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Design problems involving radiant enclosures are encountered in many different 

industrial applications.  Examples include the design of annealing furnaces used in 

materials processing, ovens that bake food or cure coated surfaces, and rapid-thermal-

processing chambers used to manufacture semiconductor wafers.   

In each of these applications, the objective of the design problems is to find the 

enclosure geometry and heater settings that produce the desired temperature and heat flux 

distribution over the product.  Traditionally, this has been done using a forward “trial-

and-error” design methodology, which is a time-consuming process that results in a 

solution of limited quality.  More recently, inverse design methodologies have been 

developed that require far less time than the forward methodology, and produce solutions 
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that better satisfy the desired conditions over the product surface.  It is difficult to enforce 

design constraints, however, which often limits the usefulness and applicability of 

solutions obtained by this approach. 

This dissertation describes several optimization methodologies that can be used to 

solve several types radiant enclosure design problems.  In this approach, an objective 

function is first defined that quantifies the “goodness” of a particular design, in such a 

way that its minimum corresponds with the ideal design outcome.  The objective function 

is dependent on a set of design parameters that control the enclosure configuration.  Once 

this is done, the optimal set of design parameters is found by minimizing the objective 

function through nonlinear programming.  Far less design time is required compared to 

the forward methodology, and the final solution is near-optimal.  Furthermore, unlike the 

inverse methodology, it is possible to implement constraints by restricting the domain of 

the design parameters, which ensures that the solution can be easily implemented in a 

practical setting.  Design methodologies are presented for design the heater settings and 

geometry of both diffuse-walled enclosures and enclosures containing surfaces with 

directionally dependent properties, and for solving the heater settings in problems 

involving transient and multimode heat transfer effects. 
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Chapter 1: 
Introduction 
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1.1 Motivation 

The design of radiant enclosures is a commonly encountered problem in the area of 

thermal engineering.  In many cases, the radiant enclosure is part of a fabrication process 

where the radiant enclosure acts to thermally treat a product.  Such enclosures are found 

in many different industrial settings; examples include baking ovens in the food industry, 

rapid thermal processing chambers used in microchip fabrication, annealing furnaces 

used to heat treat steel, and paint-drying chambers on automotive assembly lines. 

 The radiant enclosures used in these applications usually conform to a generic 

type, as shown in Fig. 1.1.  The heaters, located on a heater surface, are used to heat the 

products that are placed on a design surface.  The objective of the design problem, then, 

is to find the enclosure geometry and heat flux distribution over the heater surface that 

produces the desired temperature and heat flux distribution over the design surface.  (In 

most cases, a uniform temperature and heat flux distribution is desired over the design 

surface in order to achieve product homogeneity.)  These processes are also often time 

dependent; for example, a commonly encountered problem is to determine the proper 

transient heater settings that will heat the product according to a desired temperature 

history.  The main difficulty when designing these enclosures is that, even though both 

the desired temperature and heat flux distributions over the design surface are known, for 

the problem to be mathematically well posed only one thermal boundary condition can be 

specified over each surface.  In this sense, the problem (like most design problems) is an 

inverse problem. 
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 Heater Surface 

qs = ?qs = ? 

 

 

 

 

 

 

Design Surface 
qs(x), T(x) are known 

qs = ?
qs = ?qs = ?

qs = ? 

x 

Figure 1.1: Example of a radiant enclosure design problem. 

 

Most inverse problems are fundamentally ill posed; unlike forward problems, 

which usually have a unique mathematical solution, inverse problems often have many 

possible solutions; on the other hand, it is also possible that the problem has no solution.  

In this application, there may be several different enclosure geometries and heat flux 

distributions that produce both the desired temperature and heat flux distribution over the 

design surface within an acceptable tolerance, although it is also possible no enclosure 

configuration exists that would produce the desired design outcome.   

This situation is more clearly seen by comparing the systems of linear equations 

that are often produced by discretizing well-posed and ill-posed mathematical problems, 

as part of a solution procedure.  Well-posed problems produce well-conditioned systems 

of linear equations, where the number of equations equals the number of unknowns.  In 

these cases there exists one unique solution to the problem, which can be found using 
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traditional linear algebra techniques.  On the other hand, ill-posed problems often 

produce linear systems where the number of equations does not equal the number of 

unknowns.  If there are more unknowns than equations, then the system is under-

determined and an infinite set of solutions satisfies the linear system.  If there are more 

equations than unknowns, the system is said to be over-determined and there is not likely 

to exist any solution that satisfies the linear system without a residual vector.   

Because inverse problems are very difficult to solve, until recently radiant 

enclosures were designed exclusively using a forward “trial-and-error” methodology.  In 

this approach, the designer specifies only one of the known design surface boundary 

conditions, either the temperature or the heat flux, and then guesses an enclosure 

configuration that might produce the other unspecified boundary condition over the 

design surface.  This transforms the ill-posed inverse problem into a well-posed forward 

problem having only one explicit solution, which can be found using traditional linear 

algebra techniques.  The unspecified design surface boundary condition is then compared 

with the desired distribution; if the desired distribution does not match the realized 

distribution (as is usually the case), the designer modifies the enclosure configuration 

according to his or her experience and intuition and repeats the analysis.  In the example 

shown in Fig. 1.2, the designer first specifies the temperature distribution over the design 

surface, and then repeatedly tries different heat flux distributions over the heater surface 

until one is found that produces a heat flux distribution over the design surface that 

matches the desired distribution within an acceptable tolerance.  The complex nature of 

radiant heat transfer between the enclosure surfaces makes an intuitive understanding of 
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the heat transfer physics elusive, however, and consequently it is very difficult for the 

designer to know how best to adjust the enclosure configuration at each design iteration.  

Accordingly, many iterations are required to identify a suitable solution, and while the 

final solution may be satisfactory, it is rarely optimal. 

 
Heater Surface 

qs = qsspecified 

 

 qs = 0 qs = 0 

 

 
Design Surface 
T = Ttarget, qs = ?  

Figure 1.2: Boundary conditions for the forward design methodology. 

 

 Two alternative approaches have been developed that overcome the shortcomings 

of the forward “trial-and-error” design technique.  In the inverse design methodology, the 

inverse problem is posed explicitly, where both the temperature and heat flux 

distributions over the design surface are enforced, while the heat flux distribution over 

the heater surface remains unspecified; an example of this is shown in Fig. 1.3.  The 

resulting problem is mathematically ill-posed and produces an ill-conditioned set of 

equations when it is discretized.  As previously noted, traditional linear algebra 

techniques such as Gaussian elimination and LU decomposition either fail completely to 

solve the set of equations or produce solutions that are noisy and often non-physical.  (In 
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the case of radiant enclosure design, non-physical solutions involve negative emissive 

power.)  Rather, special regularization techniques must be employed to solve the linear 

system; these methods work by finding smooth solutions that satisfy the set of equations 

with a small error.  Smoother solutions are usually easier to implement but also produce a 

larger residual when they are substituted into the system of equations.  Therefore, most 

regularization algorithms include a heuristic parameter that allows the user to choose 

between solutions of varying degrees of smoothness and accuracy.  These techniques can 

usually identify a solution to the inverse problem in very few iterations, although it is 

often in a form that would be difficult to implement in a practical setting.   Also, inverse 

design methods have not as of yet been applied to design radiant enclosure geometry and 

have largely been restricted to calculating the heat flux distribution from radiant heaters 

that produce the desired temperature and heat flux distributions over the design surface. 

 

 Heater Surface 
qs = ? 

 

 
qs = 0 qs = 0

 

 

 

 
Design Surface 

T = Ttarget, qs = qtarget

 

Figure 1.3: Boundary conditions for the inverse design methodology. 
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This work presents five optimization methodologies that can be used to solve 

different types of radiant enclosure design problems.  Like the forward methodology, 

optimization design methodologies solve the inverse design problem by repeatedly 

analyzing trial designs and then making adjustments based on the results of the analysis.  

Instead of relying solely on the designer’s intuition and experience to make the 

modifications, however, optimization methodologies work by systematically minimizing 

an objective function, F(Φ), defined in such a way that the minimum of the objective 

function corresponds to the desired design outcome.  The objective function is dependent 

on a set of design parameters, Φ, which specify the design configuration; in this 

application, the design parameters control the enclosure geometry and the heat flux 

distribution over the heater surface.  The goal, then, is to identify the set of design 

parameters Φ∗ that minimizes the objective function, i.e. F(Φ∗) = Min[F(Φ)], which in 

turn corresponds to the optimal design configuration.   

Whereas both thermal boundary conditions are explicitly enforced throughout the 

solution procedure in the inverse methodology, in the optimization methodology only one 

of the desired thermal boundary conditions on the design surface is enforced while the 

remaining one is used to define the objective function.  (The inverse problem is solved in 

its well-posed implicit form, since only one of the two desired thermal boundary 

conditions is specified over the design surface.)  Most often, the objective function is the 

variance of the unspecified boundary condition distribution corresponding to a given set 

of design parameters from the desired distribution, evaluated at discrete locations over 

the design surface.  In the example shown in Fig. 1.4, the temperature distribution is 
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enforced over the design surface and the design parameters control the heat flux 

distribution over the heater surface.  The resulting forward problem is solved for the heat 

flux distribution over the design surface, which in turn is used to evaluate F(Φ).   

 
Heater Surface 

qs = qs(Φ)  

 

 

 

 

 

 

 

Design Surface 
T = Ttarget,  

 

( ) ( )[ ]∑
=

−=
DSN

j

target
sjsj

DS

qq
N

F
1

21
ΦΦ  

qs = 0

j = 1 j = NDS

qs = 0 

Figure 1.4: Boundary conditions for the optimization design methodology. 

 

Since the objective functions encountered in radiant enclosure design problems 

are usually nonlinear functions of Φ, minimization is carried out using nonlinear 

programming (NLP) algorithms that work by making intelligent changes to the design 

parameters at each iteration based on the local topography of F(Φ) until F(Φ∗) is reached.  

Consequently, far fewer iterations (and consequently far less design time) is required 

compared to the forward design methodology, and the quality of the final solution found 

using the optimization design methodology is almost always better than one found 

through the forward design methodology. 
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The optimization methodology also has several important advantages over the 

inverse design methodology.  First, while the inverse methodology requires the design 

problem to be written in an explicit form so it can be solved using a regularization 

technique, the optimization design methodology solves the problem in its “natural” 

implicit form.  Consequently, the optimization design methodology usually requires less 

time and mathematical expertise on the part of the designer to set up and solve the 

problem compared to the inverse design methodology.  This aspect also renders the 

optimization methodology applicable to a wider range of design problems; in particular, 

enclosure geometry design problems are very difficult to pose in an explicit form, but are 

more easily solved in their implicit form using optimization techniques.   

Secondly, unlike the inverse design methodology, it is relatively easy to impose 

design constraints in the optimization methodology, by forcing the design parameters to 

lie within a fixed domain called the “feasible region.”  Design constraints help ensure that 

the solution found through the optimization methodology can be easily implemented in a 

physical setting.  In the context of radiant enclosure design problems, constraints can be 

used to restrict the heat flux distribution over the heater surface to be greater than zero 

and less than the maximum heater output.  In the case of enclosure geometry design, 

constraints also ensure that the size of the enclosure is less than some user-defined 

maximum dimensions, and that the enclosure remains unobstructed (meaning that the 

interior of the enclosure surface is strictly concave), which greatly simplifies the analysis.  

(Björck, 1992, lists several ways to accommodate simple constraints during the 
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regularization procedure, but these techniques are quite complex and have yet to be 

applied to solve the inverse radiant enclosure design problem.)   
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1.2 Literature Review 

In order to understand the state of radiant enclosure design, it is instructive to examine 

the development of techniques for solving inverse radiation heat transfer problems 

presented in the literature.  Both inverse and optimization analysis techniques were 

initially developed as tools used in experimental settings to infer properties that could not 

be measured directly, based on other measured experimental data, and were later adapted 

to solve inverse design problems.  A more detailed discussion of the development of 

techniques for solving inverse heat transfer problems is provided by Özisik and Orlande 

(2000), Beck et al. (1985), and Alifanov et al. (1995). 

 

1.2.1 Use of Inverse and Optimization Techniques in Experimental Settings 

Inverse heat transfer problems were first studied in the space programs of the 1950s, with 

a goal of developing algorithms that could estimate the temperature and ablation rates of 

spacecraft surfaces exposed to atmospheric heating during reentry based on temperature 

measurements taken on the undersides of these surfaces.  Tikhonov (1975) proposed a 

regularization method for solving the system of ill-conditioned equations that arises from 

the explicit inverse conduction problem, which bears his name.  Other regularization 

approaches were later developed, including those by Beck et al. (1985). 

Optimization techniques were also first applied in the area of experimental heat 

transfer.  They were, in fact, first used by Alifanov (1974) as regularization tools for 

solving inverse conduction problems in their explicit form.  In this technique, the ill-

conditioned system of equations is used to form an objective function with a global 
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minimum corresponding to a solution that satisfies the equations with no residual error.  

Each successive iteration of a gradient-based minimization scheme increases the solution 

accuracy at the expense of smoothness; accordingly, the minimization procedure is 

terminated once a solution that has a small enough residual and a sufficient degree of 

smoothness is identified, which may occur before a local minimum is reached.  (Iterative 

regularization through optimization is described more thoroughly in Appendix B.)   

Only later were optimization methods used to solve inverse heat transfer problems 

implicitly.  In most cases, they were again used to infer the distribution of a quantity that 

cannot be measured directly; this is done by first defining an objective function as the 

difference between the distribution of an experimentally measured property and the 

distribution of the same property estimated through a numerical model where the only 

variable is the distribution of the unmeasurable quantity.  This distribution is then 

inferred by minimizing this objective function.  For example, Huang and Chen (1999) 

estimated the thickness of an ice layer deposited on a cold pipe immersed in a moist 

stream of air by minimizing an objective function defined as the difference between the 

pipe surface temperature distribution calculated using a numerical model where the ice 

layer thickness is the only variable and the temperature distribution determined 

experimentally using thermocouples.  Similar techniques were employed by Liu and 

Özisik (1996) to estimate the inlet temperature profile of fluid flowing between parallel 

plates based on temperature measurements made inside the channel, and by Liu (2000), 

who estimated the temperature profile and absorption coefficient within an absorbing-

emitting media based on exit radiation intensities at the boundary surfaces. 
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1.2.2 Use of Inverse Techniques to Solve Design Problems 

While regularization techniques have been widely used in experimental settings, only 

recently have they been applied to solve inverse design problems involving radiant 

enclosures.  The first type of problem studied was the inverse boundary condition (or 

load estimation) problem, where the goal is to identify a heat flux distribution over the 

heater surface that produces the desired heat flux and temperature distributions over the 

design surface, as shown in Fig. 1.5.a.  Oguma and Howell (1995) were the first to study 

such a problem, and applied an inverse Monte Carlo technique to treat enclosures 

consisting of diffuse, black walls containing a transparent medium.  Inverse design 

methodologies were next developed to solve inverse design problems involving 

enclosures containing diffuse-gray surfaces; Harutunian et al. (1995) solved the ill-

conditioned set of linear equations using the modified truncated singular value 

decomposition method (MTSVD), which was later extended by Morales et al. (1996) to 

treat radiant enclosures containing isothermal participating media.  Jones (1999) modified 

the method presented by Harutunian et al. (1995) by adding an extra equation based on 

energy conservation to the ill-conditioned matrix equation, which was then solved using 

Tikhonov regularization.   França and Goldstein (1996) developed an inverse design 

methodology to solve design problems involving non-isothermal participating media, 

where the governing equations were first formed using Hottel’s zonal method, and then 

solved by performing incomplete Jacobi and Gauss-Seidel iteration.  França et al. (2001) 

later extended this technique to solve a radiant enclosure design problem involving 

conduction, convection, and radiation heat transfer within a participating medium.  The 
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nonlinear set of equations was first linearized in such a way that the coefficient matrix is 

constant while the elements of the right-hand-side vector are nonlinear functions of the 

solution vector.  The problem was then solved using truncated singular value 

decomposition (TSVD) regularization, by first decomposing the coefficient method into 

its singular values, and then finding the solution vector by performing repeated back-

substitution iterations. 

A second type of radiant enclosure design problem is shown in Fig. 1.5.b, where 

the objective is to determine the distribution of a radiant energy source inside a 

participating medium that results in the desired heat flux and temperature distributions 

over the design surface.  Kudo et al. (1995) first developed an inverse design technique 

for estimating the optimal location of sources having specified power inputs, which used 

Monte Carlo to carry out the radiation heat transfer analysis and singular value 

decomposition to solve the ill-conditioned set of equations.  França et al. (1999) solved 

the complement of that problem, with the objective of determining the heat generation 

rate from radiant sources at fixed locations within the participating medium that produce 

the required conditions over the design surface. 

As previously mentioned, many radiant enclosure design problems are transient in 

nature, with the objective of determining the time-dependent heater settngs that heat the 

design surface according to a specified temperature history, such as the one shown in Fig. 

1.5.c.  Ertürk et al. (2002) calculated the heater settings in a roll-through furnace having 

surfaces with directionally-dependent optical properties and multimode heat transfer 

effects.  The problem was solved by first discretizing the time domain, linearizing the 
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resulting nonlinear set of equations, and then solving the inverse problem by applying a 

fixed number of conjugate gradient regularizing iterations at each time step. Gwak and 

Masada (2003) later solved the same problem using a nonlinear control algorithm 

coupled with a regularization filter.  

 

1.2.3 Use of Optimization Techniques to Solve Design Problems 

Optimization techniques have only recently been applied to solve inverse design 

problems involving radiant enclosures.  Daun et al. (2003a) were the first to use gradient-

based optimization techniques to solve an inverse boundary condition problem similar to 

the one shown in Fig. 1.5.a., for a 2-D enclosure with diffuse-gray walls containing a 

non-participating medium.  The heat flux distribution and sensitivities were calculated 

using the infinitesimal-area method, and the optimization was carried out using Newton’s 

method.  Hosseini Savari et al. (2003a) presented a method of designing 2-D enclosures 

containing a conducting and radiating medium where the objective function and 

sensitivities were calculated with the discrete transfer method and the objective function 

was minimized using the conjugate gradient method.  This method was later extended to 

treat 3-D enclosures containing participating media (Hosseini Savari et al., 2003b.)    

 Transient radiant enclosure design problems like the one shown in Fig. 1.5.b have 

also been solved using the optimization design methodology.  Norman (1992) and Cho 

and Gyugyi (1997) used optimization to determine an a priori guess of the transient 

heater settings used in RTP furnaces, enabling the use of high gain control algorithms 

under operating conditions.  Fedorov et al. (1998) solved for heater settings in a roll-
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through materials processing furnace, using the Levensberg-Marquardt optimization 

method to carry out the minimization.  Daun et al. (2003b) presented an optimization 

methodology based on infinitesimal-area analysis for solving transient radiant enclosure 

design problems, where the objective function is minimized using the quasi-Newton 

method. 

 Relatively little work thus far has been carried out on the inverse radiant 

enclosure geometry design problem.  Ashdown (1994) described a general optimization 

methodology that uses genetic algorithms to optimize the geometry of light boxes used in 

illumination applications.  Daun et al. (2003c) presented a methodology for optimizing 

the geometry of diffuse walled enclosures based on parametric representation, where the 

objective function and sensitivities are calculated using the infinitesimal-area analysis 

and the minimization is carried out using either the steepest-descent, quasi-Newton, or 

Newton’s method.   Daun et al. (2003d) later presented another technique for designing 

enclosures containing specularly-reflecting surfaces, where the radiation heat transfer is 

solved using Monte Carlo and the Kiefer-Wolfowitz method is used to carry out the 

stochastic optimization.  There has also been some recent work on geometric 

optimization of radiating fin arrays motivated by extraterrestrial cooling applications 

(Krishnaprakas and Badari Narayana, 2003, for example), although for the most part the 

optimization is either univariate, where the problem has only one design parameter, or is 

carried out using parametric analysis instead of more sophisticated nonlinear 

programming techniques. 
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Figure 1.5 Types of radiant enclosure design problems solved using inverse and 

optimization design methodologies in the literature: (a) inverse boundary condition 

estimation, (b) inverse source estimation, (c) transient problems, and (d) geometry design 

problems. 
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1.3 Dissertation Outline 

This dissertation is divided into six chapters; chapters two through five describe 

optimization methodologies for different types of radiant enclosure problems, and 

conclusions and suggestions for future work are presented in chapter six.   

Chapter two serves as an introduction to the forward, inverse, and optimization 

design methodologies used to solve radiant enclosure design problems.  In this chapter 

the design problem is in its simplest form, where the objective is to find the heater 

settings that produce the desired heat flux and temperature distribution over the design 

surface in a radiant enclosure having a fixed geometry, composed of diffuse-gray walls 

containing a transparent medium.  The inverse and optimization design methodologies 

are compared by using them to solve an example problem; the inverse methodology 

solves the ill-conditioned set of linear equations using TSVD regularization, while the 

optimization methodology uses Newton’s method to minimize the objective function 

coupled with an active set method to enforce design constraints. 

Chapter three extends the optimization methodology presented in chapter two to 

design the geometry of diffuse-walled radiant enclosures.  This is done by first 

representing the surface geometry with Bézier curves and then using control points of the 

curves as the design parameters in the optimization.  Newton’s method coupled with an 

active set method is again used to carry out the objective function minimization. 

A methodology for designing the geometry of radiant enclosures containing 

specular surfaces is presented in chapter four.  The radiation heat transfer is modeled with 

 18



the Monte Carlo analysis method, and the Kiefer-Wolfowitz method is used to carry out 

the objective function minimization. 

 Finally, chapter five presents two optimization design methodologies for solving 

transient and multimode radiant enclosure design problems, where the objective is to 

identify transient heater settings that heat the design surface according to a desired 

temperature history.  The first optimization methodology considers the effects of 

conduction through the enclosure walls, convection between the walls and surrounding 

fluids, and sensible energy storage, and can therefore be considered “generic” in the 

sense that a wide range of problems can be treated using this methodology.  A second 

methodology is then presented for the special case where there is no conduction or 

convection heat transfer, and the design surface is the only part of the enclosure that 

stores sensible energy.  It can be shown that in this case the heat transfer model reduces 

to a set of linear equations, which greatly simplifies the analysis.  In both of these 

methodologies, the optimization is carried out using a quasi-Newton minimized coupled 

with an active set method to enforce design constraints. 

The purpose of this work is to present optimization methodologies that can be 

used to solve different fundamental types of radiant enclosure design problems in as clear 

a manner as possible.  Accordingly, the enclosure walls are assumed to have wavelength-

independent optimal properties in each case in order to clarify the analyses, although this 

restriction could be relaxed with little difficulty if so required. 
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Chapter 2: 
Heater Setting Optimization for Radiant 
Enclosures Containing Diffuse-Gray Surfaces 
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2.1 Introduction 

This chapter presents forward, inverse, and optimization design methodologies that are 

used to solve radiant enclosure design problems where the enclosure geometry is fixed 

and the heater settings that control the heat flux distribution over the heater surface are 

unknown.  The objective of these design problems is to find the heater settings that 

produce the desired heat flux and temperature distributions over the design surface.  This 

is the simplest type of radiant enclosure design problem, and is found in many different 

industrial settings.  Often, these problems involve enclosures used in continuous 

fabrication processes in which the enclosure geometry and temperature and heat flux 

distributions can be modeled as constant with respect to time; such examples include 

industrial ovens that bake food products on a conveyor belt and annealing furnaces used 

in continuous casting processes. 

 These design problems have traditionally been solved using a forward “trial-and-

error” methodology.  In this approach, only one of the two desired distributions (either 

temperature or heat flux) over the design surface is specified.  The designer first guesses 

a set of heater settings, and then evaluates the quality of this guess by solving the 

resulting well-posed problem for the distribution of the unspecified boundary condition 

over the design surface.  If the resulting distribution does not match the desired 

distribution, which is usually the case, the designer adjusts these heater settings using 

only his or her intuition and experience, and then repeats the analysis.  This process 

continues until the heat flux and temperature distributions over the design surface match 

the desired distributions within an acceptable tolerance.  (Since only one of the desired 

boundary conditions is enforced and the other is found through iteration, the inverse 
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problem is said to be in its implicit form here.)  This technique usually requires many 

iterations and a lot of design time; furthermore, this solution is usually far from optimal 

The shortcomings of this technique prompted the application of inverse design 

methodologies to solve this problem.  In this approach, both the temperature and the heat 

flux distributions over the design surface are enforced explicitly throughout the solution 

procedure.  (Hence, the inverse problem is solved in its explicit form.)  When both 

boundary conditions are enforced on the design surface, the governing equations are ill-

posed and the corresponding set of ill-conditioned linear equations must be solved using 

regularization methods.  Inverse methodologies require very few iterations to find heater 

settings that produce temperature and heat flux distributions over the design surface that 

are nearly identical to the desired distributions.  Oguma and Howell (1995) were the first 

to apply an inverse design methodology to solve a radiant enclosure design problem, 

which used an inverse Monte Carlo analysis to find the heater settings in an enclosure 

with black and diffuse surfaces.  Harutunian et al. (1995) developed an inverse design 

methodology for enclosures composed of diffuse-gray walls containing a non-

participating medium, where the ill-conditioned set of equations is formed using discrete 

configuration factors and solved using modified truncated singular value decomposition.  

This technique was later extended to treat radiant enclosures containing participating 

media (Morales et al., 1996, França and Goldstein, 1996) and problems involving 

multimode heat transfer (França et al., 2001.)   The main drawback to the inverse design 

methodology, however, is that solutions found through regularization can sometimes be 

non-physical (having negative emissive powers) or are otherwise difficult to implement.  

In particular, solutions are often found that involve regions of negative heat flux over the 
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heater surface; since it is impractical to produce this condition in a physical setting these 

regions are most often insulated, which degrades the quality of the heat flux and 

temperature distributions over the design surface. 

 The optimization design methodology overcomes many drawbacks of the inverse 

design methodology.  As is done in the forward design methodology, the inverse problem 

is written in its implicit form; only one of the desired design surface boundary conditions 

(the temperature, by convention) is enforced while the unspecified heat flux distribution 

is used to define an objective function, F(Φ), in such a way that the minimum of F(Φ) 

corresponds with the desired heat flux distribution over the design surface.  The heat flux 

distribution, and hence F(Φ), are dependent on the heater settings, which are set equal to 

design parameters contained in Φ.  Specialized numerical methods are then used to 

minimize the objective function iteratively by making changes to Φ at each iteration 

based on the local topography of F(Φ).  The set of design parameters Φ∗ that minimizes 

the objective function correspond to the optimal heater settings.   

Although the optimization methodology usually requires more iterations than the 

inverse methodology to find a solution, the final solution is almost always physical since 

the inverse problem is solved in its well-posed implicit form.  Furthermore, design 

constraints can be imposed by forcing the design parameters to lie within a specified 

domain called the feasible region, which are used to ensure that the solution can be 

implemented in a physical setting.  In this example, design constraints account for the 

operating range of the heaters by forcing the heater settings to lie between zero and the 

maximum heater output. 
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This chapter serves as an introduction to the inverse and optimization design 

methodologies, and is based on a resent work by Daun et al. (2003a).  Both techniques 

presented here are based on the infinitesimal area method developed by Daun and 

Hollands (2001), and are in a form appropriate for the analysis of two-dimensional 

radiant enclosures.  The inverse design problem is solved using truncated singular value 

decomposition (TSVD), while the optimization is carried out using Newton’s method 

coupled with an active set method that enforces the design constraints.  The forward 

methodology is first presented, followed by the inverse and optimization methodologies, 

respectively.  The inverse and optimization methodologies are then demonstrated and 

compared by using them to solve for the unknown heater settings in a 2-D radiant 

enclosure design problem.  
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2.2 Forward Design Methodology 

The forward design methodology is based on the infinitesimal-area technique presented 

by Daun and Hollands (2001).  In this approach, the designer first specifies the enclosure 

geometry and boundary conditions, including a guess of the heat flux distribution over 

the heater surface and one of the designed boundary conditions over the design surface.  

(Here, it is assumed to be the temperature distribution.)  Once this is done, the integral 

equations governing the radiosity distribution are formed based on a parametric 

representation of the enclosure, and then solved numerically.  Finally, the unknown 

boundary condition over the design surface is found by post-processing the radiosity 

solution.  The designer compares this result to the desired distribution and modifies the 

heater settings accordingly.  This process is repeated until a satisfactory solution is 

identified. 

The first step in this analysis is to find a suitable parametric representation of the 

radiant enclosure; for 2-D enclosures, it is sufficient to identify a parametric 

representation of the enclosure cross section, 

(2.1) ( ) ( ) ( ){ } ,,, buauQuPu T ≤≤== Cr

where r is the position vector with its tail at the origin and tip on the enclosure surface 

and C(u) = {P(u), Q(u)}T is a vector function of parameter u with components P(u) and 

Q(u) in the x and y directions, respectively.  By allowing u to range over its entire 

domain, a ≤ u ≤ b, the position vector carves out the enclosure cross section in the x-y 

plane, as shown in Fig. 1.  (By convention, the enclosure is usually parameterized in a 

counterclockwise manner so that the normal vector points into the enclosure.)  The 

boundary conditions are also expressed parametrically; the emissivity distribution, ε(u) is 
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known, and either the heat flux, qs(u), or the temperature, T(u), is known at every location 

over the enclosure surface.  In particular, it is assumed that Ttarget(u) is specified over the 

design surface and an initial guess of the heater settings, qs(u), is imposed over the heater 

surface. 

 Once the enclosure is represented parametrically, the equation governing the 

radiosity distribution is formed.  The radiosity distribution is governed by a Fredholm 

integral equation of the second-kind, 

( ) ( ) ( ) ( ) ( ) ,'',' duuukuqugubuq
b

a

oo ∫+= (2.2) 

where if the temperature is specified at u, 

( ) ( ) ( ) ( ) ( ),1, uuguEuub b εε −== (2.3) 

with Eb(u) = σT4(u), or if the heat flux is specified at u, 

( ) ( ) ( ) .1, == uguqub s
(2.4) 

The kernel of Eq. (2.1), k(u, u′), equals the differential configuration factor from a 

point on the enclosure surface at u to an infinitely long strip of infinitesimal width 

centered at u′, divided by du′, and is derived from the parametric functions that represent 

the enclosure cross section.  (The kerned is defined algebraically in Chapter 3.)   
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Figure 2.1: Parametric representation of the enclosure cross-section. 
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Analytical solutions to Fredholm integral equations of the second kind are usually 

not tractable, so Eq. (2.2) must be solved numerically.  The first step is to discretize the 

parametric domain into N elements, the ith element centered at ui and having a width ∆ui.  

Each of these discrete elements corresponds to an infinitely long strip element having a 

finite width on the enclosure surface, as shown on Fig. 2.2.  The integral in Eq. (2.2) is 

then rewritten as the sum of N integrals, with the domain of the jth integral defined by uj – 

∆uj/2 < u < ∆uj + ∆uj/2, 

( ) ( ) ( ) ( ) ( )∑ ∫
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+=
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2
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By assuming a uniform radiosity distribution over each element, qo(u′) can be extracted 

from the integral.  Carrying out the remaining integrations results in 

,
1

∑
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−+=
N

j
stripjiijojiioi dFqgbq β (2.6) 

where qoi = qo(ui), bi = b(ui), gi = g(ui), and dFi-stripj is the differential configuration factor 

ui to the strip element centered on uj.  (The calculation of dFi-stripj is discussed in the next 

chapter.)  The blockage factor, βij is a binary term that equals zero if the path between ui 

and uj is blocked by an obstructing surface, and is otherwise equal to unity.  It is found 

either through analytical geometry or by numerically using a ray-tracing technique. 
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Figure 2.2:  Discretization of the parametric domain. 

 27 
 



Writing Eq. (2.6) for all the elements results in a system of N equations containing 

N unknowns, which can be rewritten as a matrix equation, 

(2.7) ,bx =A

where x = {qo1, qo2, …, qoN}T, b = {b1, b2, …, bN}T, and matrix A is defined by 
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Matrix A is usually well-conditioned, and Eq. (2.7) can be solved using any 

standard linear algebra technique.  Once the radiosity distribution is known, the 

unspecified boundary conditions are found by post-processing.  In particular, the heat 

flux distribution over the design surface is found by 

,
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∑
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−−=
N

j
stripjiijojoisi dFqqq β (2.9) 

where qsi = qs(ui).  If the resulting heat flux distribution over the design surface does not 

match the desired heat flux distribution, the designer adjusts the heater settings according 

to his or her experience and intuition and then repeats the analysis.  This procedure 

continues until the heat flux distribution over the design surface matches the desired 

distribution, qs
target(u) within an acceptable tolerance, which typically requires many 

manual iterations to accomplish. 
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2.3 Inverse Design Methodology 

In contrast to the forward design methodology where only one thermal boundary 

condition is specified over each surface, the inverse design methodology enforces both 

the temperature and heat flux distributions over the design surface, while no boundary 

condition is specified over the heater surfaces.   

 Suppose that the enclosure surface is parameterized so that a ≤ u < b corresponds 

to the heater surface, b ≤ u < c corresponds to the surfaces where either qs(u) or Eb(u) is 

known, and c ≤ u < d corresponds to the design surface.  Such a radiant enclosure is 

shown in Fig. 2.3.  (Although there are certain advantages in having u represent the 

enclosure surfaces continuously in a counterclockwise order, this is not required.)  Since 

both temperature and heat flux are specified over the design surface, the radiosity 

distribution is found immediately by 

( ) ( ) ( )
( ) ( ) .,1
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(2.10) 

The radiosity distribution over the remaining enclosure surfaces is again governed 

by Eq. (2.2).  In the inverse methodology, however, the integral is rewritten as the sum of 

two integrals: one with a domain of a ≤ u < c, over which the radiosity is unknown, and 

the other with a domain c ≤ u < d, where the radiosity distribution over the design surface 

is known from Eq. (2.10).  Over the heater surface, then, the radiosity distribution is 

governed by  
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while for the remaining enclosure surfaces,  
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where b(u) and g(u) are again defined by Eqs. (2.3) or (2.4), depending on if u lies on a 

surface where T(u) or qs(u) is specified, respectively.  The terms on the left-hand sides of 

Eqs. (2.3) and (2.4) are unknown while those on the right-hand side are known, since the 

integrals on the right-hand side can be carried out.   
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Figure 2.3: Example of an inverse radiant enclosure design problem posed in its 

explicit form. 

 

At this point, it is useful to compare the governing radiosity equations in the 

forward and inverse design methodologies.  In the forward methodology, the radiosity 

distribution was governed by a single Fredholm integral equation of the second-kind, Eq. 

(2.2), which most often has a unique solution.  In contrast, Eqs. (2.10) and (2.11) are not  

“true” Fredholm integral equations of the second-kind, since both the radiosity and heat 

flux distributions are unknown over parts of the parametric domain.   Because of this, the 

system formed by these two equations is under-specified, and an infinite set of solutions 
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could satisfy these equations.  This is more clearly seen by writing the governing 

radiosity equation over the design surface, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,,'',''',' ducduuukuqugduuukuqugubuq
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where b(u) and g(u) are defined using either Eq. (2.3) or (2.4), and every other term is 

known except for the radiosity distribution qo(u′) for a ≤ u′ < d.  Equation (2.13) is a 

Fredholm integral equation of the first-kind, which differs from Fredholm equations of 

the second-kind in the sense that there are no unknowns outside of the integrals.  In most 

cases, an infinite set of radiosity distributions could be proposed that satisfy Eq. (2.13); it 

is this feature of the governing equations that renders the inverse problem ill-posed in its 

explicit form.  (Note that since the radiosity distribution over the design surface is known, 

Eq. (2.13) is superfluous and is included only for demonstration purposes.) 

 Analytical solutions to Eqs. (2.11) and (2.12) are usually not tractable, so 

numerical techniques must again be employed to solve for the radiosity distribution.  As 

before, the parametric region is discretized to form N surface elements.  Let elements i = 

1…k lie on the heater surface, elements i = k + 1...m lie on surfaces where either qs(ui) or 

T(ui) is known, and elements i = m + 1…N lie on the design surface.  By assuming a 

uniform radiosity over each surface element and performing the same steps as before, the 

governing equations can be rewritten as 

(2.14) 

for elements over the heater surface, and  
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for all other elements.   
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Writing Eqs. (2.14) and (2.15) for all the elements with unknown radiosities 

results in a system of m equations containing m + k unknowns, the extra k unknowns due 

to the unknown heat flux distribution over the heater surfaces.  As before, these equations 

can be expressed as a matrix equation, 

(2.16) ,bx =A

where A is a rectangular matrix having m rows and m + k columns and x is a vector 

containing m unknown radiosity terms and the k unknown heat flux terms.  Vector b is 

formed from the known radiosity terms on the design surface and the specified boundary 

conditions (either qsi or Ebi) from the other surfaces. 

 Since there are more unknowns than equations, matrix A is rank-deficient and 

admits an infinite number of solutions.  Consequently, traditional linear algebra 

techniques that are normally used to solve matrix equations, such as LU decomposition 

and Gauss-Seidel, fail when they are applied to solve Eq. (2.16).  Instead, regularization 

techniques are used to select solutions having desirable properties from the infinite set, in 

general by reducing the norm of x at the expense of solution accuracy.  These methods 

include Tikhonov regularization, iterative conjugate gradient regularization, and the 

truncated singular value decomposition (TSVD) method.  Although any of these methods 

could be used to solve Eq. (2.16), TSVD offers the most insight into the nature of ill-

posed problems, and is demonstrated here.  (Several other techniques are described and 

demonstrated in Appendix B.)   

 The TSVD method is based on the singular decomposition of the A matrix,  

(2.17) ,TVWUA =
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where U is an orthogonal matrix with m rows and m + k columns, W is a diagonal matrix 

with m + k rows and columns, and V is the transpose of an (m + k) × (m + k) orthogonal 

matrix.  The diagonal elements of W, wi, are the singular values, which are strictly non-

negative and are usually presented in monotonically decreasing order.  The degree of 

difficulty associated with solving a linear system of equations can be anticipated by 

examining the singular values and specifically the condition number, which is the ratio of 

the largest and smallest singular value.  If all the singular values are approximately the 

same magnitude and the condition number is of O [1], then A is said to be well-

conditioned, and Eq. (2.16) could be solved by back-substitution, 
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On the other hand, if some of the singular values are very small relative to others, 

the condition number will be large and A is said to be ill-conditioned.  In the case where 

the number of unknowns exceeds the number of equations by k, at least k of the singular 

values equal zero; the condition number is then infinite and A is said to be singular.  

(Assuming the remaining m equations are linearly independent, k is said to be the nullity 

of A.)  In both of these cases, attempting to solve the system of equations using Eq. 

(2.18) would result in either a solution having large oscillations if A were ill-conditioned, 

or division by zero if A were singular.   

 In TSVD, singular values less than some user-defined criterion are negated (or 

“truncated”) by setting the corresponding 1/wi terms equal to zero.  If few singular values 

are truncated, the radiosity and heat flux distributions usually have very irregular 

distributions; moreover, the solution is quite often non-physical because the radiosity and 

emissive power distributions assume values less than zero.  As more singular values are 
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truncated, the solution becomes more regular.  Truncating singular values also induces a 

residual error into the solution, δ = Ax − b; if few singular values are truncated, however, 

||δ||2 is usually small compared to ||x||2, as demonstrated in the example below.  Thus, 

repeatedly truncating singular values leads to a feasible solution to the design problem 

having both a sufficiently small ||x||2 and ||δ||2, providing that such a solution exists.  (This 

is in contrast with inverse measurement problems, where a feasible solution is known to 

exist.) 
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2.4 Optimization Design Methodology 

Unlike the inverse methodology, the optimization design methodology solves the inverse 

design problem in its implicit (well-posed) form using specialized algorithms that limit 

the number of iterations needed to find a viable solution to the design problem.  Design 

optimization is carried out by minimizing an objective function, F(Φ), which in turn is 

done by varying a set of design parameters contained in vector Φ that specify the design 

configuration.  The objective function is defined so that the optimum design 

configuration corresponds to the set of design parameters Φ∗ that minimizes F(Φ), i.e. 

F(Φ∗) = Min[F(Φ)].  In this application, the objective function is the variance of the heat 

flux corresponding to a particular set of design parameters from the desired heat flux 

distribution, evaluated at NDS locations over the design surface, 

( ) ( )[ ] ,1
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2∑
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j
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sjsj

DS

qq
N

F ΦΦ (2.19) 

while the design parameters in Φ are the heater settings that control the heat flux 

distribution over the heater surface.  The heater settings that result in a heat flux 

distribution over the design surface that most closely matches the desired distribution 

corresponds with the design parameters contained within Φ∗, which in turn is found by 

minimizing F(Φ).  

 It is also often desirable to impose a set of design constrains by restricting the 

domain of Φ.  In this application, these constraints ensure the heat flux distribution 

calculated over the heater surface is greater than zero but less than the maximum heating 

capacity of the heaters, and are enforced by satisfying inequalities of the form 

( ) .1,0 mici K=≤Φ (2.20) 
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2.4.1 Optimization Strategy 

Many different techniques have been developed for minimizing the objective function.  

Gradient-based methods are most often used when the objective function is continuously 

differentiable and the feasible region has few local minima.  These methods find Φ∗ 

iteratively, using the following steps.  At the kth iteration: 

1. The design parameters are checked to see if Φk = Φ∗, which is usually done by 

seeing if ||∇F(Φk)||2 < εcrit.  If Φ∗ has been identified, the process stops. 

2. If Φ* has not been reached, a search direction, pk, is chosen based on the 

curvature of F(Φk). 

3. A step size, αk, is chosen.  This is often done by minimizing f(αk) = 

F(Φk+αkpk) using a univariate minimization routine such as Newton-Raphson, 

bisection, or golden section searches.   

4. The design parameters are updated by taking a “step” in the pk direction,  

Φk+1 = Φk + αkpk. 

Gradient-based methods differ on how the search direction is chosen.  Almost all 

methods rely on the first-order sensitivities contained in the gradient vector,  
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and some also use the second-order sensitivities contained within the Hessian matrix, 
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(2.22) 
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Usually, Newton’s method requires the fewest iterations to find a local minimum.  

This is because both the first- and second-order objective function sensitivities are used 

to calculate the search direction, 

( ) ( ).2 kkk FF ΦΦ −∇=∇ p (2.23) 

It is derived based on a second-order Taylor-series expansion of F(Φ), and minimizes a 

quadratic objective function in exactly one step.  (A detailed derivation is presented in 

Appendix A.)  Although Newton’s method usually requires fewer iterations to identify 

Φ∗ than those that only use F(Φ) and ∇F(Φ) to calculate pk, it is not always more 

efficient because of the extra computational effort required to identify ∇2F(Φ) at each 

iteration.  Accordingly, Newton’s method should only be used when the second-order 

objective function sensitivities can be calculated in an efficient manner. 

Besides estimating the direction of Φ∗ from Φk, the magnitude of Newton’s 

direction is also usually an accurate estimator of |Φ∗ − Φk| in the vicinity of the local 

minimum.  Accordingly, in Newton’s method it is common to first assume a step size αk 

= 1 and then to check to see if the Armijo criterion is satisfied (Bertsekas, 1999), 

( ) ( ) ( ) ,10, <<∇−=+− µµαα kTkkkkkk FFF ΦΦΦ pp (2.24) 

where µ is a user-defined parameter.  (Bertsekas, 1999a, recommends 10−5 ≤ µ ≤ 10−1.)  

The Armijo condition ensures that the quadratic model of F(Φ) used to estimate pk is 

accurate within the vicinity of Φk + pkαk, and works by checking whether the objective 

function decrease realized by taking a step αk in the pk direction, |F(Φk) − F(Φk+pkak)|, is 

at least as large as some multiple of the decrease predicted by the quadratic model, 

−µαkpkT∇F(Φk).  If the decrease is not large enough, then αk is reduced (usually by an 

order of magnitude each time) until Eq. (2.24) is satisfied.   
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 The first step in calculating ∇F(Φk) and ∇2F(Φk) is to rewrite the objective 

function so that it is dependant on both the design parameters as well as an intermediate 

“system response” variable, which in turn is a function of the design parameters.  In this 

application, the objective function is rewritten as  

( ) ( )[ ],, ΦΦΦ sqFF = (2.25) 

where the elements of the system response, qsi(Φ), are heat flux terms evaluated at 

discrete locations over the design surface.  The first- and second-order objective function 

sensitivities are found by differentiating Eq. (2.19) with respect to the design parameters.  

The terms in ∇F(Φk) are given by 
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while the terms in ∇2F(Φk) are equal to 
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Thus, the design parameters that produces a heat flux distribution over the design 

surface that most closely matches the desired distribution are found by repeatedly 

following the steps described above until F(Φ) is minimized.  It is important to note that 

the optimal heat flux distribution usually does not match the desired distribution exactly, 

and accordingly F(Φ∗) is generally small but greater than zero.  If the design problem has 

no feasible solution, F(Φ∗) will be considerably larger than zero. 
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2.4.2 Calculation of the Design Sensitivities 

Clearly, the most difficult part of calculating Eqs. (2.26) and (2.27) lies in finding the 

heat flux sensitivities.  These are calculated using the radiosity sensitivities, which in turn 

are found by first directly differentiating the governing radiosity equation and then 

solving the resulting integral equations numerically using the procedure described in 

Section 2.2.   

The governing radiosity equation is rewritten here to demonstrate the functional 

dependence of the radiosity distribution on the design parameters.  Assuming that the 

specified heat flux and temperature distributions are controlled by the design parameters 

(including the heat flux distribution over the heater surface), and that the surface 

emissivity and enclosure geometry are independent of the design parameters, the 

radiosity distribution is governed by  

( ) ( ) ( ) ( ) ( )∫+=
b

a

oo duuukuqugubuq '.',,',, ΦΦΦ (2.28) 

Differentiating Eq. (2.28) with respect to a design parameter and applying Liebnitz’s rule 

to commute the derivative into the integral (note that the bounds of integration are 

constant with respect to the design parameters) results in another Fredholm integral of the 

second-kind, 
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governing the first-order radiosity sensitivities.  Likewise, differentiating Eq. (2.29) with 

respect to another design parameter produces another Fredholm integral equation of the 

second-kind,  
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(2.30) 

which governs the second-order radiosity sensitivities.   
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 By following steps analogous to those used to solve Eq. (2.2), it can be shown that 

the first- and second-order radiosity sensitivities are found by solving 

(2.31) ,'' bx =A

and  

(2.32) ,'''' bx =A

where A is the matrix defined in Eq. (2.8), xi′ = ∂qo1(Φ)/∂Φp, bi′ = ∂bi(Φ)/∂Φp, xi′′ = 

∂2qoi(Φ)/∂Φp∂Φq and b′′ = ∂2bi(Φ)/∂Φp∂Φq.  If A has already been inverted or otherwise 

decomposed to solve for the radiosity distribution, Eqs. (2.31) and (2.32) can be easily 

solved by post-processing. 

 Once the radiosity sensitivities are known, the heat flux sensitivities are found by 

substituting the radiosity sensitivities into the partial derivatives of Eq. (2.10).  The first-

order heat flux sensitivities are found by 
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while the second-order heat flux sensitivities are found by 
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Finally, the heat flux sensitivities are substituted into Eqs. (2.26) and (2.27) to find 

∇F(Φ) and ∇2F(Φ). 
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2.5 Demonstration of Inverse and Optimization Design Methodologies 

The inverse and optimization design methodologies are demonstrated and compared by 

using them to solve the radiant enclosure design problem shown in Fig. 2.4.  The 

enclosure consists of a design surface having an emissivity εDS = 0.5, two adiabatic 

surfaces with emissivities ε = 1, and a heater surface with emissivity εHS = 0.9.  The 

heater surface contains 24 uniformly spaced heaters, and the heat flux distribution over 

each heater is assumed to be uniform.  Due to symmetry, the heat flux distribution over 

the heater surface is fully characterized using 12 design parameters, Φh, h = 1…12, where 

Φh is equal to the heat flux over the hth heater in units of W/m2.  The goal of the analysis 

is to find a combination of heater settings that will produce a uniform heat flux of 

qsDS
target = −2 W/m2 and an emissive power EbDS = 1 W/m2 over the design surface. 
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Figure 2.4: Example radiant enclosure design problem. 
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 A total of 640 surface elements is used in both the inverse and optimization 

design methodologies; 384 of those elements lie on the heater surface, 192 lie on the 

design surface, and the remaining 64 elements are located on the two adiabatic surfaces.  

In order to ensure grid independence at this level of refinement, a grid refinement study 

was performed with Φh
0 = 1, h = 1…12, corresponding with the initial enclosure 

configuration used in the optimization methodology, and is shown in Fig. 2.5.  The grid 

refinement study was performed on the objective function defined in Eq. (2.19); the grid-

independent solution was taken as the value of the objective function at the highest level 

of refinement, F∞(Φ0) ≈ FN=5120(Φ0) = 0.05732, and the error at the lower levels of 

refinement was estimated by 

( ) ( ) ( )., ΦΦΦ ∞−= FFNE N
(2.35) 

A grid-refinement study was also performed on the degree of energy 

conservation, defined by  
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(2.36) 

which equals zero for an exact solution.  Assuming a uniform radiosity distribution over 

each surface element is a necessary step in the discretization of the governing integral 

equations, but also means that energy conservation is not exactly satisfied.  As N 

becomes large, however, the discretization error gets smaller; the energy imbalance tends 

to zero, and F(Φ) approaches its grid-independent solution.    Using these procedures, the 

discretization error in F(Φ0) at N = 640 was 0.36%, and the energy imbalance was –0.22 

%.  These grid refinement studies were also performed on the solutions found using the 

inverse design methodology and the optimization design methodology.   
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Figure 2.5: Grid refinement study for the design problem in Fig. 2.4, performed at 

initial configuration for optimization, Φ0. 

 

2.5.1 Inverse Design Methodology Solution 

In order to enforce a uniform heat flux over each heater, the unknown heat flux terms 

over the heater surface, qsi, were replaced by the heater settings, Φh.  This both reduces 

the degree of rank deficiency (or equivalently the nullity of A) and also acts to regularize 

the solution by preventing the occurrence of highly-oscillatory heat flux distributions, 

which are undesirable from a designer’s perspective. 

 Although the system of linear equations used in the forward and optimization 

design methodologies enforces energy conservation, this is not the case in the inverse 

design methodology because both boundary conditions over the heater surface are 
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unspecified.   This problem is addressed using a modification suggested by Jones (1998) 

in which an energy conservation equation to the system of equations that form the A 

matrix,  

,
2

12

1

DS
target
sDS

h
h

heater

Aq
A −=Φ∑

=
(2.37) 

where Aheater is the surface area of each heater and ADS is the surface area of the design 

surface.  Once the A matrix is formed, it is decomposed into the three matrices of Eq. 

(2.17).  The 460 singular values are reordered and are shown in Fig. 2.6.  Eleven of these 

singular values equal zero due to the rank-deficiency of the A matrix, which in turn is 

caused by the twelve unknown parameters that control the heat flux distribution over the 

heater surface.  (Adding Eq. (2.36) to the system of equations reduces the nullity of A by 

one.)  In some other problems (Morales et al., 1996, for example), the singular values 

ranged over several orders of magnitude, which indicated that there were many different 

feasible solutions to the design problem.  In contrast, however, Fig. 2.6 shows that most 

of the singular values are close to unity, suggesting the existence of only a few unique 

solutions. 

The next step is to truncate the smallest singular values and to calculate the heat 

flux and emissive power distribution over the heater surface using Eq. (2.18).  The heat 

flux and emissive power obtained using all the non-zero singular values (p = 449) and the 

case for p = 448 are shown in Figs. 2.8 and 2.9, respectively.  The corresponding design 

parameters are included in Table 2.1, while the L2 norms of the solution and residual 

vectors are included in Table 2.2.   Since the inverse design methodology solves the 

inverse design problem in its explicit form, T(u) = and qtarget
DST s(u) =  for 0.65 ≤ u ≤ 

0.95.   

target
sDSq
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Figure 2.6: Ordered singular values found by decomposing A matrix. 

 

 Since some of the singular values are equal to zero, it is not possible to generate a 

solution using p = 460 singular values without dividing by zero in Eq. (2.18).  Truncating 

the eleven singular values corresponding to the nullity of A (p = 449) produces a 

regularized solution and a very small residual, as shown in Fig. 2.8.  Although the heat 

flux distribution can be further regularized by truncating an additional singular value (p = 

448), the solution is non-physical because Eb(u) assumes negative values over parts of the 

heater surface as shown in Fig. 2.8.  At this point, too many singular values have been 

truncated and the original governing equations are no longer enforced, as shown by the 

large residual in Table 2.2.   

Although the solution found with p = 449 singular values is physically obtainable, 

it is not convenient to implement in a practical setting because the heat flux distribution 
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over some of the heaters is negative.  Rather than adding heat sinks to the heater surface, 

the designer is more likely to simply insulate these heaters and incur the resulting 

deviation of the boundary conditions over the design surface.  In this application, the 

heaters corresponding to Φ7, Φ8, Φ9, and Φ10 are first set equal to zero, and the resulting 

heat flux distribution over the design surface (assuming that T(u) =  over the design 

surface) is recalculated and plotted in Fig. 2.10, along with the solution obtained using 

the optimization design methodology. 

target
DST

 

 Φ1 Φ2 Φ3 Φ4 Φ5 Φ6
p = 449 1.8699 3.7785 3.8663 2.4447 0.9005 0.1314 
p = 448 0.1110 −0.6260 −0.6704 −0.28903 −0.1095 0.3064 

 Φ7 Φ8 Φ9 Φ10 Φ11 Φ12

p = 449  −0.5398 −0.9781 −0.0614 −0.1410 0.1364 0.5924 
p = 448 0.4819 0.6462 0.4915 0.3746 0.2310 0.0547 

 

Table 2.1: Heater settings found with the inverse design methodology [W/m2]. 

 

 ||x||2 ||δ||2
p = 449 1.0297 × 104 1.1776 × 10−25

p = 448 3.5822 × 101 1.9291 × 103

 

Table 2.2: L2 norms of the solution and residual vectors corresponding to solutions 

found using the inverse design methodology. 
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Figure 2.7: Heat flux and emissive power distributions over the heater surface found 

using all the non-zero singular values (p = 449). 

1 

2 3 
4 

2 3 
4 

5 6 
8 7 9 10 11 5678910111212

Eb( u)  [W/m2] 

9 

8 

7 

6 

5 

4 

3 

1 

2 
1 

0 

-1 

-2 
0 

 

 

 

 

 

 

 

 

 0.05 0.1 0.15 0.5 0.55 0.6 0.2 0.25 0.3 0.35 0.4 0.45

Figure 2.8: Heat flux and emissive power distributions over the heater surface found 

using p = 448 singular values. 
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2.5.2 Optimization Design Methodology Solution 

The design problem was also solved by minimizing the objective function defined in Eq. 

(2.19) using Newton’s method.  As previously stated, it is desirable from a designer’s 

perspective to find solutions that have strictly nonnegative heat flux distributions over the 

design surface.  Also, in a practical design setting there may also exist a maximum heater 

output that must not be exceeded.  Solutions that satisfy both of these conditions are 

found by using inequality design constraints to ensure that lbh ≤ Φh ≤ ubh, h = 1…12, 

where lbh = 0 W/m2 and ubh is arbitrarily set equal to 10 W/m2.  These constraints were 

enforced using an active set method, which is described in detail in Appendix A.  

Minimization started from Φh = 1 W/m2, h = 0…12, and was stopped when |∇F(Φ)| < 

10−4. 

 Twelve iterations were required to identify a local minimum F(Φ∗) = 3.9006 × 

10−4, corresponding to the solution shown in Fig. 2.9 and the design parameters shown in 

Table 2.3.  The heat flux distribution over the design surface closely matches , as 

shown in Fig. 2.10.  The maximum deviation is less than 2.1%, which is well within the 

tolerances demanded by most engineering applications.  Another favorable property of 

this solution is that, due to the action of the active set method, only eight of the original 

twenty-four heaters are required.   

target
sDSq

Φ1 Φ2 Φ3 Φ4 Φ5 Φ6
3.1375 0 1.3909 1.8801 0 0 

Φ7 Φ8 Φ9 Φ10 Φ11 Φ12
0 0 5.5709 0 0 0 

 

Table 2.3: Heater settings found with the optimization design methodology [W/m2]. 
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Figure 2.9: Heat flux and emissive power distributions over the heater surface found  
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Figure 2.10: Heat flux distributions over the design surface produced by the heater 

settings found using the optimization design methodology and the inverse design 

methodology with negative heater settings set equal to zero. 
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2.5.3 Comparison of Inverse and Optimization Design Methodologies 

The inverse and optimization design methodologies are compared based on their ease of 

formulation, required computational effort, and the quality of their final solutions. 

 Both methodologies identify different heater settings that produce the desired heat 

flux and temperature distributions over the design surface.  In the solution found through 

the inverse design methodology, shown in Fig. 2.7, all the heaters are activated (although 

some of them act as heat sinks), while the optimization methodology found a solution 

involving only eight of the twenty-four heaters as shown in Fig. 2.9.  The fact that two 

very different heat flux distributions over the heater surface produce nearly identical 

conditions over the design surface demonstrates the ill-posed nature of the problem. 

 The inverse design methodology is somewhat more difficult to implement, since 

the governing radiosity equations must be rewritten and rearranged from their natural 

form.  In addition, the regularization techniques required to solve the ill-conditioned set 

of linear equations demand specialized mathematical knowledge on the part of the 

designer.  On the other hand, the optimization design methodology solves the inverse 

design problem in its implicit “natural” form, and uses the same governing equations that 

are used in the traditional forward design methodology.  The complexity of the 

optimization process depends largely on how the sensitivities are calculated; in this 

example the sensitivities are found by differentiating the governing equations, which 

requires some mathematical analysis.  In many other cases, however, the sensitivities are 

estimated using a forward or central difference approximation, which doesn’t require 

manipulation of the governing equations.  Moreover, gradient-based minimization is 
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more intuitive and easier to implement than the regularization procedure described in 

Eqs. (2.17) and (2.18). 

 Both the inverse and optimization design methodologies require approximately 

the same computational effort and storage to implement.  The TSVD regularization 

method involves only one singular-value decomposition of the A matrix, demanding 

approximately the same CPU time as the single A matrix inversion performed during the 

Newton minimization.  In this problem, both the inverse and optimization design 

methodologies solved the design problem in a matter of minutes. 

 The main difference between the two design methodologies lies in the quality and 

usefulness of the final solutions, shown in Fig. 2.10.  While the solution obtained by the 

inverse design methodology is mathematically superior (in the sense that both boundary 

conditions are almost exactly satisfied over the design surface), the solution obtained 

through the optimization design methodology is preferable under realistic operating 

conditions, where it would be impractical to operate the radiant enclosure with heat sinks 

on the heater surface.  The optimization design methodology allows for practical design 

considerations by enforcing constraints throughout the minimization procedure.  In 

contrast, the inverse methodology solves the unconstrained problem through 

regularization, and only later can the designer modify this solution to account for the 

constraints.  The ability of the optimization methodology to accommodate design 

constraints is one of the principle assets of this design technique. 
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2.6 Conclusions 

This chapter presents forward, inverse, and optimization methodologies that can be used 

to solve for the heater settings in fixed-geometry radiant enclosure design problems.  In 

the forward and optimization methodologies, the temperature distribution is specified 

over the design surface and the heater settings that produce the desired heat flux 

distribution are found iteratively.  While the forward methodology relies solely on the 

designer’s intuition and experience to make changes at each iteration, the optimization 

methodology employs a specialized minimization algorithm that both reduces the 

required number of iterations and greatly improves the final solution quality.  In contrast, 

in the inverse design methodology both conditions are enforced over the design surface, 

while the boundary condition over the heater surface is unspecified.  The resulting ill-

posed problem is solved using a regularization method. 

In this implementation, the governing equations for each design methodology are 

derived using the infinitesimal-area analysis technique.  In the inverse design 

methodology, discretizing the governing integral equations results in a system of ill-

conditioned linear equations that are solved using truncated singular value 

decomposition.  The optimization methodology uses Newton’s method to minimize the 

objective function, since the first- and second-order objective function sensitivities are 

calculated efficiently by differentiating the governing equations.  Design constraints in 

the optimization methodology are enforced using the active set method. 

The solution found using the inverse design methodology was mathematically 

superior to the one found through the optimization design methodology, but also involved 

negative heat fluxes over the heater surfaces that make it impractical to implement in an 
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industrial setting.  The optimization design methodology avoids this by enforcing 

inequality design constraints throughout the optimization process to ensure that the heat 

flux distribution over the heater surface remains strictly nonnegative.  The ability of the 

optimization design methodology to accommodate design constraints usually results in 

solutions that can be implemented in a practical setting, and is one of the main assets of 

this technique. 

Many of the radiant enclosure design problems that arise in industry are of the 

type that can be solved using the design methodologies presented in this chapter; 

nevertheless, there are others in which the objective is to determine the optimal enclosure 

geometry as well as the heater settings.  The optimization methodology presented here is 

extended to solve such problems in the next chapter. 
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Chapter 3: 
Geometric Optimization of Radiant Enclosures 
Containing Diffuse Surfaces 
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3.1 Introduction 

The optimization design methodology presented in the previous chapter is restricted to 

solving radiant enclosure design problems in which the goal is to find the heater settings 

that produce the desired heat flux and temperature distributions over the design surface.  

This chapter extends the optimization design methodology to solve the inverse geometry 

problem, where both the enclosure geometry and the heater settings can be changed in 

order to realize the desired conditions over the design surface.   

 Inverse geometry problems can broadly be separated into two types: inverse 

geometry identification problems, in which experimental data is used to infer the shape of 

a surface that could otherwise not be measured, and inverse geometry design problems 

where the goal is to identify the geometry that best satisfies a given design objective.  

Both classes of problems are usually nonlinear in nature and are therefore ill suited to the 

inverse and forward methodologies described in the previous chapter.   

Instead, optimization methodologies have been used extensively in the non-

radiative literature to solve these problems.  In geometry estimation problems, the 

objective function is most often defined as the variance between a set of experimental 

measurements (most often of temperature, in thermal applications) and a set of 

complementary values obtained using a numerical model in which system geometry is 

variable.  Minimization techniques are then employed to identify the geometry that 

minimizes the objective function.  For example, Nowak et al. (2002) presented a method 

for estimating the shape and location of the solidus line in continuous casting 

applications.  In this example, the solidus line is represented by a Bézier curve with its 
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control points set equal to the design parameters.  These design parameters are modified 

according to a minimization routine until the objective function (defined as the variance 

between measured and calculated temperatures) is minimized.  In another example, 

Huang and Chen (1999) estimated the boundary growth of a solid immersed in a moving 

fluid based on thermocouple measurements taken within the interior of the solid, using a 

similar technique.   

 In inverse geometry design problems, the objective function measures the 

“goodness” of a particular design outcome realized with that geometry.  As described in 

the previous chapter, the optimal design is found by minimizing this objective function 

subject to design constraints.  For example, Ebrahimi et al. (1997) determined the optimal 

riser geometry for an investment casting by minimizing the riser volume using a quasi-

Newton algorithm, subject to constraints that ensure directional solidification from the 

product to the riser to prevent voids from forming in the casting.  Other recent examples 

include Li et al. (1999), who presents an algorithm that minimizes the amount of material 

needed to conduct heat from a thermal source to a thermal sink, and Fabbri (1998), who 

determined the fin geometry that maximized heat transfer from the walls of an annular 

duct to a laminar fluid.  Both of these cases used genetic algorithms to minimize the 

objective functions.  (Forrest, 1993, presents a good discussion of optimization through 

genetic algorithms.) 

 Although there are many examples of geometric optimization in systems 

involving conduction and convection heat transfer, very little work has been carried out 

on problems involving thermal radiation.  Most examples in the literature present 
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methods for optimizing the geometry of radiating fins in applications where radiation is 

the dominant mode of heat transfer, including Sasikumar and Balali (2002) and 

Krishnaprakas and Badari Narayana (2003).  In these cases, the optimum design was 

found by performing univariate parametric studies for each design parameter, which 

restricts the number of design parameters that can be considered and neglects their 

codependence.  Although such a primitive optimization strategy may be sufficient in this 

particular application, it is clearly unsuitable for more complex problems involving many 

design parameters.  

 This chapter presents an optimization methodology that can solve inverse design 

problems involving two-dimensional radiant enclosures composed of diffuse-gray walls 

that contain a non-participating medium, with the objective of determining the enclosure 

geometry and heater settings that produce the desired heat flux and temperature 

distribution over the design surface.  The optimization is carried out using Newton’s 

method, which requires the heat flux and the first- and second-order heat flux sensitivity 

distributions over the design surface to calculate the search direction.  These quantities 

are found from the radiosity and radiosity sensitivities using a technique similar to the 

one presented in the previous chapter.  (Geometric terms in the equations written in the 

previous chapter are also described in detail.)  Although any type of parametric 

representation can be employed to represent the enclosure geometry, Bézier curves 

(which are a type of Non-Uniform Rational B-Spline, or NURBS curve) are especially 

convenient for this purpose and their use is described here.  Finally, this design 

methodology is demonstrated by using it to solve an example design problem.   
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It is important to note that, unlike the technique presented in the previous chapter, 

this optimization methodology is restricted to the treatment of “unobstructed” enclosures, 

in which the enclosure interior surface is entirely concave.  In these problems the kernel 

is guaranteed to be continuously differentiable with respect to the design parameters, 

which is required since the radiosity sensitivities are calculated by directly differentiating 

the governing integral equations. 
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3.2 Optimization Strategy 

The optimization design methodology presented in this chapter solves design problems of 

the type shown in Fig. 3.1, where the objective is to find the enclosure geometry and 

heater settings that produce the desired temperature and heat flux distribution over the 

design surface.  As in the previous chapter, this is done by first specifying the known 

temperature distribution over the design surface and then using the unknown heat flux 

distribution to define an objective function,  

( ) ( )[ ] .1
1

2∑
=

−=
DSN

j

target
sjsj

DS

qq
N

F ΦΦ (3.1) 

The heat flux distribution is a function of the design parameters contained in Φ, which in 

this case control both the enclosure geometry and heat flux distribution over the heater 

surface.  The optimal enclosure configuration is then identified by finding the set of 

design parameters that minimizes F(Φ), i.e. F(Φ∗) = Min[F(Φ)].  Inequality constraints of 

the form 

( ) ,1,0 mici K=≤Φ (3.2) 

are used to impose bounds on the design parameters throughout the minimization 

process, so that the enclosure size and the heat flux distribution over the heater surface lie 

within a specified range and also to ensure that the enclosure remains unobstructed  at all 

times.   

As will be shown in the next section, in this type of design problem the first- and 

second-order design sensitivities are found efficiently by post-processing the radiosity 

distribution.  Accordingly, Newton’s method is selected to minimize Eq. (3.1) coupled 

with an active set method to enforce Eq. (3.2).  The search direction at each iteration is 
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solved for using the gradient vector and the Hessian matrix defined in Eqs. (2.21) and 

(2.22), respectively, which in turn are formed using the heat flux and first- and second-

order heat flux sensitivity distributions. 
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Figure 3.1: Example of a radiant enclosure inverse geometry design problem. 
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3.3 Calculation of the Design Sensitivities 

The first step in calculating the design sensitivities is to represent the enclosure geometry 

parametrically, 

(3.3) ( ) ( ) ( ){ } .,,,,, buauQuPu T ≤≤== ΦΦΦCr

(Note that unlike Eq. (2.1), C(u, Φ) is a function of the design parameters.)  It is also 

assumed that the emissivity, ε(u), is specified, and either the temperature or the heat flux 

is known at every point on the enclosure surface.  In particular, Ttarget(u) is specified over 

the design surface and the heat flux distribution corresponding to the heater settings 

contained in Φ, qs(u, Φ), is specified over the heater surface. 

Once the enclosure is represented parametrically, it is possible to write the 

integral equation governing the radiosity distribution, 

( ) ( ) ( ) ( ) ( ) ,',',,',, duuukuqugubuq
b

a

oo ∫+= ΦΦΦΦ (3.4) 

where if u lies on a surface where T(u, Φ) is specified, 

(3.5) ( ) ( ) ( ) ( ) ( ),1,,, 4 uuguTuub εσε −== ΦΦ

or, if u lies on a surface where qs(u) is specified, 

( ) ( ) ( ) .1,,, == uguqub s ΦΦ (3.6) 

The kernel in Eq. (3.4), k(u, u′, Φ), is the configuration factor from an infinitesimal area 

element at u to an infinitesimal area element at u′ divided by du′, and is a function of the 

enclosure geometry.  Accordingly, unlike the kernel in Eq. (2.3), k(u, u′, Φ) is dependent 

on the design parameters, which introduces some additional complexity into the analysis.  

The kernel is given by 
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(Hollands, 1999) where  is the surface normal vector at u,  is a unit 

vector with its tail at u pointing in the direction of u′, and s(u, u′, Φ) is a vector 

connecting  to ; these geometric terms are shown in Fig. 3.2.  The 

surface discriminant, J(u, Φ), scales an infinitesimal increment in parametric space, du, to 

an infinitesimal area on the enclosure surface, dA(u, Φ), 

( Φ,un ) )

) )

( Φ,', uue

( Φ,uC ( Φ,'uC

( ) ( ) .,, duuJudA ΦΦ = (3.8) 

All of the terms in the kernel are found directly from the parametric functions that 

represent the enclosure geometry: 
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Thus, once a suitable parametric representation for the enclosure geometry has been 

identified, the kernel of the governing integral equation can be formed directly from 

C(u,Φ) by performing algebraic operations involving differential calculus.   

 Once the radiosity distribution has been solved, the unknown heat flux 

distribution over the design surface is found by  

( ) ( ) ( ) ( ) .',',,',, ∫−=
b

a

oos duuukuququq ΦΦΦΦ (3.13) 
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Figure 3.2: Geometric quantities used to form k(u, u′, Φ). 

 The equation for the first-order radiosity sensitivity distribution is found by 

directly differentiating Eq. (3.3) with respect to a design parameter.  In particular, the 

first-order radiosity sensitivity with respect to the pth design parameter is governed by 
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The derivative is brought into the integral in Eq. (3.14) by applying Liebnitz’s rule and 

noting that the integration bounds are constants, 
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(Since the enclosure is assumed to be unobstructed, k(u,u′,Φ) is continuous with respect 

to Φ and its derivatives are known to exist.)  Unlike the governing equation for the first-
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order radiosity sensitivity derived in the previous chapter, Eq. (3.15) contains the 

radiosity as well as the first-order kernel derivatives.  Nevertheless, it is still a Fredholm 

integral equation of the second-kind providing that ∂k(u,u′,Φ)/∂Φp has been found by 

differentiating Eq. (3.7) and if qo(u) is known from solving Eq. (3.3).   

By differentiating Eq. (3.15) with respect to another design parameter, say Φq, 

and following the same algebraic steps, the second-order radiosity sensitivities are 

governed by 

 
 

(3.16) 
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Again, Eq. (3.16) is a Fredholm integral equation of the second-kind, providing that 

qo(u), ∂qo(u)/∂Φp, and ∂qo(u)/∂Φq have been found by solving Eqs. (3.4) and (3.15), and 

∂k(u, u′, Φ)/∂Φp, ∂k(u, u′, Φ)/∂Φq, and ∂2k(u, u′, Φ)/∂Φp∂Φq have been calculated by 

differentiating Eq. (3.5). 

 Finally, once the radiosity sensitivities have been solved, the first- and second-

order heat flux sensitivities needed to calculate the gradient vector and the Hessian matrix 

are found by substituting the radiosity sensitivities into the derivatives of Eq. (3.12),  
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and  
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respectively. 
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3.4 Solution of the Governing Equations 

Since analytical solutions to Fredholm integral equations of the second kind are usually 

intractable, Eqs. (3.4), (3.15), and (3.16) must be solved numerically using the procedure 

described in the previous chapter.   

First, consider the solution for the radiosity distribution.  The parametric domain 

is divided into N elements, the ith element centered at ui with a width ∆ui; each of these 

elements corresponds to an area element ∆Astripi on the enclosure surface that is infinitely 

long but has a finite width, as shown in Fig. 2.2.  Next, the integrals over the entire 

domain of u, a ≤ u ≤ b, are rewritten as the sum of N integrals, with the jth integral taken 

over the domain uj − ∆uj/2 ≤ u ≤ uj + ∆uj/2.   

 Once this is done, the radiosity is assumed to be uniform over each area element, 

and is extracted from each of the integrals.  These integrals now only contain the kernel 

of Eq. (3.8) and its derivatives; carrying these integrals out results in 
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where qoi(Φ) = qo(ui, Φ), bi = b(ui, Φ), gi = g(ui), and dFi-stripj(Φ) is the infinitesimal 

configuration factor from ui to the finite area element dAstripj centered on uj.  Assuming 

that the enclosure is parameterized in a counter-clockwise manner (so that ( )Φ,ˆ iun  

points into the enclosure), dFi-stripj(Φ) is given by 
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(Hollands, 1999) with the terms in Eq. (3.20) shown in Fig. 3.3. 
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Figure 3.3: Calculation of dFi-stripj(Φ). 

 

Writing Eq. (3.19) for each element results in a system of N equations containing 

N unknowns, which can be rearranged into a matrix equation, 

( ) ( ) ( ),ΦΦΦ bx =A (3.21) 

where x(Φ) = {qo1(Φ), qo2(Φ), …, qoN(Φ)}T, b(Φ) = {b1(Φ), b2(Φ), …, bN(Φ)}T, and  
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Matrix A is usually well-conditioned and can be inverted using traditional linear algebra 

techniques such as LU decomposition and Gauss-Seidel iteration.  Finally, the unknown 

 67



heat flux values are calculated by substituting the radiosity values into the discretized 

form of Eq. (3.13),  
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 The first- and second-order radiosity sensitivities are found in a similar way.  

First, the domain of the integrals in Eqs. (3.15) and (3.16) are subdivided using the same 

parametric quadrature as before.  Next, the radiosity, and first- and second-order radiosity 

sensitivities are assumed uniform over each finite area element and are extracted from the 

integrals.  Carrying out the remaining integrals (containing the kernel and kernel 

sensitivities) results in  
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for the second-order sensitivities.   

If the radiosity distribution has been found by solving Eq. (3.21), and if 

∂[dFi−stripj(Φ)]/∂Φp has been calculated by differentiating Eq. (3.20), then the first-order 

radiosity values are the only unknowns in Eq. (3.24).  Writing Eq. (3.24) for each element 

results in another system of N equations containing N unknowns, which is rearranged into 

a matrix equation 

 68



( ) ( ) ( ),'' ΦΦΦ bx =A (3.26) 

where A(Φ) is defined in Eq. (3.22), x′(Φ) = {∂qo1(Φ)/∂Φp, ∂qo2(Φ)/∂Φp, …, 

∂qoN(Φ)/∂Φp}T, and  
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Likewise, once the radiosity and first-order radiosity sensitivities have been found 

by solving Eq. (3.21) and Eq. (3.26), and if ∂2[dFi-stripj(Φ)]/∂Φp∂Φq has been calculated, 

then the second-order radiosity sensitivities are the only unknowns in Eq. (3.25).  Writing 

Eq. (3.25) for each element results in a third system of N equations containing N 

unknowns, which is rearranged to form 

( ) ( ) ( ),'''' ΦΦΦ bx =A (3.28) 

where A(Φ) is again defined in Eq. (3.22), x′′(Φ) = {∂2qo1(Φ)/∂Φp∂Φq, ∂2qo2(Φ)/∂Φp∂Φq, 

…, ∂2qoN(Φ)/∂Φp∂Φq}T, and 
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Finally, the first- and second-order heat flux sensitivities are found by substituting 

the radiosity sensitivities into the discretized forms Eqs. (3.17) and (3.18),  
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and 
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respectively. 

 As in the optimization methodology discussed in the previous chapter, the A(Φ) 

matrix is common to the radiosity equation as well as the first- and second-order radiosity 

sensitivity equations.  Furthermore, since b′(Φ) is a function of the radiosity distribution 

and b′′(Φ) is a function of the radiosity and first-order radiosity sensitivities, the radiosity 

sensitivities are efficiently calculated by first decomposing A(Φ) to solve Eq (3.21), and 

then using this decomposition to solve Eqs. (3.26) and (3.28) sequentially.  Once this is 

done, the heat flux and heat flux sensitivities are found using Eqs. (3.23), (3.30), and 

(3.31).  Unlike the optimization methodology discussed in the previous chapter, however, 

A(Φ) is dependant on the design parameters and must be decomposed at least once 

during every minimization iteration.  
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3.5 Parametric Representation of Enclosure Surfaces through NURBS 

Although any parametric representation can be used to represent the enclosure geometry, 

non-uniform rational B-spline (NURBS) curves have several unique properties that are 

advantageous for geometric optimization.  This type of parameterization has become the 

standard method of curve and surface representation in CAD/CAM and computer 

graphics applications, and was first applied to represent radiant enclosure geometry by 

Daun and Hollands (2001).  Detailed descriptions of NURBS curves are provided by 

Piegel and Tiller (1997) and Farin (1997). 

 In general, NURBS curves are formed by multiplying a set of points {Pi, i = 

0…n}, with a corresponding set of scalar functions, {Ni, p(u), i = 0…n}:   

( ) ( ) .10,
0

, ≤≤= ∑
=

uuNu
n

i
piiPC (3.32) 

(It is customary to parameterize so that 0 ≤ u ≤ 1, but this can be adjusted as necessary.)  

Each point is called a control point, and the set of control points forms a control polygon.  

The scalar functions are basis functions, which are ratios of two polynomials of order p 

defined in a piecewise manner over the domain of u.  The present application uses Bézier 

curves to represent the enclosure geometry, which are a special subclass of NURBS 

curves where the polynomial in the basis function denominator is equal to unity and the 

number of control points exceeds the order of the polynomial in the numerator by exactly 

one.  An example of a Bézier curve is shown in Fig. 3.4, and the corresponding basis 

functions are plotted in Fig. 3.5.   
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Figure 3.4: Example of a Bézier curve. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Basis functions corresponding to the Bézier curve in Fig.3.4. 
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One of the main advantages of parametric representation through NURBS is the 

computational efficiency with which points on the curve are calculated.  This arises from 

the recursive generation of the polynomials in the NURBS basis function, using the next 

lower-order polynomials.    For example, while Bézier basis functions are defined 

explicitly by  

( ) ( ) ( ) ,10,1
!!

!
, ≤≤−

−
= uuu

ipi

p
uB ii

pi (3.33) 

they can also be formed recursively using  

( ) ( ) ( ) ( ) ,10,1 1,1,1, ≤≤+−= −−− uuuBuBuuB pipipi (3.34) 

with B−1,p−1(u) = Bp,p−1(u) = 0 and B0,0(u) = 1, as shown in Fig. 3.6.   

 
B0,0(u) = 1 

 

 

 

 

 

B0,1(u) = 1−u B1,1(u) = u 

B0,2(u) = (1−u)2 B1,2(u) = 2u(1−u) B2,2(u) = u2

× u × u × u 

× u × u 

× u 

×(1−u) 

×(1−u) 

×(1−u) ×(1−u) 

×(1−u) 

×(1−u) 

B2,3(u) = 3u2(1-u) B3,3(u) = u3B1,3(u) = (1-u)3 B1,3(u) = 3u(1-u)2

 

Figure 3.6: Recursive formulation of cubic Bézier basis functions. 

 

Another favorable property of NURBS curves is the availability of the curve 

derivatives, which are used in this application to calculate the normal vector and surface 

discriminant defined in Eqs. (3.10) and (3.12), respectively.  The curve derivatives are 
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found by differentiating Eq. (3.32) with respect to u and noting that the control points are 

independent of u: 
( ) ( )
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0

,∑
= ∂

∂
=

∂
∂ n

i

pi
i u

uN

u
u PC

(3.35) 

The recursive formulation of the basis functions permits the efficient calculation of the 

analytical derivatives through numerical routines.  For example, the derivatives of Bézier 

basis functions are given by,  

( ) ( ) ( )[ ],1,1,1
, uBuBp
u

uB
pipi

pi
−−− −=

∂
∂ (3.36) 

with B−1,p−1(u) = Bp,p−1(u) = 0.   

 In the context of geometric optimization, parametric representation through 

NURBS presents further advantages.  The simplest way of modifying the enclosure 

geometry is to set the design parameters equal to the coordinates of selected control 

points; since the basis functions are independent of the control points, they do not need to 

be recalculated every time a design parameter is adjusted.  Also, because all the basis 

functions {Ni,p(u), i = 0…n} are of the same order of magnitude, the curve geometry is 

equally sensitive to the location of each control point.  This helps ensure that the 

objective function sensitivities have approximately the same magnitude, which improves 

the scaling of the optimization problem.  (Objective function scaling is discussed further 

in Appendix A.) 

Finally, the location and shape of the control points can be used to predict the 

location and shape of the curve.  In particular, the curve begins at the first control point, 

C(0) = P0, ends at the last control point, C(1) = Pn, and is always contained within the 
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convex hull of the control polygon.  This is a consequence of the partition-of-unity 

property of NURBS basis functions, 

( )∑
=

=
n

i
pi uN

0
, .1 (3.37) 

and the fact that N0, p(0) = Nn, p(1) = 1, as shown in Fig. 3.5.  Thus, the domain of the 

curve can be restricted by constraining the size and shape of the control polygon.  This 

property is later used to restrict the height and width of the enclosure and to ensure that 

the enclosure remains unobstructed throughout the optimization process.  
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3.6 Implementation and Demonstration 

The optimization methodology described in the above sections is demonstrated by 

applying it to design the two-dimensional enclosure shown in Fig. 3.7.  The enclosure 

consists of four sides; the design surface is located at the bottom of the enclosure and has 

a width W = 1 m, while the two vertical surfaces are adiabatic with heights H = 0.5 m.  

The top surface is represented by a cubic Bézier curve; it is heated over the left- and 

right-hand sides and is insulated in the middle.  The design surface has an emissivity εDS 

= 0.5, the adiabatic surfaces (including both vertical surfaces and the insulated portion of 

the top surface) have emissivities of εRS = 0.7, and the emissivity of the heated portion of 

the top surface is εHS = 0.9.  The shape of the upper surface is governed by two design 

parameters, Φ = {Φ1, Φ2}T, which control the x- and y- coordinates of the middle two 

control points of the Bézier curve, respectively.  The heat flux distributions over the 

heated regions of the top surface are uniform and are given by 

( ) ( ) ,1
Φ

Φ
HS

sHS L
q = (3.38) 

where LHS(Φ) is the chord length of the heated regions of the top surface, found by 

( ) ( ) .2
3125.0

25.0
∫= duuJLHS Φ (3.39) 

Thus, while the heat flux over the heated regions of the top surface is a function of the 

design parameters, the total amount of heat entering the enclosure through the heaters 

(and leaving through the design surface) is independent of the design parameters. 
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Figure 3.7: Example design problem. 

 

The objective of the design problem is to identify the shape of the top surface that 

produces a uniform heat flux qsDS = −1 W/m2 and a uniform emissive power EDS = 0 W/m2 

over the design surface, which is found by minimizing the objective function defined in 

Eq. (3.1).  The design parameters are constrained to lie within the rectangular feasible 

region defined by 

(3.40)  ,0 1 L≤Φ≤

and 

(3.41)  .32 HH ≤Φ≤
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The upper and lower bounds on Φ1 and the lower bound on Φ2 ensure that the enclosure 

geometry remains unobstructed, while the upper bound on Φ2 defines the maximum 

enclosure height.  The feasible region is plotted in Fig. 3.8.   
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Figure 3.8: Plot of F(Φ) over the feasible region. 

 

 Two different minimizations were carried out; the first from Φ0,1 = {0.8, 1.3}T, 

and the second starting at Φ0,2 = {0.5, 1}T.  The optimization was carried out using 

Newton’s method, and the constraints in Eqs. (3.40) and (3.41) were enforced using the 

active set method.  A total of 512 elements was used to calculate the heat flux 

distribution; grid refinement studies based on the objective function error and the energy 

imbalance, defined in Eqs. (2.35) and (2.36) respectively, were performed using the 
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initial set of design parameters to ensure this level number of elements was sufficient.  In 

each case, the grid-independent value of F(Φ) was taken at the highest level of grid 

refinement, F∞(Φ0) ≈ FN=2048(Φ0), and the results are summarized in Fig. 3.9 and Table 

3.1.  Similar studies were carried out at the local minima, Φ*,1 and Φ*,2, in order to ensure 

grid independence. 

 F∞(Φ) FN=512(Φ) E(N = 512, Φ) %EI(Φ) 
Φ0,1 1.497 x 10-3 1.495 x 10-3 −0.16 % 0.112 % 
Φ0,2 1.173 x 10-3 1.171x 10-3 −0.18 % 0.021 % 

 

Table 3.1: Grid refinement statistics for initial enclosure configurations shown in 

Figs. 3.11 (a) and 3.13 (a). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Grid refinement studies for the design problem shown in Fig. 3.7. 
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 The first optimization started at Φ0,1 = {0.8, 1.3}T and required four steps to 

identify a local minimum at Φ*,1 = {1, 0.5896}T, corresponding to F(Φ∗,1) = 1.915 × 10−4.  

The feasible region and minimization path is plotted in Fig. 3.10, and the initial and final 

enclosure configurations and heat flux distributions over the design surface are shown in 

Figs. 3.11 and 3.14, respectively.   
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mization path starting from Φ0,1 = {0.8, 1.3}T and ending 

at Φ*,1 = {1, 0.5896}T. 
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 (b) Φ*,1 = {1, 0.5896}T(a) Φ0,1 = {0.8, 1.3}T

Figure 3.11: Enclosure geometries corresponding to (a) Φ0,1 = {0.8, 1.3}T and 

(b) Φ*,1 = {1, 0.5896}T. 

 

 From examining Figs. 3.8 and 3.10, it is clear that there exists at least one other 

local minimum at the lower left-hand corner of the feasible region.  A second Newton 

minimization is performed starting from Φ0,2 = {0.5, 1}T.  Three steps are required to 

reach a second local minimum Φ*,2 = {0, 0.5}T, which corresponds to F(Φ*,2) = 2.275  × 

10−4.  This minimization path is shown in Fig. 3.12, and the initial and final enclosure 

configuration and heat flux distribution over the design surface are shown in Figs. 3.13 

and 3.14.  
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Figure 3.12: Minimization path starting from Φ0,2 = {0.8, 1.3}T and ending 

at Φ*,2 = {0, 0.5}T. 
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Figure 3.13: Enclosure geometries corresponding to (a) Φ0,2 = {0.5, 1}T and 

(b) Φ*,2 = {0, 0.5}T. 
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Figure 3.14: Heat flux distributions corresponding to the initial and optimal enclosure 

configurations shown in Fig. 3.11 and Fig. 3.13. 

 

From examining Fig. 3.14, the heat flux distributions corresponding to the local 

minima, qs(u, Φ∗,1) and qs(u, Φ∗,2), both match the desired heat flux distribution over the 

design surface much better than the initial solutions, qs(u, Φ0,1) and qs(u, Φ0,2), 

respectively.  The heat flux distribution over the design surface obtained with Φ*,1 is  

slightly better than the one obtained with Φ*,2, although the difference between these two 

heat flux distributions is very small.  On the other hand, enclosure geometry 

corresponding with Φ*,2 is rectangular and therefore would be much easier to implement 

than the geometry corresponding with Φ*,1, where the top of the enclosure is curved.  
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This example demonstrates that, rather than relying on the solution obtained from a single 

local minimum, a superior solution to the design problem can sometimes be found by 

comparing the merits of solutions obtained at multiple local minima.   

It should be noted, however, that while the existence and general location of the 

local minima was easily determined in this case by examining the plot of the objective 

function over the feasible region, in problems where the objective function is 

computationally expensive to calculate the CPU time needed to plot the feasible region 

may be prohibitive and certainly negates the computational efficiency of the gradient-

based minimization.  Furthermore, most practical design problems involve more than two 

parameters, which makes visualization of F(Φ) very difficult.   

Accordingly, local minima are usually located by performing multiple gradient-

based minimizations, each from a different initial point.  This process can be quite time-

consuming if the feasible region is large; in fact, the probability of locating all the local 

minima approaches unity only as the number of minimizations becomes infinite.  This 

problem can be overcome by employing a sophisticated “multistart” algorithm (e.g. 

Ugray et al., 2002), which reduces the number of gradient-based minimizations that need 

to be performed by employing a sophisticated algorithm to determine the most effective 

locations of the initial points in the feasible region.   
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3.7 Conclusions 

This chapter presented an optimization methodology for solving radiant enclosure design 

problems where both the enclosure geometry and heat flux distributions over the heater 

surface are unknown.  The heat flux distribution is solved using the infinitesimal-area 

analysis method, and the minimization is carried out using Newton’s method.  The first- 

and second-order objective function sensitivities are found from the heat flux 

sensitivities, which in turn are efficiently calculated by post-processing the radiosity 

distribution.  A method for representing the enclosure geometry using non-uniform 

rational B-spline (NURBS) curves was presented; this technique is well suited for radiant 

enclosure analysis because the geometric terms used to solve the heat flux distribution are 

readily available, and also presents several important advantages in the context of 

geometric optimization. 

  The optimization design methodology was demonstrated by solving a 2-D radiant 

enclosure composed of diffuse-gray walls and containing a transparent medium.  The 

enclosure walls were represented by Bézier curves, which are a type of NURBS curve.  

In this example, the feasible region contained two local minima corresponding to two 

different solutions to the design problem.  Although the existence and locations of the 

local minima were found by plotting the objective function over the feasible region in this 

example, methods for identifying multiple local minima in more complex problems were 

briefly discussed. 

While the optimization methodology presented here can be used to solve 

geometric optimization problems involving diffuse-walled radiant enclosures, the next 
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chapter presents a design methodology for optimizing the shape of radiant enclosures 

containing specularly-reflecting surfaces, which is a more commonly encountered 

problem in industrial settings. 
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Chapter 4: 
Geometric Optimization of Radiant Enclosures 
Containing Non-Diffuse Surfaces 
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4.1 Introduction 

The design methodology presented in the previous chapter is well suited for optimizing 

the geometry and heater settings of radiant enclosures composed of diffusely emitting and 

reflecting surfaces.  In reality, however, the optical properties of most surfaces are 

directionally-dependent and it is often necessary to take this into account in order to 

construct a sufficiently accurate heat transfer model.  Moreover, many applications use 

specularly-reflecting (mirror-like) surfaces to achieve the desired heat flux and 

temperature distributions over the design surface.  Examples include solar concentrator-

collectors, light boxes in illumination applications, and reflectors used in infrared baking 

ovens.   

 Until recently, these problems were almost exclusively solved using the forward 

design methodology, where an acceptable enclosure design is found by trial-and-error, 

starting from an initial guess.  As previously noted, forward design methodologies 

typically require many iterations and a substantial amount of design time, and are almost 

always stopped before the solution has been optimized.  This is particularly true in this 

case, since the complicated nature of radiant exchange between non-diffuse surfaces 

makes an intuitive understanding of the problem physics particularly elusive.  Because of 

this, the designer rarely knows how to modify the enclosure configuration at each 

iteration in order to maximize the improvement in design performance.  Furthermore, the 

analysis requires considerably more computational effort to carry out at each design 

iteration, compared with techniques used to treat diffuse-walled enclosure problems.   
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 Many approximate analytical design techniques have been developed as 

alternatives to the forward design methodology.  Methods based on non-imaging optics 

analysis have proven particularly popular (Winston, 1991).  They were first developed to 

design apparatuses used in high-energy physics applications, and have subsequently been 

extended to solve many different types of design problems, including those that arise in 

illumination (e.g. Gordon, 1993) and solar energy applications (e.g. Chen et al., 2001).   

The most standard of these techniques is the edge-ray method, which uses a complex 

mathematical procedure based on analytical geometry and calculus to determine the 

optimal shape of reflector surfaces, and is most often applied to design concentrators that 

have the highest possible radiant heat flux concentration ratios between entrance and exit 

apertures.  Güven (1994) also presented a semi-analytical method for designing collector 

geometries.  In this method, the optimal collector geometry is found by first deriving an 

analytical expression for the intercept factor (defined as the fraction of reflected radiation 

that reaches the receiver) as a function of two geometric parameters.  The collector 

geometry is then optimized by setting the derivatives of this function with respect to the 

geometric parameters equal to zero, and then solving the resulting equations.  While 

approximate analytical techniques are very powerful and widely-used design tools, 

however, they can only be applied to treat a few types of enclosure geometries and do not 

account for surface properties having both diffuse and specular components, as shown by 

Maruyama (1993).  Moreover, the designer must possess specialized mathematical 

knowledge in order to carry out the analysis.   
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 Because of these shortcomings, many design methodologies have been developed 

that are based on numerical simulations.  Most of these simulations are based on the 

Monte Carlo ray-tracing method; this powerful analysis technique can be applied to solve 

complex problems and is also very straightforward to implement because of its inherent 

simplicity.  For example, Ryan et al. (1998) used a Monte Carlo technique to analyze a 

cylindrical solar collector and drew general conclusions about the optimal collector 

configuration by performing a series of univariate parametric studies.  Mushaweck et al. 

(2000) calculated the optimal reflector shapes for non-tracking parabolic trough 

concentrators.  The average utilizable power was first calculated by performing a 

numerical analysis involving ray-tracing for concentrators with different upper and lower 

acceptance angles, and then plotted over a rectangular feasible region defined by the 

maximum and minimum values of the acceptance angles in order to identify the optimal 

reflector shape.  Although numerical simulation techniques can treat a more extensive set 

of problems than the approximate analytical methods, both of the above studies relied on 

primitive optimization algorithms that required a substantial amount of design time and 

restricted the number of design parameters that could be considered in the analysis. 

 A more sophisticated optimization methodology is described by Ashdown (1994), 

in which a ray-tracing technique used to simulate illumination within an enclosure is 

coupled with a genetic algorithm that searches for the globally optimal enclosure 

geometry.  Genetic algorithms mimic natural selection as it occurs in nature.  This class 

of algorithms generates new designs by “mating” pairs of previously generated designs 

and by “mutating” existing designs.  The designs that perform well are favored in the 
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mating process, and a near-optimum solution is usually found after many generations.  

(Forrest, 1993, provides a detailed discussion of genetic algorithms.) 

 This chapter describes an optimization design methodology originally presented 

in Daun et al. (2003d) that overcomes many drawbacks of the standard numerical and 

approximate analytical approaches that are traditionally applied to design enclosures 

containing non-diffuse surfaces.  The objective of the design methodology is to identify 

the enclosure geometry and heater settings that produce the desired heat flux and 

temperature distribution over the design surfaces.  As is done in the other optimization 

methodologies, the desired temperature distribution is first specified over the design 

surface and the enclosure configuration that produces the desired heat flux distribution is 

then found by minimizing an objective function.  A Monte Carlo technique based on 

exchange factors is used to calculate the heat flux distribution over the design surface; 

unlike the infinitesimal-area analysis used in the previous chapters, this technique induces 

a statistical uncertainty in the objective function and gradient vector.  Accordingly, the 

Kiefer-Wolfowitz method, a gradient-based algorithm developed for optimizing 

stochastic systems in which unbiased gradient estimates are unavailable, is employed to 

carry out the minimization.  The optimization methodology is demonstrated by using it to 

solve two design problems involving two-dimensional radiant enclosures containing both 

diffuse and non-diffuse surfaces.  
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4.2 Optimization Strategy 

Consider the radiant enclosure design problem shown in Fig. 4.1, where some of the 

enclosure surfaces have directionally dependent properties.  The objective of this problem 

is to determine the optimum enclosure geometry and heat flux distribution over the heater 

surface that produces the desired temperature and heat flux distribution over the design 

surface.  As was done in the previous chapter, the design problem is solved by specifying 

the temperature distribution over the design surface and using the unspecified heat flux 

distribution to define the objective function, 

( ) ( )[ ] ,1
1

2∑
=

−=
DSN

j

target
sjsj

DS

qq
N

F ΦΦ (4.1) 

where the design parameters contained in Φ control the enclosure geometry and the heat 

flux distribution over the heater surface.  The enclosure configuration that produces a 

heat flux distribution most closely matching the desired distribution corresponds to the 

design parameters contained in Φ∗, which in turn is found by minimizing F(Φ).   

Unlike the methodology presented in the previous chapter, however, the 

complicated nature of radiant exchange between non-diffuse surfaces precludes the use of 

a deterministic technique like infinitesimal-area analysis to solve for the heat flux 

distribution at each iteration.  Instead, the heat flux distribution over the design surface is 

estimated using exchange factors calculated by the Monte Carlo method.  As will be 

shown in the following section, the heat flux at each discrete location over the design 

surface, qsj(Φ), is estimated by ( )Φsjq~ , which contains a statistical uncertainty due to 

sampling errors in the exchange factors.  Accordingly, the objective function in Eq. (4.1) 

is approximated by 
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Figure 4.1: Example radiant enclosure design problem, where some surfaces have 

directionally-dependent properties. 
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which is subject to a sampling error, δ1(Φ), induced by the statistical uncertainty in the 

heat flux distribution.  Using the technique described by Hammersley and Handscomb 

(1992), the sampling error is estimated by 

(4.3) 

where Γ(Φ) is the variance-covariance matrix of the heat flux values and is defined in the 

next section.  The uncertainty inherent in the evaluation of ( )ΦF~  makes the optimization 

of stochastic systems somewhat more complicated than that of deterministic systems, 

since the “exact” value of F(Φ) is unknown.   
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 Many methods used to optimize stochastic systems are based on those used to 

optimize deterministic systems.  The Kiefer-Wolfowitz method (Kiefer and Wolfowitz, 

1952, Kushner and Clark, 1978) is a gradient-based optimization technique used when an 

unbiased estimator of ∇F(Φ) is unavailable.  This method is based on the steepest-

descent algorithm described in Appendix A; at the kth iteration, the step size is set equal 

to a non-vanishing sequence based on the iteration number, 

,10,0 ≤≤= a
k a

k αα (4.4) 

and the search direction is found by 

(4.5) 

where ( )kg Φ~  is a  second-order central difference approximation of ∇F(Φk).  The pth 

term of ( )kg Φ~  is given by 
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where ep is the unit vector of the pth direction, and hk is the interval used in the finite 

difference approximation at the kth iteration. 

 This estimate contains two sources of error: a bias error, δ2,p,k(Φk, hk), due to the 

truncation of the higher-order terms in the finite difference approximation, and a random 

error, δ3,p,k(Φk, hk), induced by the sampling error in ( )ΦF~ .  (This sampling error tends to 

dominate the finite difference approximation of the higher order derivatives, which is 

why the steepest-descent direction is used instead of the Newton or quasi-Newton 

directions.)  The bias error is given by (Pflug, 1996) 
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(Note that in this application the exact value of the gradient vector is unknown.)  Since 

the central difference approximation improves with diminishing step size, δ2,p,k(Φk,hk) 

decreases as hk becomes small.  Assuming independent estimates of ( )k
p

k hF ⋅+ eΦ~  and 

( k
p

k hF ⋅− eΦ )~ , the random error is found from 
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and tends to increase as hk becomes small, since decreasing hk does not necessarily 

decrease the magnitude of the numerator in Eq. (4.8).  It is therefore important to select 

an intermediate value for hk that ensures that both δ2,p,k(Φk, hk) and δ3,p,k(Φk, hk) are 

sufficiently small; this is particularly true in the vicinity of Φ∗, where the magnitude of 

the gradient vector becomes small and these errors begin to dominate the estimate of 

∇F(Φk).  One choice is to reduce hk with each successive iteration according to a series 

similar to Eq. (5.4), 

.10,
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≤≤= b
k
hh b

k (4.9) 

Pflug (1996) recommends values of a = 1 and b = 1/3 for Eqs. (4.4) and (4.9), 

respectively.    

Another way of reducing δ3,p,k(Φk, hk) is to use the same sequence of random 

numbers (common random numbers) to generate both ( )kp
k hF ⋅+ eΦ~  and 

( kp
k hF ⋅− eΦ )~ ; this approach is discussed in greater detail in Morton and Popova 

(2001).  Finally, the random error can be reduced as Φk approaches Φ∗ by increasing 

number of statistical samples used to approximate the objective function at each 
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successive iteration, which decreases both ( )kp
k h⋅+ eΦ1δ  and ( )kp

k h⋅− eΦ1δ .  This 

technique is applied to solve the example problems described later in this chapter. 
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4.3 Solution of the Governing Equations 

In this application, the heat flux distribution over the design surface is estimated using 

exchange factors calculated by the Monte Carlo method.  The Monte Carlo method has 

been extensively used to analyze many different radiant enclosure problems, and is 

especially well suited for analyzing radiant enclosures containing surfaces with 

directionally-dependent properties.  Although the Monte Carlo method has been 

described extensively in the literature (e.g. Siegel and Howell, 2002a, Modest, 2003) it is 

presented again here in order to demonstrate its implementation in the context of 

stochastic optimization. 

The first step of this method is to discretize the enclosure surface into N elements, 

with the ith element having an area ∆Ai.  The emissivity, εi, and either the heat flux or the 

temperature are known at every point on the enclosure surface and are taken to be 

uniform over each element.  In particular, it is assumed that the desired temperature 

distribution is specified for elements located on the design surface, Ti = Ti
target, and the 

heat flux distribution corresponding with the heater settings contained in Φ, qsi(Φ), is 

specified for elements on the heater surface.  Performing an energy balance over the ith 

element results in the equation 
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where Ebi(Φ) = σTi
4(Φ) and Fji(Φ) is the exchange factor from the jth to the ith element, 

defined as the fraction of the total radiant energy emitted by the jth element that is 

absorbed by the ith element.  By applying the reciprocity rule of exchange factors, Eq. 

(4.10) can be rewritten in a more compact form, 
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 Although the analytical solution for the exchange factor is tractable for diffuse-

walled enclosure problems, this is not the case if the enclosure surface properties are 

directionally-dependent.  Instead, the exchange factor, Fij(Φ), can be expressed as the 

expectation of a random variable, E[Fij(Φ, ξ)], where ξ contains three other random 

variables that specify the emission location and direction of a random bundle leaving the 

ith surface element, as shown in Fig. 4.2.  Theoretically, Fij(Φ) could be found by 

integrating over the probability distributions governing each ξi, 
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(This is, in fact, equivalent to carrying out the integration used to calculate exchange 

factors between diffuse surfaces.)  Instead, we use a Monte Carlo simulation to estimate 

Fij(Φ) in Eq. (4.12), 
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where Nbi is the total number of bundles emitted from the ith element, and Nbij is the 

number of those bundles absorbed by the jth element.  Due to the law of large numbers, 

the Monte Carlo approximation of E[Fij(Φ, ξ)] becomes exact with probability one as Nbi 

approaches infinity.  Since we are restricted to using a finite number of bundles, however, 

( )ΦijF~  contains a random error that propagates throughout the solution. 
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Figure 4.2: Random variables contained in ξ control the location and direction of 

bundle emission from a surface element in a two-dimensional enclosure. 

 

 Assume that the elements are reordered so that Ti is specified for i = 1…N′ and qsi 

is specified for i = N′+1…N.  Equation (4.11) can then be rewritten as  
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for elements where Ti is specified, and 
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for elements where qsi is specified.  Equations (4.14) and (4.15) are arranged so that the Ti  

and qsi terms on the right-hand side are known, while those on the left are unknown and 

will contain a random error when they are solved due to the uncertainty in the exchange 

factors.  Writing these equations for all elements results in a system of N equations 

containing N unknowns that can be rearranged into a matrix equation, 

( ) ( ) ( ),~~~
ΦΦΦ bx =A (4.16) 
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where ( ) ( ) ( ) ( ) ( ){ }T
bNbNsNs EEqq ΦΦΦΦΦ ~,,~,~,,~~

1''1 KK +=x .  (The rank of ( )ΦA~  can be 

reduced by excluding equations corresponding to elements where qsi is equal to zero.)  

This linear system is usually well conditioned, and Eq. (4.16) can be easily solved to 

yield the heat flux distribution over the design surface. 

 The heat flux distribution over the design surface is subject to a random error 

induced by the sampling error in the exchange factors (which is responsible for δ1(Φ)), as 

well as a bias error caused by assuming a uniform heat flux and temperature distribution 

over each element.  The former error is reduced by increasing the number of bundles used 

to estimate the exchange factors, while the latter diminishes at higher levels of grid 

refinement.  Nevertheless, both errors result in a grid-dependent objective function 

containing a statistical uncertainty, which renders it difficult to optimize.   

 The magnitude of the random error is estimated by performing a replication 

procedure.  Suppose a total of Nb bundles are used to calculate the exchange factors 

throughout the process.  A sequence of Monte Carlo simulations are used to estimate p 

independent sets of exchange factors, each using Nb/p bundles.  Each set of exchange 

factors is then used to find an estimate of the heat flux distribution over the design 

surface, through Eq. (4.16).  Performing this procedure for each set of exchange factors 

results in p independent solutions, mx~ , m = 1…p. 

 The heat flux at each discrete point over the design surface is then approximated 

as the average of the p independent solutions, 
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while the corresponding random error associated with qs(Φ) is estimated from the sample 

standard deviation, 

(4.18) 

where σi
2(Φ) is the sample variance of the p measurements, given by 
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It is important to note that while the random error of each exchange factor is independent, 

the operations performed when solving Eq. (4.16) induces a weak interdependence 

between the random errors of the heat flux terms.  The degree of dependence between the 

random errors in ( )Φsiq~  and ( )Φsjq~  is estimated from their covariance,  
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The sample variance and covariance terms form the variance-covariance matrix, Γ(Φ), 

which in turn is used to estimate the random error in ( )ΦF~  through Eq. (4.3). 
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4.4 Implementation and Demonstration 

The optimization methodology presented in the previous sections is demonstrated by 

using it to design two radiant enclosures.  In both cases, the goal of the design process is 

to identify an enclosure geometry that produces a uniform heat flux distribution over the 

temperature-specified design surface. 

 The first problem involves an enclosure consisting of a heater surface, a 

temperature-specified design surface, and two adiabatic reflector surfaces, and is shown 

in Fig. 4.3.  The heater and design surfaces are both diffuse and have an emissivity of ε = 

1, while the adiabatic surfaces are perfectly specular with a reflectivity ρs = 1.  A uniform 

heat input qsHS = 1 W/m2 is maintained over the heater surface, and the design surface has 

an emissive power EbDS = 0 W/m2.     

The objective of the design problem is to find the enclosure geometry that 

produces a uniform heat flux of qs
target = −1 W/m2 over the design surface, which is done 

by minimizing the objective function defined in Eq. (4.2).  The design parameters 

contained in Φ = {Φ1, Φ2}T control the x- and y-coordinates of the upper left-hand vertex 

of the enclosure, respectively.  Minimization is carried out using the Kiefer-Wolfowitz 

method starting from an arbitrarily chosen initial point, Φ0 = {−0.5, 0.5}T. 
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Figure 4.3: Radiant enclosure design problem involving two adiabatic, specularly-

reflecting surfaces. 

 

As previously mentioned, assuming a uniform heat flux and emissive power 

distribution over each surface element produces a discretization error in ( )Φsiq~ , and 

accordingly in ( )ΦF~ , that diminishes with increasing levels of grid refinement.  

Accordingly, a grid refinement study was performed at Φ0 = {−0.5, 0.5}T in order to 

determine how many elements should be used to carry out the analysis, which is shown in 

Fig. 4.4.  A constant ratio of bundles to elements, Nb/N = 2 × 105, was used to obtain 

approximately the same sampling error at every level of grid refinement.  An estimate of 

the grid-independent solution is obtained from the highest level of grid refinement, 
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( )0~ Φ∞F  = ( ) 1690.0~ 0
2048 == ΦNF .  The discretization error at the next highest level of 

refinement, N = 1024, is then estimated as –1.6 % of the grid-independent solution.   
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Figure 4.4: Grid refinement study for the design problem of Fig. 4.3. 

 

 Next, the effect of the number of bundles on the random error, δ1(Φ), is 

demonstrated by systematically increasing the number of bundles used to calculate 

( 0 )~ ΦF  for an enclosure having N = 1024 surface elements.  As shown in Fig. 4.5, a 

power law relationship exists between the number of bundles and the random error,  

( ) ,4320.1 5272.00
1

−= bNΦδ (4.21) 

which is consistent with the bN1  trend predicted by the central limit theorem.   
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Figure 4.5: Effect of the number of bundles on δ1(Φ0) for the design problem  

of Fig. 4.3. 

 

 Based on the above results, the Kiefer-Wolfowitz minimization was carried out 

using N = 1024 surface elements.  As previously noted, as Φk approaches Φ∗ the 

magnitude of the gradient vector becomes smaller and the search direction is more 

susceptible to influence from δ1(Φk, hk).  To account for this effect, the number of 

bundles used in the simulation was increased with each successive iteration according to  

(4.22) ,log10 BkANb +=
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where A = 160 × 106 and B = 20 × 106, chosen based on the results of the grid and bundle 

refinement studies shown in Figs. 4.4 and 4.5.  The minimization procedure was stopped 

when  ( ) ( ) 41 10~~ −− ≤− kk FF ΦΦ . 

 The resulting solution path is shown in Fig. 4.6.  Seven steps were required to 

identify a local minimum at Φ∗ = {0.0034, 0.8457}T, with ( )*~ ΦF  = 2.26  × 10−4.  The 

enclosure geometries corresponding to Φ0 and Φ∗ are shown in Fig. 4.7, while the heat 

flux distributions over the design surface are shown in Fig. 4.8.  A grid refinement study 

on ( * )~ ΦF  is also shown in Fig. 4.4, which confirms that a sufficient level of grid 

refinement was used to find the optimal solution. 
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Figure 4.6: Minimization path for the design problem of Fig. 4.3. 
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Figure 4.7: Initial and final enclosure geometries for the design problem of Fig. 4.3. 
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Figure 4.8: Initial and final design surface heat flux distributions for the design 

problem of Fig. 4.3. 
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 The second design problem is shown in Fig. 4.9, and is similar to the imaging 

furnace described by Maruyama (1993).  The enclosure consists of a cylindrical heating 

element surrounded by six reflecting surfaces and a design surface.  The heater surface is 

black and diffuse, and has a specified heat flux of qsHS = 1/2πR W/m2, where the radius of 

the heater element is R = 0.1 m.  The design surface has a specified emissive power 

Eb
target = 0 W/m2 and an emissivity εDS = 0.6.  The reflecting surfaces have the properties 

of polished nickel, with ρs = 0.65, ρd = 0.25, and ε = 0.1 (Birkebak et al. 1964.)   

 The objective of this problem is to identify the enclosure geometry that most 

closely produces a heat flux of qs
target = −0.5 W/m2 over the design surface.  The 

enclosure geometry is governed by five different parameters: Φ1 through Φ4 control the 

orientation of the reflector surfaces, while Φ5 specifies the height of the heater element 

over the design surface.  The optimal enclosure configuration was determined by 

minimizing the objective function defined in Eq. (4.2) using the Kiefer-Wolfowitz 

method.    

 Based on the results of grid- and bundle refinement studies similar to the ones 

shown in Figs. 4.4 and 4.5, 1024 surface elements were again used throughout the 

analysis and the values of A and B in Eq. (4.22) were set equal to 6 × 106 and 5 × 105, 

respectively.  Minimization was started at two different points, Φ0,1 = {0.25, 0.75, 0.75, 

1.25, 0.5}T, and Φ0,2 = {1, 1, 1, 1, 0.5}T, and was stopped when 

( ) ( ) 61 10~~ −− <Φ−Φ kk FF .  Two different local minima were identified; starting from 

Φ0,1, 18 steps were required to reach the first local minimum at Φ∗,1 = {0.2982, 0.6980, 
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0.7600, 1.3955, 0.5588}T with ( ) 51*, 1087.7~ −×=ΦF .   Starting from Φ0,2, 29 steps were 

required to reach Φ*,2 = {0.9453, 0.8777, 1.03397, 1.0184, 0.5520}T with 

( ) 52*, 1007.8~ −×=ΦF .   

The initial and final enclosure geometries for these cases are shown in Figs. 4.10 

and 4.11, and the corresponding heat flux distributions over the design surface is shown 

in Fig. 4.12.  Figure 4.12 shows that the heat flux distribution over the design surface 

produced by the enclosure geometries corresponding to Φ*,1 and Φ*,2 are more uniform 

than those produced by the initial enclosure geometries even though the initial and 

optimal enclosure geometries are very similar in both cases, as shown in Figs. 4.10 and 

4.11.  Because the heat flux distribution over the design surface is sensitive to small 

perturbations in the enclosure geometry, this design problem would be particularly 

difficult to solve using the forward “trial-and-error” methodology. 

These results also suggest the existence of many local minima over the feasible 

region, each one corresponding to a unique enclosure geometry and heat flux distribution 

over the design surface.  In order to find the global minimum, or at least one of the 

smaller local minima, it may be necessary to use a technique better suited to minimizing 

multimodal objective functions, such as a heuristic multistart algorithm (e.g. Ugray et al., 

2002) or a metaheuristic optimization algorithm.  Because these types of techniques work 

by evaluating the objective function at many different locations over the feasible region, 

however, the computational effort required to carry out these procedures to design this 

class of radiant enclosure would be considerable and potentially prohibitive. 
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Figure 4.9: Radiant enclosure design problem involving multiple specular-diffuse 

surfaces. 
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Figure 4.10: Enclosure geometries corresponding with Φ0,1 and Φ*,1. 
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Figure 4.11: Enclosure geometries corresponding with Φ0,2 and Φ*,2. 
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Figure 4.12: Heat flux distributions over the design surface produced by the initial and 

local optimal enclosure geometries. 
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4.5 Conclusions   

This chapter presented an optimization methodology for designing the geometry and 

heater settings of radiant enclosures composed of non-diffuse surfaces.  In particular, this 

methodology can be used to solve problems where directionally dependent surface 

properties must be modeled in order to obtain a sufficiently accurate solution, and also in 

cases where specularly-reflecting surfaces are used to obtain the desired conditions over 

the design surface. 

While the problems presented in the previous chapters can be treated with a 

deterministic analysis, the complex nature of radiant exchange within these types of 

enclosure mandates the use of a Monte Carlo simulation to model heat transfer between 

the surfaces.  The Monte Carlo technique was used to calculate the exchange factors 

between discrete surface elements, which in turn were used to solve for the heat flux 

distribution over the design surface.  The objective function was minimized using the 

Kiefer-Wolfowitz method, which is specialized for optimizing stochastic systems and can 

accommodate the random error induced in the objective function by the Monte Carlo 

simulation.   
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Chapter 5: 
Optimization of Radiant Enclosures with 
Transient and Multimode Heat Transfer 
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5.1 Introduction 

The optimization methodologies presented thus far can only be used to solve design 

problems where the system is in steady state, and radiation is the only mode of heat 

transfer.  Although the model of the physical system can sometimes be simplified to 

conform to these conditions without incurring unacceptable amounts of error, there are 

many problems where transient and multimode heat transfer effects cannot be ignored.  

This chapter presents an optimization methodology for solving this more complex class 

of radiant enclosure design problem.   

Incorporating transient and multimode heat transfer effects into the analysis 

increases the number of problems that can be treated using the optimization design 

methodology.  This is done, however, at the expense of creating a physical model that is 

more complicated and difficult to solve than those described in the previous chapters.  

While radiation heat transfer between enclosure surfaces is governed by integral 

equations involving absolute temperature to the fourth power, conjugate conduction, 

convection, and sensible energy storage are governed by differential equations involving 

temperature to the first power.  In isolation, each of these effects can usually be modeled 

using linear systems of equations; combining them results in a highly nonlinear set of 

equations that is often difficult to solve.   

Although this methodology can be adapted to solve a wide range of design 

problems, the focus here is on designing radiant enclosures that are part of a 

manufacturing process.  In most cases, the enclosures are used to uniformly heat a 

product according to a desired temperature history or “heating curve”.  Examples include 
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annealing furnaces used in foundries, baking ovens used in food preparation, infrared 

heating systems that cure painted surfaces, and rapid thermal processing (RTP) chambers 

used to manufacture semiconductor wafers.  In each case, the radiant enclosure consists 

of a heater surface, several intermediate surfaces, and a design surface that contains the 

product to be processed.  When designing these systems, it is important to have an 

accurate model of the transient heater settings in order to size the heaters and other 

components of the radiant enclosure.  Having an accurate a priori estimate of the heater 

settings also enables the use of “high-gain” controllers under operating conditions, which 

quickly adjust the heaters to compensate for any deviation from the desired temperature 

distribution over the design surface. 

In the past, the transient heater settings have been solved for using a forward 

“trial-and-error” technique.  In this approach, the designer first guesses the appropriate 

heater settings, and then repeatedly evaluates and heuristically adjusts these settings until 

a satisfactory solution to the design problem is identified.  As previously mentioned, 

forward design methodologies usually require many iterations and the final solution 

quality is limited; this is particularly true here, since the complicated nature of the 

coupled heat transfer modes make an intuitive understanding of the system physics 

elusive. 

In order to overcome this difficulty, designers have adapted model-based control 

algorithms to design the transient heater settings.  Control algorithms work as follows: at 

any time instant, the difference between the temperature measured at different locations 

on the design surface and the desired set-point temperature defines an error signal.  This 

 115



error signal is passed through a feedback loop to the controller, which then adjusts the 

heater settings in such a way that the error signal is reduced.  In most model-based 

control systems, the controller algorithm is formed from a set of first-order ordinary 

differential equations derived from a simplified heat transfer model; these equations 

relate the heater settings to the rate of temperature change over the design surface.  

Although they are most often used to control heaters under operating conditions, model-

based control algorithms are also often used as design tools.  For example, Breedijk et al. 

(1994) and Balakrishnan and Edgar (2002) both applied model-based controllers to 

design the heaters in RTP furnaces, and Yoshatini and Hasegawa (1998) designed a 

furnace used in a continuous annealing process.  The solutions obtained using model-

based control are usually found faster and better satisfy the desired temperature 

distributions than those found using the forward trial-and-error method.   

Despite the fundamental non-linear nature of the problem, however, most model-

based controllers use linear feedback algorithms that require the model to be composed of 

ordinary differential equations.  Because of this, it is difficult to accommodate the 

integrals in the radiosity equation that account for reflection and reradiation, so these 

effects are usually ignored; this induces large modeling errors into the controller that 

severely limit the solution accuracy.  (While the effects of modeling errors are mitigated 

through active measurement and feedback loops under operating conditions, there is no 

such mechanism in place during the design process.)  In a recent technique presented by 

Gwak and Masada (2002), however, these effects are accounted for by applying non-

 116



linear control laws coupled with embedded Tikhonov and TSVD regularization to solve 

the design problem. 

More recently, several inverse design methodologies have been developed to 

solve this type of design problem.  In this approach, both the desired temperature and the 

radiation heat input required to satisfy the sensible energy increase are specified over the 

design surface at different process times.  The nonlinear system of equations is linearized, 

and the resulting set of ill-conditioned linear equations is solved using regularization 

methods, starting from the first step.  Each solution is then used to define the right-hand-

side vector of the next time step.  França et al. (2001) were the first to propose an inverse 

design methodology for solving nonlinear radiant enclosure problems using TSVD 

regularization.  This technique was demonstrated by solving a steady-state inverse 

boundary condition design problem consisting of an enclosure having heater and design 

surfaces located on opposing surfaces of a channel containing a hydrodynamically fully-

developed flowing participating medium.  The model took into account radiation 

exchange between the surfaces as well as convection and radiation exchange between the 

surfaces and the participating medium.  A uniform number of singular values was 

truncated at each iteration in order to solve the ill-conditioned set of linear equations.  

Ertürk et al. (2002) later employed a similar technique to find the transient heater settings 

that heated a design surface moving through a roll-through batch furnace according to a 

prescribed temperature history.  In this later work, a fixed number of conjugate gradient 

iterations was performed at each time step to regularize the solution of the ill-conditioned 

set of equations.  
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Unlike most model-based control algorithms, the inverse design approach can 

accommodate a very sophisticated heat transfer model resulting in a comparatively small 

modeling error.  Nevertheless, a significant drawback of this method is that the error 

induced by regularization at a particular time step propagates throughout subsequent time 

steps, which limits the solution accuracy.  Furthermore, as mentioned in previous 

chapters, it is very difficult to accommodate design constraints in the inverse design 

methodology, and because of this, the solutions found using regularization often include 

regions of negative heat flux over the heater surface.  Since this condition cannot be 

realized in most practical furnaces, these regions are usually taken to be adiabatic, further 

impairing the solution quality. 

Optimization through nonlinear programming overcomes many of these 

drawbacks.  The general procedure is as follows: first, a suitable objective function, F(Φ) 

is defined in such a way that the minimum of F(Φ) corresponds to the desired design 

outcome, which in this case is a temperature distribution over the design surface that both 

matches the desired temperature history and is also uniform over the product throughout 

the process in order to ensure product homogeneity.  The design parameters contained in 

Φ define a set of functions that govern the heater output at any given time.   Gradient-

based minimization algorithms are then employed to find the set of design parameters, 

Φ∗, that minimize the objective function, such that F(Φ∗) = Min[F(Φ)].  The design 

parameters contained in Φ∗ correspond to the transient heater settings that produce a 

temperature distribution over the design surface that most closely satisfies the design 

requirements. 
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Since the design parameters are modified in an intelligent way based on the local 

objective function curvature at each iteration, the optimization design methodology 

requires fewer iterations than the forward methodology, and the solution quality is much 

better.  This technique can also accommodate a more sophisticated system model than 

most control algorithms and consequently is less susceptible to modeling errors.  Finally, 

unlike the inverse design methodology, the optimization methodology can easily 

accommodate design constraints; in particular, it is convenient to enforce the heat flux 

generated over the heater surface to lie between zero and some maximum heater output 

value throughout the process. 

Optimization techniques have been used on a limited basis to design industrial 

heating processes involving radiant enclosures.  Norman (1992) used unconstrained 

linear programming to obtain the optimal heater settings for a simplified linearized model 

of an RTP furnace, and Cho and Gyugyi (1997) applied a similar procedure to obtain an 

initial estimate of the heater settings so that a high-gain controller could be used to 

operate an RTP furnace.  Fedorov et al. (1998) used nonlinear programming to optimize 

the heater settings for a continuous roll-through industrial furnace operating under 

steady-state conditions. 

This chapter presents two techniques for finding the optimal heater settings for 

two-dimensional, diffuse-walled radiant enclosures used in industrial heating processes.  

The first technique is generic in the sense that since sensible energy storage in the 

enclosure walls and conjugate conduction and convection effects are included in the heat 

transfer model, it can be used to solve design problems involving many different types of 
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radiant enclosures.  The second technique is applied in cases where conduction and 

convection effects can be neglected, and where the design surface is the only enclosure 

surface that stores sensible energy.  In both cases, a quasi-Newton minimization 

algorithm is again used to optimize the transient heater settings, and the design 

constraints are enforced through an active set method. 

These optimization methodologies are demonstrated by applying them to solve 

industrially-relevant design problems.  The first methodology is used to find the heater 

settings that heat a steel sheet according to a linear temperature history in a two-

dimensional annealing furnace, while the second is used to solve for the heater settings 

that heat a silicon wafer according to a desired temperature history in an axisymmetric 

RTP furnace. 
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5.2  Optimization Methodology for Radiant Enclosures involving Conduction, 

Convection, and Transient Heat Transfer 

This section presents an optimization methodology that is generic in the sense that it can 

be applied to solve a wide range of problems, since the physical model accommodates 

conduction heat transfer through the enclosure walls, convection heat transfer between 

the walls and surrounding fluids, and sensible energy storage in all the enclosure 

surfaces.  

 The first step of the optimization methodology is to define a suitable objective 

function and a set of design parameters that control the heat flux distribution over the 

heater surface throughout the process.  Next, the integro-differential equations governing 

the temperature distribution and sensitivities are derived using an infinitesimal-area 

analysis.  By following steps similar to those described in the previous chapters, the 

parametric region is discretized and the governing equations are transformed into 

nonlinear matrix equations, which are then solved.  Finally, this technique is 

demonstrated by applying it to solve for the transient heater settings of a two-dimensional 

annealing furnace. 

 

5.2.1 Optimization Strategy 

Figure 5.1 shows an example radiant enclosure design problem that can be solved using 

this optimization methodology.  In this example, the design surface is located on the 

bottom enclosure surface and is irradiated by heaters on the top surface, which in turn are 

controlled throughout the process by the design parameters contained in Φ.  The 
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underside of the design surface is insulated to prevent energy provided to product by the 

heaters from leaving the system.  As is shown later, solving this problem requires the 

discretization of both the temporal and spatial (parametric) domains; the time domain is 

split into Nt time steps, the tth time step having a duration ∆tt starting from time tt−1 and 

ending at tt, and the design surface is split into NDS discrete elements, with the ith element 

having an area ∆Ai.  Furthermore, it is assumed that the density, ρDS, thermal capacity, 

cDS, and thickness, δDS, are uniform over the design surface, although this assumption can 

be discarded if necessary. 

 qs1(Φ, t) qs2(Φ, t ) qs3(Φ, t ) qs4(Φ, t ) qs5(Φ, t )

Heater Surface

Design Surface 
ρ = ρDS, c = cDS, δ = δDS i = NDSi = 1 

 

 

 

 

(a)  

∆t1 ∆t2 ∆tt ∆tNt∆tNt−1
 

Tf

 

Tta
rg

et
(t)

 

 

T0 

 ttfttt0 t1 t2

(b) 
 

Figure 5.1: Example of a transient radiant enclosure design problem: (a) radiant 

enclosure, and (b) desired set-point temperature history. 
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The first step of this procedure is to define an objective function in such a way 

that it is minimized when (a) the average temperature over the design surface matches the 

desired set-point temperature at any instant, and (b) the temperature distribution over the 

design surface is uniform throughout the process.  These design objectives could be 

satisfied individually by minimizing separate objective functions, each having a different 

minimum.  Instead, these objective functions are combined to form a third objective 

function, whose minimum represents a trade-off between the two design objectives. 

The first design objective is satisfied by minimizing the difference between the 

sensible energy provided to the design surface by the heaters, and the energy required to 

heat the design surface to the set-point temperature.  The heater settings that accomplish 

this goal at each time step could be found by minimizing  

(5.1) 

where  is the sensible energy increase in the design surface provided by the 

heaters during the t
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ttQ →−1  is the sensible energy that must be added to achieve the desired temperature 

increase over the tth time step,  
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and  is the difference between the sensible energy added to the design surface 

throughout the process and what must be added to obtain the set point temperature at the 

end of the process, 
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These three quantities are shown schematically in Fig. 5.2.  Minimizing the first part of 

F1(Φ) produces an average design surface temperature profile that best matches the slope 

of the set-point temperature.  There is likely to be small difference between ( )*
1 Φadded

ttQ →−  

and  at every time step, which accumulates over the process duration resulting in a 

net excess or deficit of sensible energy being added to the design surface.  The second 

term in F

target
ttQ →−1

1(Φ) ensures that this error is sufficiently small.  The heuristic parameter γ2 is 

adjusted by the designer in order to achieve an average design surface temperature that 

closely matches the desired set-point temperature throughout the process. 

target
ttQ →−1

( )Φadded
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( )Φdeficit
tfQ →0

∆tt

Ttarget(t) 
 ( )tT ,ΦT [K] 

tftt−1 tt
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Figure 5.2: Relationship between ( )Φadded
ttQ →−1 , , target

ttQ →−1 ( )Φdeficit
tfQ −0  and the design surface 

temperature. 

 

 The second design objective is to maintain a uniform temperature distribution 

over the design surface throughout the process.  The heater settings that satisfy this 
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condition are found minimizing the variance between the temperature values calculated at 

discrete locations over the design surfaces, averaged over all time steps, 

(5.5) ( ) ( ) ( )[ ] .,,1
1 1
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tti
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 As previously mentioned, the objective functions defined in Eqs. (5.1) and (5.5) 

pertain to different design objectives, and both of these functions are minimized by 

different sets of Φ, i.e. Φ1
* ≠ Φ2

*.  Since it is desirable to achieve both design objectives, 

a hybrid objective function is formed by combining these two objective functions, 

( ) ( ) ( ) ( )[ ],1 2111 ΦΦΦ FFCF γγ −+= (5.6) 

where γ2 is chosen based on the relative importance of the two design objectives in a 

particular application, and C is a scaling parameter.  The set of design parameters Φ∗ that 

minimizes Eq. (5.6) is a compromise between a solution where the average design 

surface temperature closely follows the set-point temperature and one having a near-

uniform temperature distribution over the design surface throughout the process. 

 Unlike the design methodologies presented in Chapters 2 and 3, the second-order 

design sensitivities needed to form the Hessian matrix are expensive to calculate, so the 

quasi-Newton’s method is used in place of Newton’s method to find Φ∗.  In the quasi-

Newton’s method, the search direction at the kth iteration is found by solving 

( ),kkk F Φ−∇=pB (5.7) 

where Bk approximates ∇2F(Φ) using first-order curvature information “built-up” over 

previous iterations.  At the first iteration B0 is set equal to the identity matrix and p0 is the 

steepest-descent direction.  The Hessian approximation is improved after each subsequent 

iteration by adding an update matrix, Uk, which is formed using the first-order curvature 
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information collected from previous iterations.  The update matrix is most often formed 

using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) scheme,  

(5.8) 

with sk = Φk+1 – Φk and yk = ∇F(Φk+1) − ∇F(Φk).   
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Since Bk accurately approximates ∇2F(Φk) and pk approaches Newton’s direction 

only after a few iterations, the quasi-Newton’s method usually requires more iterations 

than Newton’s method to find Φ∗.  Because of the computational effort and storage 

required at each iteration to calculate ∇2F(Φk), however, the quasi-Newton’s method is 

more efficient than Newton’s method in this particular application. 

 From examining Eqs. (5.7) and (5.8), it is clear that the quasi-Newton method 

requires only the first-order objective function sensitivites to calculate the search 

direction; these are found by differentiating F(Φ) with respect to each design parameter, 

(5.9) 
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while the sensitivities of F2(Φ) are given by 
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Techniques for solving the temperature distribution and temperature sensitivities needed 

to find F(Φ) and ∂F(Φ)/∂Φp are presented in the next section. 
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5.2.2 Calculation of the Temperature Distribution and Sensitivities 

An infinitesimal-area analysis technique similar to the one used in Chapters 2 and 3 is 

used to derive the equations governing the temperature and temperature sensitivities.  The 

first step of the analysis is to identify a suitable parametric representation for the 

enclosure.  As before, the enclosure geometry is specified by 

(5.15) ( ) ( ) ( ){ } ,,, buauQuPu T ≤≤== Cr

and either the temperature, T(u, Φ, t), or the heat flux, qs(u, Φ, t), is assumed to be known 

at every location on the enclosure surface at any time t.  In particular, the transient heat 

flux distribution over the heater surfaces is specified as a function of the heater settings 

contained in Φ and the adiabatic boundary condition is enforced over the design surface 

throughout the process.  The emissivity, ε(u), thermal conductivity, κ(u), density, ρ(u), 

specific heat, c(u), and wall thickness, δ(u), of the enclosure walls are also specified 

parametrically. 

  Once parametric representation of the enclosure has been identified, the equation 

relating the radiosity distribution, qo(u, Φ, t), to the temperature distribution, T(u, Φ, t), is 

derived by performing an energy balance on an infinitely long wall element having a 

thickness δ(u) and an infinitesimal chord length J(u)du, as shown in Fig. 5.3, where the 

surface discriminant, J(u), is given by 

(5.16) 

By setting the net rate of conduction, convection, and thermal radiation heat transfer 

entering the infinitesimal wall element equal to the rate of sensible energy storage, it can 

be shown that the radiosity and temperature distributions are related by 
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(5.17) 
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where k(u, u) is the kernel defined in Eq. (3.7).  Besides radiant heat transfer, there are 

three other modes of heat transfer entering and leaving the wall element: qcond(u, Φ, t) is 

the net rate of heat transfer entering the wall element by conduction from the surrounding 

enclosure wall, 
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qconv(u, Φ, t) is the rate of convection transferred from the wall element to the fluid 

contained within the enclosure, 

( ) ( ) ( ) ( )[ ],,,,,, tTtuTtuhtuqconv ∞−= ΦΦ (5.19) 

and qs(u, Φ, t) is the rate that any other type of heat transfer enters the wall element by 

non-radiative means; all of these terms are per unit area of the infinitesimal wall element 

on the interior enclosure surface.  (Convection heat transfer with the fluid surrounding the 

enclosure has been excluded to simplify the heat transfer model, but could be added if 

necessary.) 
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Figure 5.3: Infinitesimal wall element used to form governing temperature equation. 
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 Equation (5.17) cannot be solved directly, however, because both the temperature 

and the radiosity distributions are unknown.  A more convenient form is found by 

performing another energy balance on the infinitesimal wall element at u′; this results in a 

non-linear integro-differential equation where temperature is the only variable, 
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(5.20) 

 

where b(u, Φ, t) represents the difference between the net non-radiative heat transfer into 

an infinitesimal wall element and the sensible energy stored within that element, 

 

(5.21) 
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The equations governing the temperature sensitivity are found by differentiating 

Eqs. (5.20) and (5.21) with respect to the design parameter of interest.  By applying 

Liebnitz’s rule to Eq. (5.20) and noting that the integral bounds are independent of u, it is 

shown that the temperature sensitivities are governed by the related integro-differential 

equations 
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where 
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Since analytical solutions to integro-differential equations are usually not 

tractable, the temperature and temperature sensitivity distributions must be solved 

numerically.  The first step is to discretize the parametric and temporal domains as 

described in the previous section.  The parametric domain is divided into N elements, 

with the ith element centered on ui and having a width ∆ui.  Each of the elements in 

parametric space corresponds to an infinitely long wall element having a finite thickness, 

as shown in Fig. 5.4.  The time domain is discretized into Nt time steps starting from t0 to 

tNt = tf proceeding in intervals of ∆tt.   
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Figure 5.4: Discretization of the radiant enclosure into finite wall elements. 

 

Once this is done, the integrals and derivatives with respect to t and u in the 

governing equations are represented with discrete approximations.  First, the integrals in 
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Eq, (5.20) and (5.22) are approximated using a method analogous to the one described in 

Chapters 2 and 3, so that 

( ) ( ) ( ) ,,,'',,',
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−≈
N

j
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b

a

dFtuxduuuktux ΦΦ (5.24) 

where x(u, Φ, t) is the integrated quantity and dFi-stripj is the configuration factor between 

a point on the enclosure surface at ui and the exposed surface of an infinitely long wall 

element centered at uj, defined in Eq. (3.20). 

 Next, the time derivatives in Eq. (5.21) are approximated using a first-order 

backwards operator, 
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with similar expressions applying to the time derivatives in Eq. (5.23).  Finally, the 

derivatives in Eq. (5.18) associated with thermal conduction are approximated using a 

second-order finite difference scheme.  If κ(u) and J(u) are uniform over each enclosure 

surface (which is often the case) and if a uniform quadrature is used over the parametric 

sub-domain corresponding to each enclosure surface, then 
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(5.26) 

(This is assumed throughout the remainder of this section.)  Similar relations apply to the 

sensitivity of the thermal conductivity with respect to the design parameters in Eq. (5.23). 

 Substituting the above approximations into the integro-differential equation 

governing the temperature distribution and rewriting the parameters in non-dimensional 

form results in 
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where εi = ε(ui), and the time and temperature terms are represented non-dimensionally 

by τt = (tt−t0)/(tt−t0), and ( ) ( ) stti TtuTT ,,,ˆ ΦΦ =τ , where Ts is a scaling temperature.  

The term  is the difference between the net rate of non-radiative heat 

transfer to the i

( 1,,ˆ
−ttib ττΦ )

th element and the rate of sensible energy storage by the element during 

the tth time step, 
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where ( ) ( ) 4,,,ˆ stistsi Ttuqq στ ΦΦ =  and ( ) ( ) htuhh titi ,ˆ =τ , with h  being the average 

heat transfer coefficient over the enclosure surfaces.  The enclosure wall properties are 

represented non-dimensionally by ( ) sii u κκκ =ˆ , ( ) sii u ρρρ =ˆ , ( ) sii cucc =ˆ , 

( ) sii u δδδ =ˆ  and ( ) ( ) ckiki LtuJJ ,ˆ =τ , where Lc is a characteristic length.  The non-

dimensional coefficients Ccond, Cconv, and Ctrans are  
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respectively, and their magnitudes signify the relative importance of conduction, 

convection and sensible energy storage compared to thermal radiation in the heat transfer 

model.   

 Writing Eqs. (5.27) and (5.28) for every element results in a nonlinear system of 

N equations containing N unknowns that can be rewritten as a matrix equation governing 

the temperature distribution over the enclosure surface at time τt,  

( ) ( ) ( ),,,, 12211 −=+ ttt τττ ΦΦΦ cxx AA (5.32) 

where  and ( ) ( titi Tx ττ ,ˆ, 4
,1 ΦΦ = ) ( ) ( )titi Tx ττ ,ˆ,,2 ΦΦ = .  The transient temperature 

distribution over the enclosure surface could be found by first guessing an initial 

temperature distribution at τ = 0 and then writing and solving Eq. (5.32) at each 

subsequent time step using the temperature distribution from the previous time step to 

form c(Φ, τt−1) at the current time step.  More often, however, the temperature 

distribution is solved by linearizing Eq. (5.32) to form a related matrix equation  

( ) ( ) ( ),,,, 11 −− = ttt τττ ΦΦΦ bxA (5.33) 

where xi(Φ, τt) is either  or ( tiT τ,ˆ 4 Φ ) ( )tiT τ,ˆ Φ , depending on how the problem is 

linearized.  Since not all linearization schemes will produce a convergent solution for a 

given problem, the method used to linearize Eq. (5.32) must be carefully chosen based on 

the relative magnitudes of the coefficients defined in Eqs. (5.29) – (5.31).   Siegel and 

Howell (2002b) provide a detailed discussion of these linearization methods, and one is 

demonstrated in the next section. 

 134



 The temperature sensitivities are calculated in a similar manner.  The integrals 

and derivatives in Eqs. (5.22) and (5.23) are first represented discretely as described in 

Eqs. (5.24) – (5.26), and the integro-differential equation governing the temperature 

sensitivity distribution over the enclosure surface is then rewritten in discrete form as 

 
( ) ( ) ( ) ( )

( ) ( )
∑

∑

≠
=

−
−−

−

≠
=

Φ∂

∂
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

Φ∂
∂

=

Φ∂

∂
−

Φ∂
∂

N

ij
j

stripji
p

ttj

j

j

p

tti

i

stripji
p

tj
tj

N

ij
jp

ti
ti

dF
bb

dF
Τ

T
Τ

T

1

11

3

1

3

,
,,ˆ1,,ˆ1

,ˆ
,ˆ4

,ˆ
,ˆ4

ττ
ε

εττ
ε

τ
τ

τ
τ

ΦΦ

Φ
Φ

Φ
Φ

 

(5.34) 

 

where 
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If the temperature distribution has already been solved for, writing Eqs. (5.34) and 

(5.35) for every wall element results in a system of N equations containing N unknowns 

that can be rearranged to form a matrix equation, 

( ) ( ) ( ),,,, 11 −− = ttt τττ ΦΦΦ b'x'dA (5.36) 

where ( ) ( ) ptiti Tx Φ∂∂= ττ ,ˆ,' ΦΦ .  (This coefficient matrix is dependant on the design 

parameters because the non-dimensional temperatures are coefficients of the temperature 

sensitivities in Eq. (5.33).) 

As with the temperature distribution, the temperature sensitivities are solved by 

first guessing a sensitivity distribution at τ = 0, and then writing and solving Eq. (5.36) at 

each time step using the temperature sensitivities from the previous time step to form the 
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right-hand vector corresponding to the current time step.  Although Eq. (5.36) is linear 

and can be solved directly at each time step, it is often more convenient to use a modified 

form consistent with the linearization scheme used to find the temperature distribution, 

since the A matrix in Eq. (5.33) and the dA matrix in Eq. (5.36) are sometimes identical.  

If this is the case, the temperature sensitivities can be easily solved once the A matrix has 

been decomposed to find the temperature distribution.  This is demonstrated in the 

following example. 

 

5.2.3 Implementation and Demonstration 

The optimization design methodology described in the previous section is demonstrated 

by applying it to solve for the heater settings in the two-dimensional annealing furnace 

shown in Fig. 5.5.  The annealing furnace is 1 m wide and 0.5 m high; the top surface 

contains ten uniformly-spaced heaters, the two side walls are refractory surfaces, and the 

design surface is on the bottom of the enclosure.  The heater and refractory surfaces are 

assumed to have the properties of 10 cm thick refractory brick, while the design surface is 

a 2 cm thick slab of AISI 1010 steel.  The enclosure wall properties are summarized in 

Table 5.1. 

 The objective of this problem is to uniformly heat the steel according to a linear 

ramp rate from an initial temperature of T0 = 300 K to a final temperature of Tf = 500 K, 

over a duration of 5 hours.  It is assumed that the enclosure surfaces are initially at 

thermal equilibrium at 300 K.  The heaters are activated at t = 0, and all the surfaces are 

exposed to a fluid at T∞ = 500 K with a convection coefficient h = 5 W/m2K between the 
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enclosure surfaces and the fluid throughout the process.  The enclosure surfaces are 

assumed to be thermally isolated from each other, which is enforced by insulating the 

surface edges. 

 
0 1 2 3 4 3 2 1 0 4 

Heater Surface 

Design Surface 

Refractory 
Surface 

Refractory
SurfaceT∞ = 500 K 

h = 5 W/m2K 

 

0.5 m 

 

 

 

 

 
1.0 m 

 

Figure 5.5: Example design problem involving conduction, convection, and transient 

heat transfer effects.  (Heater numbers are shown in circles.) 

 

 κ [W/mK] ρ [kg/m3] c [J/kgK] δ [m] ε 
Heater Surface 1.0 2645 960 0.1 0.8 

Refractory Surface 1.0 2645 960 0.1 0.8 
Design Surface 63.9 7832 487 0.02 0.4 

 
Table 5.1: Surface properties corresponding to the enclosure of Fig. 5.4. 

 

 The heat flux distribution over each heater is assumed to be uniform and is 

controlled by a cubic spline function of non-dimensional time.  Because of the problem 

symmetry, the heaters are controlled in pairs and are numbered as shown in Fig. 5.5.  In 

particular, if ui lies on the hth heater, 
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(5.37) ( ) ( ) ( ) ( ) ,13131,ˆ 3
34

2
24

2
14

3
4 τττττττ +++ Φ+−Φ+−Φ+−Φ= hhhhsiq Φ

where {Φ4h, Φ4h+1, Φ4h+2, Φ4h+3}T is a vector subspace of Φ; accordingly, 20 design 

parameters are required to specify the heat flux distribution over the heater surface 

throughout the process.  Controlling the heater output in this way reduces the dimension 

of the minimization problem (versus optimizing the heater settings at each time step) and 

acts to regularize the solution since cubic splines are smooth functions.  Also, since the 

cubic basis functions in Eq. (5.37) sum to unity for any value of τ throughout the process, 

the heater outputs can be constrained to lie within a specific operating range, lbh ≤ qsi(Φ,τ) 

≤ ubh, by using these values to define the lower and upper bounds of the design 

parameters that control the hth heater.  In this problem, the non-dimensional heat flux is 

constrained to lie in the range defined by ( ) 10,ˆ0 ≤≤ tsiq τΦ , which is enforced by 

incorporating an active set method into the BFGS minimization.  (This technique is 

described in detail in Appendix A.)   

 The problem is non-dimensionalized using Lc = 1 m, h  = 5 W/m2K, and Ts = 1000 

K, which is approximately the maximum temperature on the heater surface reached 

during the process, while κs, ρs, cs, and δs are set equal to the design surface properties.  

Substituting these values into the coefficients defined in Eqs. (5.29) – (5.31) results in 

Ccond = 1.1270, Cconv = 0.0882, and Ctrans = 0.0747.   

Examining the magnitudes of the non-dimensional coefficients indicates that 

conduction effects dominate the heat transfer model.  Accordingly, Eq. (5.27) is 

linearized by lagging the emissive power terms, 
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(5.38) 

 

where  is defined in Eq. (5.28).  The adiabatic boundary conditions at the 

surface edges are enforced using second-order forward and backward finite difference 

schemes. 

( 1,,ˆ
−ttib ττΦ )

Writing (5.38) for each wall element results in a linear system of N equations 

containing N unknowns that can be rearranged into the matrix equation 

( ) ( ),,, 1−= tt ττ ΦΦ bxA (5.39) 

where A contains the conduction, convection, and sensible energy storage temperature 

coefficients, b(Φ, τt−1) is composed of terms associated with the conduction boundary 

condition, fluid temperature, and sensible energy and thermal radiation terms from the 

previous time steps, and ( ) ( ) ( ) ( ){ }T

tNttt TTT ττττ ,ˆ,,,ˆ,,ˆ, 21 ΦΦΦΦ K=x .  If this 

linearization scheme is also applied to Eqs. (5.34) and (5.35), it can be shown that the 

temperature sensitivities are governed by 

( ) ( ),,, 1−= tt ττ ΦΦ b'x'A (5.40) 

where b′(Φ, τt−1) contains the sensitivities of the sensible energy and thermal radiation 

terms with respect to Φp, and x′i(Φ, τt) = ( ) ptiT Φ∂∂ τ,ˆ Φ .  Thus, A needs to be formed 

and decomposed only once at each time step in order to calculate both the temperature 

and the complete set of temperature sensitivities.  
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The optimal heater settings are found by minimizing the objective function 

defined in Eq. (5.6).  The parametric and time domains were discretized uniformly, and a 

total of N = 240 wall elements and Nt = 500 time steps were used to calculate F(Φ) and 

∇F(Φ) throughout the optimization process.  The minimization was carried out starting 

from Φi
0 = 1, i = 1…20, and was stopped when ||∇FFR(Φk)||2 ≤ 10−6, where ∇FFR(Φk), 

contains the first-order objective function sensitivities with respect to the unconstrained 

design parameters.  After trying several different values for C, γ1, and γ2, a good result 

was finally obtained with C = 100, γ1 = 0.99 and γ2 = 0.995. 

A local minimum of F(Φ∗) = 2.284 × 10−3 was found after 30 iterations.    The 

optimal heater settings are shown in Fig. 5.6, while the resulting transient temperature 

distribution over the design surface is shown in Figs. 5.7 and 5.8.  Figure 5.7 shows that 

the design surface temperature was less than the set-point temperature for 0 < τ < 0.472, 

and exceeded the set-point temperature for the remainder of the process; the maximum 

deviation of the average temperature from the set point temperature was 7.15% at the end 

of the process.  While a better solution might be found by using higher-order splines to 

control the heaters, the thermal inertia of the enclosure walls severely limits the response 

sensitivity of the design surface temperature to the design parameters.  In particular, a 

significant amount of the overshoot error is likely due to heat transfer between the design 

surface and the hot refractory walls. 

 As shown in Fig. 5.8, a near-uniform temperature distribution is maintained 

throughout the process; the maximum standard deviation from the average design surface 

temperature is less than σ = 0.006 %, occurring at τ = 1.   
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Figure 5.6: Optimal heater settings for the problem shown in Fig. 5.5.  (Heater 

numbers shown in circles.) 
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Figure 5.7: Variation of the design surface temperature from the set-point temperature 

throughout the process, for the problem shown in Fig. 5.5. 
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Figure 5.8: Temperature distribution over the design surface at different process times 

for the problem shown in Fig. 5.5. 

 

Due to the approximations made in Eqs. (5.26) – (5.29), the transient temperature 

distribution found using the approach described above only approximates the analytical 

solution.   In order to verify the grid-independence of the optimal solution, a grid 

refinement study was performed on F(Φ*), as shown in Fig. 5.9.  A total of Nt = 500 time 

steps was used at each level of spatial refinement, and the grid-independent solution was 

taken to be the value of F(Φ*) calculated at the highest level of grid refinement, 

F∞(Φ*) ≈ FN=480(Φ*) = 2.283 × 10−3.  Using the error defined in Eq. (2.35), the grid 

refinement error at N = 240 is estimated to be 0.05%.  Grid independence is also 
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demonstrated by examining the degree of energy conservation at different levels of 

refinement, defined as  
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where Qin(Φ) is the energy added to the system by the heaters, Qstored(Φ, N, Nt) is the 

sensible energy stored by all the wall elements, and Qconv(Φ, N, Nt) is the net heat transfer 

from the fluid to the enclosure wall elements throughout the process.   

 

 

 

 

 

 

 

 

 

 

Figure 5.9: Spatial grid refinement study at Φ*, for the problem shown in Fig. 5.4, 

using Nt = 500 time steps. 
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(5.25) and the linearization scheme used to solve Eq. (5.32) become accurate only as ∆t 

becomes small.  In order to ensure that Nt was sufficiently large, a refinement study is 

performed on the temperature at the center and edge of the design surface obtained using 

the optimal transient heater settings at τ = 0.5, which is shown in Fig. 5.10.  A total of N 

= 240 surface elements were used at each level of refinement to calculate the temperature 

distribution, and the grid independent temperatures were taken to be those calculated at 

the highest level of refinement, Nt = 1000 time steps.  Based on this refinement study, the 

temperatures calculated using Nt = 500 time steps are within 0.1% of their grid-

independent values. 
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Figure 5.10: Temporal grid refinement study at Φ*, for the problem shown in Fig. 5.4, 

using N = 240 wall elements.
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5.3 Optimization Methodology for Low-Thermal Inertia Radiant Enclosures 

While the optimization methodology presented in the previous section can be used to 

solve a wide range of radiant enclosure design problems involving transient and 

multimode heat transfer, in many cases it is difficult to implement because of the 

nonlinear nature of the governing equations.  In particular, choosing an appropriate 

linearization scheme is not always intuitive, and the designer often resorts to selecting 

one by trial-and-error.   

This section presents an optimization methodology that can be used to solve 

problems where thermal radiation is the only mode of heat transfer, and where the design 

surface is flat and is the only enclosure surface that stores sensible energy.  In these cases, 

it is possible to rearrange the problem so that the governing equations are linear by 

specifying the temperature and the rate of temperature change over the design surface at 

each time step, in place of the adiabatic boundary condition.  The heater settings that 

provide the required sensible energy by uniformly heating the design surface are then 

found using an optimization procedure similar to the one described in Chapter 2.  Since 

this approach does not require a linearization scheme, it is much easier to implement than 

the optimization methodology presented in the previous section.  Furthermore, because 

the heat flux distribution at each time step is found independently of the other time steps, 

there is no need to define a single function of Φ that specifies the transient heater 

response throughout the process, like Eq. (5.37).  Accordingly, this methodology is 

particularly well suited for solving problems where a fast heater response is required in 

order to produce rapid temperature changes in the design surface. 
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Although the problem is linearized by specifying the temperature boundary 

condition over the design surface, in the majority of applications the adiabatic boundary 

condition is enforced by insulating the underside of the design surface.  Because of this, 

the quality of the optimal solution must be verified by first rewriting the problem so that 

the adiabatic boundary condition is specified over the design surface, and then solving the 

resulting nonlinear governing equations for the transient temperature distribution 

produced by the optimal heater settings.  This design methodology therefore consists of 

two parts: the optimal heater settings are solved for in the first part of the procedure, and 

the resulting temperature distribution over the design surface is verified in the second 

part.   

In this section, the optimization strategy is first presented, followed by a brief 

description of how the net radiant heat flux entering the design surface and the 

corresponding sensitivities are calculated.  After that, the methodology used to calculate 

the transient temperature distribution as part of the validation procedure is presented.  

Finally, the design methodology is demonstrated by using it to find the heater settings 

that heat a silicon wafer uniformly according to a desired heating curve in an 

axisymmetric RTP furnace. 
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5.3.1 Optimization Strategy 

As noted in the previous section, this class of problem has two design objectives: (a) to 

heat the design surface according to a prescribed heating curve, and (b) to maintain a 

uniform temperature over the design surface throughout the process.  The first objective 

could be satisfied at the tth time step by minimizing the objective function similar to the 

one defined in Eq. (5.1), 

( )[ ] ( )[ ] ( ){ } .,, 2
111 t

target
tttt

added
tttt tQttQttF →−→− −= ΦΦ (5.42) 

Unlike Eq. (5.2), however, the term ( )[ ]tt
added

tt ttQ ,1 Φ→−  is found by 
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where qrad,i[Φ(tt), tt] is the net radiant heat flux entering the ith element over the tth time 

step (which is equal to the difference between incoming and outgoing radiosity), and 

 is defined in Eq. (5.3).  Note that in this methodology, Φ is a function of t( )t
target

tt tQ →−1 t 

since a different set of design parameters is used to control the heat flux distribution over 

the heater surface at each time step.  Minimizing F1[Φ(tt), tt] at each time step would 

result in an average design surface temperature that closely follows the set-point 

temperature throughout the process. 

 Assuming that the design surface properties are uniform, and in the absence of 

conduction and convection heat transfer, a uniform temperature increase over the design 

surface at each time step is realized by ensuring that a uniform amount of incident 

radiation is absorbed by each design surface element.    This condition is satisfied by 

minimizing an objective function analogous to Eq. (5.5), 
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as shown in Fig. 5.11, where ( )[ ]ttrad ttq ,Φ  is the average radiant heat flux absorbed by 

the design surface elements over the tth time step. 
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Figure 5.11: Example of a low-thermal inertia radiant enclosure: (a) enclosure 

boundary conditions and (b) relationship between radiosity, net radiant heat flux, and 

temperature increase. 

 

 An acceptable compromise between the competing design objectives is again 

found by minimizing a hybrid objective defined using the above two objective functions, 

( )[ ] ( )[ ] ( ) ( )[ ]{ },,1,, 21 tttttt ttFttFCttF ΦΦΦ γγ −+= (5.45) 

where γ is chosen according to the relative importance of the design objectives, and C is 

used to improve the objective function scaling.  This objective function is minimized at 

each time step using the quasi-Newton method, which requires evaluations of F[Φ(tt), tt] 

and ∇F[Φ(tt), tt].  The terms in the gradient vector are found from 
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and  

 

(5.48) 
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A method for calculating qrad,i[Φ(tt), tt] and  ∂qrad,i[Φ(tt), tt]/∂Φp is presented in the next 

section. 

 

5.3.2 Calculation of the Net Radiant Heat Flux Distribution and Sensitivities 

The radiant heat flux entering each wall element, qrad,i[Φ(tt), tt], and the corresponding 

sensitivities, ∂qrad,i[Φ(tt), tt]/∂Φp, are found from the radiosity distribution and the 

radiosity sensitivity distributions through a procedure similar to the one described in 

Chapter 2.   

As before, the first step is to identify a suitable parametric representation for the 

enclosure geometry, thermodynamic boundary conditions, and surface properties.  In 

particular, the heat flux distribution over the heater surfaces is specified as a function of tt 

and Φ(tt), while the temperature over the design surface is set equal to the set-point 

temperature, T[u, Φ(tt),  tt] = Ttarget(tt).  
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Once the enclosure is represented parametrically, the integral equation governing 

the radiosity distribution can then be written as 

( )[ ] ( )[ ] ( ) ( )[ ] ( ) ,'',,,',,,, ∫+=
b

a
ttotttto duuukttuqugttubttuq ΦΦΦ (5.49) 

with b[u, Φ(tt), tt] and g(u) defined in Eqs. (2.3) and (2.4), respectively.  By 

differentiating Eq. (5.49) with respect to Φp, it can be shown that the radiosity 

sensitivities are governed by a related integral equation, 
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Finally, assuming that the underside of the design surface is adiabatic, the net radiant heat 

flux entering an infinitesimal wall element is given by the difference between the incident 

radiosity from the other locations on the enclosure surface and the radiosity leaving the 

infinitesimal surface element, 
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 As previously noted, analytical solutions to these types of integral equations are 

not usually tractable, so the radiosity and the radiosity sensitivity distributions are 

estimated numerically.  By first discretizing the parametric region into N elements and 

then following the steps described in Eqs. (2.5) and (2.6), Eq. (5.49) is transformed into a 

matrix equation that can be solved for the radiosity values at discrete locations on the 

enclosure surface, 
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( )[ ] ( )[ ] ,,, tttt tttt ΦΦ xb =A (5.53) 

where bi[Φ(tt), tt] = b[ui, Φ(tt), tt], xi[Φ(tt), tt] = qo[ ui, Φ(tt), tr], and A is defined by Eq. 

(2.8).  Using a similar procedure, it can be shown that the radiosity sensitivities are found 

by solving 

( )[ ] ( )[ ],,, tttt tttt ΦΦ x'b' =A (5.54) 

where b′i[Φ(tt), tt] = ∂b[ui, Φ(tt), tt]/∂Φp, and x′i[Φ(tt), tt] = ∂qo[ui, Φ(tt), tt]/∂Φp.   

The radiosity values are then used to calculate the net radiative heat flux entering 

a wall element, qrad,i[Φ(tt), tt],  

 ( )[ ] ( )[ ] ( )[ ],,,,
1

, ttoi

N

ij
j

stripjittojttirad ttqdFttqttq ΦΦΦ −= ∑
≠
=

−

(5.55) 

and the corresponding sensitivities, 
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Finally, the solutions for qrad[Φ(tt), tt] and ∂qrad[Φ(tt), tt]/∂Φp are substituted into Eqs. 

(5.42)-(5.48) to calculate F[Φ(tt), tt] and ∂F[Φ(tt), tt]/∂Φp. 

 

5.3.3 Verification of Optimal Heater Settings 

The methodology presented in the previous section assumes that the temperature 

boundary condition is enforced over the design surface throughout the process, and a 

near-uniform incident radiant heat flux distribution over the design surface that supplies 

the required sensible energy is found by minimizing the objective function defined by Eq. 

(5.45).  Although the minimum value of the objective function at any given time step will 
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be very small, it is unlikely that F1[Φ∗(tt), tt] or F2[Φ∗(tt), tt] will exactly equal zero.  This 

means that either too much or too little sensible energy has been added to the design 

surface at tt, and that the incident radiant heat flux distribution is not precisely uniform.   

Thus, if these optimal heater settings were used to heat an insulated design 

surface, the average design surface temperature would deviate slightly from the set-point 

temperature and the temperature distribution over the design surface would also be 

slightly non-uniform at any given instant.  It is therefore often necessary to calculate the 

transient temperature distribution over an adiabatic design surface in order to verify the 

quality of the optimal solution.   

 At any time tt during the process, it can be shown that the radiosity distribution 

over the enclosure surfaces is governed by modified versions of Eqs. (2.2) – (2.4),  
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where b[u, Φ∗(tt), tt] = qs[u, Φ∗(tt), tt] and g(u) = 1 if u lies on the heater surface, and 

either  
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if u lies on the design surface.   

If the adiabatic boundary condition is specified over the design surface, however, 

then both T[u, Φ∗(tt), tt] and ∂T[u, Φ∗(tt), tt]/∂t are unknown.  Instead, the problem is 

solved at each time step starting at t = 1 by first substituting  ≈ 

 into Eq. (5.58) and then solving Eq. (5.57) numerically using the 

( )[ ]tt ttuT ,, Φ

( )[ 11 ,, −− tt ttuT Φ ]
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procedure described in Chapter 2.  Once this has been done, the resulting radiosity 

distribution is used to calculate the average radiant heat flux entering a design surface 

wall element during the tth time step using Eq. (5.55), which in turn is used to find the 

corresponding temperature increase in each element of the design surface by 

( )[ ] ( )[ ] ( )[ ]
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+= −−
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This new temperature is substituted into Eq. (5.58), and the procedure is repeated to find 

the temperature distribution at the next time step.  

 

5.3.4 Implementation and Demonstration 

This design methodology is demonstrated by using it to calculate the heater settings for 

the RTP furnace shown in Fig. 5.12, which is based on design problem presented by Choi 

and Do (2001).  The furnace is circular-cylindrical, with a height of H = 0.5 m and a 

radius of R = 0.5 m.  The heating surface is at the top of the enclosure, and is composed 

of three concentric heaters that have negligible thermal inertia and an emissivity εHS = 

0.9.  The heat flux distribution over each of the heaters is assumed to be uniform and is 

controlled by one of the three design parameters at each time step.  The design surface is 

a 0.75 m diameter SiO2 semiconductor wafer located on the bottom of the enclosure with 

properties summarized in Table 5.2.  The remainder of the enclosure surface has an 

emissivity of εw = 0.4 and is maintained at a uniform temperature of Twall = 300 K 

throughout the process using an active cooling system.  

The objective of the design problem is to determine the transient heater settings 

that heat the semiconductor wafer according to a desired heating history, while 
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simultaneously maintaining a uniform temperature distribution throughout the process.  

The process consists of three stages: in the first stage, the silicon wafer is heated from an 

initial temperature of 500 K to a temperature of 1000 K over a 5 second time span.  The 

wafer is maintained at this temperature for a further 5 seconds, and then cooled at a 

constant ramp rate from 1000 K to 850 K over 10 seconds.   
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Figure 5.12: Rapid thermal processing furnace design problem. 

 

ρ [kg/m3] c [J/kg K] δ [mm] ε 
2220 745 0.675 0.6 

 
Table 5.2: Design surface properties for the problem shown in Fig. 5.15. 
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In this problem, temperature, heat flux, and time are all represented non-

dimensionally by ( )[ ] ( )[ ] sttitti TttTttT ,,ˆ ΦΦ = , ( )[ ] =ttsi ttq ,ˆ Φ  ( )[ ] 4, sttsi Tttq σΦ , and τ 

= t/tmax respectively, with Ts = 1000 K and tmax = 20 s.  The heat flux distribution over the 

heater surface at any non-dimensional time τt is given by qs[u, Φ(tt), tt]/σTs
4 = Φh(τt), 

where u lies on the hth heater.  The heater output range was enforced by constraining the 

design parameters to lie between 0 ≤ Φh ≤ 20, h = 1…3, using an active set method. 

The optimal heater settings were solved by minimizing the objective function 

defined in Eq. (5.45).  Minimization was carried out at each time step using the quasi-

Newton (BFGS) minimization technique.  A total of N = 500 surface elements were used 

to solve for the radiosity distribution; 400 of these were uniformly spaced annular 

elements on the upper and lower enclosure surfaces and the remaining 100 were ring 

elements on the side walls.  Since the equations that govern the radiant heat flux entering 

the design surface during the optimization procedure are linear with respect to time, the 

solution accuracy is not affected by the number of time steps used to carry out the 

optimization; rather, it is necessary only to use a sufficient number of time steps in order 

to obtain a quasi-continuous heater response.  On the other hand, the temperature 

distribution calculated during the validation procedure is sensitive to Nt since each 

element is assumed to have a constant temperature for the duration of each time step; 

thus, as Nt becomes larger, the error induced by this assumption becomes smaller.  

Accordingly, Nt = 100 time steps are used to optimize the heater settings, and Nt = 2000 

time steps are used throughout the validation process. 
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In each case, minimization was started with Φ0(τk) = {1, 1, 1}T, and stopped when 

∇FFR[Φk(τt)] < 10−6.  After several attempts, a good solution was found using C = 104 and 

γ = 0.9999.  (This value of γ is much smaller than the one used to optimize the previous 

problem because ( )[ ] ( )t
target

tttt
added

tt tQttQ →−→− − 11 ,Φ  is evaluated over only the current time step, 

while in the previous methodology it is integrated over the entire process.)  The optimal 

heater settings are shown in Fig. 5.13, and the corresponding values of F(Φ∗) and the 

number of iterations required to reach Φ∗ at each time step are shown in Fig. 5.14.  As 

shown in Fig. 5.13, during the initial heating phase from τ = 0 to τ = 0.25, the outer 

annular heater has the highest output (since a substantial amount of the radiant heat 

produced by the outer heater is lost to the cold side wall) while the middle heater is 

turned off and the inner heater is on at a low setting.  

The output from the outer heater then drops while that of the inner heater 

increases as the wafer is held at a constant temperature from τ = 0.25 to τ = 0.5.  

Throughout the cooling phase, from τ = 0.5 to τ = 1, the wafer is radiantly cooled by the 

side walls and the outer annular heater is deactivated.  In the first part of the cooling 

phase, from τ = 0.5 to τ = 0.77, the cooling rate is moderated by the action of the inner 

heater, and the middle heater is briefly activated in order to maintain a uniform 

temperature distribution over the heater.  Near the end of the cooling process, from τ = 

0.77 to τ = 1, all three heaters are deactivated and the cooling rate and temperature 

distribution over the wafer is driven entirely by the radiant exchange between the wafer 

and the side wall.   
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Figure 5.13: Optimal heater settings obtained using N = 500 wall elements, and Nt = 

100 time steps, for the problem shown in Fig. 5.12. 
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Figure 5.14: Values of F[Φ∗(τt)] corresponding to the heater settings shown in Fig. 

5.13, and the number of time steps required to reach Φ∗(τt).  
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The transient temperature distribution over the semiconductor wafer is shown in 

Figs. 5.15 and 5.16.  Figure 5.15 shows that the maximum and minimum wafer 

temperatures are at the center and edge, respectively, closely match the set-point 

temperature throughout the process.  The maximum deviation between the average wafer 

temperature and the set-point temperature is 1.09%, occurring at the end of the process.  

As shown in Fig. 5.16, a near-uniform temperature distribution is maintained over the 

wafer at all times.  The maximum standard deviation of the wafer temperatures is 0.63%, 

which occurs at τ = 0.25. 
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Figure 5.15: Variation of the design surface temperature from the set-point temperature 

throughout the process, for the problem shown in Fig. 5.12. 
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Figure 5.16: Non-dimensional temperature distribution over the design surface at 

different process times, for the problem shown in Fig. 5.12. 

 

As previously noted, assuming a uniform radiosity distribution over each surface 

element induces an error in the calculation of the heat flux distribution over the design 

surface; this error becomes small as more elements are used in the analysis and 

approaches zero as N becomes large.  In order to verify that a sufficient number of 

surface elements was used in the optimization procedure, a refinement study is performed 

on the average value of F[Φ∗(τt), τt] obtained at all time steps, Fave(Φ∗), and is shown in 

Fig. 5.17.  (The term Φ∗ is a matrix containing the optimal design parameters from each 

time step.)  The grid independent value of Fave(Φ∗) was taken to be that obtained at the 
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highest level of refinement, Fave,∞(Φ∗) = Fave,N=2000(Φ∗) and the refinement error was then 

defined as 

( ) ( ) ( ).,, *
,

*
,

* ΦΦΦ ∞−= aveNavetFave FFNNE (5.61) 

Using this analysis, the refinement error in Fave,N=500(Φ∗) calculated with Nt = 100 time 

steps was estimated to be less than 0.2 %. 

In order to determine the error induced by using a finite number of surface 

elements throughout the verification procedure, a second grid refinement study was 

performed on the degree of energy conservation, defined as  
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(5.62) 

where Qin,N(Φ∗) is the total energy added by the heaters, Qout,N(Φ∗) is the total energy 

removed by the isothermal walls, and Qstored,N(Φ∗) is the sensible energy stored by the 

design surface throughout the process.  Figure 5.17 shows that a sufficient level of energy 

conservation is achieved using N =500 elements. 

 A second error is induced into the verification procedure by assuming that each 

element has a constant temperature over each time step; again, this error tends to zero as 

Nt becomes large.  In order to verify that a sufficient number of time steps was used in the 

verification procedure, a refinement study was performed on the non-dimensional 

temperatures at the center (r = 0 m) and outer edge of the wafer (r = 0.75 m) at τ = 0.26, 

obtained using N = 500 surface elements.   
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The grid-independent values are taken to be those obtained using the largest 

number of time steps, Nt = 5 × 104.   The refinement error in the temperature of the ith 

element is then 

( ) ( ) ( ).,ˆ,ˆ,,, *
,

*
,

* τττ ΦΦΦ ∞−= iNitTi TTNNE (5.63) 

As shown in Fig. 5.18, using Nt = 2000 time steps results in an error of approximately 

0.01%. 
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Figure 5.17: Refinement study on the number of surface elements used in the 

optimization and verification procedures. 
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5.4 Conclusions 

The objective of many radiant enclosure design problems is to find the transient heat flux 

distribution over the heater surface that heats a product according to a desired 

temperature history, while simultaneously maintaining a uniform temperature distribution 

at any given instant in order to ensure product homogeneity.  An a priori estimate of this 

heat flux distribution is used to size the radiant heaters when designing these enclosures, 

and also enables the use of high-gain controllers under operating conditions. 

 This chapter presented two design methodologies that can be used to solve this 

type of design problem.  Both methods work by minimizing a hybrid objective function 

composed of terms relating to the amount of sensible energy added to the design surface 

and the temperature variation within the product throughout the process.  

The first methodology is generic in the sense that conduction heat transfer through 

the enclosure walls, convection heat transfer between the walls and the surrounding 

fluids, and sensible energy storage within the walls are all accounted for in the heat 

transfer model, and it can therefore be applied to solve many different problems.  In this 

methodology, the objective function terms are integrated over the process duration and a 

single set of design parameters controls the transient heat flux distribution over the heater 

surface at all times.  The objective function is defined in terms of the temperature and 

temperature sensitivities evaluated at discrete locations over the design surface at 

different process times, which in turn are found by solving the set of nonlinear governing 

equations numerically using a problem-specific linearization scheme.  This design 

methodology was demonstrated by using it to solve for the optimal transient heater 
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settings in an annealing furnace.  In this example, the transient heat output from each 

heater was governed by a Bézier spline having design parameters as its coefficients. 

The second methodology is used to solve problems where thermal radiation is the 

only mode of heat transfer and where the design surface is flat and is the only part of the 

enclosure that stores sensible energy.  First, the governing equations are transformed 

from a nonlinear to a linear form by specifying the temperature and rate of temperature 

change over the design surface.  Once this is done, the optimal heater settings are then 

found by minimizing an objective function at every time step involving the net radiant 

heat flux entering the design surface.  Since the adiabatic boundary condition is enforced 

over the design surface in most practical applications, however, the quality of the optimal 

heater settings must be verified by calculating the transient temperature distribution over 

the design surface that is produced using the optimal heater settings.  

Although this design methodology cannot be used to solve as many problems as 

the generic approach, it is usually easier to implement because the analyst does not need 

to select a linearization scheme in order to solve the problem.  Moreover, this 

methodology is more suitable for low-thermal inertia applications where a quick heater 

response time is needed to produce rapid changes in the design surface temperature. 
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6.1 Conclusions 

Design problems involving radiant enclosures are routinely encountered in many 

different industrial applications.  In most problems, radiant heaters on the heater surface 

are used to impose desired temperature and heat flux distributions over the product 

located on the design surface; usually, these distributions need to be uniform in order to 

ensure product homogeneity.   

 When designing the radiant enclosure, the designer’s objective is to identify an 

enclosure geometry and heat flux distribution over the heater surface that produces the 

desired conditions over the design surface.  Traditionally, this has been done using a 

forward “trial-and-error” design methodology, where the designer repeatedly adjusts the 

design relying solely on his or her experience until the design surface conditions match 

the desired conditions within a specified tolerance.  Due to the complicated nature of 

radiant exchange between the enclosure surfaces, however, an intuitive understanding of 

how to modify the design in order to improve the solution is elusive even to the most 

experienced designer.  Because of this, the forward design methodology usually requires 

many iterations and consequently a lot of design time to carry out, and the procedure is 

usually stopped as soon as the conditions produced over the design surface match the 

desired conditions within an allowable tolerance, well before the design has been 

optimized.   

Design problems involving radiant enclosures containing surfaces with 

directionally dependent properties and those with transient and multimode heat transfer 

effects are particularly complex, and are thus ill-suited to the forward methodology.  
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Because of this, designers often use approximate analytical techniques based on non-

imaging optics to solve the former type of design problem, and control algorithms to 

solve the latter.  Although these strategies usually produce better solutions and require far 

less design time than the forward methodology, they are also quite complex and the 

designer must possess specialized skills in order to carry out the analyses.  Furthermore, 

both of these methods are based on simplified heat transfer models, which restrict 

solution accuracy. 

Designers have recently applied inverse design methodologies to solve radiant 

enclosure design problems.  In this approach, both the desired temperature and heat flux 

distributions are explicitly enforced over the design surface, while the conditions over the 

heater surface are unspecified.  When written in this form, the design problem is 

mathematically ill-posed because there may exist multiple solutions that produce the 

desired conditions over the design surface, or no solution at all.  Discretizing the 

governing equations results in an ill-conditioned (usually singular) system of equations 

that generally has an unequal number of equations and unknowns.  Various regularization 

techniques are then used to find a solution that is smooth and also produces a sufficiently 

small residual when substituted into the system of equations.   

The inverse design methodology usually requires far less design time than the 

forward “trial-and-error” methodology, and in most cases the heat flux and temperature 

distributions over the design surface closely match the desired distributions.  A major 

drawback of this approach, however, is that it is very difficult to enforce design 

constraints, and because of this solutions are often found that are difficult to implement in 
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an industrial setting.  For example, solutions obtained using this technique often have 

regions of negative heat flux over the heater surface; in most cases, the designer sets the 

heat flux output over these regions equal to zero and incurs the resulting error over the 

design surface.  It is also sometimes difficult to rearrange a radiant enclosure design 

problem into an explicit form that can be solved using a regularization technique, and for 

this reason inverse design methodologies have not been used to solve design problems 

where the enclosure geometry is variable. 

The optimization design methodology overcomes many drawbacks of these other 

design methodologies.  It is similar to the forward design methodology in the sense that it 

works by repeatedly analyzing and then modifying trial designs until an acceptable 

solution is identified; unlike the forward design methodology, however, the design 

modifications are carried out systematically.  This is made possible by first rewriting the 

design problem as a minimization problem by specifying one of the desired 

thermodynamic boundary conditions (usually the temperature distribution) over the 

design surface and then using the other to define an objective function, F(Φ), which 

quantifies the “goodness” of the design configuration.  In most cases, F(Φ) is the 

variance between the heat flux distribution and the desired heat flux distribution, 

evaluated at discrete locations over the design surface.  The variables in the design 

problem, most often the enclosure geometry and the heat flux distribution over the heater 

surface, are controlled by a set of design parameters contained in the vector Φ.   

The optimal design is then found by minimizing F(Φ) through repeated iteration.   

At the kth iteration, the heat flux distribution over the design surface is first solved and 
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then used to evaluate F(Φk).  Next, ∇F(Φ) and sometimes ∇2F(Φ) are formed, either 

from the heat flux sensitivities or using a finite difference approximation if these 

sensitivities are unavailable.  Finally, a new set of design parameters, Φk+1, is calculated 

based on the objective function sensitivities at Φk.  This procedure stops once a local 

minimum has been reached; the set of design parameters Φ∗ that minimizes F(Φ) 

corresponds to the design configuration that best satisfies the desired conditions over the 

design surface.   

Because the design parameters are systematically updated based on the objective 

function curvature, the optimization design methodology finds a much better solution in 

less time than the forward design methodology, which relies solely on the designer’s 

experience and intuition to modify the design at each iteration.  Also, since the enclosure 

problem is solved in its “natural” implicit form, it is possible to accommodate complex 

heat transfer models.  Because of this, many different types of enclosure problems can be 

solved using this approach, and there is no need for the simplifying assumptions required 

in analyses involving non-imaging optics and control algorithms.  Finally, unlike the 

inverse design methodology, design constraints can be enforced throughout the 

optimization process; in radiant enclosure design problems, constraints are most often 

used to ensure that the heat flux distribution over the heater surface is nonnegative, to 

force the enclosure geometry lie within a set of maximum dimensions, and to maintain an 

unobstructed enclosure geometry throughout the analysis.   

In this dissertation, five optimization methodologies were presented for solving 

different types of radiant enclosure design problems.  Chapter 2 described an 
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optimization methodology for finding a heat flux distribution over the heater surface that 

produces the desired temperature and heat flux distributions over the design surface in 

diffuse-walled enclosures with fixed geometry.  The heat flux distribution is solved with 

infinitesimal-area method and the heat flux sensitivities are found efficiently by post-

processing.  Optimization was carried out using Newton’s method and design constraints 

were enforced through an active set method.  This optimization methodology was 

demonstrated by using it to solve an example design problem, and the solution quality 

was shown to be superior to that obtained using an inverse (TSVD) design methodology. 

This optimization methodology was then extended in Chapter 3 to solve diffuse-

walled enclosure design problems where the enclosure geometry is a design variable.  

Although any type of parametric representation can be employed to represent the 

enclosure geometry, Bézier curves have several inherent advantages in the context of 

geometric optimization.  The heat flux and heat flux sensitivities over the design surface 

are found using a method similar to the one described in the previous chapter, and the 

objective function is again minimized using Newton’s method.  The active set method 

enforces design constraints that limit the enclosure size and ensure that the enclosure 

remains unobstructed throughout the optimization process, which is necessary in order to 

ensure that the objective function is continuously differentiable with respect to the design 

parameters. 

Chapter 4 presented an optimization methodology for designing the geometry and 

heater settings of radiant enclosures containing surfaces having directionally-dependent 

optical properties.  In this methodology, the heat flux distribution over the design surface 
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is solved by performing a Monte Carlo analysis based on exchange factors, which 

induces a statistical uncertainty in the solution.  Because of this, the objective function is 

minimized using the Kiefer Wolfowitz method, a gradient-based algorithm developed 

specifically to optimize stochastic systems where unbiased estimates of the gradient 

vector are unavailable.   

Finally, two optimization methodologies were presented in Chapter 5 that can be 

used to solve for the heater settings in diffuse-walled radiant enclosures with transient 

heat transfer effects.  The first method is “generic” in the sense that it takes into account 

conduction heat transfer through the enclosure walls, convection heat transfer between 

the walls and the surrounding fluids, and sensible energy storage in the enclosure 

surfaces, and it can therefore be used to solve many different design problems.  The 

transient heater outputs are controlled throughout the process with a single set of design 

parameters, which is done by setting the transient heat output of a single heater equal to a 

cubic spline function of time with each coefficient equal to a design parameter.  This acts 

both to regularize the transient heater output and facilitates the use of design constraints 

that force the heater outputs to lie within a predefined range.  The transient heater settings 

are optimized by minimizing a single objective function defined in terms of temperatures 

measured at discrete locations over the design surface and at various process times, which 

in turn are solved for using a variation of the infinitesimal-area analysis.  Since the 

second-order objective function sensitivities are not readily available, minimization is 

carried out using a quasi-Newton method. 
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The second optimization methodology is for designing heater settings in low-

thermal-inertia furnaces, where thermal radiation is the only mode of heat transfer and the 

design surface is the only enclosure surface that stores sensible energy.  The problem is 

first linearized by specifying the temperature and the rate of temperature rise over the 

design surface, and the transient heater settings that provide the required sensible energy 

by uniformly heating the design surface are then found by carrying out an optimization at 

each time step.  Each objective function is minimized using a quasi-Newton method, and 

an active set method is used to ensure a nonnegative heat flux distribution over the heater 

surface throughout the process.  Since the underside of the design surface is insulated in 

most practical applications, it is necessary to verify the optimal heater settings by 

calculating the transient temperature distribution produced over the design surface when 

the adiabatic boundary condition is enforced. 

 It should also be noted that, although any one of these problems could be solved 

by coupling a generic analysis code directly to a commercially available optimization 

algorithm, this would be a computationally-expensive and time-consuming process 

because the objective sensitivities could only be found using a finite difference 

approximation.  In contrast, the majority of methodologies presented in this dissertation 

take advantage of unique properties of the governing heat transfer equations to calculate 

the first-order (and sometimes second-order) sensitivities efficiently.  In order to take 

advantage of the availability of the sensitivities, however, it is important to be judicious 

when selecting a minimization technique.  In the methodologies presented in Chapters 2 

and 3, for example, the second-order sensitivities used to form the Hessian are readily 
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available so Newton’s method was chosen to carry out the minimization.  In transient 

problems, on the other hand, second-order sensitivities are far more expensive to 

calculate, and because of this the objective function was minimized using the quasi-

Newton method. 
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6.2 Recommendations for Future Work 

6.2.1 Application of MINLP and Metaheuristic Minimization Techniques 

In all of the design methodologies presented in this dissertation, the number of heaters 

used to heat the design surface was specified and their heat outputs were controlled by 

the design parameters.  Since the heat generated by a particular heater can assume any 

value within its operating range, these design parameters are continuously variable and 

nonlinear programming techniques such as Newton’s method can be used to minimize the 

objective function. 

Suppose that the number and sizes of the heaters located on the heater surface are 

variables in the design problem and that the heaters are only available in several different 

sizes; such is the case in the design problem shown in Fig. 6.1.  Because the design 

parameters corresponding to these variables hold discrete or integer values, nonlinear 

programming techniques cannot be used to optimize these parameters.  One way to solve 

this problem is to find the optimum heater settings using gradient-based minimization for 

every possible combination of heaters, and then identifying the combination that 

produces the smallest value of F(Φ∗).  While this may be reasonable in problems 

involving only a few heaters, this procedure becomes prohibitively time-consuming as 

the number of possible heater configurations increases. 

An alternative strategy is to solve the design problems using a mixed-integer 

nonlinear programming (MINLP) technique.  These techniques work by repeatedly 

solving for local minima over multiple subspaces of the feasible region in which all the 

design parameters are continuously variable using nonlinear programming techniques, 
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while a deterministic algorithm is used to identify subspaces that may contain the 

smallest local minima, so that not all of the subspaces need to be checked.  For example, 

the BARON algorithm developed by Sahinidis (1996) uses a modified “branch-and-

bound” technique to eliminate subspaces that could not contain the global minimum.  

Although these methods are guaranteed to identify the global minimum only if the 

feasible region of every subspace is known to be convex, a very good solution can 

usually be found even when this is not strictly true. 
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Figure 6.1: Two possible heater surface configurations for a radiant enclosure design 

problem where the number, size, and location of radiant heaters are design variables. 

 

This problem could also be solved using a metaheuristic technique.  Unlike 

deterministic optimization methods, metaheuristic techniques solve the optimization 

problem “approximately,” in the sense that the performance guarantees of the NLP and 
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MINLP algorithms are relaxed in order to increase computational efficiency.  These 

techniques are particularly useful for solving combinatorial “traveling salesman” type 

problems and multimodal problems in which the objective function has many local 

minima over the feasible region; the computational effort required to solve these 

problems using a deterministic approach would be prohibitive. 

Almost all metaheuristic algorithms work by comparing the objective functions 

corresponding to different sets of design parameters that are initially selected at random 

over the feasible region.  As the method progresses, the selection process increasingly 

favors designs that produce small objective functions, while other designs are discarded; 

this procedure continues until the improvement made in successive trials becomes 

smaller than some user-defied criteria, at which point the algorithm is terminated.  Two 

popular metaheuristic techniques are genetic algorithms (Forrest, 1993) and simulated 

annealing (Corana et al., 1987).  Both of these methods are based on phenomena in the 

natural world; the former mimics evolutionary natural selection within species, while the 

latter is inspired by the Brownian motion of atoms that allow them to find positions 

within a crystal lattice that correspond with the lowest possible energy state when metals 

are slowly cooled in an annealing process.  While they typically require more objective 

function evaluations than gradient-based methods to solve problems in which most of the 

design parameters are continuously variable and the objective function has few local 

minima, metaheuristic methods are often superior when many of the design parameters 

hold discrete or integer valuies and when many local minima exist over the feasible 

region.  Furthermore, since the objective function sensitivities are not used to update the 
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design parameters, this method does not require the objective function to be smooth over 

the feasible region.  Thus, unlike gradient-based techniques, metaheuristics can be used 

to optimize the geometry of diffuse-walled obstructed enclosures. 

 

6.2.2 Development of Optimization Methodologies to Design Enclosures Containing 

Participating Media 

Although gradient-based optimization techniques have been used to solve many different 

types of design problems involving radiant enclosures, they have yet to be applied to 

design radiant enclosures containing participating media.  These problems are 

encountered in diverse industrial settings, including glass and polymer fabrication, drying 

applications, and combustion processes.  An example problem is shown in Fig. 6.2, 

where the objective is to identify the location and heat output of burners that produce the 

desired heat flux and temperature distribution over the design surface. 

Recently, there has been a great interest in developing optimization 

methodologies to design combustion systems, with the objective of improving fuel 

efficiency and reducing pollution.  Several preliminary optimization studies have 

identified designs that perform considerably better than existing designs originally found 

by trial-and-error.  For example, Chen and Ryoji (2000) designed a post-flame reactor to 

reduce the amount of NOx generated by a combustion process and Hiroyasu et al. (2003) 

optimized the injection system of a Diesel engine.  The majority of these preliminary 

studies rely on genetic algorithms to carry out the minimization; since these algorithms 

require the evaluation of many prospective designs to solve the design problem, however, 
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limited computational resources restrict the system models to be rudimentary and largely 

phenomenological.  Since a gradient-based optimization methodology would likely 

require fewer objective function evaluations to solve the design problem, it would then be 

possible to accommodate more sophisticated and accurate system model. 
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Figure 6.2: Example design problem involving a radiant enclosure containing a 

participating medium.  Design parameters control the heat output and location of multiple 

burners located within a participating medium. 

 

6.2.3 Integration of a CFD Code into the Optimization Design Methodology 

In the majority of radiant enclosure design problems in the literature, convection heat 

transfer between the enclosure walls and a surrounding fluid are treated by specifying a 

convection coefficient over the surfaces; the most sophisticated treatment of mixed 

radiation/convection heat transfer in a radiant enclosure design problem to date was done 
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by França et al. (2001), who solved for convection heat transfer between the enclosure 

walls and the medium flowing between the walls by first specifying the velocity 

distribution within the fluid.  Many radiant enclosure design problems require a more 

sophisticated treatment of convection heat transfer, however.  In problems involving 

natural convection, for example, the equations governing the heat transfer and fluid flow 

within the radiant enclosure are coupled and must be solved simultaneously.   

 One way of treating this type of design problem is to integrate a CFD code like 

FLUENT or TASCFLOW into the optimization methodology.  This would be relatively 

easy to do since the optimization methodology solves the design problem in its “natural” 

implicit form, which facilitates the use of complex heat transfer models.  In the radiant 

enclosure design problem, a gradient-based algorithm could use a CFD code to calculate 

the temperature or heat flux distribution and the corresponding sensitivities over the 

design surface, which in turn would be used to form the objective function and gradient 

vector.  Commercial codes have already been used to solve other types of optimization 

design problems; for example, Ebrahimi et al. (1997) optimized the riser geometry of an 

investment casting application with a quasi-Newton method that incorporated FIDAP to 

calculate the temperature distribution and temperature sensitivities within the molten 

metal, which were then used to form the objective function and gradient vector at each 

step.  In another study, Han et al. (2003) optimized the scroll geometry of an axial 

impeller in an air conditioner, with the objective of achieving the maximum volumetric 

flow rate through the fan.  The objective function was evaluated at various locations over 

the design surface by performing a CFD analysis, and these discrete objective function 
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values were then used to fit a quadratic response surface that approximated a 

continuously-variable objective function.  The optimal scroll geometry corresponds with 

the global minimum of the response surface, which was found using Newton’s method. 

 It should be noted, however, that the time and computational effort needed to 

carry out an analysis increases with the complexity of the heat transfer model.  This is 

especially true in optimization design problems, since the existence of an efficient way to 

calculate the system response sensitivities becomes less likely as the model becomes 

more complex.  In the most extreme case, the system response sensitivities are 

unavailable and the gradient vector must either be approximated by a finite difference 

technique or through the response surface method, which both require many objective 

function evaluations and a substantial amount of computational effort to carry out. 
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A.1 Introduction 

Optimization techniques are encountered in many diverse settings; most often, as the 

name implies, their purpose is to determine the configuration of a system that results in 

optimal performance.  For example, they may be used to determine a financial portfolio 

that maximizes profit made on the stock market over a set time period, the number of 

trucks a hauling company should dispatch to make deliveries to different cities in order to 

minimize operating cost, or the geometry of a rocket nosecone that minimizes drag and 

heating due to thermal dissipation.   

The first step in solving an optimization problem is to restate it as a minimization 

problem.  In particular, it is necessary to designate a set of design parameters contained 

in the vector Φ that control the design configuration, and then to define an objective 

function, F(Φ), which quantifies the “goodness” of the configuration corresponding to the 

set of design parameters contained in Φ.  The objective function is usually defined in 

such a way that the minimum of F(Φ) corresponds to the ideal design outcome.  For 

example, in the hauling problem described in the previous paragraph, a suitable objective 

function would be the overall cost associated with making the deliveries including driver 

time, fuel charges, and truck maintenance and depreciation, while the design parameters 

would define the number of trucks dispatched to make the deliveries and the sequence in 

which the deliveries are made.  Thus, the optimal design configuration corresponds to the 

design parameters contained Φ*, which in turn is found by minimizing F(Φ),  

( ) ( )[ ] .,* nFMinF ℜ∈= ΦΦΦ (A.1) 

Usually, it is also necessary to impose design constraints having the form 
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( ) ,'1,0 mici K==Φ (A.2) 

and  

( ) ,1',0 mmici K+=≥Φ  (A.3) 

which define the domain (or feasible region) of Φ.  In the hauling problem, the design 

constraints would ensure that the optimum number of trucks is greater than zero but no 

more than the total number of trucks available in the company fleet.   

If all the functions in Eqs. (A.1) through (A.3) are linear, than the optimal solution 

can be solved using linear programming techniques; if the constraints can be written as 

equalities, this is tantamount to solving a system of linear equations.  In most situations, 

however, the objective function and/or one or more of the constraints will be a nonlinear 

function of the design parameters in which case nonlinear programming techniques must 

be used to identify Φ∗. 

 At this point, it is convenient to designate two classes of nonlinear programming 

problems; those that only involve design parameters that continuously vary over the 

feasible region, and those that contain one or more design parameters that can only 

assume discrete values.  For example, when determining the optimal heater settings of a 

process furnace, the heat flux produced by a heater can assume any value that lies within 

a designated minimum and maximum heater output, so the design parameters can vary 

continuously over their corresponding feasible region.  In the hauling problem, on the 

other hand, the design parameters that designate the number of dispatched trucks and the 

order in which the deliveries are made can only assume integer values.  Problems 

belonging to the first class are generally easier to solve, while those belonging to the 
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second class, called “mixed-integer nonlinear programming” problems, are more 

complex and require specialized techniques in order to find their solutions.  Further 

discussion of nonlinear programming techniques is restricted to those that pertain to 

problems of the first class.   

 In this appendix, unconstrained gradient-based minimization techniques are first 

discussed and demonstrated in Section A.2.  These techniques are modified to allow the 

treatment of some simple linear design constraints in Section A.3, and conclusions are 

presented in Section A.4. 

  

A.2 Unconstrained Optimization Techniques 

Many different techniques have been developed to minimize the objective function.  

Gradient-based techniques are most commonly used when the objective function and 

design constraints are continuously differentiable over the feasible region.  These 

techniques minimize F(Φ) iteratively and work according to the following steps: at the kth 

iteration, 

1. The magnitude of the gradient vector is first checked to see if |∇F(Φk)| ≈ 0, in 

which case Φk is a stationary point and the process is stopped.  If the Hessian 

matrix is positive-definite at the stationary point (i.e. if dT∇2F(Φk)d > 0 for 

any vector d) then Φk is a local minimizer of F(Φ).   

2. The search direction, pk, is chosen based on the local objective function 

curvature at Φk. 
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3. A step size, αk, is selected.   This is usually done by minimizing the function 

f(αk) = F(Φk+pkαk) with respect to αk. 

4. A step is taken in the pk direction, Φk+1 = Φk + pkαk. 

The computational efficiency of the algorithm is a function of the total number of 

iterations required to arrive at Φ∗ and the CPU time and memory required to perform 

each iteration.  These factors, in turn, depend on how the search direction and step size 

are chosen and the computational effort required for solving the first- and second- order 

objective function sensitivities. 

 

A.2.1 Choosing a Search Direction 

The main difference between gradient-based optimization techniques lies in how the 

search direction is chosen.  The search direction is chosen based on the first-order 

curvature contained in the gradient vector,  
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and in some cases, the second-order curvature information contained in the Hessian 

matrix, 
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 When selecting a search direction, it is important to ensure that the choice of pk 

reduces the objective function, i.e. F(Φk+pkαk) < F(Φk) with αk > 0.  This condition is 

satisfied as long as pk is a descent direction,  
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(A.6) ( ) .0<k
Tk F Φ∇p

In gradient-based methods, the search direction is found by solving a system of 

linear equations, 

(A.7) ( ),k
k F Φ∇−=pA

where the coefficient matrix, A, differentiates the type of method used.  It can be shown 

that pk is guaranteed to be a descent direction as long as the coefficient matrix is positive 

definite, i.e. dT A d > 0 for any vector d.   

The most intuitive choice for a search direction is found by setting A in Eq. (A.7) 

equal the identity matrix,  

( ),kk F Φ∇−=p (A.8) 

which is the direction of steepest descent; accordingly, this method is called the “steepest 

descent” method.  In this method, pk is always guaranteed to be a descent direction, and it 

only requires evaluation of first-order sensitivities.   Nevertheless, the steepest descent 

method usually has a linear or sublinear rate of convergence towards Φ∗, and therefore is 

rarely used as an optimization tool. 

 A much better search direction is found by considering both the first- and second-

order objective function sensitivies.  In Newton’s method, the search direction is derived 

from a second-order Taylor series expansion of the objective function about Φk,  

( ) ( ) ( ) ( ) ,
2
1 kkTkkTkkkk FFFF pppp ξ2∇Φ∇ΦΦ ++=+ (A.9) 

where ξ is an undetermined value lying between Φk and Φk + pk.  Let Φ∗ = Φk + pk, and 

furthermore assume that the objective function is quadratic in which case the Hessian 

matrix is constant.  (This assumption is usually reasonable in the vicinity of Φ∗, where 
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the higher-order terms in the Taylor series approximation become very small.)  The 

gradient vector at Φ∗ = Φk + pk can be found by taking the derivative of Eq. (A.9), 

( ) ( ) ( ) .2* kkk FFF pΦ∇Φ∇Φ∇ +≈ (A.10) 

Since |∇F(Φ∗)| = 0, Eq. (A.10) can be rearranged to solve for the search direction,  

( ) ( ).2 kkk FF ΦΦ ∇−=∇ p (A.11) 

Here, pk is Newton’s direction, and hence this method is referred to as “Newton’s 

method.”  This method usually requires the fewest iterations to reach Φ∗, and is used as a 

benchmark to measure the performance of other techniques.  The drawback to this 

approach, however, is that both the first- and second-order objective function sensitivities 

are required to solve for pk.  Thus, the viability of Newton’s method depends on the 

computational effort required to calculate the Hessian matrix.  If the second-order 

objective function sensitivities are found efficiently (which is the case for most diffuse-

walled radiant enclosure problems) then Newton’s method is usually the most efficient 

optimization technique.  More often, however, significant computational effort is 

required to calculate the Hessian matrix.  In the worst case, the first- and second-order 

sensitivities are found using a forward difference approximation, which requires n 

objective function evaluations to estimate ∇F(Φk) and an extra (n+1)×n/2 objective 

function evaluations to estimate ∇2F(Φk).  In these cases, the advantage of requiring 

fewer iterations to find Φ∗ is usually negated by the computational effort required to 

solve the Hessian at each iteration. 

 The quasi-Newton method avoids the computational effort associated with 

calculating the second-order objective function sensitivities by using first-order curvature 
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information collected from previous iterations to estimate the Hessian matrix.  In this 

method, the search direction is found by solving 

( ),kkk F Φ∇−=pB (A.12) 

where Bk is an approximation matrix.  Initially, B0 is set equal to the identity matrix, and 

pk is then the steepest-descent direction.  The Hessian approximation is improved in 

subsequent iterations by adding an update matrix,    

,1 kkk UBB +=+ (A.13) 

where Uk is calculated using values of the objective function and gradient vector 

calculated from previous iterations.  The Hessian is accurately approximated after few 

iterations, and Bk converges to ∇2F(Φk) as k becomes large.   

Many different update schemes have been proposed; the most popular is the 

Broyden-Fletcher-Goldfarb-Shanno (BFGS) scheme (Gill et al., 1986a).  Here, the update 

matrix is given by 

,
kTk

kTk

kkTk

kTkkk

k
sy
yy

ss
ss

+−=
B

BBU (A.14) 

where sk = Φk+1 − Φk and yk = ∇F(Φk+1)  − ∇F(Φk).  Equation (A.14) is simplified by 

substituting in Eq. (A.12) and noting that pkαk = sk, 

(A.15) 

 Because pk is initially equal to the steepest-descent direction and accurately 

approximates Newton’s direction only after several iterations, the quasi-Newton’s 

method usually requires more iterations to identify Φ∗ than Newton’s method.  Since the 

second-order sensitivities are not calculated, however, the computational effort required 

to minimize F(Φ) is often much less than that required by Newton’s method. 

( ) ( )
( ) .
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 It should be noted that while pk is always guaranteed to be a descent direction in 

the steepest-descent method, this is not the case for the Newton and quasi-Newton 

methods.  In particular, both Eqs. (A.11) and (A.12) will fail to produce a descent 

direction if ∇2F(Φk) is semi-definite, which happens if there exists some vector d that 

satisfies dT∇2F(Φk)dT  = 0 with |d| ≠ 0; such a condition arises when two or more of the 

rows in the Hessian matrix are linearly dependent.  The Newton and quasi-Newton 

methods will also fail if ∇2F(Φk) is negative-definite, where there exists some vector d 

that satisfies dT∇2F(Φk)dT  < 0, even if there exists a descent direction at Φk. 

 This situation is most easily visualized by considering the case where Newton’s 

method in one-dimension,  

( )
( ),

''
'1

k

k
kk

xf
xfxx −=+ (A.16) 

is applied to minimize the function shown in Fig.  A.1.  (Note that this equation is 

analogous to Eq. (A.11).)  In the immediate vicinity of x*, a < xk < b, ( )kxf  is concave so 

( )kxf ''  is greater than zero; applying Eq. (A.16) in this region would produce a point xk+1 

where ( )1+kxf  < ( )kxf  and x* would be reached after only a few iterations.  For b < xk < 

c, however, ( )kxf  is linear and ( )kxf ''  = 0; applying Eq. (A.16) in this region would 

result in a division-by-zero error.  Finally, ( )kxf  is concave for xk > c, so ( )kxf '   > 0 

and ( )kxf ''  < 0; applying Eq. (A.16) would produce a point xk+1 to the right of xk where 

( )1+kxf  > ( )kxf , and the algorithm would eventually reach the local maximum at x*2. 
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f′′(x) > 0 
f(x) 

f′′(x) = 0 f′′(x) < 0 

x*2b cx*a x 
Figure A.1: Newton’s method in one dimension. 

 

To understand this phenomenon in multiple dimensions, it is useful to first 

decompose the Hessian into its eigenvalues, {λi, i = 1…n}, and eigenvectors, {µi, i = 

1…n}.  In particular, the jth eigenvalue and eigenvector of ∇2F(Φk) satisfy 

( ) .2
jjj

kF µµ λ=∇ Φ (A.16) 

If λj is equal to zero at Φk, then F(Φk) becomes a linear function in the µj direction.  In 

this case both ∇2F(Φk) and Bk are singular so Eqs. (A.11) and (A.12) cannot be solved.  

Likewise, if λj < 0, then F(Φk) is concave in the µj direction and Eqs. (A.11) and (A.12) 

are no longer guaranteed to produce a descent direction, even though one may exist.   

For example, consider the quadratic objective function given by 

(A.17) ( ) ( ) ,2344, 22 yxxyyxyxFF −−++==Φ

which is to be minimized starting from Φ0 = {−2, −2}T.  By differentiating F(Φ) with 

respect to x and y, the gradient vector is found to be 
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(A.18) ( ) { } ,242,348, TxyyxyxF −+−+=∇

and the Hessian matrix is given by 

,
24

482
⎥
⎦

⎤
⎢
⎣

⎡
=F∇ (A.19) 

with eigenvalues and eigenvectors equal to λ1 = 0, µ1 = {−1, 2}T, λ2 = 10, and µ2 = {2, 

1}T.  Because the rows of the Hessian matrix are linearly dependent, Eq. (A.11) will not 

produce a descent direction even though one must exist at Φ0, since ∇F(Φ0) = {−27, 

−14}T.  As shown graphically in Fig. A.2, the null eigenvalue indicates that F(Φ) is linear 

in the µ1 direction.   
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Figure A.2: An example of an objective function with an indefinite Hessian. 

These situations can be diagnosed and corrected by first performing a Cholesky 

decomposition on the Hessian,  

( ) ,2 TkF LDL=Φ∇ (A.20) 
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or approximate Hessian matrices, and by recalling that the back-substitution step used to 

solve a system of linear equations involves division by the diagonal elements of D.  If 

∇2F(Φk) or Bk is positive definite, the diagonal elements of D will be strictly positive, 

and the search direction can be solved by substituting Eq. (A.20) into Eq. (A.11) and 

solving by back-substitution.  If the Hessian is indefinite, however, at least one of the 

diagonal elements in D equals zero and the back-substitution step results in a division-by-

zero error.  Finally, if one of the diagonal elements of D is negative, then the original 

matrix is negative definite, and a descent direction is no longer guaranteed.   

This situation is most often resolved by adding a diagonal matrix Ek to an 

indefinite or negative-definite Hessian to produce a related positive-definite matrix, 

( )kF Φ∇2~ , 

( ) ( ) ,~ 22 kkk FF E+Φ∇=Φ∇ (A.21) 

where the elements in E are sufficiently large to ensure that the diagonal elements of D 

are strictly non-negative, yet small enough so as to retain an accurate approximation of 

∇2F(Φ).  (This is, in fact, a regularization technique, similar to the ones described in 

Appendix B.)  There are many different strategies for choosing E, including those 

discussed in Gill et al. (1986b) and Betsekas (1999b).  Both of these approaches are also 

used to resolve indeterminate Hessian approximations encountered with the quasi-

Newton method. 

In the methods discussed so far, pk is chosen based solely on the objective 

function curvature at Φk without considering search directions used at previous iterations.  

Because of this, there is no guarantee that progress made by minimizing in one search 
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direction will not be “spoiled” by minimizations in subsequent directions.  In an extreme 

example, consider the minimization of the quadratic objective function shown in Fig. 

A.3, where successive search directions are alternately set equal to the unit vectors  

and  in the x- and y- coordinate directions, respectively.  When minimization has been 

carried out in the  direction at the k

xê

yê

xê th iteration, say, then yk−1 no longer minimizes F(xk, 

y), and an updated value of y must be found in the next iteration. 

Another class of gradient-based minimization techniques, called conjugate 

gradient techniques, avoid this problem by finding a set of “non-interfering” (or mutually 

conjugate) search directions.  These were originally developed to solve systems of n 

equations containing n unknowns, 

(A.22) ,b=ΦA

which is equivalent to minimizing the quadratic objective function 

( ) ,−= ΦΦΦΦ TΤF bΑ
2
1 (A.23) 

where ∇F(Φ) = A Φ − b and ∇2F(Φ) = A.  The solution strategy is to first identify a set 

of n directions that are mutually conjugate with respect to the A matrix, {pi, i = 1…n}, 

which by definition satisfy  

(A.24) .,0 jiT
≠=ji pp A

(If A is the identity matrix, than pi and pj are orthogonal for i  ≠ j.)  The conjugate set is 

generated using the residual vector ri =  b – AΦi, through the recursion (Nash and Sofer, 

1996) 

(A.25) ,11 −−+−= kkkk prp β
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 (A.26) 

 
 

(A.27) ,1 kkkk pα+=+ ΦΦ
 

(A.28) ,1 kkkk prr Aα+=+

and  

,2

2

2

2

1

k

k
k

r

r +

=β (A.29) 
 
 

with the initial values r0 = b – AΦ0, p−1 = 0, and β0 = 0.  If exact algebra is used, then 

Eqs. (A.25) – (A.29) find Φ∗ in exactly n iterations.  (The matrix A must be symmetric 

and positive definite, however, for the reasons discussed previously in relation to the 

Newton and quasi-Newton methods.) 

 The above method can be extended to minimize objective functions of arbitrary 

form.  By applying identities based on conjugacy to the above recursion, the search 

directions are generated using only the gradient vector,  

( ) ( )
( ) ( ),11 −−= kkT

kkT
k

ff
ff

Φ∇Φ∇
Φ∇Φ∇β (A.30)  

and  

( ) ,1−+Φ−= kkkk f pp β∇ (A.31) 

thus avoiding the computational effort required to calculate the Hessian matrix at each 

iteration.  (The step size is found by performing a line search from Φk in the pk direction.)  

Since the objective function is not generally quadratic, the set of search directions will 

not satisfy the conjugacy conditions in Eq. (A.24) exactly and thus more than n steps are 

usually needed to find Φ∗.  Nevertheless, F(Φ) is usually approximated as a quadratic in 

 194



the vicinity of Φ∗ with sufficient accuracy in order to make this an efficient minimization 

technique. 
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p2k = {1, 0}T, p2k+1 = {0, 1}T, k = 0, 1, 2, … p1T∇2F p2 = 0, p1 = {1, 1}T, p2 = {1, -9/5}T  
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Figure A.3: Minimization of F(x, y) = 4x2 + y2 + 3xy – 5x – 3y using (a) the coordinate 

directions, and (b) conjugate vectors as search directions. 
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A.2.2 Choosing a Step Size 

The next task is to choose a step size, αk, which determines how far the design 

parameters should be moved from Φk in the direction pk at the kth iteration.  Many 

different schemes have been developed for choosing the step size.  As is the case when 

selecting a search direction method, the objective when selecting a step size scheme is to 

choose the one that minimizes the overall computational effort required to find Φ∗; 

accordingly, this decision is based on both the computational effort required to calculate 

the objective function and the availability of the first- and second-order objective 

function sensitivities. 

 The most intuitive strategy is to use the step size that maximizes the decrease in 

the objective function at that particular iteration, F(Φk) – F(Φk+1).  As shown in Fig. A.4, 

this is equivalent to solving the univariate minimization problem 

( ) ( )[ ],0
* kk fMinf k αα

α >
= (A.32) 

where f(αk) = F(Φk+pkαk).  This strategy is called an “exact line search,” and usually 

requires the fewest number of iterations to find Φ∗ when implemented with a given 

search direction scheme.   

Nevertheless, the extra computational effort needed at each iteration to find the 

exact value of αk∗ usually exceeds the amount saved by reducing the total number of 

iterations.  Because of this, in most practical implementations the minimization procedure 

is stopped once a step size is found that approximates αk∗ within a specified tolerance.  

One common stopping criterion is the Armijo rule (Bertsekas, 1999a), which requires the 

magnitude of the objective function decrease obtained with a given step size to be greater 
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than some specified fraction of the decrease predicted by a first-order Taylor series 

approximation of the objective function, 

( ) ( ) ( ) ,kTkkkkkk FFF ΦΦΦ ∇≥+− pp µαα (A.33) 

where µ is the Armijo parameter, which typically has a value between 10−5  ≤ µ ≤ 10−2 

(Bertsekas, 1999a).  The Armijo rule ensures that the step size is small enough so that the 

2nd-order Taylor series expansion of the objective function about Φk used to calculate pk 

accurately models the objective function at Φk+1.   
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Figure A.4: Step size selection as a univariate minimization problem; (a) contour plot 

of F(Φ) = F(x, y) = x4 + 2y2 + xy − 3x − 2y with Φk = {−2, −2}T and pk = {0 .71, 2.82}T 

(Newton’s direction), and (b) univariate minimization of f(αk) = F(Φk+αkpk) subject to 

the Armijo rule, with µ = 10−1. 

 

 There are many possible ways to perform a line search.  If the first and second-

order objective function sensitivities are readily available, then αk∗ (or its approximation) 
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can be found through a one-dimensional implementation of Newton’s method.  At the ith 

sub-iteration, the new estimate for αk∗ is given by 

(A.34) 

where ( ) ( )ikkkTkik Ff αα pp +∇= Φ'  and ( ) ( ) kikkkTkik Ff ppp αα +∇= Φ2'' .  Just as in 

the multivariate case, this method typically requires the fewest number of subiterations 

since both first- and second-order curvature information is used to update the guess for 

αk∗, although the computational effort needed to calculate the Hessian at each sub-

iteration is usually prohibitive.   

( )
( ),''

'1

ik

ik
ikik

f
f

α
ααα −=

+

Quadratic and cubic interpolation are also used to select a near optimum step size.  

The procedure works as follows; at each subiteration, an interval is first selected over 

which αk∗ is known to lie, i.e. ai ≤ αk∗ ≤ bi.  Next, either a quadratic or a cubic polynomial 

is fitted to values of f(αk) and f′(αk) within [ai, bi], and an estimate of αk∗, αki∗, is then 

estimated from the polynomial minimum.  Finally, a smaller updated interval is identified 

around αki∗ and the interpolation process is repeated.  Cubic interpolation usually 

provides a more accurate estimate of f(αk) and thus requires fewer iterations than 

quadratic interpolation to find an accurate approximation of αk∗.  On the other hand, 

whereas quadratic interpolation only uses evaluations of f(αk), cubic interpolation is 

based on values of both f(αk) and f′(αk), and therefore tends to require more 

computational effort than quadratic interpolation at each subiteration.  

In many instances, the magnitude of the search direction, |pk|, accurately estimates 

the distance between Φk and Φk + αk∗pk, so that αk∗ ≈ 1.  This is often the case when the 

 198



Newton or quasi-Newton search direction is used, since pk set equal to the distance 

between Φk and Φ∗ in the second-order Taylor series approximation of F(Φ) used to 

derive Eqs. (A.11) and (A.12).  In this case, it is often sufficient to use a backtracking 

search to find a step size, where the search direction is set equal to 2−m with m being the 

first non-negative integer that satisfies the Armijo criterion.   

Finally, if the objective function evaluations are computationally expensive, it is 

often impractical to use a line search to solve for αk.  An alternative is to employ a 

diminishing step size rule, where αk is a specified function of k that satisfies the 

conditions  

(A.35) ,0lim =∞→
k

k α

and  

.
1

∞=∑
∞

=k

kα (A.36) 

The second condition prevents the minimization process from converging to a non-

stationary point.  One common approach is to set the step size equal to a non-diminishing 

sequence based on iteration number, 

.10,
0

≤<= a
k a

k αα (A.37) 

Although the diminishing step size rule has some favorable convergence 

properties (Bertsekas, 1999b), convergence tends to be slow since αk is not always a good 

approximation of αk∗.  Accordingly, this method is usually restricted to situations when 

slow convergence is inevitable; for example, when an accurate estimator of ∇F(Φk) is 

unavailable. 
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A.2.3 Demonstration of Unconstrained Minimization Techniques 

The Newton, quasi-Newton (BFGS), steepest descent, and conjugate gradient 

minimization techniques discussed in the previous sections are demonstrated by applying 

them to minimize Rosenbrock’s function,  

( ) ( ) ( ) .101, 222 yxxyxF −+−= (A.38) 

This function is often used to evaluate gradient-based optimization techniques, because as 

shown in Fig. A.5, the narrow, twisting valley leading up to the global minimum at Φ∗ = 

{1,1}T makes it a difficult objective function to minimize.   
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Figure A.5: Rosenbrock’s Function, F(x, y) = (x − 1)2 + 10(x2 − y)2. 

 

 In each case, minimization starts at Φ0 = {1, -1}T, and is stopped when |∇F(Φk)| < 

10−6.  The step size at each iteration is found by performing repeated quadratic 

polynomial interpolations until the Armijo criterion is satisfied with µ = 10−2.  The 

minimization paths are shown in Fig. A.6, while the decrease in the objective function 

with each successive iteration is plotted in Fig. A.7.  Performance of the minimization 
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techniques is also summarized in Table A.1, and is measured based on both the total 

iterations and the number times F(Φ), ∇F(Φ), and ∇2F(Φ) need to be evaluated in order 

to find Φ∗.   

 Each of the minimization techniques was able to find Φ∗.  As predicted, Newton’s 

method requires the fewest iterations, since the search direction is chosen based on first- 

and second-order curvature information evaluated at each iteration.  The steepest descent 

method, on the other hand, requires the most iterations because the search direction is 

chosen based only on the first-order curvature of F(Φ).  Although the quasi-Newton 

method initially starts with the steepest descent direction, it required only seven more 

iterations than Newton’s method to find Φ∗, suggesting that an accurate approximation of 

the Hessian matrix was formed after only a few iterations.   

 If approximately the same computational effort is required to calculate F(Φ), 

∂F(Φ)/∂Φp, and ∂2F(Φ)/∂Φp∂Φq (as is usually the case when the sensitivities are found 

analytically) then Newton’s method the most efficient of the four methods.  This is 

usually only true, however, if the first- and second-order sensitivities can be calculated 

efficiently; otherwise, any advantage gained by performing fewer iterations to reach Φ∗ is 

usually nullified by the extra computational effort needed by Newton’s method to 

calculate the Hessian at each iteration. 

 The performance of the conjugate gradient and quasi-Newton methods are 

comparable; both require approximately the same number of iterations (16 and 20, 

respectively), objective function calculations (214 and 151, respectively) and first-order 

sensitivity calculations (35 and 41, respectively).  This suggests that either method would 
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be a suitable choice for a minimization technique in cases where the second-order 

objective function sensitivities are not readily available. 

 As shown in Fig. A.7, Newton’s method has the greatest rate of convergence of 

the four methods throughout the entire minimization process.  In the vicinity of Φ∗, 

however, the quasi-Newton and conjugate gradient methods attain the same convergence 

rate as Newton’s method; in the case of the quasi-Newton method, this is indicative of an 

accurate Hessian approximation.  The steepest descent method has the slowest 

convergence rates; while the convergence rates of the Newton, quasi-Newton, and 

conjugate gradient methods are all superlinear, the steepest descent convergence rate is 

linear, where as k becomes large, 

( ) ( )
( ) ( ) .

*

*1

C
FF

FF
k

k

=
−

−+

ΦΦ

ΦΦ  
 (A.39) 

 
This slow convergence rate makes the steepest descent method an unsuitable 

minimization technique for most nonlinear problems. 

 

Minimization 
Method 

Total 
Iterations

F(Φ) 
Evaluations 

 ∂F(Φ)/∂Φp 
Evaluations 

 ∂2F(Φ)/∂Φp∂Φq 
Evaluations 

Newton 9 119 19 10 
Quasi-Newton 16 214 35 0 

Steepest Descent 926 7013 927 0 
Conjugate Gradient 20 151 41 0 

 

Table A.1: Performance of Newton, quasi-Newton, steepest descent and conjugate 

gradient minimization techniques applied to minimize Rosenbrock’s function. 
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(c) (d)  

Figure A.6: Minimization paths for different gradient-based optimization techniques: 

(a) Newton’s method, (b) Quasi-Newton’s method, (c), Steepest-Descent, and (d) 

Conjugate Gradient Method. 

 

 203



 
10

Newton
Quasi-Newton 
Steepest Descent 
Conjugate Gradient 

 
10−1

 

10−3

 

 10−5

F
(Φ

k ) 

 
10−7

 
10−9

 

10−11

 

 10−13

1 100 10000

 Iteration Number, k 

Figure A.7: Plot of F(Φ) with respect to iteration number for Newton, quasi-Newton, 

steepest descent and conjugate gradient minimization techniques. 
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A.3 Constrained Minimization Techniques 

It is often necessary to restrict the values of Φ to lie within some fixed domain (called a 

“feasible region”) by specifying constraints.  In the context of radiant enclosure design, 

constraints are used to prevent heater outputs from assuming negative values, to maintain 

an unobstructed enclosure geometry (so that any two points on the enclosure surface can 

“see” each other), and to restrict the enclosure dimensions to be less than some maximum 

size.  In this application, all the constraints are linear inequalities, so the minimization 

problem can be written as 

( ) ,, nFMinimize ℜ∈ΦΦ (A.40) 

subject to 

( ) .1,0 mici K=≥Φ (A.41) 

The ith inequality constraint is said to be active at Φk if ci(Φk) = 0; otherwise, the 

constraint is inactive.   

It is often useful to incorporate the objective function and constraints into a single 

function called the Lagrangian function, 

(A.42) ( ) ( ) ( ).FL Τ ΦΦΦ cξξ +=,

Vectors ξ and c(Φ) contain the Lagrangian multipliers and inequality constraints, 

respectively, with the ith Lagrangian multiplier, ξi, corresponding to the ith constraint, 

ci(Φ).  It can be shown that the n-dimensional constrained minimization problem defined 

by Eqs. (A.40) and (A.41) is equivalent to the n + m dimensional unconstrained problem 

where the objective is to find the vectors Φ* and ξ* such that 

( ) ( )[ ] .,,,, ** mnLMinL ℜ∈ℜ∈= ξξξ ΦΦΦ (A.43) 

 205



A solution to Eq. (A.43) thus satisfies the first-order necessary conditions for a local 

minimum, 

( ) ( ) ( ) .1,0, *

1

***

npcFL

p

i
m

i
i

pp

K==
Φ∂

∂
+

Φ∂
∂

=
Φ∂

∂ ∑
=

ΦΦΦ ξξ (A.44) 

 

Assuming the inequalities are defined in a form consistent with Eq. (A.41), the 

Lagrangian multipliers are strictly non-positive.  If the ith constraint is active, then ξi is 

equal to some negative number, and ξi = 0 otherwise.  Lagrangian multipliers can also be 

interpreted as marginal values, and are a linear approximation of how relaxing the active 

constraints would affect the minimization problem.  In particular, F(Φ) would decrease 

(improve) by approximately ξi if ci(Φ*) was allowed to increase by one unit.   

This can be most clearly seen if the inequality constraints are simple bounds of 

the form 

( ) ,1,02 nilc biii K=≥−Φ=Φ (A.45) 

and 

( ) ,1,012 niuc ibii K=≥Φ−=+ Φ (A.46) 

resulting in m = 2n inequality constraints.  If Φp lies in between lbp and ubp then 

 ∂F(Φ∗)/∂Φp = 0, and in order for Eq. (A.44) to hold true, ξp = 0.  On the other hand, if Φp 

is at a lower bound, then  ∂c2p(Φ∗)/∂Φp = 1, ∂F(Φ∗)/∂Φp > 0 and from Eq. (A.44), ξ2p = 

−∂F(Φ∗)/∂Φp.  Finally, if Φp is at an upper bound then  ∂c2p+1(Φ∗)/∂Φp = −1, ∂F(Φ∗)/∂Φp 

< 0 and ξ2p+1 = ∂F(Φ∗)/∂Φp.  These three scenarios are shown in Fig. A.8, for the 

objective function F(x, y) = −0.25y2(y − 2)(y + 2) + x2 constrained by  

( ) ,031 ≥−= yyc (A.47) 
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and 

( ) .032 ≥+= yyc (A.48) 

At the local minimum F(0, 0) = 0, ∇F(0, 0) = {0, 0}T, so all the Lagrange multipliers 

equal zero, i.e. ξi = 0, i = 1...2n.  At a second local minimum, F(0, 3) = −11.25, the upper 

constraint is active so ξ1 = ∂f(0, 3)/∂y  = −21 and ξ2 = 0.  In other words, if the upper 

constraint was relaxed by one unit, this local minimum could be further reduced by 

approximately 21 units from –11.25 to –32.25.  (In fact, changing the first constraint to 4 

− y ≥ 0 results in a new local minimum F(0, -4) = –48.)  Finally, at the third local 

minimum, F(0, −3) = −11.25; since the lower constraint is active at this local minimum, 

ξ1 = 0 and ξ2 = −∂f(0,−3)/∂y  = −21. 

 

 

 

 

 

 

 

 

 

 

Figure A.8: Lagrange multipliers for constrained minimization problems having 

simple bounds, plot of F(x, y) = −0.25 y2(y−2)(y+2) + x2. 
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Constraints are most often enforced by modifying the unconstrained minimization 

techniques discussed in the previous section.  Two such techniques, gradient projection 

and active set methods, are discussed in the following sections. 

 

A.3.2 Gradient Projection Method 

The gradient projection method is one of the simplest techniques used to enforce 

inequality constraints, and can be easily integrated into the unconstrained minimization 

techniques discussed in the previous section. 

 The method works as follows; at each iteration, the prospective step Φk + pkαk is 

checked to see if it lies within the feasible region.  If not, than a point kΦ  is found by 

projecting Φk + pkαk onto the boundary of the feasible region in such a way that 

|| kΦ −(Φk+pkαk)||2 is minimized.  This new point is then used to define a feasible 

direction, dk  = kΦ  − Φk, and finally Φk+1 is found by taking a step in the dk direction 

with a step length sk, so Φk+1 = Φk + dksk.  Most often, sk equals unity, and Φk+1 is then the 

projected point, kΦ .   

To demonstrate the gradient projection method, consider minimization of the 

quadratic function of F(x, y) = (x - 2y)2 + 2x4 subject to y  ≥ 2 − x/4 and y ≥ 5x − 10, as 

shown in Fig. A.9.  The minimization is carried out using steepest descent coupled with 

an exact line search.  Minimization starts at Φ0 = {3, 3}T, and the first iteration identifies 

a new point, Φ1, that satisfies the constraints.  The next point found with the steepest 

descent direction, however, violates the first constraint and is therefore said to be 
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infeasible.  Instead, an alternate feasible point, 1Φ , is identified by projecting Φ1 + p1α1 

onto y = 2 – x/4, which also defines a new feasible search direction, d1 = 1Φ  − Φ1.  In 

this example, the step length s1 is set equal to unity, and Φ2 = Φ1 + d1s1 = 1Φ .  This 

procedure is repeated until a local minimum is found. 
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Figure A.9: First two steps of the minimization of F(x, y) = (x - 2y)2 + 2x4 subject to y 

> 2 − x/4 and y > 5x − 10 by steepest descent using an exact line search, coupled with the 

gradient projection method. 
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A.3.2 Active Set Method 

Active set methods are derived based on the observations that optimization problems 

containing only equality constraints are generally easier to solve then problems where 

some or all of the constraints are inequalities; furthermore, if it were known which 

inequality constraints were active at Φ∗ beforehand (i.e. which Lagrangian multipliers are 

nonzero), then the optimization problem could be treated as an equality-constrained 

problem.  In the special case where the constraints are simple bounds the variables 

corresponding to the t active constraints could be set equal to their active bounds (Φi = lbi, 

for example), and the n-dimensional constrained optimization problem would then be 

reduced to an (n − t)-dimensional unconstrained optimization problem.   

Since the active set of constraints at Φ∗ is generally unknown, however, active set 

methods work by first guessing a “working set” of constraints, which is updated after 

each successive iteration until the correct working set has been identified and the problem 

has been solved.  These methods work according to the following scheme.  Suppose that 

at the kth iteration, t variables are fixed at their constraints: 

1. The “reduced” gradient vector and Hessian matrix (or approximate 

Hessian matrix) corresponding to the n − t unconstrained minimization 

problem are formed, and a search direction, pk, is found using either Eq. 

(A.11) or Eq. (A.12). 

2. The closest constraint in the pk direction is identified and the smallest step 

size that makes Φk + αkpk infeasible, αkcrit, is calculated. 
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3. A step size, αk, is chosen using one of the methods previously described.  

If αk > αkcrit, the minimization has “run into” the critical constraint, so αk 

is set equal to αkcrit and the constraint is added to the active set.   

4. An estimate for ξ∗, ξk, is formed using ∇F(Φk) and, if available, ∇2F(Φk). 

5. The active set is updated, and if ξi
k ≥ 0 then the corresponding constraint is 

removed from the active set. 

 This procedure continues until Φk = Φ* and ξk = ξ*.   

Using the estimated Lagrangian multipliers to modify the active set in step 5 

ensures that every search direction calculated in Step 2 is a descent direction, providing 

that the same order of method used to predict pk is also used to predict ξk.  For example, 

suppose the constraints are all simple bounds of the form lbi ≤ Φi and Φi ≤ ubi. (This is not 

consistent with the form of Eq. (A.41), but is more convenient in the present context.)  If 

a quasi-Newton routine is used to calculate pk, then the Lagrangian multipliers 

corresponding to constraints in the active set are estimated by ξi
k = ∂F(Φk)/∂Φp if 

∂F(Φk)/∂Φp < 0, where Φp is constrained by ci.  If one of the Lagrangian multipliers were 

positive, then the objective function could be reduced by moving further into the feasible 

region in a direction away from the bound, so the corresponding constraint is removed 

from the active set.   

Once ξk is calculated, the reduced gradient and reduced approximate Hessian 

matrix are formed by removing all elements corresponding to the t variables that are fixed 

at their bounds.  The search direction found by solving the resulting n − t system of linear 

 211



equations is in a direction parallel to the active constraints; in this way, the minimization 

method moves along the active constraints until they are either removed from the active 

set (because the corresponding Lagrange multiplier estimates are nonnegative) or until Φ* 

and ξ* are found. 

The active set method is demonstrated by applying it to minimize Rosenbrock’s 

function, F(x, y) = (x − 1)2 + 10(x2 − y)2, subject to −1.5 ≤ x ≤ 0.5 and 0 ≤ y ≤ 1.5 as 

shown in Fig. A.10.  Minimization is carried out using the quasi-Newton method with a 

unit step size, and starts from Φ0 = {−1.5, 1.5}T.  The constraint y  ≤ 1.5 is immediately 

added to the working set, and is only removed once the y-component of the gradient 

becomes positive, meaning that the F(Φ) could be reduced by moving away from y = 1.5 

in a feasible direction.  Next, the minimization path intersects the constraint y ≥ 0 several 

times, which is not added to the working set since F(Φ) can be reduced each time by 

moving in the positive y- direction.  Finally, the constraint x ≤ 0.5 is encountered; since 

the objective function could be improved by relaxing this constraint, it is added to the 

working set, and the remaining few steps are equivalent to performing a single-variable 

minimization on F(1.5, y) with respect to y.  The minimum value of F(x, y) is equal to 

0.25, with Φ∗ = {0.5, 0.25}T. 
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Figure A.10: Minimization of Rosenbrock’s function, F(x, y) = (x − 1)2 + 10(x2 − y)2, 

subject to −1.5 ≤ x ≤ 0.5 and 0 ≤ y ≤ 1.5, using the quasi-Newton method with a unit step 

size coupled with an active set method. 
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 A.4 Solution of Multimodal Problems  

If the objective region is strictly convex over the feasible region, i.e. 

( )[ ] ( ) ( ) ( ) ,,10,11 212121 ΦΦΦΦΦΦ ≠≤≤−+<−+ sFssFssF (A.49) 

and if the feasible region is a convex set, it can be shown that any local minimum that lies 

within the feasible region is a global minimum. 

In this application, the constraints are all assumed to be linear inequalities so the 

feasible region is always a convex set.  The shape of the objective function, on the other 

hand, is most often unknown and therefore it cannot be shown to be convex over the 

feasible region.  Accordingly, a stationary point identified by the minimization 

techniques in the above sections is not necessarily a global minimum.  For example, 

consider optimization of the objective function  

( ) ( ) 2222 1253

3
110102, yxxyx eeyxxyxF −−−−− −−−= (A.50) 

over the feasible region defined by 

(A.51) ,1 xy −≥

(A.52) ,255 xy −≤

 (A.53) ,212 xy +≤

 (A.54) ,0≥y

and 

(A.55) .0≥x

As shown in Fig. A.11, the global minimum is located at Φ∗1 = {0, 1.5802}T with F(Φ∗1) 

=  −8.1218, with two other local minima at Φ∗2 = {1.2696, 0}T with  F(Φ∗2) = −3.8862  

and Φ∗3 = {1.8932, 0.4020}T with  F(Φ∗3) = −1.8343, and a local maximum at Φ∗4 = 
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{1.3070, 1.7326}T with  F(Φ∗4) = −1.5984.   A single minimization carried out using any 

of the methods discussed in the previous sections will find only one of the stationary 

points (possibly the local maximum) depending on the search method and starting point.  

If the form of F(Φ) were to be unknown, it would be impossible to know how many 

minima are contained in the feasible region, or if a particular local minimum was the 

global minimum, without plotting F(Φ) over the feasible region.  Furthermore, this 

procedure is often computationally expensive and very difficult to do in problems where 

n > 2. 
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Figure A.11: Objective function of Eq. (A.50) and feasible region defined by constraints 

in Eqs. (A.51) – (A.55). 
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In the context of gradient-based minimization, the most common way of solving 

this problem is employ a multi-start algorithm, which searches for the global minimum 

by performing multiple local minimizations from different initial points.   Although this 

method does not guarantee a global minimum (the probability of finding the global 

minimum becomes unity as the number of restarts approaches infinity), it does increase 

the chances of finding a good solution.   

The simplest type of multi-start algorithm uses a set of initial points that are 

uniformly distributed throughout the feasible region.  This procedure is highly inefficient, 

however, because many of the minimizations will converge to the same local minimum.  

A more efficient multi-start routine has recently been contributed by Urgay et al. (2002). 
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Appendix B: 
Solution of Inverse Radiant Enclosure Design 
Problems through Regularization 
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B.1 Introduction 

The majority of radiant enclosure design problems discussed in the literature arise from 

applications where heaters located within radiant enclosures are used to impose a 

temperature and heat flux distribution over a design surface.  In many industrial 

processes, for example, radiant enclosures are used to carry out the heat treatment of 

products located on the design surface.  When designing these enclosures it is necessary 

to calculate the heater settings the produce the required heat flux and temperature 

distribution over the products throughout the process.  Radiant enclosures are also used to 

simulate the thermal response of objects within fires; for example, a nuclear waste 

storage vessel immersed within a pool fire can be modeled by placing the vessel within a 

radiant enclosure.  In order to carry out these experiments, heat flux distributions over the 

heater surface must be found that produce conditions over the design surface that 

simulate conditions measured experimentally within a fire environment. 

 Traditionally, these design problems have been solved in their implicit form, 

where one boundary condition is specified over the design surface, and the designer 

repeatedly adjusts the enclosure configuration (relying only on his or her intuition and 

experience) until the distribution of the unspecified boundary condition matches the 

desired distribution within an allowable tolerance.  This trial-and-error approach is very 

time-consuming, and the final solution quality is usually limited. 

More recently, inverse design methodologies have been applied to overcome 

these drawbacks.   In this approach, the inverse design problem is solved in its explicit 

form, where both the desired heat flux and temperature distributions are enforced over the 
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design surface while the heat flux and temperature distributions over the heater surface 

are not specified.  Written this way, inverse design problems are ill-posed because a 

unique solution to the design problem may not exist; instead, there could be either 

multiple solutions (in this application, multiple heat flux distributions over the heater 

surface that produce the desired boundary conditions over the design surface), or no 

solution at all.  Discretizing the equations that govern the physical system produces a 

system of linear equations that in general contain an unequal amount of linearly-

independent equations and unknowns.  Systems with more unknowns than equations have 

an infinite number of solutions, while those with more equations than unknowns are 

unlikely to have a non-trivial solution that satisfies the equations exactly.  Accordingly, 

traditional linear algebra techniques, such as LU decomposition or Gauss-Seidel iteration, 

cannot be used to identify a useful solution to the design problem.   

Instead, regularization techniques are employed to identify the most useful 

solutions from the infinite set that satisfy these equations.  (The “usefulness” of a solution 

is often quantified by the L2 norm of the solution vector, with the most useful solutions 

having the smallest solution norms.)  The useful solutions are identified by solving a 

sequence of well-posed problems that are related to the ill-posed inverse design problem.  

Unlike the original ill-posed problem, each of these well-posed problems has a unique 

solution; however, since the well-posed problems differ from the original ill-posed 

problem, substituting the solution of one of these well-posed problems back into the 

original ill-conditioned set of linear equations results in a non-zero residual vector.  The 

well-posed problems that are most closely related to the original ill-posed problem 
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characteristically have solution vectors with relatively large norms, but produce small 

residuals when substituted back into the original ill-conditioned set of equations.  On the 

other hand, well-posed problems formed by extensively modifying the ill-posed problem 

have comparatively small solution norms, but produce large residual norms.  Thus, 

selecting one of these solutions represents a compromise between the solution regularity 

and solution accuracy, which are indicated by the norms and the solution and residual 

vectors, respectively. 

In this appendix, the definition of an ill-posed problem is presented and the source 

of the ill-conditioned system of linear equations is described.  The three regularization 

methods that are commonly used to solve inverse radiant enclosure design problems, 

truncated singular value decomposition (TSVD), Tikhonov regularization, and iterative 

conjugate gradient regularization, are then described in detail.  Finally, these methods are 

demonstrated by using them to solve an example radiant enclosure design problem.  
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B.2 Ill-Posed Problems 

The study of ill-posed problems began with the distinction made by Hadamard (1923) 

between well-posed and ill-posed mathematical problems.  In particular, he defined the 

three criteria that must be satisfied for a mathematical problem to be well-posed: 

1. The problem must have a solution, 

2. This solution must be unique, and  

3. The solution must be stable under small changes to the input data. 

Any problem that does not satisfy all of the above criteria is said to be ill-posed.  Ill-

posed problems were initially thought to be artificial in the sense that they did not 

describe natural systems, and furthermore solutions to these problems would be 

physically meaningless.  It has been shown that this is not the case and that, in fact, many 

of the problems that arise in diverse fields of natural science and engineering are 

fundamentally ill-posed.  In particular, most inverse engineering design problems are ill-

posed because there may exist many possible solutions of varying quality, or no 

satisfactory solution at all.   

For example, consider the inverse radiant enclosure design problem described in 

Chapter 2, where the objective is to find a heat flux distribution over the heater surface 

that produces the desired temperature and heat flux distributions over the design surface.  

When the inverse problem is written in its implicit form, it was shown that the radiosity 

distribution is governed by a Fredholm integral equation of the second-kind, which has 

the form 

( ) ( ) ( ) ( )∫+=
b

a

dsssksfsgsf ,'',' (B.1) 
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where both g(s) and the kernel, k(s, s′) are known functions while f(s) is an unknown 

function.  In most cases there exists only one unique solution for f(s) that satisfies Eq. 

(B.1), and accordingly these problems are usually well-posed. 

If the inverse problem is written explicitly, on the other hand, the radiosity 

distribution is governed in part by a Fredholm integral equation of the first-kind having 

the general form 

( ) ( ) ( ) ,'','∫=
b

a

dsssksfsg (B.2) 

where again g(s) and k(s, s′) are known while f(s′) is unknown.  Clearly, an infinite 

number of different functions could be substituted for f(s′) to satisfy Eq. (B.2); 

identifying those that provide useful solutions to the inverse problem, however, is usually 

far more challenging than solving a related well-posed problem. 

 Analytical solutions of integral equations are usually intractable and therefore 

solutions must be found using numerical techniques.  Discretizing the domain of either 

one of these integral equations produces a system of linear equations that can be rewritten 

as a matrix equation, 

(B.3) .bx =A

If the governing equations are well-posed, A is most often well-conditioned.  In this case, 

the number of independent equations equals the number of unknowns, so Eq. (B.3) can 

be solved using traditional linear algebra techniques such as LU decomposition and 

Gauss-Seidel iteration. 

 On the other hand, if the governing equations are ill-posed, then the solution of 

Eq. (B.3) is far more difficult to carry out.  If there is one solution that exactly satisfies 
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the governing equations and also a set of solutions that almost satisfy the governing 

equations with a small residual, then A is said to be ill-conditioned.  In this situation, 

several of the equations that comprise the linear system are very similar, and A is very 

nearly rank-deficient.  If there are multiple solutions to the governing equations, as is 

often the case in inverse radiant enclosure problems, than there are more unknowns than 

linearly-independent equations (i.e. more columns than rows) and A is singular.  In 

particular, if the number of unknowns exceeds the number of equations by k, then A is 

said to have a nullity of k.  In both of these two cases, special regularization methods 

must be employed to solve Eq. (B.3). 
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B.3 Regularization Methods 

Many different regularization methods have been developed to solve ill-conditioned sets 

of linear equations; Hansen (1998) and Vogel (2002) summarize these methods, while 

França et al. (2002) focuses on how regularization is used to solve inverse radiant 

enclosure design problems.  The three regularization methods most commonly used to 

solve these types of problems are truncated singular value decomposition (TSVD), 

Tikhonov regularization, and iterative conjugate gradient regularization.  Although each 

method solves the inverse problem in a fundamentally different way, all of them include 

a heuristic parameter that controls the amount of regularization used to find the solution.  

As a result, a set of solutions with varying degrees of regularity and accuracy are 

generated, and it is left to the designer to select the one that best satisfies the 

requirements of the inverse design problem. 

  

B.3.1 Truncated Singular Value Decomposition 

The TSVD method is based on the singular value decomposition of the A matrix, 

(B.4) ,TVWUA ⋅⋅=

where U is an orthogonal matrix with m rows and m + k columns, W is a diagonal matrix 

with m + k rows and columns, and V is the transpose of an (m + k) × (m + k) orthogonal 

matrix.  The diagonal elements of W, wi, are the singular values, and are strictly non-

negative.  The degree of difficulty associated with solving a linear system of equations 

can be anticipated by examining the singular values, and specifically the condition 

number,  
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( ) ,
min

max

w

w
Cond =A (B.5) 

where wmax and wmin are the largest and smallest singular values, respectively.  If all the 

singular values are of approximately the same magnitude and the condition number is 

relatively small, then A is said to be well-conditioned, and the matrix equation can be 

solved by back-substitution, 
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On the other hand, if some of the singular values are very small relative to others, 

the condition number will be large and A is said to be ill-conditioned; in inverse radiant 

enclosure design problems, these small singular values arise from the existence of 

multiple solutions that, when substituted into the forward problem, produce heat flux and 

temperature distributions over the design surface that closely match the desired 

distributions.  In the case where the number of unknowns exceeds the number of 

equations by k, at least k of the singular values equal zero; the condition number is then 

infinite and A is said to be singular.  (Assuming the remaining m equations are linearly 

independent, k is said to be the nullity of A.)  Attempting to solve the system of equations 

using Eq. (2.18) would result in either a solution having large oscillations if A were ill-

conditioned, or division by zero if A were singular.   

 In TSVD, the singular values that are less than some user-defined criterion are 

negated (or truncated) by setting the corresponding 1/wi terms in Eq. (B.6) equal to zero, 

which creates a related well-posed problem that is related to the original ill-posed 

problem.  If few singular values are truncated, the integrity of the original problem is 
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maintained; the norm of the residual vector, ||δ||2 tends to be small while the radiosity and 

heat flux distributions usually have very irregular distributions, and consequently the 

norm of the solution vector, ||x||2, is quite large.  Truncating more of the singular values 

acts to regularize the solution, which lowers ||x||2 at the cost of increasing ||δ||2.  It is then 

left to the designer to find a solution that is both smooth enough to be practically 

implemented in a design setting and sufficiently accurate so that the original equations 

governing the radiation heat transfer within the enclosure are obeyed. 

 

B.3.2 Tikhonov Regularization 
 
This regularization technique was first proposed by Tikhonov (1975) for solving inverse 

conduction problems; it makes use of a priori knowledge of the approximate solution 

size and smoothness to form a sequence of well-posed problems that are related to the 

original ill-posed problem.  By adjusting the amount of regularization, the analyst first 

generates a set of potential solutions, and then selects the one that offers the most 

acceptable compromise between regularity and accuracy. 

 The method uses optimization principles to solve the inverse problem, and is 

based on the observation that the objective of the regularization process is to find a 

solution that is both accurate and regular.  Both of these goals could be achieved 

independently by minimizing two separate objective functions.  The most accurate 

solution is found by minimizing the magnitude of the residual vector, 

 (B.7) ( ) .2

2
bxx −= AaF
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If the linear system is rank-deficient, however, Fa(x) will not have a unique local 

minimum; instead, there are an infinite set of solutions, {xa
*} that minimize Fa(x).  In 

order to visualize such a situation, consider the rank-deficient set of linear equations 

given by, 

(B.8) 
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As shown in Fig. B.1, any solution located along the line 2x1 + x2 = −2 minimizes Fa(x).    

 

 

 

 

 

 

 

 -5 -4 -3 -2 -1 0 1 2 3 4 5
x1

-5

-4

-3

-2

-1

0

1

2

3

4

5

x 2

xa
* = {x| 2x1+x2 = −2}

Figure B.1: Plot of Fa(x) for the matrix equation defined in Eq. (B.8) 

 

Without considering solution accuracy, the most regular solution is found by 

minimizing the objective function 

( ) ( ) ,
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i
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where x0 is an a priori solution guess, γ is the order of curve smoothness, ρi is a heuristic 

weight, and Lι approximates the ιth derivative operator.  The order of curve smoothness is 
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chosen based on the estimate of the solution shape; for example, if the distribution of x is 

expected to be uniform, then γ = 0, and L0 is the identity matrix.  On the other hand, if a 

purely quadratic solution shape is expected, then γ = 2, ρ0 = ρ1 = 0, and a suitable choice 

for L2 is the tri-diagonal matrix 
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(B.10) 

 

 

In this instance, the solution that minimizes Fb(x), xb
*, would be a smooth quadratic 

function.  Unlike the objective function defined in Eq. (B.7), Fb(x) has one unique global 

minimum, as shown in Fig. B.2 for the system of linear equations defined in Eq. (B.8) 

with γ = 0 and x0 = {0, 0}T. 
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Figure B.2: Plot of Fb(x) for the matrix equation defined in Eq. (B.8). 
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Unfortunately, the smoothest solution and the most accurate solution are different 

since the global minimum of Fb(x) is generally not in the set of solutions that minimize 

Fa(x).  Instead, a compromise between solution accuracy and regularity is found by 

minimizing a new objective function defined by 

( ) ( ) ( ) ( ) ,
2

2
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2

2
xxbxxxx −+−=+= ∑

=

i

i
iba cFFF LA

γ

β (B.11) 

where βi = cρi is the heuristic regularization parameter. 

Moreover, since adding an objective function with an infinite set of local minima 

to an objective function having a unique global minimum produces another objective 

function with a unique global minimum, Eq. (B.11) transforms the original ill-posed 

problem with an infinite set of solutions into a well-posed problem having a unique 

solution.  This is demonstrated by comparing the plots of Fa(x) and F(x) shown in Figs. 

B.1 and B.3, respectively, for the system of linear equations defined in Eq. (B.8). 
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Figure B.3: Plot of Fa(x) + βFb(x), β = 1 for the matrix equation defined in Eq. (B.8). 
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Since F(x) is a quadratic, the global minimum can be found analytically by 

satisfying the first order necessity conditions at x*, 

( ) ( ) ( ) ,022 0

0

=−+−=∇ ∑
=

xxbxxF ** iTi

i
i

T LLAA
γ

β (B.12) 

which can be rearranged and solved for x*.  In order to find a useful solution to the ill-

posed problem, the analyst first generates a set of solutions with different values of ||x||2 

and ||δ||2 by varying the values of βi, i = 0…γ, and then selects the one that offers the best 

compromise between solution accuracy and smoothness. 

 

B.3.3 Iterative Conjugate Gradient Regularization 

The iterative conjugate gradient regularization technique is derived from an application 

of the conjugate gradient minimization technique used to solve linear systems of 

equations.   

As shown in the previous section, it is possible to rewrite a system of linear 

equations as a minimization problem; in that case, it was implied that if A were well-

conditioned, the system of linear equations could be solved by minimizing the magnitude 

of the residual vector, F(x) = ||Ax − b||22; since this objective function is a quadratic, there 

exists one global minimum, x*, that also solves the system of linear equations. 

If A is symmetric and positive-definite, a more convenient quadratic objective 

function is derived by setting the gradient equal to the residual vector, ∇F(x) = Ax − b, 

and noting that at x*, δ = ∇F(x*) = 0.  Integrating with respect to x yields a different 

objective function, 

( ) .
2
1 xbxxx TTF −= A (B.13) 
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It can be shown that F(x) is a quadratic function having one global minimum, x*, that 

solves Ax = b.  (Problems where A is not symmetric are treated by solving ATAx = Ab.)  

The conjugate-gradient minimization method, which is presented in detail in Appendix 

A, is particularly well suited to solve this problem; if A is an n  × n matrix with n distinct 

eigenvalues, then the conjugate gradient method minimizes F(x) in n steps if exact 

arithmetic is used.  This is accomplished by generating a set of mutually-conjugate “non-

interfering” search directions, so that minimization in one direction is not “spoiled” by 

minimizing in subsequent directions.   

 As previously stated, A must be positive-definite for the conjugate gradient 

method (or any gradient-based minimization method) to converge to x*, which occurs 

only when all the eigenvalues of A are strictly positive.  The necessity of this criterion 

can be seen by considering the geometric interpretation of the ith eigenvalue, µi, which is 

the amount by which the objective function increases when the solution is varied from x* 

by one unit in the direction of the ith eigenvector, λi.  The eigenvalues can also be used to 

define the condition number of A,  

( ) ,
min

max

µ
µ

=ACond (B.14) 

which is analogous to the condition number defined using the singular values in Eq. 

(B.5). 

If all the eigenvalues are positive and of approximately the same order of 

magnitude, than A is well-conditioned and there exists a unique solution to Ax = b, x*.  In 

such cases, F(x) is said to have a strong global minimum.  For example, consider the 

system of linear equations given by  
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The corresponding objective function is found by substituting A and b into Eq. (B.13), 

and is shown in Fig. B.4 (a).  In this example, A has eigenvalues µ1 = 7.54 and µ2 = 1.46, 

and the condition number equals 5.17.  Consequently, there exists a strong global 

minimum x* = {−0.67, −0.24}T. 

In cases where µmin << µmax, A is ill-conditioned (as indicated by the large 

condition number), and there will be a set of solutions in the vicinity of x* that almost 

satisfy Ax = b.  This situation is demonstrated by plotting the objective function 

generated from 
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which is shown in Fig. B.4 (b).  As before, there a strong global minimum x* = {−1, 0}T, 

but unlike the previous example the first eigenvalue, µ1 = 5.01, is much larger than the 

second eigenvalue, µ2 = 0.04, and A has a condition number of 125.25.  The long, narrow 

valley leading up to the global minimum makes this objective function topography 

difficult to minimize, and any solution along the line defined by {x ∈ x* + αλ2} in the 

vicinity of x* solves Eq. (B.16) with a small residual.  (This is why there is a direct 

correlation between the condition number of A and the number of iterations required to 

solve Ax = b using iterative linear solvers like Gauss-Seidel, which are derived from 

gradient-based minimization techniques.) 

Finally, if A is rank deficient with a nullity of k, then k of the eigenvalues equal 

zero and an infinite set of solutions minimize F(x).  In this case, A is said to be semi-
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definite (and singular).  Such an example is shown in Fig. B.4 (c), which is generated 

from 
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In this example, µ1 = 5 and µ2 = 0, so the condition number of A is infinite.  Unlike the 

previous two examples, the objective function has a weak global minimum, and an 

infinite set of solutions defined by {x* = x|2x1+x2−2=0} minimizes F(x). 
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 In cases where A is either ill-posed or degenerate, conjugate gradient 

minimization is used as a regularization method rather than a linear solver.  This is 

possible because the conjugate gradient method minimizes F(x) in the directions 

corresponding to the largest eigenvalues first, and the minimizations involving the 

smallest eigenvalues (that cause the algorithm to fail) occur in the last few iterations.  If 

minimization starts from xi
0 = 0, i = 1…n, which is presumably located far away from x*, 

||x0||2 = 0 and ||δ 0||2 = ||∇F(x0)||2 will be very large.  In subsequent iterations, xk gets 

closer to x* and ||xk||2 increases in a monotonic way while ||∇F(xk)||2 and ||δk||2 decrease in 

a monotonic way.  In the vicinity of x*, the eigenvalues corresponding with the search 

directions are very small or zero; in the former case ||xk+1−xk||2 becomes very large, while 

in the latter the minimization algorithm fails completely.  In this way, the iteration 

number acts as a heuristic parameter to control the degree of regularization.   

The conjugate gradient iterates can also be interpreted as the solutions to a set of 

well-posed problems that are in some way related to the original ill-posed problem.  If k 

is small, an objective function with a global minimum at xk is very different from the one 

generated using the ill-conditioned set of equations; consequently, while ||xk||2 may be 

small, ||δk||2 is quite large.  On the other hand, for large values of k, the objective function 

with a global minimum at xk closely matches the original objective function topography, 

so ||δk||2 is quite small while ||xk||2 is large. 
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B.4 Demonstration of Regularization Methods 

The three regularization methods discussed in the previous section are demonstrated by 

using each of them to solve the inverse radiant enclosure design problem shown in Fig. 

B.5.  The radiant enclosure consists of a design surface, two adiabatic surfaces, and a 

heater surface.  The design surface, located on the bottom, has an emissivity of εDS = 0.5 

and the heater surface at the top of the enclosure has an emissivity εHS = 0.9.   

 The objective of the design problem is to find a continuous heat flux distribution 

over the heater surface that produces a uniform emissive power EDS = 0 W/m2 and a 

uniform heat flux qsDS = −1 W/m2 over the design surface.  This is done using the TSVD, 

Tikhonov, and iterative conjugate gradient regularization methods to solve an ill-

conditioned system of linear equations generated using the procedure outlined in Chapter 

2.   

 

Design Surface
EbDS = 0 W/m2,

qsDS = −1 W/m2,

Heater Surface 
EbHS = ?, qsDS = ?, 
εHS = 0.9

 qs = 0 W/m2

 qs = 0 W/m2

 
 

u = 0.5 u = 0.25 

H = 0.5 m 

W = 1 m 

u = 1 

u = 0 

u = 0.75 

 

 

 

 

 

 

 

Figure B.5: Example inverse radiant enclosure design problem. 
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A total of 640 elements was chosen to solve the problem based on the results of 

the grid refinement study shown in Fig. B.6, which was carried out by solving the 

forward problem with a uniform heat flux distribution of qsHS = 1 W/m2 over the heater 

surface and EbDS = 0 W/m2 over the design surface.  Of these, 160 elements were located 

on the design surface, 160 were located on the heater surface, and the remaining 320 

were on the adiabatic surface.  Unlike the example in Chapter 2 where large heaters 

having uniform heat flux distributions were located on the heater surface, a continuous 

heat flux distribution over the heater surface is modeled by approximating the heat flux 

over each finite area element as constant.  This resulted in a system of 480 radiosity 

equations corresponding to elements on the adiabatic and heater surfaces, which 

contained a total of 640 unknown radiosity and heat flux values.  An energy balance 

equation similar to Eq. (2.36) is added to reduce the nullity of A from 160 to 159. 
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Figure B.6: Grid refinement study. 
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B.4.1 Truncated Singular Value Decomposition Regularization 

The first step of this method is to perform the singular value decomposition of matrix A; 

the singular values are reordered and plotted in Fig. B.7.  Exactly 159 of the singular 

values equal zero due to the nullity of A. 
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Figure B.7: Singular values of the A matrix. 

 

 Once this has been done, the analyst must then determine the degree of 

regularization that should be applied to the problem by choosing the number of singular 

values to truncate in Eq. (B.6).    In order to do this, it is useful to first plot the “L-curve" 

shown in Fig. B.8, which indicates the degree of solution accuracy and smoothness, 

measured by ||δ||2 and ||x||2 respectively, that result from varying the number of singular 
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values, p, used to compute the solution.  (In this type of regularization, the L-curve is 

inexpensive to evaluate because the same singular value decomposition is used to 

generate each solution.)     

Points on left-hand side of this curve correspond with very accurate but noisy 

solutions that are found by retaining most of the singular values.  On the right-hand side 

of the curve, smooth but inaccurate solutions are found by truncating most of the singular 

values.  In many (but by no means all) cases, the best compromise between accuracy and 

smoothness is found in the middle of the curve, near the apex of the “L.” 

 

  

 

 

 

 

 

 

 

 

 

-15

-10

-5

0

5

-15 -10 -5 0 5

log10(||δ||2)

lo
g

10
(||

x|
| 2)

p = 481

p =1

p = 480

p = 2

p = 3-479

Figure B.8: L-Curve formed using TSVD regularization. 
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Solutions obtained using p = 1, 2, 160, 480, and 481 singular values are shown in 

Figs. B.9 and B.10.  Figure B.9 shows the heat flux and emissive power distribution 

calculated over the heater surface, and Fig. B.10 shows the corresponding heat flux 

distributions over the design surface found by substituting the inverse solutions into the 

forward problem and specifying the emissive power distribution over the design surface.  

The corresponding solution and residual norms are shown in Table B.1.   

From examining Fig. B.9 and the solution and residual norms in Table B.1, it is 

clear that the magnitude of the heat flux distribution over the heater surface becomes 

smaller as more singular values are truncated, while the norm of the residuals become 

larger.  In this case, however, the only useful solution is found by truncating just the null 

singular values (p = 481), since further truncation results in a negative heat flux 

distribution over the heater surface.  This is also clear from Fig. B.10, which shows that 

the only heat flux distribution over the design surface that closely matches the desired 

distribution is the obtained using the heater inputs calculated using p  = 481 singular 

values. 

 

Number of 
singular values used, p ||δ||2 ||x||2

1 10.543 1.691 × 10−13

2 10.358 1.226 
160 9.580 2.877 
480 1.738 13.303 
481 1.358 × 10−13 42.240 

 

Table B.1: Residual and solution norms of different TSVD solutions. 
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Figure B.9: Heat flux distributions over the heater surface obtained through TSVD. 
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Figure B.10: Heat flux distributions over the design surface obtained through TSVD. 
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B.4.2 Tikhonov Regularization 

Tikhonov regularization was next applied to solve the ill-conditioned governing 

equations.  A second-order scheme was chosen based on the observation that radiosity 

and heat flux distributions over each surface usually have a parabolic shape for this 

particular radiant enclosure geometry type.  In this application, ρ0 = −0.001, ρ1 = 0, ρ2 = 

1, and different levels of regularization were achieved by changing the variable c in Eq. 

(B.11).   

As in the previous method, when performing Tikhonov regularization it is useful 

to first generate the L-curve in order to assess what amount of regularization is likely to 

produce a solution that is an acceptable compromise between accuracy and smoothness.    

In this method, however, every different value of c generates a unique set of linear 

equations that must be solved individually (through LU decomposition, in this 

application), and consequently the Tikhonov L-curve requires substantially more 

computational effort to plot than the TSVD L-curve. 

Figure B.11 shows the L-curve formed by varying the regularization parameter 

over the range 1 × 10−7 ≤ c ≤ 107.  Points on the left-hand side of the curve correspond to 

very small values of c; since the systems of linear equations formed by rearranging Eq. 

(B.12) is very similar to the original ill-conditioned system of equations, the residual 

norms are quite small but the solution norms are very large.  At a critically small value of 

c, (in this case ccrit ≈ 1  × 10−8), the system of linear equations are so close to being 

singular that truncation and round-off errors in the floating-point arithmetic cause a 

division-by-zero error during the decomposition process.   
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Points on the right-hand side of the curve are generated using very large values of 

c; in these cases, far more emphasis is placed on minimizing the objective function 

defined in Eq. (B.9) rather than minimizing the residual vector of the original set of ill-

conditioned equations.  Accordingly, in these cases the solution norms are very small but 

the residual norms are quite large.  As c approaches infinity, ||x|| goes to zero and ||δ||2 

approaches ||b||2 asymptotically. 
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Figure B.11: L-curve formed using Tikhonov regularization. 

Solutions obtained using c = 10−5, 10−2, 1, 102, and 105 are shown in Figs. B.12 

and B.13, while the norms of the corresponding solution and residual vectors are included 

in Table B.2.  Increasing c both decreases the magnitude of the solution and normalizes 

the heat flux distribution.  As shown in Fig. B.12 and Table B.2, at c = 10-5 the solution 

norm is quite large because the corresponding set of linear equations is ill-conditioned.  
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(The asymmetry in the heat flux distribution is caused by round-off and truncation errors 

that occur during LU decomposition.)  The magnitude of the heat flux distribution is 

significantly lower for c = 10−2 and c = 1, and the distribution becomes smoother.  

Increasing c also increases the solution residual, however.  As shown in Fig. B.13, 

while the solutions obtained using c = 10−2 and c = 1 are both very close to the desired 

heat flux distribution over the design surface and have correspondingly small residuals, 

further increasing c drives the heat flux distribution away from the desired distribution as 

shown in the cases of c = 102 and c = 105.  The magnitudes of the residual vector are 

quite large for these last two cases, which indicates that the original ill-conditioned set of 

linear equations is not enforced.  In fact, the heat flux values over the heater surface are 

less than the heat flux distribution over the design surface, so these solutions are clearly 

non-physical.   

Regularization parameter, c ||δ||2 ||x||2

105 7.204 6.970  
102 1.221 20.207 
1 8.551 × 10−3 43.137 

10−2 2.375 × 10−6 42.677 
10−5 5.321 × 10−12 45.776 

 

Table B.2: Residual and solution norms of different Tikhonov solutions. 
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Figure B.12: Heat flux distributions over the heater surface obtained through  

Tikhonov regularization. 
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Figure B.13: Heat flux distributions over the design surface obtained through 

Tikhonov regularization. 
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B.4.3 Iterative Conjugate Gradient Regularization 

Finally, the ill-conditioned system of linear equations was solved using iterative 

conjugate gradient regularization.  In this application, minimization was started at 

.  nixi K1,20 ==

As before, the first step in the solution process is to plot the magnitudes of the 

residual and solution vectors obtained at different levels of regularization.  Instead of an 

L-curve, however, in this regularization method ||δk||2 and ||xk||2 are both plotted as 

functions of the iteration number, as shown in Fig. B.14.   After the first conjugate 

gradient iteration the solution norm grows slightly and the residual becomes smaller as xk 

→ x*, for 1≤ k ≤ 7; at these values, the Hessian of the objective function defined in Eq. 

(B.13) is well-conditioned, so both pk and αk are bounded.  At k = 8, however, ∇F(xk) 

becomes ill-conditioned as some of the eigenvalues approach zero.  This causes the 

conjugate gradient iterates to fail, and both ||xk||2 and ||δk||2 become very large.   (This 

situation is akin to reaching the bottom of a very shallow valley or trough when 

minimizing an objective function having two variables).   Thus, unlike the previous two 

methods where ||δ||2 varied in a monotonic way with respect to the regularization 

heuristics (the number of truncated singular values in TSVD and c in Tikhonov 

regularization), in conjugate gradient regularization ||δ||2 first decreases and then 

increases with increasing iteration number. 
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Figure B.14: Plot of solution and residual norms as a function of iteration number for 

iterative conjugate gradient regularization. 

 

The heat flux distributions over the heater and design surfaces are shown in Figs. 

B.15 and B.16, while the magnitudes of the solution and residual vectors are included in 

Table B.3.  As the iteration number increases from k =1 to k =3, the magnitude of the heat 

flux distribution over the heater surface becomes smaller, as shown in Fig. B.15, and the 

heat flux distribution on the design surface steadily approaches the desired heat flux 

distribution, as shown in Fig. B.16.  Based on the residual vector magnitudes shown in 

Table B.3, it is clear that for these three iterations xk is steadily approaching x* and the 

conjugate gradient iterates are working.  The solutions obtained using k = 3, 4, and 5 are 
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very similar, and ||δ k||2 and ||xk||2 change very little with increasing iterations.  For k = 5, k 

= 6, and k = 7, the magnitude of the residual vector continues to decrease and the solution 

norm grows with continuing k.  The heat flux distributions over the heater surface 

increase in magnitude and the heat flux distribution over the design surface moves away 

from the desired distribution for these cases, as shown in Figs. B.15 and B.16.  While the 

magnitude of the residual vector is decreasing for these three cases, the L2 norm of the 

subspace of δ corresponding to the radiosity equations (i.e. excluding the energy balance 

equation) is actually increasing.  For k > 7, ∇2F(xk) becomes ill conditioned, as indicated 

by the large values of ||δ k||2 and ||xk||2 shown in Table B.3. 

 

Iteration number, k ||δk||2 ||xk||2
0 10.496 50.596 
1 46.610 51.375 
2 4.659 54.671 
3 3.213 54.796 
4 2.992 54.857 
5 2.970 54.898 
6 2.917 55.456 
7 2.719 58.002 
8 115.667 309.411 
9 3871.09 1486.21 

 

Table B.3: Residual and solution norms of different conjugate gradient iterates 
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Figure B.15: Heat flux distributions over the heater surface obtained through iterative 

conjugate gradient regularization. 
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Figure B.16: Heat flux distributions over the heater surface obtained through iterative 

conjugate gradient regularization. 
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3.4.4 Comparison of Regularization Methods 

The three regularization methods are evaluated and compared based on three criteria: the 

amount of information that each method provides about the ill-posed problem, the 

solution quality, and the relative ease of implementation. 

 Of the three methods examined here, the TSVD method provides the most insight 

into the nature of the ill-posed problem.  By performing the singular value decomposition 

and plotting the singular value spectra shown in Fig. B.7, the nullity of A is easily found 

by counting the number of singular values equal to zero.  More importantly, the existence 

of different solution modes that satisfy the original ill-posed problem with a small 

residual can be anticipated if there are many small but non-zero singular values.  Such a 

priori information is not provided by the Tikhonov and iterative conjugate gradient 

methods. 

 The best solutions obtained using each regularization method, i.e. those that 

produce heat flux distributions over the design surface that most closely match the 

desired distribution, are plotted in Fig. B.17.  The TSVD solution was found using p = 

481 singular values, the Tikhonov solution used c = 10−2, and the iterative conjugate 

gradient solution was found with k = 5 iterations.  The heat flux distributions over the 

design surface found by substituting the inverse solutions into the forward problem are 

plotted in Fig. B.18.   The solution obtained using Tikhonov regularization most 

accurately satisfies the desired heat flux distribution over the design surface, followed by 

the TSVD solution and the iterative conjugate gradient solution.  From this perspective, 

one of the main advantages of Tikhonov regularization is that the heuristic parameter is 
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continuous and can be varied to produce a large set of well-posed problems related to the 

original ill-posed problems, greatly increasing the likelihood of finding a solution that is 

both sufficiently accurate and regular.  The regularization parameters of the other two 

methods, on the other hand, are discrete and produce a finite set of potential solutions; the 

size of the TSVD solution set is limited by the number of unique singular values, while 

the iterative conjugate gradient solution set is limited by the number of convergent 

conjugate gradient iterations.  Accordingly, there is somewhat less likelihood of finding a 

useful solution from these smaller solution sets. 
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Figure B.17: Heat flux distributions over the heater surface that most closely satisfy the 

desired distribution over the design surface. 
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Figure B.18: Heat flux distributions over the design surface corresponding to the 

solutions shown in Fig. B.17. 

 

 The iterative conjugate gradient method is by far the most computationally 

efficient method, since each regularization iteration involves only matrix and vector 

multiplication.  The TSVD method, on the other hand, relies on the singular value 

decomposition of A, demanding approximately the same amount of CPU time and 

memory storage as each LU decomposition used in Tikhonov regularization.  Whereas 

the TSVD method requires only one singular value decomposition to calculate the entire 

set of regularized solution, however, when using Tikhonov regularization a new set of 

linear equations must be solved each time the regularization parameter is changed.  
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Moreover, because the Tikhonov regularization parameter is continuous and since it is 

difficult to predict what regularization parameter and smoothing matrix should be used, it 

is often necessary for the analyst to solve many different sub-problems until a useful 

solution to the ill-posed problem is identified.  Consequently, Tikhonov regularization 

requires far most time and computational effort to carry out compared with the iterative 

conjugate gradient and TSVD methods. 
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