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An ever increasing number of wirelessly-enabled applications places a

very high demand on stringent spectral resources. Cognitive radios have the

potential of enhancing spectral efficiency by improving the usage of channels

that are already licensed for a specific purpose. Research on cognitive radios

involves answering questions such as: how can a cognitive radio transmit at a

high data rate while maintaining the same quality of service for the licensed

user? There are multiple forms of cognition studied in literature, and each of

these models must be studied in detail to understand its impact on the overall

system performance. Specifically, the information-theoretic capacity of such

systems is of great interest. Also, the design of cognitive radio is necessary to

achieve those capacities in real applications.

In this dissertation, we formulate different problems that relate to the

performance of such systems and methods to increase their efficiency. This
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dissertation discusses, firstly, the means of “sensing” in cognitive systems,

secondly, the optimal resource allocation algorithms for interweave cognitive

radio, and finally, the fundamental limits of partially and overly cognitive

overlay systems.
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Chapter 1

Introduction

1.1 Cognitive Radios and Related work

Due to the spectrum scarcity in a wireless channel, it is hard to es-

tablish a new wireless application. Cognitive radio draws a lot of attention

because of its ability to alleviate this spectrum scarcity problem by sharing

spectrum with legitimate users. A cognitive radio is a transmitter that pos-

sesses information about its environment that allows it to adapt and tailor

its transmission to maximize network throughput while meeting constraints

imposed on it [1]. More specifically, a cognitive radio uses the wireless channel

which is licensed to legitimate users without interfering with them by utiliz-

ing the cognitive information that it possesses. Spectral efficiency increases,

because the performances of legitimate radios in the licensed channel are not

affected, and there is an additional transmission of the cognitive radio.

There are multiple notions of cognition in literature [1], [2]. In a very

broad sense, cognitive radio can be divided into three different groups which

seeks to underlay, interweave, or overlay the cognitive user’s signals with the

legitimate users’ signals in such a way that the legitimate users of the spectrum

are as unaffected as possible [3]. We plan to study each of these three classes
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of cognitive radios, for example, the fundamental limits on the performance of

different classes of cognitive radios, means of achieving those practically, and

their applications.

In the underlay model, a cognitive radio is allowed to share the channel

with the legitimate user, even when there is a legitimate transmission. In

[3], this underlay technique is defined to be one where the cognitive radio

spreads its signal over the wide range of the spectral band, so that the level

of interference to the legitimate user is below the acceptable threshold. The

cognitive information for the underlay model is the interference level that the

cognitive radio causes to the legitimate receiver [4]. Discussion on how to

obtain this information can be found in [5]. Also, resource allocation over the

wide range of spectral band is established in [6]. The capacity in the underlay

model can be characterized by translating constraint on average receive power

into a transmit power constraint at the cognitive transmitter [7], [8], [9].

The interweave cognition technique enables a cognitive radio to exploit

the channel only when it is not occupied by a legitimate user so that the

transmission of the legitimate users are guaranteed not to experience any in-

terference from the cognitive radios. Thus, the knowledge of the existence of

the legitimate transmission represents the cognitive information desired by the

interweave cognitive radio. Dynamic radio spectrum sensing, access, and shar-

ing algorithms are needed to increase the data rate in the interweave cognitive

radio system [10].

The vast body of literature on cognitive radios addresses multiple issues
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in studying such radios. One of the main research issues in studying the inter-

weave cognitive radio is obtaining reliable information about the availability of

the channel. Since an inaccurate detection leads a cognitive radio to attempt

transmitting over the channel in use by the legitimate users believing that it

is empty, an accurate information about the existence of the legitimate user is

an essential element in the cognitive radio. This information is achieved either

from the sensing or from the geographical information. Although spectrum

sensing is not strictly required by the standard on the cognitive radio, 802.22

standard (rural area network standard), it is still an important building block

for the cognitive radio.

[11] suggests three sensing techniques for a detection of the legitimate

radios: matched filter detection, energy detection, and cyclostationarity fea-

ture matched detection. Matched filter being the optimal way for any signal

detection, it requires a cognitive radio to have a priori knowledge of the legiti-

mate user’s signal at both PHY and MAC layers. The process of the matched

filter detection is also cumbersome because timing and carrier synchronization

and channel equalization are needed there. Energy detection is much consid-

ered for use with a cognitive radio, as in [12], [13], and [14]. [12] describes

the simplest energy detection of an unknown deterministic signal in AWGN

channel. In [13], performance of the energy detection in a multi-path channel

is analyzed. A cyclostationarity feature matched detection utilizes the peri-

odicity in signals’ statistics in sensing the legitimate signal [15]. There are

other detection algorithms which utilize signals’ statistics in the sensing to in-
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crease the reliability of the sensing [78], [79], [63]. Feature detection is known

to have better performance than energy detection in terms of the probability

of detection error and false alarm, but requires a longer time to be finished.

Thus, it is efficient when the sensing requires more accuracy, for example in

the severe fading condition where a false conclusion about the presence of a

legitimate transmitter is more prevalent [76]. To increase the reliability of the

sensing information even further, additional information can be introduced

in the sensing or the sensing can be made collaboratively. In [14], the addi-

tional side information is considered in analyzing the performance of cognitive

sensing. Side information that the cognitive radio can use includes spatial

locations of the cognitive and legitimate receivers, received power of the legit-

imate signal at the cognitive user, and a priori transmission probability of the

legitimate user. With the help of side information, performance improvement

can be made. Also, cooperative spectrum sensing in cognitive radio networks

has been studied intensely in recent literature [80]-[82]. [80] analyzes coopera-

tive sensing with simple energy detection and establishes combining methods,

[81] and [83] design optimal detector for sensing, and [82] studies distance-user

tradeoff in correlated fading environment. Given many different types of sens-

ing techniques, it is necessary to find or develop a sensing mechanism suitable

for a specific cognitive radio and legitimate network.

Another research issue in interweave cognitive radio is to find its ca-

pacity, and to determine the optimal manner in which the resource allocation

is performed. In an interweave cognitive radio setting, the limit of cognitive
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radio’s data rate is directly related to the probability of detection error and

false alarm. [20], [21], and [22] study the region of operation and the limits

in this setting. In [23], parameters in the interweaved cognitive radio setting

is optimized to maximize its throughput. However, due to the technological

advancement of the sensing algorithm, we assume that sensing is one hundred

percent accurate, and focus on finding the optimal resource allocation (power

allocation and channel selection) to achieve the maximum throughput. Cog-

nitive radio does not necessarily need to explore one channel at a time. It can

sense more than one channel and make a transmission over multiple channels.

Also, resource allocation among those channels can vary from one to the other.

Thus, throughput of the interweave cognitive radio depends on the selection

of the channel to sense and the resource allocation among those channels. The

problem of channel selection for cognitive radios is studied in isolation in [43]

and [44]. Also, by itself, the resource allocation problem for multi-band radios

is studied in [45].

In an overlay cognitive radio setting, cognitive and legitimate radios

transmit messages in the same frequency band simultaneously (as in the un-

derlay case). However, the main difference is that, in the overlay case, the

cognitive radio has access to information about the legitimate user so as to

mitigate network interference and thus increase network throughput [48]. The

information-theoretic capacity of cognitive radio in this overlay cognitive radio

setting is explored in [48]-[55]. In [48], achievable rate for an overlay cognitive

radio is shown. [51] characterizes the capacity region for the class of “strong”
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interference channel, and [52] and [53] study the capacity region of this channel

for “weak” interference channel. There is also a work which studies capacity

region of the overlay cognitive radio setting with the degree of freedom per-

spective [54]. It finds the degree of freedom of the overlay cognitive radio where

multiple antennas are deployed. These papers assume perfect and complete

information about the legitimate radio’s message at the cognitive radio. In

the case that the complete cognitive information is not obtainable, [49] and

[55] study capacity region of this partially cognitive radio with “strong” and

“weak” interference channel respectively. Meanwhile, [56] considers the cog-

nitive radio in the opposite case. A cognitive radio has access to a message

that a legitimate transmitter has, and to additional legitimate message that a

legitimate transmitter does not have an access to. The capacity of this class

of cognitive radio is analyzed.

In the next section, we demonstrate the need for each class of algorithms

studied in this thesis.

1.2 Motivation

1.2.1 Interweave Cognitive Radio

As the number of wireless (multimedia) applications increases, so do the

stringent requirements they impose on the wireless medium. Thus, it is essen-

tial that we determine efficient means of utilizing the limited spectral resources

available to us. Currently, bandwidth resources are divided into frequency

bands and allocated to different users exclusively in order to ensure the quality

6



of service (QoS) of multiple wireless systems, and the FCC’s frequency alloca-

tion chart [60] shows that almost all frequency bands are currently allocated to

different groups for varying purposes. According to recent surveys [61], most

of these allocated radio frequency spectrums are vastly under-utilized by the

groups they are given to. The latest spectrum occupancy measurement from

SSC (Spectrum Sharing Company) gives more detailed information about oc-

cupancy rate [62]. The occupancy rates of frequency bands from 30-2900MHz,

which include TV, Air Traffic Control, Amateur, and Unlicensed bands, are

measured in 4 different places: Maine, West Virginia, Chicago, and New York

City. Spectrum in these bands are shown to be under-utilized. This lowly uti-

lized spectrum and possibility of increasing the spectral efficiency by reusing

white spaces in the frequency channel motivates the use of a cognitive radio.

An interweave cognitive radio exploits the channel when it is not uti-

lized by the legitimate user. The idea of spectrum reuse received regulatory

support in the form of the FCC white space ruling, authorizing cautious reuse

of under-utilized spectrum in the licensed TV bands [63]. In its Notice of

Proposed Rulemaking, released in May 2004 [64], and its latest R&O, released

in November 2008 [65], the FCC indicates that TV channels 5-13 in the VHF

band and 14-51 in the UHF band can be used for fixed broadband access sys-

tems. The IEEE 802.22 [66], [67] is a standard which is designed to operate in

the TV broadcast bands while ensuring that no harmful interference is caused

to the incumbent operation, by formalizing a solution that will meet FCC ap-

proval. It aims to use the TV broadcast bands to bring broadband access to
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a rural areas of typically 17.30 km or more in radius [67]. Also, the possibil-

ity of opening up the bands other than TV channels, such as ISM bands, is

mentioned in literatures [3],[68], and the advantages of using 3-5GHz channel

for cognitive radio is mentioned in [69]. Also, cognitive radio has more possi-

bilities of expanding its application into many other legitimate channels, such

as 2.4GHz ISM band and 5GHz channel, where there exists WLAN. FCC’s

white space ruling, standard activity of 802.22, and the prospects of cognitive

radio mentioned in literature, indicate that the concept of cognitive radio in

practical use is gaining popularity.

1.2.1.1 Sensing in Interweave Cognitive Radio

Interweave cognitive radio requires sensing, which gives information

about availability of the channel. There are stringent requirements for a cog-

nitive radio sensing. First, sensing must be accurate. Poor sensing leads to

either detection error, where the cognitive radio acknowledges that the chan-

nel is available when it is not, or false alarm, where the sensing indicates that

the channel is occupied when it is vacant. Detection error results in unde-

sirable interference to the legitimate user, and false alarm reduces spectrum

efficiency. Second, sensing must detect the returning legitimate user quickly.

This property, delay of notice, is important in in-band spectrum sensing. In-

band spectrum sensing monitors in-band channels, which are the channels that

are reused by the cognitive radio. The late notice leads to the delayed evacu-

ation of the cognitive radio, thus the legitimate radio faces longer interference
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from the cognitive radio.

Different types of sensing are required for different purposes and differ-

ent applications. If the cognitive radio attempts to enter the licensed channel,

it requires a very accurate sensing to avoid the interference to the legitimate

users. Meanwhile, less accuracy is required when the cognitive radio is ac-

cessing the ISM band. As aforementioned, in-band sensing is required to have

short delay of notice [16]. For the secondary cognitive radio system in the

primary 802.11 WLAN, the delay of notice is even more important [19]. It is

necessary to find or develop a sensing mechanism suitable for a specific cog-

nitive radio and legitimate network. Here, we are interested in the sensing

technique which has short delay of notice.

1.2.2 Fundamental Limits of Interweave Cognitive Radio

With reasonably accurate sensing information, it is possible to bring an

interweave cognitive radio into practical usage. And, it is important to make

the full use of the capacity that the cognitive radio provides. For this rea-

son, it is important to find the fundamental limit of the interweave cognitive

radio. By establishing the capacity of cognitive radio, we know the limit of

the increased data rate (spectral efficiency) from using the cognitive radio. It

gives intuition on how useful the cognitive radio is, and on how to utilize the

interweave cognitive radio. To make best use of the interweave cognitive radio,

it needs to select channels to use properly, and optimize its power allocation

among those channel. For an interweave cognitive radio, it can sense multiple
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frequency channels, and exploit them. For example, even though 802.22 stan-

dard indicates that each channel is sensed independently, it does not preclude

an implementation that senses multiple channels simultaneously [67]. When

more than one channel are available for transmission, and each channel has

dissimilar channel statistics, it is especially difficult to determine channel se-

lection and power allocation over available channels. Our goal is to determine

which channels should be sensed when. In addition, we desire to perform a

resource-allocation problem across multiple channels which may or may not

be available to the cognitive radio. Overall, we ask the question “Given that

there are multiple dissimilar channels available for us to sense, which channels

should we sense and, if they are available, what rate/power should you assign

to them?”

The dissimilarity between different channels arises from various factors.

The properties of the propagation environment depend on frequency and thus

can be significantly different from channel to channel. Just as any other multi-

band radio, the cognitive radio must allocate resources across different bands

it uses while simultaneously determining which ones it is permitted to exploit.

Note that, in isolation, the problem of channel selection for cognitive radios

[43], [44] is well studied. Also, by itself, the resource allocation problem for

multi-band radios is well-understood [45]. However, bringing the two together

is both important and challenging as they are tightly coupled in the context

of interweaved cognitive radios. Therefore, designing channel selection and

allocation jointly is essential for cognitive radios. Note that the focus is on the
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fundamental limits of joint selection and resource allocation in cognitive net-

works to provide a benchmark on performance. Thus, aspects such as sensing

error, delay, device and network non-linearities etc. are not incorporated into

the analysis. In [46], joint optimization of the channel selection and power

allocation is made to obtain the maximum average throughput.

1.2.3 Overlay Cognitive Radio

An overlay cognitive radio is the most sophisticated form among three

cognitive radio classes. It received much attention due to its ability to in-

crease the spectrum efficiency of the cognitive radio by enabling it to transmit

simultaneously with legitimate users. In the overlay paradigm, the cognitive

transmitter has knowledge of the legitimate users’ codebooks and possibly

their messages as well. The codebook information can be obtained, for exam-

ple, if the legitimate users follow a uniform standard for communication based

on a publicized codebook. Alternatively, they can broadcast their codebooks

periodically [4]. Also, the cognitive transmitter has legitimate users’ messages

before its transmission. This assumption may hold when the legitimate user

retransmits the messages and the cognitive transmitter has knowledge about

them from overhearing. Alternatively, the legitimate user may send its mes-

sage to the cognitive user prior to its transmission [4]. Furthermore, there may

exist a backbone network that provides the legitimate user’s messages to both

legitimate and cognitive transmitters. Note that the amount of the legitimate

user’s message that the legitimate transmitter and the cognitive transmitter
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carry can differ for various reasons.

The main application of this overlay cognitive radio in our considera-

tions is the cognitive radio in a cellular system. Consider a cognitive base-

station placed within a cellular system (a proprietary band of operation) by

the cellular provider. There are multiple legitimate transmitters, whose de-

sign can only be minimally changed. However, the design of the cognitive

base-station and the receivers (the handhelds) can be changed. This assump-

tion is based on the idea that people purchase new handsets frequently, while

changing a legitimate station is a fairly expensive and time-consuming effort.

Further, a backbone network exists that enables information transfer to and

between base-stations.

As the cognitive base-station can be newly designed, it can enable one-

way cooperation, which is the main idea behind overlay cognitive radio ca-

pacity analysis. The data to be transmitted by the legitimate radio is made

available through the backbone to the cognitive radio. Now, overlay cogni-

tion reduces to the analysis of a two-user interference channel with degraded

message sets.

1.2.3.1 Fundamental Limits of Partially Overlay Cognitive Radio

Here, we focus on the scenario that the cognitive radio is only partially

knowledgable of legitimate user’s messages, which can happen because there

are not enough resources for the cognitive user to obtain the legitimate user’s

messages. For example, a resource from the legitimate user to the cognitive

12



user may not be enough, or a backbone network connection to the cogni-

tive transmitter may be inferior to a connection to the legitimate transmitter.

As the portion of the messages that the cognitive radio has access to ranges

from nothing to everything that the legitimate user has access to, the channel

model includes the interference channel (IFC) [72], [74], [75], and IFC with

fully-degraded message set [52] as special cases. This channel is referred to

as an interference channel with a partially cognitive transmitter. Also, the

weak interference channel to the legitimate receiver is assumed, where the in-

terference from the cognitive transmitter to the legitimate receiver is weak

compared to the signal strength from the cognitive transmitter to the cogni-

tive receiver. This setting is of practical interest since it models the realistic

scenario in which the cognitive transmitter is closer to the cognitive receiver

than to the legitimate receiver [53]. This channel model is motivated by prac-

tical constraints, where the cognitive transmitter is only able to garner limited

information about the legitimate transmitter’s message. It is important to

know the limit of the rate region of the legitimate and cognitive radios, as well

as encoding and decoding strategies which can achieve the rates close to that

limit.

1.2.3.2 Fundamental Limits of Overly Overlay Cognitive Radio

On the other hand, the cognitive transmitter may obtain more legit-

imate user’s messages than the legitimate transmitter does. This is possible

when the backbone network channel to the cognitive transmitter is superior,
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and the backbone network is willing to transmit more messages to the cogni-

tive radio strategically. By including this class of overlay cognitive radio, our

research on the capacity of overlay cognitive radio is complete. It is necessary

to find the capacity of this class of overlay cognitive radio in order to gain

knowledge on the fundamental limit of the overlay cognitive radio.

1.3 Contributions

Contributions of the research conducted during my Ph.D. program is

summarized as follows.

1.3.1 Sensing for Interweave Cognitive Radio

1. We develop the new sensing mechanisms that are good for the in-band

sensing, which requires a short delay in noticing the legitimate transmis-

sion. [71]

2. We apply the cognitive radio with new sensing technique in the WiFi

network [19].

1.3.2 Fundamental Limits of Interweave Cognitive Radios

1. We verify the optimal power allocation and channel sensing strategy and

corresponding capacity with the exact probability of the channel being

available.

2. We establish a practical solution to obtain the capacity [55].

14



1.3.3 Capacity of Overlay Cognitive Radios

1. We characterize the capacity of overlay cognitive radio with partial knowl-

edge in the interference channel by obtaining inner and outer bounds for

it. [46]

2. We characterize the capacity of overlay cognitive radio with the addi-

tional legitimate messages in the interference channel [56].

1.4 Organization

Each of the following chapters describes the completed work of each

research topic. Chapter 2 is on the sensing of the interweave cognitive radio;

Chapter 3 deals with the resource allocation of the interweave cognitive radio;

Chapter 4 works on the fundamental limits on the overlay cognitive radio with

partial information. Chapter 5 solves the problem in the capacity of the overlay

cognitive radio with additional information. Finally, Chapter 6 concludes with

a summary.

15



Chapter 2

Sensing in Interweave Cognitive Radios

2.1 Introduction

In this chapter we introduce the new sensing technique which is suitable

for in-band sensing. We focus on reducing the delay of notice in the sensing,

and this is achieved by bringing the capability of the cognitive radio to cancel

the self interference. This new technique is applied to WRAN cognitive radios

and the cognitive radio system which shares the channel with WLAN and

provide incumbent protection to the WLAN users.

2.1.1 Our Contributions

Our main contributions in this chapter are as follows:

1. We develop a new sensing technique, which is called full duplex cognitive

radio.

2. We compare the performance of a full duplex cognitive radio numerically

with that of a conventional energy detector.

3. We build a full duplex cognitive radio, and determine its performance.

4. We apply a full duplex cognitive radio to different groups of network.
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In-band

sensing

Figure 2.1: In-band sensing

2.2 Conventional Half duplex cognitive radio and its
limitation

Figure 2.1 illustrates the operation of the conventional half duplex cog-

nitive radio. It halts its transmission awhile and senses the in-band channel,

and this in-band sensing is conducted periodically. Thus, the cognitive radio

can empty the channel if the in-band sensing detects the legitimate signal.

Figure 2.2 shows the timing for the transmission and in-band sensing of the

cognitive radio and entrance of the legitimate radio. The time interval between

two consecutive in-band sensings in a half duplex cognitive radio is called sens-

ing interval, and we denote it by TP,half . The sensing time for the half duplex

radio denoted by TS,half is the time duration taken for in-band sensing. We

use the energy detector here because it is simple and its short sensing time is

desirable for an in-band sensing. Figure 2.3 shows the operation of the half

duplex cognitive radio sensing. The detection ability of an energy detector,

which is represented by the probability of detection error and false alarm, is

well known from [12]. We obtain the probability of false alarm for the half
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Figure 2.2: Sensing timing

halfD

Figure 2.3: Half duplex cognitive radio with energy detection

duplex cognitive radio with an energy detector as follows:

Pf,half = P (Dhalf > λhalf |H0) =
Γ
(
TS,halfW,

λhalf
2

)
Γ (TS,halfW )

. (2.1)

Here, W is the bandwidth of the legitimate radio’s signal, Dhalf is the detec-

tion value which is obtained as is shown in Figure 2.3, λhalf is the threshold

value for a half duplex cognitive radio, and H0 indicates that there is no le-

gitimate transmission. Γ(·) and Γ(·, ·) are the complete and upper incomplete

gamma functions, respectively. The probability of detection error for half du-
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plex cognitive radio, Pd,half , is given by

Pd,half = P (Dhalf < λhalf |H1)

= 1−QTS,halfW

(√
2γhalf ,

√
λhalf

)
= e−

γhalf
2

∞∑
j=0

(γhalf
2

)j
j!

Q (λhalf ; 2TS,halfW + 2j) , (2.2)

where H1 indicates that there exists legitimate radio’s transmission, and γhalf

is the non-central parameter, which is signal energy to noise power ratio.

QTS,halfW (·, ·) is the generalized TS,halfW order Marcum Q function, andQ (x; k)

is the cumulative distribution function of the central chi-squared distribution

with k degrees of freedom, which is given by

Q (x; k) =
γ
(
k
2
, x

2

)
Γ
(
k
2

) . (2.3)

Here, γ(·, ·) is the lower incomplete gamma function. It is known that there

is a trade-off between the probability of detection error and the probability

of false alarm, which depend on the threshold value, λhalf . Also, trade-off

curve shrinks as TS,halfW increases [24]. Thus, the sensing accuracy of the

half duplex cognitive radio with the energy detector increases as the sensing

time TS,half becomes larger.

We then calculate the delay of notice of the half duplex cognitive radio.

As shown in Figure 2.2, a legitimate radio accesses the channel regardless of the

existence of the legitimate radio expecting that the cognitive radio will leave

the channel when the cognitive radio detects the signal. However, the cognitive

radio does not stop its transmission until the start of the in-band sensing. The
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delay of notice is also called the interference time, and it is denoted as TI,half .

The value of it is the time from the entrance of the legitimate radio to the

start of the in-band sensing, as is shown in Figure 2.2. We protect incumbent

transmission by restricting the maximum interference time:

max(TI,half ) = TP,half − TS,half ≤ Tmax. (2.4)

We can surely reduce the maximum interference time for the half duplex cog-

nitive radio by reducing TP,half or increasing TS,half . However, it reduces the

efficiency of the half duplex cognitive radio, which is defined by

ηhalf =
TP,half − TS,half

TP,half
. (2.5)

Usually, the half duplex cognitive radio senses the in-band channel at the end

of the frame. Thus, the sensing period is at least greater than the frame size

plus the sensing time. Thus, the maximum delay of notice, interference time,

is very large. Even though the sensing time is kept small by using the energy

detector, the maximum delay of notice is still large.

2.3 Full Duplex Cognitive Radio Sensing

In this section, we propose the full duplex cognitive radio sensing, which

can reduce the delay of notice significantly. A full duplex cognitive radio

can cancel the self interference caused by its own transmission. Reduction

of the self interference is done by using antenna, RF, and digital cancelation

techniques, as in [70, 71]. Again, the cognitive radio senses the in-band channel
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fullD

Figure 2.4: Full duplex cognitive radio’s energy detection

in order to evacuate from that channel if there is a returning legitimate user.

Figure 2.4 shows the block diagram of the in-band sensor for the full duplex

cognitive radio which uses an energy detector. An antenna configuration which

utilizes antenna placement is not included in this diagram. The cognitive radio

receives the intended signal along with the self interference and white Gaussian

noise. A band pass filter is applied to extract the signal of the band in interest,

and the self interference is reduced using the RF canceler, and further canceled

digitally after sampling. Then, energy is calculated, and detection is made.

The benefit which comes from using the full duplex cognitive radio is that it

can constantly transmit its signal while sensing the channel at the same time.

There is no separation of sensing and transmission, since the self interference

cancelation enables the cognitive radio to detect the legitimate transmission

seamlessly while transmitting. Since the full duplex cognitive radio does not

stop its transmission for in-band sensing, its efficiency, ηfull = 1.

Furthermore, the interference time (delay of notice) for the full duplex

radio, TI,full, can be reduced as well. Figure 2.5 shows the timing of the

legitimate signal and in-band sensing. A sliding window with the size of TS,full

is used in calculating the energy such that the energy detector calculates the
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Figure 2.5: Full duplex cognitive radio’s interference time

sum energy of the signal within the window, and slides the window after the

detection is made. The full duplex radio can detect the legitimate transmission,

if the window is completely filled with a legitimate signal, which makes the

maximum interference time to be

maxTI,full = TS,full.

If the full duplex cognitive radio is able to remove self-interference completely,

the sensing ability is not affected by its transmission. Then, we can set the

sensing time of the full duplex cognitive radio same as that of the half duplex

cognitive radio, i.e.

TS,full = TS,half .
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Thus, by using the full duplex cognitive radio, we can ideally reduce the in-

terference time to TS,half while maintaining the detection ability. However,

the interference cancelation is not perfect in practice, and there is a residue

of interference, as in [71]. The remaining interference affects the performance

of the cognitive detection. Thus, it is necessary to analyze the probability of

detection error and false alarm, and design TS,full accordingly.

[71] models the received signal after three steps of cancelations. Due

to the frequency distortion in the antenna cancelation stage, mismatch in the

parameters in the RF cancelation stage, and estimation error in the digital

cancelation, interference cannot be canceled out entirely. The signal after

three steps of cancelation can be described as

y(n) =

{
xs,e

(
n
W

)
+ z

(
n
W

)
, H0

x
(
n
W

)
+ xs,e

(
n
W

)
+ z

(
n
W

)
, H1

, (2.6)

where xs,e
(
n
W

)
is the residue of self interference left due to limitation of inter-

ference cancelation. Also, self interference may be stronger than the maximum

level of interference cancelation capability of a full duplex radio, which is about

55dB in [71]. After passing through the energy detector, the decision value for

the full duplex cognitive radio, Dfull, becomes

Dfull =



TfullW∑
n=1

∣∣∣xs,e ( n
W

)
+ z

( n
W

)∣∣∣2 , H0

TfullW∑
n=1

∣∣∣x( n
W

)
+ xs,e

( n
W

)
+ z

( n
W

)∣∣∣2 , H1

. (2.7)

Again, the received signal is normalized such that z
(
n
W

)
∼ N(0, 1). The signal

energy to noise power ratio of the legitimate signal, γfull, and the interference

23



energy to noise power ratio, γI , are expressed as follows:

γfull =

TS,fullW∑
n=1

∣∣∣x( n
W

)∣∣∣2 , γI =

TS,fullW∑
n=1

∣∣∣xs,e ( n
W

)∣∣∣2 .
Also, we define the signal and interference to noise ratio, Γ, which takes the

form

Γ =

TS,fullW∑
n=1

∣∣∣x( n
W

)
+ xs,e

( n
W

)∣∣∣2
=γfull + γI

+

TS,fullW∑
n=1

(
2<
(
x
( n
W

))
<
(
xs,e

( n
W

))
+ 2=

(
x
( n
W

))
=
(
xs,e

( n
W

)))
.

(2.8)

Even with constant SNR and INR, the signal and interference to noise ratio

is randomly distributed, and follows the distribution PΓ (γ). The decision

statistic follows the distribution of

Dfull ∼
{
χ2

2TS,fullW
(γI), H0∫∞

0
χ2

2TS,fullW
(γ)PΓ (γ) dγ, H1

. (2.9)

Finally, we can obtain the expression for the probability of false alarm and

detection error for a full duplex cognitive radio. The probability of false alarm

for the full duplex radio, Pf,full, can be expressed as follows:

Pf,full = P (Dfull > λfull|H0) = QTS,fullW

(√
2γI ,

√
λfull

)
. (2.10)

We calculate the probability of detection error for the full duplex cognitive

24



radio, Pd,full as follows:

Pd,full = P (Dfull < λfull|H1)

= 1−
∫ ∞

0

QTS,fullW

(√
2γ,
√
λfull

)
PΓ (γ) dγ

=

∫ ∞
0

e−
γ
2

∞∑
j=0

(
γ
2

)j
j!

Q (λfull; 2TS,halfW + 2j)PΓ (γ) dγ. (2.11)

Before we further investigate Pd,full, we present the following lemma.

Lemma 1. The function f (γ), which is defined by

f (γ) = e−γ
∞∑
j=0

γj

j!
Q (2λ; 2k + 2j) , (2.12)

is convex if γ ≥ λ.

Proof: We take the second derivative of f (γ); then it becomes

f ′′ (γ) = e−γ
∞∑
j=0

γj

j!

(
Q (2λ; 2k + 2j) +Q (2λ; 2k + 2j + 4)
−2Q (2λ; 2k + 2j + 2)

)
(a)
= e−(γ+λ)

∞∑
j=0

γj

j!

(
λk+j

(k + j)!
− λk+j+1

(k + j + 1)!

)
(b)
= e−(γ+λ)

((
λ

γ

) k
2

Ik

(
2
√
λγ
)
−
(
λ

γ

) k+1
2

Ik+1

(
2
√
λγ
))

(c)
> e−(γ+λ)

((
λ

γ

) k
2

Ik+1

(
2
√
λγ
)
−
(
λ

γ

) k+1
2

Ik+1

(
2
√
λγ
))

≥ 0 ∀γ ≥ λ,

where Ik(x) is a modified bessel function. (a) comes from reducing the func-

tion Q(; ) to gamma functions and by finding recurrence relations in the low
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incomplete gamma functions. (b) is obtained by finding the closed form equa-

tion of the regularized hypergeometric function. Inequality in (c) is proven

in [25]. [25] provides useful bounds for the modified bessel function that can

be applied to the lemma above. The bound in (c) is not tight enough, and

multiple simulations with varying parameters show the result of f ′′ (γ) being

greater than 0 if γ ≥ λ− k. This is not a surprising result considering the ex-

pected value of the random variable with noncentral chi-squared distribution

with the degree of freedom, k, and the noncentral parameter, γ, is γ+k. Since

it is densely distributed around the mean, the tail probability decreases more

with increasing γ around the mean.

From Lemma 1, we have that Pf,full(γ), the probability of detection

error function of noncentral parameter, is a convex function in the following

region:

γ > λfull. (2.13)

If being more aggressive, we use the condition

γ > λfull − 2TS,fullW (2.14)

, where the probability of detection error function is convex. Next, we find

the distribution of the random variable, Γ. The distribution of this signal and

interference to noise radio is approximated in the following lemma.

Lemma 2. The probability distribution of the signal interference to noise ratio,
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Γ, can be approximated as

PΓ(γ) =

 1
σfull

√
2π
e
−

(γ−mfull)
2

2σ2
full if −

√
γfullγI√
TS,fullW

≤ γ −mfull ≤
√

γfullγI√
TS,fullW

0 o/w

where σ2
full =

2γfullγI
TS,fullW

, and mfull = γfull + γI .

Proof: (2.8) shows that Γ is the sum of 2TS,fullW number of independent and

identically distributed random samples with the offset γfull + γI . Each sample

has a mean of zero, and its variance is as follows:

E
[(

2<
(
x
( n
W

))
<
(
xs,e

( n
W

)))2
]

= E
[(

2=
(
x
( n
W

))
=
(
xs,e

( n
W

)))2
]

=
γfullγI

(TS,fullW )2 .

According to the central limit theorem, signal and interference to noise ratio,

Γ, obeys the Gaussian distribution.

Γ ∼ N

(
γfull + γI ,

2γfullγI
TS,fullW

)
.

Also, from the Chernoff bounds, we have

Pr

|Γ− (γfull + γI)| ≥
√

γfullγI√
TS,fullW

 ≤ 2e−
√

TS,fullW

4 ≈ 0.

Thus, we can approximate the probability distribution of Γ as in Lemma 2.

With Lemma 1 and Lemma 2, we obtain the bounds for Pd,full as in the next

two theorems.

Theorem 1. Pd,full is lower bounded as

Pd,full ≥ 1−QTS,fullW

(√
2 (γfull + γI),

√
λfull

)
,
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when

λfull ≤ γfull + γI −
√

γfullγI√
TS,fullW

. (2.15)

Proof: From Lemma 2, Γ is larger than λfull under the condition (2.15).

Then, using the convexity from Lemma 1, we apply Jensen’s inequality rule,

and obtain

Pd,fullγfull = E
[
1−QTS,fullW

(√
2Γ,
√
λfull

)]
≥ 1−QTS,fullW

(√
2E[Γ],

√
λfull

)
= 1−QTS,fullW

(√
2 (γfull + γI),

√
λfull

)
.

We also obtain the following theorem on the upper bound.

Theorem 2. Pd,full is upper bounded as

Pd,full ≤1−QTS,fullW

(√
2 (γfull + γI),

√
λfull

)

+


2QTS,fullW

(√
2 (γfull + γI),

√
λfull

)
−QTS,fullW

(√
2 (γfull + γI − d),

√
λfull

)
−QTS,fullW

(√
2 (γfull + γI + d),

√
λfull

)
 1
√
π (TS,fullW )

1
4

,

where

d =

√
γfullγI√
TS,fullW

,

and when

λfull ≤ γfull + γI −
√

γfullγI√
TS,fullW

.
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Proof: Again, Γ is in the region which makes the function, f(γ) = 1 −

QTS,fullW

(√
2 (γ),

√
λfull

)
, convex. We define the function, g(γ), which lin-

early connects two extreme points and center point in f(γ) that are (γfull+γI−

d, f(γfull+γI−d)), (γfull+γI , f(γfull+γI)), and (γfull+γI+d, f(γfull+γI+d)):

g(γ) =

{
r1 (γ − (γfull + γI)) + f(γfull + γI) if γ ≤ γfull + γI
r2 (γ − (γfull + γI)) + f(γfull + γI) o/w

,

where

r1 =
f(γfull + γI)− f(γfull + γI − d)

d

=
QTS,fullW

(√
2 (γfull + γI − d),

√
λfull

)
−QTS,fullW

(√
2 (γfull + γI),

√
λfull

)
d

r2 =
f(γfull + γI + d)− f(γfull + γI)

d

=
QTS,fullW

(√
2 (γfull + γI),

√
λfull

)
−QTS,fullW

(√
2 (γfull + γI + d),

√
λfull

)
d

g(γ) ≥ f(γ), because f(γ) is convex. And, we have

Pd,full =E
[
1−QTS,fullW

(√
2Γ,
√
λfull

)]
≤1−QTS,fullW

(√
2 (γfull + γI),

√
λfull

)
+

∫ d

0

(r2 − r1)γPΓ(γ)dγ

(d)
≈1−QTS,fullW

(√
2 (γfull + γI),

√
λfull

)

+


2QTS,fullW

(√
2 (γfull + γI),

√
λfull

)
−QTS,fullW

(√
2 (γfull + γI − d),

√
λfull

)
−QTS,fullW

(√
2 (γfull + γI + d),

√
λfull

)
 1
√
π (TS,fullW )

1
4

,

where (d) is because 1− e
√
TS,fullW/2 approximates to 1.
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2.4 Numerical Analysis

In this section, we compare the performance of the full duplex cognitive

radio with that of the half duplex cognitive radio. The comparison is made

numerically. We bring some parameters from in-banding sensing in the 802.22

standard. For this standard, we have a bandwidth W = 6MHz, and the

delay of notice, TP,half − TS,half , is a multiple of the frame size (i.e., n · 10ms).

We set the delay of notice to be the minimum allowed time, 10ms. For the

half duplex radio, we test with the sensing time which makes time bandwidth

product, 2TS,halfW=100. We want to detect the legitimate signal of -116dBm

with both the probability of detection error and false alarm being less than 0.1.

Assuming noise floor to be formed at around -110dBm, we find the trade-off

curve between the probability of detection error and false alarm by varying

the detection threshold γhalf .

For full duplex radio, we assume that the interference power is 3dB

higher than the noise floor, which is a very conservative approach to the self

interference cancelation. We test with different time bandwidth products (i.e.

2TS,fullW =1000, 1200, 120000). Again, we obtain the trade-off curve between

the probability of detection error and false alarm. Figure 2.6 shows the perfor-

mance of the half and full duplex cognitive radio when SNR of legitimate signal

is -6dB, and INR of the self interference of full duplex radio is 3dB. In the fig-

ure, ub and lb stands for upper bound and lower bound respectively. First, we

match the interference time for the full duplex cognitive radio, TI,full to be the

same as that of the half duplex cognitive radio by having 2TS,fullW = 120000.
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Figure 2.6: Sensing performance comparison with SNR=-6dB and INR=3dB

Thus, interference time for the full duplex radio is 10ms. Then, it shows that

the probability of detection error and false alarm decays to 0, because the full

duplex cognitive radio can collect large amounts of data. Thus, it is known

that the full duplex cognitive radio can increase sensing ability while keep-

ing the interference time the same as that of the half duplex cognitive radio.

Next, we reduce the sensing time of the full duplex cognitive radio. By having

2TS,fullW = 1000, the upper bound of probability of the detection error and

the false alarm region includes the point where Pd,full ≈ 0.07 ≈ Pf,full. This

can also be obtained by the half duplex cognitive radio. Thus, we can con-

clude that the interference time can be reduced by a factor of 120. Next, we

increase the interference power. Some full duplex cognitive radios may not be

able to reduce self interference enough, and some may strategically overpower
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Figure 2.7: Sensing performance comparison with SNR=-6dB and INR=6dB

themselves in their transmission to the degree that there is much leftover self

interference. Figure 2.7 shows the sensing ability when SNR of legitimate sig-

nal is -6dB, and INR of the self interference of the full duplex cognitive radio is

6dB. The performance of the full duplex cognitive radio reduces significantly.

However, full duplex radio can still have a slightly lower probability of detec-

tion and false alarm, and reduce the interference time 100 times. Thus, we

have TI,full = 0.1ms. From this analysis, we can conclude that the full duplex

cognitive radio can theoretically reduce the delay of notice significantly.

2.5 Applications and Experimental Results

A full duplex cognitive radio is implemented on our testbed. This

testbed is similar to that in [71]. This radio is designed to transmit and
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Figure 2.8: Sensing performance comparison with SNR=0dB and INR=3dB

sense at the same time in the same frequency. We use the 2.4GHz ISM band

for this experiment. Figure 2.8 demonstrates the block diagram for our full

duplex cognitive radio testbed. We split the transmit signal into two, and

forward them to two transmit antennas, which are separated such that there

is half a wavelength’s difference between the distances from the receive an-

tenna to each transmit antenna. In the receive chain, the signal first passes

through the analog RF cancelation, which is implemented in our testbed us-

ing the QHX220 chipset. QHX220 takes in the received signal and reference

interference (noise), and it outputs the received signal with an attenuated self-

interference. The reference transmit signal (which is self-interference) is made

available to this chipset. As illustrated in Figure 2.8, a power splitter takes the
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transmit signal, and relays it to QHX220 as a reference interference. Then, the

output of QHX220 is down converted to baseband signal, and passes through

an analogue to digital converter (ADC). Finally, a Digital Signal Processor

(DSP) performs the digital cancelation in real-time (RT) and passes the signal

through a bandpass filter. A bandpass filter is used instead of a lowpass filter

to take away the severe DC offset which presents in our testbed. The energy

of the samples is calculated, and the decision is made whether the legitimate

user’s transmission exists or not. We use a real-time National Instruments

system (the NI PXIe-8133 RT) with a Xilinx SX-100 FPGA and baseband

transceiver (NI 5781) combined with RF transceiver (XCVR2450) to transmit

and sense a signal.

2.5.1 Application in 802.22 WRAN

A cognitive radio in 802.22 WRAN detects the signals in the TV bands.

TV (DTV) signals typically have a bandwidth of 6MHz [16]. It is required to

sense the signal of -116dBm with both probability of detection error and false

alarm less than 0.1. We transmit a pseudo DTV signal of 6MHz bandwidth and

constant power level. Transmit power of the pseudo DTV signal is carefully

adjusted manually such that the signal to noise ratio at the sensor (cognitive

radio) is -116dBm. First, a conventional sensing is developed with a simple

energy detector. Second, a full duplex cognitive radio’s sensing is implemented

with antenna setup, an RF canceler, and a digital canceler. We use a digital

Kaiser bandpass filter with 100KHz low cut off frequency, 3MHz high cut
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Figure 2.9: Sensing performance comparison with SNR=-6dB and INR=2dB

off frequency, and the filter order of 100. A transmit signal of the cognitive

radio uses the same channel with pseudo DTV signal. Interference to noise

ratio in our set up is about 2dB. Also, line of sight is provided in the set

up to eliminate fading effect as much as possible. Figure 2.9 demonstrates

the performance of the half duplex cognitive radio and full duplex cognitive

radio in our experiment. Different time bandwidth products are tried in the

experiment. The probability of detection error and false alarm is kept under

0.1 if we have 2TS,fullW = 1200 for full duplex cognitive radio, and the delay

of notice is 0.1msec. A similar but slightly higher probability of detection error

and false alarm can be achieved by the half duplex cognitive radio sensing with

2TS,halfW = 180. Here the delay of notice is close to the sensing period, which

is 10msec. It is shown by this experiment that the full duplex cognitive radio
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sensing can reduce the delay of notice one hundred times as much as the half

duplex cognitive radio sensing, while maintaining a slightly lower probability

of detection error and false alarm. Therefore, we conclude that the full duplex

cognitive radio is desirable for sensing in the 802.22 WRAN device. Note that

the experimental performance of the half duplex cognitive radio is not as good

as the result of numerical analysis. There can be several reasons for that; for

example, the channel may suffer from the fading effect.

2.5.2 Application in 802.11 WLAN

We apply the cognitive radio in the 802.11 WLAN. Here, the cognitive

radio tries not to enter the channel if the WLAN user is already using it and

evacuates from the channel if the WLAN user re-enters the channel. However,

under the current 802.11 protocol, WLAN users cannot re-enter the channel

if the cognitive radio is using the channel. In 802.11, media access control is

governed by a CSMA/CA DCF. The detailed DCF transmission process is as

follows [29]:

1. The sending station determines if the channel is idle before transmitting.

2. If the receiver senses no activity on the channel, the station assumes the

channel is idle.

• The station selects a random back-off interval.

• The station decreases the back-off interval counter while the channel

is idle.
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3. If the channel is determined to be busy, the sending station defers until

the end of the current transmission.

If the cognitive radio is occupying the channel, the WLAN sending station

defers though deferring is not necessary, because the WLAN sending station

cannot differentiate if it is the other WLAN user or the cognitive radio that is

accessing the channel currently. Thus, we modify the WLAN protocol to signal

the cognitive radio to evacuate from the channel. The modified CSMA/CA

distributed control function is as follows:

1. The sending station determines if the channel is idle before transmitting.

2. If the receiver senses no activity on the channel, the station assumes the

channel is idle.

• The station selects a random back-off interval.

• The station decreases the back-off interval counter while the channel

is idle.

3. If the receiver senses an activity on the channel, the station assumes the

channel is busy.

• The station transmits the banning control signal.

• After sending the banning control signal, the station senses the

channel again.
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Thus, if the WLAN user try to access the channel, and finds the channel to

be busy, it transmits the banning control signal. The banning control signal

is detected by the cognitive radio when it is conducting in-band sensing. An

important thing to note in the banning control signal design is that the length

of the banning control signal needs to be larger than the delay of notice.

Otherwise, the control signal may be left undetected. We build the cognitive

radio system with the WLAN radio which transmits the control signal if the

channel is busy. 802.11 standards on WLAN specifies the channel bandwidth

to be 20 or 40MHz, depending on the different bodies of the standard [29].

We assume that the WLAN user has a bandwidth of 20MHz, and the control

signal uses the same bandwidth. However, the cognitive radio uses the 10MHz

bandwidth because the self interference cancelation technique of the signal

more than 10MHz has not been studied well yet [71]. We break the wideband

channel into pieces, and make the bandwidth of the cognitive radio at most

10MHz. Therefore, even though the signal of 20MHz is present, we obtain

the signal within the bandwidth of interest by using the bandpass filter. The

rest of the detection algorithm is the same as that of the cognitive radio in

802.22 WRAN. We design that the bandwidth of the cognitive radio’s signal

is 10MHz. In this case, interference cancelation is not as good as when 6MHz

bandwidth is used, as is shown in [71]. We have an interference to noise ratio

of 2.3dB this time. Figure 2.10 shows the performances of the full and half

duplex cognitive radio sensing. The sensing ability of the full duplex cognitive

radio is not as good as those in 6Mhz bandwidth radio system, because there
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Figure 2.10: Sensing performance comparison with SNR=-6dB and
INR=2.3dB

is an increase in the interference. However, a full duplex cognitive radio is

capable of sensing the WLAN user’s banning control signal with an error rate

of 0.1. Even though sensing time for the half duplex cognitive radio is shorter

than that of the full duplex radio, it is delay of notice that is important. The

full duplex radio has a short delay of notice, 70µsec.

Thus, the WLAN station, upon finding that the channel is busy, trans-

mits a control sequence which has a length of 70µsec. The cognitive radio can

detect the channel with the probability of 0.1 when the received power of the

control signal is -116dBm. The WLAN station then can attempt to access the

channel without the presence of the cognitive radio. Assuming that there is

no propagation and processing delay, the WLAN user has a cognitive radio
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free channel in 70µsec.

On the other hand, it may be the other WLAN user who is occupying

the channel. If the new WLAN user attempts to use the channel, and transmits

the control signal, it acts as an interference to the transmission of the WLAN

user who is already using the channel. An 802.11 frame consists of frame

header, frame body, and FCS. The frame header and FCS is about 30 and 4

octets in size, respectively. An 802.11b frame can carry 0 to 2312 octets, while

802.11a and 802.11g frames can carry 0 to 4095 octets in the frame body. We

consider that the WLAN user has infinite buffer, thus it can bring as many

data to the frame as it wants. However, most drivers set the maximum frame

body size to 1500 octets to match the maximum Ethernet frame size. We

modify this a little bit such that the frame body can have 1500 or 3000 octets,

because it is easy for a driver to concatenate frames. As a result, frame size is

1534 octets for 802.11b, and 3034 for 802.11a and 802.11g. Maximum line rate

is 72 Mbps for 802.11a and 802.11g, and 11 Mbps for 802.11b, which makes

the length of 802.11b frame 1.12msec, and the 802.11a and 802.11g frames

0.32msec. Thus, 802.11 WLAN users may face interference up to 22 percent

of the time. It is controversial if this interference from using the control signal

is sustainable.

We compromise the sensing ability of the cognitive radio such that it

can detect the signal of -110dBm power with the probability of false alarm and

detection error of 0.1. Figure 2.11 illustrates the performance of the full duplex

radio and half duplex radio when the detecting signal has -110dBm power. It
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Figure 2.11: Sensing performance comparison with SNR=0dB and INR=2.3dB

shows that detection can be done in 2µsec, making the delay of notice and the

length of the control signal to be 2µsec. 2µsec of control signal interferes with

the other WLAN user’s frame 6.25% of the time. In the extreme case (i.e.,

when two WLAN users are close enough), this interference from the control

signal is so high that the WLAN user’s data cannot be decoded. We throw

a random bit for the bits that face the interference, and obtain a 0.003125

raw bit error rate. With the help of error correction code, this frame can

be detected. From this experiment, we prove that the secondary full duplex

cognitive radio system with primary 802.11 WLAN can increase the spectral

efficiency without compromising the network throughput of the WLAN users.
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Chapter 3

Resource Allocation in Interweave Cognitive

Radio

3.1 Introduction

In this chapter, we focus on the interweave cognitive radio with multiple

sub-channels. In this setting, there are two parameters that determine system

performance: a. which subset of sub-channels should be sensed and b. what

power must be allocated to each sub-channel. Selecting which channel to sense

is typically an integer program, and thus hard to solve exactly. This is further

compounded by the fact that the power allocation is tightly coupled with the

selection process.

3.1.1 Our Contributions

Our main contributions in this chapter are as follows:

1. We establish the power control and thus, the fundamental capacity limit

of cognitive radio with multiple channels.

2. We establish a practical but approximate algorithm for joint power allo-

cation and sub-channel selection.
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Figure 3.1: Channel model

3.2 System Model and Problem Statement

The channel model is shown in Figure 3.1. We consider N paral-

lel legitimate channels with equal bandwidth. In each time slot, a channel

n,where1 ≤ n ≤ N , is occupied by a legitimate user with probability qn.

There is one cognitive transmitter and cognitive receiver pair. The cognitive

transmitter is allowed to transmit over channel n, if it is not occupied by any

legitimate user. In legitimate channel n, cognitive radio’s channel is charac-

terized mathematically as:

Yn = Xn + Zn

where Zn is additive Gaussian noise of variance σ2
n. This noise variance can

be different from channel to channel, as it represents the fading state of a

particular channel. At the start of every time slot, the cognitive transmitter

senses a subset of channels, and is allowed to exploit those channels that are
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unoccupied; in this paper, we assume that the sensing is performed perfectly.

As N is large, we require it to cleverly choose a subset of bands on which to

focus its efforts. In order to guarantee the transmission of the legitimate users,

the cognitive transmitter cannot use the channel which is not sensed. The

capacity of the cognitive radio depends on its choice of sensing channels (from

N parallel channels) and its power allocation among the available channels.

Average total transmission power of cognitive transmitter is constrained to P .

First, define the In(t) and IE,n(t) to be the indicator function for the

channel selected for sensing and an indicator function for the occupied channel

at time instance t, respectively, i.e.,

In(t) =

{
0 if channel n is not to be sensed
1 if channel n is to be sensed

(3.1)

IE,n(t) =

{
0 if channel n is occupied
1 if channel n is unoccupied

. (3.2)

The time average capacity of the cognitive radio with the selection of the sens-

ing channel IN,T = (I1(1), ..., IN(1), ..., I1(T ), ..., IN(T )) and power allocation

PN,T = (P1(1), ..., PN(1), ..., P1(T ), ..., PN(T )) in one time block, C
(
IN,T , PN,T

)
,

can be numerically expressed as

C
(
IN,T , PN,T

)
=

1

T

N∑
n=1

T∑
t=1

In(t)IE,n(t)

2
log

(
1 +

Pn(t)

σ2
n

)
,

where T is the number of time slots in each time block.

We assume two constraints on the cognitive radio:

1. An average power constraint of P ,

2. L, number of channels to be sensed at any given time, ≤ N .

44



The resulting optimization problem can be stated as follows:

max
IN,T ,PN,T

C
(
IN,T , PN,T

)
(3.3a)

such that

1

T

N∑
n=1

T∑
t=1

In(t)IE,n(t)Pn(t) ≤ P, (3.3b)

N∑
n=1

In(t) ≤ L, (3.3c)

In(t) ∈ {0, 1}, Pn(t) ≥ 0, for all (n = 1, ..., N), (t = 1, ..., T ). (3.3d)

The optimization problem given by (3.3) determines the maximum empirical

average rate achieved by the cognitive radio given constraints on the system.

It is an integer programming (IP) due to the constraints in (3.3d), and multi-

dimensional due to its dependence on time t.

3.3 Optimal Power Allocation and Selection of Sensing
Channel

As a first step, we assume that our policy is ergodic and “static”, i.e.,

that our sensing and power allocation policies are only functions of the channel

statistics and do not evolve with time. C
(
IN , PN

)
, the average capacity of

the cognitive radio with the selection of the sensing channel IN = (I1, ..., IN)

and power allocation PN = (P1, ..., PN), is calculated as follows:

C
(
IN , PN

)
=

N∑
n=1

Inqn
2

log

(
1 +

Pn
σ2
n

)
. (3.4)
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This results in the following (simplified) optimization problem:The resulting

optimization problem of interest is to maximize C
(
IN , PN

)
such that

N∑
n=1

InqnPn ≤ P,

N∑
n=1

In ≤ L, (3.5)

In ∈ {0, 1}, Pn(t) ≥ 0, for all (n = 1, ..., N). (3.6)

3.4 Optimal Power Allocation and Selection of Sensing
Channel

First, we find the optimal power allocation strategy with a given chan-

nel selection, IN . The optimal power allocation is given by the following

theorem:

Theorem 3. C
(
IN , PN

)
is maximized when:

Pn =
⌈
λ− σ2

n

⌉+
In,

where

N∑
n=1

⌈
λ− σ2

n

⌉+
Inqn = P,

and dwe+ is a maximum value of 0 and w.

Proof: Since Pn = 0 where In = 0, the first constraint in (3.5) can further be

relaxed to

N∑
n=1

qnPn ≤ P. (3.7)
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Figure 3.2: Modified water-filling

By applying the Karush-Kuhn-Tucker (KKT) conditions, we obtain the fol-

lowing equations on Pn:

Inqn log e

2 (Pn + σ2
n)
− λ′qn + λn = 0,

λ′

(
N∑
n=1

I∗nqnPn − P

)
= 0, λnPn = 0.

As a result, we obtain

Pn =

⌈
In log e

2λ′
− σ2

n

⌉+

=
⌈
λ− σ2

n

⌉+
In, (3.8)

where
∑N

n=1 Inqn dλ− σ2
ne

+
= P . This optimal power allocation is very similar

to the water-filling as shown in Figure 3.2. A little difference is that we only
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allocate the power where the sensing is performed, and more power tends

toward the channel with a higher qn and lower σ2
n whereas the water-filling

solution allocates more power to the channel where it has lower σ2
n. We refer

to this policy as modified water-filling throughout this paper. Given that we

understand the structure of the power allocation policy, we now desire to

determine In for n = 1, ..., N . Note again that the optimization problem with

respect to In is an integer programming (IP). It can be found by an exhaustive

search, but is computationally very hard to solve.

3.5 Joint Selection and Power Control

A typical IP is non-polynomial in complexity. Our focus is on develop-

ing a complexity-wise practical algorithm customized to this problem setting.

We perform this in two steps, which we call “coarse” and “fine” optimization.

The coarse optimization step determines a set of L channels which gives us the

lowest possible water-level, λmin. The fine optimization step uses λmin, which

we obtain from coarse optimization to further optimize the choice of the L

channels. First, we describe the coarse optimization step:

Coarse Optimization: We iteratively find the channels to sense which

incur the lowest water level in modified water-filling. Let λmin denote the low-

est water level, and INc = (Ic,1, ..., Ic,N) and PN
c = (Pc,1, ..., Pc,N) indicate the

selection of the channel and power allocation which result in λmin. Procedures

to find λmin, Icn, and P c
n are as follows:

48



1. Start with L random initial channels. For example, Ic,n = 1 for n =

1, ..., L, and Ic,n = 0 otherwise.

2. Perform the modified water-filling with INc , and obtain λmin and PN
c ,

which satisfy equations in Theorem 3.

3. Calculate qn(λmin − σ2
n), and select the largest L channels. Update INc

with those channels.

• If INc is the same from the previous iteration, terminate the itera-

tion.

• Otherwise, repeat from 2).

The optimality of the coarse optimization in one special case is given by the

following Lemma.

Theorem 4. Define Sc to be the set of the channels which are selected from

coarse optimization:

Sc = {n ∈ [1, N ]|Ic,n = 1}.

If the noise variances of all the channels which are not selected in the coarse

optimization are greater than the lowest water level λmin, i.e.,

σ2
n ≥ λmin, ∀n ∈ [1, N ], n /∈ Sc

then the coarse optimization is optimal.
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Proof: Consider any set of L channels S 6= Sc. Assume that average capacity

with channels in S with optimal power allocation, C(S), is greater than the

average capacity with channels in Sc with optimal power allocation, C(Sc).

Take the union of S and Sc, and perform the modified water filling among

those channel. Resulting average capacity C(S ∪ Sc) is supposed to be greater

than C(S). However, modified water filling with the channels in S∪Sc allocates

power to the channels in Sc only. Thus, C(S ∪ Sc) = C(S), and it contradicts

the earlier assumption. This concludes the proof. Theorem 4 indicates that the

coarse optimization is optimal when the λmin is less than the noise variances of

the unselected channels, and it happens when we have low signal to noise ratio

(SNR). Thus, the coarse optimization is optimal in the low SNR region, but

further optimization is required when SNR is high, in which case we perform

the fine optimization.

Fine Optimization: We assume that the channels with noise variance

larger than λmin do not contribute in increasing the average capacity. We rear-

range the useful channels by indexing from 1 to M , where M is the number of

channels that has noise variance smaller than λmin, and solve the optimization

problem. The optimization problem can be rewritten as follows:

max
λ,IM

C
(
λ, IM

)
= max

λ,IM

M∑
n=1

qn
2

log

(
1 +
dλ− σ2

ne
+
In

σ2
n

)

= max
λ,IM

M∑
n=1

qnIn
2

⌈
log

λ

σ2
n

⌉+

,

(a)
= max

λ,IM

M∑
n=1

qnIn
2

log
λ

σ2
n

,
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such that

M∑
n=1

⌈
λ− σ2

n

⌉+
Inqn

(b)
=
(
λ− σ2

n

)
Inqn ≤ P,

M∑
n=1

In ≤ L, λ ≥ λmin

where (a) and (b) result from constraining λ ≥ λmin. Then, the sub-optimal

channel selection and power allocation can be determined by using the follow-

ing theorem:

Theorem 5.

λ =

∑M
n=1 qnInσ

2
n + P∑M

n=1 qnIn

In = 0 if λ > σ2
ne

1−σ
2
n
λ

Proof: Relax the constraint on In, such that the In can take the value in

the region [0, 1]. We aim to find the optimal channel selection and power

allocation by applying KKT conditions. However, direct application does not

provide useful conditions. Thus, we modify the optimization as follows:

max
λ,IM

M∑
n=1

qnI
k
n

2
log

λ

σ2
n

, (3.9)

such that

(
λ− σ2

n

)
Iknqn ≤ P,

M∑
n=1

In ≤ L, (3.10)

λ ≥ λmin, 0 ≤ In ≤ 1.
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We set the k value to be smaller than 1, which narrows the region of IM in

conditions (3.10). We wish that this results in the channel selection solution,

IM , to become integer value at the end. Also, by having k to be smaller than

min
σ2
n

(
log λmin

σ2
n

log λmin
σ2
n

+ log e

)
,

(3.9) becomes concave. However, by setting k to be less than 1, conditions

in (3.10) loses its convexity. Thus, a solution from KKT condition is not

guaranteed to produce the global maximum. From the KKT condition, we

have

kqnI
k−1
n log λ

σ2
n
− µ0qn(λ− σ2

n)

−µ1 + µ2,i − µ3,i
= 0 (3.11)

M∑
n=1

qnI
k
n

log e

λ
− µ0

M∑
n=1

qnIn + µ4 = 0 (3.12)

µ0

(
M∑
n=1

qnIn(λ− σ2
n)− P

)
= 0, (3.13)

µ1

(
M∑
n=1

In − L

)
= 0, (3.14)

µ2,iIn = 0, (3.15)

µ3,i(In − 1) = 0, (3.16)

µ4(λ− λmin) = 0, (3.17)

where µ0, µ1, µ2,i, µ3,i, and µ4 are non-negative values. From the condition

(3.12), µ0 is non-zero in order for λ to be positive. Then, from the condition

(3.13), we have

M∑
n=1

qnI
k
n(λ− σ2

n) = P. (3.18)
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From the condition (3.11), we find that

In =


(
qn log λ

σ2
n
− µ0qn(λ− σ2

n)− µ1

)
k

µ3,i − µ2,i


1

1−k

If In is not either 0 or 1, from conditions (3.15) and (3.16), µ2,i and µ3,i becomes

0, which will result in making In an infinite number. Thus, In takes either 0,1

value, which gives the desirable solution, such that the optimization of the

relaxed condition coincides with the condition for the original problem, and

λ =

∑M
n=1 qnInσ

2
n + P∑M

n=1 qnIn
. (3.19)

We set µ4 to be zero, and we obtain

In =

(
qn log λ

σ2
ne

1−σ
2
n
λ

− µ1

)
k

µ3,i − µ2,i

1
1−k

. (3.20)

As a result, In can be 1 only if

λ > σ2
ne

1−σ
2
n
λ . (3.21)

This concludes the proof. With the Theorem 5, we can design an iterative

algorithm to find the selection of channels to sense and water-level (water-level

is directly related to the power allocation). We denote the channel selection

from fine optimization as IMf , and the water-level result as λf .

1. Bring the channels from coarse optimization to be the initial channels.

If,n =

{
1 if n ∈ Sc
0 otherwise
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2. Calculate the water-level λf from (3.19)

3. Calculate λf − σ2
ne

1−σ
2
n
λf , and select the largest L channels. Update IMf

• If IMf is the same from the previous iteration, terminate the itera-

tion, and set the power allocation accordingly from λf and channel

selection values, IMf .

• Otherwise, repeat from 2).

Following from Theorem 5, this algorithm gives the efficient joint channel

selection and power allocation algorithm. It may result in the local maximum.

However, we start the iteration from the coarse optimization value, and believe

that water-level increase from λc is not significant, and converges into the

global optimal solution.

3.6 Numerical Analysis

In this section, we present numerical result of capacities for coarse and

fine optimization along with optimal solution. Frequency selective channel,

N = 16, L = 8, is made by adapting multi-path fading, and occupation of the

legitimate channel is modeled by having qn be uniform i.i.d. in [0, 1]. Figure

3.3 shows that performance of the fine optimization meets with that of optimal

one as Theorem 5 states. Coarse optimization also performs optimally in the

low SNR region. Overall, computationally practical joint channel selection

and power allocation are shown to perform as well as the optimal one.
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Chapter 4

Capacity on the Overlay Cognitive Radio with

Partial Information

4.1 Introduction

Chapter 4 and 5 study the capacity region of classes of overlay cog-

nitive radio. In this overlay cognitive radio setting, there is a unidirectional

cooperation from the cognitive radio to the legitimate radios. It is different

from the wireless systems with cooperation, where transmitters cooperate with

each other [57]. Unidirectional cooperation of the overlay cognitive radio is

assumed because we do not intend to have legitimate radios to change their

structures or protocols due to the presence of the cognitive radio.

In this chapter, we focus on the overlay cognitive radio channel with

imperfect cognitive information. Even though the capacity region of the over-

lay cognitive radio with perfect cognitive information is well established, it is

hard to assume that perfect message sets of legitimate radio are provided to

the cognitive radio in practice. We find the capacity region of this overlay

cognitive radio with the partial information.

4.1.1 Our Contributions

Our main contribution in this chapter is as follows:
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1. We establish outer bound for capacity of overlay cognitive radio with

partial information

2. We establish achievable scheme, and inner bound for capacity of overlay

cognitive radio with partial information

3. We analyze gap between outer and inner bound.

4.2 System Model and Preliminaries

First, we describe the notations that are used in this paper. Random

variables are written in capital letters, and their realizations are denoted by the

corresponding lower-case letters. Xn
m denotes the random vector (Xm, ..., Xn),

Xn denotes the random vector (X1, ..., Xn), and Xn\m denotes the random

vector (X1, ..., Xm−1, Xm+1, ..., Xn). Also, for any set S, S denotes the convex

hull of S, and S̃ means the complementary set of S. Finally, the notation

X ⇔ Y ⇔ Z is used to denote that X and Z are conditionally independent

given Y .

4.2.1 Discrete Memoryless Partially Cognitive Radio Channels

A two-user interference channel as in Figure 4.1 is a quintuple

(X1,X2,Y1,Y2, p), where X1,X2 are two input alphabet sets; Y1,Y2 are two out-

put alphabet sets; p(y1, y2|x1, x2) is a transition probability. Since we confine
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Figure 4.1: Discrete memoryless partially cognitive radio model

channel to be memoryless, the transition probability of yn1 , y
n
2 given xn1 , x

n
2 is

p(yn1 , y
n
2 |xn1 , xn2 ) =

n∏
i=1

p(y1,i, y2,i|x1,i, x2,i).

This channel model is similar to that of an interference channel with

difference being the message sets at each transmitter. Transmitter 1 is the

legitimate user, which communicates messages from the sets W0 ∈ {1, ...,M0}

and W1 ∈ {1, ...,M1} to Receiver 1, the legitimate receiver. Transmitter 2, the

cognitive transmitter communicates a message W2 ∈ {1, ...,M2} to Receiver 2,

the cognitive receiver. The unique feature of this channel is that the realization

of W0 is known to both transmitters 1 and 2, which allows partial and unidirec-

tional cooperation between the transmitters. Difference between this channel

model and interference channel with common message is that W0 does not need

to be decoded in Receiver 2, the cognitive receiver. Also, it is different from

interference channel with transmitter cooperation, where all the message sets

are shared between transmitters. An (R0, R1, R2, n, Pe,0, Pe,1, Pe,2) code is any

code with the rate vector (R0, R1, R2) and block size n, where Rt , log(Mt)/n

bits per usage for t = 0, 1, 2. As discussed earlier, W0 and W1 are the mes-
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sages that Receiver 1 must decode with (average) probabilities of error of at

most Pe,0, Pe,1 respectively, and W2 is the message that Receiver 2 must decode

with an error probability of at most Pe,2. Rate triplet (R0, R1, R2) is said to be

achievable if the error probabilities Pe,t for t = 0, 1, 2 can be made arbitrarily

small as the block size n grows. The capacity region of the interference channel

with a partially cognitive transmitter is the closure of the set of all achievable

rate triplets (R0, R1, R2). The main goal of the users, legitimate and cognitive,

is to maximize in general µ0R0 + µ1R1 + µ2R2 for some nonnegative numbers

µ0, µ1, and µ2.

Note that if the optimization problem above was unconstrained, the

optimal value will also set R1 to zero. In essence, the optimization problem

would transform the system into a fully cognitive model. To obtain a viable

partially cognitive solution, we place a restriction on the pair (R0, R1), requir-

ing that R1 ≥ µR0 for some positive number µ. In some sense, µ represents

the degree to which the cognitive radio is cognizant of the legitimate radio’s

message. When µ→ 0, it represents full cognition as it removes any restriction

on R1, and when µ→∞, it represents no cognition as it sets R0 to zero.

4.2.2 Gaussian Partially Cognitive Radio Channel

In the Gaussian IFC, input and output alphabets are the real R, and

outputs are the linear combination of the inputs and additive white Gaussian

noise. A Gaussian IFC model in Figure 4.2 is characterized mathematically as
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Figure 4.2: Gaussian partially cognitive radio channel

follows:

Y1 = X1 + bX2 + Z1,

Y2 = aX1 +X2 + Z2, (4.1)

where a and b are real numbers and Z1 and Z2 are independent, zero-mean,

unit-variance Gaussian random variables. Further, each transmitter has a

power constraint

1

n

n∑
i=1

E[X2
t,i] ≤ Pt, t = 1, 2.

This concludes our description of the models considered in this paper.

The next section describes the outer bound on the capacity region for these

channels under “weak” interference condition.

4.3 The Outer Bound Region

4.3.1 Discrete Memoryless Partially Cognitive Radio Channels

For a discrete memoryless channel, under the condition

X2|X1 ⇔ Y2|X1 ⇔ Y1|X1, (4.2)
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we say that the legitimate receiver is observing weak interference [53], [52]. In

this setting, we present an outer bound on the rate region using the following

theorem:

Theorem 6. The convex closure of the following inequalities defines an outer

bound on the capacity region of “weak” partially cognitive radio channels:

R0 ≤ I(U,X1;Y1|V ), (4.3)

R1 ≤ I(X1;Y1|X2), (4.4)

R0 +R1 ≤ I(U,X1;Y1), (4.5)

R2 ≤ I(X2;Y2|U,X1), (4.6)

R1 ≥ µR0, (4.7)

for any p(u, v)p(x1|u, v)p(x2|u) such that:

1. V and X2 are independent,

2. X1 is a function of U and V ,

3. (U, V )⇔ (X1, X2)⇔ (Y1, Y2).

Proof: First, we restate a lemma from [50] which is used in constituting the

outer bound.

Lemma 3 ([50]). The following forms a Markov chain for the partially cognitive

radio channel:

(W0,Wt)⇔ (W0, Xt)⇔ Yt, (4.8)

where t = 1, 2.
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We start the main proof by verifying the outer bound for R0, R1, and

R2. We have

nR0 =H(W0|W1)

≤I(W0;Y n
1 |W1) + nε0

=
n∑
i=1

[H(Y1,i|Y i−1
1 ,W1)−H(Y1,i|Y i−1

1 ,W0,W1)] + nε0

≤
n∑
i=1

[H(Y1,i|W1)−H(Y1,i|Y i−1
1 , X

n\i
1 ,W0,W1, X1,i)] + nε0

(a)

≤
n∑
i=1

[H(Y1,i|W1)−H(Y1,i|Y i−1
2 , X

n\i
1 ,W0,W1, X1,i)] + nε0

(b)
=

n∑
i=1

[H(Y1,i|Vi)−H(Y1,i|Ui, Vi, X1,i)] + nε0

=
n∑
i=1

I(Ui, X1,i;Y1,i|Vi) + nε0,

where (a) results from the conditional Markov chain for the weak interfer-

ence channel, X2|X1 ⇔ Y2|X1 ⇔ Y1|X1 in (4.2). (b) results from identifying
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auxiliaries Ui = (Y i−1
2 , X

n\i
1 ,W0) and Vi = W1.

nR1 =H(W1)

≤I(W1;Y n
1 ) + nε0

=I(W1;Y n
1 |Xn

2 ) + nε0

=
n∑
i=1

[H(Y1,i|Y i−1
1 , Xn

2 )−H(Y1,i|Y i−1
1 , Xn

2 ,W1)] + nε0

≤
n∑
i=1

[H(Y1,i|X2,i)−H(Y1,i|X1,i, X2,i)] + nε0

=
n∑
i=1

I(Y1,i;X1,i|X2,i) + nε0,

and

nR2 = H(W2|W0)

≤ I(W2;Y n
2 |W0) + nε2

≤ I(W2;Y n
2 , X

n
1 |W0) + nε2

(a)
= I(W2;Y n

2 |Xn
1 ,W0) + nε2

= H(Y n
2 |Xn

1 ,W0)−H(Y n
2 |Xn

1 ,W0,W2) + nε2
(b)

≤ H(Y n
2 |Xn

1 ,W0)−H(Y n
2 |Xn

1 ,W0, X
n
2 ) + nε2

(c)

≤
n∑
i=1

[H(Y2,i|Ui, X1,i)−H(Y2,i|Ui, X1,i, X2,i)] + nε2

=
n∑
i=1

I(X2,i;Y2,i|Ui, X1,i) + nε2,

where (a) is due to the independence of W2 and Xn
1 , (b) is from (W0,W2) ⇔

(W0, X
n
2 )⇔ (Y n

2 ) in Lemma 3, and (c) comes from the same definition afore-

said of Ui = Y i−1
2 , X

n\i
1 ,W0.
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Next, we prove the outer bound for the sum rate R0 +R1. We have

nR0 + nR1 =H(W0,W1)

≤I(W0,W1;Y n
1 ) + nε1

=H(Y n
1 )−H(Y n

1 |W0,W1) + nε1

(a)
=H(Y n

1 )−H(Y n
1 |W0, X

n
1 ) + nε1

=
n∑
i=1

[
H(Y1,i|Y i−1

1 )

−H(Y1,i|Y i−1
1 , X

n\i
1 ,W0, X1,i)

]
+ nε1

(b)
=

n∑
i=1

[
H(Y1,i|Y i−1

1 )

−H(Y1,i|Y i−1
2 , X

n\i
1 ,W0, X1,i)

]
+ nε1

(c)

≤
n∑
i=1

[H(Y1,i)−H(Y1,i|Ui, X1,i)] + nε1

=
n∑
i=1

I(Ui, X1,i;Y1,i) + nε1.

(a) results from (W0,W1) ⇔ (W0, X
n
1 ) ⇔ (Y n

1 ) (Lemma 3), (b) results from

X2 ⇔ Y2 ⇔ Y1, given X1 in (4.2), and (c) results from the aforementioned

definition of Ui = Y i−1
2 , X

n\i
1 ,W0. Note that the choice of auxiliary random

variables automatically satisfies the constraints imposed on them in Theorem

6.

Finally, (4.7) comes from the restriction on the (R0, R1), which is de-

scribed in Section 4.2. As discussed earlier, this constraint captures the extent

of (partial) cognitive information available at the cognitive transmitter in the

system.

An intuitive understanding of the variables in this theorem is as follows:

We have T , which is an auxiliary time-sharing variable. And, U represents
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(W0, T ), where W0 is the shared message between cognitive and legitimate

radios, and V corresponds to (W1, T ), where message W1 is available only to

the legitimate user. Then, the outer bound presented here is a generalized

version of the one in [52] with two auxiliary random variables (U and V )

instead of one.

4.3.2 Gaussian Partially Cognitive Radio Channel

For the Gaussian case, the weak interference constraint can be trans-

lated into the requirement that b < 1 in (4.1). With the condition b < 1, the

conditional Markov chain for the weak interference channel, X2 ⇔ Y2 ⇔ Y1,

given X1 in (4.2) is satisfied. Thus, a proof methodology analogous to the one

adopted for the discrete memoryless case will result in a rate region similar to

that in Theorem 6 for the Gaussian case.

Next, we present three lemmas that will prove essential in obtaining a

closed-form evaluation of the outer bound.

Lemma 4 (Lemma 1 in [84]). Let X1, X2, ..., Xk be arbitrarily distributed zero-

mean random variables with covariance matrix K, and X∗1 , X
∗
2 , ..., X

∗
k be zero-

mean Gaussian distributed random variables with the same covariance matrix

K. Let S be any subset of {1, 2, ..., k} and S̃ be its complement. Then,

h(XS|XS̃) ≤ h(X∗S|X∗S̃). (4.9)

Lemma 5. Let X1, X2, V be an arbitrarily distributed zero-mean random vari-

ables with covariance matrixK, whereX2 and V are independent of each other.
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Let X∗1 , X
∗
2 , V

∗ be the zero-mean Gaussian distributed random variables with

the same covariance matrix as X1, X2, V . Then,

E[X1X2] = E[X∗1X
∗
2 |V ∗]. (4.10)

Proof: Without loss of generality, X∗1 can be written as X∗1 = W ∗+cV ∗, where

W ∗ is the zero-mean Gaussian random variable independent of V ∗. Then

E[X1X2] = E[X∗1X
∗
2 ]

= E[E[X∗1X
∗
2 |V ∗]]

= E[E[(W ∗ + cV ∗)X∗2 |V ∗]]

= E[E[W ∗X∗2 |V ∗]] + cE[E[V ∗X∗2 |V ∗]]
(a)
= E[X∗1X

∗
2 |V ∗] + cE[V ∗E[X∗2 ]]

(b)
= E[X∗1X

∗
2 |V ∗],

where (a) results from the independence of X∗2 and V ∗. And, (b) results from

the fact that X∗2 is zero-mean.

Lemma 6. Random variables in Lemma 5, X∗1 , X
∗
2 , and V ∗ satisfy the following

equation:

E[X∗1X
∗
2 |V ∗] ≤ (E[(X∗1 )2|V ∗])

1
2 (E[(E[X∗2 |X∗1 ])2])

1
2 .
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Proof: Note that

E[X∗1X
∗
2 |V ∗]

(a)
= E[E[X∗1X

∗
2 |V ∗, X∗1 ]]

(b)
= E[X∗1E[X∗2 |V ∗, X∗1 ]|V ∗]
(c)

≤ (E[(X∗1 )2|V ∗])
1
2 (E[(E[X∗2 |V ∗, X∗1 ])2])

1
2

(d)

≤ (E[(X∗1 )2|V ∗])
1
2 (E[(E[X∗2 |X∗1 ])2])

1
2 ,

where (a) comes from the law of iterated expectations, (b) comes from the

independence of X∗2 and V ∗, (c) from the Cauchy-Schwartz inequality, and (d)

comes from the fact that entropy can only be reduced by conditioning.

Definition 1. Define the rate region R
α,β1,β2
out to be the convex hull of all rate

triplets (R0, R1, R2) satisfying

R0 ≤
1

2
log

(
1 +

β1P1 + b2(1− α)P2 + 2b
√

(β2(1− α)P1P2)

(1 + b2αP2)

)
,

R1 ≤
1

2
log (1 + (1− β2(1− α))P1) ,

R0 +R1 ≤
1

2
log

(
1 +

P1 + b2(1− α)P2 + 2b
√

(β2(1− α)P1P2)

(1 + b2αP2)

)
,

R2 ≤
1

2
log(1 + αP2),

R1 ≥ µR0, (4.11)

for some α ∈ [0, 1], β1 ∈ [0, 1], and β2 ∈ [0, β1].

Definition 2. Define the rate region Rout to be convex hull of the union of

rate region R
α,β
out :

Rout ,
⋃

0≤α,β1≤1,0≤β2≤β1

R
α,β1,β2
out . (4.12)
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We denote C to be the capacity region of the Gaussian weak partially

cognitive radio channel. An outer bound for C is obtained as follows.

Theorem 7. Rout is an outer bound of the capacity region for the Gaussian

weak partially cognitive radio channel

C ⊂ Rout.

Proof: We start from the rate region in Theorem 6:

R0 ≤ I(U,X1;Y1|V ) = h(Y1|V )− h(Y1|V, U,X1)

= h(Y1|V )− h(Y1|U,X1), (4.13)

R1 ≤ I(X1;Y1|X2) = h(Y1|X2)− h(N1), (4.14)

R0 +R1 ≤ I(U,X1;Y1) = h(Y1)− h(Y1|U,X1), (4.15)

R2 ≤ I(X2;Y2|U,X1) = h(Y2|U,X1)− h(N2). (4.16)

(4.13) follows from the Markov chain, V ⇔ (U,X1)⇔ Y1. First, we set

h(Y2|U,X1) =
1

2
log(2πe(1 + αP2)), (4.17)

without loss of generality for some α ∈ [0, 1]. Note that

Y1 = b(X2 + Z1) +X1 + Z ′,

h(Y1|U,X1) = h(b(X2 + Z1) + Z ′|U,X1), (4.18)

where b < 1 because legitimate receiver faces a weak interference, and Z ′ is a

Gaussian distributed random variable with variance 1− b2. By entropy power
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inequality (EPS)[87], we have

22h(Y1|U,X1) ≥ 22h(bY2|U,X1) + 22h(Z′).

= b222h(Y2|U,X1) + 2πe(1− b2)

= 2πe(1 + b2αP2),

which yields

h(Y1|U,X1) ≥ 1

2
log(2πe(1 + b2αP2)). (4.19)

Next, we need to bound h(Y1), h(Y1|V ), and h(Y1|X2). Note that, by setting

h(Y2|U,X1) = 1
2

log(2πe(1 + αP2)), we have the following result:

h(Y2|U,X1) ≤ h(X2 + Z2|X1)

≤ h(X∗2 + Z2|X∗1 )

=
1

2
log(2πe(1 + Var(X∗2 |X∗1 ))), (4.20)

where Var(·|·) denotes the conditional covariance. Combining (4.17) with

(4.20), we obtain the bound

Var(X∗2 |X∗1 ) ≥ αP2. (4.21)

Also,

Var(X∗2 |X∗1 ) = E[(X∗2 )2]− E[(E[X∗2 |X∗1 ])2]. (4.22)

From (4.21) and (4.22), we obtain

E[(E[X∗2 |X∗1 ])2] ≤ (1− α)P2. (4.23)
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Note that

E[(X∗1 )2|V ∗] ≤ P1, (4.24)

since conditioning only reduces the entropy. Again, we set E[(X∗1 )2|V ∗] = β1P1

for some β1 ∈ [0, 1] without loss of generality. Now combining Lemma 5,

Lemma 6, and the aforementioned result, (4.23), we have

E[X1X2] ≤
√
β1P1

√
(1− α)P2. (4.25)

We can set

E[X1X2] =
√
β2P1

√
(1− α)P2, (4.26)

where β2 ∈ [0, β1]. Therefore, we obtain the bound for h(Y1) as

h(Y1) ≤ 1

2
log

(
2πe

(
1 + Var(X1) + b2 Var(X2)
+2bE[X1X2]

))
=

1

2
log

(
2πe

(
1 + P1 + b2P2

+2b
√
β2(1− α)P1P2

))
. (4.27)

For h(Y1|V ), note that (Y ∗1 , V
∗) has the same covariance matrix as (Y1, V ) if

Y1 = X∗1 +bX∗2 . Also, Y1 is a mean zero Gaussian distributed random variable.

Thus,

h(Y1|V ) ≤h(Y ∗1 |V ∗)

=h(X∗1 + bX∗2 + Z1|V ∗)

=
1

2
log

2πe

 1 + Var(X∗1 |V ∗)
+b2 Var(X∗2 |V ∗)
+2bE[X∗1X

∗
2 |V ∗]


≤1

2
log

(
2πe

(
1 + β1P1 + b2P2

+2b
√

(β2(1− α)P1P2)

))
. (4.28)
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For h(Y1|X2),

h(Y1|X2) =h(X1 + bX2 + Z1|X2)

=h(X1 + Z1|X2)

≤h(X∗1 + Z1|X∗2 )

=
1

2
log (2πe (1 + Var(X∗1 |X∗2 ))) (4.29)

=
1

2
log

(
2πe

(
1 + P1 −

E[X∗1X
∗
2 ]2

P2

))
(4.30)

=
1

2
log (2πe (1 + (1− β2(1− α))P1)) (4.31)

The intuition behind this region is as follows: β represents the fraction of power

assigned to the message W0 at the legitimate transmitter, and α2 represents

the fraction of power assigned to the message W1 at the cognitive transmitter.

The outer bound structure dictates that W2 be decoded without interference,

and that W0 and W1 be decoded treating W2 as “interference” when being

decoded.

It is necessary that we examine whether the outer bound on the capacity

region of the Gaussian channel model is tight. A Gaussian partially cognitive

radio channel includes the Gaussian interference channel. As the capacity

region of the Gaussian interference channel remains as an open problem, we

expect that obtaining the capacity region of the partially cognitive radio with

the Gaussian interference channel is difficult. Given this, we analyze our outer

bound result, which is represented in Theorem 7, in two extremes: when µ = 0

and µ → ∞. If µ = 0, by setting both β1 and β2 to be 1, we obtain the rate
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region, which encompass all other rate regions

Rα,1,1
out k Rα,β1,β2

out ∀β1 ∈ [0, 1], β2 ∈ [0, β1].

It implies that the legitimate transmitter only transmits the shared message,

W0, and no power is allocated for transmitting W1. Thus, the channel becomes

the Gaussian fully cognitive radio channel when µ value becomes 0. Let RL be

the sum rate of the legitimate transmission, which is R0 +R1 in 4.11, and RC

be the rate for the cognitive transmission, which corresponds to R2. Then, we

develop an outer bound on the capacity region for rate pair (RL, RC) of the

Gaussian partially cognitive radio. We denote Cµ=0 to be the capacity region

of the Gaussian weak partially cognitive radio channel, when µ = 0.

Definition 3. Define the rate region Rα
µ=0 to be the convex hull of all rate pair

(RL, RC) satisfying

RL ≤
1

2
log

(
1 +

P1 + b2(1− α)P2 + 2b
√

(1− α)P1P2

(1 + b2αP2)

)
,

RC ≤
1

2
log(1 + αP2), (4.32)

for some α ∈ [0, 1].

Also, we have the following.

Definition 4. Define the rate region Rµ=0 to be convex hull of the union of

rate region Rα
µ=0:

Rµ=0 ,
⋃

0≤α≤1

Rα
µ=0. (4.33)
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Then, we present an outer bound on the rate region of partially cog-

nitive radio in Gaussian interference channel when µ = 0 in the following

corollary:

Corollary 1. Rµ=0 is an outer bound of the capacity region for the Gaussian

weak partially cognitive radio channel when µ = 0:

Cµ=0 ⊂ Rµ=0.

Proof: Proof of this can be obtained by substituting R0 + R1 with RL and

RC with R2, and removing the R1 > µR0 requirement in (4.11).

The outer bound on the capacity region, Rµ=0, is equivalent to the outer

bound on the capacity region for the fully cognitive radio in [52]. The other

extreme of partially cognitive radio is when µ → ∞. In this case, constraint

R1 ≥ µR0, becomes R0 = 0. This means that there is no shared message

W0. Since there is no cognitive information, the model reduces to a Gaussian

interference channel. Since R0 is zero, the rate region is defined from the rates

corresponding to W1 and W2. We develop an outer bound on the capacity

region in this extreme as follows:

Definition 5. Define the rate region Rα,β
µ→∞ to be the convex hull of all rate

pair (R1, R2) satisfying

R1 ≤ min

(
1
2

log (1 + (1− β)P1) ,
1
2

log
(

1 + P1+b2(1−α)P2+2b
√
βP1P2

(1+b2αP2)

) )
,

R2 ≤
1

2
log(1 + αP2), (4.34)

for some α ∈ [0, 1] and β ∈ [0, 1− α].
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In addition, we have the following.

Definition 6. Define the rate region Rµ→∞ to be convex hull of the union of

rate region Rα,β
µ→∞:

Rµ→∞ ,
⋃

0≤α≤1,0≤β≤1−α

R
α,β
µ→∞. (4.35)

Then, we develop an outer bound on the capacity region of the Gaussian

interference channel when µ→∞ using the following corollary:

Corollary 2. Rµ→∞ is an outer bound of the capacity region for the Gaussian

weak partially cognitive radio channel when µ→∞:

Cµ→∞ ⊂ Rµ→∞.

Proof: Proof can be obtained by making R0 to be 0 in Equation (4.11).

We compare this outer bound with the known outer bound in [75].

Since b < 1, we have the outer bound for Gaussian interference channel as

follows:

Cµ→∞ ⊂ RCarleial, (4.36)

where Rcarleial is defined as the rate region of the rate pair (R1, R2) which

satisfies

R1 ≤
1

2
log(1 + P1),

R2 ≤
1

2
log(1 + P2),

R1 +R2 ≤
1

2
log

(
1 +

1

b2
P1 + P2

)
. (4.37)
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Figure 4.3: Outer bound comparison when µ→∞

Note that a comparison between the two depends on the channel parameters.

RCarleial can include our outer bound in some cases, and our outer bound can

include RCarleial in some other cases. Next, we present examples of these two

different cases.

We compare our outer bound when µ → ∞ with the outer bound in

[75] when P1 = P2 = 10. In Figure 4.3, outer bound 1 represents our outer

bound, Rµ→∞, and outer bound 2 is Carleial’s outer bound, RCarleial. It is

not always the case that our outer bound is tighter than the Carleial outer

bound as seen in Figure 4.3(b), which is when b = 0.5. However, we show that

the outer bound Rµ→∞ is tighter than Carleial’s outer bound in some cases.

Figure 4.3(a) makes analysis when b = 0.35. In this case, our outer bound

encompasses Carleial’s outer bound.

From analyzing these two extreme cases, we conclude that we have a
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Figure 4.4: Discrete memoryless partial cognitive radio channel

nontrivial outer bound on the capacity region of a Gaussian partially cognitive

radio channel.

4.4 The Achievable Region

In this section, we study an achievable region for the partially cognitive

radio in the interference channel.

4.4.1 Discrete Memoryless Partially Cognitive Radio Channels

Here, we first develop an achievable region for a general discrete memo-

ryless partially cognitive radio channel. We subdivide W0, W1 and W2 into two

components each. We split W0 into W01 and W02, W1 into W11 and W12, and

W2 into W21 and W22, where W01, W11 and W21 are decoded at both receivers,

and W02, W12 and W22 are decoded only at the intended receiver. Figure 4.4

shows the modified channel model. Here, M0, N0, M1, N1, M2, and N2 are

auxiliary random variables, which bear information on W01, W02, W11, W12,

W21, and W22 respectively, and we define R01, R02, R11, R12, R21, and R22 to be

the rate for W01, W02, W11, W12, W21, and W22 respectively. Then, we have

following lemma that characterizes our achievable region:
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Lemma 7. Define Q as

Q , (Y1, Y2, X1, X2,M0, N0,M1, N1,M2, N2)

, and let P be the set of distributions on Q that can be decomposed into the

form as follows:

P =p(m0)p(n0)p(m1)p(n1)p(m2|m0, n0)p(n2|m0, n0)

p(x1|m0, n0,m1, n1)p(x2|m2, n2)

p(y1|x1, x2)p(y2|x1, x2).

For anyQ ∈ P, let S(Q) be the set of all rate 6-tuple (R01, R02, R11, R12, R21, R22)

of nonnegative real numbers such that there exists a nonnegative real-valued

pair (L21, L22) satisfying

R21 ≤ L21 − I(M2;M0, N0,M1),
R22 ≤ L22 − I(N2;M0, N0,M1),
R01 ≤ I(M0;Y1, N0,M1, N1,M2),
R02 ≤ I(N0;Y1,M0,M1, N1,M2),
R11 ≤ I(M1;Y1,M0, N0, N1,M2),
R12 ≤ I(N1;Y1,M0, N0,M1,M2),
L21 ≤ I(M2;Y1,M0, N0,M1, N1),
R11 ≤ I(M1;Y2,M2, N2),
L21 ≤ I(M2;Y2,M1, N2),
L22 ≤ I(N2;Y2,M1,M2),
R01 +R02 ≤ I(M0, N0;Y1,M1, N1,M2),
R01 +R11 ≤ I(M0,M1;Y1, N0, N1,M2),
R01 +R12 ≤ I(M0, N1;Y1, N0,M1,M2),
R01 + L21 ≤ I(M0,M2;Y1, N0,M1, N1),
R02 +R11 ≤ I(N0,M1;Y1,M0, N1,M2),
R02 +R12 ≤ I(N0, N1;Y1,M0,M1,M2),
R02 + L21 ≤ I(N0,M2;Y1,M0,M1, N1),
R11 +R12 ≤ I(M1, N1;Y1,M0, N0,M2),
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R11 + L21 ≤ I(M1,M2;Y1,M0, N0, N1),
R12 + L21 ≤ I(N1,M2;Y1,M0, N0,M1),
R11 + L21 ≤ I(M1,M2;Y2, N2),
R11 + L22 ≤ I(M1, N2;Y2,M2),
L21 + L22 ≤ I(M2, N2;Y2,M1),
R01 +R02 +R11 ≤ I(M0, N0,M1;Y1, N1,M2),
R01 +R02 +R12 ≤ I(M0, N0, N1;Y1,M1,M2),
R01 +R02 + L21 ≤ I(M0, N0,M2;Y1,M1, N1),
R01 +R11 +R12 ≤ I(M0,M1, N1;Y1, N0,M2),
R01 +R11 + L21 ≤ I(M0,M1,M2;Y1, N0, N1),
R01 +R12 + L21 ≤ I(M0, N1,M2;Y1, N0,M1),
R02 +R11 +R12 ≤ I(N0,M1, N1;Y1,M0,M2),
R02 +R11 + L21 ≤ I(N0,M1,M2;Y1,M0, N1),
R02 +R12 + L21 ≤ I(N0, N1,M2;Y1,M0,M1),
R11 +R12 + L21 ≤ I(M1, N1,M2;Y1,M0, N0),
R11 + L21 + L22 ≤ I(M1,M2, N2;Y2),
R01 +R02 +R11 +R12 ≤ I(M0, N0,M1, N1;Y1,M2),
R01 +R02 +R11 + L21 ≤ I(M0, N0,M1,M2;Y1, N1),
R01 +R02 +R12 + L21 ≤ I(M0, N0, N1,M2;Y1,M1),
R01 +R11 +R12 + L21 ≤ I(M0,M1, N1,M2;Y1, N0),
R02 +R11 +R12 + L21 ≤ I(N0,M1, N1,M2;Y1,M0),
R01 +R02 +R11 +R12 + L21

≤ I(M0, N0,M1, N1,M2;Y1),
R11 +R12 ≥ µ(R01 +R02).

(4.38)

Let S be the closure of
⋃
Q∈P S(Q). Then, any element of S is achievable.

Proof: We prove the lemma by showing the achievability of the interior

elements of S(Z) for eachQ ∈ P by fixingQ = (Y1, Y2, X1, X2,M0, N0,M1, N1,M2, N2)

and taking any (R01, R02, R11, R12, R21, R22) and (L21, L22) satisfying the con-

straints of the lemma. And, let some distribution on Q which satisfy the form

in the theorem is given.
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Encoding Strategy at the Legitimate Transmitter: The legitimate transmitter

randomly generates the codebook, following the given distribution. Specifi-

cally, we generate the following codebooks:

1. For every message W01 ∈ {1, . . . , 2n(R01−6ε)}, generate n-sequences mn
0

i.i.d. according to
∏n

t=1 p
(
m

(t)
0

)
.

2. For every message W02 ∈ {1, . . . , 2n(R02−6ε)}, generate n-sequences n0

i.i.d. according to
∏n

t=1 p
(
n

(t)
0

)
.

3. For every message W11 ∈ {1, . . . , 2n(R11−6ε)}, generate n-sequences mn
1

i.i.d. according to
∏n

t=1 p
(
m

(t)
1

)
.

4. For every message W12 ∈ {1, . . . , 2n(R12−6ε)}, generate n-sequences nn1

i.i.d. according to
∏n

t=1 p
(
n

(t)
1

)
.

From these codebooks, we look up the message set (w01, w02, w11, w12), and

choose a codeword for each message. The Legitimate transmitter forms the

net transmit vector xn1 = f(mn
0 ,m

n
1 ,m

n
1 , n

n
1 ), and communicates it.

Encoding Strategy at the Cognitive Transmitter: The cognitive transmitter

generates a random codebook, following the given distribution. Specifically,

we generate the following codebooks:

1. Generate 2n(L21−6ε) n-sequences mn
1 i.i.d. according to

∏n
t=1 p

(
m

(t)
2

)
,

and place in 2n(R21−6ε) bins uniformly.
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2. Generate 2n(L22−6ε) n-sequences mn
1 i.i.d. according to

∏n
t=1 p

(
n

(t)
2

)
, and

place in 2n(R22−6ε) bins uniformly.

Note that

p
(
m

(t)
2

)
=

∑
m

(t)
0 ,n

(t)
0

p
(
m

(t)
2 |m

(t)
0 , n

(t)
0

)
,

p
(
n

(t)
2

)
=

∑
m

(t)
0 ,n

(t)
0

p
(
n

(t)
2 |m

(t)
0 , n

(t)
0

)
.

Here, the codebooks corresponding to the common messages are assumed be

known to the cognitive transmitter, and message sets at the cognitive trans-

mitter are W21 ∈ {1, . . . , 2n(R21−6ε)} and W22 ∈ {1, . . . , 2n(R22−6ε)}. The cogni-

tive transmitter, upon obtaining the message set (w21, w22), looks in bins w21

and w22 for sequences mn
2 and nn2 such that (mn

0 ,m
n
1 ,m

n
2 ) and (mn

0 ,m
n
1 , n

n
2 ) are

jointly typical. Then, it generates xn2 i.i.d. according to
∏n

t=1 p
(
x

(t)
2 |m

(t)
2 , n

(t)
2

)
,

and transmits it. Next, we describe the decoding strategy and the rate con-

straints associated with the two receivers.

Decoding Strategy at the Legitimate Receiver: The legitimate receiver decodes
W01, W02, W11, W12, and W21 based on strong joint typicality. Upon receiving
yn1 , the legitimate receiver performs jointly typical decoding as:{

(mn
0 , n

n
0 ,m

n
1 , n

n
1 ,m

n
2 ) : (yn1 ,m

n
0 , n

n
0 ,m

n
1 , n

n
1 ,m

n
2 ) ∈ Anε (Y1,M0, N1,M1, N1,M2)

}
if all (mn

0 , ·, ·, ·, ·) in this set have the same message index, it decodes ŵ01 to be
B(mn

0 ), where B(mn
0 ) is a message index for mn

0 . Similarly, it decode ŵ02, ŵ11, ŵ12,
and ŵ21 to be B(nn0 ), B(mn

1 ), B(nn1 ), and B(mn
2 ) respectively. If this typicality test

fails, it declare an errors.

Decoding strategy at cognitive receiver: The cognitive receiver decodes W21, W22,
and W11 based on strong joint typicality. Upon receiving yn2 , the cognitive receiver
examines joint typicality by finding the set of codeword

{(mn
2 , n

n
2 ,m

n
1 ) : (yn2 ,m

n
2 , n

n
2 ,m

n
1 ) ∈ Anε (Y2,M2, N2,M1)}
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if all (mn
2 , ·, ·, ·) in this set have the same message index, it decodes ŵ21 to be B(mn

2 ),
where B(mn

2 ) bin index for mn
2 . Likewise, it decodes ŵ22 and ŵ11 to be B(nn2 ) and

B(mn
1 ) respectively. If this typicality test fails, it declares an error. We defer the

probability of error analysis to the Appendix. Note that R11 +R12 ≥ µ(R01 +R02)
comes from the partially cognitive radio condition.

In addition, we have the following lemma:

Lemma 8. Any rate 6-tuple (R01, R02, R11, R12, R21, R22) that satisfies

R11 +R12 ≤ I(X1;Y1)

R01 +R02 +R11 +R12 ≤ I(X1, X2;Y1)

R21 = 0

R22 = 0

R11 +R12 ≥ µ(R01 +R02),

is achievable for the discrete memoryless partially cognitive radio.

Proof of this lemma is straightforward and thus skipped. From this, we have
the following theorem:

Theorem 8. The convex hull of the points of Lemma 7 and Lemma 8 is achievable.

Proof: Proof follows using standard time-sharing techniques and the fact
that the achievable region is the closure of achievable rates.

This achievable rate region can be compared with achievable rate region in
[48] and that in [72] in two extremes. If we allow H(M1, N1) = 0, our achievable
rate region becomes the achievable rate region in [48], i.e., the one for fully cognitive
radio. Thus, we can match the achievable rate region of fully cognitive radio when
µ = 0. Also, if we set M0 and M1 such that H(M0, N0) = 0, our achievable rate
region becomes the same as that in [72]. Thus, we can match nontrivial achievable
rate regions in two extreme cases.

4.4.2 Gaussian Partially Cognitive Radio Channel

In this section, we describe an achievable region for the Gaussian channel
model described in (4.1). In deriving the achievable region, we combine dirty paper
coding [86], and Han-Kobayashi coding [72]. The reason for using this combination
is to bring the regular interference channel results together with those for interfer-
ence channels with degraded message sets. Thus, as µ → ∞, the channel becomes
an interference channel, and we desire that our coding scheme reduces to Han-
Kobayashi coding [73]. Also, as µ → 0, the channel resembles a cognitive radio
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Figure 4.5: The Gaussian partially cognitive radio channel

with full knowledge of legitimate transmitter’s message sets. In such a case, we
desire that our strategy reduces to dirty paper coding which is known to be optimal
[48], [52]. Figure 4.5 presents the messages sets to be encoded and decoded at each
transmitter and receiver in this system.

In our achievable strategy, we require that the legitimate transmitter encode
messages W0, W11, and W12 using Gaussian codebooks and then superpose them
to obtain its transmit sequence. Here, W0 is the common message shared between
legitimate and cognitive transmitters. Further, W11 and W12 correspond to a split of
W1 (as shown in Figure 4.1 and 4.2). W12 is a public message intended to be decoded
by both the legitimate and cognitive receivers. W11 is a private message intended
for the legitimate receiver alone. The cognitive transmitter allocates a portion of its
power to aid the communication of W0 to the legitimate receiver. The remaining
power is used to communicate its own message W2. Again, W2 is subdivided into a
public message W21, and a private message W22. The cognitive transmitter encodes
message W22 using dirty paper coding treating the codewords corresponding to W0

as noncausally known interference.

Let α1, α2, α3, β1, β2, β3 > 0 such that

α1 + α2 + α3 = 1, β1 + β2 + β3 = 1.

We define the function L : R+ → R+ as L(x) = 1
2 log(1 + x). Let Q =(

1 +
√

β1P2

α1P1

)2

α1P1 and S =
(
a+

√
β1P2

α1P1

)2

α1P1.

We define the constants r0, r1, r2, . . . r17 as follows:
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r0 = L
(

Q
1+b2β3P2

)
, r1 = L

(
α2P1

1+b2β3P2

)
,

r2 = L
(

α3P1
1+b2β3P2

)
, r3 = L

(
b2β2P2

1+b2β3P2

)
,

r4 = L
(
Q+α2P1

1+b2β3P2

)
, r5 = L

(
Q+α3P1

1+b2β3P2

)
,

r6 = L
(
Q+b2β2P2

1+b2β3P2

)
, r7 = L

(
(α2+α3)P1

1+b2β3P2

)
,

r8 = L
(
α2P1+b2β2P2

1+b2β3P2

)
, r9 = L

(
α3P1+b2β2P2

1+b2β3P2

)
,

r10 = L
(
Q+(α2+α3)P1

1+b2β3P2

)
,

r11 = L
(
Q+α2P1+b2β2P2

1+b2β3P2

)
,

r12 = L
(
Q+α3P1+b2β2P2

1+b2β3P2

)
,

r13 = L
(

(α2+α3)P1+b2β2P2

1+b2β3P2

)
,

r14 = L
(
Q+(α2+α3)P1+b2β2P2

1+b2β3P2

)
,

r15 = L
(

a2α3P1
1+S+a2α2P1+beta3P2

)
,

r16 = L
(

β2P2

1+S+a2α2P1+β3P2

)
,

r17 = L
(

a2α3P1+β2P2

1+S+a2α2P1+β3P2

)
,

r18 = L
(

β3P2

1+a2α2P1

)
.

(4.39)

Define the rate region R
α1,α2,α3,β1,β2,β3
i to be the convex hull of all rate triplets
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(R0, R1, R2) satisfying

R0 ≤ r0,

R1 ≤ min(r7, r1 + r15),

R2 ≤ min(r3 + r18, r16 + r18),

R0 +R1 ≤ min(r10, r4 + r15),

R0 +R2 ≤ r6 + r18,

R1 +R2 ≤ min(r13 + r18, r8 + r15 + r18, r1 + r17 + r18),

R0 +R1 +R2

≤ min(r14 + r18, r11 + r15 + r18, r4 + r17 + r18),

2R0 +R1 ≤ r4 + r5,

R1 + 2R2 ≤ min(r8 + r9 + 2r18, r8 + r17 + 2r18),

2R0 +R1 +R2 ≤ min(r5 + r11 + r18, r4 + r12 + r18),

R0 +R1 + 2R2

≤ min(r9 + r11 + 2r18, r8 + r!2 + 2r18, r11 + r17 + 2r18),

2R0 +R1 + 2R2 ≤ r11 + r12 + 2r18

(4.40)

Define the rate region Ri to be convex hull of the union of rate region
R
α1,α2,α3,β1,β2,β3
i :

Ri ,
⋃

α1 + α2 + α3 = 1
β1 + β2 + β3 = 1

R
α1,α2,α3,β1,β2,β3
i . (4.41)

Theorem 9. For the Gaussian channel with partially cognitive radio as described in
(4.1), the region described by

Rin = {(R0, R1, R2) ∈ Ri : R1 ≥ µR0} (4.42)

is achievable.

Proof: In establishing the result, we use a combination of dirty paper coding
with Han-Kobayashi coding. We first describe the encoding strategy at the two
transmitters. We fix α1, α2, α3, β1, β2, β3 such that α1+α2+α3 = 1 and β1+β2+β3 =
1.

Encoding Strategy at the Legitimate Transmitter: For every messageW0 ∈ {1, . . . ,M0},
the legitimate transmitter generates a codeword Xn

10(W0) from the distribution
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p(Xn
10) = Πn

i=1p(X10(i)), where X10(i) ∼ N(0, α1P1). For every message W11 ∈
{1, . . . ,M11}, the legitimate transmitter generates a codeword Xn

11(W1) from the
distribution p(Xn

11) = Πn
i=1p(X11(i)), where X11(i) ∼ N(0, α2P1). For every mes-

sage W12 ∈ {1, . . . ,M12}, the legitimate transmitter generates a codeword Xn
12(W2)

from the distribution p(Xn
12) = Πn

i=1p(X12(i)), where X12(i) ∼ N(0, α3P1). The
legitimate transmitter then superimposes these codewords to form the net transmit
vector Xn

1 as
Xn

1 = Xn
10 +Xn

11 +Xn
12.

Encoding Strategy at the Cognitive Transmitter: The cognitive transmitter allocates
a portion of its power in communicating the message W0 to the legitimate receiver.
For message W0, the cognitive transmitter generates a codeword Xn

20(W0) as follows:

Xn
20(W0) =

√
β1P2

α1P1
Xn

10(W0).

That is, the cognitive transmitter uses the same codeword for encoding message
W0 as used by the legitimate transmitter except that it is scaled to power β1P2.
Next, the cognitive transmitter encodes message W21 to codeword Xn

21. The cog-
nitive transmitter generates a codeword Xn

21(W1) from the distribution p(Xn
21) =

Πn
i=1p(X21(i)), where X21(i) ∼ N(0, β2P2). Then, the cognitive transmitter encodes

message W22 to codeword Xn
22 using dirty paper coding treating aXn

10 +Xn
20 as non-

causally known interference. Xn
22 is independent of the interference, aXn

10 +Xn
20, and

is distributed as p(Xn
22) = Πn

i=1p(X22(i)) and X22(i) ∼ N(0, β3P2). The cognitive
transmitter superimposes the three codewords Xn

20, Xn
21, and Xn

22 to form its net
codeword Xn

2 . That is
Xn

2 = Xn
20 +Xn

21 +Xn
22.

Next, we describe the decoding strategy and the rate constraints associated
at the two receivers.

Decoding Strategy at the Legitimate Receiver: The legitimate receiver obtains the
signal

Y n
1 = Xn

10 +Xn
11 +Xn

12 + bXn
20 + bXn

21 + bXn
22 + Zn1 .

The licensed receiver decodes the messages W0,W11,W12,W21 jointly treating Xn
22

as noise. The decoding is successful if the rates satisfy the constraints given by
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R0 ≤ r0, R11 ≤ r1,

R12 ≤ r2, R21 ≤ r3,

R0 +R11 ≤ r4, R0 +R12 ≤ r5,

R0 +R21 ≤ r6, R1 ≤ r7,

R11 +R21 ≤ r8, R12 +R21 ≤ r9,

R0 +R1 ≤ r10, R0 +R11 +R21 ≤ r11,

R0 +R12 +R21 ≤ r12, R1 +R21 ≤ r13,

R0 +R1 +R21 ≤ r14.

(4.43)

Decoding Strategy at the Cognitive Receiver: The cognitive receiver obtains the signal

Y n
2 = aXn

10 + aXn
11 + aXn

12 +Xn
20 +Xn

21 +Xn
22 + Zn2 .

The cognitive receiver decodes message W12 and W21 jointly treating Xn
10, Xn

20,
Xn

11 and Xn
22 as Gaussian noise. The receiver can decode message W12 and W21

successfully if
R12 ≤ r15,

R21 ≤ r16,

R12 +R21 ≤ r17.

(4.44)

Finally, the cognitive receiver decodes W22 using Costa’s dirty paper decod-
ing. In decoding W22, Xn

10 and Xn
20 do not impact rate due to the dirty paper coding

employed at the encoder. The decoding is successful if

R22 ≤ r18. (4.45)

Using Fourier-Motzkin elimination, we find that the region given by
R
α1,α2,α3,β1,β2,β3
i is achievable. By taking the closure of the convex hull over the set

of α’s and β’s, we find that the region given by Ri is achievable,. This completes
the achievability part of this paper.

As µ grows to infinity, the channel resembles the independent-message inter-
ference channel with no cognitive message sets. Our achievable scheme then enforces
β1 and 1 − α1 − α2 to be fixed at 0, and the rate region reduces to the one corre-
sponding to the Han-Kobayashi coding strategy. At the other extreme, the channel
becomes a cognitive radio channel - an interference channel with degraded message
sets. In this case, β2 and α2 are reduced to zero, and the cognitive user now utilizes
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Figure 4.6: Achievable region

dirty paper coding which is already known to be optimal for this class of channels.
We compare the achievable rate region of the partially cognitive radio, where the
cognitive radio is unidirectionally cooperating, with that of interference channel,
where there is no cooperation, and with interference channel with full transmitter
cooperation. For an interference channel, Han-Kobayashi coding strategy is used.
And, the interference channel with full cooperation can be converted to a broadcast
channel with multiple transmit antennas. Thus, we use the ‘Dirty Paper Region’ in
[58]. This comparison is presented in Figure 4.6. As µ becomes smaller, the rate
region of the partially cognitive cognitive radio asymptotically approaches that of
interference channel. And, as µ grows, the rate region of the partially cognitive
radio expands as well. However, the full cooperation can still further increase the
rate region for obvious reasons.

4.5 Numerical Analysis

We compare the achievable region and outer bound derived in this paper
in this section. This comparison is presented in Figure 4.7. For our numerical
calculation, we set both transmit powers P1 and P2 to 10dB, and interference gains
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Figure 4.7: Achievable region and outer bound

a and b to 2 and 0.5 respectively. We vary µ from the traditional interference channel
extreme to the degraded message set extreme and plot both the achievable region
and the outer bound in each case. As intuition suggests, the achievable region and
outer bound match in the case when µ is small (full cognition) and differ the most
when µ is large (the traditional interference channel).

Notice that as the value µ grows, achievable region asymptotically approaches
the outer bound. It is desirable to show constant gap between inner and outer
bounds as is done for fully cognitive radio and interference channel. However, our
approach is to find efficient achievable region that is optimal in two extremes. Thus,
the bounds are not analytical to give a constant gap. Such an approach to find
a constant gap between two bounds is also valuable, and we leave it to the future
work.
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Chapter 5

Capacity on the Overlay Cognitive Radio with

Additional Information

5.1 Introduction

In this chapter, an overlay cognitive radio is assumed to possess extra in-

formation about the legitimate radio’s message sets. When the cognitive radio has

more message sets about the legitimate radio than the legitimate radio itself has,

the capacity region is analyzed in the interference channel.

5.1.1 Our Contributions

Our main contribution in this chapter is as follows:

1. We obtain the capacity region of overlay cognitive radio with additional in-

formation in the “weak” interference case.

2. We establish the outer bound for the capacity region of overlay cognitive radio

with additional information in the “strong” interference case.

3. We obtain the achievability scheme and capacity region of overlay cognitive

radio with additional information in the “strong” interference case.
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Figure 5.1: The discrete memoryless interference channel model with cognitive
radio with additional information

5.2 System Model and Preliminaries

Random variables (RVs) are denoted using capital letters, and their realiza-

tions using the corresponding lower case letters. Xn
m denotes the vector (Xm, ..., Xn),

and Xn\m denotes the vector (X1, ..., Xm−1, Xm+1, ..., Xn). For any set S, S denotes

its convex hull and S̃ the complementary set of S. Finally, the notation X ↔ Y ↔ Z

is used to denote that X and Z are conditionally independent given Y .

5.2.1 Discrete Memoryless Interference Channel with Overlay Cog-
nitive Radio with Additional Information

A two-user interference channel with cognitive radio with additional infor-

mation is a quintuple (X1,X2,Y1,Y2, p), where X1,X2 are two input alphabet sets,

Y1,Y2 are two output alphabet sets, and p(y1, y2|x1, x2) is the transition probability.

Since we restrict our study to memoryless channels, the transition probability of

yn1 , y
n
2 given xn1 , x

n
2 satisfies p(yn1 , y

n
2 |xn1 , xn2 ) =

n∏
i=1

p(y1,i, y2,i|x1,i, x2,i).

Transmitter 1 henceforth is referred to as the legitimate transmitter that

communicates W0 to Receiver 1, the legitimate receiver. Transmitter 2, henceforth

called the cognitive transmitter desires to communicate two messages W1 and W2,
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one to the legitimate receiver and the other to Receiver 2, the cognitive receiver,

respectively. Transmitter 2 gets the name cognitive as it has access to W0, the

legitimate transmitter’s message. Thus, overall, W0 is known to both transmitters,

making this an overlay cognitive radio setting. An (R0, R1, R2, n, Pe,0, Pe,1, Pe,2)

code is one with the rate vector (R0, R1, R2) and block size n, where Rt = log(Mt)/n

bits per usage for t = 0, 1, 2. As aforementioned, W0, and W1 are messages intended

for the legitimate receiver with (average) probabilities of error of at most Pe,0, Pe,1

respectively, and W2 must be retrieved at the cognitive receiver while suffering an

error probability that is no more than Pe,2. The rate vector (R0, R1, R2) is said to

be achievable if the error probabilities Pe,t for t = 0, 1, 2 can be made arbitrarily

small for a large enough block size n.

5.2.2 Gaussian Interference Channel with Overlay Cognitive Radio
with Additional Information

A Gaussian interference channel with cognitive radio is characterized math-

ematically in a manner similar to the two-user interference channel as:

Y1 = X1 + bX2 + Z1

Y2 = aX1 +X2 + Z2,
(5.1)

where a and b are real numbers and Z1 and Z2 are independent, zero-mean, unit-

variance Gaussian random variables. Further, each transmitter has a power con-

straint

1

n

n∑
i=1

E[X2
t,i] ≤ Pt, t = 1, 2.

It differs from the conventional interference channel in the way messages

are allocated and their intended destinations. In this respect, they are exactly
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Figure 5.2: The Gaussian over-cognitive radio channel

like the discrete memoryless channel with overlay cognitive radio with additional

information. To avoid repetition, we do not reproduce the encoding and decoding

definitions here.

The achievable strategy for this channel comes from the idea behind the

achievable strategies of the conventional cognitive radio model fairly straight-forwardly.

Thus we do not make it a focal point. The outer bound, however, is considerably

more challenging and thus, the next section focuses on the outer bound.

5.3 The Outer Bound

5.3.1 Discrete Memoryless Interference Channel with Cognitive
Radio with Additional Information

In this section, we find outer bounds for two classes of overlay cognitive radio

channels - under “weak” and “strong” interference conditions. Such a distinction

into classes is necessary to find meaningful (nontrivial) bounds for cognitive models

in general, and our problem in particular.

1) “Weak” Interference Radios: The following Markov chain requirement

characterizes those channels that satisfy the “weak” interference requirement: Given
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X1, we require that

X2 ↔ Y2 ↔ Y1. (5.2)

Note that although the condition above specifies a physical degradation in signal

quality between the two receivers, a stochastic version of it is sufficient. The outer

bound for this class is stated in the following theorem:

Theorem 10. The convex closure of the following inequalities defines an outer bound

on the capacity region of “weak” interference channel with cognitive radio with

additional information:

R1 ≤ I(V ;Y1|U,X1)

R0 +R1 ≤ I(U, V,X1;Y1)

R2 ≤ I(X2;Y2|U, V,X1)

for all p(u, v))p(x1|u)p(x2|u, v) such that:

1. V and X1 are independent,

2. (U, V )→ (X1, X2)→ (Y1, Y2).
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Proof: We have

nR1 ≤ I(W1;Y n
1 |W0) + nε1

=
n∑
i=1

[
H(Y1,i|Y i−1

1 ,W0)−H(Y1,i|Y i−1
1 ,W0,W1)

]
+ nε1

(a)

≤
n∑
i=1

[
H(Y1,i|Y i−1

1 ,W0, X
i
1)−H(Y1,i|Y i−1

1 ,W0,W1, X
i
1)
]

+ nε1

(b)

≤
n∑
i=1

[H(Y1,i|Ui, X1,i)−H(Y1,i|Ui, Vi, X1,i)] + nε1

≤
∑
i

I(Vi;Y1i|Ui, X1i) + nε1

where (a) results from the fact that Xi
1 is the function of W0, and (b) results from

identifying auxiliaries Ui = (Y i−1
1 , Xi−1

1 ,W0) and Vi = W1. For R0 +R1,

n (R0 +R1) = H(W0,W1)

≤ I(W0,W1;Y n
1 ) + nε2

(a)

≤
n∑
i=1

[
H(Y1,i)−H(Y1,i|Y i−1

1 ,W0,W1, X
i
1)
]

+ nε2

(b)

≤
n∑
i=1

[H(Y1,i)−H(Y1,i|Ui, Vi, X1,i)] + nε2

≤
∑
i

I(Ui, Vi, X1i;Y1i) + nε2

where (a) is due to conditioning and (b) results from the same aforementioned

definitions of Ui = (Y i−1
1 ,W0) and Vi = W1. Next, we establish the outer bound on
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R2. We have:

nR2 ≤ I(W2;Y n
2 |W0,W1) + nε3

=
n∑
i=1

[
H(Y2,i|Y i−1

2 ,W0,W1)−H(Y2,i|Y i−1
2 ,W0,W1)

]
+ nε3

(a)

≤
n∑
i=1

[
H(Y2,i|Y i−1

2 ,W0,W1, X
i
1)−H(Y2,i|Y i−1

2 ,W0,W1, X1,i, X2,i)
]

+ nε3

(b)

≤
n∑
i=1

[
H(Y2,i|Y i−1

1 ,W0,W1, X
i−1
1 , X1,i)

−H(Y2,i|Y i−1
1 ,W0,W1, X1,i, X2,i)

]
+ nε3

≤ nI(X2;Y2|U, V,X1) + nε3

where (a) results from the fact that Xi
1 is the function of W0, and (b) is due to the

weak interference condition as specified by (5.2) and the memoryless nature of the

channel.

2)“Strong” Interference Radios: Intuitively, the channel-gain between the

cognitive transmitter and receiver pair is stronger than the channel-gain from the

cognitive transmitter to the cognitive receiver. This translates in the discrete mem-

oryless case to the following Markov chain: Given X1, we have

X2 ↔ Y1 ↔ Y2. (5.3)

Again, this represents a physical degradation that can be relaxed to a stochastic

one. Under this strong interference condition, we have the following Lemma:

Lemma 9. For the cognitive radio channel with addition information in the “strong”

interference condition, we have: I(Wi;Y
n

1 |W0, X
n
1 ) ≥ I(Wi;Y

n
2 |W0, X

n
1 ), where i =

1, 2.
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Proof: First, Wi, i = 0, 1, is independent of W0 and Xn
1 . Also, X2 is a function of

W0, W1, and W2. From these and strong interference condition we have the Markov

chain Wi ↔ Xn
2 ↔ Y n

1 ↔ Y n
2 , given W0, X

n
1 . Thus,

I(Wi;Y
n

1 |W0, X
n
1 ) = I(Wi;Y

n
1 , Y

n
2 |W0, X

n
1 )

≥ I(Wi;Y
n

2 |W0, X
n
1 ).

We present the outer bound under the strong interference condition in the

following:

Theorem 11. The convex closure of the following inequalities defines an outer bound

on the capacity region of a “strong” interference channel with cognitive radio with

additional information:

R2 ≤ I(V ;Y2|U,X1)

R0 +R2 ≤ I(U, V,X1;Y1)

R1 ≤ I(X2;Y1|U, V,X1)

for any p(u, v))p(x1|u)p(x2|u, v) such that:

1. V and X1 are independent,

2. (U, V )→ (X1, X2)→ (Y1, Y2).
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Proof: First we prove the outer bound for R2 and the sum rate R0 +R2. We have

nR2

(a)

≤ I(W2;Y n
2 |W0, X

n
1 ) + nε1

=
n∑
i=1

H(Y2,i|Y i−1
2 ,W0, X

n
1 )−H(Y2,i|Y i−1

2 ,W0,W2, X
n
1 ) + nε1

≤
n∑
i=1

[
H(Y2,i|Y i−1

2 ,W0, X
n
1 )−H(Y2,i|Y i−1

2 , Y i−1
1 ,W0,W2, X

n
1 )
]

+ nε1

(b)

≤
n∑
i=1

[H(Y2,i|Ui, X1,i)−H(Y2,i|Ui, Vi, X1,i)] + nε1

≤
∑
i

I(Vi;Y2i|Ui, X1i) + nε1,

where (a) results from the fact that Xn
1 is the function of W0, and (b) results from

identifying auxiliaries Ui = (Y i−1
2 ,W0, X

n\i
1 ) and Vi = (Y i−1

1 ,W2). For R0 +R2,

n (R0 +R2) ≤ I(W0;Y n
1 ) + I(W2;Y n

2 |W0) + nε2

= I(W0, X
n
1 ;Y n

1 ) + I(W2;Y n
2 |W0, X

n
1 ) + nε2

(a)

≤ I(W0, X
n
1 ;Y n

1 ) + I(W2;Y n
1 |W0, X

n
1 ) + nε2

= I(W0,W2, X
n
1 ;Y n

1 ) + nε2

=

n∑
i=1

[
H(Y1,i|Y i−1

1 )−H(Y1,i|Y i−1
1 , Y i−1

2 ,W0,W2, X
n
1 )
]

+nε2

(b)

≤
n∑
i=1

[H(Y1,i)−H(Y1,i|Ui, Vi, X1,i)] + nε2

≤
∑
i

I(Ui, Vi, X1i;Y1i) + nε2

where (a) is from the Lemma 9, and (b) comes from the same aforementioned defi-

nitions of Ui = (Y i−1
2 ,W0, X

n\i
1 ) and Vi = (Y i−1

1 ,W2). Last, we establish the outer
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bound expression for the rate R1. We have

nR1 = H(W1|W0,W2)

≤ I(W1;Y n
1 |W0,W2) + nε3

=
n∑
i=1

[
H(Y1,i|Y i−1

1 ,W0,W2)−H(Y1,i|Y i−1
1 ,W0,W1,W2)

]
+ nε3

(a)

≤
n∑
i=1

[
H(Y1,i|Y i−1

1 ,W0,W2, X
n
1 )−H(Y1,i|Y i−1

1 ,W0,W1,W2, X
n
1 , X2,i)

]
+ nε3

(b)

≤
n∑
i=1

[
H(Y1,i|Y i−1

1 , Y i−1
2 ,W0,W2, X

n
1 )

−H(Y1,i|Y i−1
1 , , Y i−1

2 ,W0,W1,W2, X
n
1 , X2,i)

]
+ nε3

≤
∑
i

I(X2i;Y2i|Ui, Vi, X1i) + nε3

(a) results from the fact that Xn
1 is the function of W0, and conditioning reduces

the entropy, and (b) is due to the strong interference condition that we have in (5.3).

Given this framework, we proceed to analyzing the outer bound for the Gaussian

case.

5.3.2 Gaussian Interference Channel with Cognitive Radio with
Additional Information

1)“Weak” Interference Radios: First, we consider the case where the channel

is defined as “weak”. Let Rweakout (ρ1, ρ2) denote the set of rate triplet (R0, R1, R2) ∈
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R3
+ given by

R0 ≤
1

2
log

(
1 + P1 + b2(1− ρ2

2)P2 + 2bρ1

√
P1P2

1 + b2(1− ρ2
1 − ρ2

2)P2

)
R1 ≤

1

2
log

(
1 + b2(1− ρ2

1)P2

1 + b2(1− ρ2
1 − ρ2

2)P2

)
R0 +R1 ≤

1

2
log

(
1 + P1 + b2P2 + 2bρ

√
P1P2

1 + b2(1− ρ2
1 − ρ2

2)P2

)
R2 ≤

1

2
log
(
1 + (1− ρ2

1 − ρ2
2)P2

)
.

Then, we have the following theorem:

Theorem 12. An outer bound on the capacity region for the Gaussian “weak” in-

terference channel with cognitive radio with additional information is given by a

convex hull of the union of the rate region Rweakout (ρ1, ρ2) with constraints ρ1 ∈ [0, 1],

ρ2 ∈ [0, 1], and ρ2
1 + ρ2

2 ≤ 1:

Cweak ⊂
⋃

ρ1,ρ2∈[0,1],ρ21+ρ22≤1

Rweakout (ρ1, ρ2),

Proof: The proof of this closely resembles that in [89] and is skipped to avoid

repetition.

2)“Strong” Interference Radios: Next, we find the outer bound of the ca-

pacity region for the “strong” interference case; b > 1. Define R
strong
out (α, ρ) as the

set of rate triplet (R0, R1, R2) ∈ R3
+ given by

R2 ≤
1

2
log

(
1 + (1− ρ2)P2

1 + αP2

)
R0 +R2 ≤

1

2
log

(
1 + P1 + b2P2 + 2bρ

√
P1P2

1 + b2αP2

)
R1 ≤

1

2
log
(
1 + b2αP2

)
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Then, we have the outer bound of the capacity region is given by:

Theorem 13. An outer bound of the capacity region for the Gaussian “strong”

interference channel with cognitive radio with additional information is given by the

convex hull of the rate region R
strong
out (α, ρ) with constraints α ∈ [0, 1], ρ ∈ [0, 1], and

α ∈ [0, 1], α+ ρ2 ≤ 1:

Cstrong ⊂
⋃

α,ρ∈[0,1],α+ρ2≤1

R
strong
out (α, ρ).

Proof: We have:

R2 ≤ I(V ;Y2|U,X1)

= h(Y2|U,X1)− h(Y2|U, V,X1)

R0 +R2 ≤ I(U, V,X1;Y1)

= h(Y1)− h(Y1|U, V,X1)

R1 ≤ I(X2;Y1|U, V,X1)

= h(Y1|U, V,X1)− h(Y1|U, V,X1, X2)

Note that h(Y1|U, V,X1, X2) = h(Z1) = 1
2 log 2πe, and that

h(Y1|U, V,X1) = h(bX2 + Z1|U, V,X1)

≤ 1

2
log 2πe

(
1 + b2P2

)
,

Thus, without loss of generality for some α ∈ [0, 1], we can set h(Y1|U, V,X1) =

1
2 log 2πe

(
1 + b2αP2

)
. Then, we use entropy power inequality to obtain a lower
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bound on h(Y2|U, V,X1).

22h(Y2|U,V,X1) ≥ 22h( 1
b
Y1|U,V,X1) + 22h(Z′)

=
1

b2
22h(Y1|U,V,X1) + 2πe

(
1− 1

b2

)
= 2πe(1 + αP2),

where b > 1 given the “strong” interference, and Z ′ is a Gaussian distributed random

variable with variance 1− 1
b2

. Thus, we have h(Y2|U, V,X1) ≥ 1
2 log 2πe(1 + αP2).

Next, we bound h(Y1) and h(Y2|U,X1). Let X∗1 , X
∗
2 be the arbitrarily dis-

tributed zero-mean random variables with the same covariance matrix of X1, X2,

where E[X1X2] = ρ
√
P1P2. Note that by setting h(Y1|U, V,X1) = 1

2 log 2πe
(
1 + b2αP2

)
we have the following result:

h(Y1|U, V,X1) ≤ h(bX2 + Z1|X1)

≤ h(bX∗2 + Z2|X∗1 )

=
1

2
log(2πe(1 + b2(1− ρ2)P2)),

which yields α ≤ 1− ρ2. Hence, we can bound h(Y1) and h(Y2|U,X1) to

h(Y1) = h(X1 + bX2 + Z1)

≤ h(X∗1 + bX∗2 + Z1)

=
1

2
log(2πe(1 + P1 + b2P2 + 2bρ

√
P1P2)),
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and

h(Y2|U,X1) ≤ h(X2 + Z2|X1)

≤ h(X∗2 + Z2|X∗1 )

=
1

2
log(2πe(1 + (1− ρ2)P2)).

In summary, the outer bound can be expressed in terms of 0 ≤ α ≤ 1,

R2 ≤
1

2
log

(
1 + (1− ρ2)P2

1 + αP2

)
R0 +R2 ≤

1

2
log

(
1 + P1 + b2P2 + 2bρ

√
P1P2

1 + b2αP2

)
R1 ≤

1

2
log
(
1 + b2αP2

)
.

5.4 Achievable Region for the Gaussian Channel

The achievable region for the “weak” interference case is a straightforward

generalization of the one in [89], and so it is not repeated here. The achievable

region for the “strong” interference case is presented next.

The legitimate transmitter uses an i.i.d Gaussian codebook to communicated

W0. The cognitive transmitter splits its power into three parts: one part is used to

aid in the transmission of W0, the second part to communicate W1 and the final to

communicate W2. Finally, dirty paper coding is used to eliminate interference at

the cognitive receiver.
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Define R
strong
in (α, ρ) as the set of rate triplet (R0, R1, R2) ∈ R3

+ given by

R0 ≤
1

2
log

(
1 + P1 + b2P2 + 2bρ

√
P1P2

1 + b2(1− ρ2)P2

)
R1 ≤

1

2
log(1 + b2αP2)

R2 ≤
1

2
log

(
1 + (1− ρ2)P2

1 + αP2

)
.

Then, we have

Theorem 14. An inner bound on the capacity of the Gaussian overlay cognitive

MAC channel as given by (5.1) is the convex hull of Rstrongin (α, ρ) with constraints

α ∈ [0, 1], ρ ∈ [0, 1], and α ∈ [0, 1], α+ ρ2 ≤ 1:⋃
α,ρ∈[0,1],α+ρ2≤1

R
strong
in (α, ρ) ⊂ Cstrong

Proof: This proof is skipped due to space restrictions, and it straightfor-

wardly follows by using a combination of Gaussian codebooks with dirty paper

coding.

5.5 Optimality of Achievable Region

For the “weak” interference case, a simple inspection shows that the achiev-

able region and outer bound meet, and thus we have a capacity region characteri-

zation. For the “strong” interference case, we have a match if

1

2
log

(
1 + P1 + b2P2 + 2bρ

√
P1P2

1 + b2αP2

)

=

 1
2 log

(
1+P1+b2P2+2bρ

√
P1P2

1+b2(1−ρ2)P2

)
+1

2 log
(

1+(1−ρ2)P2

1+αP2

)
.


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A sufficient condition for this to hold is:

(1− b2)(1− α− ρ2) = 0.

Note that in general, this may not be true, and thus an exact capacity

characterization in the strong interference case still eludes us.
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Chapter 6

Summary

6.1 Summary

A cognitive radio is known to provide a vast potential in increasing the

spectral efficiency by sharing the spectrum with the legitimate radios. It is starting

to be put into practical use, and expected to expand its applications in wireless

communications. It is important to study its limit, and find a method to maximize

its efficiency.

Firstly, the new sensing technique, which can sense and transmit simultane-

ously using self interference cancellation, is proposed. Spectral efficiency increases

with this proposed technique, and the interweave cognitive radio can expand its

application to the WiFi network.

Secondly, the fundamental limit of this interweave cognitive radio is also

studied, and the joint channel selection and power allocation algorithm is proposed

under the condition of multiple legitimate channel. A modified waterfilling algo-

rithm together with an approximate selection of channel to sense is derived that

performs close to the limits on performance of these radios. With this algorithm,

the throughput of the cognitive radio can increase.

Finally, an overlay cognitive radio is studied. This sophisticated cognitive
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radio, which can be applied to the cognitive radio in the cellular network, can bring

about additional spectral efficiency in the network. The capacity region of this cog-

nitive radio is studied under the assumption of partial and additional message sets.

In the partially cognitive setup, the transmitter of the cognitive radio has only a por-

tion of the legitimate user’s message. As the extent of cognition reduces, the channel

becomes a conventional interference channel. As the extent of cognition increases,

the channel resembles an interference channel with degraded message sets. Thus,

the partially cognitive radio model we consider in this paper lies in between these

two extremes and encompasses both as special cases. For the general discrete mem-

oryless IFC setting, we obtain an outer bound for the capacity region and achievable

rate region under assumptions of “weak” interference. We also determine an outer

bound on the capacity region of a Gaussian partially cognitive radio channel. We

determine an achievable region by combining Han-Kobayashi coding strategy and

dirty paper coding for the Gaussian channel. When the cognitive radio has more

message sets than the legitimate radio, it resembles the interference channel with

three messages and overlay cognition. In the “weak” interference case, we find an

exact characterization of the capacity region, while in the “strong” interference case,

we determine inner and outer bounds for the channel.

Overall, possible advantages that different classes of cognitive radios can

bring about are studied, and the practical solutions to achieve them are proposed.
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Appendix 1

Partially Cognitive Radio

1.1 Proof of the Achievable Rate Region (Probability
of Error Analysis)

Here, we analyze the probability of error for the discrete memoryless partially

cognitive radio, and complete the proof of the achievable rate region. Let Pe be the

total average error probability. We assume the equiprobable message set. Without

loss of generality, it is assumed that (w01, w02, w11, w12, w21, w22) = (1, 1, 1, 1, 1, 1) is

transmitted. Then, we bound the probability of error as follows:

Pe ≤Pr

{
(ŵ01, ŵ02, ŵ11, ŵ12, ŵ21) 6= (1, 1, 1, 1, 1)
|(w01, w02, w11, w12, w21, w22) = (1, 1, 1, 1, 1, 1)

}
+ Pr

{
(ŵ01, ŵ11, ŵ21, ŵ22) 6= (1, 1, 1, 1)
|(w01, w02, w11, w12, w21, w22) = (1, 1, 1, 1, 1, 1)

}
.

We consider that the codewords mn
0 (w01) = mn

0 (1), nn0 (w02) = nn0 (1), mn
1 (w11) =

mn
1 (1) and nn1 (w12) = nn1 (1) are used at the legitimate transmitter, andmn

2 (w0, w21, k) =
mn

2 (1, 1, k̂) and nn2 (w0, w22, l) = nn2 (1, 1, l̂) are used at the cognitive transmitter for
sending (w01, w02, w11, w12, w21, w22) = (1, 1, 1, 1, 1, 1), where l and k are the se-
quence numbers in bins w21 and w22, respectively. xn1 is computed from mn

0 (1),
nn0 (1), mn

1 (1), and nn1 (1). And, xn2 is derived from mn
2 (1, 1, k̂) and nn2 (1, 1, l̂). Then,
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the probabilities of error can be upper bounded as

Pr

{
(ŵ01, ŵ02, ŵ11, ŵ12, ŵ21) 6= (1, 1, 1, 1, 1)
|(w01, w02, w11, w12, w21, w22) = (1, 1, 1, 1, 1, 1)

}

≤ Pr


(un(1),mn

1 (1), nn1 (1))
is not the only element

in jointly typical set in legitimate receiver
|(w0, w11, w12, w21, w22) = (1, 1, 1, 1, 1)

 ,

Pr

{
(ŵ21, ŵ22, ŵ11) 6= (1, 1, 1)
|(w0, w11, w12, w21, w22) = (1, 1, 1, 1, 1)

}

≤ Pr


(
mn

2 (1, 1, k̂), nn2 (1, 1, l̂),mn
1 (1)

)
is not the only element

in jointly typical set in cognitive receiver
|(w0, w11, w12, w21, w22) = (1, 1, 1, 1, 1)

 .

Next, we define several error events, which indicate error in decoding.

E1
0 =


@k̂

s.t.

(
mn

0 (1), nn0 (1),mn
1 (1), nn1 (1),mn

2 (1, 1, k̂)
)

/∈ Anε (M0, N0,M1, N1,M2),

1 ≤ k̂ ≤ 2n(L21−R21)

 ,

E1
1 =

{ (
yn1 ,m

n
0 (1), nn0 (1),mn

1 (1), nn1 (1),mn
2 (1, 1, k̂)

)
/∈ Anε (Y1,M0, N0,M1, N1,M2)

}
,

E1
ghijs21k =

{
(yn1 ,m

n
0 (g), nn0 (h),mn

1 (i), nn1 (j),mn
2 (1, s21, k))

∈ Anε (Y1,M0, N0,M1, N1,M2)

}
,

E2
0 =


@l̂

s.t.

(
mn

0 (1), nn0 (1),mn
1 (1),mn

2 (1, 1, k̂), nn2 (1, 1, l̂)
)

/∈ Anε (M0, N0,M1,M2, N2),

1 ≤ l̂ ≤ 2n(L22−R22)

 ,

E2
1 =

{ (
yn2 ,m

n
1 (1),mn

2 (1, 1, k̂), nn2 (1, 1, l̂)
)

/∈ Anε (Y2,M1,M2, N2)

}
,

E2
is21ks22l =

{ (
yn2 ,m

n
1 (i),mn

2 (1, s21, k̂), nn2 (1, s22, l̂)
)

∈ Anε (Y1,M1,M2, N2)

}
.

109



Then, we have

Pe ≤Pr
{
E1

0

}
+ Pr

{
E1

1 |Ẽ1
0

}
Pr
{
Ẽ1

0

}
+

∑
hijs21k 6=111l̂

Pr
{
E1
hijs21k|Ẽ

1
1

}
Pr
{
Ẽ1

1

}
+ Pr

{
E2

0

}
+ Pr

{
E2

1 |Ẽ2
0

}
Pr
{
Ẽ2

0

}
+

∑
is21ks22l 6=11k̂1l̂

Pr
{
E2
is21ks22l|Ẽ

2
1

}
Pr
{
Ẽ2

1

}
. (1.1)

Next, we examine the probability of each error event. First, we find the probability
of E1

0 as follows:

Pr
{
E1

0

}
≤ Pr {(mn

0 (1), nn0 (1),mn
1 (1), nn1 (1)) /∈ Anε (M0, N0,M1, N1)}

+
∏

1≤k≤2n(L21−R21)

Pr



(
mn

0 (1), nn0 (1),mn
1 (1),

nn1 (1),mn
2 (1, 1, 1, k)

)
/∈ Anε (M0, N0,M1, N1,M2)
| (mn

0 (1), nn0 (1),mn
1 (1), nn1 (1))

∈ Anε (M0, N0,M1, N1)


= Pr {(mn

0 (1), nn0 (1),mn
1 (1), nn1 (1)) /∈ Anε (M0, N0,M1, N1)}

+
∏

1≤k≤2n(L21−R21)

Pr



(
mn

0 (1), nn0 (1),mn
1 (1),

nn1 (1), xn1m
n
2 (1, 1, 1, k)

)
/∈ Anε (M0, N0,M1, N1, X1,M2)
| (mn

0 (1), nn0 (1),mn
1 (1), nn1 (1), xn1 )

∈ Anε (M0, N0,M1, N1, X1)


≤ ε+

(
1− 2n(I(M2;M0,N0,M1,N1,X1)+3ε)

)2n(L21−R21)

≤ ε+ e−2n(I(M2;M0,N0,M1,N1,X1)+3ε−L21+R21)

= ε+ e−2n(I(M2;X1)+3ε−L21+R21)

Thus, provided that

L21 −R21 > I(M2;X1) + 3ε,
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Pr
{
E1

0

}
reduces to 0 as n → ∞. For an error probability Pr

{
E2

0

}
, we have the

following result:

∏
1≤k≤2n(L21−R21)

Pr


(mn

0 (1), nn0 (1),mn
1 (1),mn

2 (1, 1, 1, k))
/∈ Anε (M0, N0,M1,M2)
| (mn

0 (1), nn0 (1),mn
1 (1))

/∈ Anε (M0, N0,M1)


≤
(

1− 2n(I(M2;M0,N0,M1)+3ε)
)2n(L21−R21)

≤ e−2n(I(M2;M0,N0,M1)+3ε−L21+R21)
,

and

∏
1≤l≤2n(L22−R22)

Pr


(mn

0 (1), nn0 (1),mn
1 (1), nn2 (1, 1, 1, l))

/∈ Anε (M0, N0,M1, N2)
| (mn

0 (1), nn0 (1),mn
1 (1))

/∈ Anε (M0, N0,M1)


≤
(

1− 2n(I(N2;M0,N0,M1)+3ε)
)2n(L22−R22)

≤ e−2n(I(N2;M0,N0,M1)+3ε−L22+R22)
.

These two probabilities decay to 0 as n→∞ if the following two conditions satisfy.

L21 −R21 > I(M2;M0, N0,M1) + 3ε, (1.2)

L22 −R22 > I(N2;M0, N0,M1) + 3ε.. (1.3)

From Lemma 5 in [48], we find that Pr
{
E2

0

}
reduces to 0 with (1.2) and (1.3) as

n tends to infinity. Also for Pr
{
E1

1

}
and Pr

{
E2

1

}
, we observe that the probability

goes to 0 as n approaches infinity, which comes from the Markov lemma. Next,

we make an error analysis for Pr
{
E1
ghijs21k

}
and Pr

{
E2
js21ks22l

}
. We suppose that
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indices k̂ and l̂ are chosen and that

T1 =

{ (
yn1 ,m

n
0 (1), nn0 (1),mn

1 (1), nn1 (1),mn
2 (1, 1, k̂)

)
∈ Anε (Y1,M0, N0,M1, N1,M2)

}

T2 =

{ (
yn2 ,m

n
1 (1),mn

2 (1, 1, k̂), nn2 (1, 1, l̂)
)

∈ Anε (Y2,M1,M2, N2)

}
.

Then, for any k̄ 6= k̂ and l̄ 6= l̂, we have

Pr
{
E1

11111k̄|T1

}
= Pr

{
E1

11112k̂
|T1

}
= Pr

{
E1

11112k̄|T1

}
,

Pr
{
E2

11k̄1l̂
|T2

}
= Pr

{
E2

12k̂1l̂
|T2

}
= Pr

{
E2

12k̄1l̂
|T2

}
,

Pr
{
E2

11k̂1l̄
|T2

}
= Pr

{
E2

11k̂2l̂
|T2

}
= Pr

{
E2

11k̂2l̄
|T2

}
.

Then,∑
ghijs21k 6=11111k̂

Pr
{
E1
ghijs21k|T1

}

=
∑

ghijs21k 6=11111k̂

Pr


(
yn1 ,m

n
0 (g), nn0 (h),

mn
1 (i), nn1 (j),mn

2 (1, s21, k)

)
∈ Anε (Y1,M0, N0,M1, N1,M2)|T1


≤
(

2n(R01−6ε) − 1
)

Pr
{
E1

21111k̂
|T1

}
+
(

2n(R02−6ε) − 1
)

Pr
{
E1

12111k̂
|T1

}
+
(

2n(R11−6ε) − 1
)

Pr
{
E1

1211k̂
|T1

}
+
(

2n(R12−6ε) − 1
)

Pr
{
E1

1121k̂
|T1

}
+
(

2n(L21−6ε) − 1
)

Pr
{
E1

1112k̄|T1

}
+
(

2n(R01−6ε) − 1
)(

2n(R02−6ε) − 1
)

Pr
{
E1

22111k̂
|T1

}
+
(

2n(R01−6ε) − 1
)(

2n(R11−6ε) − 1
)

Pr
{
E1

21211k̂
|T1

}
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+
(

2n(R01−6ε) − 1
)(

2n(R12−6ε) − 1
)

Pr
{
E1

21121k̂
|T1

}
+
(

2n(R01−6ε) − 1
)(

2n(L21−6ε) − 1
)

Pr
{
E1

21112k̄|T1

}
+
(

2n(R02−6ε) − 1
)(

2n(R11−6ε) − 1
)

Pr
{
E1

12211k̂
|T1

}
+
(

2n(R02−6ε) − 1
)(

2n(R12−6ε) − 1
)

Pr
{
E1

12121k̂
|T1

}
+
(

2n(R02−6ε) − 1
)(

2n(L21−6ε) − 1
)

Pr
{
E1

12112k̄|T1

}
+
(

2n(R11−6ε) − 1
)(

2n(R12−6ε) − 1
)

Pr
{
E1

11221k̂
|T1

}
+
(

2n(R11−6ε) − 1
)(

2n(L21−6ε) − 1
)

Pr
{
E1

11212k̄|T1

}
+
(

2n(R12−6ε) − 1
)(

2n(L21−6ε) − 1
)

Pr
{
E1

11122k̄|T1

}
+
(
2n(R01−6ε) − 1

) (
2n(R02−6ε) − 1

) (
2n(R11−6ε) − 1

)
Pr
{
E1

22211k̂
|T1

}
+
(
2n(R01−6ε) − 1

) (
2n(R02−6ε) − 1

) (
2n(R12−6ε) − 1

)
Pr
{
E1

22121k̂
|T1

}
+
(
2n(R01−6ε) − 1

) (
2n(R02−6ε) − 1

) (
2n(L21−6ε) − 1

)
Pr
{
E1

22112k̄
|T1

}
+
(
2n(R01−6ε) − 1

) (
2n(R11−6ε) − 1

) (
2n(R12−6ε) − 1

)
Pr
{
E1

21221k̂
|T1

}
+
(
2n(R01−6ε) − 1

) (
2n(R11−6ε) − 1

) (
2n(L21−6ε) − 1

)
Pr
{
E1

21212k̄
|T1

}
+
(
2n(R01−6ε) − 1

) (
2n(R12−6ε) − 1

) (
2n(L21−6ε) − 1

)
Pr
{
E1

21122k̄
|T1

}
+
(
2n(R02−6ε) − 1

) (
2n(R11−6ε) − 1

) (
2n(R12−6ε) − 1

)
Pr
{
E1

12221k̂
|T1

}
+
(
2n(R02−6ε) − 1

) (
2n(R11−6ε) − 1

) (
2n(L21−6ε) − 1

)
Pr
{
E1

12212k̄
|T1

}
+
(
2n(R02−6ε) − 1

) (
2n(R12−6ε) − 1

) (
2n(L21−6ε) − 1

)
Pr
{
E1

12122k̄
|T1

}
+
(
2n(R11−6ε) − 1

) (
2n(R12−6ε) − 1

) (
2n(L21−6ε) − 1

)
Pr
{
E1

11222k̄
|T1

}
+
(
2n(R01−6ε) − 1

) (
2n(R02−6ε) − 1

) (
2n(R11−6ε) − 1

) (
2n(R12−6ε) − 1

)
Pr
{
E1

22221k̂
|T1

}
+
(
2n(R01−6ε) − 1

) (
2n(R02−6ε) − 1

) (
2n(R11−6ε) − 1

) (
2n(L21−6ε) − 1

)
Pr
{
E1

22212k̄
|T1

}
+
(
2n(R01−6ε) − 1

) (
2n(R02−6ε) − 1

) (
2n(R12−6ε) − 1

) (
2n(L21−6ε) − 1

)
Pr
{
E1

22122k̄
|T1

}
+
(
2n(R01−6ε) − 1

) (
2n(R11−6ε) − 1

) (
2n(R12−6ε) − 1

) (
2n(L21−6ε) − 1

)
Pr
{
E1

21222k̄
|T1

}
+
(
2n(R02−6ε) − 1

) (
2n(R11−6ε) − 1

) (
2n(R12−6ε) − 1

) (
2n(L21−6ε) − 1

)
Pr
{
E1

12222k̄
|T1

}
+

( (
2n(R01−6ε) − 1

) (
2n(R02−6ε) − 1

) (
2n(R11−6ε) − 1

)(
2n(R12−6ε) − 1

) (
2n(L21−6ε) − 1

)
Pr
{
E1

22222k̄
|T1

}
.

)
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Then, we have ∑
ghijs21k 6=11111k̂

Pr
{
E1
ghijs21k|T1

}
≤ 2n(R01−I(M0;Y1,N0,M1,N1,M2)−4ε)

+ 2n(R02−I(N0;Y1,M0,M1,N1,M2)−4ε)

+ 2n(R11−I(M1;Y1,M0,N0,N1,M2)−4ε)

+ 2n(R12−I(N1;Y1,M0,N0,M1,M2)−4ε)

+ 2n(L21−I(M2;Y1,M0,N0,M1,N1)−4ε)

+ 2n(R01+R02−I(M0,N0;Y1,M1,N1,M2)−4ε)

+ 2n(R01+R11−I(M0,M1;Y1,N0,N1,M2)−4ε)

+ 2n(R01+R12−I(M0,N1;Y1,N0,M1,M2)−4ε)

+ 2n(R01+L21−I(M0,M2;Y1,N0,M1,N1)−4ε)

+ 2n(R02+R11−I(N0,M1;Y1,M0,N1,M2)−4ε)

+ 2n(R02+R12−I(N0,N1;Y1,M0,M1,M2)−4ε)

+ 2n(R02+L21−I(N0,M2;Y1,M0,M1,N1)−4ε)

+ 2n(R11+R12−I(M1,N1;Y1,M0,N0,M2)−4ε)

+ 2n(R11+L21−I(M1,M2;Y1,M0,N0,N1)−4ε)

+ 2n(R12+L21−I(N1,M2;Y1,M0,N0,M1)−4ε)

+ 2n(R01+R02+R11−I(M0,N0,M1;Y1,N1,M2)−4ε)

+ 2n(R01+R02+R12−I(M0,N0,N1;Y1,M1,M2)−4ε)

+ 2n(R01+R02+L21−I(M0,N0,M2;Y1,M1,N1)−4ε)

+ 2n(R01+R11+R12−I(M0,M1,N1;Y1,N0,M2)−4ε)

+ 2n(R01+R11+L21−I(M0,M1,M2;Y1,N0,N1)−4ε)

+ 2n(R01+R12+L21−I(M0,N1,M2;Y1,N0,M1)−4ε)

+ 2n(R02+R11+R12−I(N0,M1,N1;Y1,M0,M2)−4ε)

+ 2n(R02+R11+L21−I(N0,M1,M2;Y1,M0,N1)−4ε)

+ 2n(R02+R12+L21−I(N0,N1,M2;Y1,M0,M1)−4ε)

+ 2n(R11+R12+L21−I(M1,N1,M2;Y1,M0,N0)−4ε)

+ 2n(R01+R02+R11+R12−I(M0,N0,M1,N1;Y1,M2)−4ε)
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+ 2n(R01+R02+R11+L21−I(M0,N0,M1,M2;Y1,N1)−4ε)

+ 2n(R01+R02+R12+L21−I(M0,N0,N1,M2;Y1,M1)−4ε)

+ 2n(R01+R11+R12+L21−I(M0,M1,N1,M2;Y1,N0)−4ε)

+ 2n(R02+R11+R12+L21−I(N0,M1,N1,M2;Y1,M0)−4ε)

+ 2n(R01+R02+R11+R12+L21−I(M0,N0,M1,N1,M2;Y1)−4ε),

and

∑
js21ks22l 6=11k̂1l̂

Pr
{
E1
js21ks22l|T2

}
=

∑
js21ks22l 6=11k̂1l̂

Pr

{
(yn2 ,m

n
1 (j),mn

2 (1, s21, k), nn2 (1, s22, l))
∈ Anε (Y2,M1,M2, N2)|T2

}

≤



(
2n(R11−6ε) − 1

)
Pr
{
E1

21k̂1l̂
|T2

}
+
(
2n(L21−6ε) − 1

)
Pr
{
E1

12k̄1l̂
|T2

}
+
(
2n(L22−6ε) − 1

)
Pr
{
E1

11k̂2l̄
|T2

}
+
(
2n(R11−6ε) − 1

) (
2n(L21−6ε) − 1

)
Pr
{
E1

22k̄1l̂
|T2

}
+
(
2n(R11−6ε) − 1

) (
2n(L22−6ε) − 1

)
Pr
{
E1

21k̂2l̄
|T2

}
+
(
2n(L21−6ε) − 1

) (
2n(L22−6ε) − 1

)
Pr
{
E1

12k̄2l̄
|T2

}
+

(
2n(R11−6ε) − 1

) (
2n(L21−6ε) − 1

)(
2n(L22−6ε) − 1

)
Pr
{
E1

22k̄2l̄
|T2

}



≤



2n(R11−I(M1;Y2,M2,N2)−4ε)

+2n(L21−I(M2;Y2,M1,N2)−4ε)

+2n(L22−I(N2;Y2,M1,M2)−4ε)

+2n(R11+L21−I(M1,M2;Y2,N2)−4ε)

+2n(R11+L22−I(M1,N2;Y2,M2)−4ε)

+2n(L21+L22−I(M2,N2;Y2,M1)−4ε)

+2n(R11+L21+L22−I(M1,M2,N2;Y2)−4ε)


.

If all the equation in (4.38) satisfies, probability or error decays to 0 as n becomes

large.
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1.2 Proof of the Achievable Rate Region by Fourier
Motzkin Elimination

From (4.43), (4.44), and (4.45), we have the following rate region with rate

quintuple (R0, R11, R12, R21, R22) satisfying

R0 ≤ r0, R11 ≤ r1,

R12 ≤ r2, R21 ≤ r3,

R0 +R11 ≤ r4, R0 +R12 ≤ r5,

R0 +R21 ≤ r6, R1 ≤ r7,

R11 +R21 ≤ r8, R12 +R21 ≤ r9,

R0 +R1 ≤ r10, R0 +R11 +R21 ≤ r11,

R0 +R12 +R21 ≤ r12, R1 +R21 ≤ r13,

R0 +R1 +R21 ≤ r14, R12 ≤ r15,

R21 ≤ r16, R12 +R21 ≤ r17,

R22 ≤ r18.

(1.4)

Since R1 = R11 + R12, replace R12 with R1 − R11 in inequalities. Also,

since R2 = R21 + R22, replace R22 with R2 − R21 in inequalities. By collecting all

inequalities with R21 in it, we have

0 ≤ R21,
R2 − r18 ≤ R21,

(1.5)
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and
R21 ≤ r3,
R21 ≤ r6 −R0,
R21 ≤ r8 −R11,
R21 ≤ r9 −R1 +R11,
R21 ≤ r11−R1 −R11,
R21 ≤ r12−R0 −R1 +R11,
R21 ≤ r13−R1,
R21 ≤ r14−R0 −R1,
R21 ≤ r16,
R21 ≤ r12−R0 +R11,
R21 ≤ R2.

(1.6)

All the left-hand sides of (1.5) are less than equal to the right-hand sides of

(1.6). Thus, we have

R2 ≤ r3 + r18,
R2 +R0 ≤ r6 + r18,
R2 +R11 ≤ r8 + r18,
R2 +R1 −R11 ≤ r9 + r18,
R2 +R1 +R11 ≤ r11 + r18,
R2 +R0 +R1 −R11 ≤ r12 + r18,
R2 +R1 ≤ r13 + r18,
R2 +R0 +R1 ≤ r14 + r18,
R2 ≤ r16 + r18,
R2 +R0 −R11 ≤ r12 + r18.

(1.7)

Then, we accumulate the inequalities with R11 and compare the lower bounds and

upper bounds on R11. Then, we have

0 ≤ R11,
R1 − r2 ≤ R11,
R1 − r15 ≤ R11,
R0 +R1 − r5 ≤ R11,
R1 +R2 − r9 − r18 ≤ R11,
R1 +R2 − r17 − r18 ≤ R11,
R0 +R1 +R2 − r12 − r18 ≤ R11,

(1.8)
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and
R11 ≤ r1,
R11 ≤ r4 −R0,
R11 ≤ r8 + r18 −R2,
R11 ≤ r11 + r18 −R0 −R2,
R11 ≤ R1.

(1.9)

We eliminate R11, and have inequalities that all the left-hands side of (1.8) are less

than equal to the right-hand sides of (1.9). Then, by collecting all the inequalities

and removing the redundant ones, we have

R0 ≤ r0,

R1 ≤ min(r7, r1 + r15),

R2 ≤ min(r3 + r18, r16 + r18),

R0 +R1 ≤ min(r10, r4 + r15),

R0 +R2 ≤ r6 + r18,

R1 +R2 ≤ min(r13 + r18, r8 + r15 + r18, r1 + r17 + r18),

R0 +R1 +R2

≤ min(r14 + r18, r11 + r15 + r18, r4 + r17 + r18),

2R0 +R1 ≤ r4 + r5,

R1 + 2R2 ≤ min(r8 + r9 + 2r18, r8 + r17 + 2r18),

2R0 +R1 +R2 ≤ min(r5 + r11 + r18, r4 + r12 + r18),

R0 +R1 + 2R2

≤ min(r9 + r11 + 2r18, r8 + r!2 + 2r18, r11 + r17 + 2r18),

2R0 +R1 + 2R2 ≤ r11 + r12 + 2r18.

(1.10)

This ends the proof.
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