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Following natural language instructions requires transforming language into situated

conditional procedures; robustly following instructions, despite the director’s natural

mistakes and omissions, requires the pragmatic combination of language, action, and

domain knowledge. This dissertation demonstrates a software agent that parses, models and

executes human-written natural language instructions to accomplish complex navigation

tasks. We compare the performance against people following the same instructions.

By selectively removing various syntactic, semantic, and pragmatic abilities, this work

empirically measures how often these abilities are necessary to correctly navigate along

extended routes through unknown, large-scale environments to novel destinations.

To study how route instructions are written and followed, this work presents a

new corpus of 1520 free-form instructions from 30 directors for 252 routes in three

virtual environments. 101 other people followed these instructions and rated them for

quality, successfully reaching and identifying the destination on only approximately two-

thirds of the trials. Our software agent, MARCO, followed the same instructions in the

same environments with a success rate approaching human levels. Overall, instructions

subjectively rated 4 or better of 6 comprise just over half of the corpus; MARCO

v



performs at 88% of human performance on these instructions. MARCO’s performance

was a strong predictor of human performance and ratings of individual instructions.

Ablation experiments demonstrate that implicit procedures are crucial for following

verbal instructions using an approach integrating language, knowledge and action. Other

experiments measure the performance impact of linguistic, execution, and spatial abilities

in successfully following natural language route instructions.
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Chapter 1

Introduction

Since Turing’s seminal paper (1950), a natural response to language has been regarded

as the key test of intelligence. Full and rich language use is perhaps the most defining

characteristic of human intelligence. However, despite more than a half-century of trying,

the goal of natural language interaction with an artificial partner remains distant.

One of the most practical applications of natural language is following verbal

instructions. With instructions, one person, the director, uses language to guide others, the

followers, in accomplishing complex tasks when the followers do not have the knowledge,

expertise, authority, or time to plan. Let us distinguish instructions as describing complex

procedures of multiple actions, while a command impels one procedure. Instructions

are ubiquitous across human tasks. Common applications include recipes, assembly

instructions, spatial route instructions, repair manuals, tutoring, coaching, as well as

innumerable unnamed, ad hoc interactions where one person guides another through a

procedure.

For perfectly clear, explicit, and correct instructions, the instruction follower can

directly map the syntax and surface semantics of what was said into an imperative model

of what to do. To handle instructions that are partially unclear, implicit, or incorrect, the

follower must achieve a deeper understanding of the pragmatics of the instructions; that is,
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what the director meant the follower to do. How often instructions fail to be clear, complete,

or correct is an empirical question that must be answered to understand the difficulty of

following route instructions.

This dissertation aims to provide a computational model of route instruction

following with accuracy and robustness comparable to human performance, despite natural

mistakes, omissions, and variation in the instructions. Five questions must be answered to

build and evaluate a natural language understanding system that follows instructions: (1)

How do directors naturally describe the task in instructions? (2) How do human followers

act when following these instructions – particularly, how often do people succeed at the

task given the instructions? (3) What challenges arise in following instructions and how

can they be robustly handled? (4) What computational principles are necessary to follow

route instructions, especially to handle under-specification and ambiguity? (5) How much

does each system component impact the system’s performance, measured by how often the

system successfully follows natural instructions?

1.1 Route Instruction Domain and Related Work

Verbal route instructions are a type of instructions where the director intends to guide

a mobile agent, the follower, to a specific spatial destination. When following route

instructions, the follower must parse and interpret the text, model the instruction’s

actions and descriptions, and perform perceptive and movement actions to navigate to the

destination. Correctly following instructions requires executing both explicitly commanded

procedures and procedures implicit in the instruction language.

Route instructions make a compelling domain for several reasons. Instructions

require integration of language, action, and reasoning skills, so draw on research in

linguistics, psychology, and artificial intelligence. Route instructions are constrained

enough to be tractable to approach, while being complex enough to be interesting. The

evaluation of following route instructions is clear – whether the follower ends at the goal.
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Finally, spatial route instructions have compelling real-world applications.

1.1.1 Route Instructions Understanding is Tractable

Spatial route instructions have several distinct features within the space of instructions

that make building a follower tractable. First, there are well described theories of acting,

reasoning and talking about large-scale spaces (Kuipers et al., 2004; Kuipers, 2000; Landau

and Jackendoff, 1993; Siegel and White, 1975; Timpf et al., 1992; Yeap and Jefferies,

1999). Second, moving through large scale space requires just two fundamental spatial

actions, turns and travels, reducing the number of verbs to model. For the pure task of

route following, few manner verbs, which specify how to perform actions, are necessary.

Moving through space is inherently sequential, and the structure of route instructions tends

to also be highly sequential. Some other types of instructions, such as recipes, may involve

executing many extended actions in parallel. Finally, as discussed below, route instructions

provide a clear and unambiguous evaluation metric. With multiple people following each

set of instructions, or measuring the efficiency of navigation, route instructions also allow

measuring a gradation of success.

1.1.2 Do what I mean, not (just) what I said

Route instructions are not trivial, however. Route instructions allow a lot of variation,

in which landmarks and route attributes described and how they are verbalized. When

more than one route is possible, the directors can also describe different procedures that

will accomplish the task. Route instructions require more than mindlessly executing the

explicit instructions when they are ambiguous, erroneous, or contain implicit procedures.

The follower must determine which necessary, but unstated, procedures satisfy the stated

or implicit preconditions. The follower must apply a knowledge of large-scale space and

knowledge of linguistic conventions in route instructions in order to succeed, despite the

challenges of natural instructions.
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1.1.3 Clear Evaluation and Comparison to People

Route instructions provide a clear evaluation metric: Does the follower understand the

instructions well enough to arrive at the destination? The task of navigating along

a complex route through a large-scale, unknown space is a sequential decision-making

problem. If any mistake or omission – by either the director or follower – is not corrected,

the follower will end up at the wrong destination. This distinguishes the task from other

task-centered language studies, where people can correctly finish at a fuzzy distribution of

places (Roy, 2005; Skubic et al., 2004b; Tellex and Roy, 2006), where the result of text

understanding is text retrieval or generation (Manning and Schütze, 1999; Reiter and Dale,

1997), or where the success criterion is unclear (Anderson, 1984; Anderson et al., 1991;

Carletta and Mellish, 1996; Levit and Roy, 2007).

The situated context of instruction-directed task execution gives an empirical view

into when inference is required. There is a long history looking at drawing the pragmatic

meaning from a text – what is entailed by it or implicated by what was said (Grice, 1967,

1975, 1989; Grodner and Sedivy, 2004; Perrault and Allen, 1980; Sedivy, 2003; Sperber

and Wilson, 1986; Stone et al., 2003). However, this leaves open the question of how

often these implicatures and entailments are necessary to understand the text, for instance,

to follow instructions successfully. Natural language under-specifies descriptions; route

instructions are no exception. Only some aspects of some landmarks and some features

of some actions along the route are described. The number of conceivable implicatures

and entailments from a set of route instructions is large, if not infinite. By comparing the

performance of software agents to human performance, we can discover which inferences

are necessary to follow the instructions and how often people make them.

1.1.4 Real-World Applications

Route instructions are potentially useful anywhere a person is interacting with a mobile

robot in a complex environment. Route instructions can be used as an assistive technology,
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to ease (or allow) the control of smart wheelchairs (Beeson et al., 2007; Simpson, 2005;

Tellex and Roy, 2006). Route instructions could help in Urban Search and Rescue, to guide

a rescue or exploratory robot through an unknown environment even if communication is

lost (Burke et al., 2004; Murphy, 2004). Route instructions would also assist astronauts

supervising semi-autonomous robots (Burridge et al., 2003; Fong and Nourbakhsh, 2005;

Kortenkamp et al., 1998).

1.2 Language and Task Corpus Methodology

This thesis looks at the problem of following natural instructions. Let us use the

term natural instructions to refer to instructions that have the characteristics of naturally

occurring instructions: instructions that are free-form, natural language with unconstrained

vocabulary or grammar and containing naturally occurring mistakes and omissions.

Specifically, to elicit natural instructions, directors learned the environment and navigation

tasks through first-person experience, recalled the environment from memory while

planning the task, and gave the instructions to unknown followers with minimal knowledge

of the environments. Each of these factors increases the ecological validity of the instruction

corpus (Cohen, 1995; Rosenthal and Rosnow, 1991).

1.2.1 General Definition of Language and Task Corpus Methodology

The first general contribution of this dissertation is a methodology for building software

systems that follow free-form, natural language instructions. First, gather a corpus of

people giving instructions to accomplish concrete tasks in the domain. Second, observe

other people following and rating these instructions to accomplish the task. Third, build

a working skeletal system able to interpret and execute the most common instructions in

the domain. Comparing the difference between people’s performance in following the

instructions with the system’s performance shows where to focus development effort, as

well as providing regression testing. Once the system is approaching human performance,
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we can measure the impact of each component in the system – or each feature in the

instructions – by measuring the performance of the system without that component. Note

that while this work focuses on spatial route instructions, the language and task corpus

methodology is general for any procedural instructions.

1.2.2 Application of Language and Task Corpus Methodology to Study

Spatial Route Instructions

This dissertation applies the language and task corpus methodology to spatial route

instructions, implementing a system that follows spatial route instructions through an

unknown large-scale space. By ablating components from the route instruction following

agent and observing their impact on performance, we measure the importance of general

instruction following abilities, domain-specific navigation and spatial reasoning abilities,

and the combination of both general and task-specific abilities. These computational

experiments reveal which skills are necessary to follow natural instructions and how often

each is required.

1.3 Human Route Instruction Studies

We gathered a large corpus of route instructions from three human experiments, using

the same apparatus, stimuli and per-trial procedure. In the first study, six directors each

gave instructions for 42 routes between named positions in three virtual environments.

These instructions were used to develop a software route instruction follower, MARCO.

In the second study, an evaluation corpus was gathered, where 24 directors each gave 42

instructions in one of the three environments. This study also varied the start and end

points of the requested routes and tested both continuous and discrete movement through

the environments. The second half of the corpus is used to evaluate the generality of

MARCO’s methods across individual differences in linguistic and spatial reasoning for route

instructions.
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1.4 Resolving Linguistic Ambiguity by Task Execution

The challenges in instruction following, and the methods for handling them, occur at every

level of the computational architecture. At the lexical level, the system should be robust to

unknown words. At the syntax level, it should handle the variety of utterance forms that

people can understand, whether or not formally grammatical. At the semantic level, the

system extracts the director’s intended meaning across differences in surface form. The

semantic model of the instructions captures the both imperative and declarative constraints

in the instructions – both how the follower should act and what the follower should expect

to observe. At the pragmatic level, the agent infers which procedures are required, whether

they are left implicit – or even stated incorrectly – in the route instructions.

We have implemented these methods as an integrated system, MARCO, and we

have shown that they achieve comparable levels of performance to human followers, across

the range of quality of human-provided route instructions. The architecture is described in

detail in Chapter 5, and the individual challenges and methods are described in Chapter 6.

The performance of the full agent approaches the performance of people following the

instructions overall; for the best-rated instructions, MARCO performs nearly at human

levels. This empirical validation supports the hypothesis that the MARCO architecture

captures the challenges in spatial route instruction following and the methods that humans

use to meet those challenges.

The major conceptual contribution of the MARCO architecture is deferred handling

of ambiguity. Both referring phrase resolution and modeling instructions as a sequence

of procedures introduce semantic ambiguity. Referring phrases vastly under-specify the

configuration, even combined with other knowledge explicit in the instructions or in

unspoken shared common heuristics – common-sense. A paragraph of instructions vastly

under-specifies the procedures necessary to accomplish the described task. Even a single

instruction command can refer to a complex conditional procedure (Bugmann et al., 2004;

Lauria et al., 2002a; Simmons et al., 2003; Tellex and Roy, 2006).
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MARCO handles what Sperber and Wilson (1986, 2004) called “contextual

implication,” conclusions derivable from both the linguistic input and the external context,

but from neither alone. MARCO defers handling some linguistic ambiguity until it is

situated at that point in the task and environment, when it has more perceptual and cognitive

common ground with the director, by perceiving the environment at that point in the route.

1.5 MARCO Architecture

This dissertation details a system, MARCO, that interprets human free-form route

instructions and follows the inferred model of the described route (MacMahon et al., 2006).

This work builds on a rich literature studying different aspects of route instructions. Some

work presents a model of route instructions, but does not apply the model to navigate

(Anderson et al., 1991; Daniel et al., 2003; Denis et al., 1999; Klippel et al., 2005; Tversky

and Lee, 1999; Vanetti and Allen, 1988). Other work concentrates on understanding single

spatial commands in the small-scale space of a room (Skubic et al., 2004b; Tellex and Roy,

2006) or tabletop (Roy, 2005). Finally, other work follows instruction sequences in a large-

scale space, but does not use spatial and linguistic knowledge to recover from instruction

errors or to infer implicit procedures (Bugmann et al., 2004; Simmons et al., 2003).

MARCO is composed of six primary modules: three to interpret the route instruction

text linguistically and three to interpret and execute the instructions in the context of the

task and environment. MARCO’s general framework is domain-independent, although

extending the architecture to domains outside of large-scale spatial route instructions, such

as telephone help or booking systems, remains future work.

1.5.1 Conceptual Structure of Instructions

MARCO’s instruction modeler produces two interlinked models: an imperative, procedural

model of the actions to be taken – a skeletal plan for the task – and declarative models

of the expected environmental and task states. MARCO models instructions as a series
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of parametrized local procedures, called procedural specifications. Each procedure in

the instructions is modeled as a procedural specification. Some specified conditions of

procedures are modeled either as internal state, such as estimates of distance traveled.

External state is modeled as view descriptions, which constrain what the follower expects

to see, given the referring phrases and commands in the route instructions.

The procedures to fulfill each condition are modeled as embedded procedural

specifications. A command to travel down a hallway is labeled Travelp. Travelp is

composed of the explicit, simple causal travela action to reach the next place, but also may

require other actions such as turna and verifya. For instance, “Take the blue hall to

the chair,” may require a travela actions to move to the blue hall, a turn actions to face

along the blue hall towards the chair, and the explicit travela actions along the blue hall

until the chair is reached. However, since the number of actions to execute is not known a

priori, the possible procedure sequences are represented as reactive procedures, which are

invoked as necessary. The first Travelp procedure to the blue hall may, in turn, require a

Turnp procedure to face the blue hall and possibly a Findp procedure to bring the blue hall

into view.

The expected observations of the blue hall and chair in this example are modeled

as view descriptions, which model the required relative distance and position as well as the

landmarks’ type and appearance. For instance, at the beginning of the main Travelp down

the blue hallway, there should be some sort of blue path directly in front of the follower,

and a chair in the distance on the part of that path in front of the follower.

The instruction modeler also decomposes high-level commands into lower-level

procedures. The concise “Take the third right to the end of the hall,” is

modeled and executed no differently than if the director had explicitly commanded,

“Go down one path to the third place with a path to the right. Turn

right there. Go down that path until you reach the end of that hall.”

This simplifies the execution code, by separating it from the surface form of the instructions.
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Though the implemented MARCO agent only follows route instructions through

large scale spaces, these knowledge representations are general to modeling complex

reactive procedures. Some of the modeling methods and heuristics are specific to this

domain, but many are generalizable.

1.6 MARCO Route Instruction Studies

MARCO follows the same instruction texts to navigate through the same environments as

people do. This allows direct comparisons of MARCO, MARCO with abilities ablated, and

people, each following the same instructions. For people, the results are the mean over

runs from multiple participants following each instruction set, each beginning at the start

location facing a random direction. For the MARCO cases, the results are the mean over

runs facing each of the four directions at the start. MARCO’s input was from the hand-

verified ‘gold-standard’ parse treebank, not the parser, but all other modeling was done

autonomously.

1.6.1 Ablation Studies of Natural Route Instructions

The implementation of MARCO is configurable to easily remove some capabilities at run-

time. This enables computational experiments of running versions of MARCO with different

language, action, perception, and reasoning abilities on the same instruction corpus. These

experiments give insight into how people give and follow instructions, and how important

these various capabilities are to construct a software agent to follow the instructions.

How important are implicit procedures?

One key finding is the importance of executing the implicit procedures in the instructions,

not just those that are explicitly commanded. Executing only explicit procedures, MARCO

succeeded on just 34% of the trials.
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What are the cues for implicit procedures?

Instructions can imply unstated, implicit procedures with four distinct cues. First, syntactic

cues are domain independent syntax that mark an explicit condition which the follower must

take unspecified procedures to achieve. Second, semantic cues require the decomposition of

high-level procedures into low-level actions and task conditions. Third, pragmatic cues alter

the interpretation of commands and descriptions, depending on their surrounding context

in the instructions and in task execution. Fourth, exploratory procedures are taken to gain

information needed to match referring phrases to the task and environment state.

These four triggers of implicit procedures occur in instructions across all domains,

though this work examines them in the context of spatial route instructions. This section

compares the results of MARCO running without the ability to recognize different kinds

of cues for implicit procedures: cues implicit in the syntax, verb semantics, or discourse

and utterance pragmatics, and exploratory procedures used to gain information. Without

semantic cues, MARCO follows only 36% of the instruction corpus; MARCO without

semantic cues, 40% success rate; MARCO without exploration procedures, 50%; and

MARCO without pragmatic implicit procedures, 55%.

What kinds of landmarks are necessary?

Previous work examined the role of object and structural landmarks in learning and

navigating large-scale spaces (Stankiewicz and Kalia, 2007). A large body of related work

has examined the role of landmarks in spatial route instructions (Daniel and Denis, 2004;

Klippel and Winter, 2005; Lovelace et al., 1999; Michon and Denis, 2001; Nothegger et al.,

2004; Raubal and Winter, 2002; Weissensteiner and Winter, 2004). We can measure how

often structural and object landmarks are mentioned in route instructions by examining

statistics available from our language modeling. We can examine when the landmarks

are crucial for navigation, as opposed to used in elaboration, by selectively removing

the ability to recognize these different types of landmarks. Selectively removing the
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ability to recognize different types of landmarks reveals that without Object Landmarks,

MARCO succeeds on 49% of the corpus; without Intersection Landmarks, 48%; without

Appearance Landmarks, 44%; without Causal Landmarks (paths and walls), 34%; and

without Structural Landmarks, 27%.

What spatial cognition is necessary?

Following spatial route instructions requires the ability to represent and manipulate space

in several different ontologies (Beeson et al., 2007; Kuipers et al., 2004; Kuipers, 2000),

as well as different skills at each level. The Control level models spatial actions as control

laws, requiring skills such as moving until a condition is met (closed loop control) and

moving an estimated distance or turning an estimated angle (open loop control). The Local

Metrical level models the local environment geometrically. Skills at this level include

maintaining the relative position of landmarks that are no longer visible and perspective

taking (Trafton et al., 2005; Tversky et al., 1999), the ability to reason about perspectives

other than the currently view. The Local Topological level models the navigational

affordances of the local space, i.e. what sort of intersection it is, if any. At the Causal level,

space is represented by how abstracted views are linked by abstracted actions (applications

of control laws). The Global Topological level reasons about space as networks of places

and paths.

By selectively ablating spatial abilities in MARCO and measuring when the agent

can no longer reach the destination, we learn when these skills are necessary to follow

route instructions in large-scale spaces. These experiments reveal how often the diverse

spatial reasoning and representation skills play crucial or elaboration roles in natural human

route instructions. Without the Local Topological level, MARCO follows 47%; without the

Topological level, 47%; without Open Loop Causal procedures, 25%, without the Local

Metrical level, 17%; without Closed Loop Causal procedures, 7%; and without any Causal

procedures only 1% of the instruction corpus.
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1.7 Summary

This dissertation describes a general architecture for following natural language instruc-

tions, with an implementation applied to following spatial route instructions through an

unknown large-scale space. A new, large language and task corpus was collected, of

human directors’ exploration traces and route instructions; and human followers’ navigation

traces using these instructions and subjective ratings. The performance of the full agent

approaches the performance of people following the instructions overall and is statistically

equivalent to the performance for the best-rated instructions. By selectively removing

language, action, perception, and spatial reasoning abilities, the evaluation measured the

importance of each ability for following spatial route instructions.

13



Chapter 2

Related Work in Spatial Language

and Instruction Following

Instructions in general require applying an inter-disciplinary understanding of natural

language and acting in the world. An integrated cognitive system is required to correctly

follow free-form, natural language instructions. Because route instructions require many

different abilities to follow, they have been studied across the cognitive sciences. In

cognitive psychology, route instructions show see how people think about space (Anderson

et al., 1991; Daniel et al., 2003; Denis et al., 1999; Lovelace et al., 1999; Tversky and Lee,

1999; Vanetti and Allen, 1988). In linguistics, route instructions show people talk about

space (Edmonds, 1993, 1994; Levelt, 1982; van der Zee and Slack, 2003). In artificial

intelligence, spatial commands and route instructions are studied for natural human-robot

interaction (Bugmann et al., 2004; Klippel et al., 2005; Simmons et al., 2003; Skubic

et al., 2004b; Tellex and Roy, 2006). Successfully following route instructions requires

integrating techniques from all of these fields.

14



2.1 Psychological Studies of Spatial Language

2.1.1 Spatial language and spatial cognition

Route instructions are a sequence of descriptions of spatial actions and configurations.

Spatial cognition is a fundamental cognitive skill: across tasks and languages, linguistic

and psychological studies have found strong evidence of a “Where” system that

recognizes and verbalizes spatial relations separately from object geometry (the “What”

system) (Jackendoff, 1983; Landau and Jackendoff, 1993). Furthermore, when describing

a route, people express similar information whether communicating in language (verbal

instructions) or in pictures (maps) (Hayward and Tarr, 1995; Klippel et al., 2003; Tappe

and Habel, 1998; Tversky and Lee, 1999).

Route instructions are an interesting case of a more general class of problems,

verbally describing a spatial environment. There has been a wealth of good work in studying

the different aspects of describing spatial relations, layouts, and scenes. Herskovits (1997)

provides an invaluable survey of language about space. Mukerjee (1998) surveys cognitive

representations of space, and in particular which are quantitative (“neat”) and which are

qualitative (“scruffy”). van der Zee and Slack (2003) recently collected essays surveying

work on directional prepositions.

Linde and Labov (1975) focus on one domain particular of describing large-scale

space. This work presents a grammar for the sentence- and discourse-structure of verbal

descriptions of apartments by their residents. Linde and Labov derive twelves rules of

the grammar, delineating what is described, the order of the description, how sentences

or subordinate clauses are formed, and the transition from action verbs to passive spatial

layout descriptions. This engrossing paper describes both the semantics and pragmatics

(“well-formedness”) of large-scale space descriptions. The paper illustrates the derivation

and application of the rules with examples of the collected apartment layout descriptions.

The paper is a summary of (Linde, 1974).
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Another keystone work in this field is Landau and Jackendoff (1993): “‘What’

and ‘Where’ in Spatial Language and Spatial Cognition.” Landau and Jackendoff

survey a variety of linguistic and psychological evidence supporting independent mental

representations and linguistic structures for describing objects and locations. Named objects

specify detailed geometric characteristics, especially shape. When referring to spatial

relations and locations, however, the implicitly described geometry is more qualitative

and vague. These distinct manners of reference to objects and locations, universal across

human languages, mirror psychological and neurological evidence for separate modules:

one reasoning about identifying an object and the other reasoning about spatial relations.

The language used to describe space naturally parallels the underlying represen-

tations. Talmy (2000) focuses on the closed sets of prepositions that we primarily use to

describe spatial relations. A spatial preposition in a language encodes a rich set of default

attributes of the relation it is describing. For instance, if one says object A was across object

B, we generally infer that A begins on one side of B and extends continuously past the other

side on a fairly straight path. A and B are both likely significantly longer in one dimension

than the other and the long axes should run approximately perpendicular to one another, and

A is likely shorter than B. We would make significantly different assumptions if we heard

that A was along, over, on, in, or around B. The complete set of these default attribute

values may not be true for any given relation, but if too many are violated, the preposition

was the wrong word to describe the situation.

The MAP-TASK corpus is another influential study of spatial language. See

Section 3.3.1 for a comparison of the MAP-TASK with our language and task corpus

methodology.
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2.2 Psychological Studies of Route Instructions

2.2.1 Gary Allen and colleagues

One of the most cited psychological studies of route instructions is Vanetti and Allen (1988).

Vanetti and Allen looked for differences among subjects divided into four even groups

by standardized testing: high spatial-high verbal, high spatial-low verbal, low spatial-high

verbal, and low spatial-low verbal. Interestingly, the two standardized tests of spatial ability

measured small-scale spatial ability, but were good predictors of large-scale space route

planning ability. The subjects gave spoken verbal route instructions between two known

buildings on their college campus and followed spoken verbal route instructions between

two offices inside a campus building. The route across campus was “familiar to all subjects

and not extensive.”

Spatial ability had a larger effect in the accuracy of subjects’ described routes than

verbal ability. However, subjects with high verbal ability were more likely to describe the

key choice and termination points. The subjects’ route instructions were not empirically

tested by having others follow them, but by the experimenters coding them.

Allen (2000) later aims at capturing the “best-practices” of real-world direction

giving. Allen summarizes experiments suggesting descriptives and delimiters should be

inserted at choice points instead of en-route. Allen finds men are more persistent in

following instructions; in his experiments, men have fewer points where they claim the

route instructions were insufficient than women. Women’s performance improves when

environmental features (landmarks, relative spatial directions) are emphasized over metrical

distances and cardinal directions, but still perform worse than men. Allen also finds the

quality of instructions is more important as the follower nears the destination, rather than

the beginning of the route.

Allen (2003) followed up with a study of how and when gestures accompany route

instructions. Allen found deictic gestures were the most frequent, especially emphasizing
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right or left on turns. Iconic and jabbing emphasis gestures were less common than deictic

gestures and gestures were more common in general with rapid speech.

2.2.2 Michel Denis and colleagues

Denis (1997) breaks down route instruction-giving into three phases: activating relevant

spatial knowledge, determining a route, and translating that route into a verbal output.

Denis codes a set of route instructions by breaking down each utterance into “minimal

units of information.” Daniel et al. (2003) found good, poor, and “skeletal” instructions

were differentiated by whether the proper action was associated with the proper landmark.

Fontaine and Denis (1999) followed up by examining how people give route

instructions for three-dimensional routes through the Paris Metro differ. They found that

underground, people specified actions in relation to objects, especially signs, far more

frequently than when in open outdoor spaces. Michon and Denis (2001) guided subjects

on long, but topologically simple routes through Paris districts. The subjects then repeated

the route on their own and gave route instructions for a tape recorder. This experiment

found that landmarks, while mentioned all along a route, are most frequently mentioned

“close to critical nodes,” e.g. around a critical turn or picking the correct street to exit a

large square. Recent work elaborates on these themes (Denis et al., 1999; Mellet et al.,

2000), for instance, Daniel and Denis (2004); Daniel et al. (2003) found “good”, “poor”,

and “skeletal” instructions were differentiated by whether the proper action was associated

with the proper landmark.

2.2.3 Barbara Tversky and colleagues

Tversky and Lee performed a series of studies on how people direct others on routes in the

different modalities of route instructions and sketch maps. Students were asked to give route

instructions from a campus landmark to a well-known restaurant in a neighboring town.

One work, Tversky and Lee (1998), follows Denis (1997) in describing each segment of a
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route by its starting point, re-orientations, path progression, and a goal description. “How

Space Structures Language” likewise follows up on Talmy (1983, 2000). They find support

for Talmy’s schematization of space in the similar ways people describe routes verbally and

pictorally. For instance, both verbal route instructions and pictoral route maps schematize

information about a route into a series of generic turn and travel actions. In language, turns

are represented by a couple of verbs or phrases, such as “turn,” “make a” and “take a”.

In diagrams, turns are represented as arrows or sketches of intersections with orthogonal

angles.

Tversky and Lee (1999) find the same roles are played by elements in a sketch map

and hypothesize that there may be a common cognitive representation that underlies the

generation of each. This work was supported by further work in Tversky (2000). Agrawala

and Stolte (2001) implemented principles from this work in a software system that rendered

sketch-style route maps. Their evaluation found people preferred the sketch maps over or

in addition to more accurate and detailed cartographic maps.

Taylor et al. (2001) look at when and why people switch perspective while

describing environments and routes. Taylor and Tversky (1996) examine the additional

ambiguities introduced by describing an environment using a linear, limited natural

language as compared to using analog depictions.

Another angle of Tversky’s research has been investigating the role perspective

plays in spatial description and route instructions (Tversky and Lee, 1999). Taylor and

Tversky (1992) looked at the differences in mental representations of large-scale space

that resulted from differences in the perspective of a spatial description. Subjects read

descriptions written either from a survey perspective or as a narrative of a route.

Tversky et al. (1999) examine the cognitive costs and benefits of changing

perspective during verbal spatial description. They review evidence of costs in terms of both

effort and errors when readers are forced to change perspective. The authors propose that

speakers and writers may switch perspectives to take advantage of relatively more salient
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objects and spatial relationships that are easier to describe and compute. The other proposed

explanation is simply that people’s heterogeneous mental representations of space encode

different perspectives.

2.2.4 Other work

One of the earliest studies of route instructions was by Elliot and Lesk (1982). Edmonds

(1993, 1994) examined reference resolution to previously unknown objects encountered in

route instruction texts.

Lovelace et al. (1999) had college freshmen write route instructions across their

college campus. Subjects first described two previously known routes while in a lab setting

from a familiar part of campus. Twice, the students were led along an unknown route on

campus, then described it. The route instructions were rated and coded for mentioning

certain features, such as when and where landmarks are mentioned. Subjects often omitted

mentioning turns, short segments, and landmarks, especially when travel was constrained

by environmental considerations. Good route instructions mentioned many landmarks

along the paths, off the route, and at the choice points, in contrast to other studies.

Buhl (2003) also looked at the effect of perspective (called “speaker orientation”)

on route instructions. Subjects gave route instructions to a listener with a different point of

view and found subjects most often produced route instructions composed from their own

perspective

2.3 Route Instruction Generators

Davis (1986) implemented the “Back-Seat Driver” system, an early in-car navigation

system, producing real-time route instructions for a driver.

Moulin and Kettani (1998)’s GRAAD software generates a logical, specification

of a route from a “Spatial Conceptual Map” and tests them by giving them to a virtual

pedestrian in a simulated environment. This logical formulation is processed by another
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module to convert it into natural language by removing redundant information, matching

logical terms with environment names and matching logical relations with verbs. Gryl et al.

(2002) later presented a richer conceptual model of English and French spatial expressions.

Porzel et al. (2002) examine issues of how to linearize a representation of a two- or three-

dimensional environment or scene into a one-dimensional string of words.

Fraczak et al. (1998) examines automatically generating route instructions in

underground, three-dimensional environments, such as subway stations. Skubic et al.

(2001) generated spatial descriptions of small-scale space for a robot navigating within

a room.

Stocky (2002) implemented a kiosk system with a virtual avatar that used gesture

and natural language route instructions to guide visitors to offices. From a hand-coded map,

Stocky’s software, MACK, generated spoken route instructions coordinated with the avatar

pointing and highlighting a map. MACK also reasons about when to shift the perspective of

route instruction-giving, based on Taylor and Tversky (1996). Kopp et al. (2007); Striegnitz

et al. (2005) continue to study generating route instructions in both text and gestures.

2.4 Automated Instruction Following and Analysis

2.4.1 Computational Models of Spatial Prepositions

Several software systems have implemented computational models of spatial prepositions.

Winograd (1972) had one of the first implementations, with his SHRDLU system.

SHRDLU executed single commands in a “Blocks World” domain, including planning to

achieve commands with complex unsatisfied preconditions. SHRDLU performed using a

controlled vocabulary of about fifty words, although it could learn nouns online. SHRDLU

had models of the preconditions of prepositions such as on.

André et al. (1986) implemented a dialogue system that could find the reference

objects for certain (German) spatial prepositions in a dialogue about a sightseeing
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in a simulated city. Their system, CITYTOUR, could handle several basic and

hedged prepositions to answer questions such as (translated to English) “Is the post

office beside the church?” Regier and Carlson (2001) and Coventry and Garrod

(2004) present implementations of system that ground knowledge of small-scale spatial

prepositions by modeling both geometric and causal relations between objects.

Blisard, Skubic, and colleagues implemented a spatial referencing system on a

mobile robot that can understand small-scale spatial prepositions such as front, left,

right, behind (Blisard and Skubic, 2005; Blisard et al., 2006; Skubic et al., 2004b). Their

system can ground prepositional phrases using these spatial prepositions to a occupancy

grid representation of the immediate space surrounding the robot. Their implementation

can describe the locations of objects surrounding the robot, can answer simple questions,

and can move to achieve single commands to move to locations in the small-scale space,

e.g. “go behind the desk.”

Gorniak and Roy (2004) implemented a system that kind find the referents of

referring phrases given a visual scene by resolving color, spatial relations, grouping

information, and anaphora. Their system, Bishop, resolved spatial prepositions with an

implementation of (Regier and Carlson, 2001) to distinguish one object out of a group

of distractors. The domain for this work was initially a simulated, abstracted tabletop

environment of configurations of colored cones. It was later integrated with the Ripley robot

in a physical tabletop environment (Roy et al., 2004). As discussed in 3.3.1, Levit and Roy

(2007) implemented a system applying understanding of spatial language to accomplish the

MAP-TASK.

2.4.2 Computational models of route instructions

Riesbeck (1980)’s system evaluated route instructions by high-level characteristics,

independent of the environment. His natural language parsing and understanding program

analyzed a set of route instructions for overall clarity and cruciality measures. Each motion
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must be described completely and precisely (clarity); additional descriptions provide checks

but are not crucial. The software simulated the role of a person glancing over a route

instruction text, while questions can still be asked before navigating, not of an agent

following route instructions in the environment.

Agre and Chapman (1990) discuss plans as communicative acts and instructions as

communicating under-specified plans. They showed how route instructions do not uniquely

specify action sequences, but instead constrain navigation by providing a plan skeleton,

with exploration sub-goals the follower must accomplish. Chapman (1990) followed up on

this theoretical paper in implementing the “Sonja” system, which interpreted spoken advice

and instructions to better fight the monsters in her virtual dungeon.

Alterman et al. (1991) implemented a system which reactively replans to read

the instructions when its naïve plan proves inadequate. It makes an inference graph by

analyzing the keywords in instructions, simplifies the graph using graph summarization

techniques, transforms the graph into a procedure, and resumes executing with the amended

plan. The system, FLOABN, operated in a discrete event simulation. Example instructions

focused on different ways of paying for phone calls.

Zelek (1997) implemented a system that followed spatial instructions from a small,

controlled vocabulary grammar, chosen from a graphical user interface. The system was

able to execute two basic commands travela and finda, which are two of the actions in

out current work. The system also had models for two-dimensional spatial prepositions,

although how these are resolved is not detailed. The system was evaluated on a physical

robot.

Webber et al. (1995) looked at the broader question of inferring an intended plan

from any instructions. This work examined the linguistic and domain knowledge needed to

get a virtual agent to follow instructions from various domains. They state

A plan’s relationship with a set of instructions is also not rigid. It depends,

inter alia, on various features of the instructions, including: (1) whether the
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instructions convey doctrine (general policy regarding behavior in some range

of situations) or procedure (actions to be taken now or at some specified time

in the future) ; (2) in the case of procedural instructions, whether they are given

before, during, or after action; (3) whether the instructions are meant as advice,

suggestion, order, request, warning, or tutorial.

Di Eugenio (1998) reports on the language system of this work. Her software analyzes

general instructions, such as craft guides, matching the text against a plan library using

plan recognition. The system integrates a lexical semantic ontology (Conceptual Semantics

Jackendoff (1983)) and a description logic based system. The major contribution is

interpreting “purpose clauses” (do this to accomplish that or do this such that that is done)

(e.g. “Turn left to face the chair.”). Purpose clauses help lookup an appropriate

plan in a plan database, as the purpose clause indicates the plan’s (or at least the utterance’s)

goal. The system was integrated with the AnimNL system, which is a VR animation able

to simulate several tasks. The self-admitted lack in the system is an inability to synthesize

meaning across the discourse, instead, it interprets each sentence in its own context.

Other parts of Di Eugenio et al.’s work examined instructions for the role of free

adjuncts (e.g. “Facing the chair, move forward”) (Webber and Di Eugenio, 1990),

negative imperatives (e.g. “Do not go down the blue hall.”) (Vander Linden and

Di Eugenio, 1996), and handling standing orders with some autonomy (Bindiganavale et al.,

2000). 1

Müller et al. (2000) implemented a system that can follow a formal route description

through an environment, with the intention of adding on a natural language understanding

system. Descriptions follow the Tversky and Lee analysis, specifying where to turn or

switch paths (Tversky and Lee, 1998).

Frank (2003) suggested formalizing verbal route instructions into action schemas,

considering the “pragmatic information content” of route instruction texts the same if they
1All examples are from our domain, not their papers.

24



produce equivalent actions.

A group in Bremen, Germany is building an intelligent wheelchair (Lankenau and

Röfer, 2001; Mandel et al., 2005) that can share control with a human driver through a

natural language interface by integrating a spatial ontology (Krieg-Brückner et al., 2004)

and dialogue model into an agent control architectures (Ross et al., 2004). Other work

examines how people direct a robot using natural language to one of a group of objects,

particularly the dialogue strategies and spatial referencing used, and whether directors used

open- or closed-loop commands (Moratz et al., 2003; Tenbrink, 2003; Tenbrink et al., 2002;

Tenbrink and Moratz, 2003).

Shimizu and Haas (2006) built a system that followed instructions through a

simulated building. The system parsed free-form natural language instructions into a

command template of a verb of travela or entera, a landmark of a door or hallway, a

direction of left, right, or straight, and a ordinal of which hallway or door is referenced.

The routes consisted of about two segments. This work is attempting to learn to match

word segments to action sequences and for the corpus gathered, succeeds at 77%. The

route instructions were elicited by showing the director the route to follow and routes that

the experimenter could not follow were removed, leaving a corpus which should be 100%

followable.

Gorniak and Roy (2006, 2007) implemented a system that follows directives that

one player gave another while solving a puzzle in a video game. Their system performs

plan recognition by parsing utterances into an affordance filter, which, in turn, selects the

most probable action on an object, given the utterance and situation. Placing the system in

the same situations with the same linguistic inputs as a human player, the system selects the

next action about 70% of the time, whereas plan recognition alone only predicts 50-60% of

the next actions. This evaluation only allows the testing of one command at a time, and the

commands are extremely simple, with 50% of the commands consisting of a single word.

Tellex and Roy (2006) programmed “spatial routines,” or simple procedures, to
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execute single commands instantaneously to move within a room or corridor. The system

understood eight commands, combinations of turn, go, and stop with parameters, such

as “Go (straight|right|left)” and “go across the room.” The procedures

included achieving preconditions and were evaluated by whether the simulated robot

produced a similar path across the local small-scale space as people in response to the

command.

2.4.3 GRACE and GEORGE in the AAAI Robot Challenge

Perzanowski et al. (1998, 2001) implemented a system that combined a speech recognizer,

a deep parser, a dialog model, hand gesture recognition, and a Palm Pilot control interface.

A user could command the robot to move around a mapped, small-scale space by speaking

and gesturing.

GRACE extended this architecture, adding the ability to follow a route instruction

series through an unmapped, unknown large-scale space (Simmons et al., 2003). The

robot GRACE navigated through a conference center by asking for and following route

instructions. GRACE could string together several simple commands, using an instruction

queue executor. They also handled implied new interim destinations (“Take the

elevator”).

In 2002, GRACE successfully, though haltingly, completed the Robot Challenge at

AAAI 2002 (Simmons et al., 2003). The 2003 robots GRACE and GEORGE were beset by

hardware, software, and communications problems that illustrate the need for more user

visibility into the state of the system. Still, the robots were directed down a hallway, up a

ramp and through a narrow doorway, and across an exhibition hall.

GRACE and GEORGE had several major limitations. Most debilitating, the

commercial speech recognition system was unreliable. The vocabulary and sentence

structure were limited so only a trained operator could direct the robots. The navigation

planning code relied on having a completed global metrical map, so navigating to unseen,
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unknown locations was extremely fragile. Crowds of people forming shifting walls further

confused the robot.

GRACE and GEORGE did not reason to infer implied actions. They had only one

interpretation of the instructions, although this was checked with the director. The robots

did not estimate the likelihood of action success, but instead asked the director.

2.4.4 Instruction-Based Learning (IBL) Project

The Instruction-Based Learning (IBL) for Mobile Robots project is another implementation

of route instruction following on robots . Bugmann et al. (2001) presented a corpus of 96

spoken route instruction sets from participants guiding a human operator, who had remote

control of a robot navigating through a tabletop model of a town center. They modeled

the instructions as action schemas, called “functional primitives,” such as MOVE FORWARD

UNTIL <COND>, TURN <DIR> <LOC>, <LANDMARK> IS LOCATED <WHERE>, and GO TO

<LANDMARK>. Lauria et al. (2002a) implemented a robotic system capable of following

programs of functional primitives from this corpus, expanded to 144 route instructions. The

15 IBL functional primitives include procedures such as go_untila, exit_roundabouta,

follow_road_untila, and take_roada, all of which would be modeled with our Travelp

procedure with various parameters.

2.4.5 Spatial Ontologies and Spatial Instructions

Software systems that analyze or follow route instructions can be distinguished by how

they represent space. Freundschuh and Egenhofer (1997) survey a variety of spatial

representation models and define broad categories based on (1) if the objects in the space

are manipulable, (2) if the space requires locomotion to experience, and (3) the size, or

scale, of the space. This work focuses on non-manipulable, large-scale spaces that cannot

be experienced from any one perspective: the agent must turn (panoramic space) or move

(environmental space) to see the space.
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Other work concentrates on understanding single spatial commands in the small-

scale space of a room (Skubic et al., 2004b; Tellex and Roy, 2006) or tabletop (Roy,

2005). Finally, other work follows instruction sequences in a large-scale space, but does not

use spatial and linguistic knowledge to recover from instruction errors or to infer implicit

actions (Bugmann et al., 2004; Simmons et al., 2003).

28



Chapter 3

Language and Task Corpus

Methodology

The language and task corpus methodology seeks to build and evaluate systems that will be

robust to natural instructions from people. Natural instructions are not only instructions

in an unconstrained, natural language, but they also represent the kinds of instructions

that people give to one another. In the real world, instructions are often under-specified,

with erroneous information or some necessary actions not implicitly stated. People are

remarkably robust to the challenges of natural instructions. We seek to build a system that

can follow the same natural instructions that people can, especially those instructions that

most people can and do follow successfully.

The language and task corpus seeks to discover which instructions the “reasonable

agent” can follow by following this procedure: (1) collect natural instructions from many

people, (2) give the instructions to many people to follow and rate, and (3) give software

systems the same instructions to follow in the same environments. The language and

task corpus can be used in development and evaluation, using human performance as

a benchmark for the software system. Running systems with disabled components or

alternative implementations and heuristics both measures the performance impact of each
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software component and makes predictions about how people process and execute natural

instructions.

The language and task corpus methodology with multiple human directors and

followers is an excellent way to study human task-centered language use, as well as

for system development use at the focus of this dissertation. In fact, other route

instruction researchers independently suggested, but not implemented, this methodology

for psychology studies of spatial route instructions. Lovelace et al. (1999) rated route

instructions subjectively, but could not verify that their poorly rated route instructions were

actually functionally worse. They suggested a study where subjects followed a variety of

route instructions for a variety of routes in a virtual reality environment to determine this

crucial question.

Our evaluation testbed ties together an instruction corpus, navigable environments,

and action traces from human and artificial agents with linguistic and spatial reasoning

abilities. This testbed of a route instruction text corpus tied to simulated environments

presents a challenge task for researchers in natural language understanding and spatial

reasoning. The methodology emphasizes understanding the gist of route instructions over

some details: the essential linguistic and spatial details separate navigation success from

failure. However, to be tested, components must be integrated into a complete agent that

can read the instructions and apply the understanding to act in the world.

This paper contributes an assessment of human performance for communicating

route information through unfamiliar large-scale spaces. By comparing the performance

of a computational model with and without the ability to infer implicit procedures, we

measure how often understanding the unstated is necessary to succeed in this task. Though

this ratio will change for other tasks and domains, the methodology of comparing human

and automated systems on corpora of problems will generalize.

We believe that the language and task corpus methodology described here will

generalize to instructions about other complex procedural tasks, including cooking, first aid,
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furniture assembly, automobile repair, and many others. We believe these tasks should be

similarly evaluated, with a testbed that demonstrates sufficient understanding by achieving

a complex, situated task given diverse natural language instructions.

3.1 Language and Task Corpus Methodology for Spatial Route

Instructions

Several decisions were made in how to gather the instruction corpus to elicit more natural

instructions. Each of these factors increases the ecological validity of the instruction corpus

(Cohen, 1995; Rosenthal and Rosnow, 1991).

Directors learned the environment through a combination of undirected, free

exploration and directed navigation task execution. In the free exploration phase, the

directors could move around the environment in any pattern, discovering named positions

by moving into them. The subjects had to actively chose how to move through the

environment, exploring through a first-person perspective. Subjects neither saw a map,

nor were guided in their exploration.

In some other studies, subject passively observe or are led through a recorded route

through the environment (Lovelace et al., 1999; Shimizu and Haas, 2006). Cognitive

psychology studies have shown that active navigation leads to qualitatively different and

better learning of the environment than passive observation of navigation, the “passenger

effect” (Dayan and Thomas, 1995; van Asselen et al., 2006).

In the navigation quiz phase, directors were placed at one of the named locations

and asked to navigate to one of the other named positions. This both helped the subjects

find parts of the environment they may not have found. More importantly, it forces

subjects to reason and problem solve using their cognitive map. Subjects must demonstrate

competence in way-finding among the named positions throughout the environment.

During the trials, the experiment program automatically provides feedback after each trial
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on whether the subject finished at the destination or if the route navigated was circuitous.

However, subjects must learn how to overcome these deficiencies on their own.

In the last phase, the directors give instructions. Directors are placed at the starting

location and allowed to turn so that they can recognize the start. Then the directors must

plan and describe a route to another position somewhere in the environment. While writing

the instructions, the environment is not visible. The directors are not shown the route to

describe, but must apply their knowledge of the environment to plan the route. After giving

the instructions, the directors are asked to follow them and rate themselves. With this

information, we can measure when a director unknowingly described a route to a destination

other than the one requested.

The directors provide the instructions as typed natural language text, rather than as a

spoken monologue or a spoken or written dialogue. Writing reduces the disfluencies in the

instructions by allowing the subjects time to think and edit. Since the instructions are given

to unknown followers, directors cannot establish ad hoc conventions with the followers

(Anderson et al., 1991). The director must give general instructions to a follower without

knowledge of the environment. The problem of using dialogue to find or establish common

ground in mental representations is interesting, but is a substantial task in itself (Anderson

et al., 1991; Cohen, 1984; Edmonds, 1993, 1994; Garrod and Anderson, 1987; Garrod and

Doherty, 1994; Heeman and Hirst, 1992; Pickering and Garrod, 2004; Schober, 1993).

To understand how people describe routes in large-scale environments, we

performed a series of experiments in virtual environments. The use of virtual environments

had several benefits. First, all participants were guaranteed to have no initial experience in

these environments. Second, we could record the learning process and exploration patterns

of the directors. Third, we could move followers between environments easily, quickly, and

without notice, to discourage learning the environments. Fourth, we could directly compare

the performance of people navigating these virtual environments against an artificial agent

navigating the same maps given the same instructions.
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The routes range from one travel action to many turns through complex environ-

ments. The followers had to identify the destination only from the route instructions, not

from any distinctive marking or the trial automatically ending. Moreover, the instructions

were far from perfect with some providing minimal guidance and many with significant

errors in turn direction, object identity, or distance estimates (MacMahon, 2005).

3.2 Related methodologies for evaluating natural language un-

derstanding systems

As we discussed in 2.4.4, Bugmann et al. (2004, 2001) enacted a similar methodology

for their Instruction-Based Learning project. The work in this paper is more easily and

less expensively replicated, since no special robotic equipment or physical town model

is needed. More importantly, our subjects learned the environments from the same

first-person perspective as the human and software agents following the instructions and

wrote instructions from memory. Bugmann’s participants only saw an outside, panoramic

perspective of the town model while directing.

This difference in how environments are learned and perceived between the

directors and followers leads to a class of errors not present in our approach. Specifically,

directors may refer to information unavailable to followers. Conversely, while our directors

may make errors while learning the map through navigation or recalling the map while

directing, these errors are cognitively interesting and prevalent in the real world. Previous

work has found differences in the types and rates of errors that directors make when the

director is looking at a map – “map-present condition” – or directors describing the route

from memory – “map-not-present condition” (Brown et al., 1998; Ward et al., 1986).

In “Wizard of Oz” studies, another common paradigm, the experimenter simulates

user interaction with a software system by having an expert “man behind the curtain”

control the behavior of the system. The Instruction-Based Learning corpus was gathered
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through a “Wizard of Oz” methodology, as were several other prominent corpora of spatial

language interaction with software systems (Green et al., 2006; Perzanowski et al., 2003;

Skantze, 2005). The problem of “Wizard of Oz” studies for instructions is that the user

interacts with one expert user, who may not have typical reactions to the instructions.

Worse, it is just one interpretation of the instructions, not covering the individual differences

in language interpretation or navigation strategy. A variant of the “Wizard of Oz” method

uses a static scripted script for the system interaction (Tenbrink, 2003).

A similar strategy is to have live interaction with a live system under development

(Fischer, 2003; Hüttenrauch et al., 2004; Moratz et al., 2003; Tenbrink, 2003; Tenbrink and

Moratz, 2003). This has the same problems of the “Wizard of Oz” studies compounded

by the fact that the follower is now a partially developed software system. In fact, these

studies find that directors can spend a lot of effort trying ascertain what linguistic and

spatial abilities the system has. The interactions are not natural, but qualitatively differ

from interactions with people, as those who run these studies have found. When the system

is fairly developed, this can be a good evaluation, but it does not work well for development.

.

3.3 Related methodologies for studying natural language tasks

One common method of studying natural language tasks is for experts to annotate the corpus

to create a treebank (Ellsworth et al., 2004; Johnson and Fillmore, 2000; Kingsbury et al.,

2002; Palmer et al., 2005; Vander Linden and Di Eugenio, 1996). This methodology grows

from the linguistic tradition and is thus best suited to study the language aspects of the tasks,

but less so for the action portions.

In our study, the directors learn the environment from a first-person view of self-

directed free exploration. The directors then describe the environment from memory and

the followers navigate using the instructions with the same perspective the directors had. In

contrast, in other experiments the directors learned the environment from an overhead view
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or map, often observed while giving instructions (Bugmann, 2003; Bugmann et al., 2004,

2001; Kyriacou et al., 2002, 2004; Lauria et al., 2001, 2002a,b).

Other route instruction studies (Lovelace et al., 1999; Taylor and Tversky, 1992;

Vanetti and Allen, 1988) rate route instructions subjectively, but do not test if navigation

success is affected. In these studies, the experimenters code expected errors, but do not

measure when people are affected by those errors when following the instructions.

In other experiments, subjects are guided through a route then told to describe it

(Lovelace et al., 1999; Shimizu and Haas, 2006) or rely on previous experience outside

of the experiment to give the participant familiarity with the route(s) (Daniel et al., 2003;

Denis et al., 1999; Lovelace et al., 1999; Michon and Denis, 2001; Nothegger et al., 2004).

Evidence has shown that different mechanisms are used in learning an environment or a

route from maps versus from first-person experience (Garden et al., 2002), as well as much

research into how people pick the routes to describe (Dalton, 2003; Duckham and Kulik,

2003; Haigh et al., 1997; McDermott and Davis, 1984).

The environments are virtual large-scale indoor environments. From any place

in the environment, only a limited portion of the full environment can be seen. The

environments have a maze-like layout, consisting entirely of corridors and intersections,

with no large open areas. Other work has focused on the problems of understanding single

spatial commands in small-scale spaces, such as navigating within a room or open field

(Blisard and Skubic, 2005; Blisard et al., 2006; Skubic et al., 2004a,b; Tellex and Roy,

2006) or in manipulable space, such as a desktop (Pook and Ballard, 1996; Roy, 2005;

Winograd, 1972; Yu and Ballard, 2004).

3.3.1 MAP-TASK Corpus Methodology

A classic psycho-linguistic experiment produced the MAP-TASK corpus (Anderson et al.,

1991). The MAP-TASK is similar to following route instructions through large-scale spaces

to some degree: participants use spatial language to describe and recreate a route. However,
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looking at the details, this is a very different task. The participants in the MAP-TASK use

the language of large-scale spatial navigation instructions — and some explicit references

to the paper medium — to describe the task of drawing a line on a map. The follower in the

MAP-TASK is performing a task akin to a would-be tourist at home, reading a Paris guide

book and tracing a route on a map; in the route instruction following task, that tourist uses

that book to navigate the streets of Paris.

The MAP-TASK does not involve navigation, as both participants interact with the

world only through a map. In the MAP-TASK, the participants have equal a priori, though

differing, knowledge of the environment. Each has a map containing slightly different

overhead sketches of the environment. Each can see their entire map at all times and

the only way to gain additional information about the environment is by talking to the

other participant, not through action in the environment. The landmarks are sketched onto

the map and labeled with descriptive noun phrases, e.g. “vast meadow,” so there is no

variability in the noun phrase used to name referents or the landmarks referenced. The

director instructs the follower to recreate a route drawn only on the director’s map on the

follower’s map. The route is provided by the experimenters, not planned by the director,

and is visible to the director throughout the experiment.

In the MAP-TASK, the participants have equal knowledge of the environment,

which both subjects view as a image annotated with labels, and they collaborate in real

time to duplicate the route line shown to one participant. In the MAP-TASK, the evaluation

of success is unclear: is the task is to exactly or qualitatively reproduce the route line? How

should the evaluator account for the missing landmarks on the Follower’s map?

In our task, one participant has learned the environment through navigation, and

must plan a route from memory, then write a text describing the whole route to an unknown

follower, who will later use instructions to navigate to the destination. The director chooses

what to describe and how to describe it without guidance from the experimenters like the

supplied labels in the MAP-TASK.
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The advantages of the MAP-TASK are that it controls for some of the individual

differences in experience and ability on some dimensions of the task. The directors’ and

followers’ only knowledge of the environment is what they see on the map and what

they hear. Thus, the experimenters control both participants’ initial state of knowledge.

Additionally, by selecting and labeling the landmarks, the experimenters greatly reduce the

lexicon and referring phrase variation. Finally the MAP-TASK uses paper (or any other

image display) as its only apparatus, making it easy to replicate.

Levit and Roy (2007) created a system to follow the instructions in the MAP-TASK

corpus. Their system uses a dynamic programming approach to combine manually modeled

and grouped “Navigation Information Units” to draw the best-fit graphical path on the

director’s map. The system relies on the fact that it has, a priori, perfect and complete

information from the graphical map, which was exactly the information the director had.

The evaluation does not compare to the paths other people drew given the instructions, only

the experimenter provided reference path. The system was also not evaluated drawing paths

on the follower’s map, unlike the human followers in the MAP-TASK experiments.
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Chapter 4

Human Route Instruction

Experiments

Instructions imply two roles: the director and the follower. The director plans to accomplish

the task and describes the procedure in the instructions. The follower understands the

instructions and executes the procedure in the environment to accomplish the task.

Instructions from multiple directors will vary in errors, omissions, vocabulary,

grammar, and information provided. When the environment allows multiple solutions to

a task, the procedures described will also vary. Additionally, the directors may have learned

different aspects of the environment, and have different strategies to describe tasks in the

environment. One goal of this study is collect a corpus covering all of this variability.

Human followers are intelligent and actively attempt to match the directors’ intent

to the task and environmental context. Followers also will have individual variations in how

they interpret and execute instructions. The follower can often achieve the task despite gaps

and explicit errors in the instructions. The crucial question for instructions is how often

followers are able to accomplish the task. By giving many followers instructions from

many directors over multiple tasks, we can measure how often people reach the destination

across a wide variety of instructions.
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4.1 Motivating questions

As detailed in Chapter 2, research in several fields has examined giving and following

route instructions. Some researchers gather a corpus of instructions and have experts rate

the instructions and code them for various attributes, e.g. landmark usage and errors in

description. Other studies take a small number of instructions and have people navigate

using the instructions through an environment. No other study gathers a corpus of

instructions over many routes from one set of people and then have another set of people

follow and rate the instructions. We examine the behavior of directors and followers in

conjunction, but independently.

We want to measure human variability in instruction-giving and instruction-

following for complex routes through an unknown, large-scale space. This corpus allows

us to answer the following questions: How do directors vary in describing the routes and

how do followers vary in following the routes? How do subjective ratings correspond to

objective success rates in following the instructions? What is the distribution of good and

poor instructions? Does a link between gender and spatial route instruction performance

exist?

To measure human linguistic and spatial behavior when giving and following spatial

route instructions, we gathered a language and task corpus from human subjects in three

experiments. The corpus consists of instructions from multiple directors over multiple

routes that are followed and rated by multiple human followers.

4.2 Study overview and motivations

All three of our human studies share the same basic procedure. Directors learned the

environments and wrote instructions. Followers read these instructions and followed them

through the environments. Each of these roles is summarized here and described in detail

later in the chapter.
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Directors learned a virtual environment through unguided, first-person exploration.

Each director was tested by navigation tasks, to ensure he or she had sufficiently learned

to navigate through the environment efficiently. Finally, each director planned the route

from memory, typed route instructions, followed the route themselves, and rated their

own instructions for each of up to 42 routes through the environment between two named

positions.

These instructions were later followed and rated by a separate set of human

followers. The followers did not have prior experience in these environments. Each

follower followed instructions from multiple directors in all three environments, without

ever repeating exactly the same route.

In Experiment 1, we investigated how instructions vary across a small number of

directors and whether a director’s style and quality varies across environments. Six directors

each learned and gave 42 instructions in each of three virtual environments, a total of 126

sets of instructions each, (756 requested instructions across all 6 directors). Each set of

instructions was followed and rated by six other people.

In Experiment 2, we wanted to measure how much of human variability our six

directors covered. In Experiment 2, we had twelve directors each learn one environment

and asked for 42 routes from each. Multiple people followed and evaluated each set

of instructions from Experiment 2, as well as following and evaluating a sampling of

instructions from Experiment 1.

In Experiment 3, we tested how subjects’ controlled movement affected instruction-

following performance. In the previous studies, directors and followers moved through the

environments using discrete actions triggered by the keyboard. For instance, pressing ‘8’

moved the camera along the corridor at a constant speed to the next possible intersection,

unless a wall was ahead. In Experiment 3, both the directors and the followers moved

the camera using continuous joystick control. In Experiments 1 and 2, the camera moved

smoothly down the center of the hallways, but in Experiment 3, each person controlled the
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speed and heading continuously. This question addresses how the discrete control affected

the route instructions.

4.3 Apparatus

These experiments are performed in the Vizard 2.53g virtual reality engine (Vizard, 2006).

Vizard provides an immersive environment with optical flow when moving, photo-realistic

textures, and three-dimensional objects. The experiments are run on Dell desktop computer

with a 17" monitor under 1248x1024 resolution. Directors heard audio cues from either

desktop-mounted speakers or headphones. Followers had no audio cues.

4.3.1 Control of movement through the environment

In Experiments 1 and 2, the numeric keypad controlled motion between places and poses

at a place. If the participant pressed the ‘8’, the view moved forward down a hallway to the

next place, or remained in place if a wall was immediately in front. The ‘4’ and ‘6’ keys

rotated the view 90◦ to the left and right, respectively. The views were placed so that the

participant could see the presence or absence of any hallways immediately to their right and

left. See Figures 4.2 and 4.1 for example views.

In Experiment 3, the participants used a joystick to navigate through the

environment, controlling the speed and direction by direction and angle of the joystick.

Unlike the discrete condition, movement was controlled in an analog fashion, where the

further the joystick was angled, the faster the camera moved through the virtual space.

Additionally, the participant could turn to any angle and could stop motion or turn at any

location. In the discrete motion condition, motion only stopped at designated poses.
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Hatrack Sofa

Lamp Chair

Easel Barstool

Figure 4.1: Sample views of all objects, from the Medium environment.
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Compact Medium

Sparse

Figure 4.4.1: Maps of the three vir-
tual environments, which participants
explored from a first person perspective.
Participants did not see these maps or
any global representation of the envi-
ronments. The three regions marked
by dotted lines each have a unique wall
hanging: fish, butterfly, or Eiffel Tower.
Each long hallway has a unique flooring.
Letters in the maps mark objects (e.g. ‘C’
is a chair). Numbers indicate the named
positions.

4.4 Stimuli

4.4.1 Environment Maps

These environments and the experiment control software build on top of previous studies

on spatial navigation (Kuipers et al., 2003; Stankiewicz and Eastman, 2008; Stankiewicz

and Kalia, 2007; Stankiewicz et al., 2006, 2001). The environments were generated on a

Cartesian grid and modeled in Virtual Reality Modeling Language (VRML).

The tests were run in three distinct environments, which were constructed from the

same components. Figure 4.4.1 shows the global layout of each environment. All of the
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Name
Number of
positions

(Dead, Mid, Int)

Number of
straight
paths

Average path
length: Mean

(Median)

Percentage
unforced
decisions

Mean ints
per path
length

Compact 28 ( 1, 0, 27) 15 2.7 (2 ) 71% 0.97
Medium 34 (10, 4, 20) 14 2.9 (2.5) 44% 0.72
Sparse 37 ( 8, 7, 22) 19 2.1 (1 ) 30% 0.81

Table 4.1: Characteristics of the three testing environments. Positions are either Dead-ends,
Mid-path, or Intersections. Paths are defined by continuous straight segments.

participants saw the environments from the first-person perspective of the virtual reality

rendering. The three environments varied in the density of the layout, as measured by the

shortest travel routes betweeen the named positions and average hallway length. We name

each environment according to its density. The most compact (Compact) had a mean

shortest route length of 4.2 (median 4), the most spread-out (Sparse) enviroment, mean

6.0 (median 6). The shortest route was a minimum of one travel action, the longest was a

minimum of 13.

Table 4.1 shows more of the statistics of the environments. Each environment has

paths totaling 40 segments. The environments contain between 28 and 37 positions. The

environments have between 14 and 19 paths, where a path is defined as hallway segments

connected along a line.

Certain positions in the environments were marked with audio cues for the directors,

the named positions. When the director encountered a named position in the Exploration

phase, and at the beginning of the Navigation Quiz and Route Instruction Entry phases, a

voice announced the position name, e.g. “Position 2” or “Position 4. Go to Position 7.”

These positions are marked by the numbers on the maps in Figure 4.4.1. There were two

sets of named positions. In Experiment 1, all directors learned and described routes from

Position Set 1. In Experiments 2 and 3, half of the directors learned Position Set 1 and half

Position Set 2.

The layouts vary considerably. Compact is densely connected with few short or

dead end paths. Compact has 96% of possible intersections connecting at least two paths.
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This count of intersections excludes positions that are only on one path: dead-end positions

and positions in the middle of a hallway where the participant cannot turn onto another

path. Sparse has an intermediate degree of connection, with 59% of possible intersections

connected and many short paths and a long, sparsely connected loop. Medium has also has

59% of possible intersections connected, with many dead ends off of relatively long paths.

Finally, in the Compact environment, nearly three-fourths of the positions are decision

points, where a navigator has more than one way to proceed forward, while less than one-

third of the positions in Sparse present the way-finder with a decision.1

4.4.2 Environment Landmarks

To provide useful cues for the directors, we placed 11 three-dimensional objects of 6

different types in each environment. The types of objects were an easel, a hatrack, a sofa,

a chair, a stool, and a lamp. See Figure 4.1 for sample views of the different objects.

The objects were placed at potential intersections in the environments. Some objects were

repeated within an environment and all objects occur in each environment. For instance,

Figure 4.2 shows two different easels in the same (Compact) environment. The positions

of the objects are marked by letters on the maps in Figure 4.4.1.

The objects were chosen to be easily identified, common objects that could be

shown at an apparent normal scale in relation to the hallway size and view height. They are

all indoor furniture. Several are from a similar category of human seats: the chair, barstool,

and sofa. The lamp and hatrack appear similar from a distance, but are distinct on a close

view. The easel is more semantically and perceptually separate from the others, but occurs

less often in everyday life than the other objects.

Furthermore, each environment was divided into three separate regions, designated

by distinct pictures on the walls (see Figure 4.4.1). Finally, 7 long hallways within each

environment had a visually distinct texture mapped onto the floor. Figure 4.4.1 shows the
1Formally, a place with more than two gateways (Kuipers et al., 2004), eliminating dead-ends and corners.
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layout for the three environments. An immediate forward view of each texture hallway can

be seen in Figure 4.2.

The hallway flooring textures were chosen to be distinct in both color and pattern.

All textures were chosen to be recognizable floor or ground patterns. The non-distinct

cement texture is the only one repeated on separate path segment floors within an

environment, and is also used for walls and ceilings. The cement texture was used on

each path that was one or two segments long.

4.5 Human Directors Learn, Navigate, and Describe

All three experiments share the same procedure for learning an environment and writing

instructions for routes through it. We will describe the common director procedure and

then describe the participants and manipulated variables of the individual experiments.

4.5.1 Procedure

The directors progressed through four phases, described in detail below. First, in

the Introduction phase, the directors were briefed on the experiment, answered some

demographic questions, and were acclimatized to the virtual environments, navigation

interface, trial procedure, and text entry. Second, in the Exploration phase, the directors

explored the environments by moving through the environment for a fixed distance traveled,

equal to 120 hallway segments. Third, in the Navigation Quiz, the directors were asked to

navigate between pairs drawn from the seven named positions that were announced in the

exploration phase.

If the directors demonstrated that they could reach each position and navigate

relatively efficiently (within 65% of the shortest distance for that route), they progressed to

the Route Instruction Entry phase. Otherwise, they repeated the Exploration and Navigation

Quiz phases.

In the Route Instruction Entry phase, the directors were repeatedly placed at a
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Figure 4.2: Sample views of all hallway textures, from the Compact environment.

47



named position and asked to type instructions to another named position into a text entry

window (See Figure 4.3). After entering the instructions, the director navigated the route

he or she just described and rated their own instructions (See Figures 4.4 and 4.5).

Introduction Phase

First, each participant was briefed on the design and goals of the experiment and were asked

for informed consent. See Appendix A for this consent form.

Second, the participant was asked a number of questions, including

• Is your hometown rural, suburban or urban?

• Are your hometown’s streets not, mostly, or entirely laid out on a regular grid?

• How much first-person gaming experience do you have?

• Do you get motion sickness?

• What is the language you speak at home?

Next, the participant read an instruction sheet explaining how the experiment will

be run. See Appendix A.4 for the written instructions they received.

Finally, the participant was taken into the virtual reality lab and placed at a

desktop computer. The participant was placed in a small demonstration environment and

familiarized with the movement and audio cues. The participant ran through an abbreviated

version of all three phases of the study in the demonstration environment: Exploration,

Navigation Quiz, and Route Instruction Entry. Once the participant was comfortable with

the experiment apparatus and procedure, the participant started the experiment in one of the

three test environments.
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Exploration Phase

In the Exploration phase, the directors learned the environment through free exploration.

During this – and only this – phase, audio cues announced each of seven named positions

whenever the director crossed one while moving through the environment. Until the director

entered the immediate vicinity of a named position, there was no indication that the place

was a named position.

During this phase, the director was placed at one of the seven named positions in

the environment and moved through the environment without guidance. After moving a

distance equivalent to 120 hallway segments (the distance between possible intersections),

the director’s knowledge of the environment was tested in the Navigation Quiz.

Navigation Quiz

Before asking for instructions, we wanted to ensure the directors had learned to navigate

around the environment adequately. The Navigation Quiz tested the director’s ability to

efficiently way-find in this environment on the routes between the named positions. In the

Route Instruction Entry phase, the directors will need to plan these routes from memory

and describe them in instructions.

In the Navigation Quiz, participants were placed at a named position, facing a

random direction. The position name was announced by the computer. Participants were

told to turn around to ensure that they recognized the starting location. Once the participants

had orientated themselves, they pressed the ’0’ key. At this point, the participant was asked

to navigate to one of the other named positions. During this navigation, the audio cues

for the named positions were off. Once the participants believed that they had reached the

destination, or had given up, they pressed the space bar.2

2Note that this differs from earlier spatial navigation experiments using this software (Kuipers et al., 2003;
Stankiewicz and Eastman, 2008; Stankiewicz and Kalia, 2007; Stankiewicz et al., 2006, 2001), where the
trial ended automatically when the participant encountered the destination, without the participant making any
explicit termination action.
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The color of the ‘curtain’ that covered the screen between trials was color-coded

to indicate success. If a director did not end at the correct target, the screen turned red. If

the director terminated at the intended destination, but took an inefficient path, the screen

turned blue. Finally, if the route was fully satisfactory – relatively efficient and correctly

terminated – the screen turned green.

Navigation efficiency was measured by dividing the shortest path travel distance

between two positions by the forward distance that the traveler actually moved. Thus,

navigation efficiency normalizes the distance traveled by the length of the route. A traveler

was deemed to have competently navigated the route if the navigation efficiency is 65% or

higher for that route.

After the directors were quizzed for one route, they pressed the space bar to move

on to the next trial. To pass the Navigation Quiz, the directors had to correctly navigate

to each named position at least once, with average navigation efficiency above 65%. If

either (1) the director misidentified any destination four times or (2) at the end of 25 trials,

the director had more inefficient than efficient routes, the director participated in another

Exploration phase followed by another Navigation Quiz.

4.5.2 Route Instruction Entry

During the Route Instruction Entry Phase, directors typed instructions, followed the route,

and rated their own instructions on quality and confidence of reaching the destination. Since

there were 7 named positions in each environment, there were 42 possible routes in each

environment (72).

The directors began each trial with a blank screen and pressed the space bar when

ready, which revealed the environment. The director was placed at the start of a route and

given an audio cue that announced the current position name. After this, the position name

announcements are turned off for the remainder of the trial. Directors were instructed by

another audio cue to turn around, to orient themselves. The directors was allowed to turn,
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Figure 4.3: Example of route instruction window, with entered text.

but not move forward. When they were oriented, they pressed the ‘0’ key or space bar.

Next, the screen went blank and the directors were asked to type instructions to

guide another subject from the current position to one of the other named positions in

the environment. The top of the window said “Enter directions to get from Position X

to Position Y,” where ‘X’ and ‘Y’ are the names of the starting (current) and destination

positions. The directors typed into a text editor window, which allowed typing and editing

text, including moving the cursor. The text entry was unconstrained, free form text,

including newlines. See Figure 4.3 for an example of the text entry window, as presented in

the follower part of the study.

The director was instructed that each set of instructions had to stand alone, because

they would be followed by others in an arbitrary order and mixed with the instructions from

other directors. The follower would be familiar with these kinds of environments, but not
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this particular layout. The follower would be placed at the starting position, but facing an

arbitrary direction.

After the directors typed their instructions, they clicked the ‘OK’ button. At this

point, the environment was revealed and the director was asked to navigate from this

position to the specified destination. At the end of navigation, the directors pressed the

space bar to indicate they were finished.

Figure 4.4: Dialog box for rating route instructions.

After navigating, directors were asked two questions (Figures 4.4 and 4.5): (1) How

certain are you that you’ve reached the target position? (2) How good do you think your

instructions were? Each question was answered on a Likert scale from 1 to 6. A scale with

six discrete points was chosen so that the participants were forced to rate the instructions

towards the good or bad side, with no absolutely neutral rating, as would be possible with

an odd number of rating possibilities.
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Figure 4.5: Dialog box for rating navigation confidence.

After self-rating their own performance on these two dimensions, the screen was

blanked again and the director moved for the next trial, if any. The director was allowed

to take any breaks whenever necessary while the screen was blank between trials. When

the directors gave directions for all routes in the environment, the experiment announced

“Finished!” and exited.
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4.5.3 Experiment 1: Six directors across all three environments

Experiment design

Experiment 1 is a within-subject design. Each director performed three sessions, one

for each environment, on separate days. In each session, the director performed the

Exploration, Navigation Quiz, and Route Instruction Entry phases, including multiple

Exploration and Navigation Quizzes, if necessary. The six directors were each asked for

126 route instructions over all three sessions, 42 in each of the three environments, for a

total of 756 possible instructions.

Participants

The six participants were students at the University of Texas at Austin or college-graduate

community members. They were paid for their participation, which took six to twelve

hours. The participants range in age from 21 to 29 (mean 24.0; median 22.5). By design,

there were equal numbers of males and females, three each.

4.5.4 Experiment 2: Twelve directors each in one environment

Experiment design

The experiment is a 3 (environments) x 2(position sets) x 2 (genders) design, for a total of

12 directors. The combination of conditions is in Table A.1.

Participants

The twelve participants were drawn from students in the introductory psychology class at

the University of Texas at Austin. They received course credit for their participation, which

took about two hours. The participants range in age from 18 years, 2 months to 26 years,

2 months (mean 19.7; median 19.2). By design, there were equal numbers of males and

females, six each.
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4.5.5 Experiment 3: Twelve directors with continuous motion control

There are several possible differences between the discrete and continuous motion. With

discrete motion, all movement was controlled and homogeneous. All turns took the same

time to cause the same change in angle; likewise all travels went the same distance at the

same speed. With continuous motion, the participants could travel and turn at different

speeds. They could stop turning or traveling at arbitrary poses.

With discrete motion, some participants used the discrete movements as a count of

distance, e.g. “Go forward three clicks.” With continuous motion, the actions were

not inherently quantized or countable, though directors may still count intersections and

turns or estimate travel time.

Experiment design

The experiment is a 3 (environments) x 2 (position sets) x 2 (genders) design, for a total of

12 directors. The combination of conditions is in Table A.1.

Participants

The twelve participants were students from the introductory psychology class at the

University of Texas at Austin. They received course credit for their participation, which

took about two hours. The participants range in age from 18 years, 8 months to 24 years

(mean 20.0; median 19.4). By design, there were equal numbers of males and females, six

each.

4.6 Route Instruction Corpus Language Statistics

For some routes, the director either did not enter any text or only entered a comment, e.g.

“I don’t know.” We omit training routes, empty route descriptions, and instructions where
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Name Instructions Vocabulary Unique Voc. Mean Words Mean Sentences
Corpus 1
EDA 126 163 15 27 5.7
KXP 75 182 40 20 3.2
WLH 124 181 13 41 5.8
EMW 124 280 60 63 7.9
KLS 122 176 17 45 4.2
TJS 120 190 19 20 2.2
Corpus 2
JJL 30 124 13 55 5.2
JXF 42 153 11 33 3.5
MXM 24 98 4 33 3.6
MJB 42 187 19 66 5.6
PXL 41 186 25 40 2.9
QNL 42 114 7 22 3.2
BKW 42 148 9 40 3.9
BLO 38 90 6 27 3.4
JNN 24 174 19 64 6.0
LEN 42 141 8 39 2.7
MXP 42 116 6 34 2.9
TXG 34 144 20 47 4.4
Corpus 3
JTM 20 148 11 59 5.0
KAJ 41 120 9 44 4.1
KXK 42 109 5 33 2.6
MHH 37 119 4 28 3.6
RRE 18 83 2 27 2.9
WAB 41 119 2 28 2.5
ARL 42 166 11 48 3.3
JLM 40 158 20 42 4.0
JXL 42 108 5 26 2.9
LCT 32 180 22 35 3.4
SCD 33 165 13 63 7.5
SMA 42 140 7 31 1.9

Table 4.2: Statistics per group of instructions by each director.
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Group n Words Vocabulary Sentences Instructions
Corpus 1 6 36.5, SEM:6.9 195.3, SEM:17.3 4.8, SEM: 0.8 115.2, SEM:8.1
Corpus 2 12 42.1, SEM:4.0 139.6, SEM:9.3 3.9, SEM: 0.3 36.9, SEM:2.1
Corpus 3 12 39.3, SEM:3.7 134.6, SEM:8.5 3.7, SEM: 0.4 35.8, SEM:2.5
Discrete 18 40.2, SEM:3.5 158.2, SEM:10.4 4.2, SEM: 0.4 63.0, SEM:9.4
Male 15 37.7, SEM:3.6 139.1, SEM:8.9 4.0, SEM: 0.3 49.7, SEM:8.6
Female 15 42.0, SEM:3.6 158.4, SEM:11.3 4.0, SEM: 0.5 54.6, SEM:9.1

Table 4.3: Corpora text statistics averaged per director group, comparing instructions
per experiment and comparing instructions from male and female directors across all
experiments. SEM is the Standard Error of the Means.

a director had described the same route previously. 3

Tables 4.2, 4.3, 4.4, and 4.5 show the summary statistics for the instructions. For

each director, Table 4.2 shows the total number of instructions written, the vocabulary as

the count of distinct tokens used, how many words are unique to this director, the mean

number of words used by the director (total words divided by total instructions), and the

mean number of sentences, after splitting run-on sentences (as explained below). Note the

large differences in length and vocabulary across directors.

Table 4.3 shows the mean numbers of words, vocabulary used, sentences, and

instructions for several groups of instructions. ‘Words’ is the mean of the mean number

of words used across all instructions per director. ‘Vocabulary’ is the mean number of

distinct tokens used, including misspellings, but not punctuation. ‘Sentences’ is the mean

number of sentences used, after splitting run-on sentences into no more than three clauses.

‘Instructions’ is the mean total number of instructions written, across the group of route

instructions.

Table 4.4 shows the most frequently used words per director. On one hand, this

shows common words in the domain, best illustrated by the ’All’ line giving the most

frequent words across the full corpus. At least one of these most frequent overall words
3In one case the director started over due to an experimental error. In another case, the director asked to

explore the environment further after entering in some instructions. In both cases, both in Experiment 1, the
director gave some pairs of instructions for the same routes.
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Group Word 1 Word 2 Word 3 Word 4 Word 5 Word 6
All you to turn left right go
Corpus 1 to turn left forward hall right
Corpus 2 you go left right turn to
Corpus 3 you is right left to position
Discrete to turn you left go right
Male turn to you left right forward
Female you to go hall intersection right
Corpus 1
EDA walk turn forward once left right
KXP go make area to left hallway
WLH to move turn left right is
EMWC hall to intersection go forward turn
KLS path take at go intersection right
TJS hall then down is go with
Corpus 2
JJL to you left continue untill now
JXF go forward you until turn wall
MXM go left take right you until
MJB you hall go down take left
PXL move you floors with direction position
QNL across panel turn move right left
BKW walk you take on with to
BLO go make down stops right stop
JNN go you turn hit until left
LEN intersection hall is position it in
MXP forward move intersection take you floors
TXG turn move forward then you right
Corpus 3
JTM forward turn move stop hallway once
KAJ hall you until walk down intersection
KXK section tile take go end at
MHH go left take right to blue
RRE hall blue until position reach you
WAB hallway take at left stop intersection
ARL you on in position is floors
JLM you walk is on position at
JXL hallway walk brick is at intersection
LCT floors to you position right will
SCD corridor you walk make until on
SMA is to road your has position

Table 4.4: Most frequent words per group of instructions. ‘Word 1’ is the most frequent for
that group, ‘Word 6’ is the 6th most frequent word. Lines indicate sets of groups: All, by
experiment, both sets of discrete motion experiments, by gender, and by director from each
of the three experiments.
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Group Word 1 Word 2 Word 3 Word 4 Word 5 Word 6
Corpus 1 alley hatrack containing octagon alleys rose
Corpus 2 l panel stops rectangles panels eisle
Corpus 3 run arrive turtle board walking couch
Discrete segment tiled alley segments hatrack now
Corpus 3 run arrive turtle board walking couch
Male alley untill head panel octagon rectangles
Female tiled bare containing blank passing stops
Corpus 1
EDA walk once twice times so back
KXP area make aesal rt keep going
WLH alley move carpet octagon flooring alleys
EMWC segment tiled segments bare containing passing
KLS path take towards plain coat cement
TJS rose grey take movement middle winding
Corpus 2
JJL untill come continue now sure patterned
JXF easel gray road path dark paths
MXM poster make posters 1st know between
MJB rectangles l will makes eisle segment
PXL step find tunnel place stand crossing
QNL across panel panels cross hex times
BKW walk them scales interection bricks u
BLO stops make stand painting three over
JNN available tiling hallway square hanger closest
LEN sitting grey tiled floral easle dark
MXP puke past twice stone set degrees
TXG re foward now hallway hanger than
Corpus 3
JTM move forward once twice face flooring
KAJ start halls blocks intersection easle block
KXK section tile head destination tiles arrive
MHH till last hit stand off bricks
RRE area follow find army orange pink
WAB painters hat continue intersection stool stand
ARL located corridor floors blank space standing
JLM easel path pictures granite intersection four
JXL post gray intersection flower artist hanger
LCT floors turtle rock shells shell locate
SCD corridor make colors onto intersect plain
SMA road exits has big eiffel honeycomb

Table 4.5: Most frequent words per group of instructions. These are the words with the
highest text frequency-inverse document frequency ratio. These words occur frequently
in the listed instruction group, and seldom occur in other groups. Lines indicate sets of
instructions: by experiment, by motion type, by gender, and by director from each of the
three experiments. Typos are by the directors.
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occur in the top six words of each director.

On the other hand, the most frequent word list also shows the variation among

directors. The different directors use different motion verbs (e.g. turn vs. take vs. make),

take different strategies in terms of landmark description (e.g. intersection, red, tile)

or purely action description (e.g. director EDA). Some directors use a variety of verbs

often (e.g. hit, stop, find, reach), while other directors only use simple turn and travel

verbs and is frequently. Even some misspellings crop up in the most frequent words (e.g.

untill).

Table 4.5 conversely shows the most distinctive words for each group, compared to

its peer groups. This is calculated by the text frequency inverse document frequency ratio

(TFIDF). Here the ‘documents’ being considered are the concatenation of all instructions

by a director or group of directors. Words are weighted by their frequency within the

instructions from the group of directors, then normalized by the inverse ratio of how many

of the peer groups the word appears in. These words are frequently used by one group, but

used by few others in the peer group. This table highlights the diversity of the directors in

vocabulary and concepts used, as well as creativity in spelling (There must be fifty ways to

spell easel).

4.7 Human Followers Read, Navigate, and Evaluate

All three experiments used the same procedure for people to follow and rate route

instructions. This section describes the general procedure, then the design and participants

of the follower experiments.

4.7.1 Procedure

Followers are acclimated to navigation and experiment cues and then follow sets of route

instructions from all directors in all environments.
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Route Instruction Trial Procedure

For each route, followers were shown the instructions in a pop-up window (Figure 4.3).

The navigation screen start was initially blank, with the instruction window is in front.

Followers could look over the instructions for an unlimited time. Also, followers were told

they they could re-examine the instructions at any time while navigating, so they did not

need to memorize the instructions. When the followers were ready, they clicked the ‘OK’

button, which closed the text window.

The follower was placed at the starting position facing one of the four directions

(randomly selected). The virtual curtain was removed and the followers could see the

navigation screen. The navigation control was identical to the control for the directors

(Section 4.3.1).

The followers never heard the named position announcements as the directors

did. The followers navigated and recognized the destination from the text in the current

instructions alone. By pressing the ‘d’ key, the follower could review the instructions at

any time while navigating, but the follower had to close the instruction pop-up window

to resume way-finding. This allowed us to measure when the followers referred to the

instructions.

When the followers reached the destination or finished trying, they pressed the space

bar. Each trial continued until the follower explicitly indicated completion, either when they

found the destination or when they gave up. The followers were instructed that they should

use common sense to follow the instructions, as they did contain some errors.

After terminating, the followers were asked the same rating questions the director

used in self-rating (Figures 4.4 and 4.5): “How certain are you that you are at the

destination?” “How good do you feel the directions were for getting to the destination?”

Each question was answered on a Likert scale from 1 (poor instructions/ certain not there)

to 6 (excellent instructions/ certain at destination).
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Route Instruction Trial Sequence

After rating the instructions, the followers repeated the same procedure for the next set of

instructions. The followers followed one set of route instructions for each route in all three

environments.

The sequencing of the route instructions was designed to discourage the followers

learning the environments or any particular director’s style. The followers changed

environments every other route and had no direct indication of which environment they

were in.

The instruction sequences were also constrained by the directors and endpoints of

the routes. No follower ever navigated exactly the same route twice. No director was

repeated within any four instruction sets. No position was repeated as a start or destination

within 3 trials.

After reading, following, and rating 126 routes, or when their time period has

elapsed, the follower was finished participating in the experiment.

4.7.2 Experiment 1: 24 people following 6 directors’ instructions

Experiment design

In Experiment 1, the followers each followed instructions from all six directors from

Experiment 1 in all three environments. The sequence of instructions is detailed above.

Participants

Participants are drawn from the pool for the introductory psychology class at the University

of Texas at Austin, and receive one or two hours of course credit for their participation. The

participants range in age from 19 years to 29 years (mean 20.1; median 20). By design,

there were equal trials by males and females.
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Route instruction preparation

In Experiment 1, the instructions were exactly as typed by the director, including any typos

and line breaks. The only change was anonymizing the position names, to prevent the

followers from relying on the names of the positions. Only the numerical identifier was

changed, replaced with a single letter, ‘X’ for destinations and ‘Y’ for starting positions.

For instance, “That is Position 3” became “That is Position X” and “From

Pos-2, ...” became “From Pos-Y, ...”.

4.7.3 Experiment 2: 44 people following 18 directors’ instructions

Experiment design

In Experiment 2, the followers followed instructions from the six directors from Experiment

1 and the twelve instructions from Experiment 2. The instructions were intermingled so that

each follower followed and evaluated both Experiment 1 and Experiment 2 instructions.

This measures if followers in Experiment 2 follow or rate the instructions differently than

the followers in Experiment 1.

In Experiment 2, the followers were switched between six sets of named positions,

two in each of three environments. Following a later set of instructions in the same

environments, the follower may later proceed along a route to a different “Position 2.”

The followers were warned that they would be switched among maps and position sets and

to follow the instructions independently.

Participants

Participants are drawn from the pool for the introductory psychology class at the University

of Texas at Austin, and receive one or two hours of course credit for their participation. The

participants range in age from 18 years to 25 years, 7 months (mean 19.8; median 19.5).

By design, there were equal numbers of males and females.
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Route instruction preparation

For Experiment 2, the instructions presented to the followers were cleaned up for the parser.

Run-on sentences were segmented into no more than three independent clauses per sentence

and consistently punctuated with periods. Typos that split or joined words were fixed,

though typos within words remained. The instructions were presented with each sentence

starting on a new line. In this version, the position names were not altered, but subjects

were told that the names are not consistent between trials.

4.7.4 Experiment 3: 24 people following 12 directors’ instructions

Experiment design

Participants

Participants are drawn from the pool for the introductory psychology class at the University

of Texas at Austin, and receive one or two hours of course credit for their participation. The

participants range in age from 18 years, 1 month to 29 years, 7 months (mean 20.2; median

19.3). By design, there were equal numbers of trials by males and females.

Route instruction preparation

For Experiment 3, route instructions were prepared as for Experiment 2.

4.8 Human Task Performance Overview

Figure 4.7 shows how the mean success rate of human followers varies by the mean

post-hoc human rating, over instructions from all three Experiments, by followers from

all three experiments. The success rate is merely how often the follower reached the

destination to which we asked the director to guide the follower. There was a very strong

correlation between the mean success rate and the mean subjective rating – Spearman
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Figure 4.6: Occurrence and success rates over all human followers by mean rating. Most
instructions are good to excellent, with the median rating at 4.0 and the mode at 5.0. Gray
bars indicate the total number instructions with that mean rating in that corpus, colored bars
the number of successes of people following those instructions.

r(19) = 0.957, p ≤ 0.001. Previous work has also found an significant relationship

between instruction quality and instruction following performance (Daniel et al., 2003;

Denis et al., 1999).

For breakdown of instructions by linguistic constructs used and spatial reasoning

needed, see Chapter 6 and Appendix B.

Figure 4.6 shows the distribution over post-hoc human rating, and success rates for

followers from Experiments 1, 2, and 3. The followers from Experiment 2 have a very

slight performance increase over the followers from Experiment 1 on the instructions from

Experiment 1, (M = 70%) vs. (M = 69%), t(638) = 2.46, p ≤ 0.014. The followers
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Figure 4.7: Mean performance over all human followers The cumulative success rate (Y-
axis) over all instructions from all three experiments by mean post-hoc instruction rating
(X-axis). Success rate is how often followers finished at the intended destination for
instructions with mean rating of r±. Data as of May 31, 2007. The annotations P10. . . P90
indicate the 10th . . . 90th percentiles of ratings.

from Experiment 3 only followed the instructions from Experiment 3, as both groups used

the continuous motion controlled by the joystick, whereas all people in Experiments 1 and

2 used discrete motion by the keyboard. The subjective ratings were not evenly distributed

across instructions. Most instructions in this corpus were rated highly; the mode rating is

5.0. In the middle rated instructions – rated between 2.0 and 4.5 inclusive – the distribution

was fairly even.
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Figure 4.8: Success rates over all human followers per Corpus 1 director. The vertical bars
show the success rate per director by followers from Experiment 1. Under the bars are the
directors’ initials and the mean subjective rating (1-6 Likert scale) over all the directors’
instructions by all followers from all three experiments.

4.8.1 Differences in Directors

There were strong individual differences among the directors. On human follower

performance, directors ranged from 83% successful instructions to 31% successful, even

after the blank instructions were filtered out. The mean of the 30 director’s mean

performances was (M = 60.8%,SEM = 2.6%), while the mean success rate over all 1517

followed instructions was (M = 64.5%,SEM = 1.0%). The directors who gave better

instructions also tended to give more non-blank instructions, skewing the overall mean up

from the mean of directors’ means.
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Figure 4.9: Success rates over all human followers per Corpus 2 director. The vertical bars
show the success rate per director by followers from Experiment 2.

Are the differences between the directors’ success rates significantly different? To

answer this question accurately, we need to control for the different sets of start and target

position pairs across directors. In Experiment 1, the directors were asked to describe the

same 126 routes in all three environments, but some did not write instructions for each route.

In Experiment 2 and 3 the directors each were asked for instructions describing 42 routes in

one environment. Moreover, half the later directors described routes with different starting

and ending locations than the Experiment 1 directors. Since the routes vary in complexity

and difficulty, a fair comparison controls for the routes described.

Assume a director d, wrote instructions RI for routes R through one or more

environment. We can collect the instructions RI ′ from all other directors d′ describing these
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Figure 4.10: Success rates over all human followers per Corpus 3 director. The vertical bars
show the success rate per director by followers from Experiment 3.

same routes R. We compare the mean performance of the human followers on the two sets

of instructions (RI and RI ′) describing the same routes R. This controls for the differences

in complexity of the routes. We performed a two-tailed paired t-test on the mean success

rate of all human followers to determine if the instructions RI from a director d differed in

success rate from the instructions RI ′ for the same routes R from all other directors d′.

24 of the 30 directors had a statistically significant difference in the success of the

human followers on their instructions, compared to the instructions for the same routes

from other directors. Figures 4.8, 4.9, and 4.10 show the success rates for followers from

all three experiments on instructions from directors from all experiments respectively. Note

that followers from the first experiment did not follow instructions from Experiment 2,
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Figure 4.11: Success rates for all human followers from each experiment by instructions
rating. There were no significant differences in how people followed the instructions from
Experiment 1, 2, and 3 across the quality spectrum.

but followers from Experiment 2 did follow instructions from Experiment 1. There are

significant differences in the success rates of different director’s instructions, which are

reproducible given different people following the instructions.

4.8.2 Differences in Human Followers between Corpus 1 and Corpus 2

Figure 4.11 shows the performance of human followers from the two experiment on

instructions from each experiment. In Experiment 1, the followers reached the intended

destination on with a mean of 68.5% (691 instructions, SEM = 1.3%). Followers in

Experiment 2 following instructions from Experiment 1 succeeded on a mean of 69.7%
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(639 instructions, SEM = 1.9). This difference is small and barely significant, t(638) =

2.46, p ≤ 0.014.

We controlled for route complexity by comparing the success rates on all route

instructions describing routes with the same starting and ending positions. When the routes

followed are controlled for, the difference disappears entirely, each at 68%. This is the mean

success rate of all the followers for all the instructions describing all routes with the same

start and destination. Comparing the mean success rate by route controls for the complexity

of the route across directors and followers.

The 432 instructions from Experiment 2 were slightly worse, with the followers

from Experiment 2 succeeding only with mean 64.0% overall (SEM = 1.9%), and

66% on the routes shared with the corpus from Experiment 1 (187 instructions, SEM =

0.6%, t(834) = 5.60, p ≤ 0.001). This difference is significant from the success rate

of Experiment 2 followers on Experiment 2 instructions, t(194) = 5.62, p ≤ 0.001,

controlling for route. The best directors is Experiment 2 performed at the level of the

best in Experiment 1, as can be seen in Figures 4.8, 4.9, and 4.10.

4.8.3 Gender-linked performance differences

For directors, there is a strong effect of gender (Figure 4.12). For the 720 instructions

from male directors, the mean success rate for all human followers was 66.5% (SEM =

1.4%), but for the 797 instructions from female directors, the mean success rate for all

human followers was 62.6% (SEM = 1.3), significant with independent t(1518) =

2.02, p ≤ 0.022. On the common routes, the mean performances of male directors

(M = 67.4%,SEM = 0.8%), female (M = 62.5%,SEM = 0.8%), significant at

t(794) = 4.79, p ≤ 0.001. See the prior section for a discussion of the mean success rate

per route statistic. For followers, there was a small, but significant effect of gender: for all

1363 instructions followed by both genders, the mean success rate per route was 65.5% for

male followers (SEM = 0.5%) and 64.5% for female followers (SEM = 0.5%), different
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Figure 4.12: Success rates for human followers and directors by gender. Under the bars
are the mean subjective rating (1-6 Likert scale) over all the directors’ instructions by all
followers from all three experiments.

at t(1362) = 1.99, p ≤ 0.024.

There are not strong interaction effects of the genders of the directors and followers.

On the 637 instructions from male directors, male followers have a mean success rate per

route of 66.5% (SEM = 0.9); female followers 67.2% (SEM = 1.0), not a significant

difference t(636) = 0.70, p ≤ 0.485. Likewise, for 712 instructions from female

directors controlling for route, male followers succeeded 63.9% (SEM = 0.9%) and female

followers succeeded 61.5% (SEM = 0.9), significant at t(712) = 2.71, p ≤ 0.007.

Regardless of the gender of the follower, people following instructions from female

directors reach the intended destination 6-10% less often, across the three corpora. Male
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followers of men’s instructions (M = 68.2%,SEM = 0.9%) vs women’s instructions

(M = 63.3%,SEM = 0.9%), t(719) = 3.51, p ≤ 0.001. Female followers also

succeeded significantly more often on men’s instructions than other women’s instructions

on the same routes: (M = 68.0%,SEM = 1.0%) vs. (M = 61.5%,SEM = 0.9%),

t(708) = 5.16, p ≤ 0.001.

Previous studies have also found that women are less accurate in giving instructions,

particularly when the director is describing the route from memory (“map-not-present

condition”) (Brown et al., 1998; Ward et al., 1986). Both of these studies, accuracy is

measured by an expert rating whether the director made a crucial error of omission (implicit

action) or commission (explicit mistake). Some other researchers have also found women

have lower success rates than men in following route instructions (Allen, 2000), while

others did not find this effect (Schmitz, 1999).

4.9 Discussion

This chapter presents a series of experiments gathering a large language and task corpus

of spatial route instructions. These experiments were designed to gather instructions

for complex spatial tasks using a methodology that will elicit natural variation in the

instructions. The instructions vary in vocabulary, grammar, style, spatial actions and

landmarks, and explicit errors and implicit omissions. Because multiple directors describe

each route and multiple people follow each set of instructions, the corpus measures human

variability in generating and understanding spatial procedural instructions. This corpus

is unique in tying together many participant-written instructions to multiple independent

human follower action traces and subjective ratings for each route instruction text.

For the directors, the methodology ensures no a priori knowledge of the

environments, measures how quickly and how well the directors learn to navigate an

environment from a first-person perspective, and gathers many route instruction texts

for routes throughout the environment. Directors plan and describe the routes from
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memory, a more cognitively challenging task than planning while looking at a map or other

environmental model. The directors describe the routes in a paragraph of text that can be

independently followed by multiple human or software followers.

The routes described in these experiments require complex procedures to navigate

through large-scale spaces – buildings where the destination is not visible from the starting

location or reachable with one travel action. The task is similar to that faced by patients in

large hospital complexes, by new students on in large buildings or campuses, and, outdoors,

by people navigating through homogeneous housing sub-divisions, where all the houses

look the same and the hard to read street signs mark similar names.

For the human followers, the experiment collected independent action traces and

subjective evaluations from several people following each set of instructions. This measures

the behavior of different people in response to the same route instructions. Followers did

not experience the environments outside of following instructions and they were shuffled

between environments to discourage learning the maps. Each follower of a particular set of

route instructions was presented the same route instruction text in the same manner in the

same environment. Multiple human followers allow exploration of individual differences in

spatial and language ability, strategy used, and even luck when presented truly ambiguous

instructions. Thus the experiment measures how well any set of instructions works for

guiding arbitrary, unknown followers through the large-scale space.

We measured large and statistically significant differences in both directors’ route

instruction verbal styles and the success rates of their instructions. This experiment

measures a high correlation between subjective ratings of route instructions and the route

instructions’ success rates. The tasks are challenging; the mean success rate across all

followers is 64.3% (1522 instructions, SEM = 0.9%).

We measure the statistical distribution of route instruction quality across directors,

environments, and route complexity. The median instruction is ranked 4, with 6 being

excellent, but there is a long and fat tail of poorly rated instructions, with 25% of the

74



instructions rated between 3 and 4, and the final 25% rated between 1 (the worst rating)

and 3. Put another way, for these environments, with directors trained until they could

navigate efficiently, one quarter of the instructions are excellent, one quarter good to very

good, one quarter medium to good, and one quarter poorly rated, with objective success

rates matching the subjective ratings. Across the different experiments, the same patterns

occur in the data in the distribution of instruction quality and the strong correlation between

quality and success rate.

This route instruction language and task corpus gives insight into open questions

in the literature. For instance, by splitting directors and followers by gender, we find both

male and female followers succeed about 10% more often given instructions from male

directors. There is a smaller, but still significant, gender-linked difference in the follower’s

success rates: female followers succeeded about at about the same rate as male followers

on instructions from male directors, but about 3% less often than men on instructions from

female directors. However, with the large variation in success rates, some of the women

directors had very high success rates, and some of the male directors very poor success

rates. Moreover, we have not yet done an analysis controlling for experience playing first-

person video games, which may partially explain these differences.

This chapter describes a human cognitive psychology experiment into how people

learn, reason, and describe complex routes through large-scale spaces. We collected a large

language and task corpus of directors learning the environments and giving instructions.

We also collected multiple followers applying each instruction text to perform the task and

evaluating the instructions. From these experiments, we gain a better understanding of the

variability in instruction-giving and instruction-following. Finally, the corpus shows us the

distribution of route instruction quality and styles that an instruction follower must handle

to robustly follow natural instructions.
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Chapter 5

Spatial Route Instructions in the

MARCO Architecture

5.1 Understanding and Following Route Instructions in Context

MARCO is an architecture for understanding and following natural language route

instructions (MacMahon et al., 2006). MARCO is composed of six modules: three modules

interpret the route instruction text linguistically; three modules interpret the instructions

spatially in the context of the task and environment.

MARCO’s linguistic modules parse raw text and produce an imperative procedural

model – a skeletal plan. The syntax parser models the surface syntactic structure of an

utterance. The content framer abstracts away from arbitrary word order and formation,

to model the surface meaning of the utterance. The instruction modeler applies spatial

and linguistic knowledge to combine information across phrases and sentences. Figure 5.1

shows the representations MARCO uses to model route instructions.

MARCO’s executive modules apply the instructions to navigate through the world.

The executor reactively interleaves action and perception, acting to gain knowledge of the

environment and execute the instructions in the context of this spatial model. The robot
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controller is an abstraction layer for particular robots’ motor and sensory capabilities. The

view description matcher checks symbolic view descriptions against sensory observations

and world models – checking the expected model against the observed model. Figure ??

shows the relation of the natural language understanding and robot control parts of the

architecture.

The language understanding part of the architecture builds on ideas from the

Nautilus natural language understanding system (Perzanowski et al., 2001; Simmons

et al., 2003; Wauchope et al., 1997), from Reiter and Dale’s natural language generation

architecture (1997), as well as frame-based systems (Bindiganavale et al., 2000; Chang

et al., 2002). The instruction execution engine follows in the tradition of reactive execution

or sequencing code in the middle tier of three-tiered intelligent architectures (Bonnasso

et al., 1997; Firby, 1989; Verma et al., 2005), with a prototype implementation programmed

in TDL (Simmons and Apfelbaum, 1998) (See Section 2.4.3).

5.2 Syntax Parser

The syntax parser parses the raw route instruction text. Our implementation uses a

probabilistic context-free grammar built with the Python Natural Language Toolkit (Bird

and Loper, 2004). Instead of modeling part-of-speech syntax, our grammar directly models

verb-argument structure, similarly to (Baker et al., 1998; Bindiganavale et al., 2000; Chang

et al., 2002; Palmer et al., 2005). The top of Figure 5.1 provides an example of a parse tree.

The verb-argument grammar is detailed in Appendix C.2. We aim for MARCO

to understand the language of route instructions well enough to navigate. MARCO is not

assisted by having a correct part-of-speech parse tree of a sentence without the semantics

of the words and phrases. Since MARCO needs a strong model of the verbs, adjuncts, and

referring phrases in the domain to execute the instructions, it does not hurt to restrict the

grammar to the domain. Moreover, this approach can model which arguments are optional

and which required for different verbs. Finally, MARCO attempts to execute instructions

77



Route Text
“turn to face

the green hallway,” “walk forward three times,”

SYNTAX
PARSER

⇓
Parse Tree

⇓

TURN

TURNV

turn

PURPOSE

PURPOSEP

to

S

FACEV

face

PATH

DET

the

APPEAR

green

PATHN

hallway

TRAVEL

TRAVELV

walk

DIR

forward

DIST

COUNT

three

UNIT

times

CONTENT
FRAMER

⇓
Content Frame

⇓

2

6

6

6

6

6

6

6

6

6

6

6

6

4

TURN
2

6

6

6

6

6

6

6

6

6

4

V/TURN Turn_V_1
PURPOSE
2

6

6

6

6

4

V/FACE Face_V_1

PATH

2

6

4

DEF +
APPEAR Green_ADJ_1

PATH Hall_N_1

3

7

5

3

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

4

TRAVEL
2

6

6

6

6

4

V/TRAVEL Walk_V_1
DIR Forward_ADV_1

DIST

"

COUNT 3
UNIT Time_N_2

#

3

7

7

7

7

5

3

7

7

7

7

7

7

7

5

INSTRUCTION
MODELER

⇓
Procedural

Specification
⇓

Turnp(until=(
object=Path,

appear=Green,
side=Front,

dist=0:

)) Travelp(dir=Forward, dist=3)

EXECUTOR
⇓

Instantiated
Reactive

Procedure
⇓

until Verifyp(Path(appear:Green,. . . )):
turna(left)

Facep(Path(dist:0,side:Front))
for i in 1::3:
travela(forward)

Figure 5.1: MARCO linguistic modules modeling a route instruction text (Top) through
the syntactic verb argument and phrase structure (Mid-Top), the surface semantics frame
(Mid-Bottom), and the imperative semantics of which procedural to take, given the context
(Bottom).

even when it does not understand some sentences or words. Since much of the complexity of

instructions can be in elaboration sentences describing extra details, this is a viable strategy.

The parser in the implementation is sufficient for to investigate the issues of this

thesis, although future work should look at integration with best-of-breed parsers. A

more traditional part-of-speech grammar and parser would require a more complex surface

semantics interpretation module. One interesting approach would combine a re-ranking

probabilistic parser (Charniak and Johnson, 2005) with statistical semantic role labeling

(Gildea and Hockenmaier, 2003; Gildea and Palmer, 2002). The re-ranking could include

semantic well-formedness and task and environment fit measures; Purver et al. (2006)
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discuss a similar approach in interpreting single commands in a restaurant recommendation

system domain. Another recent approach directly learns to translate text to a semantic

representation (Ge and Mooney, 2005; Kate et al., 2005; Wong and Mooney, 2006).

5.2.1 Training the Probabilistic Context-Free Grammar

A referring phrase is a noun phrase that refers to some entity or attribute being described,

analyzed on its semantic content instead of its syntactic makeup (Kuipers and Kassirer,

1987; Reiter and Dale, 1997). By tagging the referring phrases and verbs in a set of

route instructions with semantic annotations to the phrase and argument types, this analysis

characterized the surface meaning of route instruction utterances.

From the hand-labeled text, a Probabilistic Context-Free Grammar (PCFG) was

trained to parse and semantically tag route instruction texts. This parser labeled additional

route instructions. The automatically tagged route instructions are then hand-corrected. The

tagged trees help bootstrap the process of learning the full language model. The architecture

can either parse raw input text using the trained parser or can load hand-corrected gold-

standard parse trees.

5.2.2 Robustness for the Syntax Parser

Several techniques are used to provide the syntax parser with robustness to out-of-

vocabulary words and out-of-grammar utterances. The parser uses a maximum likelihood

function to label novel words or familiar words used in a different linguistic context than

previously seen. When an unknown words is found, the grammar matches the rest of the

utterance, with a place holder for the unknown word. The likelihood of an non-terminal

production yielding UNKNOWN is weighted by the variance of the non-terminal.

Open set words, such as nouns and adjectives, tend to have a large number of

different tokens, while closed set words such as prepositions have very few (even counting

typos separately). Thus, the grammar can guess the role of an unlearned word based on
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the utterance context and the variance of the different non-terminal tokens. For instance,

given “Turn onto the grue hall,” the grammar will correctly guess that grue is an

appearance term modifying the PATH phrase.

When the grammar cannot find a parse for an utterance, the syntax parser will skip

it. These measures prevent the processing of a paragraph of instructions from being derailed

by one unknown word or grammatical construction. Often in route instructions, the more

complex constructions are elaborations not strictly necessary to follow the instructions,

especially if the follower is robust to gaps in the instructions. Of course, in some cases,

this will leave MARCO unable to interpret the instruction correctly, but then people are not

always able to interpret an instruction correctly either. Better to push forward with the well-

understood part of the instructions than to attempt to integrate a poorly modeled utterance.

5.3 Content Framer

The Content Framer translates each utterance’s surface structure to a model of the surface

meaning: a recursive attribute-value matrix that makes content readily accessible. The

resulting content frame (see middle of Figure 5.1) models the nested structure and sense

of an utterance by dropping punctuation, arbitrary text ordering, inflectional suffixes, and

spelling variations.

The Content Framer looks up nouns, verbs, adjectives and adverbs in WordNet

(Fellbaum, 1998; WordNet, 2005), an ontology for English. This process abstracts over

surface differences in morphology, spelling, and synonym usage. The WordNet ontology is

used to look up the nearest known synonym or more abstract hypernym to each mentioned

unknown word. MARCO can substitute a general concept, such as “couch”, when it does

know a sub-type, such as “futon.” This matching is currently a simple lookup for the nearest

WordNet synonym set in a small domain dictionary, based on the lexical item and semantic

role tagging in the parse tree.

From a semantic parse, as implemented in MARCO, the content frame is a small
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step. Having the two processes separate eases any later integration of traditional part-of-

speech parsers. The content frame provides an information interface to the rest of MARCO,

so changing the parser (e.g. to a statistical re-ranking parser or another semantic parser, as

noted above) only involves altering the content framer. The final reason the content framer

is separate is that it is simpler to correct the semantic parse trees and infer the word sense

information than to hand-correct the word sense information directly.

5.3.1 Robustness to unknown words and sentence structures

When MARCO comes across a word that it does not have in its concept base, it searches for

the nearest known synonym or more abstract hypernym using the WordNet ontology. For

instance, when instructed to “face the futon,” MARCO will discover futon is not in its

concept base, look it up in WordNet, find the broader concept of couch in its concept base,

and stop turning when the view description matcher observes a couch.

MARCO is also robust to unexpected input. If the content framer encounters a

constituent that it cannot model, it will ignore it while modeling the remainder of the clause.

Likewise, if the parser cannot parse one sentence from a set of route instructions, it will

parse the others. These techniques work well for two reasons. First, route instructions

often contain a lot of redundant information, so neglecting to understand a phrase in one

sentence is often not critical. Second, the essential information in route instructions is

usually stated using a relatively small variety of verb frames for directing movements.

Most of the novel sentence frames occur in the declarative descriptions between movement

commands, functioning as elaborations. These are often not necessary if the imperative

sentences are properly understood and applied.

5.4 Instruction Modeler

The instruction modeler translates the content frame’s representation of the surface meaning

of an instruction element to an imperative model of what to do under which conditions –
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the procedural specification. The instruction modeler infers the imperative model from the

instructions by applying linguistic knowledge of the verbs and prepositions of the route

instructions and spatial knowledge of how perception and action depend on the local spatial

configuration in similar environments. Each verb frame is associated with a hand-coded

procedure to build a procedural specification from the content frame, based on recognizing

frame arguments and idioms.

The instruction modeler integrates content frames into a model of the entire

instruction set. The imperative information in the instructions – what to do – modeled as

procedural specifications. The declarative information in the instructions – what to expect

– is modeled as view descriptions. The procedural specifications use view descriptions to

model the constraints on when to execute causal actions.

The instruction modeler builds a skeletal plan from the instructions by applying

two kinds of knowledge. The follower needs both general knowledge about language –

especially common imperative constructions – and domain-specific knowledge of the verbs,

prepositions, and referring phrases of spatial route instructions. Prepositions and verbs of

motion in route instructions are relatively independent of where instructions are followed

(the environment) and who follows them (the agent). On the other hand, perceiving and

acting on objects and object attributes are dependent on the agent and environment.

The instruction modeler interprets referring phrases, declarative statements, and

implied landmarks (such as a path for a travel verb) as view descriptions to be matched while

executing the task against direct observations of views and synthesized models of scenes

and the state of the instructed task. The instruction modeler interprets both the imperative

commands and the declarative descriptions in the instructions as procedural specifications.

A procedural specification instantiates a general reactive procedure with the verb arguments

and adjuncts that are contingently achieved by other procedures. The stated and implied

information about the world is modeled as view descriptions, which capture the entities

mentioned and the structure of the relationships between them.
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The instruction modeler also decomposes high-level commands into lower-level

procedures. The concise “Take the third right to the end of the hall,” is

modeled and executed very similarly as if the director had explicitly commanded, “Go

down to the third place with a path to the right. Turn right there.

Go down to the end of that hall.” This simplifies the execution code, by

separating it from the surface form of the instructions.

Even relatively an explicit and simple command is interpreted as a reactive

procedure of simpler procedures. For instance, “Take the blue hall to the

chair,” may require a Travelp procedure to move to the blue hall, a Turnp procedure

to face along the blue hall towards the chair, and the explicit Travelp procedure along the

blue hall until the chair is reached. The first Travelp to the blue hall may, in turn, require a

Turnp procedure to face the blue hall and possibly a Findp procedure to locate the blue hall.

Each of these procedures controls the sequencing of simple causal actions – e.g. Facep

repeatedly executing the turna action to change orientation within a place, until the faced

object is to the front.

While currently implemented by sequencing discrete, causal actions, the representa-

tion only models the conditions and the actions. Another executor could be implemented as

directly calling continuously operating control laws and execution monitors for termination,

as done in other related work (Lauria et al., 2002a; Simmons et al., 2003; Tellex and Roy,

2006).

The instruction modeler reasons about the semantics (meaning), anaphora (co-

reference resolution), and discourse pragmatics (inferring the conversational intent of an

utterance) of route instruction texts. The module encapsulates the functionality of building

compositional models of utterances, combining information within and between utterances.
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5.4.1 Representing Referring Phrases as View Descriptions

A view description represents what the follower expects at a pose in the environment,

given the implicit and explicit descriptions in the discourse. The view description is a

structure modeling the relations that an expected object or structural entity has with the

follower or other landmarks, given the instruction text and the follower’s spatial knowledge.

For each expected landmark, the view description models the object’s type, the object’s

location within the view relative to the observer (angle and distance). Additionally, the

view description may model any mentioned constraints on the attributes of an entity and

relationships between that entity and others. For each pose, the view description may be a

list of several entities without any explicit relationships among them.

The view description is a minimal model of what the follower expects: it neither

over-commits to unspecified details nor enumerates all the possible worlds that would match

the description. Instead, the view description hews close to what was said. For example, the

until condition at bottom of Figure 5.1 models the post-condition of the Turnp: the follower

expects a Path with a Green appearance in front of it, but the path may be immediate in the

view or off in the distance.

The instruction modeler reduces a wide variety of surface forms to functionally

equivalent relational models. The module handles building view descriptions that

combine noun phrases with pre-position (e.g. “the green hall”), post-position (“the

hallway with the grassy floor”), predicate adjectives (“The path will have

grass on the ground.”), and dependent clauses (“the hallway that has green

on the floor.”). The view descriptions from these phrases will encode similar

relationships about the grassy corridor being described, with slight differences in detail

depending on the surface form of the phrasing. The view description matcher will not need

any linguistic knowledge to match the relational models to the perception of the hallways.

Position is encoded by two attributes: side and distance . These may be relative

to an intersection, the follower, or another object, from the perspective of the follower.
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The default point of view is the follower for the domain of route instructions. side may

be Left , Right , Sides , Front , At , Left_Front , Right_Front , or unspecified. This should

later be expanded by leveraging work modeling spatial prepositions and landmark positions,

especially in small-scale space, such as (Blisard et al., 2006; Herskovits, 1985; Klippel and

Winter, 2005; Regier and Carlson, 2001; Skubic et al., 2004b; Talmy, 2000).

The attribute distance encodes the linear position front-to-back within the view. Is

the object of interest immediately close, a few intersections away, or off in the distance?

(Note that encoding distance in the view is a different concept than distance along a path.)

distance values are encoded as a distance range. For instance, an immediate object is ‘0’,

an object at or past the next place is ‘1 :’, an object a few intersections away might be ‘2 : 3’

and unspecified distance can be represented as ‘0 :’, but is usually not included in the view

description, since it is not a constraint on the view.

This representation of view distance is implementation specific, but any route

follower needs a similar representation of distance. At the least, the representation of view

distance must be able to distinguish between immediate (here ‘0’) and distant (‘1 :’). These

distinguish, for instance, between facing towards an object and being at the object – the

pre- and post-conditions of an until phrase. These three view distances – immediate,

distant, and unspecified – account for all but 7 of the 7,015 view distances in the procedural

specifications derived from our corpus. The others come from phrases such as “one space

before the chair.”

Besides positional information, arbitrary other information may be encoded as an

attribute of a view description. Attributes model a constraint on one aspect of the entity. The

current implementation models the attributes of appearance, length, subtype, and count.

Attributes provide a constraint along one dimension, which may be precise (e.g. brown

wooden) or broad (e.g. dark).

In addition, each entity in the view description may also model the relationships to

other entities. Similarly to Herskovits (1985), we will call the focal entity the subject and
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the other entities mentioned the reference objects. For spatial prepositions, Talmy (2000)

called these the Figure and Ground objects.

In the current implementation, the modeled relationships are Between , Detail

Loc[ated], On , and Part[-of]. Between is a ternary relation that the subject is located

between two other reference objects, i.e. if the follower is the subject, the reference objects

will be on opposites sides of her. Detail just asserts an unspecified connection between

two objects, which may be co-location (e.g. the end with the easel) or part (e.g.

the intersection with the brown hallway. Loc represents that the subject is co-

located with (or at or in) the reference object. On represents that the subject is topologically

on a reference entity, a path.

Part represents that the entity is part of the other entity, though which is the

part may not be apparent from the surface form. For instance, in the end of the

hall, the subject the end is part of the reference entity the hall. However, in the

intersection of the red and blue halls, the subject the intersection is

composed of the path fragments referred to by the red and blue halls. Thus, Part

only models that part-hood relationship is present, leaving the view description matcher to

interpret which entity is part of the other(s). The view description matching code must be

domain-specific, so will have better models of the domain entities that the more general

instruction modeler.

Note that some of the attributes and relationships in the view description

will be from explicit mentions in the instruction text, but others will be inferred

from knowledge of the task. For instance, consider the command “go down the

pink-flowered hall until you reach the red-brick hall.” Here, the type

and appearance of the mentioned hallways are modeled from the text: Path(appear:[Rose])

and Path(appear:[Brick]).1

Knowledge of the Travelp command is needed to fill in the pre- and post-condition
1[Rose] and [Brick] are domain-specific symbols that the view description matcher can match in the percept

stream.
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distances and positions. The path traveled along will be immediate to the follower and

in front at the beginning of the procedure – Path(appear:[Rose], dist:’0’, Side:[Front]).

At the beginning of the Travelp, the destination path will be distant and in front of the

follower (Path(appear:[Brick], dist:’1:’, Side:[Front]), while at the end, it will be local in

an unspecified position (Path(appear:[Brick], dist:’0’)).

5.4.2 Representing Conditional Actions as Procedural Specifications

Route instructions require at least four low-level causal actions (Kuipers, 2000). A turna

changes the agent’s orientation (pose) while remaining in the same location. A travela

changes the agent’s location without changing orientation along a path. A verifya checks an

observation against a description of an expected view. A declare-goala action terminates

the instruction following process by declaring the agent is at the destination. Route

instructions may contain other action types, such as “open the door” or “take the

elevator to the 2nd floor.” These four causal actions are both necessary to follow

almost all route instructions and sufficient for many route instructions.

The procedural specification captures the commands in route instructions by

modeling which actions to take under which external (e.g. seeing a view) or internal

conditions (e.g. estimating the distance traveled). Resolving some ambiguities is deferred

until the follower observes the environmental context as it proceeds along the route. These

procedural specifications are similar to the Bindiganavale et al.’s Parameterized Action

Representations (2000), Denis et al.’s “minimal units of information” (Daniel et al., 2003;

Denis et al., 1999), Higher-Order Route Instruction Elements (Klippel et al., 2005), Spatial

Routines in small-scale space (Tellex and Roy, 2006), or Navigational Information Units

(Levit and Roy, 2007). Figure 5.1 shows the transformation from text to the imperative

instruction model.

Each clause is interpreted as a procedural specification depending on the verb or a

heuristic match based on the other constituents. Adverbs, verb objects, and prepositional
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phrases translate to pre-conditions, while-conditions, and post-conditions in procedural

specifications. For instance, constituents may describe which path to take, how far to

travel, or the views that will be seen during the procedure. This is similar in intent to

work on combining the lexical semantics resource FrameNet with action schemas, allowing

inference (Chang et al., 2002).

The modeler recognizes termination conditions stated as purpose clauses (Di Euge-

nio, 1992), like “Turn so that you see a chair in front.” Other action verbs

have some arguments implicit, such as “face” implies turn until the description is

matched. Conditional procedures are modeled by embedding procedural specifications.

Note the implicit travel procedure in “At the corner, turn left,” modeled as

Turnp( direction:Left, precondition :Travelp(until:Corner(dist:’0’))).

5.5 Executor: Interleaving Action and Perception

The executor sequences causal actions given the environmental context and the state of

following the route instructions. The executor interprets each procedure to execute causal

actions, including verifying view descriptions to check the state of the world. For instance,

given a Facep procedural specification, the executor continues to turna until a verifya

returns the view description has matched.

The executor is equivalent to, and can be implemented by, the reactive task

sequencing tier of the standard three-tiered intelligent architecture (Bonnasso et al., 1997).

A predecessor implementation of the MARCO executor (MacMahon et al., 2004; Simmons

et al., 2003) is written in TDL, Task Description Language (Simmons and Apfelbaum,

1998).

The executor algorithm need not know anything about how the follower moves

through the environment or how the view descriptions are verified. Those actions and

observations may be opaque to the executor stage, in an ontology it can pass through but

not comprehend. Thus, an executor module may be run with differently implemented robot
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controllers, controlling different hardware or software robots, with differing perceptual

abilities.

The simplest route instruction executor is the naïve instruction queue executor. It

steps through a list of instructions, attempting to execute each fully, without considering

the instruction context, before moving to the next. Executing each instruction may consist

of ensuring various preconditions, distance estimates, and postconditions are met. Each

condition may entail moving, then verifying the resulting view matches a view description.

The MARCO implementation uses a pragmatic instruction queue executor, with

procedures that react to both the linguistic and the spatial context. Spatially, the procedures

act to achieve preconditions, for instance, a Travelp procedure facing a path before moving

forward. Both preconditions inherent in the procedure and specifically mentioned by the

director are treated in this way. Linguistically, the procedures execute differently based on

their context in the instructions. For instance, a Travelp procedure is inserted in between two

consecutive turns, and unterminated Travelp procedures will look ahead for a destination in

the up-coming instruction utterances. See Section 6.4 for an evaluation of the performance

impact of considering the instruction context, as well as the spatial context, in following

route instructions in our corpus.

This instruction following algorithm may be replaced with more sophisticated

algorithms that leverage previous knowledge of the environment map, or knowledge of

individual director’s style, vocabulary, and common mistakes. The executor could also

maintain more state about the route as traveled, building up a map through topological

simultaneous localization and mapping (Kuipers et al., 2004). With a local map and

hypothesis tracking, the executor could implement back-tracking. This would handle some

mistakes that the current MARCO cannot, both the follower’s errors (e.g. incorrect reference

resolution) and the director’s (e.g. adding a spurious turn to the route).
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5.5.1 Inferring procedures implicit in instructions

Implicit procedures are inferred using knowledge and reasoning about both language and

the task, here large-scale spatial navigation. For instance, reading “Go down the hall

to the chair,” MARCO interprets the phrase structure as along and until parameters of

a Travel procedure. Using spatial knowledge and the Travelp action model, MARCO infers

the conditions of the Travelp procedure: (Pre) the path should be immediately in front and

the chair should be in the front in the distance and (Post) the chair will be local to the

agent.2

Both Grice’s conversational maxims (1975) and Relevance Theory (Sperber and

Wilson, 2004) are linguistic theories of discourse – how sentences are strung together to

form broader meaning. Each theory assumes that a cooperative speaker conveys meaning

by crafting the discourse to clearly and concisely carry across the necessary concepts.

We make the same broad assumptions as Grice: the director is cooperative with the

follower, is descriptive enough to guide the follower (Maxim of Quantity), is generally

accurate (Maxim of Quantity), is relevant (Maxim of Relation), and is understandable

(Maxim of Manner). However, some of these maxims must be relaxed to handle natural

instructions. Because of individual variation and varying motivation, some subjects are too

curt, others too prolix.

The follower must be able to ignore extraneous information, but also to fill in

implicit procedures. Though directors are generally accurate, they are fallible, especially

in remembering turn directions and travel distances (MacMahon, 2005). The follower must

be able to account for discrepancies between the instructions and the environment. For

instance, the follower should not go forward when the last command has it facing a wall,

not a path. Finally, instructions may be ambiguous and under-specified a priori, but the

spatial context and situated spatial reasoning will usually resolve the ambiguity.
2Note that in earlier work, these were referred to as “implicit actions.” However, they correspond to closed-

loop procedures on indeterminate length, not to a single causal action or fixed sequence of causal actions.
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5.5.2 Recognizing syntactic, semantic, pragmatic, and exploratory cues

Instructions contain cues to implicit procedures across all of levels of linguistic processing.

Syntax, semantics, and discourse pragmatics are all needed for natural language under-

standing. Here, we describe recognizing the cues of implicit procedures in instructions that

are primarily encoded in each level. It is difficult, and probably unnecessary, to draw a

clean line demarcating the roles of syntax, semantics, and pragmatics in natural language

understanding. However, the methods we present here are principled and should generalize

to instruction understanding in different domains and other applications of natural language

understanding.

Syntactic Cues for Implicit Procedures

Syntactic cues are syntactic constructions that mark a condition for a procedure which

may be achieved by another procedure. For instance, a locative phrase, such as “at the

corner,” may require a Travelp procedure to reach the location. Similarly, a phrase

describing a pose, e.g. “facing the hallway,” may require a Turnp before proceeding

with the procedure in the main clause. The instruction modeler recognizes some linguistic

conditional clauses as syntactic cues, e.g., “when,” “at,” and “with,” as well as purpose

clauses, (e.g. “Turn so that the chair is in front.”). These conditionals are

modeled as possibly requiring an embedded procedures to achieve.

Syntactic cues are domain and verb independent. They are marked by a small set

of grammatical constructions. Syntactic cues can be evaluated independently of the verb

being modified: for instance, in the construction “at X, do Yp,” the agent can take actions

to achieve X even without understanding Yp. For route instructions, X is a location, which

may require a Travelp to achieve. In other domains, X might be some other point-like state,

such as a temperature in a cooking recipe.

Though syntactic cues mark implicit procedures independently of spatial context

and reasoning, the application of the cue to navigation is still a pragmatic contextual
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implication (Sperber and Wilson, 1986, 2004). That is, the agent can recognize that a

procedure may be needed through syntax, but determining which procedure is pragmatic

reasoning. Consider the sentences “Go down the hall toward the chair. At

the blue hall, turn right.” Is the chair before, at, or after the blue hall during

the first travel? Alternatively, the environment might constrain where the follower can turn

when traveling toward the chair, and the blue hall may only be visible after the turn. In

large-scale space, the follower can only determine which procedures are needed by moving

through and perceiving the environment.

Semantic Cues for Implicit Procedures

Semantic cues may imply unstated procedures in two different ways. First, the semantic

frame may encode a procedure (Bindiganavale et al., 2000; Chang et al., 2002; Tellex

and Roy, 2006). For instance, “Take the third left,” implies a Travelp to the third

intersection with a possible left turn, before the turna to the left. Second, a phrase may have

the primary role of controlling the main procedure, but a secondary, implicit role of giving a

precondition to satisfy. For example, in “Walk down the hall until the chair,”

the until phrase not only is the termination condition of the Travelp procedure, but also

implies a Turnp to face the chair before beginning the Travelp. At the least, a chair should

be possibly reachable, if not visible, in the direction faced – not, for instance, a short dead

end path without a chair.

Semantic cues are domain dependent, depending on the verb. Consider two sim-

ilarly constructed instructions: “Turn left past the chair” and “Walk forward

past the chair.” In the Turnp frame, the past phrase marks a precondition location;

chair must be behind the follower before the Turnp. In the Travelp frame, the past phrase

implies a series of conditions; before the Travelp, the chair is in front of the follower, by the

follower during the Travelp, and only behind the follower at the completion of the Travelp.

Contrast this to the verb-independent implications of syntactic cues, such as at, explained
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in the last section.

Pragmatic Cues for Implicit Procedures

Pragmatic cues become important when the conventions or biases of the domain require

interpreting some utterances differently than their surface meanings. Pragmatics can either

be at the utterance or discourse level. At the level of a single utterance, idioms and

conventions are interpreted differently than their syntactic and semantic models. For

example, a declarative sentence with a pronoun and a locative expression may be interpreted

as a imperative sentence, especially at the end of the instructions. e.g. “It’s at the

end of the hall,” may mean “Go to the end of the hall.” Domain-specific

discourse pragmatics can come into play to fill in procedures that are conventionally skipped

in the instruction text, but are not implicit in syntactic or pragmatic preconditions. For

instance, “Turn left and then left again,” usually implies a Travelp procedure

between the two Turnps.

Additionally, pragmatic cues may trigger the combination of information from

separate utterances into one procedure specification, or the interpretation of one utterance

differently depending on the context of its prior and next utterances, if any. Early

implementations of MARCO did not combine information across separate clauses, other

than pronoun resolution (MacMahon and Stankiewicz, 2006; MacMahon et al., 2006), nor

did other similar work in procedural route instruction following (Bugmann et al., 2004;

Simmons et al., 2003).

Each procedural specification has an index value and a pointer to the full instruction

plan. MARCO has various heuristics to integrate information across utterances or based on

the position of the utterance in the instruction sequence. One implemented cross utterance

pragmatical heuristic fills in a missing termination condition for a Travelp procedure (the

until condition) from the linguistic context of the upcoming locative and descriptive phrases.

Another heuristic inserted a Travelp forward when the final procedure is an explicit Turnp.
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Yet another inserts a Travelp to the next match, when the until condition of a Travelp

is met immediately after an explicit Turnp, e.g. “At the end of the hall, turn

left and then turn right at the end of that hall.” 3

Exploratory Implicit Procedures

Exploratory procedures are when the follower acts to gain knowledge. These are not

purely what have been called “knowledge-producing actions” (Scherl and Levesque, 2003),

because they have side effects in the world. The above implicit procedure inferences

can all be implemented in the instruction modeler or the executor. Though the executor

primarily performs the procedures stated explicitly or implicitly in the route instructions, the

executor also plans sequences to gain information and to achieve pre- and post-conditions

of procedures. Exploratory procedures may be necessary to determine where a reference

object is: e.g. in “Go away from the chair,” the follower may Turnp to locate the

chair. If the pre- and post-conditions of procedures are not met, the executor executes a

contingent plan to achieve them. The procedures the follower takes depend on both the

route instruction text and the text’s correspondence to the environment.

For some exploratory procedures, such as “Go toward the longer end of

the hall” or the above “Go away from the chair,” the follower may start in a pose

satisfying the condition. However, without the knowledge of what is behind, the follower

does not have certainty that the condition is achieved. Thus the exploratory Turnp may undo

an achieved condition in order to gain information about the world, before re-achieving the

condition. Of course, if the follower already has that knowledge, no implicit procedures are

necessary – the follower can proceed with the Travel in these examples.
3Note that the differences in determiners are not enough to differentiate between the halls, as the and

that can refer to the same hallway, as in Face the blue hall and go to the end of
that hall.
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5.5.3 Executing an Example from the Route Instruction Corpus

Consider the sentence “Take the blue path to the chair.” Figure 5.2 shows how

this instruction is applied to navigate given different maps and starting poses. Figure 5.2(a)

shows the default assumption, that the previous instruction elements have moved the

follower into position. If a blue path is immediately in front of the agent, it will execute

the explicit Travelp procedure. In Figure 5.2(b), the blue path is visible immediately to one

side, so it will Turnp to meet the precondition of Travelp along a path, though this procedure

is not stated in the instruction (a semantic cue). In Figure 5.2(c), the blue path is visible to

both sides, but the follower does not know which way the chair is. The follower must make

an exploratory Turnp to look down the blue hall in one direction, then if it does not see the

chair, Turnp around to face the chair.

If the follower does not see a blue path immediately in front of it, but does see one

off in the distance (Figure 5.2(d,e)), it will Travelp to the distant path, then Turnp onto it

before proceeding. Figure 5.2(f) shows the agent making an exploratory Turnp to find the

blue hall, a Travelp to reach it, another exploratory Turnp to find the chair, and only then the

explicit Travelp command. If it does not see a blue path from any pose at its current location,

it will move through the environment until it finds a match, with a small, but increasing,

chance of giving up. This search behavior improves performance on poor instructions,

while not significantly reducing the success rate of highly-rated instructions (MacMahon

and Stankiewicz, 2006).

5.5.4 Other work on understanding implicit procedures

Most other work on implicit procedures in route instructions has focused on the semantic

cues for implicit procedures, especially understanding how to achieve the preconditions

procedures. Tellex and Roy implement spatial routines that achieve the preconditions of

commands within the perceptual surround of a robot (Tellex and Roy, 2006), for instance

taking the spatial context into account to move to the next opening before executing a
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“Go right” command. Both Tellex and Roy (2006) and Simpson (2005) survey robots

and smart wheelchairs that take spatial context into account when following commands.

However, this and other work only accounts for single instructions and does not test when

the implicit procedures are necessary in the linguistic context of a stream of instructions.

Bugmann et al. (2004) implemented a robotic system capable of following programs

of functional primitives from a corpus of 144 route instructions (See Section 2.4.4). They

modeled 15 functional primitives each taking an optional parameter list. They split similar

procedures into several procedures, where we would just have one procedure. For instance,

they model go_untilp, exit_roundaboutp, follow_road_untilp, and take_roadp, all of

which would be modeled with our Travelp procedure with various keyword parameters.

Bugmann and colleagues handled some of the same implicit procedure cues as

we do, although they do not break down how much each contributes to performance.

They handle some semantic and syntactic cues, giving examples of “Turn left”

meaning continue forward until a left turn is possible, then turn; and “At the second

intersection, turn left,” meaning travel to the second intersection, then turn

left. However, the examples they give as shortcomings of their agent show inability

to recognize discourse pragmatics and exploratory cues: not noticing a dead-end on

a wrongly described turn and not integrating information between sentences in “Pass

first intersection. At the second intersection turn left.”.

5.6 Robot Controller

The Robot Controller module executes the low-level turna, travela, verifya, and declare-

goala actions. Robot controllers present a common interface to the executor, with domain-

dependent implementations. The controller moves the agent for turnas and travelas and

can verifya if a view description matches an observation.

The robot controller acts at the level of the Control tier of the 3T intelligent

architecture. The robot controller in GRACE is written as commands and monitors in TDL.
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The robot controller is an interface, presenting the executor discrete Causal actions such

as turna, travela, and verifya, hiding the Control level of the SSH ontology (continuous

sensorimotor experience and control laws). The turna and travela actions are translated

into movement; The verifya actions into perception, and the declare-goala action to a

signal to end the way-finding, possibly stating that the robot is at the goal or by taking a

special action in a simulation.

The actions the robot controller takes are dependent not only on the instructions, but

also models of the world and the robot’s capabilities. For instance, consider the instruction

“Move to the blue hall.” The executor executes the robot’s travela action and then

the robot’s verifya action. A controller for a robot with peripheral vision would execute the

verifya by analyzing the periphery of the view while facing along the travel direction. A

controller for a robot without peripheral vision would turna to face each hallway, verifya if

it is blue, otherwise turna back, all as part of the verifya action.

5.7 View Description Matcher

The view description matcher checks the symbolic view descriptions against sensory

observations. The view description matcher treats the view description as structured

constraints that the observation stream must meet. This defers handling many forms

of ambiguity until the environment can provide some disambiguating context. The

view description models the world by recognizable entities, such as objects or spatial

configurations, their attributes, such as size or color, and the relations between them,

including spatial, compositional, and logical relationships.

The view description matcher is the code that grounds the symbolic relational

representation in the sensory experience. This may involve resolving ambiguities among

possible senses of a phrase. For instance, “Face the brick path” may mean “Face along the

brick path immediately in front of you” or “Turn towards the brick path that is visible in

the distance.” The view description verification code can check the observation for each of
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these meanings.

For instance, given the instruction “Turn to face the blue path,” the view

description would be Path side:Front, appear:blue . The view distance is unspecified,

because it is unconstrained: The blue path may run forward from the agent p(distance:’0’,

side:Front) or may be visible crossing this path in the distance p(distance:’1:’, side:Sides).

MARCO checks for both cases while turning.

The view description matcher performs unification (Russell and Norvig, 1995)

between the under-specified constraints modeled in the view description and a perceptual

model of the follower’s place in the environment. First, the view description is a partial

description of the observations the follower should encounter at that point in executing

the instructions, only mentioning some aspects of some of the landmarks the follower will

encounter. Second, the descriptions of the attributes are also under-specified: a path “in

front” may lead forward from the agent’s location or merely be visible in the distance.

Even matching concrete referring phrases to percepts through object recognition is only

a constraint: in the corpus for this dissertation, directors use “chair” to refer to three

perceptually different pieces of furniture: a stool, a bench, and a dining chair, even at times

when more than one is visible. Other noun phrases are even more vague, e.g. “piece of

furniture” or “something.”

There is a clean interface layer between the executor and the view description

matcher: the executor mostly treats the view descriptions as an opaque data type, formed

by the instruction modeler and verified by the view description matcher. The executor

only performs simple transformations on some parameters of the view descriptions,

for instance, projecting a desired local view p(distance:’0’, side:At) into the distance
p(distance:’1:’, side:Front). This is a form of perspective taking, a fundamental spatial

skill in people (Schober, 1993; Trafton et al., 2005).

The view description matcher will use whatever perceptual abilities the robot has

available. On a hardware robot, the concept of an intersection can be linked to the code
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that segments intersections in the laser scan and classifies the local path topology ( e.g. as a

dead end, “T”, or corner intersection (Kuipers et al., 2004)).

With the simulation in this paper, MARCO cannot directly observe intersection type,

but must model it through the relative positions of the observed paths (see Figure ??). In

these instructions, “the corner” usually refers to a “L” intersection: the intersection of

two paths, each terminating at the corner, so the view description matcher procedure for

corner looks for a path configuration (local topological map) that meets these constraints,

local to the follower or off in the distance. Other constraints, e.g. “the corner of the

red and blue paths with a chair,” are applied to unify the constraints with the

observation and perceptual model.

The view description matcher encapsulates the following capabilities: object

recognition (Modayil and Kuipers, 2006), local topology recognition and local metrical

mapping (Kuipers et al., 2004), small-scale spatial referring phrase resolution (Regier and

Carlson, 2001; Skubic et al., 2004b), perspective taking (Schober, 1993; Trafton et al.,

2005), and visual search.

5.8 Modeling Route Instructions in the HSSH Ontology

The Spatial Semantic Hierarchy (SSH) (Kuipers, 2000) and its extension the Hybrid Spatial

Semantic Hierarchy (HSSH) (Kuipers et al., 2004; Modayil et al., 2004) are layered

ontologies of space. The representations of the HSSH capture reasoning and acting in

small- and large-scale spaces. Small-scale spaces are areas within the sensory surround

of an agent, such as a room or an open field. The small-scale space for an agent is the

area it can map by turning around and moving within its sensory horizon. Large-scale

spaces extend beyond the sensory horizon, whether because of opaque obstacles, such as in

a building, or the natural limits of perception, such as in the open desert, plains, or ocean,

where the agent can see to the horizon.

Route instructions describe causal and topological structures annotated with
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metrical and rich view (object and landmark) information. A view abstracts the sensory

image to a symbolic representation. In the SSH, the causal level discretizes continuous

control motions into reliable discrete actions. At the causal level, motions are abstracted

to either turn or travel actions. A turna action changes orientation within a place, while a

travela moves the agent from one place to another.

In the HSSH, the four levels are rethought as the cross-product of interpreting space

locally or globally and metrically or topologically. The levels are the local metrical, local

topological, global topological, and global metrical levels (Kuipers et al., 2004). In each,

representations and actions in the higher (later) levels build on representations and actions

at the lower levels. For instance, at the local metrical level, the agent maps obstacles and

plans safe motion in the continuous world. At the local topological, the agent recognizes,

reasons about, and moves between symbolic intersections.

The topological level of the Spatial Semantic Hierarchy represents the environment

as places, paths, and regions and the topological relations of connectivity, path order,

boundary relations, and regional containment (Remolina and Kuipers, 2004).

Parts of route instructions can be represented by the SSH causal and topological

ontologies, with the actions annotated with metrical and view attributes. Route instructions

include both causal actions (“Walk forward three steps.”) and topological actions

(“Face along the blue path and follow it to the the brick hall.”).

MARCO’s executor module interprets reactive procedures in the spatial context to

execute causal actions, although the robot may recognize and reason about topological

entities such as paths and intersections. Each turna and travela moves the follower to

the next pose and each verifya compares the view against the view description. However,

moving up the ontology, an executor can reason about the spatial layout of the route.

Explicitly reasoning at the topological level can help handle ambiguity in the language,

interpretation, observation, execution, and map learning.

The executor reasons at all four levels of the HSSH. In the SSH, these are the
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control, causal, topological, and metrical levels. (Kuipers, 2000).

5.8.1 Relation to the Spatial Semantic Hierarchy

The Spatial Semantic Hierarchy is a rich, but complex model for reasoning about space. Is

the SSH excessive or just complex enough for the needs of following route instructions?

First, the Spatial Semantic Hierarchy is a well-developed, theoretically grounded

cognitive spatial model. The SSH is supported by having working implementations on

mobile robots (Kuipers et al., 2004; Kuipers and Byun, 1991), and by modeling human

navigation and spatial learning performance (Kuipers et al., 2003).

The SSH is a lattice of representations that can model states of partial spatial

knowledge, including partial maps as the environment is learned. For instance, the SSH

can easily model knowing only some routes instead of the overall spatial network; knowing

that two paths meet a corner, but not the relative turn direction between the two; or knowing

some path segment distances but not others.

Route instructions must select certain aspects of the route to describe, so by nature

under-specify the route. Instruction texts do not often mention the absolute location of

everything in the environment. The SSH can model the director eliding a turn direction,

occasionally mentioning a distance, and selectively noting landmarks and other perceptual

features.

The SSH has several advantages over global metrical maps, such as occupancy

grids. With a known global metrical map, a robot can follow a set of route instructions,

although finding the route in the metrical map will require processing on a hybrid,

topological representation. However, since the global metrical map is a precise

representation of what has been observed, it is difficult to reason about unseen, unknown

places. To navigate with a global occupancy grid alone, the agent must know the exact

dimensions of the hallways and rooms, which are never described in natural language

route instructions. Generating route instructions using a metrical map is possible, but
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using a representation that more closely follows people’s cognitive maps should produce

instructions which are more robust and easy to follow.

Moreover, the SSH first and fundamentally models the environment in terms of its

navigational affordances — its paths, places, and intersection structure. This is exactly the

sort of information described in route instructions, the navigational semantics of places on

the route. To follow instructions, having a high-level, but semantically annotated map is

necessary, where a metrically precise map of occupied space will fail. The agent must be

able to recognize places, paths, and intersection type, not just the presence or absence of

obstacles.

The multi-tiered SSH ontology allows the follower to recognize and act at the

different levels people do. See Section 6.7 for an experiment showing the necessity and

impact of the different HSSH levels for following route instructions.

5.8.2 Modeling route instructions by topological maps

Route instructions fundamentally describe a route, a topological trace through a large-scale

space. Since the route is composed of topological path segments, one approach would

be to model the instructions declaratively, as an under-specified topological map of the

environment being traversed. Then, the follower could navigate using traditional methods

for way-finding on a known map with uncertain movement (Cassandra et al., 1994; Fox

et al., 1999; Kaelbling et al., 1998; Koenig and Simmons, 1996, 1998; Simmons and

Koenig, 1995; Theocharous et al., 2004).

Resolving linguistic and perceptual ambiguity while following route instructions is

analogous to resolving perceptual aliasing. Route instructions do not completely specify the

route, leaving spatial ambiguity. For instance, a turn direction may be unspecified, leaving

topological ambiguity.

Procedural specifications model the route instructions as a list of imperative

procedures. The follower concentrates on inferring what the director intended the follower
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to do. However, route instructions also state or imply a spatial route layout. Another

approach to following route instructions is to extract the implied map of the route from

the route instructions. The follower infers what the director intended the follower to know

about the route map.

Deriving the possible topological route maps from the route instructions is an

attractive idea. Perhaps the hybrid topological SLAM algorithm in the HSSH that

handles spatial and perceptual ambiguity (Beeson et al., 2007; Kuipers et al., 2004;

Modayil et al., 2004) can handle the ambiguous maps derived from under-specified or

linguistically ambiguous route instruction. That is, can the partial, ambiguous map of the

environment derived from language understanding and the partial, ambiguous map learned

from exploration be represented and reasoned about in the same way by the same cognitive

processes?

Tractability of topological SLAM for route instruction following

After careful examination, performing route instruction following by SLAM on a set of

derived maps is intractable. Route instructions provide primary local guidance information,

without providing any global topological information. Moreover, the type of information

that route instructions provide conflicts with the axioms of topological SLAM (Remolina

and Kuipers, 2004). Instructions rarely mention all places between two turns. The

topological reasoner, on the other hand, constrains search by assuming it knows all places

along a traveled path segment. Therefore, a described travel procedure in route instructions

cannot be treated the same as a travel trace along the described path segment to the

topological mapper.

Moreover, the information in the view descriptions is under-specified, leading to

more perceptual aliasing of places. Finally, some of the information may be inaccurate. In

fact, the least accurate information in route instructions is the causal information of turn

directions and distance counts, which the topological mapper fundamentally relies upon
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(MacMahon, 2005).

Though route instructions and sketch maps appear to be derived from the same

underlying topological cognitive maps (Tversky and Lee, 1999), route instructions are less

well specified. The sketch map provides a topological map of the route with taken decision

points on the route explicitly connected by travel arcs. In other words, the number of turn

and travel procedures, and the places they begin and terminate, are explicit in complete

route sketch maps. In verbal route instructions, some of these travel arcs and turn places

may be implicit, so each set of route instructions may correspond to many topological route

maps, and therefore many sketch maps.

Even worse would be applying Markov localization in a straight-forward way.

Markov models rely on having a complete description of the task and environment. For

localization, this means the likelihood of moving to each pose from another given an action,

and of the likelihood of seeing each observation from each pose. Where route instructions

under-specify the possible observations (that is, on almost all poses), we must account for

this under-specification.

The most direct approach treats the Markov observation set as the set of all possible

feature vectors. Yet in the general case, the set of feature vectors for route instructions is

unlimited, as the director may characterize various attributes of the environment at various

levels of detail, approximation, and vagueness. However, Markov models require a finite

set of observations, so this cannot work.

A second approach is to treat the observation as a feature vector representing

whether the perception matches the view description for all poses in the environment. The

catch is that view descriptions are not mutually exclusive. Where one describes a chair

in front, another will describe a path off to the right two intersections away. A priori, the

two view descriptions may be match the same pose, even if the poses are widely separated.

However, other perceptions will match only one of these view descriptions. So the Markov

observation must capture the set of view descriptions for poses that the perception matches.
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This implies that for n poses with n different view descriptions, there will be 2n possible

observations – the power set of possible matches.

The observation space explodes to the power set of combinations because different

view descriptions will describe orthogonal aspects of the view, e.g. the blue hall and

a chair in front. For any given percept, one, both, or neither of these descriptions

could match. Describing a third attribute multiplies each combination by another true or

false match.

The exponential size of the observation space is bad enough on its own. Worse is

that to solve a POMDP is doubly exponential in the size of the observation space (Kaelbling

et al., 1998). An observation space that scale exponentially with the size of the state space

– number of poses mentioned – adds a third level of exponentiation, so that even solving

even short routes is intractable. Worse, this has the paradoxical result that the more detail

the director provides (especially about poses between or past turn poses) the slower solving

the POMDP becomes. As the director gives more information, each new bit of information

multiplies the difficulty of the problem that the Markov follower must resolve, because there

are more places the agent must rule out.

Though the general case of performing topological SLAM on the complete route

map is intractable, using Markov decision processes locally is an interesting avenue of

future research. Once the agent has perceived the scene and modeled the local surround,

the medium-scale space of the surrounding hallways are much better specified than from

the instructions alone. The follower need not enumerate all the worlds possible from the

instructions alone over the entire route. Instead, the follower can use the POMDP to make

local decisions on a perceptually filled-in model of the local surround. This may still prove

to be a practical way to handle locally resolvable ambiguities.
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5.9 Extension to handle other sorts of ambiguity

To date in this architecture, we have applied deferred resolution of ambiguity for matching

referring phrases to observations and to modeling the instruction text as an under-specified

plan of action. In the first case, the ambiguities are in lexical and noun-phrase semantics

and at the perceptual levels. In the second case, in the semantics and pragmatics of verbs

and sentences and at the procedural level.

These same principles for resolving ambiguity through interaction with the world

can be applied to other processes in instruction following, such as selecting the best

syntactic parse and pronoun resolution. Parsing is the problem of picking the most probable

syntactic structure given a series of words. Pronoun resolution is the process of selecting the

most probable link between pronouns and other entities in the discourse or shared context,

including anaphora – matching a pronoun to an antecedent phrase, cataphora – matching

to a following phrases, and exophora – matching to an entity in the world that is otherwise

referenced in the discourse (Bos, 2004; Byron et al., 2005; Kamp and Reyle, 1993).

For the syntactic ambiguities of parsing, using a re-rank parser such as (Charniak

and Johnson, 2005), the executive layer can re-rank the list of most likely parses based either

on the higher level semantic constraints within the utterance or on pragmatic constraints

from the surrounding linguistic and task context. For instance, in “Move towards

the chair on the blue floor,” the phrase “on the blue floor” may specify

the location for the chair, the path for travel, or both. If the mostly like initial parse is

that the phrase is modifying the chair, but the only visible chair is past the end of the blue

path, then the system should re-rank the parse list. Similar ideas are seen in (Fleischman

and Hovy, 2006; Fleischman and Roy, 2005; Skantze, 2005).

Deferred resolution can be applied in a similar way to handle the semantic am-

biguities of pronoun resolution. For instance, in “You should be facing flowered

carpet and an easel, move to it.” does it refer to the carpet or easel?

This idea can build upon similarly motivated work applying semantic filtering and visual
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attention to reference resolution (Byron, 2002; Byron et al., 2005; Knees, 2002).
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“Take the blue path to the chair.”

Travelp(along:Path(appear:Blue, side:Front), until:Chair(distance:’0’, side:At))

Map, Robot Pose Implicit Actions Worst-Case Actions Taken

a

Travel

b Precond Turn Turn
Travel

c Explore Turn
Precond Turn

Turn
2 Turns
Travel

d Precond Travel
Precond Turn

Travel
Turn
Travel

e Precond Travel
Explore Turn
Precond Turn

Travel
Turn
2 Turns
Travel

f Explore Turn
Precond Travel
Explore Turn
Precond Turn

Turn
Travel
Turn
2 Turns
Travel

Figure 5.2: How interpreting an utterance depends on the follower’s knowledge of its pose
in the environment. The circle represents the follower, with the line in front. The follower
sees hallways to its side, but not down the side hallway.
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Chapter 6

MARCO Route Instruction Corpus

Experiments

The route instruction language and task corpus captures how people describe large-scale

space, in particular, the task of spatial way-finding through an unknown environment. The

corpus measures the individual differences in how people describe a spatial route, including

mistakes and omitted information. The action traces and post-hoc ratings of the human

followers show how well people can apply these faulty, under-specified instructions to

accomplish the concrete task of navigation.

This corpus provides empirical data on the spatial, perceptual, linguistic, and

executive skills needed to follow the imperfect route instructions that people actually give.

By building a system that can approximate human performance, we can show what is

sufficient to follow natural language route instructions. By ablating (selectively turning

off) these various skills, we can measure how often particular skills are necessary to follow

natural language route instructions.

This chapter will first describe the general procedure for running MARCO through

the instruction corpus. Next, we present a series of ablation comparison experiments,

examining the roles of implicit procedure inference, landmark recognition, and spatial
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reasoning skills in following natural language route instructions.

6.1 MARCO Followers Model the Text and Navigate

In general, MARCO follows the same basic procedure as described for the human followers

in Section 4.7. For each instruction text in the corpus, MARCO is put at the starting place,

facing an arbitrary direction. Like the human followers, MARCO does not have any a priori

map or other knowledge of the environment or route layout. MARCO parses and models

the instruction text to navigate to the destination, given first-person views of the virtual

environment. When MARCO is finished following the instructions, it must explicitly take

an action to terminate navigation, just as the people did. Unlike people however, MARCO

does not rate the instructions after following them.

6.1.1 Apparatus

We are interested in measuring how often different skills are necessary to follow natural

language route instructions, but, at this point, not in the particular implementation of those

skills, especially the perceptual skills. Therefore, MARCO navigates through a symbolic

interface to the same environments that people saw as a three-dimensional scene. The

correspondence between the visual and symbolic views is described in the next section.

The symbolic navigation environment was coded in Python (Python, 2007). The

code implements a discrete motion simulation of the environment by calculating the

appropriate view and environmental observation after each action. The environmental

representation used is a Markov model, though this is completely hidden to MARCO.

Though all actions and observations are deterministic in the current experiment, the action

model can handle both non-deterministic actions and observations.

One advantage of this model is speed of simulation. Since the model does not

need to render a three-dimensional scene, as the Vizard simulation does, it can simulate

a navigation run very quickly. This allows fast regression and ablation testing, running
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through the entire corpus in minutes per follower instance. Following 1500 instructions on

a physical robot in a real-world environment in a comparable amount of time is impossible.

6.1.2 Stimuli

The symbolic perceptions given to MARCO provide the same information in the same

structure as the visual scenes presented to people. Figures 6.1 and 6.2 show two examples

of the correspondence between the Vizard scene and the symbolic model view.

In Vizard, the human participant can see bits of any local peripheral hallways and

all the way down any straight hallway segment in front, until a wall blocks the view. The

symbolic view represents the same information – which entities are visible to the immediate

and peripheral front of the embedded way-finding agent. The symbolic view represents

the base components of the environments – the object landmarks (Table 4.1) and hallway

textures and wall pictures (Table 4.2).

Human immersive virtual reality view MARCO symbolic view

〈
End, Wall, End,

Wall, Empty, Yellow

〉
〈

Fish, Grass, Fish,
Wall, Empty, Cement

〉

〈
Fish, Grass, Fish,

Wall, Hatrack, Brick

〉

Figure 6.1: Human visual view and MARCO symbolic view of a hallway. The symbols in
the tuples correspond to the walls, paths, furniture, and floor textures visible at the same
relative distance in the view.

In the current experiments, MARCO receives a symbolic observation consisting of

a list of tuples, one tuple per intersection visible in front. Each item in the tuple represents
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one of the components of a view of an intersection – the hallways or walls visible to the left,

front, and right, any furniture in the intersection, and pictures visible on any corridor walls

to the front. The relative ordering within each tuple corresponds to relative position within

the visual scene. For instance in Figure 6.1, the immediate intersection has a wall on the

left and a brick hallway visible on the right, as does the lower line of the bottom tuple in the

symbolic view. The relative ordering of the list of tuples corresponds to relative ordering of

the view down the path in front, if any.

Human immersive virtual reality view MARCO symbol view

〈
End, Wall, End,

Wall, Empty, Wall

〉

〈
Eiffel, Cement, Eiffel,

Stone, Empty, Wall

〉

Figure 6.2: Human visual view and MARCO symbolic view of a shorter hallway

Because the list of symbol tuples corresponds to the same entities used to derive

the virtual reality visual scene, the visual and symbolic models contain nearly the same

navigation information. The only difference is that the symbolic view does not model

the position of object landmarks within the small-scale space of the intersection, so the

symbolic view is slightly less informative than the visual scene.

Note that the symbolic view represents the base constituents of the environment,

but may not correspond to how the directors refer to the environment. For instance, while

chair, hallway, and Eiffel tower are all directly represented, other nouns, such as

corner and furniture are not, nor are more complex referring phrases such as the

112



corner of the red and blue hallways with the chair or the longer end

of the yellow-tiled hall. The agent has to have some knowledge of the ontology

of the environment and how to match a complex referring phrase to a view, compositionally.

This symbolic observation representation is an implementation detail that MARCO

does not depend upon in any way. The instruction execution core is separated from the

recognition and local perceptual modeling code by an abstraction layer.

6.1.3 Procedure

To follow a set of route instructions, like the human followers, MARCO is placed at the

starting position, facing an arbitrary position. It has the route instruction text and attempts

to navigate to the destination. In most of the experiments below, MARCO starts with the

gold standard parse trees for the instructions, although Section 6.8 examines parsing the

raw text using a learned grammar.

MARCO navigates through the environment until the instructions end or until it

cannot find a described view. After each trial, MARCO is placed at the next starting position

and given a new set of instructions. MARCO builds up local perceptual models of the

environment while traveling, for instance, to remember what is behind it. These local

perceptual models are the symbolic views in each direction MARCO has seen, shifted as

MARCO turns or moves forward. However, it does not build global models of the route or

environment and does not remember its local models between trials. MARCO forgets the

local perceptual map of one hallway as soon as it moves off of it.

6.1.4 Evaluation

We compare the empirical performance of MARCO to the performance of human followers

on the instructions that people followed and rated. For the purposes of this comparison,

a correct route navigation terminates at the requested destination. In some cases, the

instructions contain errors or were written with the wrong destination in mind. For about
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11.8% (179 of 1522 route instructions) of the corpus, a majority of the human followers

terminate at a common place other than the requested destination or the starting location.

(MARCO terminates at this same non-target, non-start mode place in 81 of the 179 cases

on at least one run.) Though followers that also reach this common point may be regarded

as correctly following instructions that lead to a different destination, for the purposes of

this study, they are incorrect. Since the human followers are held to the same standard, the

comparisons are valid.

We will use the performance of people following the instructions as the gold-

standard of how well the instructions can be followed. This controls for both the quality of

the instructions and the difficulty of the routes. Where people do poorly, we can expect the

task is more difficult, so the performance of multiple followers on an instruction and over a

corpus of instructions, gives a benchmark for evaluating the performance of the system.

Likewise, the performance of the full MARCO system can be used as a benchmark

for the performance of ablated or differently configured versions of the system. This

provides two benefits. First, these experiments measure how often a change makes a

measurable difference in the performance of the system, the impact of that change. Second,

these measurements give insight into how people generate, interpret, and follow route

instructions, especially where the changes in performance with an ablated system match

a drop in performance for some of our human followers.

Let us call the performance difference, in percent from the baseline MARCO

performance, the impact. For instance, if the baseline system successfully follows 66% of

the route instruction corpus and an ablated version successfully follows 33% of the corpus,

the impact of that feature was 50% – there is a 50% reduction in measured performance.

This indicates how often the ablated feature was necessary to apply the instruction to

accomplish the task, normalized by the baseline performance.

The tables in this chapter present the results from the ablation tables using tables

with common conventions, e.g. Table 6.3. Each row represents the mean performance over
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Figure 6.3: Human and full MARCO success rates, with standard error bars, versuspost hoc
human subjective instruction rating. The rating of 1 indicates extremely poor instructions,
while 6 is excellent. Success rate is how often, on average, the human followers (circles)
and MARCO (squares) finished navigating at the intended position for all the instruction
texts with mean human rating of r ± 0.125. Graph on the left shows all data, graphs on
right show per corpus. The same trends hold in all three corpora. Data as of May 31, 2007.

multiple runs for a group of human followers or a configuration of MARCO. The columns

show the results over instructions with mean post-hoc rating within the listed range.

Statistical significance on a one-sided T-Test is indicated by the annotations: significance

at a 5% level is marked by ∗, 1% by †, and 0.1% by ‡. These tests and conventions are used

throughout this chapter.
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Quality Range 1.0–2.5 2.5–3.5 3.5–5.0 5.0–6.0 All Impt
People 35%‡ 51%‡ 73%‡ 85%‡ 64%‡ -20%
Marco 22% 33% 60% 79%∗ 52% 0%
Marco w/o Implicit Proce-
dures

5%‡ 7%‡ 22%‡ 40%‡ 20%‡ 62%

Table 6.1: Comparing performance of MARCO to people and to MARCO following only
explicitly commanded procedures.

6.2 Full MARCO Performance

Figure 6.3 shows the evaluation results comparing people, the full MARCO and the naïve

approach of executing only the explicitly commanded procedures. Human participants

were able to successfully find and identify the desired destination with an overall mean

success rate of 64.3% (SEM = 0.9%1) of 1522 instructions in the three environments.

This was fairly consistent across the corpora from the three experiments: Corpus 1

(M = 67.7%,SEM = 1.2%), N=691; Corpus 2 (M = 64.0%,SEM = 1.9%), N=432;

Corpus 3 (M = 58.6%,SEM = 2.0%), N=399. For people, the results are the mean over

runs from multiple participants following each instruction set, each beginning at the start

location facing a random direction.

With full procedure inference, MARCO successfully followed 51.5% (SEM =

1.2%) of all 1522 route instruction texts followed by people. Further, MARCO increases in

performance as the human instruction rating increases and as human performance increases.

For the MARCO cases, the presented results are the mean over four runs, facing each of the

four directions at the start. While MARCO does not yet match human performance across

route instructions of all qualities, the correlations from MARCO’s mean performance to

human mean performance (Rs = 0.958) and to human mean ratings (Rs = 0.970) are

extremely strong.

Over the three corpora, MARCO has significantly different performaces. MARCO

was developed by examining the first corpus, so the performance nearly matches human
1SEM is Standard Error of Means.
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performance: (M = 66.0%,SEM = 1.7%), N=691. Controlling for followed routes, this

is difference from human performance is not statistically significant, t(690) = 1.31, p ≤

0.096. The second corpus with hand-corrected parses and minor enhancements to MARCO,

the performmance is almost three-quarters of human performance: (M = 46.2%,SEM =

2.2%), N=432, a significant difference from human performance, even controlling for route

followed: t(431) = 16.99, p ≤ 0.001. On the third corpus with hand-corrected parses,

but no enhancements to MARCO after the Corpus 2 modifications, MARCO successfully

followed (M = 32.3%,SEM = 2.2%), N=399, over half of human performance, even

with worse instructions, significant at t(398) = 21.01, p ≤ 0.001.

The performance of MARCO following only the explicitly commanded procedures

is shown here as a baseline. By executing only explicitly commanded procedures, the

ablated MARCO can only follow 19.8% of the 1522 instructions overall (SEM = 0.9%),

and between 10% and 30% of the instructions per corpus. The next two sections break

down the impact of ablating the ability to recognize different cues to implicit procedures

(Section 6.4) and the impact of inferring different navigation procedures (Section 6.5).

6.3 Comparing Implicit Procedures Inference to Fundamental

Explicit Navigation Procedures

To gauge how important inferring implicit procedures is to following natural route

instructions, we can compare the impact to the impact of ablating fundamental spatial

procedures. The turna and travela causal actions are what move an agent through a

large scale space. By removing the ability to recognize the various ways of explicitly

commanding Turnp and Travelp procedures, we can compare the impact of these core

spatial behaviors to the linguistic behavior of inferring implicit procedures for following

spatial route instructions.

Each type of causal action can be controlled by an open-loop or a closed-loop
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Figure 6.4: Comparing inferrring implicit procedures vs. executing types of explicit
procedures. The ability to infer implicit procedures is as important as the skills to execute
all procedures in the instructions.

procedure. In open-loop procedures, termination is controlled by a relative offset – when

an internal condition is met. The open-loop procedures in spatial route instructions are

Turn Direction for a turna and Travel Distance for the travela. In closed-loop behaviors,

the procedure terminates when an external condition is met, when a view description is

matched against the local perceptual model. In spatial route instructions, the closed-loop

procedures are Face Description and Travel Until [Description].

Examples of open-loop causal procedures are traveling a distance of a count of

intersections (e.g. “Go the third hallway”) and turning to the next possible path

(e.g. “Turn left”). Closed-loop causal procedures terminate when a view description

is matched by observation. Examples of closed-loop causal procedures are turning to a

view (“Face the blue path”) or traveling until a description is met (“Walk forward
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Quality Range 1.0–2.5 2.5–3.5 3.5–5.0 5.0–6.0 All Impt
People 35%‡ 52%‡ 73%‡ 85%‡ 64%‡ -20%
Marco 22% 33% 60% 79%∗ 52% 0%
– w/o Turn Direction 20%∗ 29% 50%‡ 66%∗ 43%‡ 16%
– w/o Distance Count 9%‡ 15%‡ 29%‡ 49%‡ 27%‡ 48%
– w/o Travel Until 10%‡ 7%‡ 26%‡ 36%‡ 21%‡ 59%
– w/o Implicit Procedures 5%‡ 7%‡ 22%‡ 40%‡ 20%‡ 62%
– w/o Face Description 6%‡ 7%‡ 14%‡ 20%‡ 12%‡ 76%

Table 6.2: Comparing performance of MARCO on inferring implicit procecures and
executing types explicitly commanded procecures. Explicitly commanded procedures are
executed normally in all cases.

until the end of the hall”).

Just like the ability to infer implicit procedures, we can ablate the ability to

recognize these types of explicitly commanded procedures. When ablating one type, the

others are in effect, so if the director used a redundant command, the other behavior will still

be executed. For instance, given “Take the blue hall three intersections to

the chair,” without Travel Distance, the follower will navigate to the chair and without

Travel Until, it will still navigate three intersections. Normally, with both behaviors, it

will check both conditions, though favoring the more reliable closed-loop landmark based

Travel Until when there is a conflict, after moving the described distance. When there is

no redundant information, the follower will execute a fall-back default, such as traveling to

the next intersection.

Here, we can see that the closed-loop procedures have the largest impact while

open-loop procedures have a smaller impact. In the route instruction task, the director

does not know which way the follower is facing at the beginning of the trial. This is one

reason that Face Description had the largest impact. Secondly, closed-loop procedures are

both empirically and theoretically more reliable than open-loop procedures. Closed-loop

procedures are inherently more reliable because they provide an independent way to check

that the procedure was correctly completed. For this reason, the Spatial Semantic Hierarchy
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assumes both closed-loop control laws and causal actions are completely reliable (Kuipers,

2000).

Empirically, the descriptions given for landmarks in closed-loop procedures

are more reliable than the distance and turn direction parameters given for open-loop

procedures in this corpus (MacMahon, 2005). For instance, landmark descriptions were

about 10 times more reliable than turn directions (99.5% to 95%) (MacMahon, 2005).

Closed-loop procedures allow the follower to recover from his or her own errors while

containing descriptions that contain fewer mistakes by the director. (See Section 6.7 for

further comparison of open-loop and closed-loop procedures.)

The surprise here is that inferring implicit procedures has a larger impact than the

explicitly commanded closed-loop spatial procedures of Turn Direction and Travel Distance

and comparable impact to the fundamental explicitly commanded open-loop procedures of

Travel Until and Face Description. But another way, it is just as important to infer the

implicit procedures that the director intended – what the director meant – as to execute

common invocations of explicitly commanded procedures – what the director said to do.

6.4 Implicit Procedures in Route Instructions

Route instructions represent the transfer of knowledge from the director to the follower

about specific spatial procedures and environment attributes. Route instructions are useful

if the followers reliably reach the intended destination. However, not all the necessary

procedures to navigate the route are explicitly asserted as imperative commands. Some

necessary procedures are implicit, but implied by syntactic, semantic, or pragmatic features

of the instructions. The follower must infer the intended procedure sequence from the

instruction text. See Section 5.5.2 further description of these cues and how they are

implemented in MARCO.

The likelihood of reaching the destination depends on both the instruction set and

the skills of the follower for navigation and interpretation. We present results for six types of
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Figure 6.5: Performance for people, MARCO and MARCO without implicit procedure cues,
with standard error bars, plotted versus human instruction rating.

followers: (1) human participants, (2) the full MARCO agent, (3) MARCO without syntactic

cues for implicit procedures, (4) MARCO without semantic cues for implicit procedures,

and (5) MARCO without pragmatic cues for implicit procedure, and (6) MARCO without

implicit exploratory procedures. Inferred procedures may be unnecessary, depending on the

starting conditions and how the follower interpreted and executed any previous instruction

elements. This experiment measures the distribution of when the inferences are necessary.

These are further defined in Section 5.5.2.

Pragmatic (discourse) cues have the least effect on performance. Without pragmatic

cues, the performance impact is 16%. Overall, performance without pragmatic cues was

(M = 43.4%,SEM = 1.2%), N=1522, different from the full performance at t(1521) =

9.46, p ≤ 0.001. In Corpus 1, the impact was 17%; Corpus 2, 13%; and Corpus 3, 15%.
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Without exploration procedures, the impact on MARCO’s overall performance is

21%. In Corpus 1, the impact was 23%; Corpus 2, 21%; and Corpus 3, 32%. Exploratory

procedures include procedures to match the view description to the view when the view

does not contain enough information to disambiguate. The canonical example of this is

“Face the longer end of the hall.” Even if the follower is already facing the

longer portion of the hallway, it cannot know its state without seeing or having seen what is

behind it. Exploratory procedures also include recovery procedures when lost or when the

described pose is visible in the distance.

Without recognizing the implicit procedures marked by syntactic cues, the impact

is 38%. In Corpus 1, the impact was 41%; Corpus 2, 38%; and Corpus 3, 39%. This

includes syntactic cues for both inferring a Travelp implicit in a Turnp command (“At the

end of the hall, turn right.”) and a Turnp in a Travelp procedure (“With your

back to the wall, walk forward.”).

Recognizing semantic cues had the largest impact, decreasing performance by

almost 52%. In Corpus 1, the impact was 45%, Corpus 2, 61%; and Corpus 3, 62%.

Some semantic cues are in the preconditions of the stated procedure, for instance, in

“Take the green path,” a Travelp is necessary when the green path is distant. Turns

can also be implicit in a procedure’s preconditions, e.g. a Turnp to face the path in “Go

down the brick hallway.” An example of verb frame encoding a procedure is “Take

the second left,” implying Travelp forward to the second intersection that has a path

exiting to the left.

See Appendix B.7 for more details of individual behaviors.

6.4.1 Implicit Procedure Cues Results by Rating

Ablating the various cues for implicit procedures had varying effects over the spectrum of

instruction quality (Table 6.3). Exploration cues are particularly important for poor quality

instructions (58% impact). Often the worst instructions had gaps and errors necessitating
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Quality Range 1.0–2.5 2.5–3.5 3.5–5.0 5.0–6.0 All Impt
People 35%‡ 52%‡ 73%‡ 85%‡ 64%‡ -20%
Marco 22% 33% 60% 79%∗ 52% 0%
– w/o Implicit Pragmatic 18%† 27%∗ 51%† 67%∗ 43%‡ 16%
– w/o Implicit Exploration 9%‡ 19%‡ 49%‡ 70% 40%‡ 23%
– w/o Implicit Syntactic 13%‡ 18%‡ 37%‡ 53%‡ 32%‡ 38%
– w/o Implicit Semantic 6%‡ 11%‡ 30%‡ 46%‡ 25%‡ 52%

Table 6.3: Comparing performance of MARCO versions without different implicit
procedure cues

exploration. However, exploration cues are rarely crucial to following the best-rated

instructions, the impact is not significant impact at 4%.

Discourse pragmatics cues only had an impact of 8–19% across all quality

instructions. However, the impact of pragmatic cues on the worst instructions was smaller

(8%), significant at t(268) = 2.53, p ≤ 0.006. Inferences from pragmatic cues on poor

instructions may be more challenging or simply not yet implemented.

Semantic cues had a bigger impact on worse instructions than better instructions,

although it had a significant impact across the quality spectrum of between 37–74%. The

impact scaled up as the instructions worsened. Since semantic cues are domain or verb

dependent, they may require more effort to interpret, and therefore maybe cause people to

rate an instruction worse if it requires inferring implicit procedures from semantic cues.

Inferring implicit procedures from syntactic cues has a consistently high impact

across the quality spectrum. On the best instructions, the impact is 26%; for each of good,

mediocre, and poor instructions, the impact is between 38% and 46%. Since syntactic

cues are domain-independent, they may not require as much effort to interpret as the

domain-dependent semantic cues. This would explain why the impact of inferring implicit

procedures from semantic cues is fairly evenly distributed across the quality spectrum.
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Quality Range 1.0–2.5 2.5–3.5 3.5–5.0 5.0–6.0 All Impt
People 35%‡ 52%‡ 73%‡ 85%‡ 64%‡ -20%
Marco 22% 33% 60% 79%∗ 52% 0%
Marco w/o Implicit Proce-
dures

5%‡ 7%‡ 22%‡ 40%‡ 20%‡ 62%

Table 6.4: Comparing the performance of MARCO without implicit turns and travels

6.5 Inferring Different Types of Implicit Procedures

Besides the different cues for implicit procedures, there are also different inference products

— the implicit procedures themselves. This section looks at the impact of inferring only

Turnp procedures, only Travelp procedures, inferring both types of procedures and inferring

neither. This chapter is an update of (MacMahon et al., 2006) with a further developed

MARCO model and a separate evaluation corpus.

The last section examined the impact of cues of implicit procedures and this section

examines the impact of the results of inferring implicit procedures. We present results for

five types of followers: (1) human participants, (2) the full MARCO model, (3) MARCO

without Turnp inference, (4) MARCO without Travelp inference, and (5) MARCO without

either Turnp or Travelp inference (only explicitly commanded procedures). For people, the

results are the mean over runs from multiple participants following each instruction set,

each beginning at the start location facing a random direction. For the MARCO cases, the

presented results are the mean over four runs, facing each of the four directions at the start.

Without inferring Travelp procedures, only implicit Turnp procedures, MARCO’s

performance drops to 32.5% (SEM = 1.1%), an impact of 37%. Across the corpora, the

impact is 29%, 52%, and 43%. In all corpora, the difference between the full MARCO and

MARCO that did not infer Travelp procedures is significant (t(690) = 12.19, p ≤ 0.001;

t(431) = 11.76, p ≤ 0.001; t(398) = 7.19, p ≤ 0.001).

If MARCO does not execute implicit Turnp procedures, but only implicit Travelp

procedures, performance slips to 25.3% of the 1522 instructions followed by people,
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Figure 6.6: Implicit turns have a higher impact than implicit travels. Inferring turns literally
gets the agent on the right path, where it gets new information.

SEM = 0.9%. Across the corpora, the impact is 47%, 57%, and 54%, a very consistent

drop-off in performance. In all corpora, the difference between the full MARCO and

MARCO that did not infer Turnp procedures is significant (t(690) = 20.02, p ≤ 0.001;

t(431) = 13.90, p ≤ 0.001; t(398) = 9.56, p ≤ 0.001).

For all corpora, implicit Travelp procedures have less impact than implicit Turnp

procedures. This difference was significant overall (t(1521) = 7.34, p ≤ 0.001), and in

Corpus 1 (t(690) = 7.82, p ≤ 0.001) and Corpus 3 (t(398) = 2.35, p ≤ 0.010), but not

Corpus 2 (t(431) = 1.25, p ≤ 0.105). It makes some sense for an implicit Turnp to be

more crucial than an implicit Travelp, as the turna causal action changes the information

available drastically, by bringing a new path into view. A travela causal action, on the other

hand does not change the information available to an agent with distal perception as much.
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Following purely explicit instructions, without inferring either Turnp or Travelp

procedures, MARCO can successfully follow just 19.8% of the routes in the 1522 instruction

corpus. The effects of inferring implicit Turnp or Travelp procedures are neither fully

independent nor fully dependent, both are critical for route instructions. Across the corpora,

the impact varies from between 54% and 78%.

For all instructions, the difference is significant from both inferring only implicit

Turnp procedures (t(1521) = 9.21, p ≤ 0.001) and Travelp procedures (t(1521) =

15.97, p ≤ 0.001). The difference from inferring only implicit Turnps is significant in

Corpus 1 (t(690) = 12.92, p ≤ 0.001); Corpus 2 (t(431) = 8.00, p ≤ 0.001); and Corpus 3

(Turns t(398) = 4.89, p ≤ 0.001). Inferring neither implicit Turnp nor Travelp procedures

has a significant impact over inferring only implicit Travelp procedures is significant in

Corpus 1 (t(690) = 5.23, p ≤ 0.001); Corpus 2 (t(431) = 8.62, p ≤ 0.001); and Corpus 3

(t(398) = 2.49, p ≤ 0.007).

6.5.1 Implicit Procedure Experiment Results by Rating

Inferring implicit procedures is essential for following the nearly all of the lowest rated

instructions in this corpus, but still has an impact of nearly 50% even for following the

highest rated instructions. Table 6.3 summarizes the results graphed in Figure 6.5 across

broad classes of human post hoc subject instruction ratings. In this discussion, r will denote

the mean rating on an instruction set from the six human followers.

For poor instructions, r ≤ 3.5 out of 6, MARCO is effectively crippled without

inferring implicit procedures, with an impact of 77% on instructions rated 1 ≤ r ≤ 2.5 and

79% on instructions rated 2.5 < r ≤ 3.5. On good but not excellent instructions (3.5 <

r ≤ 5.0), MARCO can follow a significant number of instructions without inferring implicit

procedures, but performs much better by inferring procedures (impact 79%), especially

Turnp procedures, (impact of 65%). Making an implicit turna can put the follower on the

correct path, revealing a view down the path which shares very little information with views
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facing in other directions. A Travelp moves the agent to a new place, but does not bring as

much new information into the view as the followers are able to see distant objects.

On the best instructions, those rated r > 5, the full MARCO system and people had

only a small significant difference in performance, 7% t(778) = 1.92, p ≤ 0.028. Without

inferring implicit procedures, MARCO had significant decrease in performance even on the

best instructions, with a 45% impact. Inferring implicit procedures accounts for nearly all

the success on poor instructions and about half the success even on the best instructions.

All of these trends are consistent across all three corpora.

6.6 Object, Structural and Appearance Landmarks

Landmarks are crucial to any theory of route instructions. Landmarks are the reference

points that directors use to describe the route and that followers use to orient themselves to

the route. To navigate to the destination, the follower must match the landmark descriptions

with observations seen along the way.

6.6.1 Review of Landmarks Types

Directors can refer to several types of landmarks. Stankiewicz and Kalia (2007) distinguish

object landmarks and structural landmarks. Object landmarks are discrete objects in the

environment that are independent of the navigational structure of the environment, such as

the pictures on the walls and furniture on the floor. Structural landmarks are spatially

extended and based on the navigational structure of the environment — how the paths

connect and terminate — and include dead ends, T intersections, and descriptions of

hallway length.

This distinction between object and structural landmarks is common. Hansen

et al. (2006) split landmarks into Point, Linear and Area landmarks at their “Conceptual”

level. Our object landmarks fall into their Point landmarks and structural landmarks are

Linear or Area. Sandstrom et al. (1998) similarly split landmarks into “landmarks” (object
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landmarks) and “geometric information” (structural landmarks). Sorrows and Hirtle (1999)

distinguish visual, cognitive, and structural landmarks, which Raubal and Winter (2002)

formalize into a computational model accounting for “visual, semantic, and structural”

attributes. Their structural landmarks correspond to ours and our object landmarks fall

into their broader visual landmark category. Siegel and White (1975) propose that these

types of landmarks play primary roles at different stages in learning large-scale spatial

environments.

In this analysis, we decompose landmarks by the complexity of the required

perception. Like the hierarchical lattice of spatial ontologies in the Hybrid Spatial Semantic

Hierarchy (HSSH) (Kuipers et al., 2004; Kuipers, 2000), simpler perceptual attributes and

landmark types are required for more complex types. The landmark types examined here

are

1. Appearance Landmarks: Characterized by a single perceptual attribute, including

color (red, blue), luminance (dark, light), and texture (wooden, brick).

2. Object Landmarks: Discrete, localized objects, e.g. the furniture in some intersec-

tions (chair, sofa, lamp).

3. Structural Landmarks: Describe navigable space. We break these into

(a) Causal Landmarks: Local simple structural landmarks that form the compo-

nents of more complex descriptions: walls, hallways and places.

(b) Intersection Landmarks: Compound structural landmarks describing the local

topology, or shape, of intersections (T intersection, dead end, path

to the right).

6.6.2 Landmark Recognition Ablation Study

To test the navigation impact of different types of landmarks in this route instruction corpus,

we ran an ablation study removing the ability to recognize appearance, object, intersection,
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Quality Range 1.0–2.5 2.5–3.5 3.5–5.0 5.0–6.0 All Impt
People 35%‡ 52%‡ 73%‡ 85%‡ 64%‡ -20%
Marco 22% 33% 60% 79%∗ 52% 0%
– w/o Object Landmarks 15%‡ 22%‡ 46%‡ 62%‡ 39%‡ 25%
– w/o Intersection Landmarks 15%‡ 22%‡ 46%‡ 60%‡ 38%‡ 25%
– w/o Appearance Landmarks 13%‡ 18%‡ 39%‡ 57%‡ 33%‡ 35%
– w/o Structural Landmarks 9%‡ 11%‡ 25%‡ 37%‡ 21%‡ 58%

Table 6.5: Comparing the performance of MARCO without the ability to recognize different
kinds of landmarks

and all structural landmarks. For this study, landmarks are any description of the world

along the route — what MARCO models as view descriptions. In this study, we test how

much the ability to recognize each type of landmark contributes to successfully following

the route instructions.

Where we have ablated the landmark recognition, the recognition code always

returns True, which allows matching the referring phrase by using the other types of

landmark information. For instance, told to “Take the blue path,” without Structural

landmarks (specifically, Causal landmarks), MARCO will face something blue (in this study,

always a path). Given this description without Appearance landmarks, MARCO will face a

path, whether it is blue or not. Without either Appearance or Structural landmarks, any view

will match. Thus, a description incorporating at least two types of landmarks (e.g. “Face

the chair on the rose hallway.”) may be robust to the loss of any one, depending

on the environment and whether the additional information is elaborative (redundant) or

contrastive (necessary).

In this study, the three types of landmarks were each ablated separately.

Additionally, we tested the result of ablating only Intersection Structural landmarks, but

not Causal landmarks. Recognizing Intersection landmarks without the Causal landmarks

of paths and walls is not possible, by definition.
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Figure 6.7: Success rates for MARCO without the ability to recognize types of landmarks.

6.6.3 Landmark Recognition Ablation Results

The impact of ablating the different landmark types accords with the predictions suggested

by the HSSH and with previous psychological studies (Stankiewicz and Kalia, 2007).

Structural landmarks, which encode information about the navigational structure of space,

have the highest impact. Appearance and Object landmarks have the next highest impact,

followed by Intersection landmarks alone.

Simpler landmarks and landmarks directly involved in the task have higher impact

than more complex landmarks. This pattern of impact matches the expected pattern from the

literature. This is evidence for a hierarchical ontology of spatial and perceptual attributes:

the more fundamental entities of Causal landmarks have higher impact than landmarks built

on them (Intersection) or based on attributes peripheral to the task (Object and Appearance).

Structural landmarks refer to the navigational structure of space, and so the language of
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route instructions is structured around Structural landmarks.

Over the entire tested corpus, the impact of running without the ability to Structural

landmarks is 58%, i.e. the ablated model succeeds 42% as often as the full MARCO.

On the best-rated instructions (mean rating 5.0–6.0), the impact is 49%. For middle-

rated instructions, the impact is 59% and 67% for instructions rated 2.5–3.5 and 3.5–5.0,

respectively. For the worst rated instructions, the impact is 60%.

Appearance landmarks, have less impact (35%), but more than any other type

of landmark. Due to the prevalence of different floor textures and the textures being

distributed along long straight paths, appearance references are extremely common in this

study. Moreover, simple appearance references tend to be contrastive between the available

paths. The impact is 22% for the best instructions, 34% for the good instructions, 47% for

adequate instructions, and 44% impact for the worst instructions. Appearance landmarks

are simple to perceive and describe.

Object landmarks have the next biggest impact in this study at 25%, although they

are relatively sparsely distributed in the environments. Nearly every hallway has a distinct

floor texture, giving a distinctive appearance. Every place can be described in terms of its

intersection structure. However, only about 25% of the places in the tested environments

have an object. Overall, the impact of object landmarks is more evenly distributed across

the rating spectrum. For both the best instructions, the impact is about 14%, while for 3.5–

5.0 rated instructions, the impact is 23% and for 2.5–3.5 rated instructions the impact is

34%, for the worst, the impact is 32%.

Intersection landmarks alone have about the same impact in this study as object

landmarks. This can be explained by two factors. First, the local topology of the

intersection (its shape) is a relatively complex concept. Second, many intersections are

described by the appearance of their component paths in the instructions, and this is

usually sufficient in these environments to uniquely identify an intersection. Intersection

landmarks have an impact of 25% , with the two best-rated classes of instructions around
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20% impact and the worst two classes of rated instructions, the impact around 33%.

Note that many of the worst instructions simply state a description of the destination

in terms like “Position 7 is at the intersection of the yellow and grey

floored halls.” or “Position 4 is at the dead end of the yellow fish

hall with yellow floors.”

All of these differences are consistent and significant across all three corpora. All

are significant for all the rating groups of instructions and across all three corpora.

6.7 Hybrid Spatial Semantic Hierarchy

6.7.1 Review of the Hybrid Spatial Semantic Hierarchy

The original Spatial Semantic Hierarchy (SSH) (Kuipers, 2000, 2006; Remolina and

Kuipers, 2004) represents large-scale space with four distinct representations: (1) control

laws operating on perceptual attributes that allow reliable motion among distinctive states;

(2) causal schemas that model movement between distinctive states and views that represent

what can be observed at a state, which represent the local navigation affordances of the

continuous world as a deterministic finite automaton; (3) a topological model consisting of

places, paths, and regions, which represent the global navigation structure of the continuous

world as a topological map or set of maps; and (4) local metrical information, such as the

distances between places on a path and the angles between path segments at a place.

The Hybrid Spatial Semantic Hierarchy (HSSH) builds on the SSH by synthesizing

a better representation of small-scale space (Beeson et al., 2007; Kuipers et al., 2004;

Modayil et al., 2004). The local perceptual map (LPM) is a representation of the positions

of objects, obstacles, and hazards in the space around the agent, such as an occupancy

grid (Moravec and Elfes, 1985), built directly from ranged perception, such as a laser-

range finder, sonar, or vision. The LPM represents the metrical layout of navigable space

in the local surround of the agent. The local topological map describes a place by the
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structure of its navigational affordances: how the agent can move through, in, and out of

the place. Specifically, the local topology of a place can be represented by the small-scale

star modeling the relationships among the path segments entering and exiting the place.

The Hybrid Spatial Semantic Hierarchy provides the representations needed to

model the entities and actions needed for navigating guided by route instructions. The

control laws at the local metrical provide the basic skills needed for locomotion. The

causal procedures at the local topological level provide behaviors matching descriptions

of turns (“Turn left” and “Take a right”) and travel procedures (“Go forward

twice” and “Move to the next place”). The local topological level allows the

description of intersections, e.g. “Take the second left” and “at the four way

intersection of the red hall and the rose halls.” The global topological

level is needed for reasoning about paths, such as that when told, “Follow the

hallway around to the chair,” the follower should take forced-choice turns or

default procedures to proceed along the hall until reaching the chair.

We make one distinction over previously published descriptions of the HSSH: the

Causal level is split into open and closed-loop behaviors. In the control level of the SSH,

open and closed-loop control laws (a.k.a trajectory-following and hill-climbing control

laws) describe different behaviors on the same representations. Similarly, open-loop causal

behaviors have a termination condition that is a relative offset, but do not have a description

of the resulting pose. This distinction is in the route instruction literature, usually discussed

as whether or not navigation and description strategies use landmarks (Allen, 2000; Brown

et al., 1998; Burnett, 2000; Dabbs et al., 1988; Denis, 1997; Geldof, 2003; Jackson, 1998;

Lawton, 2001; Lovelace et al., 1999; Michon and Denis, 2001; Raubal and Winter, 2002;

Tenbrink et al., 2002; Tenbrink and Klippel, 2005; Ward et al., 1986).
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6.7.2 Hybrid Spatial Semantic Hierarchy Ablation Experiment

We have run an experiment looking at the impact of the HSSH ontologies for following

route instructions, building on the landmark recognition ablation study ( 6.6). Here, we have

categorized the landmark recognition and navigation skills by the HSSH representations

each requires, as detailed below.

Below, we introduce each category, and then name the behaviors and representa-

tions ablated for that HSSH level.

1. Causal: Causal control laws, plus causal representations and behaviors. Causal

Landmarks, Travel To Next, Travel Between Turns, Travel On Final Turn

(a) Open-loop causal control laws: Simple turna (Right|Left) and travel Forward

causal actions, Distance Count

(b) Closed-loop causal control laws: Repeat Causal action until view description is

matched. Travel Until, Face Description, Turn Until View, Object Landmarks

2. Local Metrical: Building and reasoning with a model of the local sensory surround.

Travel To Distant View, View Memory, Perspective Taking, Face Distance

3. Local Topological: Representations and reasoning about local navigational affor-

dances. Recognize Structural, Intersection Landmarks, Turn Toward Path, Face

Distance, Face Until

4. Topological: Representations and reasoning about places and paths. Use Follow, Use

Find Turn Between Travels, Travel Between Turns

6.7.3 Hybrid Spatial Semantic Hierarchy Ablation Results

The route navigation in these environments is entirely dependent on the Causal level.

Without Causal procedures and representations, hardly any of the instructions can be
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Figure 6.8: Route instructions depend on Hybrid Spatial Semantic Hierarchy representa-
tions with relative impact as the theory predicts.

followed, only about 1% of the corpus (98% impact). Causal representations model moving

discretely between places on a path and paths at a place. They are fundamental to navigation

though large-scale spaces.

Closed-Loop Causal behaviors have more impact (90%) than Open-loop Causal

behaviors (54%). Part of this is that most of the instructions require a Closed-Loop

Causal procedure to accomplish an initial orientation to the route, either with an explicitly

commanded procedure, such as “Face the chair,” or an implicit one, e.g. “With your

back to the wall, turn right.” Closed-Loop Causal procedures are used slightly

more often over the entire corpus that Open-loop Causal procedures, on 702 of 771

instructions instead of 667 of 771 in Corpus 1 (including instructions that people did not

follow). However, this is not enough to explain the discrepancy in impact. See Section 6.4.1
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Quality Range 1.0–2.5 2.5–3.5 3.5–5.0 5.0–6.0 All Impt
People 35%‡ 52%‡ 73%‡ 85%‡ 64%‡ -20%
Marco 22% 33% 60% 79%∗ 52% 0%
– w/o Topological 7%‡ 18%‡ 47%‡ 69% 38%‡ 26%
– w/o Open Loop Causal 9%‡ 13%‡ 25%‡ 43%‡ 24%‡ 54%
– w/o Local Topological 6%‡ 8%‡ 27%‡ 45%‡ 23%‡ 55%
– w/o Local Metrical 8%‡ 8%‡ 14%‡ 16%‡ 12%‡ 77%
– w/o Closed Loop Causal 3%‡ 2%‡ 7%‡ 9%‡ 5%‡ 90%
– w/o Causal 1%‡ 0%‡ 1%‡ 1%‡ 1%‡ 98%

Table 6.6: Comparing the performance of MARCO variants without different levels of the
Hybrid Spatial Semantic Hierarchy

for further discussion.

Ablation of the Local Metrical abilities has a high impact on route instructions

following (77% impact). Local Metrical contains two crucial spatial reasoning skills: View

Memory and Perspective Taking. View Memory controls the ability to remember views

that are out of sight, as the agent turns in place and moves down a hallway. Without

View Memory, the follower cannot form a local perceptual model of the local surround

(81% impact) (Beeson et al., 2007; Kuipers et al., 2004; Modayil et al., 2004). Without

Perspective Taking, an agent cannot use the local perceptual model to project what its view

would be if it were at a different pose (67% impact) (Schober, 1993; Taylor and Tversky,

1996; Trafton et al., 2005).

Local Metrical spatial representations and reasoning skills allow the agent to move

beyond purely reactive way-finding behaviors and behaviors with only impoverished state

(e.g. maintaining a Distance Count over a Travelp). Local Metrical behaviors have less

impact on the worst instructions. Since these often describe only the destination, and not

the route, reacting to immediate observations is usually sufficient, when these instructions

are useful at all.

Local Topological has a significant but smaller impact, reliable across instruction

quality (55% impact). The highest impact components of the Local Topological ablation
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are Intersection Landmarks (26% impact) and Face [Travel] Until (33% impact) . In this

option, the follower will turn to ensure that the destination of the current Travelp procedure

is visible to the front in the distance before starting to move forward. The follower uses

Perspective Taking to project the view description of the until condition of a Travelp into

the distance, then executes a Turnp procedure to face the projected view description. This

is a Local Topological behavior, because it relies on the topological knowledge that the

destination should be in front of the traveler and either visible or at least, possible, if the

traveler can only see a limited distance along the path.

Without Local Topological Models (Beeson et al., 2007; Kuipers et al., 2004;

Modayil et al., 2004), the agent cannot categorize intersections into common types, such

as dead ends, four-way intersections, and corners. This has the highest impact

within the instruction corpus for the worst instructions, where the director may rely on

intersection shape alone to distinguish it from other places along a hallway.

Finally, the Topological ontology has a significant impact of 26%. The highest

impact components of the Topological level are the high-level procedures Findp and

Followp and the Travel to Next heuristic. Find is the procedure that does undirected search

until the desired view is visible in the distance, then executes a Travelp procedure to reach

it (impact 17%). Followp makes forced-choice turns along a constrained path (impact 4%).

Travel to Next goes to the next match when a Travel Until is matched directly after an

explicit Turnp (impact 9%), e.g. “Turn right. Go to the corner,” when the right turn is also

at a corner.

Overall, the ontologies line up in impact as the HSSH theory predicts, with the

more lower levels having larger impact than the higher levels. The Causal level is

fundamental to travel through large-scale spaces. Causal behaviors can be described by

both open and closed-loop descriptions, but closed-loop behaviors are more reliable for

both director and follower. Local Metrical representations allow the follower to model the

local layout and projecting what the view would be after moving to another place within
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the view, perspective taking. This allows the director to describe the world with a richer

vocabulary, which reduces the amount of poses that are linguistically aliased – that can

only be described in the same ways. The Local Topological level brings a common and

concise vocabulary of intersection types, which allows the description of places as a whole,

instead of with longer constructions detailing the positions of the component walls and

paths. Finally, the Topological level allows the director to rely on the follower to infer

unstated turns, reducing the communication cost without greatly reducing the likelihood of

reaching the destination.

6.7.4 Extensions to the Hybrid Spatial Semantic Hierarchy

The work extending the Spatial Semantic Hierarchy to the HSSH takes advantage of

improved sensors, processors, and algorithms to add models of small-scale space to the

SSH, which only modeled large-scale space. The ability to reliably map and localize in the

immediate sensory surround greatly reduces problems of mapping globally (Kuipers et al.,

2004; Modayil et al., 2004). In the SSH, observations were abstracted to views, an opaque

representation of what the agent saw at a pose. In the HSSH, observations at a place are

combined into a rich model of the metrical shape and topological navigational affordances

(how the agent can exit a place).

This dissertation suggests that the Hybrid Spatial Semantic Hierarchy will need to

be similarly extended, to include models of medium-scale space. The ontology and global

maps of large-scale space covers any space larger than the sensory horizon. The ontology

and local maps of small-scale space cover the local place neighborhood immediately around

the agent, that the agent can fully perceive with turns or local motion, while remaining

completely localized.

The experiments in this dissertation show that people often rely on perception

and reasoning about medium-scale space – distant places, visible and accessible from

the immediate place. The route instruction director relies on the follower to be able to
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perceive and reason about distant places that are partially visible. Medium-scale spatial

reasoning and perception are required to handle explicit instructions, such as “Go toward

the end of the hall with the chair,” and implicit procedures for ensuring that

the destination is either visible on the path ahead, or that the path continues out of view.

6.8 Grammar Cross-validation

6.8.1 Review of Cross-Validation Methodology

Cross-validation is an evaluation technique to test machine learning systems (Mitchell,

1997). In cross-validation a large corpus of labeled examples is repeatedly partitioned into

discrete training and test sets. For each pair of sets, the learning algorithm is given both the

data and labels in the training set to learn the model and then evaluated by labeling the test

set. This process is repeated for different partitions of the data, so that each example in the

corpus is used several times in both different training and test sets. This process ensures

that the split of examples into training and test sets does not bias the results, as well as

measuring the variability across runs.

One commonly used cross-validation methodology is “leave-one-out” cross valida-

tion. The data set is shuffled and split into equal parts, by some criteria. For instance, we

will perform cross-validation by splitting the corpus by the instructions’ directors and by

the map the route is in. In “leave-one-out” cross-validation, the training set is all of the

data other than one group (e.g. one director or map). The left-out group is the test set. The

process is then repeated, using each group as the test set, with the remainder comprising the

training set. After training and testing on all partitions of the data, the results are averaged

across runs to give the mean performance and variability.
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6.8.2 MARCO Grammar Cross-Validation Experiments

The methodology of cross-validation allows us to test the generalization of the grammar

and parser under several different scenarios. We can test how consistent the grammar is

across directors and across environments. Rather than splitting the route instruction corpus

into training and test partitions randomly, we can split the corpus in controlled manners.

We have run experiments with the corpus split by environment and by director.

In each of these studies, the Probabilistic Context-Free Grammar is trained on

part of the corpus and then the MARCO agent is run using the output of the parser. All

other parts of the agent remain the same, only the parse trees are generated by the trained

grammar, instead of loaded from hand-corrected trees. Both of these studies were run only

on Corpus 1.

For the cross-validation over maps study, the agent is trained on instructions from

all directors from two of the environments and then run on the instructions from the other

environment. This tests how much variability there is in the grammar across environments.

Additionally, it tests the robustness of the agent to imperfect parses.

In the cross-validation over directors study, the grammar is trained on instructions

from five of the directors and then tested on the instructions. This tests how variable the

instruction grammar is across the different directors. This is one measure of how similar

the styles of the directors are, at least at the surface level. This gives some prediction of

how well the system will do on instructions from a new director.

6.8.3 MARCO Grammar Cross-Validation Results

Overall, the cross-validation experiments show the system is fairly robust across environ-

ments and across all but one of the Corpus 1 directors. With cross-validation over maps,

MARCO succeeds on 51% on the corpus, a performance impact of 24% over using the

gold-standard parses. With cross-validation over directors, MARCO succeeds on 38% on

the corpus, a performance impact of 43% over using the gold-standard parses. Table 6.7
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Quality Range 1.0–2.5 2.5–3.5 3.5–5.0 5.0–6.0 All
Human 33%∗ 46%∗ 75% 85%† 69%
Marco 25% 38% 73% 89% 67%
– w/ Cross-validation over Maps 22% 26%‡ 55%‡ 70%‡ 51%‡

– w/ Cross-validation over Directors 17%∗ 25%‡ 41%‡ 48%‡ 38%‡

Table 6.7: Performance on cross-validation runs by subjective rating.

and Figure 6.9 show the results across the instruction quality spectrum.

Note that in the directors cross-validation study, the PCFG actually trains on five-

sixths of the corpus, while in the map cross-validation study, each training set is two-thirds

of the corpus. Despite have more training examples in the director cross-validation study,

the system performs significantly better in the map cross-validation. This is due to smaller

differences in language use for directors between environments than between directors.

In the map cross-validation study, the highest rated two classes of instructions each

have about the same performance impact from applying parsing using a learned, imperfect

syntactic model as using the hand-corrected gold-standard parses, at about 24%. For

instructions rated 2.5–3.5, parsing from the model learned on the other environments has a

larger impact (34%), perhaps because when the director is unsure of the route, the syntactic

style changes and becomes more variable to account for differing kinds of uncertainty. On

the other hand, for the worst instructions (1.0–2.5), there is no significant impact from

applying the learned model. When a director can only give minimal guidance, usually

he or she is only describing the destination, which may be done in the same ways across

environments.

In the director cross-validation study, the impact is greater across differing quality

levels, but more consistent. Again the impact on the two best rated classes is similar, at

about 45%. Here, the impact on the worse rated instructions is higher, at 34% for the 2.5–

3.5 rated instructions and 28% for the lowest rated class, all significant differences from the

gold-standard parse.

Figure 6.10 shows the performance of the cross-validation learned models for each
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Figure 6.9: Success rates for MARCO under cross-validation across instruction quality.

director. The performance varies considerably across directors, as some directors have a

distinctive style, using sentence structures not seen in the other directors. For instance,

EDA tends to use a simple but unique sentence structure of “Walk forward COUNT.” For

example, no other director in Corpus 1 uses the word “twice” and EDA uses it in over half

(67) of his instructions. EDA is very consistent across environments, with the map cross-

validation parser yielding a 72% performance on his instructions, only an 11% impact off

of the gold-standard parses. However, in the director cross-validation, MARCO has a 61%

impact on EDA’s instructions from the gold-standard, and a 61% impact even from the map

cross-validation parser. On all instructions from directors other than EDA, the impact of

learning the syntax from other directors is only 37% compared to the gold-standard parses

and 13% off of the performance of MARCO with the parser trained on instructions from all
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Figure 6.10: Success rates for MARCO under cross-validation per director.

directors in the other two environments.

Two of the directors, TJS and WLH, share almost all of their important syntactic

variation with other directors. These directors only had a performance impact of 5%

and 6%, respectively, comparing the MARCO’s performance with a grammar trained on

instructions from the other directors against with a grammar trained on instructions from

the other environments. The other three directors had intermediate impacts (17-24%),

measuring a drop in performance from the map cross-validation to the director cross-

validation. Only EDA (61%) was above the mean impact (26%) for this comparison.
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6.8.4 Cross-Validation Discussion

These results, and the results of running on Corpus 2 and Corpus 3, show how MARCO

handles unseen route instructions, using a naïve, PCFG parser (see Section 5.2). The

other experiments in this chapter show how MARCO performs on the gold-standard hand-

corrected parse trees. These two extremes — the naïve parser and the gold-standard parser

— provide bounds for the expected performance of MARCO with a state-of-the-art parser.

With a better parser or more training, MARCO should perform closer to the gold-standard

performance level and certainly better than our naïve parser. Section 5.2 discusses more

complex parsers that might be incorporated.

The second conclusion to draw from the cross-validation studies is that the

idiosyncratic individual differences between directors have a higher impact than the

differences from the same set of directors between environments. Training for a particular

user would allow the system to learn his or her quirks in sentence structure, word usage,

and implicit procedures. On the other hand, the cross-director performance impact should

be mitigated as the system has trained with more types of users.

MARCO performs adequately even with a naïve parser and partial training on some

of the instructions. The performance profile across instruction quality has the same profile

as the performance on gold-standard parses, of performance scaling linearly with quality,

albeit at a lower level. Part of the parsing problem, especially across individuals, is that

the grammar training program makes no effort to use techniques to generalize the grammar

from the instances in the training set, handling optional arguments and arguments with

arbitrary order (Goan et al., 1996; Li and Abe, 1998; McClosky et al., 2006).

Even the best parser will not have 100% accuracy; the state-of-the-art is just higher

than 90% per sentence (McClosky et al., 2006). When interpreting a paragraph of route

instructions, there is a chance that each utterance will be mis-interpreted, and that chance

accumulates over the instruction set. Even one mis-parsed sentence can throw off the

execution, even with something as simple as an attachment error. To use a classic example,
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if told to “Look for the man with a telescope,” the follower will fail if looking

for “a man with a telescope” instead of through a telescope or vice versa. This

points out the need for a parser that can re-rank the possible parses in response to linguistic,

spatial, and task context (Chang and Mok, 2006) (See also Section 5.2). An orthogonal

approach uses dialogue acts to clarify or correct the parses, which complements the methods

in MARCO and better parsers (MacMahon, 2005; Weng et al., 2006).

6.9 Human-MARCO Discrepancy Analysis

Finally we want to compare the performance of people and the full MARCO agent on

particular instructions. We closely examined the outcome of a random selection of route

instructions from all three corpora. For each director, three instructions were selected at

random from the set of all instructions which were successfully followed to the intended

destination by either on least one trial by a human follower or MARCO. This section

presents the results of comparing the performance of the full MARCO agent and people

following these instructions.

Overall, since there were 30 followers in the three corpora, there were 90

instructions in the sample. Of these 90 instructions, MARCO and people performed about

the same, within ±25% success rate, on 46 of the 90 instructions. On 31, people out-

performed MARCO, but on 13 instructions MARCO reached the destination with a success

rate more than 25 percentage points higher than people.

When comparing the success rates, remember we are comparing the mean success

rate of a population of human users with many strategies and individual differences against

one version of MARCO running repeatedly. If tested repeatedly, individual people might

show the same pattern as MARCO of following some instructions reliably and failing

reliably on others. Likewise, other variants of MARCO perform differently, and occasionally

better on particular instructions, especially MARCO variants with different heuristics or

parameters for accepting loose matches of descriptions.
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Rtg Ppl MAR Direct Map S T Note
5.1 100 100 EDA Compact0 6 3 Same route
4.9 88 100 EDA Sparse0 1 3 Same route
5.4 88 100 EDA Sparse0 4 7 Same route
4.7 57 0 EMW Sparse0 5 3 Missed locative phrase

empty intersection between two which contain objects

4.6 86 100 EMW Medium0 3 6 Same route
5.2 80 100 EMW Medium0 7 5 Same route
5.5 100 100 KLS Compact0 4 1 Same route
5.6 100 100 KLS Compact0 4 5 Same route
5 100 100 KLS Sparse0 7 1 Same route
4.7 86 100 KXP Sparse0 6 7 Same route, one overshot
2.5 25 50 KXP Medium0 4 1 No orient, few landmarks
4.4 89 0 KXP Medium0 4 7 Missed intersection phrase

stop when the first fish hallway to your left appears

4.4 100 100 TJS Compact0 1 5 Unnecessary search
2.7 86 75 TJS Sparse0 3 4 No route description
4.9 100 100 TJS Medium0 2 7 Same route
5.4 100 100 WLH Sparse0 2 4 Same route
2.6 63 100 WLH Sparse0 4 2 Recovers from missed anaphora
3.9 78 100 WLH Medium0 2 6 Same route
4.4 82 82 Mean All

Table 6.8: Discrepancy analysis for sampled instructions from Corpus 1. The Rtg column
shows the post-hoc human rating for the instruction text. The Ppl and MAR show the mean
success rate for people and MARCO, respectively, following the instruction text. The Direct
column shows the identifier for the director, Map is which environment the route traversed,
S is the starting location and T is the target location.

In Corpus 1, the development corpus, there were only two instructions where people

succeeded much more often than MARCO (See Table 6.8). In both cases, MARCO was not

able to interpret a rare, complex phrase describing a location. In the first case, the empty

intersection between two which contain objects, MARCO misses that the

count two functions refers to other intersections, which each contain an object. In the

second, MARCO interprets appears too literally, as when the path is visible in the

distance, not waiting until it is immediately to the left. In each case, the view description

representation could represent the same concepts, and in fact, the instruction modeler
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accurately modeled other phrasings of the similar descriptions. On one route instruction

set in this sample, MARCO out-performed people by more than 25 percentage points. In

this case, there is a confusing part about halfway through the instructions, where some of

the human followers give up.

In Corpus 2, after running MARCO as developed using Corpus 1, we added

heuristics, language recognition code, and an attribute to the view description representation

to follow more instructions As Table 6.9 shows four instructions in this sample that the

amended MARCO follows with a success rate more than 25 percentage points greater than

people’s success rate. Without the post-Corpus 2 modifications to MARCO, MARCO follows

7 of the instructions less often, and 4 more often, for a total of a 9% success rate gain on

this sample (8% impact over all instructions in all corpora).

People succeeded on 13 of the sampled instructions much more often than MARCO

and 19 instructions that were followed at about the same success rate. However, since

MARCO fails consistently on some instructions that people follow extremely reliably,

MARCO’s mean success rate on this sample is 26 percentage points below people’s. Note

that the instructions MARCO failed on more often are mostly poorly rated, with a mean

rating of 3.7, vs 4.2 for instructions with approximately the same success rates, and 3.3 for

instructions where MARCO succeeds much more often.

Where people did better on Corpus 2 instructions, in six cases, MARCO did

not correctly model a rarely occurring phrase, split evenly between phrases describing

intersections, distances, and other spatial relations. In four cases, MARCO did not properly

model the discourse by combining information across utterances. Most of these combined

initial descriptions with elaborations. This sort of discourse reasoning is complex, but

necessary to achieve human performance levels. The remaining three cases are from an

un-modeled word, a mis-parsed sentence, and from instructions where people were able to

recover from a lack of initial orientation despite few landmarks in the route description.

Table 6.10 shows the discrepancy analysis for Corpus 3. For this corpus, MARCO
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was run on hand-corrected parses, with the Corpus 2 enhancements, but no modifications

after examining Corpus 3. Of the 36 instructions in the sample, MARCO and people succeed

within 25 percentage points on 12, exactly one-third. People succeeded more often on 16

of the sampled instructions and MARCO succeeded more often on the remaining 8. Here,

there is not a significant difference between the ratings among these groups.

Of the 16 instructions where people out-perform MARCO, six are from discourse

modeling errors or gaps, four are from phrase modeling errors or gaps, three are from

missing heuristics for under-specified routes, two are from missed words, and one each are

from a missed sentence and a missed anaphorical reference. For the discourse modeling

errors, four are missing elaboration of descriptions by separate utterances and two are

interpreting a redundant ‘stop’ command as an implicit Travelp.

Of the phrase modeling errors, two are complex descriptions of intersections and

the other is a complex locative expression. In three cases, people are able to follow an

under-specified route more often than MARCO, although in another three, MARCO is more

successful. In three cases (including one of the elaboration cases), MARCO interprets a

command more literally than people, by rejecting a L intersection as not matching the

description “dead-end” and by not matching a coat-rack near but not at the end of the

hall as “the end where there is a coat hanger.” Finally, in one case, MARCO

recognizes the reference “the other” as referring to an easel, but does not recognize that

it must find a different easel than the one in view.

6.10 Comparison to related work

MARCO is an embedded agent experiencing the world from a first person perspective, and

therefore sometimes needs to act to gain information about unseen parts of the world –

not just localize itself in a completely known world model. This differentiates the problem

from the “kidnapped robot problem” of localization to a known map in large-scale space

(Kaelbling et al., 1998) and from relating spatial language to a map (Levit and Roy, 2007) or
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other scene within the perceptual horizon (Roy, 2005; Skubic et al., 2004b; Yu and Ballard,

2004). However, to build a full system to follow arbitrary instructions, MARCO would need

to be extended to incorporate modules to represent, communicate, and reason about such

small-scale spatial relations and actions.

Tellex and Roy implement spatial routines that achieve the preconditions of

commands within the perceptual surround of a robot Tellex and Roy (2006, 2007), for

instance taking the spatial context into account to move to the next opening before executing

a “Go right” command. However, this work only accounts for single commands and

does not test when the implicit actions are necessary in the linguistic context of a stream of

instructions. We share the same general approach as Tellex and Roy – grounding a semantic

parse of spatial instructions into a hand-coded procedure that executes autonomously. We

have focused on the conditionals, complex commands, and series of commands across

large-scale space. Tellex and Roy have focused on executing single commands across local

small-scale space and spatial referring expression. Small-scale spatial relations are simply

implemented in MARCO, while spatial routines are a more principled model of small-scale

spatial relations, especially recognition.

6.10.1 Comparision to the Instruction-Based Learning project

MARCO has several significant differences from Bugmann and colleague’s Instruction-

Based Learning (IBL) project (See Section 2.4.4, Bugmann et al. (2004)). These ablation

experiments allow us to measure how often these differences affect successfully following

the route instructions. One difference is that the IBL agent did not combine information

across utterances. Overall, the pragmatic cues for implicit procedures that MARCO

recognizes, but the IBL agent does not, account for 15% of the successful runs of MARCO

on this corpus. The IBL agent also lacks the ability to reason about some of the local

topology and local metrical entities, according to the examples the authors list outside the

IBL agent’s capabilities (Bugmann et al., 2004). For MARCO, these capabilities together
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account for a 4% impact on these corpora. This is a conservative estimate of the differences

between MARCO and the IBL agent.

Bugmann et al. (2004) compared human and software instruction following

performance. This work compared the performance for a robot navigating through a

tabletop model environment given (1) an automated system translating the instructions from

speech into programs, (2) an automated system following programs translated by hand

from speech, and (3) people following the same instructions. People were able to reach

the destination on 83% of the instructions, the robot followed hand-translated programs on

63% of the routes, and 14% of the routes automatically translated into programs “would

actually lead the robot to the goal.”

Though our success rates are not directly comparable, since they start with raw

speech and control a physical robot, our automated success rates are much more similar

to our human rates. Their environment had fewer places, paths, and strong visual features

than ours, but had more diverse intersections in a realistic town street layout. Their basic

instruction-following method is similar to our work, but seems less robust to errors and

omissions in the instructions, due to the spatial and linguistic knowledge we model.

The work in this paper is more easily and less expensively replicated, since no

special robotic equipment or physical town model is needed. More importantly, our

subjects learned the environments from the same first-person perspective as the human and

software agents following the instructions and wrote instructions from memory. Bugmann’s

participants only saw an outside, panoramic perspective of the town model while directing.

This difference in how environments are learned and perceived between the directors and

followers leads to a class of errors not present in our approach. Specifically, directors may

refer to information unavailable to followers. Conversely, while our directors may make

errors while learning the map through navigation or recalling the map while directing, these

errors are cognitively interesting and prevalent in the real world. (See further discussion in

Chapter 3.)
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Like the IBL work, we find route instructions require an open set of procedures to

execute. For deployed systems, this implies several options for robust interaction. The

first option is to train its users to use a restricted set of actions, relations, and entities

with a limited vocabulary and grammar. This is viable for long-term users of systems,

especially professionals, such as urban search and rescue first responders and astronauts,

and motivated users such as the disabled. For a robot or computer service that must interact

with untrained users, one option is for the system to use dialogue actions to clarify or

rephrase utterances that are not understood (MacMahon, 2005).

MARCO does not yet model certain types of linguistic behaviors that are

important to instructions, such as verb aspect (Narayanan, 1997) or negative imperatives

(Vander Linden and Di Eugenio, 1996). Finally, systems could use learning techniques and

context information to learn the meanings of unknown words (Regier and Carlson, 2001;

Roy, 2005; Siskind, 1990, 1995; Yu and Ballard, 2004), and perhaps programming-by-

demonstration to learn new procedures (Jung et al., 2006; Nicolescu and Mataric̀, 2003).

6.11 Conclusions from MARCO experiments

Overall, one essential finding of this dissertation is the impact of implicit procedures

in following complex procedural instructions. Inferring implicit procedures is just as

important to the success of following spatial route instructions as recognizing and executing

each type of explicitly commanded basic open- and closed-loop turn and travel procedures.

Further, this dissertation proposes four kinds of cues to implicit procedures that will occur

in all kinds of instructions: syntactic cues, semantic cues, pragmatic cues, and exploratory

procedures. We measure how often each of these are necessary to follow spatial route

instructions, finding that syntactic and semantic cues have the highest impact, but pragmatic

and exploratory cues also are frequently crucial to infer the correct procedure from under-

specified instructions.

Our ablation experiment of different spatial skills and representations at the
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different levels of the Hybrid Spatial Semantic Hierarchy provides empirical support for the

theory. The experiments first show that all of the variety of spatial ontologies are necessary

for following spatial route instructions. Second, the HSSH theory predicts a hierarchy

of representations built up from lower levels. Our experiments find the impact of ablating

representation and reasoning at each level matches the predicted order of the spatial models,

providing empirical evidence that the model captures essential characteristics of human

spatial cognition.

The discrepancy analysis experiment shows several areas for improvement in

MARCO. First, MARCO needs to better combine information between utterances,

especially by modeling which utterances are elaborations of others. For instance,

people, but not MARCO, combine this information in “Position 3 is located in

the hallway of butterflies. It has wood floors all around it.” Sec-

ond, MARCO should handle more spatial references, perhaps by building on top of work

such as (Blisard et al., 2006; Klippel and Winter, 2005; Perzanowski et al., 2003; Skubic

et al., 2001, 2004b; Tellex and Roy, 2006). Third, MARCO should have a mechanism for

handling small errors in landmark descriptions, such as mis-characterizing an intersection,

mis-remembering an object, or approximating a spatial relation. Adding in a best-fit match

of the view description could also handle stochastic perception on a mobile robot, with

noisy sensors.
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5 0 25 BKW Medium1 3 5 Wrong turn direction
5.2 100 100 BKW Medium1 7 2 Same route
5.3 100 100 BKW Medium1 7 6 Same route
4 100 100 BLO Compact0 5 6 Same route
3.5 100 0 BLO Compact0 6 3 Imprecise: Dead end is T intersection
3 100 0 BLO Compact0 7 6 Missed attachment of distance

Go straight down the red brick floor two stops...

5.3 100 0 JJL Compact0 3 1 Missed implicit turn between travels
3.5 100 100 JJL Compact0 3 7 Same route
3 100 100 JJL Compact0 6 2 Same route
2.2 17 50 JNN Sparse0 3 2 Confusing route description
5 100 100 JNN Sparse0 3 4 Same route
3.7 67 100 JNN Sparse0 7 3 Same route, some overshot
4.3 67 75 JXF Compact1 2 5 Handles negation
4.8 100 75 JXF Compact1 7 3 Extra search w/o phrase
3.2 75 100 JXF Compact1 7 6 Same route, unknown word ‘crack’
3 100 0 LEN Compact1 2 4 Not modeling discourse elaboration
5 100 25 LEN Compact1 6 1 Not modeling discourse elaboration
3.5 100 0 LEN Compact1 7 6 Missed distance phrase

The last intersection before the T intersection

3.8 83 100 MJB Sparse1 3 4 Same route
6 100 0 MJB Sparse1 3 7 No model for locative phrase

on the square just past the first segment of grass.

5.2 100 100 MJB Sparse1 4 1 Same route
5 100 100 MXM Sparse0 3 4 Same route
1.8 40 75 MXM Sparse0 4 7 Underspecified, ambiguous route
1.9 14 0 MXM Sparse0 7 5 Underspecified, ambiguous route
4 100 100 MXP Medium0 4 3 Same route
3 100 0 MXP Medium0 4 5 No model of locative phrase

the first set of butterfly pictures, 2 facing each other

2.3 67 25 MXP Medium0 7 4 No orientation, no landmarks
5.5 50 0 PXL Medium0 2 3 No model of locative phrase

until where you hit a gray wall in one step

2 100 0 PXL Medium0 2 5 Mis-model distance phrase
one step away from the direction of the painting stand.

2.5 100 25 PXL Medium0 3 4 Mis-model intersection phrase
at a 3 street corssing in which one floor is designed ...

5 100 100 QNL Medium1 4 6 Same route
5.5 50 100 QNL Medium1 5 4 Reference to turn dir, distance error
5.7 100 100 QNL Medium1 6 7 Recovers from misinterpreting phrase
1.8 50 25 TXG Sparse1 3 1 Underspecified route, Position landmarks
4 100 50 TXG Sparse1 4 2 Named landmark as reference
3.3 100 100 TXG Sparse1 6 2 Same route

Table 6.9: Discrepancy analysis for sampled instructions from Corpus 2.
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3.5 75 0 ARL Sparse1 3 6 No route, imprecise: dead end is an L int.

3 100 0 ARL Sparse1 4 3 No route, discourse elaboration missed
3 100 0 ARL Sparse1 5 6 No route, imprecise: dead end is an L int.

1 100 0 JLM Compact0 1 2 Missed anaphora
You are at one easel. Find the other.

4 100 0 JLM Compact0 1 7 Discourse elaboration not modeled
the four way intersection that meets these specificiations.

4 100 100 JLM Compact0 4 2 Extra turn, travel ignored after termination
4 0 25 JTM Sparse0 3 4 Distance error
3 50 0 JTM Sparse0 4 1 Extra travel for redundant stop

move forward twice and stop

5 50 0 JTM Sparse0 6 5 Extra travel for Move once and stop.

2 50 75 JXL Compact1 2 4 Missing turn in instructions
2 100 100 JXL Compact1 4 5 Negative advice
3 50 0 JXL Compact1 7 2 Ambiguous sentence

until the end where there is a coat hanger. (not quite at end)

4 50 100 KAJ Compact1 4 2 Same route, some undershot
5.7 67 100 KAJ Compact1 4 6 Same route, some undershot
2 33 100 KAJ Compact1 7 5 Recovers from wrong turn direction
4.5 50 100 KXK Medium0 3 7 Same route, some make extra turn
3 75 100 KXK Medium0 7 4 Same route
2.5 25 0 KXK Medium0 7 6 Underspecified route
1 0 50 LCT Medium0 1 7 Underspecified route
4 50 0 LCT Medium0 4 5 Underspecified route
1 100 0 LCT Medium0 6 4 Missed discourse elaboration
4 50 100 MHH Sparse1 4 1 Same route, some undershoot
3.5 50 0 MHH Sparse1 4 5 Missed locative phrase

until the left right before the yellow

1 50 50 MHH Sparse1 7 4 Missing turns in instructions
2.7 33 0 RRE Sparse0 1 5 Incongruent, ambiguous route
1 0 75 RRE Sparse0 1 7 Incongruent, ambiguous route
2.5 50 0 RRE Sparse0 5 4 Incongruent, ambiguous route
2.5 50 0 SCD Sparse0 2 6 Missed intersection phrase

Walk to the back of this corridor.

5.5 100 100 SCD Sparse0 5 3 Same Route, reference between them

3 100 75 SCD Sparse0 7 3 Missed phrase
3 100 100 SMA Medium1 4 5 No route, only destination description
5 100 0 SMA Medium1 5 1 Missed intersection phrase

paths described as left and right are perpendicular

2.5 33 100 SMA Medium1 7 6 No route, only destination description
4.7 100 100 WAB Compact0 6 2 Same route
4.7 100 100 WAB Compact0 6 4 Same route
5 100 0 WAB Compact0 6 5 Discourse elaboration, Missed phrase

last set of blue tiles

Table 6.10: Discrepancy analysis for sampled instructions from Corpus 3.
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Chapter 7

Conclusions

This dissertation presents the language and task corpus methodology, which investigates

what is necessary to understand natural instructions in order to follow them as well as people

do. We applied the language and task corpus methodology to spatial route instructions,

tying together a novel instruction corpus, navigable environments, and human and artificial

agents performing complex linguistic and spatial reasoning tasks. We present a software

system, MARCO, that approaches human levels of performance in applying instruction

texts to navigate a described route through an unknown, large-scale space. Comparing

the performance of MARCO model variants, we find inferring implicit procedures, in

addition to executing explicitly commanded procedures, is essential to following poorly-

rated instructions and crucial even on about half of highly-rated instructions.

This dissertation shows the Hybrid Spatial Semantic Hierarchy (HSSH) applied

to both human-robot interaction and to perform complex navigation tasks (Sections 6.7

and 5.8). We show the HSSH hierarchy of spatial representations are both sufficient and

necessary to represent the procedures and structural landmarks in human natural language

route instructions (Sections 6.6.2 and 6.7). The representations of the HSSH allow MARCO

to represent the simple and complex spatial entities, relationships, and procedures needed

to execute route instructions. These experiments show that the lower levels of the HSSH
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(Causal and Local Metrical) have a very high impact in following people’s natural route

instructions, while the higher levels (Local Topological and Global Topological) are less

often crucial to following spatial route instructions. However, a Global Metrical map is not

needed to follow route instructions.

One result of this research is a software system, MARCO, that parses a route in-

struction text and follows the described route by executing navigation procedures. MARCO

connects the linguistic information in instructions texts with semantic representations –

imperative reactive procedures grounded in navigation actions and declarative structured

relations grounded in active perception. One application for MARCO is as a human-robot

interface for mobile robots, which would be useful in domains such as urban search and

rescue, astronaut EVA assistance, in-car navigation systems, and intelligent wheelchairs.

7.0.1 Future Work

MARCO does not yet match human performance, but captures the important spatial

representations and procedures for navigating through large-scale spaces. In the changes

from Corpus 1, the development corpus, to Corpus 2, only five out of 17 changes altered the

spatial or procedural representation; the remainder were linguistic, programming MARCO

to recognize different ways of expressing the same concepts.

In the discrepancy analysis (Section 6.9), nearly all the remaining differences in

performance between MARCO and people are primarily linguistic. 90 total instructions

were analyzed over the three corpora and only 31 had MARCO substantially under-

performing people, by > 25 percentage points. Conversely, on 13 route instructions,

MARCO succeeded substantially more often. Of the 31 where MARCO under-performed,

twelve reflect syntactic parsing or phrase modeling issues (which the representation could

handle, but the modeler could not), ten were discourse modeling challenges of combining

descriptions across utterances, and three unknown words not matched in WordNet. Only

four were spatial or procedural; most where people where able to recover from errors in the
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instructions, but MARCO was not. Much work remains on the linguistic front; less work

remains in modeling basic large-scale spatial relations and procedures.

The MARCO architecture presented here is a snapshot of an iterative development

process, not a turn-key system. Though MARCO is currently capable of following most

natural instructions in the development and test corpora as well as people do, some

issues remain. First, some unmet challenges remain in the initial development and testing

corpora, especially in the worse-rated instructions. Additional methods are necessary if the

developer wishes to equal human performance on all instructions, no matter how flawed or

how rare. MARCO would be more capable if extended with bootstrap learning; planning,

acting, and perceiving under uncertainty; interactive dialogue; and modeling other kinds of

actions and relations, especially in small-scale space.

We have shown the initial and post-analysis performance on a novel language

and task corpus, documenting the changes necessary for MARCO to approach human

performance on these new instructions. While novel challenges will become less frequent

as the development (or training) corpus widens, further unknown challenges may lurk in

unseen instructions from other directors or for related tasks.

Future work could apply the findings of this dissertation – how people produce and

follow route instructions – to the task of generating route instructions. Route instruction

generation systems, such as map kiosks, web, phone, and in-car services, can be improved.

By recognizing and carefully describing the more difficult segments in route instructions,

a system might generate route instruction texts which are more natural, more easy to

follow, and more reliable. Another application could check route instruction texts from

other sources for completeness, clarity, coherence, conciseness, and likelihood of success.

Additionally, the system could produce instructions matching the follower’s preferred style.
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7.1 Empirical examination of route instruction following

In the beginning of this dissertation, we proposed five questions that must be answered to

build an instruction-following system for any domain. We now can answer these questions

for spatial route instructions and suggest features which will generalize to other domains.

To discover how people describe spatial routes in navigation instructions, we

gathered a corpus of over 1500 route instructions from 30 directors. The instruction

elicitation procedure was designed such that directors produce natural instructions,

including natural errors and omissions, as in a naturalistic setting. Specifically, the directors

are recalling an environment each learned through first-person experience, planning the

route from memory, and writing free-form route instructions without limit on grammar,

vocabulary, or style.

To measure the quality of these instructions and get a performance standard, we

gave the instructions to 100 other people to follow. These human followers had to rely in the

information to navigate, because they did not have experience in these environments outside

of following the instructions. The route instructions from our directors varied substantially

in style, subjective quality, and success rate. People following the instructions reached the

intended destination on 25% to 95% of the trials, on the lowest- and highest-rated route

instructions respectively.

The major conceptual contribution of the MARCO architecture is deferred handling

of ambiguity, both for referring phrase resolution and for modeling instructions as a

sequence of procedures. Referring phrases vastly under-specify the configuration, even

combined with other knowledge explicit in the instructions or in unspoken shared common

heuristics – common-sense. Instructions likewise under-specify the sequence of procedures

a follower must execute to accomplish the described task. The performance of MARCO on

natural instructions shows the robustness and sufficiency of letting the environment resolve

both referring phrase and procedural ambiguity.

By selectively removing language, action, perception, and spatial reasoning
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abilities, the evaluation measured the importance of each ability for following spatial

route instructions. These experiments reveal the importance of various skills for correctly

following instructions. Even where MARCO does not equal human performance, the

relative drop-off in performance, the impact, reveals the role of the representation, behavior,

or heuristic in instruction following. From an engineering point of view, this is useful to

build systems to follow instructions, especially concentrating on high impact components.

From a scientific point of view, this is important as a computational model of route

instruction following at the level of information processing. The performance of the model

exposes individual differences between and within directors at the deep level of what is

required to follow the instructions, rather than what is mentioned in passing.
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Appendix A

Human Experiment Materials

A.1 Software configuration

To run the experiment, you need a licensed copy of WorldViz Vizard Virtual Reality

software Vizard (2006) installed. These experiments were run with Vizard 2.53g and Python

2.4 Python (2007). You will also need to install the Tkinter widget kit (Lundh, 1999).

Next, check the code out of the cvs repository:

stankiewiczlab.psy.utexas.edu:/Volumes/LabData/LabUsers/cvs

Check out the DirectionVizard module. This is an alias that will check out

the experiment control scripts, the shared libraries (NavigationModules) and media

(SharedMedia), and the subject information spreadsheet (SubjectInfo).
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Gender Env Pos Set Motion
Experiment 2

Male Grid 0 Discrete
Male Grid 1 Discrete
Male Jelly 0 Discrete
Male Jelly 1 Discrete
Male L 0 Discrete
Male L 1 Discrete

Female Grid 0 Discrete
Female Grid 1 Discrete
Female Jelly 0 Discrete
Female Jelly 1 Discrete
Female L 0 Discrete
Female L 1 Discrete

Experiment 3
Male Grid 0

Continuous
Male Grid 1 Continuous
Male Jelly 0 Continuous
Male Jelly 1 Continuous
Male L 0 Continuous
Male L 1 Continuous

Female Grid 0 Continuous
Female Grid 1 Continuous
Female Jelly 0 Continuous
Female Jelly 1 Continuous
Female L 0 Continuous
Female L 1 Continuous

Table A.1: Combinations for director experiments 2 (Corpus 2) and 3 (Corpus 3). ‘Grid’
refers the Compact map, ‘L’ to the Medium map, and ‘Jelly’ to the Sparse map.
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A.2 Running the experiment

First, get consent, add the subject’s demographic information to SubjectInfo/SubjectInfo.xls,

and brief the subject with the appropriate instructions.

Run Directions.py in Vizard. You should see this option screen in Figure A.1.

To run a director, enter the subject’s ID and the environment name in the ‘Message’

field, as I’ve done with MTM Grid. To use the alternate set of position names (“Position Set

1”), select the HMD option.

The SubjectID is the subjects initials, with X as a middle initial if the subject has

no middle name. If the SubjectID would be the same as another subject’s ID, change the

middle initial.

The codes for the three environments are Grid, Jelly, and L.

To use the joystick or arrow keys for Continuous Movement, enter the letter ‘C’ after

the environment code in the Message field. If you enter ‘D’ or no code, the experiment will

use the Discrete motion code.

Allow the director to get acclimatized to the interface in one environment, then press

the ‘escape key’ to exit the experiment, and restart the experiment in the trial environment.

The Option 2 check box can be used to skip the training phase for the director,

during acclimatization or if you need to restart the experiment for the director.

To run a follower, select Option 1 and enter into the Message field (1) the subject’s

id, (2) the string All for the environment name, and (3) the run number, for instance MTM

All 2. To use the alternate set of position names, select the HMD option. This will give

the follower one set of instructions for each route in all three environments, in a carefully

specified order.

If the Tracker is clicked, Vizard will save a snapshot of each view while

navigating.

After the subject finishes running, add their logs (in SubjectLogs/) to cvs and

check them in.
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A.3 Example Consent Form

Navigating through Complex Environments

You are invited to participate in a study of human navigation. This study is part

of an ongoing research program in the area of human spatial navigation carried out by

Brian Stankiewicz, Ph.D. Participation in this study is completely voluntary. If you decide

to participate, you will be one of approximately fifty people in the study. If you decide

to participate, the total length of the experiment is approximately one hour. For your

participation you will be receive course credit.

This experiment is a study in human spatial navigation and involves learning the

spatial layout and traveling though environments that will be displayed on a computer

screen. The study’s purpose is to inform us about how humans navigate through complex

environments. The risks in the study are no more than those encountered while working on

a computer. If you are experiencing any physical discomfort please inform the experimenter

immediately and the experimenter will try and alleviate any discomfort.

Any information that is obtained in connection with this study and that can

be identified with you, will remain confidential and will be disclosed only with your

permission. Often times in this line of research, subject’s initials are used to differentiate

between different subjects in a research paper. Your name will not be associated with these

initials in any paper or presentation.

Your decision to participate or to decide not to participate will not affect your

present or future relationship with The University of Texas at Austin.

If you have any questions about the study, please ask me. If you have any questions

later, you may call Professor Brian Stankiewicz at 512-232-9373. If you have any questions

or concerns about your treatment as a research participant in this study, all Professor Lisa

Leiden, Ph.D., Chair of The University of Texas at Austin Institutional Review Board for

the Protection of Human Subjects, 512-471-8871 or email: orsc@uts.cc.utexas.edu.

You will be given a copy of this consent form for your records.



You are making a decision whether or not to participate. Your signature below

indicates that you have read the information provided above and have decided to participate

in the study. If you later decide that you do not want to participate in the study, simply tell

me. You may discontinue your participation in this study at any time.

___________________________________________

Printed Name of Participant

_______________________________________ ________________________

Signature of Participant Date

____________________________________________ ________________________

Signature of Investigator Date



A.4 Director Guide

This study investigates how people give route instructions in an indoor environment. The

study will be conducted in an unfamiliar virtual building. During the experiment you will

participate in three basic tasks: (1) Exploration, (2) Navigation Quiz, and (3) Giving route

instructions.

A.4.1 Exploration

Before giving instructions you will explore a virtual building.

You will move through the building by making key presses. Using the number pad,

you will move forward by pressing the ‘8’ key, rotate right by pressing the ‘6’ key and rotate

left by pressing the ‘4’ key.

As you navigate through the building you will hear a series of ‘target locations’,

specified by a voice announcing the position number when you walk over the position. For

example, you might hear “Position 2” when you walk into an intersection. Your goal in this

task is to learn the building well enough to navigate and give route instructions between

these target locations.

You will have 120 forward movements to learn the building.

A.4.2 Navigation Quiz

After the building exploration phase, we will quiz how well you can navigate through the

environment. You will be placed at one of the target positions. Press the space bar to show

the environment. You can turn around to orient yourself, but you cannot move forward yet.

When you are ready to move, press the ‘0’ (zero) key on the numeric keypad.

The computer will then instruct you to move to a particular target location, e.g., “Go

to Position 4.” Your task is to move to that target location taking the shortest distance path.

The announcement sound for the target location is turned off. When you have done your

best to reach the goal, press the space bar.



If you were not at the correct target, the screen will turn red. If you reached the

target location by a longer than necessary path, the screen will turn blue. If you go to the

target location by taking a short path, the screen will turn green. You will then be transported

to a new location for another trial. Press the space bar again to show the environment.

When you have shown you can efficiently navigate through the environment (i.e.,

take the shortest path for seven straight test trials), you will move on to the next phase of the

experiment. If after 25 trials, you still need more experience, you will participate in another

Exploration phase followed by another Navigation Quiz.

A.4.3 Giving Route Instructions

After you’ve passed the Navigation Quiz, you will be asked to give route instructions. As

in the Navigation Quiz, you will be placed at one of the target positions and be allowed to

turn around to orient yourself. Press the space bar again to show the environment.

The computer will tell you which target location you are current at in the

environment (e.g., “Position 2”) and tell you to “Turn around,” so you can see the position.

When you have re-oriented yourself and are ready to give instructions press the ‘0’ key on

the numeric keypad. If you recognize or remember the position, you do not need to turn

around, and can press ‘0’ immediately. Until you press ‘0’, you can turn but not move

forward.

A text entry window will appear asking for route instructions from the current

location to another target location, e.g., “Enter directions to get from Position 2 to Position

6.” These instructions will be given to another subject who does not know this environment,

but has experience in a practice environment. Your task is to write instructions that will

reliably direct this subject from the current position to the specified target location.

Use complete sentences and end them with periods. Each set of directions should

stand alone. The followers will receive your and others’ directions in a mixed order. Do

your best if you cannot give complete or exact instructions.



The other people following your instructions will be placed at the starting position

facing any one of the four directions. The direction the follower will start facing is not

related to the directions you face while orienting yourself at the location.

After finishing the instructions, you will be asked to move to that target location

and press the space bar when you are done. After moving, you will answer two questions:

(1) How certain are you that you’ve reached the target location? (2) How good do you think

your instructions were? You will alternate between giving instructions, navigating through

the environment, and rating your performance until all positions have been used.

To familiarize you with the experiment you will run through a practice environment.

Use this time to become comfortable with how to move through the environment and how

to give instructions. If you have any questions, please ask at any time.



A.5 Director Key Meanings

8 Move Forward

4 Turn Left

6 Turn Right

0 Done with Turning Around

space Show Environment / At Destination

t Repeat the current target position

w which hotspot



A.6 Instruction Follower Guide

This study investigates how people follow route instructions in an indoor environment.

We are interested in finding out what makes a good set of route instructions and how

people follow instructions, even when the instructions contain mistakes. The study will

be conducted in a virtual building. During the experiment you will read and follow sets of

route instructions that guide you through the building.

A.6.1 Movement Controls

You will move through the building by making key presses. Using the number pad, you will

move forward by pressing the ‘8’ key, rotate right by pressing the ‘6’ key and rotate left by

pressing the ‘4’ key.

A.6.2 Following Route Instructions

You will follow sets of route instructions that someone else gave. These instructions vary in

how and how well they describe the route and destination, so just try to follow each to the

best of your ability. The computer will display a set of instructions on the computer screen

in a popup window. Read through the instructions and click OK when you are ready. Then,

you will be placed in the environment at the starting position.

Some of the instructions may have mistakes or even be blank. Try your best to

get to the destination, even if the instructions are incomplete or there are small mistakes

(for instance, it says “left” when there is only a right). You may not be facing the same

direction as the direction giver was when the instructions were written. You can reread the

instructions while you are moving by pressing the ‘d’ (instructions) key. When you have

done your best to navigate to the end position, press the space bar.

After moving, you will answer two questions on popup windows: (1) How certain

are you that you’ve reached the target location? (2) How good do you think the instructions

were? After you’ve answered both questions, the screen will be blank again. When you are



ready for the next set of instructions, press the space bar again. You can take a break any

time you like while the screen is blank between each direction set.

To familiarize you with the experiment you will be run in a set of “practice”

sessions. You will be following instructions in a small environment. The purpose of these

practice sessions is to get you familiar with how to move through the environment and how

to give and follow instructions. If you have any questions, please ask at any time. Once you

are comfortable with the experiment, we will start the full set, which is about 120 sets of

instructions.



A.7 Follower Key Meanings

8 Move Forward

4 Turn Left

6 Turn Right

space Next Directions / At Destination

d Reshow the directions while moving



x for Followers (Directors)

x to skip Training

x to take snapshots

x for Position Group 1 (0)

x for Fullscreen Display

SubjID Env [subjNum][startNum]
Required: Optional:

Figure A.1: Vizard Experiment Starting Dialog



Appendix B

MARCO Ablation Options

This section describes the ablation options used to configure MARCO. Most options are

Boolean on/off switches. This section notes the name of each option, a description of it,

examples of usage scenarios, and any fallback default behavior.

B.1 Options: Fundamentals

Fundamental abilities: Skills that are explicitly used in instructions, e.g. counting, traveling

until.

Distance Count Impact: 48% Move to distance count. Move forward to the

second alley. Move forward once.

Face Description Impact: 75% Turn until a view description is met. Face the chair.

With your back to the blank wall, ....

Perspective Taking Impact: 67% Project a different perspective from current view. to

your left is a chair. Go to the right of the stand

Travel Until Impact: 59% Travel until the described view. Go to the end of this

hallway. When you get to the red brick hall, ...
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Turn Direction Impact: 15% Turn towards a specified direction. Turn left. Take a

right.

Use Find Impact: 17% Use the find behavior. it’s at the corner of the yellow

floor and the grassy floor. Find the blue road.

Use Follow Impact: 2% Use the follow behavior. Follow the alley around ....

go all the way down the winding hall

View Memory Impact: 81% Remember views even after turning or traveling. go down

toward the longer end of the hallway. Going away from the coat

hanger

B.2 Options: Conditionals

Conditional abilities: Skills that are explicit in instructions, but with conditionals.

Declare Goal Cond Impact: 18% Move to satisfy condition on DeclareGoal. when you

come to the intersection with ..., you are at position 6 once in

the L you’re in position 5.

Distance Before Impact: 2% Move to distance targets of X before Y. Stop at last

intersection before the bench one intersection before the coat

rack will be 3

Distance Past Impact: 3% Move to distance targets of X past Y. One segment past

the chair is Position 3. ...until two sections past the lamp

Face Away Impact: 1% Face the away condition of Turn. Go away from the

clothes hanger. Face away from the dead end.

Face Explicit Impact: 11% Face the explicit argument of Face. Face the wall ....

face the easel and dark gray stone floor.



Face Onto Impact: 3% Face the onto condition of Turn. take a left onto the

blue path. turn right onto the stone

Face Purpose Impact: 7% Face the purpose condition of Turn. turn to face the

long red hallway. turn left so that you face another bench

Face Toward Impact: 1% Face the toward condition of Travel. go towards the red

brick floor. move toward the bench.

Face Travel Args Impact: 8% Face Travel arguments. take the yellow path to

the wood path intersection Go down the short hall

Face View Impact: 3% Face a stanfalone description of a view. you should have

butterfly pictures in front of you you see a little bit of yellow

on the floor

Stop Cond Impact: 4% Intrepret ’stop when COND’ as ’go until COND.’ stop

at the first intersection stop when the first fish hallway to

your left appears

Travel Location Impact: 1% Move to syntactically marked precondition location of a

Travel. at the wood path intersection, take the wood path from

the easel, move one block

Travel Past Impact: 1% Travel past conditions. move one place past the brick

floor tiling pass the easle that is sitting in the hall

Travel Precond Impact: 8% Turn to syntactically marked precondition of a Travel.

facing the easel, go forward. with your back to the wall move

along the green ...

Turn Location Impact: 7% Move to syntactically marked precondition location of

a Turn. once you hit the dining chair, turn right At the brick



hallway, turn towards ...

Turn Postcond Impact: 2% Travel to syntactically marked postcondition pose of

Turn. take a right to the end of the hall take a right onto the

green path all the way to the end of the hall

Turn Precond Impact: 2% Turn to precondition precondition pose of a Turn. With your

back facing the wall turn right facing the long aisle turn left

B.3 Options: Heuristics

Heuristics Hints: Strategies that enforce simple implicit inferences, e.g. face an open path

before traveling.

Face Distance Impact: 4% Face at least one of the distance units (e.g. intersections,

streets, movements) of Travels.

Face Past Impact: 2% Face objects the Travel will pass.

Face Until Impact: 33% Face the termination condition of Travels.

Face Until Post Dist Impact: 2% Re-face the termination condition of Travels after going

distance, to catch over-estimates.

Look Ahead For Travel Term Impact: 6% Look ahead in instuctions for termination for

travel actions.

Look Ahead For Travel Term Desc Impact: 4% Look ahead in instuctions for termina-

tion for travel actions in descriptions. Go foward. Look for butterflies

Walk towards the brick hallway. At one end of the brick hallway,

there is a chair.



Look Ahead For Travel Term Loc Impact: 2% Look ahead in instuctions for termination

for travel actions in location phrases. go towards the easle but stop at

the closest concrete square closest to the easle take a left onto

the pink path. at the next intersection, ...

Propagate Context Info Impact: 1% Propagate the context information to embedded

compound action specifications.

Reverse Turn Impact: 3% If last action was a turn, but now facing a wall, turn around.

Travel Between Turns Impact: 1% Make a travel between consecutive turns. take a

left then a right. left. left.

Travel On Final Turn Impact: 4% Make a final travel forward when the last action was

a turn. with your back to the wall turn left and move one block.

turn right. go down the butterfly walled/blue floored hallway.

make a left at the hatrack.

Travel On Final View Impact: 3% Make a final travel forward when the last ac-

tion was a view. turn left and you should see a barstool. this is

position 7. You should be able to see the grassy hall to your

right. This is Position 1.

Travel To Next Impact: 5% Travel to next match when last action was turn. ...take a

left. Go down to the corner. go until hall ends. take a left.

go until hall ends.

Turn Between Travels Impact: 1% Make a turn between consecutive travels. Go

forward down the hall until a hall opens to your left. Go forward

one segment. yellow hall to wooden hall. then one space forward.

Turn Explicit Impact: 1% Turn towards an explicitly mentioned direction before checking

condition.



Turn Post Reset Cache Impact: 1% Reset anaphora cache after interpreting turn.

Turn Pre Reset Cache Impact: 1% Reset anaphora cache before interpreting turn.

Turn Term Reset Cache Impact: 1% Reset anaphora cache before interpreting turn

termination.

Turn Toward Path Impact: 2% If no explicit turn direction, turn towards a visible path

instead of a wall.

B.4 Options: Recoveries

Error recovery: Strategies that attempt to recover from a failed action.

Check After Turn Find Impact: 1% Check the until condition of the find between the

turn and travel.

Find Face Impact: 16% Find when Face does not find a satisfying pose visible from this

place.

Find Face Travel Impact: 2% Use Find as fallback for Face even if not ImplicitTravel

Travel To Distant View Impact: 2% Travel when Facing a satisfying pose distantly visible

from this place. at the next corner, take a right at the lamp. go

forward. then left all the way down the blue hall

B.5 Options: Tweaks

Tweaks: parameters that have small effects on how a behavior is executed.

Declare Goal For Position Impact: 1% DeclareGoal whenever a position is mentioned.

Travel Empty Impact: 1% Travel forward without arguments.

Travel No Termination Impact: 2% Travel forward without termination conditions.



B.6 Options: Linguistics

Linguistic parameters: parameters that affect the interpretation of text.

Declare Goal Idiom Impact: 8% Treat ’This is (it|Position X) as idiom. this is 6.

Position 6 is the next intersection as you follow the red-brick

hallway.

Face Declaratives Impact: 26% Enforce declaratives with Face statements. to your

right you should see an alley with grey carpet. there is a bench

there.

Fuzzy Meanings Impact: 7% Use broader definitions of concepts. chair gray

Raw Reference Resolution Impact: 4% Fill a reference phrase or pronoun with the

corresponding noun phrase, even if not limited by syntax. Face toward

the hatrack. Walk the one segment to it. there should be blue

carpet on the first alley. walk to that and turn right.

Recognize Across Impact: 3% Recognize across phrases. move across one yellow

panel. turn right across 2 black stone floors.

Recognize Arrive Frame Impact: 2% Handle arrive frames as travel until. turn right

when you reach the end. Once you get to the floral carpeted hallway,

look for the easle.

Recognize Complex Expressions Impact: 6% Recognize complex expressions. Compo-

nent options: Recognize Fictive Turn Intersections, Recognize Struct Frame, Rec-

ognize Pass Frame, Recognize Dir Turn, Recognize Distal Determiners, Recognize

Last, Recognize Negative, Recognize Negative Compound, Recognize Standalone

Arrive, Recognize Struct Agent Frame, Recognize Until Loc Dist, Recognize Until

View



Recognize Count Impact: 5% Recognize counts in noun phrases. walk past two

chairs and to the lamp. This empty intersection is Position 7.

Recognize Dir Turn Impact: 3% Handle e.g.’(until) the last right.’ there should be

only once choice, to turn right. this left turn should have a

yellow floor.

Recognize Distal Determiners Impact: 2% Recognize determiners like ’that’ and ’other’

as marking distant entities. go down the red hall until you see the

blue hall. at that intersection stop. then turn left until you

see another bench and move to it.

Recognize Fictive Turn Intersections Impact: 2% Handle ’where you (can) turn|travel

to the right...’ move forward until you can turn left again. go

straight until you can either go left or towards a dead end.

Recognize Last Impact: 4% Recognize last as order adj. until you come to the

last empty intersection before the easle Follow this down untill

you come to the second to last left.

Recognize Negative Impact: 0% Recognize negative phrases. when there is not a

wall to your left, go straight. ...toward the pictures of not-butterflies

Recognize Negative Compound Impact: 1% Recognize negative compounds phrases.

not a bench or a stool.

Recognize Noun Noun Compound Impact: 2% Recognize noun noun-compounds. down

the long butterfly hallway, with blue walls. Face the pink-flowered

carpet hall

Recognize Pathdir Impact: 2% Handle ’Only one way to go.’ only one way to go

face the direction with the easel.



Recognize Standalone Arrive Impact: 2% Handle sentences like ’You will hit an l. the

very first section you come to, you will be at 5 you will hit an

intersection with black stone floors.

Recognize Struct Agent Frame Impact: 2% Handle sentences like ’You will have to

take a right. ’ You will have to take a right onto a floor that is

black.

Recognize Struct Frame Impact: 2% Handle frames with structural descriptions as verbs,

like ’where the paths cross.’. when road ends, go right. then a left

down the red hall until it intersects with the rose hall

Recognize Structural Impact: 3% Handle structural adjectives, especially long and short.

turn until you face the short end of the hallway with blue flooring.

go down the longer part of the hall with blue rectangles.

Recognize Take Turn Frame Impact: 10% Handle ’Take ((the nth)|a) (right|left) [turn].’

make a left. take your second right.

Recognize Until Loc Dist Impact: 2% Handle Travel UNTIL LOC DIST.

Recognize Until View Impact: 2% Handle Turn until VIEW. turn until you face

the hallwya with the green floor from one turn until you see a

corner of blue carpet in a side alley.

Reference Resolution Impact: 2% Fill a reference phrase or pronoun with the correspond-

ing noun phrase. you should see an alley to your left. take it.

you will be looking for a pink flowered path. When you reach this

path, ...

Spellcheck Impact: 2% Do spellchecking and replace unknown words with known.



B.7 Options: Implicits

.

Implicit Actions Impact: 61% Infer and perform implicit procedures. Component

options: Implicit Travel, Implicit Turn

Implicit Exploration Impact: 22% Active resolution of referring phrases. Component

options: Travel To Distant View, Find Face, Recognize Structural

Implicit Pragmatic Impact: 15% Discourse and idiomatic cues. Component options:

Declare Goal Idiom, Recognize Pathdir, Look Ahead For Travel Term, Travel On

Final Turn, Travel Between Turns, Turn Between Travels, Travel To Next, Travel On

Final View, Propagate Context Info

Implicit Pragmatic Cross Utterance Impact: 9% Pragmatics across utterances. Compo-

nent options: Look Ahead For Travel Term, Travel On Final Turn, Travel Between

Turns, Turn Between Travels, Travel To Next, Travel On Final View, Propagate

Context Info

Implicit Pragmatic Per Utterance Impact: 8% Pragmatics per utterance. Component

options: Declare Goal Idiom, Recognize Pathdir

Implicit Semantic Impact: 51% Complex action frames. Component options: Recognize

Take Turn Frame, Recognize Arrive Frame, Face Travel Args, Face Distance, Face

Until, Face Past, Turn Toward Path

Implicit Syntactic Impact: 37% Prepositional phrase markings. Component options: Face

Purpose, Travel Precond, Turn Precond, Turn Postcond, Declare Goal Cond, Turn

Location, Travel Location, Stop Cond, Declare Goal For Position

Implicit Travel Impact: 36% Infer and perform implicit travels.

Implicit Turn Impact: 50% Infer and perform implicit turns.



B.8 Options: Landmarks

Recognize different sorts of landmarks.

Appearance Landmarks Impact: 35% Recognizing simple perceptual attributes, e.g.

color, texture. take one movement towards the blue corridor Go to

the hallway that has the blue tiles and the orange butterflies

on the wall.

Causal Landmarks Impact: 47% Recognizing simple structural landmarks, e.g. paths,

walls, positions. with your back to the wall turn right. take a

left onto the black path

Intersection Landmarks Impact: 25% Recognizing intersection structural landmarks,

e.g. dead ends, T intersections, corners. the dead end is position 4. at

the first intersection after the lamp,

Object Landmarks Impact: 24% Recognizing distinct objects, e.g. furniture and pictures.

The intersection with the chair is Position 4. Go towards the

coat rack and take a left at the coat rack.

Structural Landmarks Impact: 58% Recognizing simple structural landmarks. Compo-

nent options: Causal Landmarks, Intersection Landmarks

B.9 Options: HSSH

Divide methods by what level of the SSH they require.

Causal Impact: 98% All Causal actions. Component options: Distance Count, Turn

Direction, Travel Until, Face Description, Object Landmarks, Causal Landmarks

Closed Loop Causal Impact: 89% Closed loop causal control laws. Component options:

Travel Until, Face Description, Object Landmarks



Local Metrical Impact: 76% Local Metrical. Component options: Travel To Distant

View, View Memory, Perspective Taking, Face Distance

Local Topological Impact: 55% Local Topological. Component options: Recognize

Structural, Intersection Landmarks, Turn Toward Path, Reverse Turn, Look Ahead

For Travel Term, Recognize Count, Recognize Dir Turn, Recognize Pathdir, Face

Until, Face Until Post Dist

Open Loop Causal Impact: 54% Open loop causal control laws. Component options:

Distance Count, Turn Direction

Topological Impact: 25% Topological. Component options: Use Follow, Use Find, Travel

To Next, Travel Between Turns, Turn Between Travels, Travel On Final Turn

B.10 Options: Comparison

Comparisons to different agents or development baselines.

Corpus2 Options Impact: 8% Options added when examining corpus 2. Component

options: Declare Goal For Position, Propagate Context Info, Raw Reference Res-

olution, Recognize Across, Recognize Count, Recognize Dir Turn, Recognize Distal

Determiners, Recognize Last, Recognize Negative, Recognize Negative Compound,

Recognize Standalone Arrive, Recognize Struct Agent Frame, Recognize Until Loc

Dist, Recognize Until View, Reverse Turn, Spellcheck, Travel On Final View

IBL Options Impact: 4% Options that distinguish Marco from the IBL agent. Component

options: Reverse Turn, Turn Toward Path, Face Distance, Implicit Pragmatic



Appendix C

Glossary and Language Model

C.1 Glossary

C.1.1 Route Instruction Analysis Vocabulary

Route Instruction Units

Utterance Sentence or fragment of natural language text.

Command An explicit imperative utterance.

Instructions Linguistic or pictoral description of a procedure of explicit commands and

descriptive utterances, describing what the follower agent should do.

Route Instruction Navigation task-specific description of where and how the follower

agent should move.

Procedural Specification A representation of the constraints that route instructions place

on a reactive procedure, consisting of the parameters, constraints, and conditions

governing the activation of discrete Causal actions. Equivalent to tasks at the

sequencing layer of multi-tiered architectures. Task-dependent representation of how

the follower agent achieves an instruction, grounded in the follower’s capabilities.
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C.1.2 Abbreviations

POMDP Partially Observable Markov Decision Process

SSH Spatial Semantic Hierarchy

HSSH Hybrid Spatial Semantic Hierarchy

VRML Virtual Reality Markup Language

C.2 Route Instruction Grammar

C.2.1 Verbs

TURN Change in orientation or switch in paths: turn, take (a left), make (a

right turn), go (left)

ORIENT Change in rotation relative to an external frame of reference. face, put (your

back against the wall), stand (so that ...)

TRAVEL Move between places: walk, go, move, follow, take (the path)

STOP Cease motion: stop

PASS Move past an entity: pass

ARRIVE Move until a description: get to, meet, come to, hit, enter

FIND Undirected search: find, look for, go (to where ...)

IS Be verb: is, match,are

HAS Possession verb: contain,has

SEE Local observation verb: see,look

LOC Location verb: standing,located



STRUCT Describe environment structure by movement metaphor: intersect, meet,

brings, hits, runs into

C.2.2 Nouns

PLACE Place name or description. position 2, a spot with a chair

PATH Way to travel between places. hallway, road, path

STRUCT Local place topology. end of the hall, corner, ‘T’ intersection

REGION Large-scale space region. the Eiffel Tower area

DIST_UNIT Units of distance. segments, movements, times, PATH, STRUCT

SIDE A direction or directions. the sides, direction, way, the back

OBJ Discrete localized object. furniture, wall, picture

AGENT Agent that can act in the world. you, yourself, the follower

VIEW Description of view. to <where you see a chair>, from <this perspective>

REF Reference: it, that, there

VIEWDESC Description of the expected view: PATH | OBJ | STRUCT | REGION | VIEW |

DESC | REF



C.2.3 Turn Command Arguments

Phrase Arg. Action Model

Pre

COND DESC Facep(faced:Desc)

LOC VIEWD Travelp(until:ViewD)

While

DIR DIR Turnp(direction:Dir)

" SIDE Turnp(direction:Dir)

Post

PURPOSE DESC Facep(faced:Desc)

TOWARD VIEWD Facep(faced:ViewD)

AWAY VIEWD Facep(faced:ViewD)

ONTO PATH Facep(faced:Path)

COND After this condition holds, turn evaluate other arguments: <with your back to

the wall>; <facing the blue path>

LOC Where to turn: left <at the coat rack>, take a right <two intersections

after the lamp>

DIR Turn direction relative to agent: <left>, <right>, <around>

SIDE Facing so that the referent is on the named side: <to your left>

PURPOSE Turn so that this condition holds: place <your back to the wall>;

turn <so that the wall is on your left>; turn <to locate the easel>

TOWARD Facing the referent: face <the hat rack>, <toward the longer path>

AWAY Facing away from the referent: away from the rose path intersection



ONTO Turn onto this path: <into the yellow tiled hall>, <onto the red

brick>

C.2.4 Travel Command Arguments

Phrase Arg. Action Model

Pre

ALONG PATH Facep(faced:ViewD)

COND DESC Facep(faced:Desc)

LOC VIEWD Travelp(until:ViewD)

TOWARD VIEWD Facep(faced:ViewD)

AWAY VIEWD Facep(faced:ViewD)

DIR DIR Turnp(direction:Dir)

" SIDE Turnp(direction:Dir)

While

PAST VIEWD Travelp(past:ViewD)

DIST DIST Travelp(dist:Dist)

Post

UNTIL VIEWD Travelp(until:ViewD)

ALONG Travel on this path: along the grass carpet, down the hall with

the yellow stone floors, take it

TOWARD Direction on a path toward an allocentric entity: toward the hat rack, in

the direction of the red floor

AWAY Direction on a path to face the referent: away from the bench

DIR Travel Direction on a path relative to agent: straight, left, right



PAST Move past entity on this path, in the direction of the referent but further than it: past

the stool, passing the lamp, beyond that

QUAL-DIST Qualitative description of distance: all of the way down, far, very

end

QUANT-DIST COUNT (DIST-UNIT) Quantitative description of distance: one movement,

two alleys away from, about five intersections, first left

UNTIL Continue travel until condition: stop at the easel, to the lamp, until

you reach the pink walkway

C.2.5 Description Utterance Arguments

DESC

• LOC* (there | where | COND )* OBJ | VIEW | STRUCT | LOC | POSITION V/Is

(Appear | Side | Loc)

• (there | where) V/IS OBJ | VIEW | STRUCT | LOC

• PATH V/STRUCT PATH

• (PATH | STRUCT | LOC | REF) V/HAS (PATH | STRUCT | LOC | REF)

• LOC* ARRIVE

COND Conditional for (ARRIVE | VIEW | ORIENT | LOC | DESC) when ..., once

..., if ...

ARRIVE Description of termination of motion you get to the ..., you come

to an intersection with ...



C.2.6 Adjectives

APPEAR Appearance, floor color and texture, pictures: blue, green octagon, fish

on the wall, wooden floored

STRUCTURAL Length and shape of path: long, short

STRUCT-TYPE Local topology and geometry of environment structure: four-way, ’T’

C.2.7 Adjectival Phrases

ON : P/ON PATH Entity is on this path: in this hall, on the long path

BETWEEN : P/BETWEEN VIEWDESC VIEWDESC Entity is between two other entities:

between the chair and the hatrack, between the two intersections

containing furniture

SIDE : P/SIDE DIR VIEWDESC? Location of the object relative to another entity in

front of the easel, to your left, behind you, on one side

AGAINST : P/AGAINST VIEWDESC Object is in contact with or adjacent to the referent.

to the wall, against the chair

LOC : P/LOC VIEWDESC Location of object: by the coat rack, in the corner,

at the end of the hall

DETAIL : (P/DETAIL | V/HAS) OBJ Descriptive detail: with the blue floor,

containing an easel

PART : P/PART OBJ Composition of object: end <of the hall>, intersection

<of this and the blue floor>



C.3 Interfaces

C.3.1 Simulation

Inputs and outputs

Agent Actions : travela, turn-lefta, turn-righta, declare-goala

Test Actions : teleporta, set-goala

Observations : A variable-length list of tuples, representing the view to the perceptual

horizon (end of the hall). See description below.

Observation Type

The observation is a discrete symbolic representation of each component of the view visible

to the end of the hallway in front. The list is composed of an arbitrary number of 6

item tuples, 〈left, middle, right, f-left, front, f-right〉. This represents the view of a place, its

peripheral hallways, and the floor and walls of the hallway segment immediately in front.

Positions left, right, and front describe the floor texture, if any, and are drawn

from the set {Wall ,Rose,Wood ,Grass,Cement , BlueTile,Brick ,Stone,Honeycomb}.

Positions f-left and f-right describe the corridor walls, if visible, and are drawn from the set

{End ,Butterfly ,Fish,Eiffel}. Position front describes any object visible within the inter-

section and is drawn from the set {Chair ,Sofa,Barstool , Hatrack ,Easel ,Lamp,Empty}.

See Figures 6.1 and 6.2 for examples.



C.4 Representation of Procedural Specifications

See Section 5.4.2 for more explanation.

Common parameters

precondition Pre-condition to achieve prior to executing procedure

postcondition Post-condition to achieve while executing procedure

location Where to perform the procedure. A locative pre-condition.

Procedure-specific parameters

Verifyp

Description View description to verify.

Travelp

along Description of the path to travel along. A topological pre- / during-

condition.

distance Estimate of distance to travel. May be discrete (2nd left),

continuous (three meters), or qualitative (all the way down). An

internal during- / post-condition.

face View description of the view in front of the traveler at the beginning of

travel. A perceptual pre-condition.

past View description to achieve during forward motion. A locative during-

condition.

until View description of the travel destination. A locative post-condition.

Turnp

direction Relative direction to turn

Facep



faced View description to face at the end of the procedure. A perceptual post-

condition.

DeclareGoalp

Goal Name of goal to assert.

C.5 Representation of View Description

See Section 5.4.1 for more explanation.

type Kind of entity. Currently implemented types:

Path Traversal linear structure an agent can travela along.

Pathdir Part of a path proceeding in one direction.

Segment Length of path between two places.

Obj Three-dimensional object located at a point, such as furniture, pictures, and

walls.

Struct Structural landmark such an intersection or block.

Region Large-scale region of space.

value Token representing an instance of type recognizable to the view description matching

code.

dist Distance within the view, if known. Currently a string representing a distance range in

the view, e.g. ’0’ is immediate, ’1’ is one intersection away, and ’1:’ is distal.

Relations between entities Between ternary relation that the subject is located between

two other reference objects, i.e. if the follower is the subject, the reference

objects will be on opposites sides of her.



Detail just asserts an unspecified connection between two objects, which may be co-

location (e.g. the end with the easel) or part (e.g. the intersection

with the brown hallway.

Loc represents that the subject is co-located with (or at or in) the reference object.

On represents that the subject is topologically on a reference entity, a path.

Part represents that the entity is part of the other entity, though which is the part

may not be apparent from the surface form.
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