product. The production rate is a decision variable different than it is in the classical 

economic lot scheduling problem. The combination of fully automated systems and 

single wafer processing significantly reduces queueing time. Ikeda et al. (2003) introduce 

a new technology which redesigns fab operations to eliminate excessive processing times. 

Such a redesign could  make single wafer lot sizes more viable.  

Queueing models have been a tool to investigate wafer fabs for many years. Chen 

et al. (1988) design a queueing network representation of a wafer production research 

plant to estimate the key system performances. In their model, there are approximately 50 

tool families and varying lot sizes in the system. Their approximation error is within 10% 

of actual observations. Wein (1988) uses a Brownian network model to approximate a 

multiclass queueing network with input control. He shows that scheduling has a great 

impact on cycle time, with the largest improvements coming from discretionary input 

control rather than lot sequencing. Kumar and Kumar (2001) describe the scheduling 

function in semiconductor wafer fabs and identify the key tradeoffs to be evaluated in 

designing scheduling policies. They survey many commonly used sequencing rules and 

release policies used in semiconductor manufacturing. Furthermore, they present a 

queueing network model of a fab and discuss related analytical tools for both 

performance evaluation as well as dynamic control of such systems.  

The effect of lot size on cycle time has been of increasing interest recently in 

semiconductor manufacturing. Kenyon et al. (2005) assess the impact that lot sizes can 

have on the operational variables that most influence overall equipment effectiveness, net 

profits, cycle time, throughput, WIP, and operating expenses. This study shows that 

progressively smaller lot sizes do not provide continuous improvements on the 

aforementioned metrics. Furthermore, they show that the impact of lot sizes on cycle 
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times is not significantly related to setup times. Jaber et al. (2006) investigate the lot 

sizing problem with respect to reducing setups, reworks, and interruptions to restore 

process quality. The results indicate that learning in setups and improvement in quality 

reduces the annual costs significantly, with possible savings of up to 40%. The results 

also show that accounting for the cost of reworking defective units when calculating the 

unit holding cost may not be unrealistic given that some researchers suggest using higher 

holding cost than the cost of money.  

Using equation based models, Lopez and Wood (1998) show that serially 

configured tools significantly reduce the lot size required to achieve a given total 

throughput capacity. They show that, given the same conditions (such as tool capacity), 

the serial configuration delivers at least as much throughput as the parallel configuration, 

with the former being able to attain the throughput capacity at a smaller lot size than the 

latter. If the lot size and tool configuration can be jointly optimized, then the benefits of 

the serial configuration become even greater. In another similar study, Lopez and Wood 

(2003) develop optimal lot sizing and lot release policies for systems of cluster tools in 

wafer fabs, with the goal of attaining higher reliability and lower cycle times. Lot sizing 

influences system performance along with lot release policies, and the magnitude of their 

impact may depend on the system’s configuration and reliability.  

Wang and Wang (2006) develop a simulation model which can determine, under 

different bottleneck load conditions, the appropriate lot size to reduce cycle time. They 

demonstrate that small lot sizes should be used if the bottleneck utilization exceeds 

expectations. The study also shows that smaller lot sizes decrease cycle time when the lot 

size is higher than a critical value. Schmidt et al. (2006) investigate the implications of 

smaller lot sizes via simulation. The quality of the output from a fab’s simulation model 
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depends heavily on the accuracy of the tool modeling. Motivated by this, the authors 

evaluate current modeling methods using lot sizes smaller than the conventional 25 wafer 

lot and propose a new method for modeling cluster tools with parallel chambers. Finally, 

Schmidt and Rose (2007) analyze the interactions and effects on cycle times of fab 

architecture characteristics, such as lot size, equipment configuration, batch size, 

equipment front end module, carrier buffering, and AMHS. They group the challenges of 

lot size reduction into two categories: equipment productivity (batch tools, number of 

load ports and product dependent setup times) and material handling system (AMHS 

move rates and AMHS system configuration). 

The purpose of this research is to use a relatively simple queueing model to show 

how lot size, material handling, and technology assumptions interact to affect cycle 

times. In the semiconductor industry it is often assumed that a decrease in lot size will 

automatically translate into cycle time improvements. There are two general factors 

which might mitigate the small lot size benefits. The first is obviously the increased load 

on the AMHS. The second effect, which is more subtle, is how lot size is correlated with 

machine operations. In particular, clustering, first wafer delay, and setups all have a 

complex relationship with lot size characteristics. Although our model is somewhat 

crude, the results actually align in a general way with detailed fab simulations performed 

in (Zarifoglu et al. 2008). Furthermore, we hope that the research will spur more detailed 

quantitative studies, and discussion, on lot sizing decisions. 

3.2 A STYLIZED QUEUEING MODEL 
We first present a simple queueing model which could represent a tool, or a 

consolidated portion of the process flow in a wafer fab. Although such a model is 

obviously somewhat coarse, it still provides good general insights that are borne out in 
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more detailed models. We believe that such models are a good starting point for a 

rigorous analysis of the effects of lot size and technology improvement on cycle time, 

and other important metrics.  

The model we use first is an M/G/1 queue, in which the arrivals occur according 

to a Poisson process, and service times are i.i.d., drawn from a general distribution. 

Recall that we assume that the lot size is a positive integer n. We assume that the arrival 

rate to the server is λ/n lots/hr. Since each lot is n wafers, notice that this represents a 

fixed release rate in wafers per hour, even when the lot size is changed. This way, we 

keep the same “throughput capacity” in the fab for different lot size cases. The service 

rate is μ/m lots/hr. Thus, the expected processing time for a lot on the server is m/μ 

hrs/lot. Recall that m is a parameter representing the fab technology level. From the 

expression above, we see that lower values of m represent better (faster) technology 

levels. 

The expected processing time discussed above is the time between when the 

transfer carrier enters the server and when all the wafers are processed and collected in 

the carrier. It is crucial to note that the processing time of a lot is not directly proportional 

to the number of wafers in the lot. If processing a 25 wafer lot takes 50 minutes, 

processing a 10 wafer lot may not necessarily take 20 minutes. The 10 wafer lot may take 

longer since the setup, first wafer delay and other effects are somewhat independent of 

the lot size. With the parameter m , we consolidate all the setup, first wafer delay, 

throughput rate effects, etc. on the tool. While our model assumes that the technology 

parameter m can be adjusted independently of n, we assume it is greater than or equal to 

n. If nm = , then this would be the perfect technology case, where change in lot size 

directly translates into a commensurate change in processing time: if the processing time 
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of a 25-wafer lot is 50 minutes, then the processing time of a 10-wafer lot is 20 minutes. 

However, we often have that nm >   which indicates that the benefit, in terms of the total 

lot processing time, is smaller than the lot size change might imply, due to technological 

barriers.   

The traffic intensity, which is assumed to be less than 1 for stability, is given 

by
μ
λρ

n
m

s = . The squared coefficient of variation (c.o.v.) of the processing time on the 

server is 22 μσ 2
s=ssc , which is independent of the lot size or technology. We obtain this 

by setting the variance of the processing time to 2
sσ

2m .  The M/G/1 queueing model is 

depicted in Figure 3.1.  

 

Figure 3.1 Single server queuing model 

 

The performance measure of interest is the long-run average cycle time of lots. In 

the M/G/1 queue, the average waiting time (in queue), qsW  is given by the Pollaczek-

Kintchine formula (Gross and Harris 2002):   

Arrival Rate 
of Lots = λ/n 

lots/hr 

Service Rate of 
Lots  = μ/m 

lots/hr 

Lot Size Technology 
parameter 

Variance of 
Processing 

Time of a Lot  
= m2σs

2 hr2/lots2 

Tool 1
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Then, the cycle time expression, ( )mnWss , , for this model is the sum of the 

average service time and average waiting time in queue, 
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We aim to minimize the cycle time, as defined by (3.2). One can model the 

problem as a simple mixed-integer programming problem: 
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where the lot size and technology are constrained by the requirement that the maximum 

traffic intensity is less than 1 and the technology parameter is bounded below by the lot 

size, as discussed above. The solution to (3.3) is trivial since (3.2) is decreasing in n and 

m. The optimal solution then is n=m=1. Figure 3.2 depicts the cycle time behavior 

depending on alternative parameter behaviors. These charts are prepared to show cycle 

time trends by using actual sample data points. When lot size is the only decision variable 

and the technology is fixed, cycle time has a tendency to decrease as lot size increases. 

When lot size is fixed, cycle time decreases by technology improvement. We can easily 

observe that lot size reduction by itself is not enough for cycle time decrease. The third 

chart shows that reduction of cycle time and improvement of technology reduces cycle 

time linearly as targeted by (3.3).  
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Wss

n  
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m  

Wss

n ~ m

Figure 3.2 Cycle time behavior of single server in relation to lot size and technology 

3.3 SINGLE SERVER AND SINGLE MATERIAL HANDLING SYSTEM QUEUEING 
MODEL 

Next, we propose a tandem queueing model, where the second queue 

approximates the effects of the AMHS. In the previous section, we concluded that single 

wafer lots with “perfect” technology is the optimal choice when there is no other 

restriction on technology and the AMHS is not a restrictive factor. Thus, we consider two 

single server queues in tandem. The first queue represents a tool in the fab, and the 

second represents the AMHS. Suppose the material handling system has a service rate of 

τ  lots/hr, which is independent of the lot size or the technology of the server. A 

reasonable assumption in most settings is that AMHS processing time has a very low 

coefficient of variation. In this model we assume it is 0, i.e., the AMHS processing times 

are constant, and equal to 
τ
1  hrs/lot. The traffic intensity at the AMHS node is 

τ
λρ
nh = , 

which is assumed to be less than 1. Since there is no exact formula for the total cycle time 

in such a system, we derive an approximation using the Queueing Network Analyzer - 

QNA (Whitt 1983).  

The expected cycle time for our network, ( )mnW QNA
ssmh , , is found by summing the 

cycle time for the tool and the cycle time for the material handling system,  
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( ) qhqs
QNA

ssmh WWmmnW +++=
τμ
1, .   (3.4) 

Arrival Rate 
of Lots = λ/n 

lots/hr

Service Rate of 
Lots  = μ/m 

lots/hr

Lot Size
Technology 
parameter

Variance of 
Processing 

Time of a Lot  
= m2σs

2 hr2/lots2

Tool 1 Handler 1

Constant Speed 
1/τ hrs/lot

 

Figure 3.3 Single server single material handling system queuing model 

 

Each of the nodes in our system can be thought of as a G/G/1 queue. The 

expected waiting time, qjW , for a general node j can be approximated by: 
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and 2
ajc   is the squared coefficient of variation for the arrival process. For the first node in 

our network, this quantity is just 1, since the arrival process is Poisson. However, the 

second node’s arrival process is the departure process from the first node. Unfortunately, 
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there is no closed form expression for the c.o.v. for this departure process, which is where 

the QNA is useful.  

The key term we need to find out in (5) is the squared coefficient of variation, 

2
ahc ,for the arrival process to the AMHS node. Using the QNA procedure gives an 

estimate of the squared c.o.v. of interarrival times to the material handling system,  
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We can now use the G/G/1 approximation for qhW , and substitute the expression 

in (3.4) which yields: 
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where ( )AI  is the indicator function for an event A. 
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For this tandem system, we can once again formulate a simple mixed-integer 

program:  

( )
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, min mnW QNA
ssmh  
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Although this problem is more complicated than (3.3), it is still relatively easy to 

solve. Since (3.8) is decreasing in m for the constraints defined by (3.9), the minimum 

cycle time is realized when m=n. Therefore, the minimum cycle time can be obtained by 

enumerating n over the range of feasible lot sizes. In the next section, we use the 

approximation just derived to explore some cases in which there is a particular 

relationship between the technology level and the lot size. As can be seen in Figure 3.4, 

cycle time behavior of single server and single material handling system is similar to 

Figure 3.2. These charts are also plotted using actual sample data points. Since material 

handling system is a constraint in (3.9), its effect can be seen when lot size reduction and 

technology improvement go hand in hand in the third chart. 

 
Wssmh

QNA

n  

Wssmh
QNA

m

Wssmh
QNA

n~m

Figure 3.4 Cycle time behavior of single server single material handling system in 
relation to lot size and technology 
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3.4 FIXED TECHNOLOGY 
Recall that m = n corresponds to the case of “perfect” technology, i.e., the case in 

which technological innovations allow one to enjoy the maximum benefit of decreasing 

lot sizes. Since that is an ideal case, in this section we explore other cases in which 

technological innovation is less than ideal. We assume that there is a corresponding 

technology for each lot size which is defined by a linear relation, n
c
aam ⎟
⎠
⎞

⎜
⎝
⎛ −+= 1 , in 

which the current technology, c , matches the lot size, and the technology parameter is 

bounded below by the parameter a . Since n and m are coupled via the above expression, 

we can express the optimization problem with only one decision variable. However, due 

to the complexity of (3.8), a completely analytical solution is out of reach.  

 

 

 

While a  limits the technological improvement, c  represents the current 

technology. In the perfect technology case, the technology limit, a , is 0. For lot sizes 

c

c 

a 

n 

m 

Actual 
Technology (a>0) 

Perfect 
Technology (a=0) 

Figure 3.5 Technology - lot size relation 



 63

smaller than the current size, the technology factor is “worse” than the perfect technology 

line as a  increases. For bigger lot sizes, the technology factor is better than the perfect 

technology line. Bigger lot size along with smaller lot size is an option for companies 

especially running with little product differentiation. Although some companies consider 

moving to larger lot sizes, it comes with some extra investment on carrier size and 

material handling capabilities in addition to equipment changes, as in conversion to 

smaller lot sizes. Since current technology is configured according to current lot sizes, 

when moved to bigger lot sizes, even deviation up to some extent from current 

technology can be still better than the perfect technology case where technology change 

goes hand in hand with lot size. The corresponding optimization model is  
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3.5 COMPARISON OF APPROXIMATION WITH SIMULATION 
In the previous three sections, we developed an approximation for cycle time of a 

queuing model of a compact fab. We check the quality of the approximation by 

comparing it to a set of scenarios of simulations we run. The method we follow is to form 

a 95% confidence interval from multiple replications of each scenario and check if the 

value of the approximation of the corresponding scenario is within the 95% confidence 

interval derived from simulation results.  
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Table 3.1 Parameters and factor levels 

Parameter Value Name of the factor

a  

0 perfect technology

5 average technology

10 poor technology

λ  
7 lots/hr low base arrival rate

9 lots/hr high base arrival rate

2
sσ  

0 lots2/hr2 low server base service time variance

0.01 lots2/hr2 
average server base service time 

variance 

0.1 lots2/hr2 high server base service time variance

c  25 

μ  10 lots/hr 

τ  Varying values 

2
hσ  0 lots2/hr2  

n  Integral values from 1 through 50

  

The parameters we base our scenarios are listed in Table 3.1. There are three 

levels of technology limit, a , perfect, average and poor. Base arrival rate, λ , defines the 

arrival rate of lots independent of the lot size. Actual arrival rates are calculated by 

dividing base arrival rate by lot size. The main target by using a base arrival rate as an 

experimental factor is to keep the size of the wafer load same across experiments. Low 

base arrival rate corresponds to less frequent arrivals while high base arrival rate 
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corresponds to more frequent arrivals. Base service time variance, 2
sσ , defines service 

time independent of the technology. Actual service time variance is calculated my 

multiplying squared technology parameter by the base service time variance. Levels of 

base service time classify service variance from no variance to high variance. Current lot 

size, c , is 25 as conventionally used in the industry. Base service rate, μ , defines service 

rate of lots independent of the technology. Actual service rate is calculated by dividing 

base service rate by technology parameter. Material handling service rate, τ , is the 

service rate of lots by the material handling server. Values of material handling service 

rate is determined in relation to actual arrival rate of lots such that it maintains its 

utilization at less than 1 for the smallest lot size within a set of experiments (Values can 

be seen in Table 3.2). Our assumption of keeping material handling service rate constant 

across lot sizes is isolating improvement of AMHS from the production technology. We 

assume that material handling service time variance, 2
hσ , is zero. Lot sizes range from 1 

to 50. However, within experiment sets we use feasible lot sizes depending on the 

utilization on the server.  

Table 3.2 gives a detail list of sets of scenarios. For example, the first row 

corresponds to a set of scenarios, in which arrival rate is 7 lots/hr, handler service rate is 

7.01 lots/hr and technology limit is 0. These experiments are repeated for three different 

service time variance levels. Since each lot size is feasible to run on the current settings 

of server and handler, we have lot sizes listed from 1 to 50 for these sets of scenarios. The 

first row corresponds to 150 different scenarios. Varying handler service rate values 

make high base arrival rate case busier or looser for the smallest lot size possible.  
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Table 3.2 Simulation scenarios 

n  
λ  

(lots/hr) 

τ  

(lots/hr) 
a  

2
sσ  

(lots2/hr2) 

1-50 7 7.01 0 0, 0.01, 0.1

2-50 9 7.01 0 0, 0.01, 0.1

1-50 9 9.01 0 0, 0.01, 0.1

8-50 7 0.88 5 0, 0.01, 0.1

17-50 9 0.88 5 0, 0.01, 0.1

17-50 9 0.54 5 0, 0.01, 0.1

13-50 7 0.54 10 0, 0.01, 0.1

20-50 9 0.54 10 0, 0.01, 0.1

20-50 9 0.46 10 0, 0.01, 0.1

  

Totally, there are 1080 scenarios. We run 100 replications of each scenario in the 

Arena (Rockwell Automation 2007) simulation software. Each replication is 2500 days 

long, 250 of which are warm-up period. Results are collected and 95% Confidence 

Intervals are created by Process Analyzer tool of Arena (Rockwell Automation 2007).  

Table 3.3 presents the comparison of approximation values to simulation results. 

‘Confidence Interval Check” column shows how many of the approximation values of the 

scenarios are within the Confidence Intervals formed from simulation results out of the 

total number of scenarios with corresponding parameter values. For example, first row 

says that for low base arrival rate with corresponding server service rate when technology 

limit is 0 and server processing time variance is 0, out of 50 different lot size cases, cycle 

time approximation values of the 27 lot sizes are within the Confidence Interval of their 
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corresponding simulation results. Also, averages of the relative differences (errors) of 

cycle time approximation to simulation results of corresponding scenarios (Relative 

Difference = |Cycle time approximation of a scenario-Cycle time output of a scenario|/ 

Cycle time output of a scenario) is 0.66%. We provide comparison of approximation and 

simulation results to give an idea of how close these two are in addition to confidence 

interval checks. Also, the last column is an indicator of how narrow confidence interval 

is. For the first row, average of proportion of half-length of 50 different lot size scenarios 

to average of simulation results of same 50 different lot size scenarios is 0.68%, which 

makes average simulation results of these scenarios a good estimator of averages of 

means of corresponding 50 scenarios.  
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Table 3.3 Comparison of Approximation Values with Simulation Results 

Half-
Length

Low-End of 
Confidence 

Interval

High-End of 
Confidence 

Interval
Half-

Length

Low-End of 
Confidence 

Interval

High-End of 
Confidence 

Interval
Scenario Group 1 1-50 7 7.01 0 0 27 50 0.66% 1.00% 50 0.28% 0.38% 0.93% 0.68% 1.85% 50 0.51% 0.17% 1.19% 54.00%
Scenario Group 2 2-50 9 7.01 0 0 37 49 1.24% 0.43% 49 0.12% 1.12% 1.36% 1.55% 0.45% 49 0.13% 1.42% 1.67% 75.51%
Scenario Group 3 1-50 9 9.01 0 0 38 50 1.94% 5.22% 50 1.45% 0.50% 3.39% 1.78% 1.68% 50 0.46% 1.32% 2.25% 76.00%
Scenario Group 4 8-50 7 0.88 5 0 0 43 5.39% 19.34% 43 5.78% -0.39% 11.17% 0.72% 1.71% 43 0.51% 0.21% 1.23% 0.00%
Scenario Group 5 17-50 9 0.88 5 0 9 34 1.95% 2.08% 34 0.70% 1.25% 2.65% 1.61% 1.41% 34 0.48% 1.14% 2.09% 26.47%
Scenario Group 6 17-50 9 0.54 5 0 0 34 4.13% 5.06% 34 1.70% 2.43% 5.83% 1.55% 1.40% 34 0.47% 1.08% 2.02% 0.00%
Scenario Group 7 13-50 7 0.54 10 0 0 38 7.15% 4.80% 38 1.53% 5.62% 8.68% 0.68% 1.90% 38 0.60% 0.07% 1.28% 0.00%
Scenario Group 8 20-50 9 0.54 10 0 0 31 4.08% 4.19% 31 1.47% 2.61% 5.55% 1.30% 1.90% 31 0.67% 0.63% 1.97% 0.00%
Scenario Group 9 20-50 9 0.46 10 0 0 31 6.82% 6.00% 31 2.11% 4.71% 8.93% 1.28% 1.89% 31 0.67% 0.61% 1.95% 0.00%
Scenario Group 10 1-50 7 7.01 0 0.01 44 50 1.17% 6.11% 50 1.69% -0.53% 2.86% 1.20% 1.54% 50 0.43% 0.77% 1.63% 88.00%
Scenario Group 11 2-50 9 7.01 0 0.01 48 49 0.52% 0.36% 49 0.10% 0.42% 0.62% 2.61% 0.89% 49 0.25% 2.36% 2.86% 97.96%
Scenario Group 12 1-50 9 9.01 0 0.01 48 50 1.70% 8.44% 50 2.34% -0.64% 4.04% 2.79% 1.49% 50 0.41% 2.37% 3.20% 96.00%
Scenario Group 13 8-50 7 0.88 5 0.01 19 43 4.24% 19.50% 43 5.83% -1.59% 10.07% 1.23% 1.30% 43 0.39% 0.84% 1.61% 44.19%
Scenario Group 14 17-50 9 0.88 5 0.01 30 34 1.53% 1.08% 34 0.36% 1.16% 1.89% 2.83% 1.81% 34 0.61% 2.22% 3.44% 88.24%
Scenario Group 15 17-50 9 0.54 5 0.01 20 34 1.88% 0.88% 34 0.30% 1.59% 2.18% 2.62% 1.46% 34 0.49% 2.13% 3.11% 58.82%
Scenario Group 16 13-50 7 0.54 10 0.01 3 38 4.17% 14.18% 38 4.51% -0.34% 8.68% 1.13% 1.38% 38 0.44% 0.70% 1.57% 7.89%
Scenario Group 17 20-50 9 0.54 10 0.01 18 31 2.53% 5.51% 31 1.94% 0.59% 4.46% 2.20% 2.14% 31 0.75% 1.45% 2.96% 58.06%
Scenario Group 18 20-50 9 0.46 10 0.01 11 31 2.67% 5.13% 31 1.80% 0.86% 4.47% 2.05% 1.80% 31 0.63% 1.41% 2.68% 35.48%
Scenario Group 19 1-50 7 7.01 0 0.1 33 50 15.80% 66.93% 50 18.55% -2.75% 34.35% 7.74% 2.18% 50 0.60% 7.14% 8.35% 66.00%
Scenario Group 20 2-50 9 7.01 0 0.1 37 49 7.72% 3.34% 49 0.94% 6.79% 8.66% 9.51% 3.26% 49 0.91% 8.59% 10.42% 75.51%
Scenario Group 21 1-50 9 9.01 0 0.1 37 50 20.54% 91.18% 50 25.27% -4.73% 45.82% 9.48% 3.23% 50 0.89% 8.59% 10.38% 74.00%
Scenario Group 22 8-50 7 0.88 5 0.1 15 43 19.50% 75.68% 43 22.62% -3.12% 42.12% 7.40% 1.34% 43 0.40% 7.00% 7.80% 34.88%
Scenario Group 23 17-50 9 0.88 5 0.1 18 34 10.79% 13.00% 34 4.37% 6.42% 15.17% 10.29% 1.86% 34 0.63% 9.67% 10.92% 52.94%
Scenario Group 24 17-50 9 0.54 5 0.1 16 34 12.50% 15.59% 34 5.24% 7.26% 17.74% 9.75% 1.71% 34 0.57% 9.17% 10.32% 47.06%
Scenario Group 25 13-50 7 0.54 10 0.1 4 38 22.52% 76.93% 38 24.46% -1.94% 46.98% 6.63% 1.03% 38 0.33% 6.30% 6.96% 10.53%
Scenario Group 26 20-50 9 0.54 10 0.1 17 31 14.33% 26.31% 31 9.26% 5.07% 23.59% 9.96% 2.72% 31 0.96% 9.00% 10.92% 54.84%
Scenario Group 27 20-50 9 0.46 10 0.1 16 31 15.21% 25.13% 31 8.84% 6.36% 24.05% 9.39% 2.30% 31 0.81% 8.58% 10.21% 51.61%

545 1080 7.06% 4.04% 50.46%

(lots/hr) (lots/hr) (lots2/hr2)

Confidence Interval Comparison of Averages of Relative Errors Half-Length / Simulation Mean

Standard 
Deviation

Number of 
Scenarios

95%
Percentage 

of 
Scenarios 

within 
Confidence 

Interval

Average 
Relative 

Error 

Average 
Half-

Length 
Proportion

# of 
Scenarios 

within 
Confidence 

Interval
Total # of 
Scenarios Average

Standard 
Deviation

Number of 
Scenarios

95%

Average

Low 
Server 
Base 
Service 
Time 
Variance

Perfect 
Base 
Technology

3.44% 1.23%
Average 
Base 
Technology

Low Base 
Technology

8.83%
Average 
Base 
Technology

Low Base 
Technology

Medium 
Server 
Base 
Service 
Time 
Variance

Perfect 
Base 
Technology

2.18% 2.06%
Average 
Base 
Technology

Low Base 
Technology

Overall

High 
Server 
Base 
Service 
Time 
Variance

Perfect 
Base 
Technology

15.55%

n λ τ a 2
sσn λ τ a 2
sσ
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Table 3.4 Comparison of Approximation Values with Simulation Results - Relative Error Bounds 

Half-Length

Low-End of 
Confidence 

Interval

High-End of 
Confidence 

Interval
Scenario Group 1 1-50 7 7.01 0 0 27 50 1.30% 2.21% 50 0.61% 0.69% 1.91%
Scenario Group 2 2-50 9 7.01 0 0 37 49 2.84% 0.73% 49 0.20% 2.64% 3.05%
Scenario Group 3 1-50 9 9.01 0 0 38 50 3.65% 6.04% 50 1.67% 1.98% 5.33%
Scenario Group 4 8-50 7 0.88 5 0 0 43 6.55% 23.79% 43 7.11% -0.56% 13.67%
Scenario Group 5 17-50 9 0.88 5 0 9 34 3.68% 3.75% 34 1.26% 2.42% 4.93%
Scenario Group 6 17-50 9 0.54 5 0 0 34 5.87% 7.01% 34 2.36% 3.51% 8.22%
Scenario Group 7 13-50 7 0.54 10 0 0 38 7.77% 5.75% 38 1.83% 5.95% 9.60%
Scenario Group 8 20-50 9 0.54 10 0 0 31 5.58% 6.75% 31 2.38% 3.20% 7.95%
Scenario Group 9 20-50 9 0.46 10 0 0 31 8.36% 8.79% 31 3.09% 5.27% 11.46%
Scenario Group 10 1-50 7 7.01 0 0.01 44 50 2.52% 8.62% 50 2.39% 0.13% 4.91%
Scenario Group 11 2-50 9 7.01 0 0.01 48 49 3.14% 0.86% 49 0.24% 2.90% 3.38%
Scenario Group 12 1-50 9 9.01 0 0.01 48 50 4.67% 10.93% 50 3.03% 1.64% 7.70%
Scenario Group 13 8-50 7 0.88 5 0.01 19 43 5.81% 22.86% 43 6.83% -1.02% 12.64%
Scenario Group 14 17-50 9 0.88 5 0.01 30 34 4.34% 2.07% 34 0.70% 3.64% 5.04%
Scenario Group 15 17-50 9 0.54 5 0.01 20 34 4.57% 1.46% 34 0.49% 4.08% 5.07%
Scenario Group 16 13-50 7 0.54 10 0.01 3 38 5.59% 17.15% 38 5.45% 0.14% 11.04%
Scenario Group 17 20-50 9 0.54 10 0.01 18 31 4.99% 8.41% 31 2.96% 2.03% 7.95%
Scenario Group 18 20-50 9 0.46 10 0.01 11 31 4.93% 7.42% 31 2.61% 2.32% 7.54%
Scenario Group 19 1-50 7 7.01 0 0.1 33 50 26.01% 76.00% 50 21.07% 4.95% 47.08%
Scenario Group 20 2-50 9 7.01 0 0.1 37 49 19.28% 7.32% 49 2.05% 17.23% 21.33%
Scenario Group 21 1-50 9 9.01 0 0.1 37 50 33.16% 98.84% 50 27.40% 5.76% 60.56%
Scenario Group 22 8-50 7 0.88 5 0.1 15 43 29.11% 82.17% 43 24.56% 4.55% 53.67%
Scenario Group 23 17-50 9 0.88 5 0.1 18 34 23.25% 15.69% 34 5.28% 17.98% 28.53%
Scenario Group 24 17-50 9 0.54 5 0.1 16 34 24.39% 17.02% 34 5.72% 18.67% 30.11%
Scenario Group 25 13-50 7 0.54 10 0.1 4 38 31.46% 84.17% 38 26.76% 4.70% 58.23%
Scenario Group 26 20-50 9 0.54 10 0.1 17 31 27.24% 30.95% 31 10.89% 16.35% 38.14%
Scenario Group 27 20-50 9 0.46 10 0.1 16 31 27.24% 28.04% 31 9.87% 17.37% 37.11%

Total # of 
Scenarios

# of Scenarios 
within 

Confidence 
Interval

Confidence Interval Check

Low 
Server 
Base 
Service 
Time 
Variance

Medium 
Server 
Base 
Service 
Time 
Variance

High 
Server 
Base 
Service 
Time 
Variance

Perfect 
Base 
Technology
Average 
Base 
Technology

Low Base 
Technology

Perfect 
Base 
Technology
Average 
Base 
Technology

Low Base 
Technology

Perfect 
Base 
Technology
Average 
Base 
Technology

Low Base 
Technology

(lots/hr) (lots/hr) (lots2/hr2)

Relative Error Bounds

Average
Standard 
Deviation

Number of 
Scenarios

95%
Average 
Relative 

Error 
Bound

4.78%

4.41%

26.83%

n λ τ a 2
sσn λ τ a 2
sσ

 



 70

Table 3.4 presents the average relative error bound (the relative difference of the 

cycle time approximation of cycle time to the farthest point of the corresponding 

confidence interval). For the low and medium variation cases is 4.59%. This bound is 

lower around the optimal lot size value while it is higher in the bounds.  

 Of 1080 scenarios, approximation values of 545 are within the confidence 

interval. The best fit ones are the scenarios with average server base service time variance 

case, 241 over 360. The worst fits are the ones with low server base service time variance 

scenarios, 111 over 360.  

 Approximation values are overall 7.06% relatively higher than simulation values. 

The closest results come from the average server base service time variance cases as in 

confidence interval check, which is 2.19%. Although confidence interval check points out 

that high server are service time variance case is better than low server base service time 

variance case, their relative difference from simulation values tell reverse, 15.55% vs. 

3.44% correspondingly.  

 Half-length proportions to means of simulation results, which can be interpreted 

as narrowness of confidence intervals, change from one set of scenarios to another. 

Scenarios with low server base service time variance has narrowest confidence intervals, 

1.23%. Average server base service time cases have pretty narrow confidence intervals, 

too, 2.06%.  

 Having a better working approximation for medium server base service time 

variance case is good for our purpose since usually a representative fab would be closer 

to this case. Usually, raw processing times have very low variation (most of the case, no 

variation). However, the complexity of the system, varying external and internal effects, 

such as break downs, first wafer delays and setups, bring some variation to the processing 

times. Therefore, it makes sense to translate this real-life situation to our model as 

average server base service time variation.  
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Table 3.5 represents an average fab. The approximation values are within the 95% 

Confidence Interval of the simulation results for 22 cases of the 39 scenarios. The overall 

approximation values are 1.07% higher than the simulation values relatively. Also, the 

half-length proportion to the averages of simulation results is 1.58% and relative error 

bound is 2.90%. We can conclude that our approximation works well for real-life 

situations.  

 Table 3.3 indicates that if we form confidence intervals of absolute errors within a 

scenario group (every row in Table 3.3 represents a scenario group which consists of 

feasible lot sizes for a specific set of parameters), low server base service time and 

medium server base service time cases have reasonable confidence intervals such that 

95% of different lot size scenarios are within. Approximation does not work as efficiently 

for high server base service time cases.  

 Table 3.6 presents the behavioral comparison of approximation and simulation 

results. 

Half- 
Length

Low-End of 
Confidence 

Interval

High-End of 
Confidence 

Interval
12-50 8 0.685 5 0.01 22 39 1.29% 0.88% 39 0.28% 1.01% 1.57%

Half- 
Length

Low-End of 
Confidence 

Interval

High-End of 
Confidence 

Interval
12-50 8 0.685 5 0.01 22 39 1.58% 0.71% 39 0.22% 1.35% 1.80%

Half- 
Length

Low-End of 
Confidence 

Interval

High-End of 
Confidence 

Interval
12-50 8 0.685 5 0.01 22 39 2.90% 1.23% 39 0.39% 2.51% 3.28%

95%
Half-Length / Simulation Mean

# of 
Scenarios 

within 
Confidence 

Interval
Total # of 
Scenarios Average

Standard 
Deviation

Number of 
Scenarios (lots/hr) (lots/hr)  

(lots2/ 
hr2 ) 

Confidence Interval

Standard 
Deviation

Number of 
Scenarios

95%

 (lots/hr) (lots/hr)  
(lots2/ 
hr2 ) 

Confidence Interval Comparison of Averages of Relative Errors 
# of 

Scenarios 
within 

Confidence 
Interval

Total # of 
Scenarios Average

(lots2/ 
hr2 ) 

Confidence Interval
# of 

Scenarios 
within 

Confidence 
Interval

Total # of 
Scenarios (lots/hr) (lots/hr)  

Relative Error Bounds 

Average
Standard 
Deviation

Number of 
Scenarios

95%
n λ τ a 2 

s σ n λ τ a 2 
s σ 

n λ τ a 2 
s σ n λ τ a 2 
s σ 

n λ τ a 2 
s σ n λ τ a 2 
s σ 

Table 3.5 Average fab scenarios 
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Table 3.6 Comparison of Optimal Lot Sizes and Cycle Times of Approximation and Simulation Results 

(lots/hr) (lots/hr) (lots2/hr2)

Minimum 
Cycle Time of 
Approximation

Minimum 
Cycle Time of 

Simulation

Lot Size 
Appoximation 

Minimizer

Lot Size 
Simulation 
Minimizer

Relative 
Difference of 

Minimum 
Cycle Times

Difference of 
Cycle Time 
Minimizer 
Lot Sizes

Scenario Group 1 1-50 7 7.01 0 0 0.613 0.576 2 2 6.34% 0
Scenario Group 2 2-50 9 7.01 0 0 1.272 1.240 2 2 2.54% 0
Scenario Group 3 1-50 9 9.01 0 0 1.220 1.208 2 2 0.97% 0
Scenario Group 4 8-50 7 0.88 5 0 6.232 6.007 17 17 3.75% 0
Scenario Group 5 17-50 9 0.88 5 0 13.667 13.507 33 32 1.19% 1
Scenario Group 6 17-50 9 0.54 5 0 14.579 14.222 33 32 2.51% 1
Scenario Group 7 13-50 7 0.54 10 0 7.684 7.222 29 27 6.40% 2
Scenario Group 8 20-50 9 0.54 10 0 11.000 10.682 42 41 2.98% 1
Scenario Group 9 20-50 9 0.46 10 0 11.477 11.005 43 41 4.29% 2
Scenario Group 10 1-50 7 7.01 0 0.01 0.880 0.862 2 2 2.14% 0
Scenario Group 11 2-50 9 7.01 0 0.01 2.271 2.226 2 2 2.00% 0
Scenario Group 12 1-50 9 9.01 0 0.01 2.166 2.133 2 2 1.56% 0
Scenario Group 13 8-50 7 0.88 5 0.01 9.436 9.234 20 21 2.19% -1
Scenario Group 14 17-50 9 0.88 5 0.01 23.163 22.685 35 35 2.11% 0
Scenario Group 15 17-50 9 0.54 5 0.01 24.457 23.816 36 35 2.69% 1
Scenario Group 16 13-50 7 0.54 10 0.01 10.548 10.286 34 34 2.55% 0
Scenario Group 17 20-50 9 0.54 10 0.01 16.583 16.226 48 48 2.20% 0
Scenario Group 18 20-50 9 0.46 10 0.01 17.155 16.744 49 48 2.45% 1
Scenario Group 19 1-50 7 7.01 0 0.1 3.294 3.225 2 2 2.14% 0
Scenario Group 20 2-50 9 7.01 0 0.1 11.303 11.018 2 2 2.58% 0
Scenario Group 21 1-50 9 9.01 0 0.1 10.670 10.576 2 2 0.89% 0
Scenario Group 22 8-50 7 0.88 5 0.1 36.992 33.082 23 22 11.82% 1
Scenario Group 23 17-50 9 0.88 5 0.1 107.238 97.867 38 34 9.57% 4
Scenario Group 24 17-50 9 0.54 5 0.1 111.481 101.641 40 34 9.68% 6
Scenario Group 25 13-50 7 0.54 10 0.1 34.544 30.957 42 37 11.59% 5
Scenario Group 26 20-50 9 0.54 10 0.1 65.046 59.783 50 45 8.80% 5
Scenario Group 27 20-50 9 0.46 10 0.1 66.704 61.409 50 45 8.62% 5

Average 
Base 
Technology

Low Base 
Technology

Perfect 
Base 
Technology
Average 
Base 
Technology

Low Base 
Technology

Perfect 
Base 
Technology

Low 
Server 
Base 
Service 
Time 
Variance

Medium 
Server 
Base 
Service 
Time 
Variance

High 
Server 
Base 
Service 
Time 
Variance

Perfect 
Base 
Technology
Average 
Base 
Technology

Low Base 
Technology

n λ τ a 2
sσn λ τ a 2
sσ
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All the perfect base technology cases give the same lot size for approximation and 

simulation. High server base service time variance cases deviate the most in terms of the 

best lot sizes. The best set of scenarios that the behavior fits is the one with medium 

server base service time variance.  

In the next section, we use our queueing model to explore the relationship 

between technology factors and the optimal lot size.  

3.6 ANALYSIS OF LOT SIZE CHARACTERISTICS 
In real wafer fabs, the concept of an “optimal” lot size is quite situation 

dependent. Countless varying system parameters and unexpected conditions affect the 

performance of different lot size options. Our analysis of a stylized queueing model 

obviously simplifies a complex fab. However, the goal of the analysis is to see if we can 

spot general trends and tendencies which indicate intrinsic relationships between lot size 

and cycle time performance. Our model is represented by a few adjustable parameters, 

and we now summarize what these parameters represent. 

Parameter a  is the lower limit on the technology parameter, which represents the 

highest level of achievable technology. While lower a  stands for better technology, 

higher a  stands for worse technology. Parameter c  is the current technology level. λ  is 

the base arrival rate to the system and μ  is the base service rate of the first server. τ  is 

the service rate of the AMHS. The base variance 2
sσ  consolidates the variability effects 

of the server and 2
hσ  consolidates the variability effects of the AMHS. The c.o.v.’s 

222
ssc σμ=  and 222

hhhc σμ=  better encapsulate variability since they are unitless. 

Let us first make some general observations about our model. As the lower limit 

on the technology parameter decreases, the optimal lot size decreases. In conjunction 
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with this the optimal cycle time decreases also. If the current technology can be improved 

upon, it makes more sense to move to smaller lot sizes. However, if significant 

improvements to technology cannot be made, the optimal lot size may actually be higher 

than the current lot size.  

In our model, as in nearly every stochastic production model, a higher variance 

always increases the cycle time. Although the marginal change in cycle time may be 

small, an increased variance generally shifts the optimal lot size to slightly bigger values. 

Usually, the waiting time in the first queue (the processing queue) is the biggest portion 

of the cycle time, since we assume no variability in AMHS times. A higher base arrival 

rate increases both the overall cycle time and the optimal lot size. Finally, we note that 

decreasing the lower technology limit has the greatest effect on the optimal lot size.  

Next, we present an analysis of lot size and cycle time characteristics using the 

parameters listed in Table 3.7. We later present another analysis, by taking the averages 

of the extreme values of the factors. We assume this represents average fab behavior. 

 We first list all the experiments in Table 3.7. Then we group and analyze them 

based on factors from Figures 3.6 through 3.13. Figure 3.14 represents an average fab 

followed by its analysis. 
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Table 3.7 Chart List 

Charts a c λ 
(lots/hr) 

(lots/hr) τ 
(lots/hr) 

σs
2

(lots2/hr2) 
σh

2 
(lots2/hr2) 

Chart 1 0 25 7 10 7.01 0 0 
Chart 2 0 25 7 10 7.01 0.1 0 
Chart 3 0 25 9 10 7.01 0 0 
Chart 4 0 25 9 10 7.01 0.1 0 
Chart 5 0 25 9 10 9.01 0 0 
Chart 6 0 25 9 10 9.01 0.1 0 
Chart 7 5 25 7 10 0.88 0 0 
Chart 8 5 25 7 10 0.88 0.1 0 
Chart 9 5 25 9 10 0.88 0 0 
Chart 10 5 25 9 10 0.88 0.1 0 
Chart 11 5 25 9 10 0.54 0 0 
Chart 12 5 25 9 10 0.54 0.1 0 
Chart 13 10 25 7 10 0.54 0 0 
Chart 14 10 25 7 10 0.54 0.1 0 
Chart 15 10 25 9 10 0.54 0 0 
Chart 16 10 25 9 10 0.54 0.1 0 
Chart 17 10 25 9 10 0.46 0 0 
Chart 18 10 25 9 10 0.46 0.1 0 



 76

 

Chart 1 
 

0

5

10

15

20

25

30

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Lot Size

H
ou

rs
Chart 2

 

0

50

100

150

200

250

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Lot Size

H
ou

rs

Chart 3 
 

0

5

10

15

20

25

30

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
Lot Size

H
ou

rs

Chart 4
 

0

50

100

150

200

250

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Lot Size

H
ou

rs

Chart 5 
 

0

5

10

15

20

25

30

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Lot Size

H
ou

rs

Chart 6
 

0

50

100

150

200

250

300

350

400

450

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Lot Size

H
ou

rs

Figure 3.6 a=0 

The first case we examine is when 0=a , that is there is no limit on the potential 

technological gains, which we call as perfect technology. In this case, the decrease in 

cycle time when moving to smaller lot sizes is very sharp and the smallest cycle time is 

achieved very close to the smallest possible lot size. Since the technology is the best that 

can be achieved, cycle times are also very low. The gain in cycle time is the biggest from 

the lot size decrease due to the linear tendency of the cycle time graph. This gain 
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becomes more significant when the base arrival rate is high (Charts 3, 4, 5 and 6). In this 

case, server queue time is the highest portion of the cycle time.  
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Figure 3.7 a=5 

 As the best technology limit becomes higher, the optimal lot size shifts to 

relatively higher values. Usually, the gain in cycle time (due to smaller lot sizes as 

compared to the lot size of 25) is not very significant. The most significant cycle time 

decrease comes with low arrival rate and low server service time variation (Chart 8). It is 

optimal to keep current lot size in two alternative cases, one being low arrival rate and 
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high server service time variation, the other being high arrival rate and low server service 

time variation with low base handler utilization (Charts 8 and 9). For the rest of the cases, 

it is better to move to bigger carrier sizes than the current one (Charts 10, 11, and 12). 
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Figure 3.8 a=10 

Next we examine the case where the lower bound on the technology parameter is 

relatively high: 10=a . This implies that there are limited feasible technological gains. In 

this case, transitioning to lower lot sizes drastically increases the cycle time as can be 

seen in Figure 3.8. As arrival rate and variance increase, optimal lot sizes are even higher. 
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In environments with a high traffic intensity and low variation, cycle time increases the 

fastest when moving from the current size to smaller lot sizes (see Charts 15 and 17). 
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Figure 3.9 λ=7 lots/hr 

Systems with lower arrival rates have smaller cycle time values with respect to 

systems with higher arrival rates. As technology gets better, the gain in cycle time 

decrease becomes higher while moving to smaller carrier sizes. Low variation is another 

factor for observing cycle time decrease. 
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Figure 3.10 λ=9 lots/hr, highest ρs<0.95 

 In the charts in Figure 3.10, we examine the case where traffic intensity is very 

high, which is typical in a semiconductor environment. A higher traffic intensity naturally 

implies larger cycle times. More importantly, relative to lower traffic intensity cases, it 

also increases the lowest feasible lot size achievable, depending on the technology. When 

technology improvements are more limited, it is better to move to larger lot sizes. 

According to this model, it only makes sense to go to smaller lot sizes than the current 

one when technology is close to the best possible (cf. Charts 3 and 4). Handler queue 
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time is not a significant portion of the overall cycle time since the handler never becomes 

a bottleneck.  
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Figure 3.11 λ=9 lots/hr, highest ρs>0.95 

 The highest cycle times are obtained when arrival rate and handler utilization are 

high. Handler queue waiting becomes significant when variance is high. When the 

technology is not perfect, it is better to move to larger lot sizes. So in poor technology 

and high utilization environment, small lot size is not a good option, even it is better to 

use larger size carriers than the current size. 
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Chart 17 
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Figure 3.12 σs
2=0 lots2/hr2 

 As expected, lower server service time variance causes lower cycle times. As 

technology becomes poorer, the optimal lot size moves to higher values. For low arrival 

rates, server service time becomes the biggest portion of the overall cycle time for larger 

carrier sizes (Charts 1, 7, 13).
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Chart 18 
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Figure 3.13 σs
2=0.1 lots2/hr2 

 Higher server service time variance ends up with higher cycle times. The behavior 

of the overall cycle time is almost same with server queue waiting time. Except for the 

perfect technology case, small lot sizes are never an option. It is always better to move to 

larger lot sizes or to keep the current lot size.   

An interesting point to note is that in all of our experimental settings, the single 

wafer lot size is never optimal. It is either infeasible or produces very large cycle times 

due to high congestion. To further explore the limits of moving to smaller lot sizes 

consider the parameter set in Figure 3.14.  
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Figure 3.14 a=5, c=25, λ=8 lots/hr, μ=10 lots/hr, τ=0.685 lots/hr, σs
2=0.01 lots2/hr2, σh

2=0 
lots2/hr2 
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 Relative to our set of experiments, Figure 3.14 represents the cycle time behavior 

of various lot sizes of a “typical” fab by using the average values of our experimental 

factors. In such a setting this example indicates that it is not feasible to go to a lot size 

that is less than 12 without inducing very high cycle times. In fact, it is better to keep the 

current lot size of 25. While changing to larger lot sizes does not hurt cycle time that 

much, moving to a smaller lot size has a significant negative effect on the cycle time. In 

this example, the server queue time is the biggest portion of the cycle time.  

3.7 SPECIAL CASES OF LOT SIZE CHARACTERISTICS 
In this section we derive an analytical expression for the optimal lot sizes for a 

special case, using the cycle time approximation obtained in Section 3.4. We use the 

continuous extension (in the lot size n) of the cycle time formula (3.8), and differentiate 

to obtain the first order condition for a minimum.  The cycle time expression is 

differentiable on three intervals, which are: 2.02 ≤ssc , 12.0 2 << ssc , and 12 ≥ssc . For 

reasonable parameter values, the cycle time expression is convex for positive values of n. 

Therefore, for practical purposes we can use the corresponding local minimizer as the 

proposed optimal lot size. 

We analyze the case in which 0=a , i.e., when there is no bound on the 

achievable technology level. Also we assume that material handling speed is constant: 

0222 == τσ hshc . There are three different ranges within which the cycle time is 

differentiable: low, medium, and high base service time variation. We focus on the 

medium variation case, since this is the most reasonable representation of a 

semiconductor fab. 
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Medium server service time variation ( 12.0 2 << ssc ): The cycle time expression 

in this case is 
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 The first derivative with respect to n is given by: 
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 To find the minimizer we need to find an n such that the expression is equal to 0. 

Unfortunately, the exponential term makes obtaining an analytical solution for the critical 

point quite cumbersome. However, according to our numerical studies this exponential 

term is very close to 1 for the parameter range of interest. Therefore, as an 

approximation, we solve the expression below for n: 
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 We obtain two solutions for (3.13). One of these solutions is infeasible with 

respect to the constraints in (3.10). Analyzing the second derivative of (3.11) shows that 
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the cycle time expression is convex in the feasible region defined by (3.10). Thus, the 

solution to (3.13) (which is also feasible) is the local minimizer of (3.11). If we cannot 

find such a solution by solving (3.13), then the optimal lot size is the smallest feasible 

integer value. This boundary value is determined by the server or AMHS traffic intensity. 

Otherwise, the optimal lot size value is obtained by solving (3.13) and is given by: 
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 Since this value is not necessarily integer, one can use the best neighboring 

integer value. So, a practical approach to finding optimal lot size value is to first check if 

(3.14) is feasible in (3.10). If it is, use the best neighboring integer value as the optimal 

lot size value, otherwise use the smallest feasible lot size. Figure 3.15 depicts optimal lot 

size function behavior depending on λ , τ  and 2
sσ . These charts are plotted using actual 

sample data. Optimal lot size decreases by increasing material handling rate very fast up 

to a threshold value of τ  while it increases by higher variance, 2
sσ . Smaller lot sizes 

become optimal by lower and higher base arrival rate and utilization while optimal lot 

size makes a pick around average arrival rate. 
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Figure 3.15 Optimal lot size behavior in relation to base arrival rate, material handling 
rate, and service time variance 

3.8 CONCLUSION 
One recent trend in semiconductor manufacturing is to promote the use smaller lot 

sizes in order to achieve lower cycle times. This inspired us to develop a model to gain 

insight into lot size and cycle time relations. For this purpose, we developed a simple 

tandem queueing model representing a semiconductor fab with serial processing tools, 

and material handling system. We then developed cycle time approximations for this 

model.   

Our analysis shows that smaller lot sizes are not always the better option. The 

optimal lot size in a fab depends on several parameters such as the manufacturing 

technology, the capabilities of the material handling system and the variability in the 

system. In many cases, keeping the current lot size or moving to larger lot sizes may 

actually be better. An improvement in manufacturing technology is the key for smaller lot 

sizes to improve cycle times. In our model, a single wafer lot is never an optimal.  

Future research includes extending our model to allow multiple lot sizes to flow 

in the system. This is a crucial step since most foundry type fabs, which produce wafers 

on demand, run multiple lot sizes in the fab at the same time. A further extension would 

be to attach priorities to the lots. It would also be useful to develop more complex 

queueing models to represent a more realistic fab. 
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 Chapter 4:  AMHS Scheduling 

Improvements in semiconductor manufacturing technology have caused a 

substantial change in every aspect of the manufacturing environment. Moving from 200 

mm to 300 mm in the wafer diameter forced an increase in the level of automation in 

manufacturing due to difficult handling of larger and heavier wafer carriers by human 

operators. Due to the increased demand for semiconductor products, the scale of 

production has been increased. Also, demand driven product differentiation results in a 

large variety of lots running in a fab. Technological improvement is inevitable to satisfy 

demand and consumer expectation. The number of layers in wafer manufacturing 

increases as technology progresses. An increased number of layers in a wafer means 

more operations.  Therefore, existing complexity of semiconductor manufacturing is 

multiplied with time. 

Each factor which adds to complexity in wafer production places an additional 

burden on material handling. The most up to date wafer fabs utilize fully automated 

material handling systems. Material handling then becomes one of the key parts to 

provide smooth and prompt means to production. 

Over the past decade, most studies have concentrated on better AMHS design in a 

semiconductor manufacturing environment. Plant layouts which allow smoother vehicle 

traffic and faster delivery with less cost have been developed. Conventional material 

handling systems and vehicles have been adapted to the semiconductor manufacturing 

environment to satisfy the industry’s needs in the most appropriate way.  

In recent years, AMHS studies have concentrated on developing better policies to 

provide conflict free fast delivery time policies. Most of these policies are dispatching 
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policies which work locally or myopically with a limited amount of information available 

to the decision maker. 

The main reason behind having relatively short sighted assignment policies is that 

there is a limited amount of information. The information infrastructure has not shown 

improvement at the same rate as the manufacturing environment. The actual production 

information infrastructure and AMHS information infrastructure are for the most part 

disintegrated. The information sharing between these two information systems are on a 

real time basis as needed by a lot or vehicle to be assigned. In short, only the information 

on lots and vehicles available to be assigned for delivery is available to the decision 

maker. This prevents the decision maker from developing more long term solutions. 

Recently, the industry has been working towards wider integration of production 

and AMHS information infrastructures. This will give the decision maker a window of 

information availability while planning. Also, it will help develop better optimization 

based scheduling solutions for AMHS assignment rather than pure dispatching based 

methods. 

In this study, we first compile an extensive literature review. Then we present  

new AMHS models. We propose two alternative scheduling algorithms which are 

classified depending on information availability: myopic and look-ahead algorithms. We 

evaluate both algorithms by running a comprehensive set of computational experiments. 

In these experiments, the look-ahead algorithm dominates myopic algorithm in every 

performance measure. Then we conclude our study with a discussion of the 

computational experiment results and future research. 

4.1 LITERATURE REVIEW 
There is a tremendous amount of research specialized in AMHS semiconductor 

manufacturing. The two main focus areas are AMHS design and AMHS dispatching. 
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Both design and dispatching studies target having a higher material handling service rate 

and shorter delivery times with the least amount of conflict. 

The most common layout arrangement in semiconductor manufacturing is a bay 

configuration, in which similar groups of tools are placed together. This layout is widely 

preferred since it has great advantages in maintenance, utility distribution and handling. 

Mostly, an overhead monorail system is used to move materials between bays. Two 

commonly used AMHS configurations along with a bay system are the spine 

configuration and the perimeter configuration with an overhead monorail system. A 

carrier mounted on a monorail moves materials between steps. Crossover turntables serve 

as shortcuts while stockers associated with bays are pick-up and drop-off points. On the 

tracks of AMHS, intermediate storages for lots transferred in the system are located. 

These storages are called stockers which serve for a group of tools as a common buffer. 

While a stocker can serve one or more bays, two or more stockers can serve one bay, too, 

depending on the system configuration. Each tool has loadports which serve as local tool 

buffers for lots to be processed on the tool. A variety of vehicle types may run on AMHS 

tracks. Automated Guided Vehicles (AGVs) are shuttle-like vehicles that run on over 

tracks. Over-Head Transport (OHT) or Over-Head System (OHS) runs hanging from 

elevated tracks. An OHT picks a Front Opening Unified Pod (FOUP) filled with wafers 

from above and carries to its destination. Conveyor belts are recent technology in AMHS 

which aims to minimize collisions in the system and increase flow of transport. Robot 

arms pick carriers from conveyor belts and transfer them to storages or tools. 

Peters and Yang (1997) propose a spacefilling curve (SFC) heuristic to solve the 

layout and material handling system design integration problem. Integrated design of 

AMHS and fab layout is crucial for a fab’s efficiency. A bay’s area and pick-up/drop-off 
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point position constraints are considered. The AMHS has a directed flow path and the 

crossover turntable design must be integrated with the layout and AHMS designs for an 

effective integrated fab design. Yang et al. (1999) propose a loop-configuration design 

procedure in which the integrated design problem is formulated as a network flow 

problem to determine the optimal material handling system design based on a given fab 

layout. A hybrid tabu search and simulated annealing algorithm that embeds the network 

flow formulation solves the layout and AMHS design problem in an integrated fashion. 

Kuo (2002) models OHT in a fab using three modular-based colored timed Petri 

net (CTPN) models, which extend time, color sets, module and communication 

capabilities from the original Petri nets. The OHT transport model uses transport, 

hoisting, vehicle pushing, nearest vehicle finding, intelligent control, and zone control 

characteristics. The finding previous station model coordinates with “finding nearest 

vehicle” algorithm and finds the previous station of the nearest vehicle. The stochastic 

path generator model generates the path, priority, and commits the completion of the 

wafers. A simulation technique executed in an object-oriented graphical user interface 

(GUI) evaluates the performance of the OHT system to determine the number of vehicles 

in the planning stage and to control the dispatching of the OHT system in the operation 

stage.  

There are two types of AMHS in a wafer fab, one is the interbay which transports 

cassettes of wafers between bays, the other is the intrabay, which transfers cassettes 

within a bay from tool to tool. The traditional AMHS isolates the interbay transport from 

intrabay transport. The wafer delivery from a tool within a bay to another within another 

bay is conducted through the operation of two stockers. A longer waiting time for wafers 

by the transport vehicles at the from-stocker and the to-stocker occurs than it would occur 
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if there was no stocker-to-stocker movement. Therefore, Lin et al. (2003) propose a 

connecting transport concept, using a different type of vehicle within bays and a single 

system of interconnected lines. They use a simple mathematical model to determine the 

minimum number of vehicles for different connecting transports. A connecting transport 

system is able to move a large number of lots per hour. Wafers can be transferred directly 

to and from the tool loadports without stocker operation. Waiting time for an empty 

vehicle is effectively eliminated. 

The factors which affect AMHS performance are factory layout, AMHS track 

layout (spine, perimeter, flexible, with track options such as turntables, turnouts, or high-

speed express lanes), transport vehicles (number of vehicles, velocities, vehicle 

dispatching), production planing and scheduling (throughput rate, WIP, and stocker 

capacity distribution and loading along the wafer fab), production control, stocker 

operation management and operator behavior (retrieve trends, delays to output port 

unloads, and lot requests not from retrieve stockers). Wang and Lin (2004) develop a 

discrete event simulation model to evaluate the performance of an AMHS for a wafer fab 

with a zone control scheme avoiding all vehicle collision. The AMHS layout is a custom 

configuration. Input data analysis shows that the underlying inter-arrival time distribution 

for most stockers are exponential or Weibull. The number of vehicles significantly affects 

the average delivery time and the average throughput and can be determined by this 

simulation. An AGV-based intrabay material handling system is also simulated to 

determine the number of vehicles to minimize delivery times and maximize throughput. 

Lin et al. (2005) propose a dynamic connecting transport AMHS in which interbay and 

intrabay material handling systems are connected and investigate the relation between 

performance and the number of vehicles. In order to avoid congestion or idle time in the 
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intrabay system, controlling the upper limit or the lower limit on the number of vehicles 

in the intrabay system can be a solution. The combination of the existence or non-

existence of upper or lower limits on the number of vehicles in the intrabay system forms 

4 strategies, upper and lower limits exist, upper and lower limits do not exist, upper limit 

exists but lower limit does not exist, lower limits exists but upper limit does not exist. 

Simulation studies show that the flow rate and the existence of upper-lower limit strategy 

on number of vehicles significantly affect all performance measures. The best strategy for 

each intrabay is with the upper and lower limits of the vehicle numbers. Controlling the 

lower limit on the number of vehicles significantly affects the travel time, the waiting 

time and the empty vehicle utilization. 

Li et al. (2005) propose the Intelligent Integrated Delivery (IID) concept that 

instructs AMHS to deliver remotely stored WIP to the stocker storage location closest to 

the tool or to a buffer on the tool, before the lots are requested for processing in a just-in-

time manner. This reduces the tool idle time. The impact of lot delivery time is further 

reduced by prioritizing lots for delivery in the AHMS. The delivery time of OHS is 

defined as the time consumed for the delivery of a lot from the input port or the shelf of 

departure stocker to the shelf of destination stocker. Excessive waiting time due to the 

unavailability of a vehicle or poor performance of the stocker causes overtime transport. 

Kong (2007) considers AMHS layout, transport vehicles, and scheduling logic as 

determining factor of the AMHS performance and proposes a two-step simulation 

method. While he simulates the production process on AutoSched AP, he simulates the 

AMHS process using Automod. The production simulation helps estimate equipment 

utilization, total around time, WIP, and the throughput of the AHMS. The AMHS 
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simulation predicts the capability of AMHS system, such as number of vehicles required, 

throughput and delivery time.  

The other major line of research concentrates on scheduling and dispatching in the 

AMHS. While some rules are based on finding conflict free solutions, others aim to 

reduce travel times. Lin et al. (2001) study a combination configuration of an interbay 

system, in which the hallway contains double loops and the vehicle has double capacity 

whereas most of the literature assumes an interbay system in which the hallway contains 

only a single loop. The dispatching of cassettes and vehicles can be an issue in the 

interbay system. This paper studies the relative performance of dispatching rules by 

simulation. Among the eight dispatching rules compared, a combination of Shortest 

Distance-Nearest Vehicle (cassette initiated) and First Encounter First Served Rule 

(vehicle initiated) performs the best. Lin et al. (2004) analyze loading of an automated 

double-loop interbay material handling system in a wafer fabrication considering the 

effects of the number of vehicles in the inner and outer loops. They develop simulation 

models to study the AMHS with a zone control and attempt to avoid any vehicle 

collision. The hallway contains double loops and vehicles have double capacity in the 

layout. The dispatching rule is the combination of the shortest distance with nearest 

vehicle (SD-NV) and the first-encounter-first-served (FEFS) rule. The simulation 

determines the maximum load. Interbay performance is significantly affected by the 

number of vehicles. The optimum combination of the number of vehicles in the inner and 

outer loops can be obtained by response surface methodology.  

Liao and Wang (2004) adopt a neural network approach for prediction of 

expected loop-to-loop delivery times of both priority and regular lots. A neural network is 

built for each OHT loop, with inputs of transport requirements, automatic material 
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handling resources of the loop, and the ratio of priority lots in the population. A back 

propagation method is adopted with the outputs of a discrete event simulation model to 

train the neural network. Given the estimates of lot delivery times in each loop, the path 

with shortest delivery time can be determined by solving an integer programming 

problem. Numerical studies show that the developed approach is effective for the 

prediction of average delivery times and applicable to the implementation of a transport 

time estimator for 300-mm fab scheduling and dispatching systems. OHT vehicles 

usually suffer from severe blocking effects due to simple directed graph configuration of 

an OHT loop. Liao and Fu (2004) propose an effective, simulation-based, two-phase 

approach, OHTAD (OHT Allocation and Dispatching) – in a large-scale 300-mm AMHS 

management which is originally an integer programming problem due to nonlinear 

constraints. Phase 1 of OHTAD selects the best OHT dispatching policy and Phase 2 of 

OHTAD determines the number of OHT vehicles by running simulations. Simulation 

studies show that OHTAD achieves good performance on both moves and carrier 

delivery times. Liao and Wang (2006) propose an effective OHT dispatching rule, the 

differentiated preemptive dispatching (DPD) policy, to reduce the possible blocking 

effects during the transportation of hot lots in a 300 mm OHT system. DPD, inspired by 

the observation of empirical human operations for carrying hot lots, aims to minimize the 

delivery time of hot lots while minimizing the impact on the transport of normal lots. 

Given a system configuration of loading ratio, population of hot lots, and the number of 

OHTs in the loop, simulation results show that the DPD policy dominates the other rules 

in delivery performances of hot lots and normal lots. The DPD rule is very useful to 

streamline shop floor operations for eliminating time delays of hot lots in an automatic 

environment. 
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Tyan et al. (2004) present an integrated tool and vehicle (ITV) dispatching 

strategy based on a state-dependent methodology to consider multiple performance 

measures in a fully automated fab environment. A manufacturing process and AMHS 

integrated simulation model is built to examine the performance impact of the ITV 

dispatching rule measured by cycle time, WIP, on-time delivery, and lot delivery time. 

The optimization procedure uses a desirability function approach to transform a multiple 

response problem into a single response problem. The simulation analysis shows that ITV 

dispatching rule is superior to the use of a static dispatching rule for on-time delivery and 

other performance measures. Kuo and Huang (2006) propose a multi-mission oriented 

intelligent vehicle dispatcher to dynamically adjust dispatching rules so that the possible 

high-risk lots can be resolved to meet all production strategies and manufacturing 

efficiency. Fuzzy logic is used to develop the multi-mission dispatcher. Simulation case 

study models are built in Automod. Simulation results suggest that the proposed 

intelligent multi-mission oriented vehicle dispatcher performs better than others, and 

most of the production strategies are satisfied. 

Work initiated dispatching is started by an available lot searching for an available 

vehicle. Vehicle initiated dispatching is started by a vehicle searching for an available lot 

to transport. Buffer initiated dispatching takes place after a busy input buffer becomes 

available, at which point there are groups of idle vehicles and available lots that need to 

be matched. Koo et al. (2005) present a vehicle dispatching procedure based on the 

concept of the theory of constraints, in which the dispatching decisions are made to 

utilize the bottleneck resource at the maximum level by preventing starvation and 

blocking. A simulation study shows that this procedure performs better than existing 

ones, especially in a high load environment with limited buffer space.  
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Most of the studies on AMHS in the literature use simulation as the base factor to 

model and evaluate the AHMS performance in semiconductor manufacturing. Nazzal and 

McGinnis (2007) propose an analytic approach to evaluating AMHS performance in an 

integrated circuit (IC) fab. They develop a queuing network type model, based on a 

detailed description of OHT operations, and analyze it as a large scale discrete time 

Markov chain. The model considers vehicle blocking without the need to include detailed 

AMHS operations. The overall approach helps them estimate both AMHS throughput and 

move request delays. 

Toba et al. (2005) propose a load balancing method which balances all processing 

operations of products among multiple semiconductor fabrication lines by using 

predictive scheduling results. Im et al. (2008) propose an efficient vehicle dispatching 

rule which minimizes the vehicle blocking and delivery times in AMHS in 300 mm 

semiconductor manufacturing. The dispatching methodology consists of three phases. In 

phase 1, the jobs involved in task assignment are selected by waiting time and by window 

size. In phase 2, a modified Hungarian method is used to identify and select the job that 

minimizes the average and variance of delivery time. In phase 3, the selected job, 

according to the category it falls in, i.e. Waiting, Assigned, Loaded, is assigned to the idle 

vehicle or reassigned to a new idle vehicle. Simulation results show that this 

methodology outperforms other rules in throughput and delivery times. Kim et al. (2008) 

propose HABOR, a Hungarian algorithm based OHT reassignment approach. The vehicle 

dispatching problem is modeled as an assignment problem and is solved by the 

Hungarian algorithm. HABOR outperforms some of the most popular traditional 

dispatching rules with regards to number of vehicles and average lead times. 
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4.2 AMHS MODEL AND DEVELOPMENT OF LOOK-AHEAD AND MYOPIC 
ALGORITHMS 

AMHS is a vital part of a fab to sustain the flow of production. Poor 

implementation of AMHS scheduling results with delays and failures in lot delivery, 

overloaded transport systems, congestion, increased inventory and increased transport 

and process cycle times. Most of the current AMHS dispatching methods neglect the 

benefit of a look-ahead approach due to limitations of information infrastructure 

integration between AMHS and production system. Information sharing between these 

two systems occurs only when an entity of one of these two systems becomes available 

so these two systems cannot see the status of entities of each other unless they become 

available. Although there are very well thought myopic dispatching algorithms in the 

literature, lack of information sharing prevents schedulers to make use of the automation 

to its full extent. There are recent efforts to increase the level of integration between these 

two systems. Therefore we analyze and develop solutions for scheduling of AMHS in 

semiconductor fabs with limited information sharing where there is small ahead of time 

information availability.  

We model the problem using mixed integer programming. We assume a fab 

layout with spine configuration. Each bay consists of one tool and one stocker. A lot is a 

batch of product units, wafers, which act as a transfer unit. Each lot has a pre-determined 

process route. A route consists of steps. A step is an operation that requires a unique tool. 

In our setting, our lots are defined by their current location, current step and time they are 

going to be available to be picked up by a vehicle. A vehicle is the carrier part of the 

AMHS. It can carry one lot a time and travels via the rail tracks of the AMHS.  

A fab layout consists of multiple bays which hosts a group of tools. These tools 

are functionally the same. In the setting we study, we assume one tool for each bay. Each 
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tool has a number of loadports where lots can be located to be processed. This local 

storage is called as tool buffer. Each loadport takes one lot. Thus, the number of loadports 

on a tool determines a tool buffer’s capacity. Each bay is served by a stocker which is a 

common storage area for all the tools in a bay, so it serves as common buffer for tools in 

a bay. Hence, there are two type of buffers in a bay. If there is not enough capacity on the 

tools, lots wait to be selected for processing in that tool group’s stocker. A legitimate 

move for a lot defined in our setting can be of three types: from the current operation’s 

tool loadport to next operation’s tool loadport, from the current operation’s tool loadport 

to next operation’s stocker, and from the current operation’s stocker to current 

operation’s tool loadport.  

Most current AMHS scheduling is implemented by vehicle dispatching. Roughly 

speaking, when a lot is available for pickup it picks the closest vehicle available. Due to 

information infrastructure issues, there is limited communication between job process 

information system and the AMHS information system. Therefore, a lot signals a move 

request only when it is available and a vehicle responds to that only when it is available. 

Recent efforts integrate these two separate information systems up to a degree that each 

system can see the other for a limited amount of time. This allows us to assume an 

information availability window of several minutes.  

We assume a real-time dynamic system in which we make decisions during the 

execution. In our problem setting, there is a certain time window in which information is 

available to the scheduler/decision maker. Within that time window, we assume that the 

scheduler knows where a lot or a vehicle is located and when it is going to be available, if 

at all. Our overall aim is to assign vehicles and jobs to each other by maximizing the 

AMHS performance, which has alternative interpretations.  
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First, we solve the problem for the lots and vehicles available in the first period in 

which all relevant information is known. Then we move to the next period, and solve the 

problem with lot and vehicle information available within that period. Each time we 

move to the next period, we update lot and vehicle sets and value parameters accordingly. 

This is a dynamic and online approach. We list the indices, parameters time-dependent 

variables and decision variables first. Then we explain them in more detail. Definition of 

assignment model constraints and objectives is followed by look-ahead and myopic 

algorithms. Since there are numerous parameters and their updates, we group them based 

on their real-time dynamics and lot-vehicle relations. While we make small explanations 

in between parameters, main explanations are going to take place after we list all the 

parameters.  

Indices: 

tLl ∈ : lots available in period t  ( L  denotes the set of all lots over the planning horizon) 

tVv∈ : vehicles available in period t  (V  denotes the set of all vehicles over the planning 

horizon) 

Bb∈ : bays 

s : stocker or tool buffer ( kerstoc  for stocker and tool  for tool buffer) 

Time Dependent Indices:  

These indices are all location related indices and under the domain or bay or 

buffer (stocker or tool buffer) indices. They either represent a bay-lot relation or buffer-

lot relation.  

( )lb' : origin bay of a lot l  

( )ls' : origin buffer of a lot l  

( )lb" : destination bay of a lot l  
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( )ls" , ( )ls "' : destination buffer of a lot l  

( )vb' : origin bay of a vehicle v  

( )vs' : origin buffer of a vehicle v  

( )vb" : destination bay of a vehicle v  

( )vs" , ( )vs "' : destination buffer of a vehicle v  

Fixed Parameters: 

 These parameters remain same regardless of time period change. 

τ : length of a time period 

••
••
,
,δ : travel time from an origin bay-buffer pair to a destination bay-buffer pair 

Time Dependent Parameters: 

 These parameters are updated every time period depending on decisions given in 

the previous time period and new availabilities. 

 An important group of time dependent parameters are lot-vehicle assignment 

related parameters. Depending on the time when decision making is done, lot-vehicle 

assignment related parameters are updated. All parameters in this group are relevant to 

various types of travel time values of specific lot-vehicle assignments. While one set of 

these parameters calculate actual travel times for a specific lot-vehicle assignment, the 

other set  calculates expected travel times after a specific lot-vehicle assignment. 

Expected travel times consider move request probabilities from each location to calculate 

how long the next empty or loaded travel time will take if a certain lot-vehicle 

assignment is done for a tool-to-tool, tool-to-stocker or a stocker-to-tool movement. Type 

of the movement is important since it determines the next location of lot or vehicle. 

Expected travel time parameters contribute to pre-positioning of vehicles for future move 
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requests by concentrating them around locations where higher move requests arise. This 

aim is obtained by several constraints and components of the objective function we 

present in the optimization model later. 

lvd : empty vehicle travel time of due to lot l  vehicle v  assignment 

lvp : tool-to-tool delivery time due to lot l  vehicle v  assignment 

lvq : tool-to-stocker delivery time due to lot l  vehicle v  assignment 

lvr : stocker-to-tool delivery time due to lot l  vehicle v  assignment 

lvep : expected empty travel time of vehicle v  if current lot l  vehicle v  assignment is 

tool-to-tool 

lveq : expected empty travel time of vehicle v  if current lot l  vehicle v  assignment is 

tool-to-stocker 

lver : expected empty travel time of vehicle v  if current lot l  vehicle v  assignment is 

stocker-to-tool 

 If a vehicle is not assigned in a current time period, expected empty travel time is 

calculated independent of specific lot assignment.  

ved : expected empty travel time of vehicle v  if vehicle v  is not assigned to any lot in the 

current period 

Similar to expected travel time of vehicles, expected travel time of lots are 

updated by a group of parameters. These parameters keep either delivery times or waiting 

times for next decisions  depending on current decisions. Next location of a lot depending 

on the current decision is the main factor to determine expected delivery time or expected 

waiting time for the next decision. For example, if a lot is carried to destination stocker 

both expected delivery time and waiting time are 0 since the lot is already served to its 
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destination. However, if a lot is moved to a stocker, then the historical waiting time 

updated each period is associated with that lot as its expected waiting time.  

lepr : expected tool-to-tool or tool-to-stocker-to-tool delivery time of lot l  

leqr : expected destination stocker-to-tool delivery time of lot l  

lerp : expected origin stocker-to-tool delivery time of lot l  

lewpr : expected waiting time of lot l  in the stocker if the next movement is tool-to-

stocker-to-tool 

lewqr : expected waiting time of lot l  in the stocker if the next movement is destination 

stocker-to-tool 

lewrp : expected waiting time of lot l  in the stocker if the next movement is origin 

stocker-to-tool 

 Actual waiting time of a lot is the time between the current period and the time 

when the lot becomes available for pick up the first time. 

lw : waiting time of lot l  until the current period 

 Location parameters are updated every period depending on current period 

decisions.  

lbos : 1 if lot l ’s origin bay is b , 0 otherwise 

lbds : 1 if lot l ’s destination bay is b , 0 otherwise 

lθ : 1 if lot l  is located on a tool buffer, 0 otherwise 

lω : 1 if lot l  is located in a stocker, 0 otherwise 

vβ : bay in which vehicle v  is located 

vσ : buffer in which vehicle v  is located (1 for stocker, 2 for tool buffer) 
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lβ : origin bay of lot l  

lγ : destination bay of lot l  

 Available tool buffer capacity and stocker capacity in a bay are updated every 

period. This update is done by taking lots leaving and arriving from and to the location 

within current period into consideration. Also, similarly, number of move requests 

originated from a tool buffer or stocker within a bay is calculated similarly. Number of 

move requests in a location is nothing but same as number of lots within a location. So 

total number of move requests is same as total number of existing lots. These numbers 

change every period since each lot which is directed to its destination tool buffer are 

removed from consideration and new lots (move requests) emerge into the system. Move 

request probabilities, which are calculated as the ratios of move requests in a certain 

location to the total number of move requests, are used in expected travel time and 

delivery time calculations.  

bc : available capacity of bay b  tool buffer 

bk : available capacity of bay b  stocker 

s
bm : number of move requests originated in bay b  tool buffer or stocker in the current 

period 

m : total number of move requests in the system in the current period 

s
bπ : probability of a move request originating in bay b  tool buffer or stocker in the 

current period 

 Finally, availability time and availability time period of lots and vehicles are 

updated every time period depending on current period decisions. If a lot is assigned to a 

vehicle, both become available again when vehicle delivers the lot to its destination 
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location. If a vehicle or lot is not assigned in the current time period, then they become 

available again for pick up in the next time period. While time is continuous, time period 

is a discrete term which consists of certain length of time and found by getting the ceiling 

of division of time by length of time period.  

•a : time when a lot l  or vehicle v  is available 

•at : time period in which a lot l  or vehicle v  becomes available 

Decision Variables: 

lvX : 1 if vehicle tVv∈  is assigned to lot tLl ∈ , 0 otherwise 

lvP : 1 if vehicle tVv∈  is assigned to lot tLl ∈  for a tool-to-tool movement, 0 otherwise 

lvQ : 1 if vehicle tVv∈  is assigned to lot tLl ∈  for a tool-to-stocker movement, 0 

otherwise 

lvR : 1 if vehicle tVv∈  is assigned to lot tLl ∈  for a stocker-to-tool movement, 0 

otherwise 

vD : Actual empty travel time of a vehicle v  

lT : Actual delivery time of a lot l  

vED : Expected empty travel time of a vehicle v  

lET : Expected delivery time of a lot l  

lF : accumulated waiting time of a lot l  

lEF : Extra waiting time of a lot l  

Time dependent parameters are updated at the beginning or end of each time 

period. Parameters lvd , lvp , lvq , and lvr  correspond to the pre-calculated empty vehicle 

travel time, tool-to-tool delivery time, tool-to-stocker delivery time, and stocker-to-tool 
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delivery time, respectively, for every lot l  vehicle v  assignment available in that period, 

where tLl ∈  and tVv∈ . Vehicle v ’s expected empty travel time after current period is 

denoted by parameters lvep , lveq , and lver  depending on if the lot l  vehicle v  

assignment in the current period is a tool-to-tool, tool-to-stocker or a stocker-to-tool 

movement. Parameter ved  is the expected empty travel time of vehicle v  if it is not 

assigned to any vehicle in the current period. Lot l ’s expected delivery time after the 

current period is calculated by parameters lepr , leqr , and lerp  which are the expected 

tool-to-tool or tool-to-stocker-to-tool, expected destination stocker-to-tool, and expected 

origin stocker-to-tool delivery times. Parameters lewpr , lewqr , and lewrp  are lot l ’s 

expected waiting time in the stocker depending on if the next movement is a tool-to-

stocker-to-tool, destination stocker-to-tool, or origin stocker-to-tool movement. How long 

a lot already has waited until the current period is stored in parameter lw . The length of a 

time period is τ . If a lot l ’s origin bay is bay b , then lbos  is 1, otherwise it is 0. If a lot 

l ’s destination bay is bay b , then lbds  is 1, otherwise it is 0. If lot l  is located on a tool 

buffer, then lθ  is 1, otherwise it is 0. If lot l  is located on a stocker, then lω  is 1, 

otherwise it is 0. Available capacity of bay b ’s tool buffer is bc . Available capacity of 

bay b ’s stocker is bk .The update of time dependent variables is made possible by a 

group of pre-determined parameters and indices. Indices ( )lb'  and ( )vb'  are used for 

origin bay of a lot l  and a vehicle v , respectively. Indices ( )ls'  and ( )vs'  determine if a 

lot l  and a vehicle v  originate from a stocker or a tool buffer, respectively ( kerstoc  for a 

stocker and tool  for a tool buffer). ( )lb"  and ( )vb"  are the destination bay of a lot and a 

vehicle, respectively. ( )ls"  ( ( )ls '" ) and ( )vs '"  ( ( )vs '" ) determine if a lot l  and a vehicle 



 109

v  are directed to a stocker or a tool buffer, respectively. Parameter ••
••
,
,δ  is the travel time 

from an origin bay-buffer pair to a destination bay-buffer pair. Parameter •a  is the time 

when a lot l  or a vehicle v  is available. Parameter •at  specifies in which time period a 

lot l  or a vehicle v  becomes available. Parameters va  and vat  are updated for all 

vehicles Vv∈  since they are followed during the whole planning horizon while there is 

no update for lots Ll ∈  since they are not followed in the system after their one step 

movement as long as a move request does not end in a stocker for a particular lot. When 

the move ends in a stocker for lot Ll ∈ , la  and lat  are updated and lot l  becomes 

available again for pickup from stocker to its destination tool. Similarly, vβ  and vσ , the 

bay and buffer (tool or stocker) in which vehicle v  is located are updated at each period 

t , depending on the transported lot l ’s origin bay, lβ , or destination bay, lγ . lβ  is also 

updated if a lot moves from a tool to a stocker. If the lot makes a tool to stocker 

movement since the destination tool buffer is full, then la  and lat  are updated and lot 

signals a move request when it arrives to its destination stocker. bsm  is the number of 

move requests given at the bay b  stocker or tool buffer in the current time period and m  

is the total number of move requests in the current time period. Since each move request 

is associated with a certain lot, parameters s
bm  and m  are nothing different than lot 

counts at bay b  stocker or tool buffer and total lot count, respectively. Depending on lot-

vehicle assignment decisions every time period and new move requests emerged into the 

system, parameters s
bm  and m  are updated periodically. 
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4.2.1 Lot-Vehicle Assignment Model 
Every period, we solve a lot-vehicle assignment problem formulated as a mixed 

integer problem. The complete set of vehicles, tVv∈ , and lots, tLl ∈ , are available 

within period t . Binary assignment decision variable lvX  determines if a vehicle tVv∈  

is assigned to lot tLl ∈  or not in period t . lvP , lvQ , lvR  are binary decision variables to 

decide if a move resulting from a lot vehicle assignment is a tool-to-tool, tool-to-stocker, 

or stocker-to-tool movement, respectively. Type of a move is determined by the origin 

location of a lot. If the move request of the lot is given while it is on a tool buffer, then it 

can either to a tool-to-tool or a tool-to-stocker move. If the lot is located in a stocker, then 

it can only do a stocker-to-tool move. The empty travel time of a vehicle v  is denoted by 

decision variable vD . Lot l ’s delivery time is lT . These values are actual travel times 

which result from the assignments in period t . There are also expected travel duration 

variables for the coming periods depending on the decision given in the current period t . 

The expected empty travel time of vehicle v  is vED . The expected delivery time of a lot 

l  is lET . Expected time variables are important to pre-position vehicles for future move 

requests and prioritize lots for current decisions. Expected time and waiting time 

parameters determine expected time variables. Since location based move request 

probabilities are used to calculate the travel time expectations, vehicles tend to 

concentrate around locations with high move request probabilities by employing a proper 

objective function. Also, if a lot’s expected travel time is long for its next move 

depending on a current decision, it can be given priority again by employing a proper 

objective function. These priorities or pre-positioning are only implicit effects of 

decisions based on expected travel time values. These effects are explained according to 

how the expected time variables are used when we fit an objective function to our 
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assignment problem. If a lot l  is not picked in period t , than its idle waiting time 

accumulates in lF , otherwise it waits for an extra period which is indicated by lEF , 

expected idle time until the new decision. lEF  ensures the length of the current decision 

period is also taken into consideration while calculating idle time. Waiting time variables 

also help prioritize pick up of lots in coordination with expected time variables by 

employing a proper objective function. Simply, if a lot has already waited much longer 

than other lots in the system, it implicitly has a higher priority of pick up than other lots 

depending on other components of the objective which we will discuss next. *
lvX , *

lvP , 

*
lvQ , and *

lvR  are optimal values of the decision variables lvX , lvP , lvQ , and lvR , 

respectively. 

An assignment model which is solved in every period t  consists of following 

objective function and constraints, (4.1)-(4.13). 
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  The objective function in (4.1) minimizes the total actual and expected empty 

travel time and delivery time in addition to the total actual waiting time subtracted from 

the total expected waiting time. Lower empty travel time and delivery time are good 

performance indicators in an AMHS. Therefore, objective function terms, ∑∑
∈∈

+
tt Vv

v
Ll

l DT , 
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are the first obvious choices to minimize. However, it is not sufficient since the 

optimization problem simply ends up with not assigning any vehicles to lots with only 

these components in the objective function. We need to have some rewards/penalties for 

assigned/unassigned vehicles and lots for better judgment. Expected empty travel time 

and delivery time, ∑∑
∈∈

+
tt Vv

v
Ll

l EDET , are the main components of the objective function 

that serve to reward/penalty purpose. Minimization of expected empty travel time and 

delivery time enables us to pre-position vehicles better to respond quickly for future 

move requests. Also, it lets us avoid unnecessary idling of lots considering future moves. 

We subtract actual waiting time, ∑
∈ tLl

lF , from the rest of the terms in the objective 

function to give a sense of priority to the lots that wait in the system longer than others. 

Minimization of expected waiting time, ∑
∈ tLl

lEF , ensures a lot being assigned to a vehicle 

if there is no need for it to wait while there is enough transportation capacity.  

Constraints (4.2) and (4.3) ensure that each lot or vehicle can be assigned at most 

once. Construction of optimization function with added reward and penalties as explained 

above make sure lot-vehicle assignments take place when required. A vehicle tool 

assignment can be made for one of three move types, a tool-to-tool, a tool-to-stocker, or a 

stocker-to-tool move in (4.4). A lot makes a tool-to-tool or a tool-to-stocker movement 

only if it is located in a tool buffer. A lot which is located in a stocker can only stocker-

to-tool buffer. We fix corresponding assignment variables such that a lot can only make 

move types it is allowed to make before solving the model.  

The empty travel time and expected empty travel time of vehicle v  is calculated 

in (4.5) and (4.7), respectively. A vehicle’s expected empty travel time depends on 

location of vehicle after the current decision. Whether a vehicle is assigned or not, 
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depending on the move request probabilities coming from different locations, expected 

empty travel time is calculated between vehicle’s location after current decision and 

possible next new location of the vehicle.  

The delivery time and expected delivery time of lot l  is calculated in (4.6) and 

(4.8) respectively. If the lot is located in a tool, depending on the destination tool buffer 

availability, the lot’s new location can be either destination tool or destination stocker. If 

the lot is not assigned to any vehicle, then it stays in its current tool buffer. Then, the next 

move can either be a tool-to-tool or a tool-to-stocker movement. Each decision has its 

own expected travel time and expected waiting time in stocker values. If the lot moves 

tool-to-stocker, then it will take a certain time to move it to the next tool buffer when the 

new decision is made in addition to the waiting time in the stocker. If the lot makes a 

tool-to-tool movement, then the expected delivery time is 0 since the lot is already served 

and it does not appear in the system again. If the lot is in the stocker, then waiting time in 

that stocker is added to expected delivery time of next stocker-to-tool movement.  

While the actual waiting time of lot l  is calculated in (4.9), the expected waiting 

time of lot l  is calculated in (4.10). The capacity constraint of the tool buffer of bay b  is 

(4.11). The stocker capacity of bay b  is controlled by (4.12). Binary and non-negativity 

constraints are contained in (4.13). The vehicle-lot assignment model is (4.1)-(4.13).   

4.2.2 Parameter Updates in Period t 
 The parameter equations and updates which construct the algorithm and the 

assignment model are listed in (4.14) to (4.41). As we will see in the look-ahead 

algorithm next, parameter updates from (4.14) to (4.31) are updated at the beginning of 

every time period before the assignment problem is solved and parameter updates from 

(4.32) to (4.41) take place after the assignment problem is solved.   
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Actual empty travel time and delivery time are updated based on the current 

location of a lot and a vehicle. Empty travel time is the total transportation time between 

vehicle’s current location and current location of the lot which the vehicle is going to 

pick. Tool-to-tool delivery time is updated in (4.14) if the lot is located in its original tool 

buffer and it’s directed to the destination tool buffer ( ( ) toolls" = ). Tool-to-stocker 

delivery time is updated in (4.15) if the lot is located in its original tool buffer and it’s 

directed to the destination stocker ( ( ) ker' stocls" = ). Finally, stocker-to-tool delivery 

time is updated in (4.16) if the lot is located in its original tool buffer and it’s directed to 

the destination stocker ( ( ) ker' stocls" = ).  
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If a vehicle is not assigned to a lot, expected empty travel time is updated 

depending on vehicle’s current location and move request probabilities emerging from 
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every location in (4.18). If the vehicle is assigned to a lot, then depending on the lot’s 

next location since the assignment type is going to determine lot’s new place, empty 

travel time is calculated for each current move type (4.19)-(4.21).  
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The expected delivery time takes move request probabilities and current and later 

lot locations into consideration for each of the different current and future move type 

combinations. If a lot currently does not make a move while it is on a tool buffer, then the 

expected empty travel time includes both tool-to-tool and tool-to-stocker move options 

for the next decision depending on the probability of the destination tool buffer being 

available by a move request is being signaled from that location by that certain location’s 

move request probability in (4.22). If the lot is on a tool buffer but it is currently assigned 

for a tool-to-stocker move or the lot is on a stocker and it is not assigned to any vehicle, 

then the same expected delivery time is calculated for both cases as the time between 

destination stocker and destination tool buffer in addition to load and unload times in 

(4.23) and (4.24).  
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Waiting time in the stocker if the lot is in a tool buffer but it is not assigned is 

relevant to if the next tool buffer is going to be available depending on the move request 

probability from that tool buffer in (4.25). But if the lot makes a tool-stocker movement 

or if it is already in a stocker, then waiting time in that stocker is assigned to expected 

waiting time for that lot in (4.26) and (4.27). If the lot is still in the system, the waiting 

time is accumulated in (4.28). 
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s
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toolstocsBb/mms
b

s
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Number of lots in a stocker and tool buffer are calculated in (4.29). Total number 

of move requests in the system is added up in 4.30. Move request probability of a 

location is the ratio of number of lots in a tool buffer or stocker of a bay to total number 

of lots in the current time period, as in (4.31). 
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If a vehicle is assigned to a lot, depending on vehicle’s current availability and 

delivery time of the assigned lot, new vehicle availability is calculated in (4.32). If the 

vehicle is not assigned in the current period, then it becomes available again at he the 

beginning of the next period. Also, since our model does not allow a lot or a vehicle a 
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second move within the same time period, if the vehicle becomes available again before 

the next time period begins due to short delivery time of the assigned lot, the model 

assumes that the vehicle still becomes available at the beginning of the next time period. 

The time period the vehicle is going to be available is the ceiling of the time it is going to 

be available, calculated in (4.33). The bay location and the buffer location of a vehicle are 

updated in (4.34) and (4.35), respectively, depending on the vehicle’s current location 

and the move type if it moved.  

tlvlv
Vv

lvll LlXttQqaa
t

∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+← ∑∑∑

∈∈∈

 ,1,max
tt Vv

*

Vv

* ττ   (4.36) 

⎣ ⎦( ) tlvlvll LlQXaat ∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+= ∑∑

∈∈

 ,11/
Vv

*

Vv

*

t

τ    (4.37) 

tlvllvll LlQX ∈+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−← ∑∑

∈∈

 ,1
Vv

*

Vv

*

t

γββ     (4.38) 

tlvlvll LlQX ∈+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−← ∑∑

∈∈

 ,1
Vv

*

Vv

*

t

σσ     (4.39) 

 A lot’s available time is calculated depending on its current available time and 

delivery time in (4.36) and (4.37) only if it makes a tool-to-stocker movement or it is not 

picked up at all. If the lot is not picked up, then it becomes available again at the 

beginning of the next time period. Also, since a second move within the same period is 

not allowed, if the lot becomes available again before the next time period begins, the 

model takes that lot into consideration for pick up at the beginning of the next time 

period. The location of the lot is updated to its destination bay and buffer in (4.38) and 

(4.39) if it makes a tool-to-stocker movement. Otherwise, it remains in the same location. 

If the lot makes a tool-to-tool or stocker-to-tool movement (if the lot reaches to its 
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destination tool buffer), there is no need to update it availability and location since it is 

considered to be served by the model.  
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Available tool buffer capacity of a bay and available stocker capacity of a bay are 

updated in (4.40) and (4.41), respectively. If a lot moves from a bay’s tool buffer by 

making a tool-to-tool or tool-to-stocker movement, then an extra capacity becomes 

available within that tool buffer. If the lot makes a stocker-to-tool movement to the same 

bay, then it reduces the availability of corresponding bay’s tool buffer capacity by 1. 

Similarly, a bay’s stocker capacity is increased by 1 if a stocker-to-tool movement is 

made from that bay. The bay’s stocker capacity reduces by 1 if there is a lot makes a tool-

to-stocker move to that bay.  

Although parameter updates are very detailed, they all same the same purpose 

which is to provide sufficient travel time and delivery time information to the assignment 

problem solved within look ahead algorithm and used in myopic algorithm. The updating 

mechanism mainly lies on updating lot and vehicle locations, their available time 

information and buffer capacities. Next, we sketch the look-ahead and myopic algorithms 

along with how the parameters are updated during the algorithms.  

4.2.3 Look-Ahead Algorithm 
The look-ahead algorithm consists of one initial and three basic steps which are 

repeated for every time period. A lot and vehicle assignment problem is solved every 

time period with the lots and vehicles available within that time period. Sets of available 
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lots and vehicles and system parameters are updated between periods. The algorithm ends 

at the end of the last time period in the planning horizon. 

Step 0: Initiate 
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Go to Step 1. 

4.2.4 Myopic Algorithm 
The myopic algorithm is myopic in information availability and greedy in its 

objective. A lot can only see available vehicles when it becomes available for pickup and 

calls the closest vehicle for pickup if there is any available vehicle. Otherwise, a lot waits 

until a vehicle becomes available. If the destination tool buffer is available, then the lot is 
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transferred tool-to-tool. If the destination buffer is not available, then the lot is moved 

tool-to-stocker and waits in the stocker to be transferred to its destination tool. After 

serving each move request, the heuristic checks if lots which couldn’t be served in earlier 

steps of the algorithm could be served at the current step if its destination tool has 

become available. The algorithm stops at the end of the planning horizon. Since there is 

no decision period concern in the myopic algorithm, we consolidate available vehicles in 

set aV  instead of tV . Since decisions are made per lot l  at a time, available lot set aL  

consists of only lot l  being considered at the time. While updating parameters, we use lot 

and vehicle sets aL  and aV  instead of tL  and tV  in parameter update equations (4.14)-

(4.17) and (4.32)-(4.41).  

Step 0: Set clock to 0. Initiate B , , ,, , , , , , , , , ∈∈∈ bVvLlkcatataa bbvvllvlvl σβγβ .  

1=l , { }=aV  

Step 1: Set clock to la , { }VvaaavVV lvlaa ∈≤<∪← −  ,: 1 , { }lLa = . 

 If   

Update (4.14)-( 4.17). 

Step 2: If 0>
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* =lvX  

  If 2=lσ , 0,1 ***
*** === lvlvlv RQP . 

  Else, 0,1 ***
*** === lvlvlv QPR . 

 Else 

  If 2=lσ ,  
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   If 0>
l

sγ , assign { }alv
Vv

Vvdv
a

∈=
∈

 ,minarg*  to lot l , 1*
* =lvX ,  

0,1 ***
*** ===

lvlvlv
RPQ  

   Else, 0**** ==== lvlvlvlv RQPX  

Step 3: Update (4.32)-( 4.41), { }*\ vVV aa ← , 1+← ll . 

If Ll ∉ , STOP. 

Else, Go to Step  

4.3 COMPUTATIONAL EXPERIMENTS 
We test our algorithms with a wide range of experiments. We work on a spine 

layout which is commonly used in the industry. The layout consists of 8 bays, each of 

which consists of one stocker and one tool. In a real fab number of bays may be 20 or 

even more. In our experiments, one tool represents a combination of tools in a bay to 

keep the model simple. Putting one stocker per bay is a common practice, although in 

general the number of stockers may vary. Instead of distances, we locate the fab 

components using vehicle travel times between them. Intrabay distances are 2 minutes 

each. Between every intersection, there is a 1 minute distance for interbay movement. 

There is a crossover in the middle of the inner circle of the spine layout. The tracks are 

bi-directional. We put enough crossovers so that we can work in a collision-free 

environment and we can ignore the waiting time of vehicles due to traffic. Figure 4.1 

depicts the fab layout.  
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Figure 4.1 Fab Layout 
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Loading and unloading of the vehicles take 1 minute each. Therefore it takes an 

extra 2 minutes to deliver a lot from a location to another in addition to the travel time.  

We divide the planning horizon into 50 or 100 intervals of 5 or 10 minutes. On 

average, 1 new move request is signaled every minute or every two minutes. The size of 

the vehicle fleet is 9 or 12. When deciding on move request rates and vehicle fleet size 

we considered vehicle utilizations in the experiments. Although the average vehicle 

utilization ranges from 30% to 99% in the experiments, for most cases the utilization is 

between 50% and 80%, which is similar to a typical fab. All the vehicles are released to 

the system in the first time period. Lots appear in the system as move requests. As part of 

the primitive data we input probabilities of where a lot is located. We call these 

probabilities “move request probabilities,” which can be extracted from the historical data 

in a fab. They are also updated throughout the look-ahead algorithm as explained in 

Section 4.2.2. In our experiments, we assume all tools are equally likely to signal a move 

request as presented in Table 4.1. Also, we assume that stockers are empty at the 

beginning so the probability of initial move request from stockers is 0.  

Table 4.1 Initial move request probabilities 

Bay Number Stocker Tool 
1 0 0.125 
2 0 0.125 
3 0 0.125 
4 0 0.125 
5 0 0.125 
6 0 0.125 
7 0 0.125 
8 0 0.125 
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  Since stockers are used for intermediate storage, in reality they have limited 

capacity. In our experiments, we assume the capacity is infinite, 1 or 0. When it is 0, only 

tool-to-tool moves are available. In other words, there are no stockers in this case. At 

time zero, we assume that all the tool buffer capacities are full except for one available 

capacity per tool buffer on the tools. For one case only, we assumed that the beginning 

available tool buffer capacity is 0 with infinite stocker capacity. In the experimental 

charts, we do not explicitly note exact tool buffer capacity since all the tool buffers are 

full except for one for each tool and a new lot can be placed only if an existing lot is 

removed from a tool buffer. However, the tool buffer capacity is implicitly assumed to be 

3 or 6 which is typical in real fabs. It is important to note that having no stocker is not a 

common practice in fabs. Almost all existing fabs use stockers in their layout. However, 

there are some efforts to build fabs with no intermediate storages. A real fab is much 

more complex than the model we propose in our study. For example, we ignored 

breakdowns in our model. Also all lots are assumed to have the same priority. Fabs 

usually keep very high capacity stockers which are in many cases have practically an 

infinite capacity. Therefore the uncapacitated stocker case is close to a real fab 

environment in current practice, and the limited stocker case (0 or 1 lot capacity) can be 

viewed as a way of predicting future practice. 

A lot is assumed to be completed when it reaches the destination tool. If it is stays 

in the stocker or is not picked up at all, then it is not completed. A move may be any of 

three types: tool-to-tool, tool-to-stocker, or stocker-to-tool depending on where tool is 

located and where it is directed. If a lot goes from one tool to its destination tool directly, 

then this is considered one (tool-to-tool) move. If it goes from one tool to the other tool 
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visiting a stocker in between, then that completion is accomplished with 2 moves. The 

empty travel time of a vehicle is the time between a vehicle starts moving and picking up 

a lot, including the empty travel time of the vehicle. It does not include pickup time. The 

average empty travel time is calculated by dividing the total empty travel time by the 

total number of moves, which is sum of all tool-tool, tool-to-stocker and stocker-to-tool 

moves. The delivery time is the time between a vehicle starts picking up a lot and 

delivers it to its destination. The first and main component is the travel time between lot’s 

origin and destination. The second and third components, load and unload times of lot to 

and from vehicle are included in the delivery time, too. Existence of the fourth 

component, which is full or partial empty travel time of the vehicle depends on lot and 

vehicle availability. If the lot is available before the vehicle becomes available, then 

whole empty travel time of the vehicle is included in the delivery time. However, if the 

lot becomes available after vehicle, then vehicle moves to the location of the lot before 

the lot becomes available. In this case, empty travel time is not included in the delivery 

time. Depending on vehicle’s arrival to lot location, empty travel can be added to delivery 

time partially. Functions for delivery time can be seen in equations (4.15)-(4.17). 

4.3.1 Computational Results 
The look-ahead algorithm is coded in GAMS (Rosenthal 2007) and solved using 

CPLEX 9.0 (ILOG 2003) since it is an optimization based heuristic. The myopic 

algorithm is coded in Java (Sun Microsystems 2009). Since the sizes of the assignment 

problems are very small, all the assignment models during these executions have been 

solved to optimality within either very small or occasionally bigger fraction of a minute. 
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We run 25 different experiments in total. The performance measure of each experiment is 

obtained by taking the average of 5 independent runs. Hence, we run a total of 125 

distinct instances for each of our two algorithms. Within each experimental point, 

randomness comes from when and where the move requests are created and initial 

positions of vehicles from one instance to the other. We do not consider a warm-up 

period since system starts loaded and the horizon is long enough. Therefore, performance 

measures are taken over all the run. Table 4.2 lists the experiments and the associated 

parameters. 
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Table 4.2 List of experiments and corresponding experimental parameters 

Experiment 
Number 

Length of 
Planning 
Horizon 

Number of 
Time 

Periods 
Interval 
Length 

Number of 
Move 

Requests 

Number 
of 

Vehicles 

Tool 
Buffer 
Capacity 

Stocker 
Capacity 

1  500  50  10  250  9  0  ∞ 
2  500  50  10  250  9  1  ∞ 
3  500  50  10  250  9  1  1 
4  500  50  10  250  9  1  0 
5  1000  100  10  500  9  1  ∞ 
6  1000  100  10  500  9  1  1 
7  1000  100  10  500  9  1  0 
8  1000  100  10  1000  9  1  ∞ 
9  1000  100  10  1000  9  1  1 
10  1000  100  10  1000  9  1  0 
11  500  100  5  500  9  1  ∞ 
12  500  100  5  500  9  1  1 
13  500  100  5  500  9  1  0 
14  1000  100  10  1000  12  1  ∞ 
15  1000  100  10  1000  12  1  1 
16  1000  100  10  1000  12  1  0 
17  500  100  5  500  12  1  ∞ 
18  500  100  5  500  12  1  1 
19  500  100  5  500  12  1  0 
20  500  50  10  250  12  1  ∞ 
21  500  50  10  250  12  1  1 
22  500  50  10  250  12  1  0 
23  1000  100  10  500  12  1  ∞ 
24  1000  100  10  500  12  1  1 
25  1000  100  10  500  12  1  0 

  

The performance measures we use to evaluate our experiments are chosen from 

the widely used performance metrics for the AMHS in semiconductor manufacturing. 

The number of moves is the total number of AMHS moves made. The process of a 
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vehicle traveling to a lot location, loading the lot, delivering it to the target location 

(either a tool or a stocker) and unloading the lot is considered a single move. The service 

ratio is the ratio of the number of lots which are delivered to their respective destination 

tools to the number of all lots. For example, while a tool-to-tool movement or a stocker-

to-tool movement contributes to the numerator of the service ratio, a tool-to-stocker 

movement does not. The tool-to-tool ratio is the ratio of tool-to-tool moves to total 

number of moves. The tool-to-stocker ratio is the ratio of tool-to-stocker moves to the 

total number of moves. The stocker-to-tool ratio is the ratio of tool-to-tool moves to the 

total number of moves. The empty travel time per move and delivery time per move are 

average times spent by a vehicle for empty and loaded travel, respectively. The average 

utilization of a vehicle gives an indication of the load on the system. The average waiting 

time of a lot is an average of waiting times of lots until they are picked up for delivery to 

their destination tool. Therefore the time spent in stockers contributes to this performance 

measure. The maximum waiting time of lots gives an indication of the range of waiting 

times. 
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Table 4.3 Comparison of average performances of all experiments 

Overall Average 
Look 
Ahead  Myopic

Number of moves  576  538 
Service ratio  91.3%  78.4% 
Ratio of tool to tool moves  74.8%  59.0% 
Ratio of tool to stocker moves  13.3%  21.5% 
Ratio of stocker to tool moves  11.8%  19.5% 
Empty travel time per move  1.66  5.82 
Delivery time per move  5.30  11.76 
Average utilization of vehicles  57.1%  81.9% 
Average waiting time of lots  38.1  78.7 
Maximum waiting time of lots  244  345 

 

Table 4.3 lists the overall average of performance measures for all runs, for 

Experiments 1 to 25. The look-ahead algorithm achieves a greater number of moves and 

a higher service rate with a lower vehicle utilization. The tool-to-tool ratio is higher using 

the look-ahead approach. The main benefit of the look-ahead approach and the 

information availability window is manifested in the lower empty travel time per move 

and lower delivery time per move. There is almost a 70% reduction in empty travel time 

per move as a result of better pre-positioning via the look-ahead approach. Since look-

ahead approach considers expected travel times for the future decisions, vehicles are 

positioned closer to future move request locations. Furthermore, the delivery time 

reduction is more than 50%. Both of these effects lead to lower vehicle utilization. With 

the look-ahead approach, excess vehicle availability is utilized to deliver more lots which 

leads to higher service ratio. Also, the average and maximum waiting times of lots are 
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reduced by the look-ahead approach. This is again a result of better pre-positioning and 

improved scheduling ability due to the information availability window. 

Table 4.4 Comparison of alternative storage capacity results 

uncapacitated stocker  stocker capacity = 1  stocker capacity = 0 
Look Ahead  Myopic  Look Ahead  Myopic  Look Ahead  Myopic

Number of moves  683  618  555  586  518  433 
Service ratio  89.4%  78.7%  91.9%  76.0%  92.3%  78.8% 
Ratio of tool to tool moves  44.9%  40.2%  84.4%  40.1%  100.0%  100.0%
Ratio of tool to stocker moves  29.5%  32.1%  7.9%  30.5%  0.0%  0.0% 
Ratio of stocker to tool moves  25.6%  27.7%  7.6%  29.5%  0.0%  0.0% 
Empty travel time per move  1.98  5.49  1.55  5.45  1.41  6.57 
Delivery time per move  5.80  10.78  5.08  10.68  4.88  14.01 
Average utilization of vehicles  68.6%  86.0%  54.2%  82.0%  49.8%  80.0% 
Average waiting time of lots  45.3  81.1  35.9  87.2  34.2  74.5 
Maximum waiting time of lots  218  285  257  376  265  396 

  

Table 4.4 summarizes experiments based on varying the stocker capacity. The 

uncapacitated stocker results are the average of Experiments 2, 5, 8, 11, 14, 17, 20, and 

23. The single lot capacity stocker results are the average of Experiments 3, 6, 9, 12, 15, 

18, 21, and 24. Zero capacity stocker results are the average of Experiments 4, 7, 10, 13, 

16, 19, 22, and 25. The look-ahead algorithm shows better performance than the myopic 

algorithm in all the key performance measures for each level of stocker capacity. The 

myopic algorithm has a similar service ratio and average lot waiting times for the 

uncapacitated stocker and zero capacity stocker cases. When the stocker has a one lot 

capacity, the myopic algorithm shows the worst performance in service ratio and average 

lot waiting times. The look-ahead algorithm gets better as stocker capacity changes from 

infinity to 0. The most important result of this analysis is to observe that both algorithms 
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perform their best in overall performance measures when there is no stocker. It is obvious 

that the look-ahead algorithm exploits the future information availability to achieve more 

tool-to-tool moves which result in no stocker use ultimately. Also, the myopic algorithm 

acquires an implicit look-ahead approach due to the lack of stockers. A lot waiting on a 

tool unwillingly due to the lack of a stocker can find its destination available within a 

couple of minutes and be directly transferred to the destination tool buffer instead of 

being directed to the stocker first and the tool buffer later. Although we sacrifice the 

safety of having a stocker as an intermediate storage area, we eliminate an extra move to 

complete a lot by keeping it on the tool for a couple of minutes more. Also, the extra 

transportation, load and unload times due to the stocker visits are eliminated in addition 

to the waiting time in the stocker.  

Table 4.5 Comparison of alternative vehicle fleet sizes 

number of vehicles = 9  number of vehicles = 12 
Look Ahead  Myopic  Look Ahead  Myopic 

Number of moves  565  501  606  590 
Service ratio  89.7%  73.2%  92.7%  82.5% 
Ratio of tool to tool moves  76.9%  60.2%  75.9%  60.0% 
Ratio of tool to stocker moves  12.2%  20.8%  12.7%  20.9% 
Ratio of stocker to tool moves  10.8%  19.0%  11.3%  19.1% 
eEmpty travel time per move  1.87  5.86  1.43  5.82 
Delivery time per move  5.30  11.85  5.20  11.79 
Average utilization of vehicles  65.6%  87.0%  49.5%  78.4% 
Average waiting time of lots  44.70  100.28  32.24  61.57 
Maximum waiting time of lots  249  381  244  324 

 

Next, we summarize the experiments based on varying the vehicle fleet size. The 

smaller vehicle fleet size results are compiled from Experiments 2 to 13 and the larger 
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vehicle fleet size results are compiled from Experiments 14 to 25. Table 5 shows that 

increasing the number of vehicles increases the total number of moves substantially. The 

service ratio increases while the tool-to-tool, tool-to-stocker and stocker-to-tool ratios 

remain stationary. The average lot waiting times are reduced by more than 25% for the 

look-ahead algorithm. This reduction is almost 40% for myopic algorithm.  

Table 4.6 Comparison of alternative interval lengths 

move requests/min = 1 
Interval Length = 10  Interval Length = 5 

Look Ahead  Myopic  Look Ahead  Myopic 
Number of moves  968  844  548  432 
Service ratio  86.0%  71.4%  93.0%  67.0% 
Ratio of tool to tool moves  79.7%  59.4%  75.4%  60.3% 
Ratio of tool to stocker moves  10.4%  21.0%  13.1%  20.8% 
Ratio of stocker to tool moves  9.8%  19.6%  11.5%  18.8% 
Empty travel time per move  1.65  5.83  1.63  5.87 
Delivery time per move  4.54  11.76  4.83  11.88 
Average utilization of vehicles  87.6%  92.3%  54.3%  96.5% 
Average waiting time of lots  68  160  21  86 
Maximum waiting time of lots  276  543  169  273 

  

Table 4.6 summarizes results for alternative information availability interval 

lengths while keeping the move request rate the same for fair comparison. The results for 

the longer interval length are acquired from Experiments 8, 9, 10, 14, 15, and 16. The 

results for the shorter interval length are acquired from Experiments 11, 12, 13, 17, 18, 

and 19. Actually, since the interval length is not a concern for the myopic algorithm, the 

performance results do not vary from the long interval to short. The only difference 

comes from the length of the planning horizon which is not indicated in this table. 

However, the length of the decision interval is an important concern for the look-ahead 
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algorithm. It appears to perform better with shorter interval lengths. Shorter decision 

intervals reduce idling. The main reason for this is the way the look-ahead algorithm 

works. Since a vehicle can only make one move within a decision interval, if the decision 

interval is too long, then the vehicle stays unnecessarily idle. However, shortening 

decision interval more than enough carries the risk of making the algorithm behave 

myopically. Finally, the service ratio is higher and waiting times of lots are lower for the 

look-ahead algorithm. 

Table 4.7 Comparison of alternative workloads within equal length of planning horizon 

Length of Planning Horizon = 1000 
Number of Move Requests = 500  Number of Move Requests = 1000 
Look Ahead  Myopic  Look Ahead  Myopic 

Number of moves  554  583  968  881 
Service ratio  93.1%  88.5%  86.0%  68.1% 
Ratio of tool to tool moves  74.3%  59.5%  79.7%  59.4% 
Ratio of tool to stocker moves  13.5%  21.1%  10.4%  21.0% 
Ratio of stocker to tool moves  12.0%  19.4%  9.8%  19.6% 
Empty travel time per move  1.70  5.80  1.65  5.83 
Delivery time per move  5.77  11.76  4.54  11.76 
Average utilization of vehicles  44.7%  67.9%  87.6%  97.6% 
Average waiting time of lots  40  48  68  160 
Maximum waiting time of lots  349  391  276  543 

 

Table 4.7 summarizes results for alternative work loads within the same length of 

planning horizon. The lighter workload cases are Experiments 5, 6, 7, 23, 24, and 25. The 

heavier workload cases are Experiments 8, 9, 10, 14, 15, and 16. While the myopic 

algorithm is significantly affected by reduced quality of performance due to work load, 

the look ahead algorithm preserves a reasonable amount of performance satisfaction. The 

look ahead algorithm faces only a 7% decrease in the service ratio although the work load 



 135

is doubled. It seems that the AMHS becomes a serious bottleneck for the execution of the 

myopic algorithm by forcing almost 100% utilization of vehicles.  

Table 4.8 Comparison of alternative workloads within varying length of planning horizon 

Move Request/min = 0.5  Move Request/min = 1 
Look Ahead  Myopic  Look Ahead  Myopic 

Number of moves  412  435  758  657 
Service ratio  92.9%  88.2%  89.5%  67.5% 
Ratio of tool to tool moves  75.3%  60.3%  77.5%  59.9% 
Ratio of tool to stocker moves  13.2%  20.8%  11.8%  20.9% 
Ratio of stocker to tool moves  11.5%  18.9%  10.7%  19.2% 
Empty travel time per move  1.66  5.83  1.64  5.85 
Delivery time per move  5.81  11.82  4.69  11.82 
Average utilization of vehicles  44.1%  68.3%  71.0%  97.1% 
Average waiting time of lots  33  39  44  123 
Maximum waiting time of lots  271  297  223  408 

Table 4.8 presents similar cases to those presented in Table 4.7. These results are 

compiled by varying the planning horizon this time. The workload is represented by the 

rate of move requests. The lighter workload cases are Experiments 2, 3, 4, 5, 6, 7, 23, 24, 

and 25. The heavier workload cases are Experiments 8 to 19. The results are similar to 

the results in Table 4.7.  
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Figure 4.2 Comparison of look ahead and myopic algorithms for all experiments and 
performance measures 

Figure 4.2 depicts a comparison of the look ahead and the myopic algorithm for 

all the performance measures and for all the cases we have discussed, showing the details 

of average performance of 5 runs at each experiment. The horizontal axes contain the 

experiment numbers. The vertical axes contain the corresponding performance measures. 

The middle range of the charts represents the heavy work load experiments. The larger 

vehicle fleet size experiments are located in the right side of the charts. For all cases and 

performance measures, the look-ahead algorithm dominantly performs better. 
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4.4 CONCLUSION 
Continuous improvement in the semiconductor industry forces the actors of the 

industry and their suppliers to come up with up to date solutions for problems on 

different scales. Full automation in semiconductor production is common. However, 

nonintegrated production and material handling automation prevents decision makers in a 

fab from exploiting the overall potential of jointly optimizing the two systems. Due to 

limited information sharing between material production and material handling systems, 

most solutions for AMHS scheduling and dispatching end up being myopic to some 

degree. However, integrating the information infrastructures of production and material 

handling systems is an increasing trend in the industry. 

 In our study, we analyze the AMHS in a limited information sharing environment 

and a broader information sharing environment. We propose a myopic algorithm heuristic 

that performs in a limited information sharing environment and an optimization based 

look-ahead algorithm heuristic that performs in a broader information sharing 

environment.  

 The look-ahead algorithm dominates the myopic algorithm in all performance 

measures for every different parameter setting. This indicates the benefit of information 

sharing between production and material handling in a fab environment. Another 

important finding is that whether there is limited or abundant information sharing, using 

intermediate storage is not a vital necessity as long as one has advanced performance 

scheduling and dispatching solutions such as the ones we propose.  

The next step is to test the look-ahead algorithm in a large scale fab simulation. 

Although recent fab layouts minimize congestion and conflict due to traffic, observing 



 139

performance of the look-ahead algorithm in a simulated high traffic environment will 

help us develop conflict-free sub-routines for the algorithm to make it more realistic. 
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 Chapter 5:  Conclusion and Future Research 

Semiconductor manufacturing presents a rich potential source of research topics 

to scholars in addition to its contributions to technology and our everyday human lives. 

Industrial engineering and operations research scholars especially have performed 

invaluable studies in semiconductor manufacturing. This dissertation tries to follow in the 

footsteps of these scholars.  

The second chapter studies a preventive maintenance scheduling problem. The 

third chapter investigates the lot size management in semiconductor manufacturing. The 

fourth chapter revisits the material handling scheduling problem from the perspective of 

optimization. The overall dissertation is a wide coverage of optimization practices in 

semiconductor manufacturing. 

The traditional preventive maintenance research concentrates on the equipment 

and puts the production and factory dynamics into second plan. However, preventive 

maintenance is actually nothing less than a production unit without any output from the 

equipment’s perspective. As regular production tasks, it occupies some capacity of the 

tool for a certain amount of time. Therefore, combining preventive maintenance 

scheduling with capacity concerns has been one of the main contributions of this 

dissertation. This approach helps us maintain certain capacity levels throughout the 

planning horizon by controlling capacity loss over time. Maintaining certain capacity 

levels on the tool group helps reduce overall system variance and helps decision makers 

plan robustly. The direct optimization of the proposed mixed integer programming model 

had serious computational issues. Therefore, we proposed a tool based decomposition 
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algorithm and a heuristic algorithm. Although the tool based decomposition algorithm 

computationally has advantages and disadvantages against the direct optimization, the 

heuristic algorithm provides very quick and quality results for larger size problems. The 

granularity of the solution profiles is the main cause of large relative gaps for certain 

cases between decomposition algorithm, heuristic algorithm and direct optimization.  

Lot sizing has been one of the most discussed topics in the industry, recently. The 

lot sizing issue in semiconductor manufacturing is substantially different than traditional 

lot sizing problems. In the semiconductor industry, main issue is to determine a fixed lot 

size which is going to run through all the fab in a carrier. We proposed a stylized 

queueing model that represents production and material handling to investigate the 

behavior of cycle time for varying lot sizes under various environmental factors, such as 

technology, arrival rate, service rate and variance, analytically and numerically. The 

simplicity and the quality of the approximation of the queueing model helps us save 

enormous amount of simulation time and analyses while elaborating on lot size issues. 

Although lot size reduction has been one of the most popular practices to achieve cycle 

time gains, one of the major findings of our analysis is that smaller lot sizes do not aways 

mean lower cycle times. Technology is the main decision factor of what the lot size 

should be in a fab. In our stylized model, technology is a function of lot size which is a 

common perception in the industry. Our analysis shows that smaller lot sizes become a 

better option if there is no limit on technological advances that can be achieved in the fab. 

However, if there are too many restrictions on the technology improvement in a fab, then 

optimal lot sizes tend to be larger. Therefore, assessment of ability of technological 

improvements takes on a very important role in the lot sizing decision. Also, higher 
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variance in the system makes larger lot sizes a better option while eliminating variance 

helps move smaller lot sizes.  

Recent efforts of automating material handling and production in the 

semiconductor manufacturing have overlooked the information infrastructure of the 

automation. However, utilizing the benefits of the automation better, integration of 

production and material handling information infrastructures has started to gain some 

pace. This technological improvement in information sharing abilities has given us the 

motivation to implement optimization based solutions to AMHS scheduling and 

dispatching problems. Therefore, we developed a look-ahead algorithm that solves lot-

vehicle assignment problems periodically on a real-time basis in an information sharing 

environment between production and AMHS information infrastructures. The look-ahead 

algorithm performs dominantly better than current generic myopic approach in service 

ratio, delivery time, empty travel time and vehicle utilization. We also investigate the 

effect of usage of intermediate storages (stockers) in the fab. Regardless of the level of 

information sharing, eliminating stockers in a fab helps improve or preserve service ratio 

and vehicle utilization along with travel time and delivery time performances. Although 

the effect of stockers need deeper analysis, we conjecture that building new fabs with less 

intermediate storages has prospective benefits to the AMHS system and overall 

performance of the fab by the means of service ratio and cycle time.   

Opportunities for future research topics are numerous. Preventive maintenance 

studies are expanding and recently fall more closely under the rubric of predictive 

preventive maintenance. Small lot size manufacturing is also attracting a lot of attention 

among those in the industry. Industry actors are looking for ways to shift paradigms and 
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move to single wafer lots along with producing larger diameter wafers. Especially, plans 

about moving from 300-mm diameter wafers to 450-mm diameter wafers is not only 

going to change equipment and product technology, it will affect fab layout, automation 

efforts, production and material handling systems, production methodologies along with 

rising new problems and their solution approaches. Advances in information sharing 

bring more researchers to the area of AMHS scheduling. 

One of the important parts we left untouched in preventive maintenance 

scheduling problem is the case where capacity loss of consolidated PM tasks is calculated 

as a function of combination of PM tasks rather than linearly. In this approach, instead of 

adding up capacity losses when PM tasks are scheduled to the same time period in a tool 

group, they are consolidated such that they occupy les capacity than they would require if 

the capacity loss was calculated linearly. This is an example of consolidating PM tasks 

within the same chamber. While this approach can increase the overall processing time of 

PM tasks, it definitely provides some capacity gain compared to the case studied in this 

dissertation. Another important part this dissertation is missing is deciding the group of 

PM tasks which are going to be implemented during a planning horizon, which is 

assumed to be a given input in this dissertation. Making this input a decision leads to a 

higher level, fab-wide PM scheduling problem. Also, we need to give more special 

attention to tool based decomposition by investigating the cases it works efficiently in 

more detail to increase its performance. Advantage of very quickly solved tool problems 

is lost during the solution of master problem. However, there are signs that certain cases 

have more improvement opportunity for better tool based decomposition algorithm. Also 
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improving the efficiency of the heuristic algorithm with some optimization perspective to 

it promises an efficient modified heuristic.  

Lot sizing efforts are going to continue in the industry for longer as a part of cycle 

time improvement efforts. While our analysis is a good fit for self-manufacturing chip 

producers where lot sizes are fixed and there is little among production lines, we need to 

improve our model for to include foundry type manufacturers for a wide range analysis. 

Foundries are manufacturing oriented chip suppliers that make production to order from 

various customers. Their production lines are diverse, orders are numerous and 

specifically designed for customer. Order sizes vary significantly. Therefore, we need to 

extend our model to include varying lot sizes for alternative product types and orders. 

Also, technology parameter can be broken down to see specific effects of first wafer 

delay, setup and throughput on lot sizing decision. These extensions have potential to 

bring our model from its high level discussion to a lower level analysis where scheduling 

of lots become important.  

AMHS scheduling is getting more attention in the industry day by day. Actors of 

the industry are aware of the importance of information sharing between production and 

AMHS. Although, our look-ahead approach is a good improvement onto existing models, 

it requires improvement in the way it utilizes the existing information. The major issue is 

about the length of decision making period in which the information is used. Determining 

the length of decision periods is an important part of optimization efforts. Since current 

advances in the information sharing technology match our decision length assumptions, 

one time assignment of lots and vehicles within a decision period has been a good start to 

build a fast working optimization procedure. However, as more ahead of time 
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information becomes available, it will be important to determine the value of the 

information. The important questions are how long the decision period should be, how 

much difference it makes to use all the available information, after what point in time 

uncertainty becomes a major factor affecting our decision quality. We need to develop a 

modified assignment problem which allows more than one time assignment of lots and 

vehicles within a decision period, as the length of decision period becomes longer. Also, 

an algorithm which is able to track lot movements further than one step has a potential to 

make a positive difference for better AMHS scheduling. 

Semiconductor manufacturing is likely going to continue to be a major research 

and application area for industrial engineering and operations research scholars. The 

industry is having a big transformation in manufacturing technology and business 

models. The need for operations research in the industry has been increasing and new 

study areas within the industry are opening for interested operations research scientists 

and experts.  
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