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Summary. This is the third and last of a series of papers
dedicated to the effect of triple close approaches on the evolu-
tion of stellar systems. Previously obtained analytical and
numerical results are applied to several astronomical models of
triplets formed by Sun-like stars, white dwarfs, neutron stars,
and galaxies.
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Introduction

First the pertinent results of earlier papers (Szebehely, 1974a,b,
referred to as Papers I and II) are shortly summarized. This is
followed by the description of four astronomical models. Next,
from the previously found one-parameter family, those mem-
bers are selected which satisfy realistic astronomical conditions.
Finally, the selected members are matched to the four models.

Previous studies using individual orbits or statistically
established families exist in the literature (Agekian, 1967;
Szebehely, 1967). Special dynamical models of considerable
interest, and closely related to this problem, were investigated
by Nahon (1973) and by Waldvogel (1977). The present study
allows the continuous adjustment and matching of physical
parameters because it is based on a family rather than on
individual examples.

A preliminary short announcement of some of these results,
without details, was offered by this writer in a review of the
dynamics of triple systems (Szebehely, 1977).

Summary of Previous Results

In Paper I it is shown that (in the limit) the escape velocity (v)
of a member of a triple system is related to the semi-major axis
of the binary (a.) left behind by a.v% = 2/3, for a slightly
perturbed asymmetric family of triple encounters. The initial
conditions for all members of the family depend on a single
parameter, the perturbing velocity vo. All cases start from an
equilateral triangle of unit sides. The three initial velocity
vectors are parallel with one side of the triangle. The three
masses are equal and in the original non-dimensional system
m, = my = ms = 1. The initial velocity vector of ms is parallel
with side mym. and its magnitude is vo. The initial velocity
vectors (vo/2) of my and m point in the opposite direction. These
initial conditions are shown in Fig. 1 of Paper II and are de-

scribed analytically in Paper 1. The asymmetry and the close- -
ness of the triple close approaches are controlled by v, which
varies between 0.2 and 10~1°, The high side of the range cor-
responds to an ejection, the low side (v, = 1071°) gives a
high-velocity escape. For 0 < v, = 102 the above-quoted
limit-formula is applicable with satisfactory accuracy. To
simplify the notation in the sequel we write a = @, and v = v,
for the asymptotic values of the semi-major axis and of the
hyperbolic escape velocity.

The motion is a contraction initially (see Paper II) and the
first close approach occurs between m; and ms. This distance,
min 13 = ris, is the smallest distance occurring during the
whole motion for 0 < v, < 10~ Since in the range 0.1 =
vo = 0.2 both ejections and escapes occur, we use only results
obtained in the lower velocity range (10°2 = v, = 1071°) and
consequently base the computations on the quantity r{5 which
for simplicity will be denoted by r.

In Paper II it was shown that a ~ 12r for the members of
the family, therefore rv? &~ 1/18. This last result means that if
in the non-dimensional system used in Papers I and II, a
minimum distance is selected, the velocity of escape may be
computed. The member of the family of escape orbits corre-
sponding to this preselected r is associated with a given value
of the parameter vo, however, this parameter is not used in the
present study since it may be replaced by the physically more
meaningful distance, r. The eccentricity of the binary formed is
also given in Paper Il as e = 0.6, independently of v, or of r.

The system reaches minimum size or rather minimum
moment of inertia in approximately w/v'24 = 0.6413 non-
dimensional time-units.

The Four Astronomical Models

In the non-dimensional system all computations are performed
with GM,,T2/LE = 1, consequently, the unit of time is T, =
L¥*(GM,)~Y2 and the unit of velocity is Vn = (GMn/Ln)'?,
if the units of mass and length are M,, and L, with G as the
constant of gravity. The subscript m refers to ‘““model”’.

(i) The first model consists of three stars of solar mass,
M, = M, placed at the apices of an equilateral triangle at
L, = 1pc apart. The unit of time is T, = 1.5 107 yr and the
unit of velocity is Vi, = 0.0655 km s~1.

(ii) Two models consisting of white dwarfs are studied.
First (ii-a) three white dwarfs with solar masses are placed at
1 pc distances as in model (i). Note, however, that the radius of
the participating bodies in case (i) is Re while in case (ii-a)
R, = 0.0068 Ry, following Chandrasekhar’s estimate. Conse-
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quently, in case (ii-a) much closer approaches are allowed with-
out significant tidal effects than in case (i). The units are the
same in cases (i) and (ii-a). If the model consists of three
40 Eridani-B-like stars (ii-b), then M,, = 0.43 My and R, =
0.016 Ry. The units are T, = 2.27 10 yr and V,, = 0.043 kms~1,

(iii) In the third model we place three neutron stars of solar
masses at 1 pc distances, assuming for their radii R, = 10 km.
The units are the same as in case (i).

(iv) The fourth model consists of three galaxies of masses
M,, = 10'° M, placed at L, = 100 kpc distances. The units
are T,, = 4.71 10° yr and V,, = 20.7 kms~*. For the size of
the galaxy R, = S kpc is used.

Any other desired model might be established without
difficulties. Note that in the following discussion lower case
letters will denote the dimensionless quantities used in Papers
I and II, while capitals will be reserved for dimensional
quantities. The relations between these symbols are R = rL,,
V = vVn, T = tT,. In addition, it is expedient to introduce the
symbols p = R,/Ry, where R, is the radius of the bodies
participating in the motion, as well as p = M,/Mg and A =
R/(2Ry), which will be used in the next section.

General Approach

The purpose of the paper is to find the principal characteristics
of the models described in the previous section. Such charac-
teristics are the velocity of escape (or ejection), the semi-major
axis and eccentricity of the binary left behind and the time
necessary to reach maximum contraction. The method of
selection of the proper member of the family is based on the
choice of a minimum distance from physical considerations.
This minimum distance, R during a realistic, physically possible
motion must be considerably larger than 2R,. Since R = 2AR,,
the bodies touch when A = 1. Clearly, such behavior violates

Table 1. Applications to models of triple systems

our original dynamical model where tidal effects are excluded.
If A = 100, the tidal effects are of the same order of magnitude
as between the Earth and the Moon. For the purposes of this
paper, we will select the following three values for A: A; = 10
which is admittedly rather low; A = 100 corresponding to 1 AU
if R, = Ro; and Az = 1000.

At this peint some simple results are offered.

i) the semi-major axis of the binary formedis 4 = 12R =

24)R,,

ii) the velocity of escape is

1 I 1/2(GMO)1/2 (#)1/2 a
ose = = | — — = 72.74{ — ),
Voo = ( Ap) e 72.74(£) " tem s~

iii) the highest velocity occurring at the first close approach
is Vimax = 8Vesc-

The first result (i) was mentioned before as a = 12r, i.e., the
semi-major axis of the binary is 12 times the distance occurring
at the first close binary approach. The second result (ii) is
obtained from the relation, »2r = 1/18 by substituting the
definitions given at the end of the previous section. The third
result (iii) concerning the maximum velocity was established by
numerical integration, see Paper II.

Applications

In the first model p = p = 1, since this is the solar model with
M = Mg and R, = Rp. Using A; = 10, the closest distance is
twenty solar radii (R = 20 Ry), the semi-major axis of the
binary is 240 R, the velocity of escape is 23 km s~* and the
highest velocity is 184 km s~2.

Table 1 summarizes the results for all cases. Note that the
highest escape and maximum velocities occur in case (iii), that
is for the model of three neutron stars. The maximum velocity
corresponds to approximately 16%; of the velocity of light.

Model Description A R A 4 Veso Vinex
km/sec km/sec

i) 3 suns, 10 20 R, = 0.1 AU 240 R, = 1.2 AU 23 184
p=p=1, 100 200 Ry = 1 AU 2,400 Ry = 12 AU 7.3 58.2
T. ~ 107 yr 1,000 2,000 R, = 10 AU 24,000 Ry, = 120 AU 2.3 18.4

(ii-a) 3 white dwarfs 10 0.136 Rp = 9.45 10* km 1.13 Rp = 82102 AU 279 2,232
with solar 100 1.36 Ry = 9.45 10° km 113 R, = 8210°2 AU 88.2 706
masses, u = 1,
p = 0.0068, 1,000 13.6 Ry = 9.45 10° km 113 R, = 0.82 AU 279 223
T. = 10"yr

(ii-b) 3 white dwarfs 10 0.32 Ry, = 1.6 1073 AU 3.84 Rp = 1.9210"2 AU 119.25 954
like 40 Eridani-B, 100 32R, = 1.610"2AU 38.4 R, = 0.19 AU 37.7 302
u = 043, 1,000 32 Rp = 0.16 AU 3834 R, = 1.9 AU 11.93 95.4
p = 0.016,
T. = 145107 yr

(iii) 3 neutron 10 200 km 2.4 10% km 6,062 48,493
stars, p = 1, 100 2102 km 2.4 10* km 1,917 15,336
p= 144105, 1,000 2 10* km 2.4 10°km 606 4,849
T. = 107 yr

@iv) 3 galaxies, 10 100 kpc 1,200 kpc 1,084 8,670
p = 10, 100 1,000 kpc 1.2 10% kpc 343 2,742
p = 222101, 1,000 10% kpc 1.2 10% kpc 108 867
T, = 310%yr :
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The time necessary from the beginning of the motion to the
occurrence of the escape in all cases is approximately 7. = 0.64
time units (for many more significant figures, see Paper II).
Therefore, the escape times are determined by the time-units
- applicable to the various cases. For instance, for case (i) we
have T, = 1.5107 yr, therefore the escape time is T, =
0.96 107 yr. '
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