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Abstract 

 

VISVE, a Vorticity Based Model Applied to 2-D Hydrofoils in 

Cavitating Conditions  

 

Konstantinos Iliopoulos, M.S.E. 

The University of Texas at Austin, 2020 

 

Supervisor: Spyridon A. Kinnas 

 

In this study, the VIScous Vorticity Equation (VISVE) method was applied to 

predict flow around 2-D hydrofoils in cavitating conditions. The DIVergence of velocity 

Equation (DIVE) was added to extend the method to compressible flows and coupled with 

VISVE to predict the partial cavitating flow. The flow was modeled as a homogenous 

mixture of vapor and liquid with the vapor volume fraction parameter determining their 

concentrations inside the volume and an additional transport equation for the vapor volume 

fraction to predict the partial cavitating flow around 2-D hydrofoils. The VISVE method 

was designed to be both spatially compact and numerically efficient in comparison with 

the commonly used Reynolds Averaged Navier-Stokes (RANS) models.  

Cavity shapes and pressure from the VISVE model were compared with those from 

a commercial RANS solver to assess the accuracy of the numerical results. With the 

validation of the 2-D VISVE model, VISVE shows the prospective to model the 3D wetted 

and cavitating flow. 
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Chapter 1:  Introduction 

1.1 BACKGROUND 

Over the past decades, the study of the cavitation phenomenon has become an 

integral part in the process of propeller design. Nowadays, the propeller is expected to 

operate reliably and efficiently under different conditions, including high loading and 

partial or full cavitation. At those off-design points issues of flow separation, noise, 

vibrations or even erosion arise requiring the careful study of flow around the propeller. 

Traditional potential flow methods have been successful in describing the cavitation 

phenomenon under normal operating conditions while offering a reasonable computational 

cost to accuracy solution. Their usage however is limited to certain types of cavitation and 

flow regimes. For example, at very high loading, the Boundary Element Methods (BEM) 

fail to capture flow separation which is a viscous driven phenomenon and as a result tend 

to overpredict the thrust and torque of the propellers. Additionally, BEM are designed to 

model sheet cavitation and cannot describe cloud or bubble type cavitation which may 

cause serious erosion. 

The VIScous Vorticity Equation (VISVE) model was developed to address the 

problems of BEM at the off-design points. Specifically, VISVE method, first proposed and 

implemented by Tian and Kinnas [1], managed to successfully model the complex flow 

separation. Results comparing the leading-edge vortex predicted by VISVE and Reynold 

Averaged Navier-Stokes equation RANS are shown in figure 1.1. The method has already 

been extended in the case of 3-D hydrofoils by Wu et al [2,3] and propellers by Wu and 

Kinnas [4],  as well as cylinders in unidirectional and alternating flow by Wu [5], Li and 

Kinnas [6, 7].  
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Moreover, VISVE was recently coupled with turbulence models (Open-FOAM) in 

the case of wetted flows past a 2-D hydrofoil by Hao and Kinnas [8], while Ms. You is 

currently working on embedding a turbulence model into VISVE. Additional turbulent 

results for 2-D hydrofoil as well as laminar flow results around a 3-D rectangular foil are 

presented by Wu and Kinnas in [9]. 

 

 

Figure 1.1:   Leading edge vortex predicted by VISVE and RANS from Tian [10]. 

 

1.2 MOTIVATION 

The VISVE model has been well validated in case of hydrofoils in forward and 

backing conditions, as well as in the case of turbulence flows. In the past there had been an 

attempt to include the cavitation model into the VISVE model by Xing [11] but the results 

were not satisfactory. Therefore, it is necessary to revisit the topic of cavitation and 
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improve upon the existing formulation in order to achieve a more reliable cavitation model 

for the VISVE solver. 

 

1.3 OBJECTIVES 

The objectives of this research are to apply the 2-D VISVE model to predict the 

flow around hydrofoils in cavitating conditions. Specifically, an additional equation 

governing the local expansion rate will be added, in order to address the compressible 

characteristics of the flow. The description of the homogeneous mixture of liquid and vapor 

near cavity is based on the Mixture Model which introduces the vapor volume fraction 

parameter and the accompanying vapor transport equation describing the evolution of the 

cavity in time. Cavitation models proposed by Schnerr et al [12] and Zwart et al [13] will 

be embedded in the solver. In this thesis, results from the model proposed by Zwart et al 

[13] will be presented.  

 

1.4 OVERVIEW  

This thesis is organized into five main chapters: 

Chapter 1 contains background, motivation and objectives of this research. 

Chapter 2 provides a brief literature review of vorticity methods, mixture models 

and cavitation models.  

Chapter 3 presents the detailed mathematical formulation and numerical 

implementation of the VISVE method, the mixture model, and the coupling scheme 

between them.  
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Chapter 4 represents the results for two- dimensional hydrofoils in cavitating 

conditions. The results from VISVE are compared with those from a RANS-based 

commercial CFD software. 

Chapter 5 summarizes the present work and proposes the recommendation for 

future VISVE related works.  
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Chapter 2:  Literature Review 

This chapter reviews the related literature on two topics: vortex-based methods and 

cavitation.  

2.1 VORTEX METHOD  

The vorticity formulations offer an alternate perspective when studying fluid 

phenomena, and in many cases it is advantageous to describe dynamic events in the flow 

in terms of the evolution of the vorticity field [14]. Vortex methods were initially proposed 

and developed to predict the hydrodynamic behavior of inviscid flow. The first dynamic 

vortex simulation may be traced back to 1930s [15] in the works of Rosenhead [16, 17], 

who calculated vortex sheet with the point vortex method. Numerical issues due to the 

singular behavior of the induced velocity near the point vortex led to the development of 

analytical solutions based on the Biot-Savart expression [18,19], in an effort to remove the 

singularity, and the vortex blob method [20]. During the early 1980s, the focus shifted to 

mathematical issues of the vortex methods such as their convergence properties [21, 22]. 

In the later years, the development of the vortex method has been very diverse, including 

but not limited to the generalization to viscous flow [23], the treatment of interior boundary 

conditions [24], the extension to high-Reynold number flow [25] and the improvement of 

computational efficiency [26]. Comprehensive reviews of the development of vortex 

method can be found in [15, 27]. 

In general, the vortex method is characterized by two major features. Firstly, the 

vorticity transport equation is formulated in terms of vorticity, so the computational domain 

focuses on the vorticity field instead of the velocity field. Secondly, the Biot- Savart law 
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can be applied to obtain the velocity field from the computed vorticity field. Then, the flow 

field can be completely described by tracking vorticity. 

2.1.1 Advantages of Vortex Method 

The predominant advantage of vortex method lies on the fact that compared with 

velocity, vorticity is a dimensionally compact variable. Specifically, in the case of a flow 

around a hydrofoil the vorticity is generated only at the wall, which implies that the 

vorticity is concentrated in a small area near the wall and the wake of the foil. The volume 

of fluid with a significant amount of vorticity is typically of a relatively small fraction. 

Therefore, a much smaller computational domain is required in order to describe the flow 

in terms of vorticity, which in turn improves the computational efficiency. Another 

advantage is the simplification of grid generating process. In VISVE, the computational 

grid can be generated automatically based on the discretization of the foil’s surface. In 

addition, the boundary conditions at far field can be automatically satisfied by using 

Green’s function.  

In the special case of incompressible, constant- temperature, single-phase, 2-D flow 

there is only one governing equation describing the flow field. In particular, by taking the 

curl of the Navier-Stokes equations, the two momentum equations are replaced by the 

vorticity transport equation below, with the vorticity induced velocity satisfying the 

continuity equation. 

 
𝜕𝜔

𝜕𝑡
+ 𝛻 ⋅ (𝑞 𝜔) = 𝛻(𝜈𝛻𝜔) (2.1) 

where, 𝜔 is the vorticity, 𝑞  is the velocity, 𝜈 is the kinematic viscosity, t is the time. Unlike 

velocity-pressure formulation of Navier-Stokes equation, the above equation is now only 

dependent on vorticity and velocity. This formulation enjoys the absence of the pressure 
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terms, thus pressure evaluation is not coupled with the vorticity transport equation, instead, 

it is needed only when force measurements are desired.  

 In the case of compressible 2-D flows there is an additional governing equation 

describing the local expansion and compression rate, namely the DIVergence of velocity 

Equation (DIVE).  

 
𝜕(𝛻⃗ ⋅ 𝑞 )

𝜕𝑡
+ 𝛻⃗ ⋅ (𝑞  𝛻⃗ ⋅ 𝑞 ) = 𝛻⃗ (𝜈𝛻⃗ (𝛻⃗ ⋅ 𝑞 )) − 𝛻⃗ ⋅ (

𝛻⃗ 𝑝

𝜌
) + 𝑄𝛻⃗⃗ ⋅𝑞⃗  (2.2) 

However, in the case of cavitating flows the compressible part of the flow is restricted close 

to the foil. Therefore, sources share similar attributes with vorticity in the case of cavitation. 

 

2.1.2 Disadvantages of Vortex Method  

Despite its simplicity and computational efficiency, the vortex method has not yet 

become a part of the mainstream computational tools for CFD. The main issue with VISVE 

(and DIVE) is the implementation of the inner boundary condition. Unlike RANS where 

the kinematic, no through, and viscous, no slip, boundary conditions can be expressed as 

Dirichlet boundary conditions for the momentum equations, the boundary condition for the 

vorticity is not as straightforward. In particular advancing the vorticity field to the next 

time-step using equation (2.1) does not guarantee that the vorticity induced velocity will 

be zero at the wall. The no through boundary condition can be satisfied by solving the 

corresponding BEM problem, creating a vorticity distribution on the surface of the foil. 

The issue now becomes, how this vorticity sheet enters the flow in order to satisfy the no-

slip boundary condition. Under certain assumptions a Neumann or a Dirichlet boundary 

condition for the vorticity equation can be extracted from the value of the vortex sheet 

strength at any point on the foil [24] but there is still no widely accepted mathematical 

convergence proof for these methods. Cottet [15] and Anderson [27] computed the exact 
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vorticity boundary condition from different approaches. However, the resulting equations 

are equivalent to the original set of Navier-Stokes equation and the stability of those 

numerical algorithms is still not clearly understood. 

 

2.2 CAVITATION  

From a theoretical standpoint the cavitation phenomenon describes the rapid phase 

change between liquid and vapor. The main parameter of cavitation is the saturated vapor 

pressure 𝑝𝑣 which is a function of temperature as can be seen in Figure 2.1. Specifically 

for a constant temperature mixture of liquid and vapor (in equilibrium), increasing the 

pressure over 𝑝𝑣 leads to condensation of the vapor phase, while decreasing the pressure 

below 𝑝𝑣 leads to evaporation of the liquid phase.  

 

 

Figure 2.1: Saturated vapor pressure for water [28] 
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Figure 2.1 implies that changes in temperature under constant pressure may also 

cause the transition between vapor and liquid, which in this case is known as ebullition. 

For example, at standard atmospheric pressure water boils at 100 oC. In the mathematical 

formulation of chapter 3, however, the variations in temperature will be ignored.  

In practice cavitation is a common phenomenon in hydrofoils, pipe flows, liquid 

pumps and marine propellers where there are significant pressure differentials. Depending 

on the application, cavitation can be the cause of several detrimental effects including 

structural failure, corrosion, vibration and noise radiation.  

Cavitation plays a significant role in the propeller design process and over the years 

there has been a great effort in recognizing and categorizing the different types of 

cavitation. Figure 2.2 shows the types of propeller cavitation based on their location (tip 

vortex cavitation) and their appearance (bubble cavitation). 

 

 

Figure 2.2: Types of propeller cavitation [28] 
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The focus of this thesis will be on the sheet cavitation which is defined as a thin, 

quasi-steady layer of vapor, occurring near leading edge where the pressure distribution 

has a strong adverse gradient. The cavity shape interface is partly attached to the solid 

surface, as shown in Figure 2.3.  

 

 

Figure 2.3:  Sheet cavity around hydrofoil [28] 

 

2.2.1 Cavitation Models  

Over the past years, several models have been developed in an effort to describe 

and predict the cavitation phenomenon. Potential flow models treat the cavity as additional 

thickness to the hydrofoil where the kinematic no-through boundary condition needs to be 

satisfied [29] and are best suited for sheet cavitation. Viscous models, on the other hand, 

vary depending on the application but in general are spilt into four broad categories. Based 

on the treatment of the vapor phase, there are: 
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• Discrete Bubble Models  

These models track the evolution of a finite number of small bubbles inserted inside 

the liquid [30]. They focus on the effects the surrounding liquid has on growth and 

collapse of each individual bubble, while neglecting the effect of the bubble on the 

fluid. These models are suitable in the cases when cavitation inception is of great 

concern. 

 

• Vapor Transport Models  

These models are best suited for large scale cavitation, like sheet and bubble 

cavitation. In this case the presence of the cavity directly affects the liquid phase 

with two-way interactions between the phases, governing the evaporation and 

condensation process. 

  

 In the case of two-phase cavitation, the models may also be distinguished by 

whether or not they keep track of the interphase: 

 

• Sharp Interface Tracking Models  

The distinguishing feature of these models is that the interface is not diffused by 

advection, so that a sharp interphase between the phases is maintained. Interfaces 

are modeled by adding appropriate source term at the boundary to separate the two 

phases and maintain a clear and distinct interface [31]. This kind of methods is only 

appropriate when the cavity size can be assumed to be at least larger than the cell.  
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• Homogeneous Mixture Models 

Homogeneous mixture models make no attempt to track the interface, but regard 

the multiphase flow as one phase of an averaged mixture with homogenous physical 

properties [32]. Therefore, the contents of an individual cell are considered 

uniform, which is well suited to modeling large numbers of small bubbles. 

 

2.2.2 Phase change Models  

There are three general categories of phase change models used for cavitation, 

which are the barotropic models, equilibrium models and models derived from Rayleigh-

Plesset equation.  

• Barotropic Model 

In this type of models, it is assumed that if the pressure is greater than vapor 

pressure, the fluid is occupied by liquid, otherwise, vapor.  

 𝜌 = {
𝜌𝑣 ,    𝑝 < 𝑝𝑣
𝜌𝑙   ,    𝑝 ≥ 𝑝𝑣

 (2.3) 

where, 𝜌𝑣  , 𝜌𝑙 represents the density of the vapor and liquid phase; 𝑝𝑣 is the 

saturated vapor pressure at the given operating temperature. A smoothed function 

can be applied to deal with the stability issues. The major disadvantage of this 

method is that it cannot capture the baroclinic torque, 
1

𝜌2
∇⃗⃗ ρ × ∇⃗⃗ p , due to the 

difference between the pressure and density gradients. [33] 

 

• Equilibrium Model 

This method requires the solution of the energy equation for the water phase. The 

energy absorbed and released by phase change creates local temperature gradients 

which control the rate of change phase [34]. The disadvantage is mainly due to the 
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high computational cost and the fact that local temperature gradient is not the 

dominant factor for the phase change rate.  

 

• Rayleigh- Plesset based Models 

In the past few decades, there are several phase change models developed based on 

Rayleigh-Plesset equation [35], as shown in equation (2.4): 

 𝜌𝑙 (ℜ𝐵ℜ𝐵̈ +
3

2
ℜ𝐵̇

2
) = 𝑝𝑣 − 𝑝∞ + 𝑝𝑔0 (

𝑅𝑜
ℜ𝐵
)
3𝛾

−
2𝑆

ℜ𝐵
−
4𝜇ℜ𝐵̇
ℜ𝐵

  (2.4) 

where, ℜB is the bubble radius, 𝑝∞ is the ambient pressure; 𝑝𝑔𝑜 is the initial partial 

pressure for the non-condensable gasses; 𝑅𝑜 is the initial radius of the bubbles; S is 

the surface tension. The third term on the right-hand side represents the effect of 

the non-condensable gasses. The last two terms on the right represent the effects of 

surface tension and viscosity, respectively. Different models in this category make 

different assumptions to simplify the Rayleigh-Plesset equation. The common 

aspects they share are that these models assume a bubble of saturated vapor growing 

in an infinite, viscous and incompressible medium and heat exchange is neglected. 

In this thesis, two models in this category were adopted to predict the cavitating 

flow around the two-dimensional hydrofoil. Detailed formulation of the models 

will be represented in Section 3.5. 
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Chapter 3:  The VISVE / DIVE Method 

The VIScous Vorticity Equation (VISVE), the DIVergence of velocity Equation 

(DIVE) and the homogeneous mixture model, which introduces an additional transport 

equation for the vapor volume fraction, were coupled together to predict the partial 

cavitating flow around a two-dimensional hydrofoil. The cavitation was modeled by 

Schnerr-Saucer’s [12] and Zwart-Gerber-Belamri’s [13] model. A pressure correction 

method, based on the SIMPLEC algorithm, was used to satisfy the continuity equation. 

 

3.1 GENERAL SOLVING ALGORITHM  

In this thesis, the original solving algorithm in VISVE model was modified to take 

the cavitating effects into consideration. The Divergence equation, along with vapor 

transport and continuity (in the form of pressure correction) equations were added, in order 

to model the compressible flow near the cavity. The general solving algorithm within a 

time step (𝑛) is shown in Figure 3.1, where n presents the time increment. The blue blocks 

represent the process or solver. The red blocks show the corresponding outcomes from the 

upstream process or solver.  

 At each time step there are only three variables needed in order to fully describe the 

flow. The vapor volume fraction, 𝛼, describing the cavity, is needed for the calculation of 

mixture density, 𝜌, and dynamic viscosity, 𝜇. Based on the vector field decomposition 

theorem, the velocity field can be broken down to a vorticity induce velocity field, 𝑞 𝜔 , a 

source induced velocity field, 𝑞 ∇⋅𝑞⃗  and the far field velocity 𝑞 ∞ which is constant.  
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Figure 3.1: Flowchart of the general solving algorithm within a time step (𝑛) 

There are three main parts to this algorithm: 

-  sources update, ∇ ⋅ 𝑞 𝑛−1 → ∇ ⋅ 𝑞 𝑛 

- vorticity update, 𝜔𝑛−1 → 𝜔𝑛 

- vapor volume fraction update, 𝛼𝑛−1 → 𝛼𝑛 

The first step is updating the sources, which requires solving DIVE. However, the 

divergence of velocity should also satisfy the continuity equation, which as it will be 



 16 

explained later has the evaporation rate, R(p), as a forcing term on the right-hand side and 

depends on the pressure distribution.  The DIVE and the continuity equation are solved 

using the SIMPLEC algorithm, that allows for the iterative solution of pressure coupled 

equations by applying a series of pressure corrections, 𝑝𝑐𝑜𝑟
𝑛 , to the pressure of the previous 

time step, 𝑝𝑛−1. With the updated value of ∇ ⋅ 𝑞 𝑛, the velocity field changes, which in turn 

changes the value of the explicit terms in the right-hand side of DIVE1. Therefore, it is 

important to repeat the process until the explicit terms converge.  

 The vorticity is updated by solving the VISVE, with Neumann boundary conditions 

on the foil (no flux of vorticity from the wall).  Given that the actual boundary condition 

of vorticity is not known at the foil, the resulting velocity field does not satisfy the boundary 

condition. A correction on top of 𝜔𝑛∗ is necessary to represent the vorticity creation on the 

wall and enforce the boundary conditions (both no-slip and no-penetrating) [10].  

 The outer iterations are necessary for the velocity field to converge. The vapor 

fraction needed for the calculation of the mixture properties is updated only once each time-

step [13], since the mixture properties do not vary significantly between timesteps.   

 

3.2 VELOCITY SOLVER  

The velocity field, 𝑞 , can be decomposed to a divergence free component 𝑞 𝜔, a 

rotational free component 𝑞 ∇⃗⃗ ⋅𝑞⃗  and a uniform field 𝑞 ∞.  

 𝑞 = 𝑞 𝜔 + 𝑞 𝛻⃗⃗ ⋅𝑞⃗ + 𝑞 ∞ (3.1) 

where ∇⃗⃗ ⋅ 𝑞 𝜔 = 0 and ∇⃗⃗ × 𝑞 ∇⃗⃗ ⋅𝑞⃗ = 0⃗
 . It can be shown that there is a stream function 𝜓⃗  and 

a velocity potential 𝜉, such that: 

 𝛻⃗ 𝜉 ∶= 𝑞 𝛻⋅𝑞⃗           and            𝛻⃗ × 𝜓⃗ ∶= 𝑞 𝜔 (3.2) 

 
1 The initial approximation 𝑝𝑛−1 does not change since it is the pressure of the previous time step. 
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According to the definition of vorticity 𝜔⃗⃗ ∶= ∇ × 𝑞  , we have: 

 𝛻 × (𝛻 × 𝜓⃗ ) = 𝜔⃗⃗  (3.3) 

Using the vector identity ∇⃗⃗ × (∇⃗⃗ × ψ⃗⃗ ) ≡ ∇⃗⃗ (∇⃗⃗ ⋅ 𝜓⃗ ) − ∇2𝜓⃗  and assuming two-dimensional 

flows, equation (3.3) becomes the scalar equation: 

 𝛻2𝜓 = −𝜔 (3.4) 

where we assumed that ∇⃗⃗ ⋅ 𝜓⃗ = 0, since the definition of vorticity induced velocity (3.2) 

uses only the rotational part of the stream function, and therefore it does not affect the 

velocity field. A similar equation for the velocity potential can be obtained by taking the 

divergence of velocity: 

 𝛻2𝜉 = 𝛻⃗ ⋅ 𝑞  (3.5) 

Both the vorticity, 𝜔, and the divergence of velocity, ∇⃗⃗ ⋅ 𝑞 , are treated as unknows 

in the VISVE and DIVE models. The Poisson’s equations can be solved via the Green’s 

identity for the Laplacian in free space [36] 

 𝜓(𝑥 𝑓) = ∫𝜔(𝑥)   𝐺(𝑥 , 𝑥 𝑓)𝑑𝛺 + 𝜓∞
𝛺

 (3.6) 

 𝜉(𝑥 𝑓) = ∫(𝛻 ⋅ 𝑞 (𝑥))  𝐺(𝑥 , 𝑥 𝑓)𝑑𝛺 + 𝜉∞
𝛺

 
(3.7) 

where, 𝑥 𝑓 = (𝑥𝑓 , 𝑦𝑓) is the field point and 𝑥 = (𝑥, 𝑦)  is the dummy variable running over 

the computational domain Ω. 𝐺(𝑥, 𝑥𝑓) = (ln |𝑥 − 𝑥 𝑓|)/2𝜋 is the two-dimensional Green’s 

function. 𝜓∞and 𝜉∞, are the stream function and velocity potential corresponding to the 

background flow, 𝑞 ∞ ∶= ∇⃗⃗ × 𝜓⃗ ∞ + ∇⃗⃗ 𝜉∞. 

  By taking the curl of equation (3.6) and divergence of equation (3.7), with respect 

to the field point 𝑥 𝑓 we get an expression for the total velocity field as shown in equation 

(3.8):  

 𝑞 =
1

2𝜋
∫ 𝜔 ×

𝑟 

𝑟2
+ (𝛻⃗ ⋅ 𝑞 ) 

𝑟 

𝑟2
 𝑑𝛺 + 𝑞 ∞

𝛺

 (3.8) 
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where, 𝑟 = 𝑥 − 𝑥 𝑓 = (𝑟𝑥, 𝑟𝑦). Note that since equation (3.8) does not include the effects of 

the boundary, meaning that the calculated velocity on the foil will not satisfy the boundary 

conditions there.  

Based on relation (3.8), we can define the influence coefficients for the 

computational cell a 𝛿Ω with constant vorticity (𝜔 = 1) and sources (∇ ⋅ 𝑞 = 1 ). 

Specifically, in the case of a cartesian coordinate system, the influence coefficients for the 

x and y direction are: 

 𝐼∇⋅𝑞⃗ ,𝑥 = 𝐼𝜔,𝑦 =
1

2𝜋
∫

𝑟𝑥
𝑟2
 𝑑𝛺

𝛿𝛺

 (3.9) 

 𝐼∇⋅𝑞⃗ ,𝑦 = −𝐼𝜔,𝑥 =
1

2π
∫

𝑟𝑦

r2
 dΩ

𝛿𝛺

 
(3.10) 

where 𝐼∇⋅q⃗⃗  and 𝐼𝜔  are the influence coefficient for the divergence and vorticity induced 

velocity fields respectively. Those integrals only need to be evaluated once at the pre-

processing stage to calculate the influence coefficients, which can be re-used at each time 

step.  

Discretizing the domain Ω and assuming constant vorticity and sources over each 

computational cell 𝛿Ω𝑖, the total velocity can be written as:   

 𝑞𝑗 =∑(𝐼𝜔,𝑗 𝜔 + 𝐼𝛻⋅𝑞⃗ ,𝑗 𝛻⃗ ⋅ 𝑞 )𝑖
𝑖

+ 𝑞 ∞,𝑗 (3.11) 

where the j index corresponds to either the x or y direction. Once the vorticity and 

divergence of velocity are found, the velocity induced by the vortex and source singularity 

can be uniquely obtained from relation (3.11). 

Alternatively, we could solve equations (3.4) and (3.5) using a Poisson solver (see 

section 3.10) to obtain the stream function, 𝜓,  and velocity potential, 𝜉, and then taking 

their gradients to calculate the velocity. In that case, we could specify either a Neumann or 
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a Dirichlet boundary condition for 𝜓 and 𝜉 at the wall, corresponding to the no-through 

and no-slip boundary conditions respectively.  

3.3 PRESSURE CALCULATION  

Though pressure is not a direct solution out of vorticity equation, we need pressure 

to evaluate the cavitation phenomenon, which is essentially driven by the pressure change. 

Unlike RANS, where the computational domain extends to the point where the gauge 

pressure is zero at the inflow, VISVE has a smaller domain and therefore the pressure at 

the inflow is not zero. On the other hand, the pressure correction, 𝑝𝑐𝑟 , has a zero value2 at 

the inflow, requiring a first approximation of pressure, 𝑝0, at each time step. Therefore, an 

additional pressure calculation subroutine needs to be developed.  

Starting from the momentum equation in the direction normal to the hydrofoil 

surface and assuming steady and incompressible flow, we can solve for the pressure. In 

this case we ignore the gravitational terms for simplicity. A detailed derivation of the 

formula is given in Appendix A. The result is shown in the following equation: 

 
𝜕𝑝0
𝜕𝑛

=  −𝜌
𝜕

𝜕𝑛
(
1

2
𝑞2) + 𝜌(𝑛⃗ × 𝑞 ) ⋅ 𝜔⃗⃗ − 𝜇 (𝛻⃗ × 𝜔⃗⃗ ) ⋅ 𝑛⃗  (3.12) 

where t is time, 𝑝0 is the first approximation of pressure, 𝜌 is density, 𝜇 is the dynamic 

viscosity, 𝑞  is the total velocity, 𝜔⃗⃗  is vorticity, 𝜇 is dynamic viscosity, and 𝑛⃗  is direction to 

the hydrofoil surface. This first approximation only accounts for the pressure component 

due to the convection and diffusion terms in the momentum equation. The residual viscous 

pressure terms are included in the pressure correction 𝑝𝑐𝑟. 

Since in VISVE the grid is generated normal to the hydrofoil, a line integral can be 

conducted along the direction normal to the hydrofoil from the outer boundary (𝑥𝑓) to any 

point (x) within the domain to calculate the pressure at that point. The integral paths are 

 
2 Of course, the inflow should be far enough from the foil so that the assumption, 𝑝𝑐𝑟 = 0, is valid. 
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shown as red arrowed lines in Figure 3.2. Therefore, as long as the pressure boundary 

condition is given, the pressure within the whole domain can be obtained. 

 𝑝𝑥 = 𝑝𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦(𝑥𝑓) + ∫
𝜕𝑝

𝜕𝑛
∙ 𝑑𝑛

𝑋

 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑥𝑓

 (3.13) 

where the inlet pressure at the boundary is calculated using the Bernoulli equation for 

steady, inviscid flows. 

 𝑝𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦(𝑥𝑓) = 𝑝∞ +
1

2
𝜌𝑙(𝑞∞

2 − 𝑞2(𝑥𝑓)) (3.14) 

 

 

Figure 3.2:   Pressure evaluation scheme illustration 

Given that the flow will eventually reach a steady state, the unsteady term both in 

(3.13) and (3.14) can be neglected for simplicity. Until a steady state is reached, however, 

the first approximation of pressure field might exhibit discontinuities at the trailing edge 

and the wake since the pressure at those points is calculated starting from different points 

of the inflow boundary (see Figure 3.2).  

Note that by integrating along one direction, the continuity of pressure is guaranteed 

only in the direction normal to the foil. In other words, since we do not solve a system for 

the pressure, adjacent strips might exhibit discontinuity. 
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3.4 CONTINUITY EQUATION ENFORCEMENT  

In this thesis, the cavitating flows are modeled as one homogeneous mixture of a 

liquid and a vapor phase. Each phase is described by a volume fraction parameter, 𝑎𝑖, and 

all the phases must fill up the available volume, leading to the following constraint [13]:  

 𝑎𝑣 + 𝑎𝑙 = 1 (3.15) 

Since there are only two phases, we can define 𝑎 ≔ 𝑎𝑣 as the vapor volume fraction, so 

the liquid volume fraction becomes 𝑎𝑙 = 1 − 𝑎. The density (𝜌𝑚) and dynamic viscosity 

(𝜇𝑚) of the mixture, are defined in equation (3.16) based on the homogeneous flow 

assumptions: 

 𝜌𝑚 = 𝛼𝜌𝑣 + (1 − 𝛼)𝜌𝑙  ;      𝜇𝑚 = 𝛼𝜇𝑣 + (1 − 𝛼)𝜇𝑙 (3.16) 

where 𝜌𝑣 , 𝜌𝑙 is the density of the vapor phase and the fluid phase; 𝜇𝑣, 𝜇𝑙 is the dynamic 

viscosity of the vapor phase and the fluid phase. Both phases are assumed to be 

incompressible (𝜌𝑙 , 𝜌𝑣 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) and share the same velocity field. Equation (3.17) 

represents the conservation of mass for each phase, 𝑖, [13]: 

 𝜕𝑎𝑖 𝜌𝑖
𝜕𝑡

+ 𝛻⃗ ∙ (𝑎𝑖 𝜌𝑖𝑞 ) = 𝑅𝑖 (3.17) 

where 𝜌𝑖, 𝑎𝑖 and 𝑅𝑖 , represent respectively the density, the volume fraction and the mass 

generation of phase 𝑖. We have also assumed that the mass sources, 𝑅𝑖, arise from 

interphase mass transfer and therefore satisfy the constrain [13]: 

 𝑅𝑣 + 𝑅𝑙 = 0 (3.18) 

Again, we can simplify the notation by setting 𝑅 ∶= 𝑅𝑣 and 𝑅𝑙 = −𝑅. There are a few 

different models describing the phase change rate (𝑅 = 𝑅𝑒 in case of evaporation; 𝑅 = 𝑅𝑐 

in case of condensation) two of which will be discussed in section 3.5. Notice that this 

condition implies the mass conservation of the mixture: 
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𝜕𝜌𝑚
𝜕𝑡

+ 𝛻⃗ ∙ (𝜌𝑚𝑞 ) = 0 (3.19) 

The two equations for the conservation of mass, (3.17), are equivalent to the following 

system: 

 
𝜕𝛼

𝜕𝑡
+ 𝛻⃗ ∙ (𝛼 𝑞 ) =

𝑅

𝜌𝑣
 (3.20) 

 𝛻⃗ ⋅ 𝑞 = 𝑅 (
1

𝜌𝑣
−
1

𝜌𝑙
) (3.21) 

The first equation is the mass conservation for the vapor and by subtracting with the second 

one we get the mass conservation for the liquid. Equation (3.20) is the vapor transport 

equation, while equation (3.21) models the “compressibility” of the mixture due to the 

generation and collapse of cavity bubbles and will be called as continuity equation in the 

rest of the literature. The boundary conditions for equation (3.20) are: 

 
Vapor transport equation:   {

𝑤𝑎𝑙𝑙    ∶                  −                        
𝑖𝑛𝑓𝑙𝑜𝑤:   𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 𝑏. 𝑐.  (𝑎 = 0)

𝑜𝑢𝑡𝑓𝑙𝑜𝑤:𝑁𝑒𝑢𝑚𝑎𝑛𝑛 𝑏. 𝑐. (
𝜕𝑎

𝜕𝑛
= 0)

  (3.22) 

Notice that there is no need for a wall boundary condition for the vapor transport 

since it a first order differential equation in space. Specifically, the vapor flux, 𝑎 ⋅ 𝑞 , on the 

wall is zero due to the no through boundary condition. 

 Given a characteristic length L, and velocity U, equation (3.20) can be brought to 

the following non-dimensional form: 

 
𝜕𝛼

𝜕𝑡∗
+ 𝛻⃗ ∗ ∙ (𝛼 𝑞 ∗) = 𝑅∗ (3.23) 

where 𝑡∗ ≔ 𝑡
𝑈

𝐿
, 𝑞 ∗ =

𝑞⃗ 

𝑈
 , ∇⃗⃗ ∗ ⋅  ≔ 𝐿 ∇ ⋅ and 𝑅∗ ∶=

𝑅 𝑈

𝜌𝑣 𝐿
 . Therefore, the empirical coefficients 

involved in R should change depending on the characteristic time scale 𝑇 ≔ 𝐿/𝑈 of the 

problem. These non-dimensional parameters are the same for the continuity equation 

(3.21). 
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3.5 PHASE CHANGE MODELS  

The phase change rate (R) has been involved in both the continuity equation and 

the vapor transport equation. There are several broad categories of models to evaluate these 

source terms as discussed in Section 2.2.2. The predominant approaches are based on the 

simplified form Rayleigh-Plesset equation [12, 13] to formulate the simple rational 

expression. The general form of Rayleigh-Plesset equation has been presented in equation 

(2.4), which is too complicated to be applied to any multiphase cavitation model. Here, 

several assumptions need to be made to simplify the equation: 

- There are plenty of nuclei for the inception of cavitation, so the term related to 

initial stage can be ignored. 

- The surface tension force can be neglected. 

- Only first-order terms are considered significant.  

Then the Rayleigh-Plesset equation can be reduced to: 

 𝑑ℜ𝐵
𝑑𝑡

= √
2

3

(𝑃𝑣 − 𝑃∞)

𝜌𝑙
   (3.24) 

The above equation provides a feasible and physical approach to introduce the 

bubble dynamics into the cavitation models. In our work, we applied the model proposed 

by Schnerr and Sauer [12] and the model by Zwart- Gerber- Belamri [13]. Results from the 

model proposed by Zwart- Gerber- Belamri [13] will be presented in this thesis.  

 

3.5.1 Schnerr and Sauer’s Model  

Starting from the mass conservation for the mixture (3.19) in its convective form 

and substituting equation (3.16), we get: 

 𝛻⃗ ⋅ 𝑞 = −
1

𝜌𝑚
 (
𝑑𝜌𝑚
𝑑𝑡

) =
𝜌𝑙 − 𝜌𝑣
𝜌𝑚

 (
𝑑𝑎

𝑑𝑡
)  (3.25) 
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Comparing equation (3.25) to the continuity equation (3.21) we get an expression 

for the net phase change rate [12]: 

 𝑅 =
𝜌𝑣𝜌𝑙
𝜌𝑚

 (
𝑑𝛼

𝑑𝑡
)  (3.26) 

and then the vapor volume fraction is defined as the ratio of the volume of vapor over the 

cell volume and then reformulated:  

 
𝛼 ∶=

𝑉𝑣𝑎𝑝𝑜𝑟

𝑉𝑐𝑒𝑙𝑙
= 
𝑁𝑏𝑢𝑏𝑏𝑙𝑒𝑠 ∙

4
3 𝜋ℜ𝐵

3

𝑉𝑣𝑎𝑝𝑜𝑟 + 𝑉𝑙𝑖𝑞𝑢𝑖𝑑
=

𝑛0𝑉𝑙𝑖𝑞𝑢𝑖𝑑 ∙
4
3 𝜋ℜ𝐵

3

𝑛0𝑉𝑙𝑖𝑞𝑢𝑖𝑑 ∙
4
3 𝜋ℜ𝐵

3 + 𝑉𝑙𝑖𝑞𝑢𝑖𝑑

 (3.27) 

where 𝑉𝑣𝑎𝑝𝑜𝑟,  𝑉𝑙𝑖𝑞𝑢𝑖𝑑, 𝑉𝑐𝑒𝑙𝑙 represent the volume of vapor, liquid, and cell respectively; ℜ𝐵 

is the radius of the vapor bubble; 𝑛0 ∶= Nbubbles /𝑉𝑙𝑖𝑞𝑢𝑖𝑑 is the bubble concentration per 

unit volume of pure liquid and is set to be 1013(𝑚−3) [12]. Taking the time derivative of 

relation (3.27) we get: 

 

𝑑𝑎

𝑑𝑡
= [1 −

𝑉𝑣𝑎𝑝𝑜𝑟

𝑉𝑐𝑒𝑙𝑙
]
1

𝑉𝑐𝑒𝑙𝑙
 
𝑑

𝑑𝑡
(𝑉𝑣𝑎𝑝𝑜𝑟) = (1 − 𝑎)𝑎

3

ℜ𝐵

𝑑ℜ𝐵
𝑑𝑡

 (3.28) 

Combining equations (3.26) and (3.28), the evaporation and condensation phase change 

rate is then modeled from Rayleigh-Plesset equation as follows: 

 𝑅𝑒 = 
𝜌𝑙𝜌𝑣
𝜌𝑚

𝛼(1 − 𝛼)
3

ℜ𝐵
√
2

3

(𝑝𝑉 − 𝑝)

𝜌𝑙
, 𝑤ℎ𝑒𝑛 𝑝 < 𝑝𝑉 (3.29) 

 𝑅𝐶 = 
𝜌𝑙𝜌𝑣
𝜌𝑚

𝛼(1 − 𝛼)
3

ℜ𝐵
√
2

3

(𝑝 − 𝑝𝑉)

𝜌𝑙
, 𝑤ℎ𝑒𝑛 𝑝 > 𝑝𝑉 (3.30) 

Notice that in the case of 𝑎 = 1  and 𝑎 = 0, there is neither evaporation nor 

condensation, therefore this model implies the presence of dissolved gases or dispersed 

vapor in the fluid. Moreover, it is possible to determine the bubble radius, ℜ𝐵, based on 

the bubble density, 𝑛0: 

 ℜ𝐵 = (
𝛼

1 − 𝛼

3

4𝜋

1

𝑛0
)

1
3

 (3.31) 



 25 

For different length, 𝐿, and velocity, 𝑈, scales, the bubble radius and therefore the bubble 

density should be adjusted in order to obtain a similar cavity, assuming of course similar 

cavitation and Reynolds numbers.  

 

3.5.2 Zwart- Gerber- Belamri’s Model  

This model assumes constant bubble radius implying a fixed cell volume (𝑉𝑐𝑒𝑙𝑙 =

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) and proposes that the total interphase mass transfer rate, R, can be calculated 

using the bubble density number, 𝑛 ∶= Nbubbles /𝑉𝑐𝑒𝑙𝑙 and the mass change rate of a single 

bubble [13]. 

 𝑅 =
𝑑

𝑑𝑡
(𝜌𝑣

𝑉𝑣𝑎𝑝𝑜𝑟

𝑉𝑐𝑒𝑙𝑙
) = 𝜌𝑣 ⋅

𝑑

𝑑𝑡
(𝑛
4

3
𝜋ℜ𝐵

3) =
3𝛼𝜌𝑣
ℜ𝐵

𝑑ℜ𝐵
𝑑𝑡

 (3.32) 

where the vapor volume fraction, α, can be related to the bubble number density, n and 

bubble radius, ℜ𝐵, as  

 𝛼 = 𝑛 (
4

3
𝜋ℜ𝐵

3) (3.33) 

Substituting the Rayleigh-Plesset equation into (3.32), we can obtain the expression of the 

mass transfer rate as: 

 𝑅 =
3𝛼𝜌𝑣
ℜ𝐵

√
2

3

𝑝𝑉 − 𝑝

𝜌𝑣
  (3.34) 

The Rayleigh-Plesset equation and therefore equation (3.34) is derived for 

evaporation process. To generalize it to both evaporation and condensation process, several 

empirical coefficients are introduced, which yield:  

 𝑅𝑒 =  𝐹𝑒𝑣𝑎𝑝
3𝛼𝑛𝑢𝑐(1 − 𝛼)𝜌𝑣

ℜ𝐵
√
2

3

(𝑝𝑉 − 𝑝)

𝜌𝑙
 (3.35) 

 𝑅𝐶 = 𝐹𝑐𝑜𝑛𝑑
3𝛼𝜌𝑣
ℜ𝐵

√
2

3

(𝑝 − 𝑝𝑉)

𝜌𝑙
 (3.36) 
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In the above equations, 𝛼𝑛𝑢𝑐 is the nucleation site volume fraction, 𝐹𝑒𝑣𝑎𝑝 and 𝐹𝑐𝑜𝑛𝑑 are two 

empirical calibration coefficients for the evaporation and condensation process, 

respectively. The default value for those parameters are 𝛼𝑛𝑢𝑐 = 5.0 × 10−4, ℜ𝐵 =

1.0 × 10−6𝑚 ,  𝐹𝑒𝑣𝑎𝑝 = 50,   𝐹𝑐𝑜𝑛𝑑 = 0.01.  

For different length, 𝐿, and velocity, 𝑈, scales, the bubble radius should be adjusted 

in order to obtain a similar cavity, assuming of course similar cavitation and Reynolds 

numbers.  

 

3.6 DIVERGENCE EQUATION 

In order to present the 2-D divergence equation, we have to start from the Navier 

Stokes equations:  

 𝜌
𝜕𝑞 

𝜕𝑡
+ 𝜌(𝑞 ⋅ 𝛻⃗ )𝑞 = −𝛻𝑝 + 𝛻 ⋅ 𝑇̿ (3.37) 

The pressure is split into two components: 

𝑝 = 𝑝0 + 𝑝𝑐𝑜𝑟 (3.38) 

where 𝑝0 is the first approximation of the pressure given by relation (3.12), that takes only 

the wetted-flow terms into consideration and 𝑝𝑐𝑟 is the pressure correction term resulting 

from the pressure correction method, which will be discussed in the next section. By 

definition 

 −𝛻⃗ ⋅ (
𝛻⃗⃗ 𝑝0

𝜌
) ∶= 𝛻⃗ ⋅ ((𝑞 ⋅ 𝛻⃗ )𝑞 + 𝜈𝑚𝛻⃗ × 𝜔⃗⃗ )  (3.39) 

Taking the divergence of relation (3.37) we obtain the divergence equation: 

 𝜕(𝛻⃗ ⋅ 𝑞 )

𝜕𝑡
= 𝛻⃗ ⋅ [𝜈𝑚𝛻⃗ (𝛻 ⋅ 𝑞 )] + 𝑃𝑐𝑜𝑟,𝛻⃗⃗ ⋅𝑞⃗ + 𝑄𝛻⃗⃗ ⋅𝑞⃗  

(3.40) 

Where 
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𝑃𝑐𝑜𝑟,𝛻⃗⃗ ⋅𝑞⃗ ∶= −𝛻⃗ ⋅ (
𝛻⃗ 𝑝𝑐𝑜𝑟
𝜌

) (3.41) 

𝑄∇⋅𝑞⃗ ≔ ∇⃗⃗ ⋅ (
1

ρ
𝛻⃗ ⋅ 𝑇̿) − ∇⃗⃗ ⋅ (𝜈𝑚∇⃗⃗ (∇⃗⃗ ⋅ 𝑞 )) = 

          =   (
∇⃗⃗ μ

 ρ
) ⋅ ∇⃗⃗ (∇⃗⃗ ⋅ 𝑞 ) − (∇⃗⃗ 𝜈𝑚 + 

∇⃗⃗ μ

 ρ
) × ∇⃗⃗ 𝜔  

            + [(
μ𝑦

𝜌
)
𝑥

+ (
μ𝑥
𝜌
)
𝑦

] (𝑣𝑥 + 𝑢𝑦) + [(
μ𝑥
𝜌
)
𝑥

− (
μ𝑦

𝜌
)
𝑦

] (𝑢𝑥 − 𝑣𝑦) 

 

 

 

 

     

(3.42) 

are the pressure sources and residual viscous terms respecitively, for the divergence 

equation in a cartesian coordinate system; 𝜈𝑚 ≔
𝜇

𝜌
 is the molecular kinematic viscosity of 

the mixture3; 𝑢 is the velocity component in the x-direction and 𝑣 is the velocity component 

in the y-direction. The subscripts of x and y indicate partial derivative in the x and y 

direction, respectively. Notice that  𝑄∇⃗⃗ ⋅𝑞⃗ = 0, in the case of constant density and dynamic 

viscosity. The analytic derivation of relation      (3.42) is shown in appendix B.  

 In equation (3.40) the term ∇⃗⃗ ⋅ 𝑞   is treated as an unknow which should also satisfy 

the continuity equation (3.21). The two equations are solved iteratively, using the 

SIMPLEC algorithm [37], until convergence. The first approximation of pressure, 𝑝0, is 

then updated based on the updated velocity field (outer iterations) and the process starts 

over. An alternative formulation for the divergence equation is presented in appendix C.  

 

The boundary conditions for equations (3.40) are: 

  

 
Divergence equation:  

{
 
 

 
 𝑤𝑎𝑙𝑙 ∶ 𝑁𝑒𝑢𝑚𝑎𝑛𝑛 𝑏. 𝑐. (

𝜕𝛻⋅𝑞⃗ 

𝜕𝑛
= 0)

𝑖𝑛𝑓𝑙𝑜𝑤:𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 𝑏. 𝑐.  (𝛻 ⋅ 𝑞 = 0)

𝑜𝑢𝑡𝑓𝑙𝑜𝑤:𝑁𝑒𝑢𝑚𝑎𝑛𝑛 𝑏. 𝑐. (
𝜕𝛻⋅𝑞⃗ 

𝜕𝑛
= 0)

  (3.43) 

 
3 The subscript m for 𝜈𝑚 was used to differentiate the viscosity from the y-component of velocity 𝑣 
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The computational domain over which the DIVE is solved can be much smaller 

than the VISVE domain, as long as it includes the cavity. For simplicity we solve DIVE 

over the whole domain with the same boundary conditions as VISVE. The boundary 

condition at the wall on the is not known, so we assume it to be Neumann boundary 

condition. We only require that the total velocity, 𝑞 , is zero at the wall, which we 

accomplish by the vorticity creation algorithm. 

 

 

3.7 PRESSURE CORRECTION EQUATION SOLVER  

3.7.1 Mathematical Formulation 

The divergence equation (3.40) can be written in the following matrix form where 

the unknowns are kept on the left-hand side and the forcing terms on the right-hand side: 

 𝐴𝐷(∇⃗⃗ ⋅ 𝑞 ) + 𝐴𝑂𝐷(∇⃗⃗ ⋅ 𝑞 ) =  −∇⃗⃗ ⋅ (
∇⃗⃗ 𝑝𝑐𝑜𝑟
𝜌

) + 𝑄∇⃗⃗ ⋅𝑞⃗  (3.44) 

where 𝐴 = 𝐴𝐷 + 𝐴𝑂𝐷 is the coefficient matrix of the divergence equation, with 𝐴𝐷 being 

the matrix with the diagonal elements of 𝐴 and 𝐴𝑂𝐷 the matrix with the off-diagonal 

elements. Given that the divergence equation is solved iteratively, after m iterations we 

have the values (∇⃗⃗ ⋅ 𝑞 )
𝑚

, 𝑝𝑐𝑜𝑟
𝑚 . If the current timestep is n then, for m=0, (∇⃗⃗ ⋅ 𝑞 )

𝑚
=(∇⃗⃗ ⋅ 𝑞 )

𝑛
 

and for 𝑚 → ∞,  (∇⃗⃗ ⋅ 𝑞 )
𝑚
→ (∇⃗⃗ ⋅ 𝑞 )

𝑛+1
. Note that during those 𝑚 iterations, the values of 

𝑝0 and 𝑄∇⃗⃗ ⋅q⃗⃗  have not changed. 

Given the pressure correction, 𝑝𝑐𝑜𝑟
𝑚−1 at iteration 𝑚− 1, (∇⃗⃗ ⋅ 𝑞)

𝑚−1
 can be calculated from 

the divergence equation as: 

 𝐴𝐷(∇⃗⃗ ⋅ 𝑞 )
𝑚−1

+ 𝐴𝑂𝐷(∇⃗⃗ ⋅ 𝑞 )
𝑚−1

= −∇⃗⃗ ⋅ (
∇⃗⃗ 𝑝𝑐𝑜𝑟

𝑚−1

𝜌
) + 𝑄∇⃗⃗ ⋅𝑞⃗  (3.45) 
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The corresponding equation for iteration 𝑚, is: 

 𝐴𝐷(∇⃗⃗ ⋅ 𝑞 )
𝑚
+ 𝐴𝑂𝐷(∇⃗⃗ ⋅ 𝑞 )

𝑚
= −∇⃗⃗ ⋅ (

∇⃗⃗ 𝑝𝑐𝑜𝑟
𝑚

𝜌
) + 𝑄∇⃗⃗ ⋅𝑞⃗  (3.46) 

where the divergence satisfies the continuity equation, (∇⃗⃗ ⋅ 𝑞 )
𝑚
= (

1

𝜌𝑣
−

1

𝜌𝑙
) 𝑅(𝑝𝑚) and 

the value of pressure, 𝑝𝑚and therefore the value of 𝑝𝑐𝑜𝑟
𝑚  is to be determined. In the case of 

the SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm, the off-

diagonal terms in equation (3.52) are approximated using the values of the previous 

iteration. 

 𝐴𝑂𝐷(∇⃗⃗ ⋅ 𝑞 )
𝑚
≈ 𝐴𝑂𝐷(∇⃗⃗ ⋅ 𝑞 )

𝑚−1
 (3.47) 

while in the case of SIMPLEC (Semi-Implicit Method for Pressure Linked Equations 

Corrected) algorithm, the following linear approximation is used, for the coefficients of the 

i-th equation: 

 (∇⃗⃗ ⋅ 𝑞 )
𝑖

𝑚
∑𝐴𝑂𝐷,𝑘
𝑘

≈∑𝐴𝑂𝐷,𝑘(∇⃗⃗ ⋅ 𝑞 )𝑘
𝑚

𝑘

 (3.48) 

Subtracting equations (3.45) and (3.46) we obtain: 

  𝐴̃𝐷(∇⃗⃗ ⋅ 𝑞 )
𝑚
+ ∇⃗⃗ ⋅ (

∇⃗⃗ 𝑝𝑚

𝜌
) = 𝐴̃𝐷(∇⃗⃗ ⋅ 𝑞 )

𝑚−1
 + ∇⃗⃗ ⋅ (

∇⃗⃗ 𝑝𝑚−1

𝜌
) (3.49) 

where 𝐴̃𝐷 is a diagonal matrix with the i-th element being 𝐴̃𝐷,𝑖 ∶= 𝐴𝐷,𝑖 for the SIMPLE 

method and 𝐴̃𝐷,𝑖 ∶= 𝐴𝐷,𝑖 + ∑ 𝐴𝑂𝐷,𝑘𝑘  for the SIMPLEC method. Notice that since 𝑝0 does 

not change between iterations 𝑚 − 1  and 𝑚, equation (3.49) uses the total pressure, 𝑝, 

instead of the pressure correction.  

Both cavitation models described in section 3.5 use the Rayleigh-Plesset equation 

and as a result the phase change rate is proportional to the square root of pressure 

(𝑅~√|𝑝 − 𝑝𝑣|) . Therefore, the continuity equation at the m-th iteration can be written as: 

 (∇⃗⃗ ⋅ 𝑞 )
𝑚
= (

1

𝜌𝑣
−
1

𝜌𝑙
)𝑅 = 𝐶 √|𝑝𝑚 − 𝑝𝑣| (3.50) 
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where 𝐶 ≔ (
1

𝜌𝑣
−

1

𝜌𝑙
)

𝑅

√|𝑝−𝑝𝑣|
  is the proportionality constant which depends on the vapor 

volume fraction and the cavitation model being used. Note, that the 𝐶 coefficient has a 

discontinuity at 𝑝 = 𝑝𝑣, due to the fact the cavitation models have different coefficients for 

evaporation and condensation. 

 Substituting equation (3.50) into equation (3.49) we obtain the pressure correction 

equation. 

 ∇⃗⃗ ⋅ (
∇⃗⃗ 𝑝𝑚

𝜌
) + 𝐴̃𝐷𝐶

𝑚 √|𝑝𝑚 − 𝑝𝑣| = 𝐴̃𝐷(∇⃗⃗ ⋅ 𝑞 )
𝑚−1

+ ∇⃗⃗ ⋅ (
∇⃗⃗ 𝑝𝑚−1

𝜌
) (3.51) 

 When equation (3.51) converges, we get back the continuity equation (3.21). Notice 

that at points where ∇⃗⃗ ⋅ 𝑞 ≠ 0 ⇒ 𝑝 ≠ 𝑝𝑣. Therefore, the pressure underneath the cavity is 

not necessarily equal to vapor pressure. However, the greater the value of the phase change 

rate coefficient, 𝐶, is, the closer the value of 𝑝 is to 𝑝𝑣. When calculating the pressure 

coefficient at chapter 4, we force the condition 𝑝 ≥ 𝑝𝑣, which in turn results in a constant 

pressure coefficient underneath the cavity. 

3.7.2 Linearization of Pressure Correction Equation 

 

The pressure correction equation as described above is a non-linear equation due to 

the square root. Linearizing the equation using Newton’s approximation for the p variable, 

√𝑥 ≈ √𝑥0 +
𝑑𝑥

2√𝑥0
, inhibits the convergence due to the overshooting of the solution when 

𝑝 → 𝑝𝑣. We can eliminate the square root by solving for q (not the velocity 𝑞 ) which is 

defined as: 

 𝑞 ∶= √|𝑝 − 𝑝𝑣|      ⇒      𝑝 = 𝑝𝑣 − 𝑠𝑖𝑔𝑛(𝐶) 𝑞
2 (3.52) 

 

with 𝑠𝑖𝑔𝑛(𝐶) = 𝑠𝑖𝑔𝑛(∇⃗⃗ ⋅ 𝑞 ) = −𝑠𝑖𝑔𝑛(𝑝 − 𝑝𝑣). The pressure term in the pressure 

correction equation (3.51), can therefore be expressed as: 
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  ∇⃗⃗ ⋅ (𝜌−1∇⃗⃗ 𝑝) = −𝑠𝑖𝑔𝑛(𝐶)∇⃗⃗ ⋅ (2𝑞 𝜌−1∇⃗⃗ q)  ,      ( 𝑞 ≠ 0 ) (3.53) 

The above relation is true for all the values of q except q=0. Note that for any given 𝑝, the 

value of 𝑠𝑖𝑔𝑛(𝐶) is constant and therefore it comes out of the derivatives. Relation (3.53) 

implies that the grid is fine enough, so that all the points in the computational 

molecule/stencil have the same value for 𝑠𝑖𝑔𝑛(𝐶). Using a backwards difference method, 

the derivative in the x-direction can be expressed as: 

(
𝜕𝑝

𝜕𝑥
)
𝑖
≈ −𝑠𝑖𝑔𝑛(𝐶𝑖)2𝑞̅

𝑞𝑖 − 𝑞𝑖−1
𝑥𝑖 − 𝑥𝑖−1

− [𝑠𝑖𝑔𝑛(𝐶𝑖) − 𝑠𝑖𝑔𝑛(𝐶𝑖−1)]
|𝑝𝑖−1 − 𝑝𝑣|

𝑥𝑖 − 𝑥𝑖−1
 (3.54) 

where the index, i, indicates the values at centroid i and  𝑞̅ ≔ (𝑞𝑖 + 𝑞𝑖−1) 2⁄ . In the regions 

where the pressure is close to the vapor pressure (𝑝 ≈ 𝑝𝑣), it is possible to have 𝑠𝑖𝑔𝑛(𝐶𝑖) =

−𝑠𝑖𝑔𝑛(𝐶𝑖−1).In that case there is 𝑥0 ∈ (𝑥𝑖−1, 𝑥𝑖)  such that 𝑝(𝑥0) = 𝑝𝑣 and for 𝑥𝑖−1 < 𝑥0: 

|
𝑝𝑖−1 − 𝑝𝑣
𝑥𝑖 − 𝑥𝑖−1

| ≤ 𝛽 |
𝑝𝑣 − 𝑝𝑖−1
𝑥0 − 𝑥𝑖−1

| ≤ 𝛾 |(
𝜕𝑝

𝜕𝑥
)
𝑥0
−
| (3.55) 

where 𝛽 and 𝛾 are constants.  Therefore, the error due to the discontinuity of pressure is 

bounded by the local pressure gradient at the edge of the cavity. The pressure inside the 

cavity is constant and therefore 
𝜕𝑝

𝜕𝑥
= 0. Assuming that the pressure distribution has a 

continuous pressure gradient, then for a fine enough discretization the points outside of the 

cavity will have a very small pressure gradient (
𝜕𝑝

𝜕𝑥
→ 0) which minimizes the error in 

equation (3.54). Using relation (3.52), the pressure correction equation (3.51) becomes: 

−𝑠𝑖𝑔𝑛(𝐶𝑚−1) ∇⃗⃗ ⋅ (
2𝑞𝑚−1∇⃗⃗ 𝛿𝑞𝑚

𝜌
) + 𝐴̃𝐷𝐶

𝑚−1𝛿𝑞𝑚 = 𝐴̃𝐷  [(∇⃗⃗ ⋅ 𝑞 )
𝑚−1

− 𝐶𝑚−1𝑞𝑚−1] 

 

(3.56) 

where  𝛿𝑞𝑚 ∶= 𝑞𝑚 − 𝑞𝑚−1 = √|𝑝𝑚 − 𝑝𝑣| − √|𝑝𝑚−1 − 𝑝𝑣| and the non-linear terms are 

kept at the previous iteration, including the cavitation coefficient, 𝐶𝑚 = 𝐶𝑚−1. 

The boundary value of 𝑞 on the wall depends on the boundary value of the pressure 

there, which is unknown, so we assume that 𝜕𝛿𝑞/𝜕𝑛 = 0 on the wall. Far away from the 

cavity the pressure correction should have a very small value, so we can impose either a 

Neumann or Dirichlet b.c. 
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Pressure Correction eqn:   

{
 

 𝑤𝑎𝑙𝑙 ∶   𝑁𝑒𝑢𝑚𝑎𝑛𝑛 𝑏. 𝑐. (
𝜕𝛿𝑞

𝜕𝑛
= 0)  

𝑖𝑛𝑓𝑙𝑜𝑤:   𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 𝑏. 𝑐.  (𝛿𝑞 = 0)

𝑜𝑢𝑡𝑓𝑙𝑜𝑤:𝑁𝑒𝑢𝑚𝑎𝑛𝑛 𝑏. 𝑐. (
𝜕𝛿𝑞

𝜕𝑛
= 0)

 (3.57) 

Equation (3.56) is an elliptic type equation, which can be solved using the ADI 

method. Specifically, instead of solving (3.56) directly, we try to find the steady state 

solution to the following unsteady problem: 

𝜕𝛿𝑞𝑚

𝜕𝑡
+ 𝐴̃𝐷|𝐶

𝑚−1|𝛿𝑞𝑚 − ∇⃗⃗ ⋅ (
2𝑞𝑚−1∇⃗⃗ 𝛿𝑞𝑚

𝜌
) = 𝑠𝑖𝑔𝑛(𝐶𝑚−1) 𝐴̃𝐷  [(∇⃗⃗ ⋅ 𝑞 )

𝑚−1
− 𝐶𝑚−1𝑞𝑚−1] (3.58) 

  

3.8 2-D VISCOUS VORTICITY EQUATION SOLVER  

In order to present the 2-D viscous vorticity equation, we have to start from the 

Navier Stokes equations, as shown in equation (3.37).  

 𝜌
𝜕𝑞 

𝜕𝑡
+ 𝜌(𝑞 ⋅ 𝛻⃗ )𝑞 = −𝛻⃗ 𝑝 + 𝛻⃗ ⋅ 𝑇̿ (3.59) 

where, 𝜌 is the density of the fluid, p is the mean pressure, and 𝑇̿ is the viscous stress tensor. 

Using equation (A.4), equation (3.59) can be written as: 

 𝜕𝑞 

𝜕𝑡
+ 𝛻⃗ (

1

2
𝑞2) − 𝑞 × 𝜔⃗⃗ = −

𝛻⃗ 𝑝

𝜌
+
1

ρ
𝛻⃗ ⋅ 𝑇̿ (3.60) 

Taking the curl on both sides and using identities (D.4) and (D.5), results in the general 

form of the vorticity equation: 

 𝜕𝜔⃗⃗ 

𝜕𝑡
+ ∇⃗⃗ ⋅ (𝑞 ⨂𝜔⃗⃗ ) − (𝜔⃗⃗ ⋅ ∇⃗⃗ )𝑞 =

∇⃗⃗ 𝜌 × 𝛻⃗ 𝑝

𝜌2
+ ∇⃗⃗ × (

1

ρ
𝛻⃗ ⋅ 𝑇̿) (3.61) 

where starting from the left most term we have the unsteady term, vorticity convection4, 

vortex stretching, baroclinic torque and viscous torque. In this thesis, only two-dimensional 

 
4 The convection term contains the tensor product of velocity and vorticity 𝑞 ⨂𝜔⃗⃗ = 𝑞𝑗  𝜔𝑖 defined in (D.4). 
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flows are studied, where vorticity can be treated as a scalar and the vortex stretching term 

becomes zero.  Then the 2-D viscous vorticity equation can be written as: 

𝜕𝜔

𝜕𝑡
+ ∇⃗⃗ ⋅ (𝑞  𝜔) = ∇⃗⃗ ⋅ (𝜈𝑚∇⃗⃗ 𝜔) + 𝑃𝜔 + 𝑄𝜔 (3.62) 

Where    

𝑃𝜔 ∶=
∇⃗⃗ 𝜌×𝛻⃗⃗ 𝑝

𝜌2
   (3.63) 

𝑄𝜔 ≔ ∇⃗⃗ × (
1

ρ
𝛻⃗ ⋅ 𝑇̿) − ∇⃗⃗ ⋅ (𝜈𝑚∇⃗⃗ 𝜔) = 

        =   (∇⃗⃗ 𝜈𝑚 + 
∇⃗⃗ μ

 ρ
) × ∇⃗⃗ (∇⃗⃗ ⋅ 𝑞 ) + (

∇⃗⃗ μ

 ρ
) ⋅ ∇⃗⃗ 𝜔  

      + [(
μ𝑦

𝜌
)
𝑥

+ (
μ𝑥
𝜌
)
𝑦

] (𝑣y − 𝑢𝑥) + [(
μ𝑥
𝜌
)
𝑥

− (
μ𝑦

𝜌
)
𝑦

] (𝑣𝑥 + 𝑢𝑦) 

(3.64) 

are the baroclinic torque and residual viscous terms respectively, for the vorticity equation 

in a cartesian coordinate system; 𝜈𝑚 ≔
𝜇

𝜌
 is the molecular kinematic viscosity of the 

mixture5; 𝑢 is the velocity component in the x-direction and 𝑣 is the velocity component in 

the y-direction. The subscripts of x and y indicate partial derivative in the x and y direction, 

respectively. Notice that  𝑄𝜔 = 0, in the case of constant density and dynamic viscosity. 

The analytic derivation of relation (3.44) is shown in appendix B. An alternative method 

for calculating the residual viscous terms using the hydrofoil assumption cab be found in 

[38]. 

 

 The boundary conditions for equations (3.62) are: 

 

Vorticity transport equation:  

{
 

 𝑤𝑎𝑙𝑙 ∶ 𝑁𝑒𝑢𝑚𝑎𝑛𝑛 𝑏. 𝑐. (
𝜕𝜔

𝜕𝑛
= 0)

𝑖𝑛𝑓𝑙𝑜𝑤:𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 𝑏. 𝑐.  (𝜔 = 0)

𝑜𝑢𝑡𝑓𝑙𝑜𝑤:𝑁𝑒𝑢𝑚𝑎𝑛𝑛 𝑏. 𝑐. (
𝜕𝜔

𝜕𝑛
= 0)

  (3.65) 

 
 5 The subscript m for 𝜈𝑚 was used to differentiate the viscosity from the y-component of velocity 𝑣 
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The inflow boundary condition assumes that there is no vorticity entering the 

domain and any vorticity created in the wall exits the domain through the outflow. The 

boundary condition at the wall on the other hand is not known, so we assume it to be 

Neumann (no vorticity flux from the wall). We only require that the total velocity, 𝑞 , is 

zero at the wall, which we accomplish by the vorticity creation algorithm. 

 

3.9 WALL BOUNDARY CONDITIONS  

The scheme to deal with the solid boundary conditions is shown in Figures 3.3. 

After solving the DIVE and the VISVE, we obtain a divergence of velocity and a vorticity 

field. However, velocities calculated from vorticity and sources using relation (3.8) may 

not satisfy the no-through and no-slip boundary conditions at the wall. A vorticity creation 

scheme based on the Boundary Element Method (BEM) is designed to eliminate tangential 

and normal velocity denoted as 𝑞𝑛 , 𝑞𝑠 on the wall. After assigning the newly created 

vorticity into cells in the first layer, the non-slip boundary condition will then be 

satisfied. The detailed explanation in the case of vorticity creation can be found in Tian 

[10]. 
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Figure 3.3: Schematic figure of the vorticity creation algorithm, from Tian [10] 

 

For the Boundary Element Method, according the Green’s 3rd identity the potential 

on the wall can be written as: 

 

𝜙

2
=
1

2𝜋
∫

𝜕𝜙

𝜕𝑛
ln 𝑟  𝑑𝑠

𝑆

−
1

2𝜋
∫ 𝜙

𝜕 ln 𝑟

𝜕𝑛
  𝑑𝑠

𝑆

 (3.66) 

 

where S is the surface of the hydrofoil with a normal vector 𝑛⃗ . The foil is discretized into 

N straight elements with constant source 𝜎 ≔
𝜕𝜙

𝜕𝑛
 and dipole 𝜙 distributions. The potential 

at the control point of the i-th panel is: 

 

𝜙𝑖
2
=∑𝜎𝑗∫

1

2𝜋
ln 𝑟𝑖𝑗  𝑑𝑠

𝑆𝑗

𝑁

𝑗=1

−∑𝜙𝑗∫
1

2𝜋

𝜕 ln 𝑟𝑖𝑗

𝜕𝑛𝑗
  𝑑𝑠

𝑆𝑗

𝑁

𝑗=1

 (3.67) 
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The integrals in relation (3.72) correspond to the influence coefficient for sources, 

𝐵𝑖𝑗and dipoles 𝐴𝑖𝑗  from the j-panel to the i-control point and can be calculated numerically 

in the case of straight elements. 

𝐴𝑖𝑗 ∶=
1

2𝜋
∫

𝜕 ln 𝑟𝑖𝑗

𝜕𝑛𝑗
 𝑑𝑠

𝑆𝑗

=
𝜔𝑖𝑗

2𝜋
 (3.68) 

𝐵𝑖𝑗 ∶=
1

2𝜋
∫ ln 𝑟𝑖𝑗  𝑑𝑠
𝑆𝑗

=
1

2𝜋
[𝑥0 ln (

𝑟2
𝑟1
) + 𝑙 (ln 𝑟2 − 1) + |𝑦0𝜔𝑖𝑗|] (3.69)6 

where the 𝑟2 and 𝑟1 are the distances from the left and right nodal points of panel to the 

control point; 𝜔𝑖𝑗 is the angle between 𝑟2 and 𝑟1; 𝑥0, 𝑦0 is the location of the control point 

with respect to the local coordinate system of the panel and 𝑙 is the length of the panel as 

show in Figure 3.4. Expressing relation (3.72) with the help of the influence coefficients 

we get the following system of equations: 

∑𝜙𝑗  𝐴𝑖𝑗

𝑁

𝑗=1

=∑𝜎𝑗  𝐵𝑖𝑗

𝑁

𝑗=1

 (3.70) 

In the case of vorticity creation, the sources are defined as 𝜎 = −𝑢⃗ ⋅ 𝑛⃗  and (3.75) 

is solved with respect to the dipoles 𝜙𝑗. Note that solving relation (3.70) with respect to 

𝜎𝑗  would result in a sources/sinks creation algorithm on the foil, by canceling the tangent 

component of velocity. 

 

 

Figure 3.4: Schematic figure for the influence coefficients of panel 𝑗 and control point 𝑖. 

 
6 ∫ ln(√𝑢2 + 1)𝑑𝑢 = 𝑢 ⋅ ln(√𝑢2 + 1) − 𝑢 +  𝑎𝑡𝑎𝑛(𝑢)  ,     𝑢 ∶= (−𝑥 − 𝑥0)/𝑦0 



 37 

3.10 NUMERICAL IMPLEMENTATION  

3.10.1 Finite Volume Method  

The equations described in the previous section can all be written in the following 

general form: 

 
𝜕𝜙

𝜕𝑡
+ 𝑏𝜙 + 𝛻⃗ ⋅ (𝑐 𝜙) − 𝛻⃗ ⋅ (𝑑 𝛻⃗ 𝜙) = 𝑅 (3.71) 

For 𝑏 = 0, we get the general form of the advection diffusion equation with the 

forcing term R on the right-hand side. Setting the diffusion coefficient d=0, we get the 

convection equation while for a zero-convection vector field, 𝑐 = 0⃗ , we get the diffusion 

equation whose steady state is the Poisson equation. Integrating over the control volume 

V, which in this case is a grid cell’s volume, we get: 

 ∫ (
𝜕𝜙

𝜕𝑡
+ 𝑏𝜙)𝑑𝑉

𝑉

+∫𝛻⃗ ⋅ (𝑐 𝜙) 𝑑𝑉
𝑉

− ∫𝛻⃗ ⋅ (𝑑𝛻⃗ 𝜙)
𝑉

𝑑𝑉 = ∫𝑅 𝑑𝑉
𝑉

 (3.72) 

Then, Gauss divergence theorem can be applied to equation (3.73) to transform the 

volume integration into surface integral: 

 ∫ (
𝜕𝜙

𝜕𝑡
+ 𝑏𝜙)  𝑑𝑉

𝑉

+∫(𝜙 𝑐 ⋅ 𝑛⃗ ) 𝑑𝑆
𝑆

− ∫(𝑑 𝛻⃗ 𝜙) ⋅ 𝑛⃗   𝑑𝑆
𝑆

= ∫𝑅 𝑑𝑉
𝑉

 (3.73) 

where, S is the control surface, or a grid face’s area.; 𝑛⃗  is the unit normal vector that 

pointing outside the control surface S.  

If we discretize the control surface into a summation of several faces which are 

labeled as 1, 2,3,⋯ ,𝑁. Equation (3.73) can then be represented in a discretized form: 

 (
𝜕𝜙

𝜕𝑡
+ 𝑏𝑓)𝐴 +∑(𝜙 𝑐 ⋅ 𝑛⃗  𝛥𝑙)𝑗

𝑁

𝑗=1

=∑(𝑑
𝜕𝜙

𝜕𝑛
𝛥𝑙)

𝑁

𝑗=1 𝑗

+ 𝑅 ⋅ 𝐴  (3.74) 

in which, subscript j denoted the values that are evaluated on the face j. It should be noted 

here that in two-dimensional flow, the surfaces and volume degenerate to the lengths Δ𝑙𝑗 

and area A, respectively. 
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In equation (3.74), (𝜙 𝑐 ⋅ 𝑛⃗  Δ𝑙)𝑗 represent the convective terms, which can be 

calculated by using the modified QUICK scheme which will be discussed in the next 

section; (𝑑
𝜕𝜙

𝜕𝑛
Δ𝑙)

𝑗
 represent the diffusive terms. In the case of the divergence and vorticity 

equations the forcing term R includes the gradients of various fluid properties. These 

gradients are calculated using the least-squares cell-based method described in Wu [5]. 

 At this point, the space discretization has been achieved. For the time discretization 

the standard ADI scheme is used to solve (3.74) which is first split in two directions: 
𝜕𝜙

𝜕𝑡
= (𝑏1 + 𝑐1 + 𝑑1) 𝜙 + (𝑏2 + 𝑐2 + 𝑑2) 𝜙 + 𝑅 (3.75) 

where 𝑐1,2 and 𝑑1,2 are the convective and diffusive coefficients in directions 1 and 2 

respectively while 𝑏1 = 𝑏2 =
𝑏

2
. The two ADI sweeps can be applied: 

𝜙𝑛+1 2⁄ = [1 −
𝛥𝑡

2
(𝑏1 + 𝑐1 + 𝑑1)]

−1

{[1 +
𝛥𝑡

2
(𝑏2 + 𝑐2 + 𝑑2) ] 𝜙

𝑛 +
𝑅

2
} 

(3.76) 

𝜙𝑛+1 = [1 −
𝛥𝑡

2
(𝑏2 + 𝑐2 + 𝑑2)]

−1

{[1 +
𝛥𝑡

2
(𝑏1 + 𝑐1 + 𝑑1) ] 𝜙

𝑛+1 2⁄ +
𝑅

2
} 

 

 

3.10.2 QUICK scheme and flux limiter 

The Quadratic Upstream Interpolation for Convective Kinematics (QUICK) 

scheme proposed by Leonard [39] was applied to evaluate the face values used in the 

convection terms. This scheme is second order accurate and is considered highly 

conservative.   

Given the grid of Figure 3.5, the face value of a quantity 𝜙 can be interpolated using 

the values at the centroids of the neighboring cells. The value at face f is given by the 

following 2nd order polynomial: 
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 𝜙𝑓 = 𝜙𝑈 + 𝑔1(𝜙𝐷 − 𝜙𝑈) + 𝑔2(𝜙𝑈 − 𝜙𝑈𝑈) (3.77) 

 𝑔1 =
(𝑥𝑓 − 𝑥𝑈)(𝑥𝑓 − 𝑥𝑈𝑈)

(𝑥𝐷 − 𝑥𝑈)(𝑥𝐷 − 𝑥𝑈𝑈)
 (3.78) 

 𝑔2 =
(𝑥𝑓 − 𝑥𝑈)(𝑥𝐷 − 𝑥𝑓)

(𝑥𝑈 − 𝑥𝑈𝑈)(𝑥𝐷 − 𝑥𝑈𝑈)
 (3.79) 

 

 

Figure 3.5:  Computational stencil of QUICK scheme, from Tian [10]. 

where the subscripts 𝑓, 𝐷, 𝑈, 𝑈𝑈 stand for the current face, the downstream, the first 

upstream and the second upstream cells. However, the QUICK scheme is dispersive for 

large gradients. Therefore a flux limiter by Woodfield [40] was adopted. The flux limiter 

is a blending function between the first order upwind scheme and a higher order scheme 

and is defined as: 

 

𝑎(𝜂) =

{
 
 
 

 
 
 
0,                            𝜂 < 0 
𝜂

𝛿𝑓
,                 0 < 𝜂 < 𝛿𝑓

1,           𝛿𝑓 < 𝜂 < 1 − 𝛿𝑓

1 −
𝜂

𝛿𝑓
,   1 − 𝛿𝑓 < 𝜂 < 1

0,                        𝜂 > 1

 (3.80) 
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Figure 3.6:   Schematic figure of flux limiter by Woodfield [40]. 

where, 𝛿𝑓 indicates the size of the blending region between the first order upwind and the 

QUICK. Tian [10] did some numerical tests and found that 𝛿𝑓 = 0.1 works best for VISVE. 

 𝜂 =
𝜙𝑈 −𝑚𝑖𝑛(𝜙𝑈𝑈, 𝜙𝐷)

|𝜙𝑈𝑈 − 𝜙𝐷|
  (3.81) 

Then, the QUICK scheme is modified to the following formulation: 

 𝜙 = 𝜙𝑈 + 𝑎(𝜂)[𝑔1(𝜙𝐷 − 𝜙𝑈) + 𝑔2(𝜙𝑈 − 𝜙𝑈𝑈)] 
(3.82) 
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Chapter 4:  2-D Hydrofoils in Cavitating Conditions 

4.1 GRID CONFIGURATION  

The following results are for a NACA66 hydrofoil with 4% thickness to chord 

length ratio and 1% camber to chord length ratio. The grid configuration in VISVE and 

RANS are shown in Figure 4.1 and Figure 4.2, respectively. The VISVE domain is much 

more compact with 26,000 cells compared to the 167,000 cells of the RANS domain. In 

the RANS model, the cavitation was modeled as steady laminar flow, whereas in VISVE 

the flow was modeled as unsteady with Δ𝑡 = 0.0001 𝑠.  

The commercial software ANSYS-FLUENT [41] was used for the RANS cases. 

PRESTO!, was used for the pressure face interpolation and QUICK for the momentum and 

vapor transport equations. The gradients were calculated using the Least-squares-cell-

based scheme. The input values for the simulations were: 

- Foil length: 𝐿 = 0.04 𝑚 

- Inflow velocity: 𝑈∞ = 0.122 
𝑚
𝑠⁄  

- Angle of Attack: 𝐴𝑂𝐴 = 4𝑜 

- Liquid viscosity: 𝜇𝑙 = 0.001 
𝑘𝑔

𝑚 ⋅ 𝑠⁄    

- Vapor viscosity:  𝜇𝑣 = 0.0000134 
𝑘𝑔

𝑚 ⋅ 𝑠⁄   

- Liquid density: 𝜌𝑙 = 998.2 
𝑘𝑔

𝑚3⁄   

- Vapor density: 𝜌𝑣 = 0.5542 
𝑘𝑔

𝑚3⁄   

- Zwart-Gerber-Belamri’s bubble radius:  𝑅𝐵 = 10
−5𝑚 

The Reynold number is 𝑅𝑒 ≈ 4800, which corresponds to a laminar flow regime. 

In reality, cavitation occurs at much higher Reynolds numbers (e.g. 𝑅𝑒 = 2 × 106) which 

correspond to turbulent flow regimes. Forcing cavitation for a laminar case results in 
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unrealistic values for the foil length, inflow velocity and vapor pressure. The cavitation 

phenomenon is quantified by the dimensionless variable, cavitation number: 

 𝜎 =
𝑝 − 𝑝𝑣
1
2𝜌𝑙𝑈∞

2
 

(4.1) 

Results for wetted and cavitating cases of  𝜎 = 1.2 , 𝜎 = 1.0  and 𝜎 = 0.8  will be 

presented.  The simulations were run on TACC Stampede node [42]. 

 

 

Figure 4.1: VISVE computation domain and grid configuration (26,000 cells)  

 

Figure 4.2: RANS computation domain and grid configuration (167,000 cells) 
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4.2 WETTED CASE 

Since cavitation is a pressure-driven phenomenon, it is important to validate the 

pressure coefficient predicted from the wetted cases before we go into cavitating flow. To 

model wetted flow, a high cavitation number (𝜎 = 1.6) was used. The comparison of 

pressure distribution predicted by VISVE and RANS is shown in Figure 4.3. Good 

correspondence between the two model validates the pressure calculation scheme in 

VISVE in wetted case.  

 

 

Figure 4.3: Comparison of pressure coefficient distribution on the hydrofoil predicted 

from VISVE and RANS 𝑅𝑒 = 4,800, 𝐴𝑂𝐴 = 4°, wetted case 

4.3 CAVITATION NUMBER =1.2  

The cavitation number was set to 𝜎 = 1.2. The cavity shape predicted by VISVE 

and RANS is compared in Figure 4.4. Similarity can be observed in the cavity shape. 
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However, the cavity predicted by RANS has a slightly greater vapor volume fraction near 

the foil. 

 

Figure 4.4: Comparison of cavity shape predicted by VISVE and RANS using Z-G-B 

cavitation model at 𝑅𝑒 = 4,800, 𝐴𝑂𝐴 = 4°, 𝜎 = 1.2 

Then the comparison of pressure coefficient distribution is presented in Figure 4.5. 

There is some discrepancy in the pressure coefficient behind the cavity, which will become 

more obvious for smaller cavitation numbers. 

 



 45 

 

Figure 4.5: Comparison of pressure coefficient distribution on the hydrofoil predicted 

from VISVE and RANS using Z-G-B cavitation model 𝑅𝑒 = 4,800, 𝐴𝑂𝐴 = 4°, 𝜎 = 1.2 

 

4.4 CAVITATION NUMBER =1.0 

The cavitation number was then lowered to 𝜎 = 1.0. The comparison of cavity 

shape and pressure coefficient distribution on the hydrofoil surface is presented in Figure 

4.6 and Figure 4.7, respectively. The cavity length obtained from the two models agrees 

well with each other, which is about 5% chord length. Again, there is a difference in the 

pressure coefficient behind the cavity. 
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Figure 4.6: Comparison of cavity shape predicted by VISVE and RANS using Z-G-B 

cavitation model at 𝑅𝑒 = 4,800, 𝐴𝑂𝐴 = 4°, 𝜎 = 1.0 

 

Figure 4.7: Comparison of pressure coefficient distribution on the hydrofoil predicted 

from VISVE and RANS using Z-G-B cavitation model 𝑅𝑒 = 4,800, 𝐴𝑂𝐴 = 4°, 𝜎 = 1.0 
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4.5 CAVITATION NUMBER =0.8 

Then, the cavitation number was further lowered to 0.8. In this case, RANS has a 

slightly longer cavity with the tail of the cavity extending to 20% the chord length. The 

main difference, however, is in the pressure distribution. The pressure behind the cavity is 

very different, possibly due to the fact that the baroclinic torque 𝑃𝜔 and the residual viscous 

terms 𝑄𝜔 are neglected. 

 

 

Figure 4.8: Comparison of cavity shape predicted by VISVE and RANS using Z-G-B 

cavitation model at 𝑅𝑒 = 4,800, 𝐴𝑂𝐴 = 4°, 𝜎 = 0.8 
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At this point, it is worth noting that the pressure distribution is not constant underneath the 

cavity. Indeed, cavitation models based on the Rayleigh-Plesset equation require pressures 

lower than vapor pressure for cavitation inception to occur (Appendix E).  

 

Figure 4.9: Comparison of pressure coefficient distribution on the hydrofoil predicted 

from VISVE and RANS using Z-G-B cavitation model 𝑅𝑒 = 4,800, 𝐴𝑂𝐴 = 4°, 𝜎 = 0.8 

 For this cavitation number alone, some additional results for Re = 2500 are 

included. Similar to the previous figures, the following results compare the pressure and 

cavity of VISVE and RANS. It is obvious that the viscosity affects the size of the cavity, 

with more viscous flows related to smaller cavities. Again, VISVE seems to under predict 

the maximum vapor volume fraction, resulting in a much smaller cavity. This difference 

can be clearly seen in the pressure distribution. 
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Figure 4.10: Comparison of pressure coefficient distribution on the hydrofoil predicted 

from VISVE and RANS using Z-G-B cavitation model 𝑅𝑒 = 2,500, 𝐴𝑂𝐴 = 4°, 𝜎 = 0.8 

 

Figure 4.11: Comparison of pressure coefficient distribution on the hydrofoil predicted 

from VISVE and RANS using Z-G-B cavitation model 𝑅𝑒 = 2,500, 𝐴𝑂𝐴 = 4°, 𝜎 = 0.8 
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5.6 CONVERGENCE STUDY  

In order to validate the grid and time step independence of VISVE cavitation model, 

different sizes and different number of elements both on the surface of the hydrofoil and 

on the direction normal to the hydrofoil surface as well as different time steps have been 

applied to the 2-D VISVE model to predict the flow around the hydrofoil in cavitating 

conditions. Six cases are designed as shown in Table 4.1 

 
Case No. 1 2 3 4 5 6 

No. of Elements on foil 387 387 195 195 195 195 

No. of Layer of cells 50 61 50 50 61 50 

First layer height [ℎ/𝐿]7 1 ⋅ 10−3 5 ⋅ 10−4 1 ⋅ 10−3 1 ⋅ 10−3 5 ⋅ 10−4 1 ⋅ 10−3 

Expansion ratio in Block I 1.06 1.06 1.06 1.06 1.06 1.06 

No. of Elements on the wake 65 65 57 65 57 57 

Expansion ratio in Block II 1.08 1.08 1.08 1.08 1.08 1.08 

Time step size 1 ⋅ 10−4 1 ⋅ 10−4 1 ⋅ 10−4 1 ⋅ 10−4 1 ⋅ 10−4 5 ⋅ 10−5 

Table 4.1 Cases setting for grid and time step independence study 

The pressure distribution for different grid configuration and time step settings is 

presented in Figure 4.10. Satisfactory convergence results can be observed.  

 
7 The height, h, is made non-dimensional with the chord length, L. 
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Figure 4.12: Pressure coefficient distribution for different cases at 𝜎
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Chapter 5:  Conclusions and Future work  

5.1 CONCLUSIONS  

The VISVE method takes advantage of the spatial concentration of the vorticity 

and has proven to be more computationally efficient than RANS solver in the case of 

incompressible/wetted flow. The computational efficiency was not the objective of this 

thesis, hence the lack of computational time results. Nevertheless, it is the author’s belief 

that there is great room for improvement for the VISVE/DIVE method, considering the 

fact that the computational domain of divergence and vapor transport equations may be 

limited in an area close to the cavity. A fully optimized VISVE method can be an efficient 

tool for the design and performance analysis of propellers and hydrofoils.  

The main contribution of this study is that 2-D VISVE model has been extended to 

cavitating flow around hydrofoils. The results were promising but more adjustments need 

to be made in order to achieve a more robust solver. 

For cavitating flow, the general solving algorithm of VISVE was modified. Several 

major changes were made. 

1. Vorticity equation was written in a more general form to include the change of 

density and dynamic viscosity due to the generation and collapse of the cavitating 

bubbles. Additional terms were added to the vorticity equation solver, 

correspondingly.  

2. Divergence of velocity equation, governing the dynamics of local 

expansion/contraction rate, allowing the VISVE method to handle compressible 

flows. The strong coupling of the divergence and continuity equation via the 

pressure term was addressed using the SIMPLEC method. 
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3. Mixture model, which offers a vapor transport equation, was coupled with vorticity 

equation to model the condensation and evaporation process. The cavitating flow 

was treated as a homogeneous mixture of liquid and water vapor with varying 

density and dynamic viscosity. The two phases were both treated as incompressible 

flow.  

4. Two cavitation models based on the simplified version of Rayleigh-Plesset 

equation were introduced into the VISVE model. Only the results from Zwart-

Gerber-Belamri’s model were presented in this thesis.  

 

The extension of the 2-D VISVE model to cavitating applications allows the 

VISVE model to predict more complex flow phenomenon in the process of 

propeller/hydrofoil design and performance analysis. This is part of a larger project with  

the goal being the accurate simulation of flow around 3-D hydrofoils and propellers in 

cavitating conditions based on 3-D VISVE method. 

5.2 FUTURE WORK  

5.2.1 VISVE 

It is important to address the problems of the current formulation before moving on 

to turbulent or 3-D flows. One of the main issues is the pressure spike at the leading edge 

which is the main cause of instabilities in the codes. Additionally, in order to capture the 

full cavitation phenomenon, the baroclinic torque and the 𝑄𝜔 terms need to be added in the 

code. 
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5.2.2 Turbulence Model 

The current VISVE model includes only the laminar flow model, which limits the 

prediction at high Reynolds number. In order to overcome the limitation, turbulence 

models which offer the eddy viscosity could be developed. As an initial study, Hao and 

Kinnas [8] in OEG worked on extracting the turbulent viscosity from a RANS model 

adding it to the molecular viscosity in the current 2-D laminar VISVE scheme. Specifically, 

a coupling scheme between VISVE and OpenFOAM was developed via Shared Memory 

or MPI. OpenFOAM provides the turbulent viscosity based on the vast turbulent models 

embedded in the library; while VISVE provides the mean velocity needed in the turbulent 

models. 

Another way to include turbulent effects is to add solvers the needed in turbulent 

models in VISVE itself and then replace the molecular viscosity by the eddy viscosity. Ms 

You in the OEG is currently working on implementing turbulence models into the VISVE 

solver. 

5.2.3 3D VISVE  

In three-dimensional cases, the vorticity- velocity solver is much more complicated 

than that in the 2-D case for several reasons. Firstly, vorticity will appear as a vector instead 

of a scalar. Secondly, the vortex stretching term needs to be added into the vorticity 

equation, which significantly increases the complexity of the partial differential equation. 

Finally, the computational cost in 3-D is considered to be much higher than that in 2-D.  

Though with all those difficulties in the way, Tian [10] and Wu et all [3,4] have 

conducted a considerable amount of investigation in 3-D VISVE and applied it to the 

prediction of flow around 3-D hydrofoils and propellers in both forward and backing 

conditions.  
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 Next step will be adding turbulent flow effects as well as extending the current 

cavitation model in the case of 3-D hydrofoils and propellers. 

5.2.4 Parallelization of the code 

The VISVE model can be fully parallelized. Significant efforts have been devoted 

to the parallelization of 2-D and 3-D VISVE for wetted flow by Wu et al [2], which 

significantly improved the computational efficiency and the shortened the computational 

time. More work needs to be performed for the parallelization in case of cavitating flow. 
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Appendices 

APPENDIX A 

The momentum equations can be written in the following vector form: 

 
𝜕𝑞 

𝜕𝑡
+ (𝑞 ⋅ ∇⃗⃗ )𝑞 = −

∇⃗⃗ 𝑝

𝜌
+
1

𝜌
 ∇⃗⃗ ⋅ 𝑇̿ (A.1) 

where 𝑞  is the velocity vector, p is the pressure, 𝜌 is the density and T̿ is the stress tensor. 

The constitutive relation for the isotropic stress tensor, is:   

 𝑇̿ ∶= 𝜏𝑖𝑗 = 2𝜇 𝑆𝑖𝑗 + 𝜆 𝑆𝑘𝑘𝛿𝑖𝑗 (A.2) 

where 𝑆𝑖𝑗: =
1

2
(
𝜕𝑞𝑖

𝜕𝑥𝑗
+
𝜕𝑞𝑗

𝜕𝑥𝑖
) =

1

2
[∇⃗⃗ 𝑞 + (∇⃗⃗ 𝑞 )

𝑇
]  is the strain tensor, 𝜇 is the dynamic 

viscosity and 𝜆 is 𝐿𝑎𝑚𝑒′constant. According to Stokes’ assumption, the bulk modulus 

should be zero, 𝐾 ∶= 𝜆 +
2

𝑁
𝜇 = 0, so for the 3-D problem 𝜆 = −

2

3
𝜇 and for the 2-D 

problem 𝜆 = −𝜇.  Therefore, the stress tensor can be written in the following matrix form: 

 
𝑇̿ = 𝜇 [∇⃗⃗ 𝑞 + (∇⃗⃗ 𝑞 )

𝑇
] − 𝐼

2

𝑁
 [𝜇(∇⃗⃗ ⋅ 𝑞 )]  (A.3) 

where 𝛿𝑖𝑗 = 𝐼, is the the identity matrix. Using identity (D.1), the left-hand side of the 

momentum equation becomes: 

∂q⃗ 

∂t
+ (q⃗ ⋅ ∇⃗⃗ )q⃗ =

∂q⃗ 

∂t
+ ∇⃗⃗ (

1

2
q2) − q⃗ × ω⃗⃗  (A.4) 

Similarly, using identities (D.2) and (D.3) the right-hand side of the momentum equation 

becomes: 
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−
∇⃗⃗ 𝑝

𝜌
+
1

𝜌
 ∇⃗⃗ ⋅ T = 

= −
∇⃗⃗ 𝑝

𝜌
+
1

𝜌
∇⃗⃗ ⋅ [ 𝜇 (∇⃗⃗ 𝑞 + (∇⃗⃗ 𝑞 )

𝑇
) − 𝐼

2

𝑁
 𝜇(∇⃗⃗ ⋅ 𝑞 )] = 

= −
∇⃗⃗ 𝑝

𝜌
+ 𝜈∇⃗⃗ (∇⃗⃗ ⋅ 𝑞 ) + 𝜈∇2𝑞 +

∇⃗⃗ 𝜇

𝜌
⋅ (∇⃗⃗ 𝑞 + (∇⃗⃗ 𝑞 )

𝑇
) −

2

𝑁𝜌
∇⃗⃗ (𝜇 ∇⃗⃗ ⋅ 𝑞 ) = 

= −
∇⃗⃗ 𝑝

𝜌
+ 𝜈∇⃗⃗ (∇⃗⃗ ⋅ 𝑞 ) + 𝜈(∇⃗⃗ (∇⃗⃗ ⋅ 𝑞 ) − ∇⃗⃗ × 𝜔⃗⃗ ) + 2

(∇⃗⃗ 𝜇 ⋅ ∇⃗⃗ )𝑞 

𝜌
+
1

𝜌
∇⃗⃗ 𝜇 × 𝜔⃗⃗  

−
2

𝑁𝜌
 [∇𝜇(∇⃗⃗ ⋅ 𝑞 ) + 𝜇∇⃗⃗ (∇⃗⃗ ⋅ 𝑞 )] 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 (A.5) 

Combining relations (A.4) and (A.5) we get the following momentum equation: 

𝜕𝑞 

𝜕𝑡
+ ∇⃗⃗ (

1

2
𝑞2) − 𝑞 × 𝜔⃗⃗ = −

∇⃗⃗ 𝑝

𝜌
+ 𝜈∇⃗⃗ (∇⃗⃗ ⋅ 𝑞 ) + 𝜈(∇⃗⃗ (∇⃗⃗ ⋅ 𝑞 ) − ∇⃗⃗ × 𝜔⃗⃗ ) 

+2
(∇⃗⃗ 𝜇 ⋅ ∇⃗⃗ )𝑞 

𝜌
+
1

𝜌
∇⃗⃗ 𝜇 × 𝜔⃗⃗ −

2

𝑁𝜌
 [∇⃗⃗ 𝜇(∇⃗⃗ ⋅ 𝑞 ) + 𝜇∇⃗⃗ (∇⃗⃗ ⋅ 𝑞 )] 

 

 

 

 

   (A.6) 

Finally, we take the dot product of the momentum equation with an arbitrary 

vector 𝑛⃗  (e.g. perpendicular or tangent to the foil) and solve for the pressure gradient 

1

𝜌

𝜕𝑝

𝜕𝑛
=    −

𝜕𝑞𝑛
𝜕𝑡

−
𝜕

𝜕𝑛
(
1

2
𝑞2) + (𝑞 × 𝜔⃗⃗ ) ⋅ 𝑛⃗ + 𝜈 (2

𝜕

𝜕𝑛
(∇⃗⃗ ⋅ 𝑞 ) − (∇⃗⃗ × 𝜔⃗⃗ ) ⋅ 𝑛⃗ ) 

 +2
(∇⃗⃗ 𝜇⋅∇⃗⃗ )𝑞𝑛

𝜌
+

1

𝜌
(∇⃗⃗ 𝜇 × 𝜔⃗⃗ ) ⋅ 𝑛⃗ −

2

𝑁𝜌
 [
∂μ

𝜕𝑛
(∇⃗⃗ ⋅ 𝑞 ) + 𝜇

𝜕

𝜕𝑛
(∇⃗⃗ ⋅ 𝑞 )] 

 

 

 

 

  (A.7) 

In the case of a 2-D problem the pressure equation (A.7) becomes: 

𝜕𝑝

𝜕𝑛
= −𝜌

𝜕𝑞𝑛
𝜕𝑡

− 𝜌
𝜕

𝜕𝑛
(
1

2
𝑞2) + 𝜌 (𝑛⃗ × 𝑞 ) ⋅ 𝜔⃗⃗ + (n⃗ × ∇⃗⃗ 𝜇) ⋅ 𝜔⃗⃗  

 +𝜇 (
𝜕

𝜕𝑛
(∇⃗⃗ ⋅ 𝑞 ) − (∇⃗⃗ × 𝜔⃗⃗ ) ⋅ 𝑛⃗ ) + 2 ∇⃗⃗ 𝜇 ⋅ ∇⃗⃗ 𝑞𝑛 − 

∂μ

𝜕𝑛
(∇⃗⃗ ⋅ 𝑞 ) 

 

 

 

   (A.8) 
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APPENDIX B 

 In this appendix, we prove the relation for the viscous terms in the vorticity and 

divergence equation. The constitutive relation, (A.3), for the stress tensor, expresses the 

stress tensor, 𝑇̿, with respect to the strain tensor, 𝑆̿: 

 𝑇̿ = 𝜇 𝑆̿ = 𝜇 [𝛻⃗ 𝑞 + (𝛻⃗ 𝑞 )
𝑇
−
2

𝑁
𝐼 𝛻⃗ ⋅ 𝑞 ] (B.1) 

Substituting the stress tensor in the viscous torque term of the vorticity equation we get: 

 

           𝛻⃗ × [
1

𝜌
 𝛻⃗ ⋅ 𝑇̿] =  𝛻⃗ × [

1

𝜌
 𝛻⃗ ⋅ (𝜇 𝑆̿)]  

= 𝜀𝑖𝑗𝑘
𝜕

𝜕𝑥𝑗
(
1

𝜌

𝜕

𝜕𝑥𝑚
(𝜇 𝑆𝑚𝑘)) = 𝜀𝑖𝑗𝑘

𝜕

𝜕𝑥𝑗
(𝜈
𝜕𝑆𝑚𝑘
𝜕𝑥𝑚

+
1

𝜌

𝜕𝜇

𝜕𝑥𝑚
𝑆𝑚𝑘) = 

= 𝜀𝑖𝑗𝑘
𝜕

𝜕𝑥𝑗
(𝜈
𝜕𝑆𝑚𝑘
𝜕𝑥𝑚

) + 𝜀𝑖𝑗𝑘
1

𝜌

𝜕𝜇

𝜕𝑥𝑚

𝜕𝑆𝑚𝑘
𝜕𝑥𝑗

+ 𝜀𝑖𝑗𝑘
𝜕

𝜕𝑥𝑗
(
1

𝜌

𝜕𝜇

𝜕𝑥𝑚
) 𝑆𝑚𝑘 

 

 

 

 

(B.2) 

For the 2-D problem N=2, so the above relation becomes: 

 

𝛻⃗ × [
1

𝜌
 𝛻 ⋅ 𝑇̿] = ∇ × [

1

𝜌
 ∇⃗⃗ ⋅ (𝜇 [

𝑢𝑥 − 𝑣𝑦 𝑣𝑥 + 𝑢𝑦
𝑣𝑥 + 𝑢𝑦 𝑣𝑦 − 𝑢𝑥

])] = 

 

= ∇⃗⃗ × (𝜈 [
(∇⃗⃗ ⋅ 𝑞 )

𝑥
− 𝜔𝑦

(∇⃗⃗ ⋅ 𝑞 )
𝑦
+ 𝜔𝑥

])  + 
∇⃗⃗ μ

 ρ
× [
(∇⃗⃗ ⋅ 𝑞 )

𝑥
− 𝜔𝑦

(∇⃗⃗ ⋅ 𝑞 )
𝑦
+𝜔𝑥

] 

+ [(
μ𝑦

𝜌
)
𝑥

+ (
μ𝑥
𝜌
)
𝑦

] (𝑣𝑦 − 𝑢𝑥) + [(
μ𝑥
𝜌
)
𝑥

− (
μ𝑦

𝜌
)
𝑦

] (𝑣𝑥 + 𝑢𝑦) 

 

 

 

 

 

(B.3) 

where ∇⃗⃗ ⋅ 𝑞 ∶= 𝑢𝑥 + 𝑣𝑦   and 𝜔 ∶= 𝑣𝑥 − 𝑢𝑦. Finally, we can separate the diffusion term 

from the rest of the viscous terms: 

𝛻⃗ × [
1

𝜌
 𝛻⃗ ⋅ 𝑇̿] = ∇⃗⃗ ⋅ [𝜈𝑚∇⃗⃗ 𝜔]  + (∇⃗⃗ 𝜈𝑚 + 

∇⃗⃗ μ

 ρ
) × ∇⃗⃗ (∇⃗⃗ ⋅ 𝑞 ) + (

∇⃗⃗ μ

 ρ
) ⋅ ∇⃗⃗ 𝜔  

+[(
μ𝑦

𝜌
)
𝑥

+ (
μ𝑥
𝜌
)
𝑦

] (𝑣𝑦 − 𝑢𝑥) + [(
μ𝑥
𝜌
)
𝑥

− (
μ𝑦

𝜌
)
𝑦

] (𝑣𝑥 + 𝑢𝑦) 

 

 

(B.4) 
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Similarly, substituting the stress tensor in the viscous term of the divergence equation we 

get: 

           𝛻⃗ ⋅ [
1

𝜌
 𝛻⃗ ⋅ 𝑇̿] =  𝛻⃗ ⋅ [

1

𝜌
 𝛻⃗ ⋅ (𝜇 𝑆̿)]  

=
𝜕

𝜕𝑥𝑘
(
1

𝜌

𝜕

𝜕𝑥𝑚
(𝜇 𝑆𝑚𝑘)) =

𝜕

𝜕𝑥𝑘
(𝜈
𝜕𝑆𝑚𝑘
𝜕𝑥𝑚

+
1

𝜌

𝜕𝜇

𝜕𝑥𝑚
𝑆𝑚𝑘) = 

=
𝜕

𝜕𝑥𝑘
(𝜈
𝜕𝑆𝑚𝑘
𝜕𝑥𝑚

) +
1

𝜌

𝜕𝜇

𝜕𝑥𝑚

𝜕𝑆𝑚𝑘
𝜕𝑥𝑘

+
𝜕

𝜕𝑥𝑘
(
1

𝜌

𝜕𝜇

𝜕𝑥𝑚
) 𝑆𝑚𝑘            

 

 

 

 

 

(B.5) 

For the 2-D problem N=2, so the above relation becomes: 

 

 

𝛻⃗ ⋅ [
1

𝜌
 𝛻⃗ ⋅ 𝑇̿] = ∇⃗⃗ ⋅ [

1

𝜌
 ∇⃗⃗ ⋅ (𝜇 [

𝑢𝑥 − 𝑣𝑦 𝑣𝑥 + 𝑢𝑦
𝑣𝑥 + 𝑢𝑦 𝑣𝑦 − 𝑢𝑥

])] = 

 

= ∇⃗⃗ ⋅ (𝜈 [
(∇⃗⃗ ⋅ 𝑞 )

𝑥
− 𝜔𝑦

(∇⃗⃗ ⋅ 𝑞 )
𝑦
+ 𝜔𝑥

]) + 
∇⃗⃗ μ

 ρ
⋅ [
(∇⃗⃗ ⋅ 𝑞 )

𝑥
− 𝜔𝑦

(∇⃗⃗ ⋅ 𝑞 )
𝑦
+ 𝜔𝑥

] 

+ [(
μ𝑦

𝜌
)
𝑥

+ (
μ𝑥
𝜌
)
𝑦

] (𝑣𝑥 + 𝑢𝑦) + [(
μ𝑥
𝜌
)
𝑥

− (
μ𝑦

𝜌
)
𝑦

] (𝑢𝑥 − 𝑣𝑦) 

 

 

 

 

 

(B.6) 

where ∇⃗⃗ ⋅ 𝑞 ∶= 𝑢𝑥 + 𝑣𝑦   and 𝜔 ∶= 𝑣𝑥 − 𝑢𝑦 

Finally, we can separate the diffusion term from the rest of the viscous terms: 

𝛻⃗ ⋅ [
1

𝜌
 𝛻⃗ ⋅ 𝑇̿] = ∇⃗⃗ ⋅ [𝜈∇⃗⃗ (∇ ⋅ 𝑞 )]  + (

∇⃗⃗ μ

 ρ
) ⋅ ∇⃗⃗ (∇⃗⃗ ⋅ 𝑞 ) − (∇⃗⃗ 𝜈 + 

∇⃗⃗ μ

 ρ
) × ∇⃗⃗ 𝜔  

+ [(
μ𝑦

𝜌
)
𝑥

+ (
μ𝑥
𝜌
)
𝑦

] (𝑣𝑥 + 𝑢𝑦) + [(
μ𝑥
𝜌
)
𝑥

− (
μ𝑦

𝜌
)
𝑦

] (𝑢𝑥 − 𝑣𝑦) 

 

 

(B.7) 
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APPENDIX C 

 The divergence equation (3.40) of section 3.6, treats the convective terms from the 

momentum equation explicitly which leads to a diffusion equation for ∇ ⋅ 𝑞 . The following 

analysis assumes a different first approximation of pressure 𝑝0, which leads to an 

advection-diffusion type equation for ∇ ⋅ 𝑞 .  

Applying the divergence operator in equation (A.1) we get: 

 
𝜕(∇⃗⃗ ⋅ 𝑞 )

𝜕𝑡
+ ∇⃗⃗ ⋅ [(𝑞 ⋅ ∇⃗⃗ )𝑞 ] = −∇⃗⃗ ⋅ (

∇⃗⃗ 𝑝

𝜌
) + ∇⃗⃗ ⋅ (

1

𝜌
 ∇⃗⃗ ⋅ 𝑇̿) (C.1) 

The divergence of convection becomes: 

∇⃗⃗ ⋅ [(𝑞 ⋅ ∇⃗⃗ )𝑞 ]  =
𝜕

𝜕𝑥𝑖
(𝑢𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

) =
𝜕𝑢𝑗

𝜕𝑥𝑖

𝜕𝑢𝑖
𝜕𝑥𝑗

+ 𝑢𝑗
𝜕

𝜕𝑥𝑗
(
𝜕𝑢𝑖
𝜕𝑥𝑖

) = ∇⃗⃗ 𝑞 : ∇⃗⃗ 𝑞 + (𝑞 ⋅ ∇⃗⃗ )(∇⃗⃗ ⋅ 𝑞 ) (C.2) 

(𝑞 ⋅ ∇⃗⃗ )(∇⃗⃗ ⋅ 𝑞 ) = 𝑢𝑗
𝜕

𝜕𝑥𝑗
(
𝜕𝑢𝑖
𝜕𝑥𝑖

) =
∂

𝜕𝑥𝑗
(𝑢𝑗

𝜕𝑢𝑖
𝜕𝑥𝑖

) −
∂𝑢𝑖
∂𝑥𝑖

∂𝑢𝑗

∂𝑥𝑗
 = ∇⃗⃗ ⋅ [𝑞  (∇⃗⃗ ⋅ 𝑞 )] − (∇⃗⃗ ⋅ 𝑞 )

2
 (C.3) 

Substituting equations (C.2) and (C.3) into (C.1) we get: 

𝜕(∇⃗⃗ ⋅ 𝑞 )

𝜕𝑡
+ ∇⃗⃗ ⋅ [𝑞  (∇ ⋅ 𝑞 )]  − (∇⃗⃗ ⋅ 𝑞 )

2
− ∇⃗⃗ ⋅ [𝜈∇⃗⃗ (∇⃗⃗ ⋅ 𝑞 )] = −∇⃗⃗ ⋅ (

∇⃗⃗ 𝑝

𝜌
) + 𝑄∇⃗⃗ ⋅q⃗⃗ − ∇⃗⃗ 𝑞 : ∇⃗⃗ 𝑞  

(C.4) 

where 𝑄∇⃗⃗ ⋅q⃗⃗  are the residual viscous terms defined in equation      (3.42) and  ∇⃗⃗ 𝑞 : ∇⃗⃗ 𝑞 =

𝑢𝑥
2 + 2𝑢𝑦𝑣𝑥 + 𝑣𝑦

2 , in the case of a 2-D cartesian coordinate system.  
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APPENDIX D 

Below we prove five important vector identities: 

 𝑞 × (𝛻⃗ × 𝑞 ) = 𝛻⃗ (
1

2
𝑞2) − (𝑞 ⋅ 𝛻⃗ )𝑞  (D.1) 

Proof: 

𝜀𝑖𝑗𝑘𝑞𝑗 (𝜀𝑘𝑙𝑚
𝜕

𝜕𝑥𝑙
𝑞𝑚) =   𝜀𝑖𝑗𝑘𝜀𝑘𝑙𝑚𝑞𝑗

𝜕𝑞𝑚
𝜕𝑥𝑙

= (𝛿𝑖𝑙𝛿𝑗𝑚 − 𝛿𝑖𝑚𝛿𝑗𝑙) 𝑞𝑗
𝜕𝑞𝑚
𝜕𝑥𝑙

= 𝑞𝑗
𝜕𝑞𝑗

𝜕𝑥𝑖
− 𝑞𝑗

𝜕𝑞𝑖
𝜕𝑥𝑗

  

 

 𝛻⃗  × (𝛻⃗ × 𝑞 ) = 𝛻⃗ (𝛻⃗ ⋅ 𝑞 ) − 𝛻2𝑞  (D.2) 

Proof: 

𝜀𝑖𝑗𝑘
𝜕

𝜕𝑥𝑗
(𝜀𝑘𝑙𝑚

𝜕

𝜕𝑥𝑙
𝑞𝑚) = (𝛿𝑖𝑙𝛿𝑗𝑚 − 𝛿𝑖𝑚𝛿𝑗𝑙) 

𝜕2𝑞𝑚
𝜕𝑥𝑗𝜕𝑥𝑙

=
𝜕

𝜕𝑥𝑖
(
𝜕𝑞𝑗

𝜕𝑥𝑗
) −

𝜕2𝑞𝑖

𝜕𝑥𝑗
2  

 

 𝛻⃗ 𝜇 × 𝜔⃗⃗ = 𝛻⃗ 𝜇 ⋅ ((𝛻⃗ 𝑞 )
𝑇
− 𝛻⃗ 𝑞 ) (D.3) 

Proof: 

𝜀𝑖𝑗𝑘
𝜕𝜇

𝜕𝑥𝑗
(𝜀𝑘𝑙𝑚

𝜕𝑞𝑚
𝜕𝑥𝑙

) = (𝛿𝑖𝑙𝛿𝑗𝑚 − 𝛿𝑖𝑚𝛿𝑗𝑙)
𝜕𝜇

𝜕𝑥𝑗

𝜕𝑞𝑚
𝜕𝑥𝑙

=
𝜕𝜇

𝜕𝑥𝑗
(
𝜕𝑞𝑗

𝜕𝑥𝑖
−
𝜕𝑞𝑖
𝜕𝑥𝑗

) 

 

 
∇⃗⃗ × (𝑞 × 𝜔⃗⃗ ) = (𝜔⃗⃗ ⋅ ∇⃗⃗ )𝑞 + 𝑞  (∇⃗⃗ ⋅ 𝜔⃗⃗ ) − ∇⃗⃗ ⋅ (𝑞 ⨂𝜔⃗⃗ ) (D.4) 

Proof: 

𝜀𝑖𝑗𝑘
𝜕

𝜕𝑥𝑗
(𝜀𝑘𝑙𝑚 𝑞𝑙 𝜔𝑚) = (𝛿𝑖𝑙𝛿𝑗𝑚 − 𝛿𝑖𝑚𝛿𝑗𝑙) 

𝜕(𝑞𝑙 𝜔𝑚)

𝜕𝑥𝑗
= (

𝜕𝑞𝑖
𝜕𝑥𝑗

𝜔𝑗 + 𝑞𝑖
𝜕𝜔𝑗

𝜕𝑥𝑗
) − 

𝜕(𝑞𝑗  𝜔𝑖)

𝜕𝑥𝑗
  

where 𝑞 ⨂𝜔⃗⃗ = 𝑞𝑗  𝜔𝑖 is the tensor product for vectors 𝑞  and 𝜔⃗⃗  

 

 
∇⃗⃗ × (∇⃗⃗ 𝜙) = 0⃗  (D.5) 

Proof: 

𝜀𝑖𝑗𝑘
𝜕

𝜕𝑥𝑗
(
𝜕𝜙

𝜕𝑥𝑘
)  = 𝜀𝑖𝑗𝑘

𝜕2𝜙

𝜕𝑥𝑗𝜕𝑥𝑘
= (

𝜕2𝜙

𝜕𝑥𝑗𝜕𝑥𝑘
−

𝜕2𝜙

𝜕𝑥𝑘𝜕𝑥𝑗
)
𝑖

= 0 
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APPENDIX E 

In the case of the barotropic model or potential flow solvers, the pressure never 

drops below the cavitating pressure. Therefore, the pressure distribution on the foil is equal 

to the vapor pressure underneath the cavity and the results are similar to the right figure 

shown below.   

In the case of viscous cavitation models based on the Rayleigh-Plesset equation 

sources due to evaporation can only occur if the pressure is below the vapor pressure. This 

can be easily deduced from the continuity equation, ∇⃗⃗ ⋅ 𝑞 = 𝐶√𝑝 − 𝑝𝑣. Therefore, the 

pressure underneath the cavity and especially at the leading edge where the sources are 

significant, is lower than vapor pressure. This resulting pressure distribution looks like the 

right figure. 

 ANSYS-FLUENT performs a cosmetic cut-off of the pressure distribution (for 𝑝 ≤

𝑝𝑣) in the post-processing of the results. The difference between the actual pressure 

distribution and the post processed results is shown below. 

 

Figure E.1: Results from ANSYS -FLUENT  for 𝜎 = 0.8 and 𝑅𝑒 = 4800 before and 

after post-processing.
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