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Metal contamination is a considerable environmental problem because metals are 

persistent contaminants.  Ion exchange is one of the most commonly used treatment 

options for trace metal removal.  This research develops and evaluates a redox active 

modified ion exchange system that has the potential to reduce the ionic strength of ion 

exchange regeneration streams.  Poly-L-cysteine (PLC) was selected as the redox active, 

adsorbing functional group on the surface of a reticulated vitreous carbon (RVC) 

electrode.  PLC is an excellent soft acid metal chelator and is unique in that its thiol 

groups can form disulfide bonds with each other.  The reduction of available thiols 

changes the metal binding capacity of the peptide since the thiol is the primary binding 

group.  RVC provides a macroporous conductive monolithic resin to support the peptide. 

An experimental apparatus was designed to study the properties of this system and 

estimate performance. 
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Distinct oxidized and reduced states of PLC on the surface of the RVC were 

confirmed by changes in metal binding characteristics.  Adsorption edges showed a 

sharper pH dependence for the reduced electrode compared to the oxidized electrode 

from pH 3-7.  Adsorption isotherms performed at pH 7 showed increased capacity for the 

reduced electrode. The change was reversible by chemical and electrical reduction.  This 

difference was confirmed at the molecular level with Cd- EXAFS of oxidized and 

reduced electrodes.  A greater degree of cadmium-sulfur coordination was observed on 

the reduced electrode and a greater cadmium-oxygen coordination was apparant on an 

oxidized electrode.  A multidentate adsorption model was developed to model the pH 

dependent behavior of cadmium adsorption on the PLC-RVC surface.  Nickel adsorption 

showed increased adsorption in the oxidized state. The most likely explanation is 

increased carboxylate complexation. 

 

The electronically switchable ion exchange system (ESIE) provides a framework 

for modifying traditional ion exchange processes.  The system has 5 to 10 times less 

specifc capacity than current ion exchange systems, but uses solutions 10-100 times 

lower in ionic strength for regeneration.  Further studies on the effect of ionic strength on 

adsorption and current usage are necessary to compare the cost of the ESIE process to 

traditional ion exchange. 
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Chapter 1:  Introduction 

1.1 PROBLEM STATEMENT  

Metal contamination is a considerable environmental problem because metals are 

a persistent contaminant. Metals cannot be degraded like organic contaminants so they 

tend to accumulate over time [1]. Sources of contamination range from release of 

naturally occurring metals such as arsenic in groundwater to anthropogenic sources such 

as mercury in runoff from mining operations. Many of these metals have health effects at 

trace concentrations and present a treatment challenge. Maximum contaminant levels 

(MCLs) for drinking water have been set at concentrations as low as 10 µg/L for arsenic 

and cadmium. Many conventional treatment options such as precipitation cannot reduce 

contaminant concentrations to these levels without additional treatment. To achieve low 

levels, polishing steps such as ion exchange or electrodeposition are required. The 

products of these processes are contaminated sludges and brines that  present a significant 

treatment challenge themselves.  Existing treatment options move metals from one waste 

stream to another, but do not provide a sustainable endpoint for the waste. A process that 

produces a waste stream which itself is not difficult to treat provides a more sustainable 

end point for metal containing wastes.  A reduction in chemicals used to regenerate a 

system improves the nature of the waste created.  

1.2 PRESENT STATE OF KNOWLEDGE  

A possible solution to the remediation and waste processing problem is to add 

electrochemical modification to ion exchange.  Redox chemistry can be used to affect the 

surface chemistry of an electrically conductive resin. A potential applied to the surface of 

a conductive resin can change conformation or chemical structure of an electroactive 
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molecule bound to that surface.  Since a change in chemistry can affect metal binding 

affinity, a mechanism to ‘switch’ the binding affinity of a resin is created by this change 

in surface chemistry.  A suitable molecule could provide both binding capacity and redox 

activity to affect the binding affinity.  One set of molecules that fit these requirements are 

metalloproteins, which have shown a strong binding affinity for a variety of metals [2]. 

The metal binding affinity and redox activity of the metalloproteins are defined by the 

amino acid composition of the protein.  An amino acid residue with reversible 

electrochemistry is cysteine, which contains an electrochemically active thiol group.  Fro 

example, two adjacent thiol groups form a disulfide bond under oxidizing conditions, 

which can be reduced back to free cysteines.  The disulfide-bonded cysteine has a much 

lower metal binding affinity than free cysteine [3, 4].  Poly-L-Cysteine (PLC) is a 

synthetic homopolymer which consists of only cysteine residues. Oxidized PLC forms 

disulfide bonds with itself and neighboring PLC molecules.  The overall binding capacity 

is reduced by decreasing the number of free cysteine residues and also by the formation 

of a tight secondary structure as shown in Figure 1.  This bind and release mechanism has 

been supported by atomic force microscopy [5]. 

Mn+

M n+

Mn+

M n+

Mn+Mn+

M n+M n+

Mn+

M n+

Mn+

M n+

Mn+Mn+

M n+M n+

Mn+
Mn+

Mn+
Mn+

Mn+Mn+
Mn+Mn+

(a) (b)
(d)(c)

reductionoxidation

 
Figure 1. Metal binding scheme. (a) Cations bind to free sulfhydryl groups on the amino acid chain. 
(b) An oxidative potential is applied to the surface. (c) Disulfide bonds are formed in the oxidative 
environment, and the binding affinity for the metal drops. The metal is then released and can be 
rinsed away. (d) The amino chain is reduced to restore the original metal binding affinity. 

A contaminated stream can be remediated by binding a specific metal onto the 

resin, and then the metal can be released into a concentrated, smaller volume of fluid.  
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The waste stream from this process will have a lower salt concentration than regeneration 

brines produced from ion exchange.  Also, the process uses less power than 

electrodeposition processes, because only the surface amino acids are oxidized and 

reduced, not the metal ions themselves.  If the metals are directly reduced, the current 

requirement becomes significant since 96,485 coulombs of charge are needed per 

equivalent of metal reduced from Faraday’s constant.  With this electronically switchable 

ion exchange (ESIE) system, the current required is a function of the surface area of the 

resin, the density of protein on the surface and the number of metals ions bound per 

protein.  The combination of cleaner waste product and a reduction in power usage can 

reduce the overall cost of treating wastes containing metals while still maintaining a 

similar level of sustainability. 

1.3 OBJECTIVES AND HYPOTHESES 

Preliminary research suggests that this technology could be viable; however, 

many research questions remain as we translate our understanding of the chemistry of 

this process to engineered systems.  Johnson and Holcombe have shown binding and 

release through ESIE at a nanogram per cm2 level for several soft acid metals [6].  

However they used a low surface area carbon disk electrode which severely limited their 

capacity.  A viable wastewater treatment process requires a removal capacity several 

orders of magnitude greater.  This research attempts to examine the issues associated with 

scaling an electrochemical process while continuing to explore the fundamentals 

associated with the ESIE process. 

The following hypotheses were tested in this research: 

I. Distinct oxidized and reduced states of the PLC-RVC electrode could 

be produced 
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II.  The two oxidation states of the electrode have different metal ion 

adsorption properties 

III.  The oxidation states of the electrode can be switched by application of a 

potential. 

1.4 RESEARCH OVERVIEW  

To test these hypotheses, this research was broken into two phases. First an 

apparatus was designed to perform redox chemistry on a high surface area conductor with 

polypeptides attached.  This involved selection of a substrate material, choice of a 

method to attach a peptide to the surface, and creation of an electrode from the substrate. 

The electrode was then placed in a structure to allow simultaneous equilibrium 

measurement and application of potential.  The nature of the peptide on the surface was 

then assessed by chemical means.  Differences in chemical properties of the surface 

under oxidized versus reduced conditions were used to evaluate the first hypothesis.  

Second, the metal binding capacity of the electrode was evaluated.  The surface of the 

electrode was reduced and oxidized by chemical and electrochemical means.  Adsorption 

edges and isotherms were measured using cadmium and nickel as probes of the surface 

reactivity.  Surface analysis of the electrodes with cadmium was undertaken by XPS and 

EXAFS.  Changes in binding affinity and surface interaction were used to test the second 

and third hypotheses. 

1.5 THESIS STRUCTURE  

Chapter 2 provides a review of the literature relevant to ESIE.  Chapter 3 details 

the design and fabrication of a system to evaluate the characteristics of metal binding in 

the ESIE system.  Chapter 4 covers metal adsorption and spectroscopic experiments.  In 

addition a model for metal adsorption within the system is developed.  Chapter 5 states 
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conclusions on the hypotheses drawn and discusses future areas of investigation for the 

ESIE system.      
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Chapter 2:  Literature Review 

The electronically switchable ion exchange (ESIE) system that was developed in 

this research was predicated on the integration of metal ion adsorption and ion exchange 

properties, redox behavior of sulfur containing compounds, and electrochemistry of 

carbonaceous materials. In this chapter, literature in these areas that is relevant to ESIE 

design and operation is presented.  Current metals removal technologies were evaluated 

and the relative advantages of ESIE were explored. Previous work was reviewed in the 

areas which make ESIE unique – use of metal binding peptides and the use of potential to 

affect binding. Information in these areas provided the design basis for the ESIE system. 

2.1 METALS REMOVAL TECHNOLOGIES  

Metals are a persistent problem in the environment even at relatively low 

concentrations.  Current drinking water maximum contaminant levels and health effects 

for selected heavy metals are presented in Table 1.  Often secondary treatment is 

necessary to reduce contaminant concentrations to levels that do not present health 

concerns.  Several technologies exist that can achieve required effluent standards but 

each has drawbacks. The most widely used technologies for metal removal in aqueous 

solution are based on ion exchange.  A difference in selectivity for two different ions is 

exploited when an innocuous ion bound to the surface of a resin is displaced by a 

contaminant ion.  The resin is regenerated by overcoming the selectivity difference with a 

high concentration of the innocuous ion.  The surface of the resin either has intrinsic 

metal binding properties or is functionalized with a chemical group that shows preference 

for a certain family of ions over others.  The choice of group determines the nature of the 

resin.  Negative groups such as carboxylates (COOH-) give cation exchange resins and 
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quaternary amine groups (R3N
+) give anion change resins. The resin itself is often a 

polymer which is resistant to the waste and regeneration streams [8].  Ion exchange resins 

range in capacity from 0.1 milliequivalents per gram (meq/g) for zeolites to 10 meq/g for 

synthetic resins [9]. 

 

Table 1. Maximum Contaminant Levels and Potential Health Effect for Selected Heavy Metals [7] 

Metal MCL 
(mg/L) 

Potential Health Effects from Ingestion of Water 

Arsenic 0.01 Skin damage or problems with circulatory systems 

Cadmium 0.005 Kidney Damage 

Chromium 
(total) 

0.1 Allergic Dermatitis 

Lead 0.015 
Delays in physical or mental development: Kidney 
problems; high blood pressure 

Mercury 
(inorganic) 0.002 Kidney Damage 

Selenium 0.05 
Hair or fingernail loss; numbness in fingers or toes; 
circulatory problems 

 

Electrocoagulation uses principles similar to conventional coagulation to lower 

metal concentrations by trading chemical usage for electricity costs and system 

complexity [10].  A sacrificial anode (Fe or Al) is oxidized to release metal ions in 

solution in a manner similar to iron or alum addition.  These ions precipitate and 

subsequently enmesh other particles and occlude contaminants in a manner similar to 

conventional coagulation.  pH is increased by the reduction of protons to H2 at the 

cathode.  Less chemical pH adjustment is required, which lowers the cost of treatment 

relative to conventional treatment.  The technology is currently maturing and has not 

been adopted on a large scale [10].  Several membrane based processes are often used for 
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ion removal such as reverse osmosis or electrodialysis.  Reverse osmosis has the ability 

to separate metal contaminants, but generally requires a high quality feed stream to 

prevent membrane fouling [9].  Colloidal particles, bacterial activity, and scaling as a 

result of precipitation contribute to degradation of membrane flux.  These problems limit 

the range of waters that are efficiently treated by reverse osmosis without pretreatment.  

Electrodialysis uses ion selective membranes to concentrate ions into specific channels of 

the apparatus, which reduces the contaminant concentration in the remaining cells.  

Electrodialysis can handle much higher dissolved solute concentrations than reverse 

osmosis, but still has similar fouling problems.  In addition each equivalent of ions 

moved from the diluate to concentrate stream necessitates 96,485 coulombs (one 

Faraday) of charge to be passed through the apparatus.  Since the system is built from a 

stack of channels, resistance through the membranes and solution is additive.  Significant 

currents combined with resistance of the system make power usage one of the primary 

costs of operating an electrodialysis system [9]. 

The previously mentioned systems introduce chemical potential to a system with 

increased pressure (reverse osmosis) or potential (electrocoagulation, electrodialysis) 

while ion exchange is driven by differences in concentration.  Ion exchange systems are 

less technically complex, but require more chemical usage.  The primary drawback of ion 

exchange results from the addition of concentrated chemicals, because secondary 

treatment is required for the waste stream.  These solutions are usually strong acids, 

strong bases, or brines which complicate subsequent treatment and reclamation of metal 

contaminants.  Because metal contaminants cannot be degraded, reclamation represents 

the most sustainable endpoint.  This research will examine an approach to reduce 

treatment requirements for secondary metals waste while avoiding significant power 

costs.  
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2.2 MODIFICATIONS TO ION EXCHANGE  

Significant improvements have been made to ion exchange processes over the 

past several decades to optimize removal of metal contaminants while minimizing the 

concentration of regenerant chemicals required to restore the capacity of the resin.  The 

chemical character of the resin and attached functionalities determines these 

characteristics of that resin.  Common ion exchange resins are often composed of zeolite 

minerals or polymer resins.  Both of these substrates have high specific surface areas, 

many sites for metal ion adsorption, and can be chemically modified to change adsorption 

character.  Zeolites have significant cation exchange capacities and can be functionalized 

with organic ligands to change adsorption properties.  The adsorption of positively 

charged organic molecules to a zeolite surface allows for the adsorption of not only other 

organic molecules but also selected anions [11].  Polymer resins provide a flexible 

foundation for an ion exchange process to be designed.  A chemical resistant resin can be 

chosen for a specific application and a variety of functional groups can be attached. The 

functional groups provide metal binding capacity and often a degree specificity.  

Common categories of functional groups and examples are listed in Table 2.  The relative 

strength of a group for a given metal is discussed in the next section. 

 

Table 2. Common categories of functional groups found on ion exchange resins 

Category Example Group 

Strong Acid R-SO3 

Weak Acid R-COOH 

Strong Base R-NH3OH 

Weak Base R-NH2 

Metal Chelating R-EDTA-Na 
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The ESIE process takes surface modification and functional group design on a 

porous medium from existing ion exchange and employs electrochemistry for the purpose 

of changing the metal binding character of the surface.  The primary requirements for the 

binding functionality are affinity for the contaminant of interest and a means to overcome 

that affinity in order to regenerate the resin.  If a binding group binds too strongly to a 

metal, then a large concentration of the regenerating chemical will be required to displace 

the metal as illustrated in following equations where S is a site where a metal or 

regenerant ion can bind, Me is the metal of interest and X is regenerant ion. 

 

SX XS- ↔+ +    
[ ]

[ ][ ]+−=
XS

SX
K X   Eqn. 1.1 

SM MS- ↔+ +    
[ ]

[ ][ ]+−
=

MS

SM
KM   Eqn. 1.2 

++ +↔+ XSM MSX   
[ ][ ]
[ ][ ] X

M
XM K

K

MSX

XSM
K == +

+

 Eqn. 1.3 

 

The term KM/KX = KM/X is known as the selectivity of the site for a specific ion 

M+ over the regenerant ion X+.  The equilibrium shown in eqn. 1.3 is the governing 

relationship of ion exchange.  Selectivity depends on the valence and acid-base character 

of the ion, the type of resin, its saturation and ion concentration. It is generally only valid 

over a narrow range of pH [9].  Approximate selectivity values for a strong acid ion 

exchange resin are shown in Table 3. 
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Table 3. Approximate relative selectivity values for a strong acid ion exchange resin [9] 

Cation Selectivity Cation Selectivity 

Li+ 1.0 Co2+ 3.7 

H+ 1.3 Cd2+ 3.9 

Na+ 2.0 Ni2+ 3.9 

K+ 2.9 Mn2+ 4.1 

Mg2+ 3.3 Ca2+ 5.2 

Zn2+ 3.5 Pb2+ 9.9 

  

When KM/X is large metal binding is strong and a significant concentration of the 

regenerant ion X+ is necessary to produce a shift in the population of sites from metal-

bound (SM) to regenerated (SX).  A condition where [SX]/[SM] is much greater than 1 

requires that ratio of free regenerant to free metal is larger than KM/X as shown in Eqn. 

1.4. 

 

 
[ ]
[ ]

[ ] [ ]
[ ]XMK

MX

SM

SX

/

++

=       Eqn. 1.4 

 

The requirement of a significant concentration of [X+] to regenerate is the primary 

reason that ion exchange waste streams are brines or strong acids or bases.  A reduction 

in the required regenerant concentration is one of the indirect goals of this research.  To 

achieve this goal a reexamination of eqn. 1.3 is required.   The selectivity of the system is 

a constraining factor, because a high selectivity is desired when removing metal from the 

original treatment stream, but a low selectivity is desired when releasing metal back to 

the waste stream.  The selectivity is defined by the individual equilibrium relationship 

between the site, metal and regenerant ion.  Changes in these relationships require 
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changes in the complexation chemistry of the system.  If the complexation chemistry and 

thus selectivity could be shifted for binding and non-binding situations, a proportional 

reduction in regenerant concentration required could be achieved.  In addition to changes 

in selectivity, a shift in the total number of sites available could reduce the amount of 

metal bound directly by adding a new site-consuming reaction to the system and taking 

X+ to be a proton as shown in eqn 1.5. 

 

 +++−−↔− HeRSSRSHR - 222     Eqn. 1.5 

 

 The ESIE system provides a chemistry framework for this change to take place 

through the use of redox active peptides as a binding functionality. An applied potential 

can oxidize or reduce these functionalities on the surface of the resin and change the 

selectivity and number of available sites. A further examination of potential-modified ion 

exchange and metal binding peptides is required to understand chemistry underlying this 

transition. 

2.2.1 Electrochemically Switched Ion Exchange systems 

The concept of using changes in potential to change the nature of the metal-

surface interactions has been established in the literature.  A potential applied to a 

conductive ion exchange resin can create an electrochemical change in pH at the surface 

of an electrode and the resulting pH change can increase or decrease the binding affinity 

of a chemical group on the surface of the electrode [12]. This concept relies on the 

breakdown of water and does not provide a lasting change in the nature of the electrode, 

as the pH gradients begin to dissipate when the potential is removed.   Columns packed 

with graphitic carbon coated with polyvinylferrocene and polypyrrole were used to 

provide better chromatographic separation of pharmaceuticals [13] and substituted 
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phenols [14].  Work on electrochemically modulated separation on graphitic carbon was 

extended to common inorganic anions such as nitrate, chlorate, and bromate [15].  The 

majority of electrochemically modified column techniques used a continuously applied 

potential and changes in the distribution of ions in the double layer at the surface of the 

electrode to increase retention of certain molecules. 

Several researchers have used electroactive molecules at the surface of an 

electrode to produce a persistent change in binding character. In the process of improving 

liquid column chromatographic techniques, potentials were applied to a conductive 

substrate with a polypyrrole-functionalized surface to produce a change in binding [16].  

A separate example uses hexacyanoferrates deposited on the surface of a nickel electrode.  

These molecules are electroactive as Fe(II) is oxidized to Fe(III) at the nickel surface.  

Hexacyanoferrates are selective cesium binders and changes in the potential were used to 

load and unload cesium from the surface of the electrode [17, 18].  Electrochemical 

control has also been used to tautomerize 8-hydroxyquinoline adsorbed to an electrode 

surface for the purpose of changing metal binding characteristics [19].  These techniques 

more closely resemble the process scheme proposed for ESIE, where a semi-permanent 

electroactive modification is performed on the surface of the electrode. 

2.3 METAL BINDING PEPTIDES 

2.3.1 Polypeptides 

The study of metal binding by polypeptides originated with evaluations of 

proteins in nature which chelate metals to produce functionality.  These proteins form 

strong selective metal binders in a cellular environment.  Secondary and tertiary structure 

in the proteins allow for multiple amino acids to coordinate around a metal.  A significant 

fraction of enzymes require the presence of an inorganic ion in order to function [20]. 
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Within a cell these proteins are used in processes such as direct adsorption and 

phytoremediation to extract and concentrate metals [21-23].  The specific metal ion 

required by the protein for function is usually specific. For example, in the case of 

hemoglobin, a single Fe2+ ion is coordinated by several nitrogen groups in a porphyrin 

ring [24].  The specificity for a certain inorganic ion is provided by the exposed 

functional groups in the protein. Carboxylates (in glutamate and aspartate), amines (in 

lysine), and thiols (in cysteine) show affinity for several transition metals [25].  One 

group of proteins of interest to this research is metallothioneins. These proteins are 

distinct because they contain a large fraction of cysteine residues which form strong 

complexes with soft acid metals such as lead or cadmium.  Metallothioneins do not have 

complex tertiary structure like many other proteins, but do form secondary structures in 

the presence of metals. These proteins can chelate multiple metal [26].  

Metallothioneins can also participate in redox chemistry which alters the metal 

binding capacity.  Mammalian metallothioniens can undergo a thiol disulfide exchange 

with glutathione that transforms the binding affinity for zinc by several orders of 

magnitude [27]. 

 When removed from the cellular environment, these proteins often denature and 

lose their binding affinity [28].  Several researchers have studied methods to isolate the 

binding active portions of proteins and still maintain the functionality seen in a full 

protein [29].  Reducing the size and complexity of the protein can reduce the selectivity 

and metal binding strength, but also allows the protein to function in harsher 

environments.  An extension of this idea is to engineer proteins specifically for metal 

binding from amino acids.  Modifications can be singular in nature [30] or encompass a 

large portion of the protein [31]. Changes in functionality at a specific location in a 

protein can create significant differences in metal binding affinity. A weak Ca2+ binding 
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site in bacterial Subtilisin showed a six fold increase in Ca2+ affinity after specific proline 

and glycine residues were changed to aspartic acid residues [30].  Short sequences of 

amino acids or polypeptides can provide metal binding similar in nature to larger proteins 

[2].  The rationale for design of metal binding peptides begins with the properties of the 

individual amino acids. 

The simplest polypeptide is a homopolymer of a single amino acid.  Existing 

work on poly-L-aspartate [32-34], poly-L-glutamate [34, 35], poly-L-histidine [36], and 

poly-L-cysteine (PLC) [3-5, 37-39] has shown significant metal binding ability in 

homopolymers.  The structures of cysteine and PLC are shown in Figure 2.   

 

 
Figure 2. Chemical structure of cysteine and poly-L-cysteine (PLC) 

Carboxylic acid functional peptides show general transitional metal binding, the 

imidazole group of poly-L-histidine binds metal anions such as arsenate, and the thiol 

functionality of PLC binds transition metals with an affinity for soft acid metals such as 

lead, cadmium, and mercury, while showing little affinity for alkali and alkaline earth 

metals [38].  Homopolymers are relatively simple and inexpensive to synthesize, but still 

provide secondary structure to allow for metal coordination. The polypeptides can wrap 

around a metal to increase coordination and reach a free energy minimum [33].  The 

coordination provides strongly binding locations within the polypeptides which have 
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formation constants on the order of log K = 13 for poly-L-aspartic and poly-L-glutamic 

acid [34]. 

More complex peptides can be generated by mixing and matching amino acid 

groups.  Binding properties that might not be possible with a single amino acid could be 

created by alternating or patterning amino acids.  The design for complex multiple amino 

acid interaction with a single metal follow existing patterns in nature [40]. Current 

approaches include copying small known metal binding sequences or generating a 

combinatorial library or peptide sequences and screening the library for increased metal 

binding [35]. 

2.3.2 Structure and binding of polypeptides 

The secondary structure of a polypeptide is dictated by its amino acids and the 

environment surrounding the peptide.  Structures commonly seen in proteins such as 

helices and sheets can be formed by homopolymers and influence binding [33].  These 

structures promote binding by providing locations for multiple amino acids to interact 

with individual metal ions. A polypeptide also provides a flexible backbone for the active 

parts of the amino acid to move in space and surround a metal ion in a manner similar to 

a structured protein. The presence of a metal ion can stabilize an unstructured protein as 

multiple amino acids groups coordinate a single metal [33].  In addition, the state of 

many amino acids is altered by changes in acid/base or redox conditions.  For example, 

redox changes affect structure in peptides containing cysteine when two cysteine 

molecules form covalent disulfide bonds [3].  The protonation and redox state of an 

amino acid affect its interaction with neighboring amino acids in a chain and have 

significant effects on the secondary structure of the peptide and on metal binding. 

The ability to affect secondary structure by manipulating pH and redox conditions 

form the basis of a bind and release system for metals treatment in a manner similar to 
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existing ion exchange processes.  Traditional ion exchange processes use an increase in a 

secondary ion concentration to displace the ion of interest.  The secondary ion can be 

provided by an innocuous metal, such as sodium, or by an excess of hydrogen ions 

through a pH change. Acidic conditions can significantly lower equilibrium binding as 

protons displace metals and increase metal solubility. In either case, the metal of interest 

is released by changing the environment of the binding moiety.  Polypeptides have the 

ability to provide more specificity in binding and more sophisticated methods of releasing 

metals. 

A peptide containing multiple cysteines can be oxidized to reduce the number of 

thiols available for binding, since the disulfide form of cysteine binds significantly less 

than the thiol form as shown in the Figure 3 below [3]. 

 
Figure 3.  Breakthrough curves for Cd2+ at pH 7 on a PLC functionalized controlled pore glass 
column. Increased area above the breakthrough curve implies greater binding capacity. (Reprinted 
from Howard) [3] 

In addition to the reduction in the number of available amino acids for binding, 

the creation of disulfide bonds affects the secondary structure of the polypeptide and 
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effectively closes up its structure. The oxidation and reduction of PLC on a glassy carbon 

electrode has been performed with moderate potentials of -0.6 V to +0.6 V vs Ag/AgCl, 

and a cyclic voltammetric analysis showed oxidation and reduction waves at 0 and +0.4 

V vs Ag/AgCl respectively [6]. The redox change in cysteine provides an opportunity to 

affect binding affinity without significant changes in chemical composition of the 

environment through the application of a potential to the peptides. This allows for the 

release of metals without the use of high salt or acid concentrations. 
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Chapter 3:  Design and analysis of a bench scale ESIE apparatus 

3.1 GENERAL DESIGN REQUIREMENTS FOR A BENCH SCALE ESIE SYSTEM 

A lab scale apparatus for ESIE experiments should provide a variety of options 

for testing the chemical properties of the peptide modified substrate and provide insight 

to the design and construction of a larger scale system.  The design of the system 

considered two main requirements: 

1. The ability to oxidize/reduce the substrate by applying a potential, and 

2. The ability to assess the capacity of the substrate for particular metal ions  

Based on a comparison of the previous research conducted with PLC and to other 

competing technologies, one of the key objectives of this research was to develop a 

system which could treat water at laboratory scale (0.1 to 1 L of water at 1 to 10 mg/L 

contaminant concentration).  

This chapter describes selection and preparation of the substrate and peptide and 

the physical design of the ESIE apparatus. The methods used in synthesis and 

construction are described at the end of chapter. Layout and schematics of the system 

designed in this research are presented, and the various tests of operational characteristics 

of the system are explained. 

3.2 EXPERIMENTAL METHODS 

The methods described below were used to fabricate the ESIE system.  The 

rationale for the methods and design of the system are described in the next section. 

3.2.1 Instrumentation 

Peptides were synthesized through Fmoc-solid phase peptide synthesis (SPPS) 

using a Ranin Symphony Quartet automated peptide synthesizer. Mass spectra of 
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peptides were obtained on a PerSeptive Biosystems Voyager MALDI-TOF.  Either a DC 

power supply (Hewlett Packard) and voltmeter or three-electrode potentiostat (Cypress 

Systems Omni-101) were used with a Miniature Teflon Ag/AgCl reference electrode 

(Cypress Systems) and platinum wire counter electrode for electrochemical modification 

steps.  Solution was pumped through the apparatus with a Carter Manostat peristaltic 

pump and pH was monitored with a digital pH/mV/ORP meter (Cole-Parmer). 

3.2.2 Reagents 

Peptides were synthesized and cleaved on Wang resin (Novabiochem) using 

cysteine (Fmoc-Cys(trityl (Trt))-OH) (Novabiochem), hexafluorophosphate (HBTU) 

(Novabiochem), and 1-hydroxybenzotriazole (98%) (HOBt) (Novabiochem), 

triisopropylsilane (99%) (TIPS), ethyl ether (Fisher), N-methylmorpholine (NMM) 

(Fisher), Nmethylpyrrolidone (NMP) (Fisher), trifluoroacetic acid (TFA) (99%) and 

piperidine (99%).  Peptides and amino acids were attached with 2-(N-morpholino) 

ethanesulfonic acid (MES), N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (EDC) 

(Sigma Aldrich), N-hydroxysuccinimide (NHS), L-cysteine and glycine.  Analysis and 

testing procedures used acetonitrile, DL-1,4-dithiothreitol (99%) (DTT), sodium 

hydroxide. 5,5’-dithio-bis (2-nitrobenzoic acid)  (DTNB) and tris(hydroxymethyl) 

aminomethane-HCl (Tris-HCl). 

3.2.3 System Construction and Assembly 

A homopolymer of cysteine was formed by using Fmoc based synthesis. A 

sequence program of 20 cysteines each coupled twice for 45 min was attached to  Wang 

resin with a nominal loading of 0.1 mmol/g resin.  The resin was removed from the 

synthesizer and the peptide was cleaved and deblocked using a solution of 95/2.5/2.5 

TFA/TIPS/DI H2O for 3 h. The resin was filtered and additional TFA was used to rinse 
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the resin. The filtrate was reduced with a stream of N2 and then added to cold ethyl ether 

and allowed to precipitate for 30 min. The solution was centrifuged and rinsed with ether 

3 more times. The pellet was suspended in DI water and the solution was lyophilized 

overnight to produce pure solid peptide. 

The peptide was characterized by MALDI-TOF mass spectrometry. 1 mg of 

peptide was dissolved in 1 mL of 20% acetonitrile/80% DI water with 10 µL of TFA.  

The solution was dried onto a spot well on a metal array with a standard matrix solution.  

The array was placed in the MALDI-TOF mass spectrometer and the resulting mass 

spectrum was recorded. 

A glassy carbon electrode was fabricated as previously outlined. The carbon 

electrode, platinum wire counter electrode, and Ag/AgCl reference electrode were 

assembled with inlet and outlet pieces for circulation of reagents.  DI water was passed 

through to rinse the apparatus.  To oxidize the surface of the electrode 1 M H2SO4 was 

circulated while applying a voltage of +2 V referenced against the Ag/AgCl electrode for 

20 min. The oxidation step produces active oxygen functionalities on the surface which 

include alcohols, aldehydes, and carboxylic acids.  A carbodiimide facilitates the 

attachment of the amine terminus of the peptide to a carboxylic acid [37].  A 0.04 M 

solution of EDC with 0.06 M NHS buffered by 0.05 M MES at pH 5 was circulated 

through the carbon electrode for 2 h. NHS helps to stabilize a reaction intermediate 

formed between the surface carboxylic acid and EDC [41].  The electrode was rinsed 

with DI water to remove excess EDC solution. The poly-L-cysteine homopolymer was 

dissolved in 0.05 M MES and adjusted to pH 6.  The PLC solution was then circulated 

overnight through the electrode to allow reaction with the EDC intermediate. The 

electrode was then rinsed with DI water.  This process was repeated using a single 

cysteine and single glycine amino acid to produce cysteine and glycine electrodes.  After 
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attaching the peptide, the electrode was put through one redox cycle to remove any sites 

that were not able to be reduced or oxidized reversibly.  For reduction of disulfides on the 

electrode, 50 mL of 0.02 M DTT at pH 8 was circulated for 10 min.  For oxidation of the 

thiols on the electrode, 50 mL 1% H2O2 was circulated for 10 min. 

3.2 SUBSTRATE PREPARATION  

3.2.1 Substrate material selection 

The requirement of a surface bound, electroactive polypeptide places several 

constraints on choice of substrate.  The substrate needs to be conductive and capable of 

carrying enough current to oxidize and reduce the peptide on the surface, while being 

electrochemically inert itself.  The peptide needs to be attached to the substrate covalently 

and with sufficient strength that no peptide is lost with the oxidizing or reducing potential 

applied to the system.  Previous work used a glassy carbon disk electrode which meets 

the chemical requirements but with a small capacity - 100 ng of Cd2+ on a 0.25 cm2 

surface at an equilibrium concentration of ~10 mg/L [6].  A substrate with a greater 

specific surface area is necessary to scale the ESIE process for continuous flow processes 

at laboratory, pilot, and full scale systems.  

Reticulated Vitreous Carbon (RVC) was chosen as the substrate material for the 

ESIE system after analysis of several options commonly used as electrode materials or 

ion exchange resins.  Metal based substrates are susceptible to oxidation at positive 

potentials or corrosion in the presence acids or salts.  Glass and polymer substrates are 

either insulating or have relatively low conductivity.  Carbon, as used for the disk 

electrode in previous work [6], met all the necessary requirements.  Initial experiments 

used microporous activated carbon samples.  Activated carbon fiber woven cloth was 

obtained and several surface analyses were performed to assess its performance in an 
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ESIE system.  BET surface area was estimated at 1600 m2/g, though not all of the area 

was accessible to the ESIE process.  A significant portion of the surface area was 

contained in microporous structure.  Based on estimations derived from Miller, a 10-mer 

of PLC has a lower limit on characteristic length of ~4 nm in solution [5].  If it is 

assumed that a pore must have a diameter greater than 4 nm for the area contained within 

to be accessible to a PLC molecule, then all pores less than 4 nm in diameter have an area 

which would not be included in the ESIE scheme.  The area of pores greater than 1.7 nm 

in diameter was ~250 m2/g by BJH adsorption.  At least 1350 m2/g of pore area would be 

inaccessible to the ESIE process, but still available for non specific metal ion adsorption.  

Electrolyte ions in solution can access the microporous area and associate with the double 

layer at the surface of the electrode when a potential is applied.  In fact, this property is 

exploited in the use of activated carbons as the substrate in electrochemical capacitors 

[42].  Cyclic voltammetry (CV) of the activated carbon cloth confirmed this by showing 

extremely high capacitive currents. 

 shows no faradaic peaks as the capacitive current is likely several orders of 

magnitude greater than any faradic current.  An increase in potential on the surface of an 

activated carbon necessitates a significant amount of current to form an ionic double 

layer at the surface [42].  For this reason, other carbon substrates were evaluated. 

Graphitic carbons and glassy carbon beads meet the majority of the requirements for an 

ESIE electrode, but present another challenge.  Particle based electrodes require a method 

of containment which permits flow, provides a good conduction path and minimizes 

distance to the counter electrode. Reticulated Vitreous Carbon (RVC) is chemically 

similar to glassy carbon but is monolithic, which provides a significant advantage in 

terms of system complexity and handling of electrode materials.  For this reason RVC 

was selected over the other chemically equivalent carbons.   A summary of the substrate 
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material options and reasons each was dropped from consideration in the ESIE system is 

presented in Table 4. 

-4

-3

-2

-1

0

1

2

3

4

-300-200-1000100200300

Voltage (mV)

C
ur

re
n

t (
m

A
)

 
Figure 4. Cyclic Voltammogram of a cysteine functionalized activated carbon cloth in 1 M H2SO4. 
Carbon mass = 10 mg, Scan Rate = 1 mV/s 

 

Table 4. Substrate Material Options 

Substrate Reason not considered 

Metal Oxidation by ESIE electrochemistry 
Corrosion by strong acids or salts 

Glass 
Plastics 

Not conductive 

Activated carbon Large capacitance 
Non specific adsorption 

Graphitic carbon Containment and handling 

Glassy carbon beads Containment and handling 

 

Layout of the system is discussed later in this section.  RVC provides a 

monolithic substrate with surface area comparable to a packed column of small glassy 
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carbon particles.  Since the carbon consists of a single piece of material, contact 

resistance between particles and containment problems were circumvented.  Nine 

hundred ppi (pores per linear inch) RVC foam was obtained from ERG Aerospace 

(Oakland, CA) for use in the ESIE apparatus.  [43, 44].  A list of physical properties of 

900 ppi RVC is shown in Table 5.  Examples of RVC foam are shown in Figure 5. 

 

Table 5. Physical properties of 900 ppi Reticulated Vitreous Carbon [43] 

Property Value 

Bulk density 0.45 g/cm3 

Carbon density 1.49 g/cm3 

Porosity 0.70  

Specific Area 1320 cm2/g 

Area per unit volume 590 cm2/cm3 

Bulk Resistivity 5 x 10-3 Ω-cm 

 

 
Figure 5. Examples of Reticulated Glassy Carbon foams from ERG Aerospace [45]. 
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3.1.1 Peptide attachment 

The ESIE system is predicated on the ability to switch binding through the 

oxidation of cysteine functional groups.  A PLC functionalized electrode was built to test 

properties of the ESIE system. PLC was the primary peptide studied, but cysteine and 

glycine were used for certain tests.  Cysteine monomers represent the simplest redox 

active peptide system.  Glycine represents a control for the electrode surface and binding 

ability of the terminus of the peptide. 

The PLC was generated with the use of a peptide synthesizer and characterized by 

MALDI-TOF mass spectrometry.  The resulting mass spectrum is shown in Figure 6.  

The peptide was created stepwise by successive additions of cysteine.  Each addition has 

an efficiency less than 100%, so a distribution of peptide lengths results. For this PLC, 

the peptide length ranged from 7 to 11 cysteine residues. 

A carbodiimide linker was chosen based on use in previous work [6].  For a 

carbon substrate a strong oxidation potential can be used to produce carboxylate 

functionality at the surface.  The carboxylate functionality provides an attachment point 

for the peptide. The peptide is bound to the surface through the reaction of surface 

carboxylate reacted with the amine terminus of the peptide through the use of the 

carbodiimide linker (EDC).  A schematic of the process of peptide attachment is shown 

in Figure 7. 
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Figure 6. MALDI analysis of synthesized PLC peptide. 

 



 28 

 
Figure 7. Peptide immobilization reaction. Carboxylate functionality on the substrate reacts with the 
N-terminus of a peptide using EDC to facilitate the reaction 

3.3 SYSTEM DESIGN AND LAYOUT  

3.3.1 System Requirements 

The substrate needs to be contained within a system that allows for 

electrochemistry and adsorption experiments in a convenient manner.  Much of the 

complexity of the system comes from the nature of the electrochemical setup.  The 

substrate serves as a working electrode, and a reference electrode needs to be kept in 

proximity to the working electrode to reduce the error in measured potential at the 

working electrode.  The counter electrode should also be kept as close as possible to the 

working electrode to reduce resistive losses in solution.  Current through the system 

flows through the solution gap between the working and counter electrode, and increased 

distance creates increased resistance [46].  Increased resistance leads to increased power 

usage for the redox switch in the system.  The porous nature of the substrate increases the 

average distance between the surface of the substrate and the counter electrode.  This 

problem can be reduced by fragmenting the working and counter electrode into several 

parts and staggering them within the system, although this increases system complexity.  

The substrate needs to be electrically connected to a power supply or potentiostat, and the 

connection should be stable in the changing environment within system.  All components 
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of the system are exposed to significant acid concentrations for short periods of time and 

moderate acid and salt concentrations for extended periods of time.  The structure 

containing the electrodes should be electrically insulating and water tight to allow for low 

pressure flow through the system. 

Because of the high surface area of the substrate, pressurized flow is necessary to 

reduce mass transfer limitations within the system. Batch equilibrium tests require that 

the time scale of mass transport be significantly smaller than the time scale of the entire 

equilibrium experiment.  If the substrate is microporous, then diffusion through pores can 

be limiting, and a mass transport analysis will be required.  The substrate can either be 

monolithic or particle based, and there are considerations for each case.  A monolithic 

substrate will need to be machined to a proper geometry and a particle based substrate 

will need to be contained in a convenient manner inside the setup.  Electrical contact 

resistance between particles should be insignificant compared to the other resistances in 

the system.  A drawback of a particle based setup is the difficulty in segmenting the 

substrate, as each segment would require its own containment. 

The system should be flexible to allow for several types of adsorption 

experiments.  Batch equilibrium experiments will comprise the majority of the analysis of 

the system.  Batch experiments require the system to contain a well-mixed solution 

reservoir while maintaining flow around the substrate.  Rate experiments could use a 

similar setup if the reservoir can be periodically sampled while adsorption is taking place. 

A column based experimental setup would ideally utilize pressurized one-dimensional 

flow across the substrate without significant axial mixing. 

3.3.2 System Design 

The primary challenges of system design included electrode placement and 

pressurized flow through the system.  A modular enclosure system was developed as a 
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solution to both problems.  RVC foam was machined into cylinders approximately one 

inch in diameter and 1/8 inch thick.  These cylinders were then placed inside a larger 

plastic disc housing containing a platinum contact wire for connection between the RVC 

and a power supply.  Conductive epoxies were considered for better electrical connection, 

but most epoxy formulations contained electroactive constituents (e.g., silver) which 

would react under the range of conditions seen inside the system.  The seam between the 

RVC cylinder and the plastic disk housing and the location where the contact wire 

entered the inside of the housing was sealed with a silicone sealant. The channel for the 

wire was sealed on the outside of the housing with epoxy to bear loads induced by 

alligator clipped connections.  The first few parts were machined from Delrin, but it was 

found to decompose after extended exposure to acid.  Further parts were machined from 

Teflon, and the system was stored without acid present.   Discs were also constructed to 

house the platinum counter electrode and Ag/AgCl reference electrode.  The platinum 

counter electrode wire was coiled in the center of the plastic disc housing and sealed in 

the same manner as the working electrodes.  The discs were placed on top of each other 

in any order to form a complete electrochemical cell. The gap between each disc is sealed 

by an o-ring.  Also since the system is modular, additional discs can be added to the 

system to increase substrate area or stagger counter electrodes between substrate discs to 

reduce resistive losses.  Influent and effluent caps were made to match the discs and 

channel flow through the system.  Design drawings of the parts are shown in Figure 8 

through Figure 11.  The outlet is the same as the inlet, except for the omission of the o-

ring groove.  The primary components of the system are shown in Figure 12. 
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Figure 8. Top and Front views of the electrode housing 
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Figure 9. Side and wireframe isometric views of the electrode housing 
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Figure 10. Top and front views of the inlet.  
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Figure 11. Side and wireframe isometric views of the inlet 
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Figure 12. Primary components of the lab scale ESIE system 

A single disc with RVC substrate has a surface area of 950 cm2 within a volume 

of less than 2 cm3. The volume of the system with three empty discs is approximately 

13.6 mL.  The electrode discs and end caps are compressed together with three bolts to 

seal the assembly.  Influent and effluent tubing are attached to threaded connectors at the 

two end caps.  Fluid is pumped through the system by a peristaltic pump.  To increase the 

working volume of the system, a well mixed external reservoir is used to store the feed 

solution and to allow recirculation of the effluent through the system.  Solutions are kept 

oxygen free by sparging with nitrogen gas, and pH is continuously monitored by a probe 

immersed in the reservoir.  The three electrode discs are connected to a potentiostat or 
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power supply.  Figure 13 shows the layout of the ESIE system used for bench scale 

analysis. 

 
Figure 13. ESIE System Schematic 

3.4 ELECTROCHEMICAL CHARACTERISTICS  

A series of potential step experiments were run to characterize the current 

required to oxidize or reduce the PLC-RVC electrode.  The experiment was procedurally 

the same as the electrochemical oxidation and reduction mentioned in the following 

chapter except that three different electrolyte concentrations were tested: 0.05 M, 0.2 M 

and 1 M KCl.  The potential was stepped to -800 mV or +800 mV vs Ag/AgCl, and 

current was monitored over time until a steady current was reached.  The reduced and 

oxidized potential steps are shown in Figure 14. 
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Figure 14. Current usage for electrochemical reduction (a) and oxidation (b) of RVC-PLC at -0.8 V 
and +0.8 V vs Ag/AgCl with 0.05, 0.2 and 1 M KCl 

Both reduction and oxidation steps show expected trends of increasing current 

with increasing ionic strength.  The relationship between conductivity in solution and 

ionic strength is proportional for ideal solutions [46].  Increased conductivity produces 
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increased current.  Initial reduction and oxidation currents are comparable in opposite 

directions, but the steady state reduction current is significant, especially at high ionic 

strength.  This indicates that there is a component of the solution which is being reduced 

at -0.8 V vs. Ag/AgCl.  The total current delivered after 1 min can be used to estimate the 

current required when scaling up the ESIE process.  While geometry plays a large role in 

determining the cell resistance and thus current, an order of magnitude estimate is 

possible for larger systems if a similar design is employed. 
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Chapter 4:  Metal adsorption on the ESIE apparatus  

This chapter examines metal cation adsorption on the ESIE apparatus to evaluate 

the binding capacity and elucidate the mechanisms of binding of the ESIE substrate in 

both oxidizing and reduced environments.  The analysis included batch equilibrium 

experiments and spectroscopic measurements of equilibrated samples.  First, a 

preliminary rate experiment was conducted to establish the time necessary for the system 

to return to equilibrium after a perturbation.  pH adsorption edge and isotherm 

experiments were conducted using a series of oxidation and reduction methods to 

establish the nature of the binding mechanism and capacity of the electrode.  X-Ray 

Absorption Spectroscopy (XAS) analysis of the oxidized and reduced electrodes was 

performed to provide information on the coordination environment around the adsorbed 

metal ions.  Molecular scale observations from Extended X-Ray Absorption Fine 

Structure (EXAFS) analyses were used to support hypotheses established in the ESIE 

bench scale experiments.  The results and analysis follows a description of the methods 

used for experimentation 

4.1 METHODS 

4.1.1 Instrumentation 

The ESIE apparatus as constructed in Chapter 3 was used to conduct all rate and 

equilibrium experiments described in this chapter.  Cd2+ and Ni2+ concentrations were 

measured by an atomic absorption spectrometer (AA-875, Varian) or inductively coupled 

plasma - time of flight - mass spectrometer (ICP-MS-TOF) (Optimass 8000, GBC 

Scientific).  pH measurements were made with a digital pH/mV/ORP meter (Cole-

Parmer). 
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4.1.2 Reagents 

The following reagents were used in the course of equilibrium and spectroscopic 

experiments: sodium nitrate, potassium chloride, sodium hydroxide (standardized), 

HEPES (N-[Hydroxyethyl]piperazine-N’-[2-ethanesulfonic acid]) (Sigma), DTT (DL-

1,4-dithiothreitol), 99% (Fisher), Hydrogen peroxide, 30% solution (Sigma Aldrich), 

70% nitric acid, trace metal grade  (Fisher), nickel(II) nitrate hexahydrate, cadmium 

nitrate tetrahydrate Puratronic solids (Alfa Aesar), and Cd, Ni atomic absorption 

standards (Inorganic Ventures) 

4.1.3 Rate Analysis 

The primary purpose of the rate study was to establish the time for the system to 

reach equilibrium after a perturbation.  A metal containing solution was circulated over a 

metal-free electrode, and metal concentration was monitored over time.  An electrode 

was prepared by rinsing it with 0.1 M HNO3 to establish a baseline metal-free electrode.  

The acid solution was rinsed out of the system by running several bed volumes of DI 

water through the apparatus.  The electrode was then reduced by circulating a 0.02 M 

DTT solution that was adjusted to pH 8 for 20 min as established in previous literature 

for the reduction of immobilized PLC [3].   The DTT solution was rinsed with DI water 

in the same manner as the acid.  O2/CO2 free water was prepared by boiling deionized 

water and bubbling with N2 overnight or longer.   

At this point, two sets of rate experiments were run with Cd2+ and Ni2+.  The Cd2+ 

rate experiment used a 50 mL solution of 5 mg/L Cd buffered with 10 mM HEPES (pKa 

= 7.55) at pH 7. The glycine, cysteine, and PLC electrodes were each reduced 

electrochemically in 0.2 M KCl at a potential of -800 mV vs Ag/AgCl.  The pump rate 

for solution was 10 mL/min for each Cd electrode.  The Ni rate experiment used a 100 

mL solution of 20 mg/L Ni buffered with 5 mM HEPES adjusted to pH 7 and 50 mM 
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NaNO3.  At time zero, the solution was pumped through the apparatus at a rate of 30 

mL/min.  The initial metal concentration in both rate experiments was prepared by the 

addition of the appropriate volume of a 1000 mg/L atomic absorption standard in 1% 

HNO3.  The solution was bubbled with N2 (50 mL/min) for 30 min prior to and during the 

duration of the experiment.  500 µL samples were taken at regular time intervals and 

diluted with 0.1 M HNO3 for analysis by flame AA.  

4.1.4 Adsorption Edges and Isotherms 

The primary methods to characterize the interaction between the immobilized 

peptide and the metal cations are adsorption edge experiments and isotherm experiments. 

Adsorption edges allow for characterization of the pH dependent behavior of the peptide 

metal ion system and isotherms. All edge and isotherm solutions were prepared from 

O2/CO2 free water as described in the rate analysis section.  All solutions were circulated 

at a flow rate of 30 mL/min unless otherwise specified.  Metal ion stock solutions used in 

edge and isotherm experiments were made from high purity solids dissolved in 0.01 M 

HNO3.  Solution concentrations were measured directly and adsorption densities were 

calculated from mass balances on total metal in the system. 

4.1.4.1 Electrode Preparation 

  Prior to each experiment, 0.1 M HNO3 was circulated through the electrode for 

10 min at 10-30 mL/min to establish a baseline metal-free electrode.  A DI water rinse 

was then flowed for 2 min to remove remaining acid.  For chemical reduction, the 

electrode was either reduced by circulating 50 mL 0.02 M DTT at pH 8 for 20 min or 50 

mL 0.13 M NaBH4 for 10 min [47].  Chemical oxidation was performed by circulating 50 

mL 1% H2O2 for 20 min [3].  The electrode was then rinsed with DI water to remove 

traces of redox agents and immediately used in edge or isotherm experiments.  For 
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electrochemical oxidation or reduction, 0.01 M KCl was circulated through system and a 

+0.8 V (oxidation) or -0.8 V (reduction) vs Ag/AgCl potential was applied to the working 

electrode through the potentiostat for 5 min.  The current was recorded after 5 s and after 

approximately 2 min. 

4.1.4.2 Adsorption Edges 

For adsorption edge experiments, a 100 mL solution of 0.01 M sodium nitrate and 

0.005 M HEPES was spiked with a stock solution of the metal of interest.  The pH of the 

resulting solution was low (~2-3) and was used as the starting point of the adsorption 

edge.  Nitrogen was bubbled continuously and pH was monitored.  A sample was taken 

before contact with the electrode to provide an experimental initial concentration value.   

Circulation through the ESIE apparatus was started and an initial time was 

recorded.  After 40 min of circulation, a sample was taken and the pH was recorded.  0.1 

M or 0.5 M NaOH was then used to increase the pH by 0.5 to 1 units.  The system was 

then allowed to circulate for another 40 min while the process was repeated for increasing 

pH until a pH of 8-9 was reached. The maximum pH was determined by the solubility of 

the metal ion of interest.  Desorption was performed by the addition of 0.1 or 0.5 M 

HNO3 to the reservoir in the same manner as the adsorption portion of the experiment.  

At the conclusion of the experiment, 50 mL of 0.1 M HNO3 was run through the system 

for 5 min to remove remaining metal ion adsorbed over the course of the experiment.  

Samples were then diluted with 0.1 M nitric acid and analyzed by Flame AA or ICP-MS-

TOF with matrix matched standards. 

4.1.4.3 Adsorption Isotherms 

For adsorption isotherm experiments, a 100 mL solution of 10 mM NaNO3 and 5 

mM HEPES was adjusted to pH 7 with 0.1 and 0.5 M NaOH.  The solution was bubbled 
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with N2 and allowed to equilibrate with the ESIE apparatus.  The reservoir was 

maintained at pH 7 over the duration of the experiment.  A separate metal ion solution 

was created by adding 10 mL of 500 mg/L metal stock to 10 mL of 10 mM NaNO3 and 5 

mM HEPES.  This solution was adjusted to pH 7 by addition of 0.1 and 0.5 M NaOH to 

give a solution slightly below 250 mg/L. 

A sample for metal analysis was taken, and then an aliquot of the metal solution 

was added to the reservoir.  The system was allowed to equilibrate for 40 min.  At that 

time, a sample was taken and the pH was recorded.  If necessary, a pH adjustment was 

made by the addition of 0.1 M NaOH and another aliquot of metal ion solution was 

added.  The system was again allowed to equilibrate, and this process was repeated until 

it was believed that the substrate had been saturated with metal.  At the conclusion of the 

experiment, 50 mL of 0.1 M HNO3 was pumped through the system for 5 min to remove 

any metal ion adsorbed over the course of the experiment.  A sample of the metal 

solution used to dose the reservoir was also taken.  Samples were diluted in 0.1 M HNO3 

for Flame AA or ICP analysis with matrix matched standards. 

4.1.5 XAS Procedure 

In order to relate bulk measurements of adsorption capacity to molecular level 

reactions occurring at the surface of the electrode, the adsorbed metal was probed using 

x-ray absorption spectroscopy (XAS).  High intensity, high energy monochromatic x-rays 

are focused on the sample and the absorption or fluorescence spectrum is recorded.  If the 

x-ray energy coincides with the energy required for photoelectron ejection of the atom of 

interest, a sharp increase in absorption occurs.  XAS spectra can be divided into two 

parts, x-ray absorption near edge structure (XANES) which occurs at around the edge 

jump, and extended x-ray absorption fine structure (EXAFS) which is a post-edge region 

of the total spectrum.  After the jump, highly energetic photoelectrons are emitted from 
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central atom (element of interest) and backscattered by surrounding atoms.  These 

backscattered photoelectrons caused constructive or destructive interferences with the 

outgoing photoelectrons depending on the incident energy.  These interferences result in 

oscillations observed in EXAFS region.  The nature of this scattering is a powerful tool 

that provides information on the coordination environment of a metal in situ.  XANES 

analysis, while difficult to derive quantitative results, provides important information 

regarding the chemical structure of the nearest surrounding atoms.  Analysis of EXAFS 

components give estimates of interatomic distances and coordination numbers of 

neighboring atoms. One of the primary advantages of x-ray absorption is that many 

elements can be examined at low concentrations in the presence of water and other solids 

at much higher concentrations.  A true in situ measurement is important for examination 

of the coordination environment since the presence of water can greatly influence metal 

coordination. For further description of EXAFS theory see Brown [48].  

XAS samples were prepared by first producing an oxidized and reduced ESIE 

electrode using the procedures established previously.  Oxidation or reduction was 

performed chemically using DTT or hydrogen peroxide respectively.  Following a DI 

water rinse the electrodes were allowed to equilibrate with 50 mL of a 40 mg/L Cd2+ 

solution buffered with 0.05 M HEPES and 0.01 M NaNO3.  Initial and final cadmium 

concentrations were measured by Flame AA.  Electrodes were removed from the 

apparatus without rinsing and sealed in air-tight containers in a glove box for shipping to 

the synchrotron facility, Stanford Synchrotron Radiation Lightsource (SSRL) (Menlo 

Park, CA).  Samples were stored in a glove box at SSRL and loaded onto sample cells 

sealed with a Kapton tape window just prior to XAS collection to prevent any redox 

reactions.  There is no evidence of beam induced redox during data collection since the 

spectra were the same among different scans of each sample.  The spectra were collected 
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at the Cd K-edge with Si(220) monochromators.  ESIE electrodes were placed at a 45 

degree angle in the beam path and x-ray fluorescence signals were recorded using a solid 

state 32-element germanium detector.  In addition, a model compound for the Cd-S 

interaction, cadmium sulfide, was diluted using boron nitride and its spectra were 

collected in transmission mode.  The relatively low concentration of cadmium present 

within the ESIE electrode necessitated more than 10 scans for each sample, averaging 

several scans increased the signal to noise ratio in the EXAFS region.  Monochromatic 

energy was calibrated with Cd foil as an internal standard placed between ion chambers 

inline with the sample.  

4.1.6 XAS Data Analysis 

EXAFS data analysis was performed with SixPACK [49] and EXAFSPAK [50] 

software packages.  Initial XAS raw data processing was done with SixPACK. Data 

acquired from a 32 element fluorescence detector was averaged, and specific channels 

that provided consistently noisy or discontinuous data were removed from averages.  The 

averaged spectrum was then processed for pre-edge subtraction and normalization using 

Cromer-Libermann calculations and for post-edge background subtraction using Ifeffit [51] 

algorithm to extract EXAFS signals.  The processed data were imported into 

EXAFSPAK for coordination structure analysis.   Structural information was determined 

by fitting the spectra with non-linear least-squares methods using phase and amplitude 

parameters obtained from theoretical calculation results of FEFF8 [52].  Fitting each shell 

results in the determination of the coordination number (CN) and the bonding distance 

(R) for the complex.  The Debye-Waller factor, σ
2, and ∆Eo were allowed to vary during 

the optimization of CN and R.  The excitation energy is converted into k-space, Eo is 

defined as the energy at which the EXAFS spectrum begins and k = 0.  The same ∆Eo 

was used for all scattering paths within a single sample.  Also the same σ2 value was used 
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for each scattering pathway across multiple samples.  The resulting CN and R, based on 

this fitting procedure, are expected to be accurate to ±10% and ±0.02 Å, respectively, for 

the first shell when single absorber-scatterer paths are used [53]. 

4.2 ESTIMATION OF TIME TO APPARENT EQUILIBRIUM  

Cadmium adsorption rate experiments were conducted with the glycine, cysteine, 

and PLC electrodes using an initial cadmium concentration of approximately 5 mg/L. A 

higher initial concentration of 20 mg/L was used for the Ni experiment with the PLC 

electrode due to the weaker Ni-thiol binding constant.  Figure 15 and Figure 16 show that 

between 50 and 90 percent of the metal ion is removed for all of the experiments except 

for the Cd-PLC system.  For many adsorption systems involving macromolecules or 

porous adsorbents, evidence for a rapid adsorption step followed by a much slower 

approach to equilibrium has been observed [54, 55].  A sample taken after 150 min in the 

PLC-Ni experiment showed a concentration within 10% of the 60 minute concentration, 

suggesting that there may be a slow approach to true equilibrium.  Each electrode shows 

a flattening of the concentration profile within approximately 30 min of equilibration 

time.  As a result, 40 min was chosen as a suitable time between perturbation and 

measurement for adsorption edge and isotherm experiments.  Therefore, the equilibrium 

concentrations reported after 40 min represents apparent equilibrium dominated by a 

rapid adsorption step. 
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Figure 15. Nickel concentration in a batch kinetic test of adsorption onto a PLC electrode.  
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Figure 16. Cadmium concentration in a batch kinetic test of adsorption onto Gly, Cys, and PLC 
electrodes. 
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4.3 CADMIUM ADSORPTION RESULTS 

The section presents results from cadmium adsorption edge, adsorption isotherm, 

and XAS experiments on metal loaded ESIE electrodes.  Preliminary evaluations of the 

adsorption model are undertaken and the basis for refinement is established. 

4.3.1 pH dependent adsorption behavior of Cd2+ 

Oxidized and reduced electrodes were exposed to solutions containing ~1 mg 

total Cd2+ in 100 mL of total volume at low pH (<2).  Step-wise increases in the pH of the 

recirculating solution resulted in typical adsorption behavior for surface complexation of 

metal ions in which protons are released as the metal ion adsorbs as shown in Figure 17.  

This behavior was evident for both the oxidized and reduced PLC-RVC.  In addition, 

desorption edges obtained by step-wise reduction in pH did not exhibit hysteresis 

suggesting that the adsorption process is completely reversible within the time frame of 

these experiments. 

A comparison of the reduced and oxidized edges shows differences in the extent 

of adsorption and a distinct pH behavior in each situation.  The capacity of the reduced 

edge is greater for all pH values greater than 4.  In addition, the pH to obtain 50% 

removal is approximately 6 for the oxidized edge, whereas 100 percent of the Cd2+ is 

removed on the reduced surface at the same pH.  The steepness of the reduced PLC-RVC 

adsorption edge is representative of a strongly binding metal ion.  A transition occurs 

from little adsorption at pH 3 to significant adsorption at pH 5.   The oxidized edge shows 

very different behavior where adsorption increases steadily over 5 units of pH.  This 

behavior is typical of a weakly binding cation.  The differences between the adsorption 

behavior in these two systems suggests that the proton release and/or the structure of the 

surface complex has changed. 
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Figure 17. Cadmium adsorption/desorption edge on reduced (a) and oxidized (b) PLC-RVC (10 mg/L 
total metal concentration, 0.015 M ionic strength) 
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4.3.2 Cadmium Adsorption Isotherm Results 

Several adsorption isotherm experiments were run on the PLC electrode to further 

characterize metal adsorption properties. Two important characteristics of the ESIE 

system that relate to the primary hypotheses of this research are shown experimentally: 

• Redox reactions create distinct metal adsorption properties on the surface 

of the ESIE electrode 

• Changes resulting from these redox reactions are reversible both 

chemically and electrochemically 

Figure 18 compares Cd2+ adsorption isotherms developed at pH 7 with a PLC-

RVC electrode that was reduced with DTT and the same electrode subsequently oxidized 

with H2O2.  The similarity between the isotherms developed from two experiments 

conducted with the oxidized electrode demonstrates the reproducibility of the data.  The 

reduced electrode shows greater adsorption capacity relative to the oxidized electrode 

with a maximum capacity of approximately 10 mg/m2 of Cd2+ adsorbed to the surface of 

a single electrode.  In contrast, the oxidized electrode appears to be saturated with Cd2+ at 

6 mg/m2.  These data confirm the hypothesis that adsorption properties can be altered by 

changing the oxidation state of the substrate. 

The same electrode used for the DTT reduced and H2O2 oxidized adsorption 

experiments was then subjected to over 10 redox cycles to demonstrate the reversibility 

of the ESIE process.  Electrochemical reduction of an H2O2 oxidized electrode restored 

the adsorption capacity of the electrode to the same value as determined previously for 

the DTT reduced electrode as shown in Figure 19.  Maximum adsorption again 

approached 10 mg/m2 Cd2+ for a single electrode.  Figure 19 also illustrates that a -0.8 V 

(vs Ag/AgCl) potential was sufficient to restore the capacity of the electrode. 
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Figure 18. Cd2+ adsorption density onto DTT reduced and two H2O2 oxidized PLC-RVC electrodes. 
Normal scale (a) and log-log scale (b). 
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Figure 19. Cd2+ adsorption density onto DTT and electrochemically reduced PLC-RVC electrodes.  
Several redox cycles were performed between the two trials.  Normal scale (a) and log-log scale (b). 
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Reduction of the electrode with NaBH4 produced a change that was not 

completely reversible by either oxidation method. NaBH4 is a much stronger reductant 

than DTT as shown by the significantly lower E° value presented in Table 6.  The -0.8 V 

vs. Ag/AgCl potential applied to electrochemically reduce the surface is equivalent to -

0.6 V vs. the standard hydrogen electrode (SHE) and represents an applied voltage that is 

intermediate between the two chemical reductants. 

 

Table 6. Redox potentials of reagents  

Redox Couple E° (V) Source 

NaBH4 + 8 OH– ↔ NaH2BO3 + 5 H2O + 8 e- -1.24  [56] 

Cd2
+ + 2 e- ↔ Cd(s) -0.403 [46] 

DTT @ pH 8.1 -0.366 [3] 

R-SS-R + 2 H+ + 2 e- ↔ 2 R-SH -0.210 [3] 

O2 + 4 H+ + 2 e- ↔ 2 H2O +1.23 [46] 

H2O2 + 2 H+ + 2 e- ↔ 2 H2O +1.78 [46] 

 

The NaBH4 reduction resulted in a permanent increase in capacity of the oxidized 

and reduced electrodes as shown in Figure 20.  However, the relative increase in 

adsorption (3 mg/m2) was similar for both the reduced and oxidized electrode. Capacity 

on the NaBH4 reduced electrode approached 14 mg/m2 Cd2+ adsorbed on a single 

electrode, while the oxidized electrodes showed a lowered capacity of 10 mg/m2 Cd2+.  

Previous experiments did not exceed 10 mg/m2 of Cd2+ adsorbed for either surface 

oxidation state, so the NaBH4 created an irreversible increase in capacity.  A summary of 

the estimated capacity for each isotherm experiment is listed in Table 7. 
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Figure 20. Cd2+ adsorption density onto a NaBH4 modified PLC-RVC electrode. Initial reduction and 
electrochemical and H2O2 oxidations are compared. Normal scale (a) and log-log scale (b). 
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Table 7. Estimated Cadmium Capacity for PLC-RVC Isotherm Experiments 

Electrode 
Redox 
State Redox Agent 

Estimated Cd2+ 
Capacity (mg/m2) 

PLC-RVC Reduced DTT 10 

PLC-RVC Reduced Potential 10 

PLC-RVC Oxidized H2O2 6 

PLC-RVC-NaBH4 Reduced NaBH4 13 

PLC-RVC-NaBH4 Oxidized Potential 10 

PLC-RVC-NaBH4 Oxidized H2O2 10 

 

Table 7 shows that capacities for each electrode are greater in the reduced state 

than the oxidized state by approximately 3 mg/m2 of Cd2+.  All electrodes retain 

significant capacity in the oxidized state.  The basis of the switching in the ESIE system 

is the proposed oxidation of cysteines.  Each oxidized cysteine is effectively the loss of a 

site for metal binding.  The reduction in capacity confirms that the imposed voltage 

affects the surface of the electrode and cysteine oxidation is the most reasonable 

mechanism for the lowered capacity.  Cysteine thiols oxidize to disulfides if two thiols 

are sterically available to each other.  Under strong oxidizing conditions such as H2O2, if 

a second thiol is not available for reaction, sulfonates can form, which would also reduce 

metal binding capacity [57, 58]. Others have found similar results with PLC on different 

substrates [3], and this work expands on existing work with application of 

electrochemical oxidation at lab scale.   An examination of the redox potentials of the 

redox agents used in Table 6 support this assessment. The thiol/disulfide couple has a 

standard reduction potential of -0.210 V vs. SHE.  The redox couples that have lower 

standard reduction potentials and reduce disulfides to thiols and the couples that have 

higher potentials and oxidize disulfides to thiols are shown in Table 6.  The 
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electrochemical potentials of -0.8 V and +0.8 V vs Ag/AgCl applied in this system 

correspond to approximately -0.6 V and +1 V vs SHE. 

The capacity of the oxidized electrode can be attributed to thiols which cannot 

form disulfide bonds due to steric limitations, the carboxylate present at the C-terminus 

of the PLC peptide, and unreacted carboxylate functional groups present on the surface of 

the carbon electrode.  These groups are not readily reduced by either DTT or the 

electrochemical reduction applied to the surface.  Additionally, NaBH4 is not a strong 

enough reducing agent to reduce carboxylic acids [59]. 

The increase in capacity seen following NaBH4 reduction did not significantly 

contribute to the switchable metal capacity of the system. The difference between 

reduced and oxidized conditions remained approximately 3 mg/m2 for a single electrode.  

It is possible that NaBH4 reduced thiols that were not able to be re-oxidized by the 

methods used in this research.  Also, NaBH4 could reduce other carbon-oxygen 

functionalities such as aldehydes or thiol esters which would provide more capacity that 

could not be re-oxidized [59]. 

Initial analysis of the reduced and oxidized isotherms has established the ability to 

increase and decrease metal binding capacity by reducing or oxidizing the electrode, 

respectively.  This change can be performed chemically or electrochemically with similar 

results in each case.  Capacities estimated for the reduced and oxidized states can be used 

with adsorption edge data to refine the adsorption model for the ESIE system.   

4.3.3 Cadmium PLC-RVC XAS Analysis and Results 

  This study focused on identifying the coordination environment of cadmium 

adsorbed on the surface of the ESIE electrode.  Specifically differences between the 

cadmium environment in the reduced and oxidized states of the ESIE system were 

examined.   
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Cd K-edge XANES spectra collected for the two ESIE samples showed no 

significant differences as seen in Figure 21.  It was expected that different Cd-O or Cd-S 

coordination would affect the corresponding XANES spectrum and therefore  serve as an 

indicator of change of coordination environment.  While it is true in general that XANES 

is sensitive to geometric structural change of nearest neighboring atoms, Cd K-edge 

XANES has some properties that affect interpretation of the spectra for this work.  Cd K-

edge has a relatively short core-hole lifetime, and this short lifetime broadens the K-edge 

XANES spectrum.  This broadening effect masks the different features originated from 

Cd-O and Cd-S coordination structure [60].  Indeed, Cd LI or LIII-edge XANES spectra 

are more appropriate for analyzing Cd-O and Cd-S coordination because of their lack of 

broadening effect and sensitivity to detailed cadmium local structure [61].  Unfortunately, 

due to limited beam time available to this study, Cd L-edge XANES spectra were not 

collected.  Nevertheless, EXAFS analysis provides definitive results for the coordination 

environment of Cd2+ as discussed below. 

To provide a baseline for discussion of the EXAFS data collected in this research, 

literature pertaining to EXAFS analysis of cadmium-sulfur interactions was reviewed. 

Studies of Cd-S interactions through EXAFS have been reported in the context of 

cadmium complexation with cysteine containing clays [62], cadmium coordinated 

proteins [60, 63], cadmium-thiol interactions in natural organic matter [64, 65], thiol 

compounds in solution [66], and on cadmium sulfide nanoparticles [61].  Cadmium has 

distinct coordination structures for oxygen (octahedral) and sulfur (tetrahedral).  In 

aqueous solution, cadmium is coordinated by the oxygens of six water molecules, and 

sulfur coordination generally consists of four sulfur atoms [66].  A consistent bonding 

distance (R) of 2.43 to 2.54 Å appears for the primary Cd-S interaction in all of the 

literature cited.  Many of the same studies also found that primary Cd-O interactions have 
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shorter bond distances of 2.16 to 2.27 Å.  The ESIE system contains thiols as functional 

group on cysteines, and also contains oxygen functionalities as carboxylic acids at the 

terminus of the PLC peptide, on the surface of the carbon electrode, and in the peptide 

backbone.  Additionally, the oxygen present in water coordinates free cadmium in 

solution.  These conditions lead to the expectation that both oxygen and sulfur 

interactions would be seen in the ESIE system as in several of the systems cited above. 

EXAFS spectra and corresponding Fourier transforms are shown in Figure 22 for 

the reduced state and Figure 23 for the oxidized state.  Parameters extracted from EXAFS 

fitting are shown in Table 8.  
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Figure 21. XANES Spectra for Cd2+ on reduced and oxidized PLC-RVC. The vertical line represents 
a minimum in the absorption spectra of both samples. 
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Figure 22. (a) EXAFS Spectra of Cd2+ on reduced PLC-RVC and (b) Fourier Transformed EXAFS 
Spectra of Cd2+ on reduced PLC-RVC. Dashed lines are data and solid lines represent the 
components of the fit and the total fit. 
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Figure 23. (a) EXAFS Spectra of Cd2+ on oxidized PLC-RVC and (b) Fourier Transformed EXAFS 
Spectra of Cd2+ on oxidized PLC-RVC. Dashed lines are data and solid lines represent the 
components of the fit and the total fit. 
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Table 8. EXAFS Parameters 

 Cd-S Cd-O  

 N R (Å) σ
2 (Å2) N R (Å) σ

2 (Å2) ∆E0 

Reduced 3.5 2.44 0.01360 1.9 2.27 0.00682 -14.5 

Oxidized 2.2 2.44 0.01378 2.8 2.26 0.00629 -12.5 

 

Interatomic distances (R) between cadmium and both sulfur and oxygen were 

within the range of previously mentioned literature values for both the oxidized and 

reduced electrode.  Furthermore, the R values for Cd-S and Cd-O were the same within 

the precision of the fit (±0.02 Å) for both the oxidized and reduced states.  The value of R 

implies the strength of an interaction.  A typical example in metal sorption to solid 

surfaces is a comparison of inner sphere and outer sphere coordination.  Inner sphere 

interactions have shorter bonding distances since the metal and complexing atoms are in 

closer proximity.  Outer sphere interactions often have waters of hydration between the 

metal and complexing atom.  The presence of the water molecules increases the bonding 

distance and decreases the strength of the interaction.  A powerful aspect of XAS is the 

ability to differentiate between these two scenarios [53].  Similar bonding distances for 

the oxidized and reduced states imply that the strength of the interaction between a 

cadmium atom and a single complexing sulfur is also the same.  The bonding distance 

also implies an inner sphere interaction.  Outer sphere interactions generally have 

bonding distances of 5 Å or greater [53]. 

Though the strength of each Cd-S/Cd-O interaction is the same in the oxidized 

and reduced states, the number of these interactions is distinct each case.  The average 

coordination number (N) for the Cd-S interaction increases from 2.2 in the oxidized state 

to 3.5 in the reduced state.  This implies that a greater number of sulfur atoms are 
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associated with each cadmium atom in the reduced state than in the oxidized state.  

Accordingly there is a decrease in the average oxygen coordination number when the 

electrode is reduced of 2.9 to 1.9.  The assessment agrees with the hypothesis that there 

are more free thiols in the reduced state and the isotherm results. 

A previous aqueous based EXAFS study of complexation of Cd2+ in solution by 

thiol compounds also found similar results with respect to coordination numbers [66].  

Three thiol containing compounds, 2-mercaptoethylamine (MPEA), 2-

mercaptoethylsulfonate (MPES) and 3-mercaptopropionic acid (MPA) were varied in 

concentration while metal concentration was fixed. The coordination of Cd2+ was 

compared by EXAFS analysis.  Figure 24 is reproduced from that study.  Thiol 

coordination increases with increasing thiol concentration up to a maximum of 4 thiols 

per Cd2+ (tetrahedrally coordinated).  Oxygen coordination decreases as thiol 

concentration increases since thiols form a stronger complex and can displace oxygen 

complexes. 
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Figure 24. Coordination numbers of Cd-O (a) and Cd-S (b) bonds. (Reprinted with permission from  
IUCr) [66]. 

The ESIE system is comparable to this aqueous speciation based example, since 

the concentration of available thiols on the reduced surface is higher than in the oxidized 

state.  A greater concentration of thiols on the surface would produce the same effect on 

speciation – a shift from oxygen coordination to sulfur coordination for cadmium over 

the surface of the electrode.  The confirmation that multiple thiols associate with a single 

cadmium atom necessitates a change in the adsorption model.   
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4.4 CADMIUM ADSORPTION MODEL DEVELOPMENT  

4.4.1 Baseline Model 

  This section establishes the foundation for a model of the pH dependent behavior 

of metal adsorption.  This model will be evaluated and refined based on experimental 

results in the following sections.  The simplified ion exchange model presented in Eqns. 

2.1-2.4 does not account for proton-site interactions.  The primary site for Cd2+ 

adsorption in the ESIE system is a thiol group. The protonation state of the thiol group is 

likely to have an effect on the complexation of a metal ion.  Previous work by Jurbergs 

and Holcombe has established the pH dependence of Cd2+ adsorption on PLC as shown 

in Figure 25. 

 
Figure 25. Breakthrough curves for Cd2+ adsorbing to reduced PLC immobilized on controlled pore 
glass.  Influent concentration = 10 mg/L Cd2+ [4] 
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The breakthrough curves shown in Figure 25 shift to higher throughput volume 

with increasing pH.  This observation is consistent with the generalized trend of increased 

cation adsorption with increasing pH that was evident in the sorption edges presented in   

and Figure 17.  The interaction of protons with surface sites can be included in the 

existing site limited model of adsorption by adding a proton to both sides of Eqn 2.1 as 

shown in Stumm and Morgan [67].  The inclusion of a site protonation reaction gives 

Eqns. 4.1 through 4.4. 

 

+++ +↔+ HSMeMeSH 2   
[ ][ ]
[ ][ ]+
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2MeSH
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K   Eqn. 4.1 
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=   Eqn. 4.2 

If the total number of sites is assumed to be a constant, then a mole balance can be 

added, and equations can be rearranged to give the concentration of occupied sites as a 

function of metal concentration and pH. 
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This model predicts a change in adsorption when the proton concentration is on 

the same order of magnitude as the product of the adsorption equilibrium constant (K) 

and the free metal concentration.  Little or no sorption is predicted for conditions where 

K[Me2+] << [H+], maximum adsorption is predicted where K[Me2+] >> [H+] and the 
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transition between these two regions takes place over one to two orders of magnitude of 

pH in a manner similar to acid base speciation.  These trends are apparent for the 

adsorption edges for Cd2+ in the reduced state.  For an adsorption edge experiment the 

initial metal ion concentration is fixed and pH is varied.  A mass balance on total metal 

can be added (Eqn. 4.5) to give all other concentrations as a function of pH.   

 

[ ] [ ]++ += 2MeSMeMeTOT      Eqn. 4.5 

 

Once the metal concentration is known,  adsorption can be represented as fraction 

of total metal in the system (Eqn 4.6).  

 
[ ]

TOTMe

SMe
ads

+

=%       Eqn. 4.6 

 

Figure 26 shows the predicted percent adsorbed for a total metal concentration of 

1x10-4 M metal, 2x10-4 M sites, K of 0.05, and Ka for surface sites of 1x10-10 M.  This 

behavior is common among metal cations adsorbed to surfaces [67].   The slope of this 

curve is a function of the coefficient on the proton in Eqn. 4.1 as well as the initial solute 

concentration.  The location of the edge is dependent on the initial solute and sorbent 

concentration as well as the value of the equilibrium constant for Eqn. 4.1.  
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Figure 26. pH dependent site-limited model prediction of metal adsorption (MeTOT = 1x10-4 M, STOT = 
2x10-4 M, K = 0.05, Ka = 1x10-10 M) 

The pH modified site-limited model does not contain the complexity necessary to 

represent both the oxidized and reduced edges presented in  and Figure 17 because of the 

difference in pH behavior.  The parameters available in the baseline model are the total 

number of sites, STOT, and the equilibrium constant for the adsorption reaction, K.  The 

stoichiometry of the reaction forces a small range of reasonable values on the value of 

STOT.  The maximum quantity of metal that can be adsorbed can be estimated from 

isotherm experiments presented in Section 4.3, and the assumption that each metal is 

adsorbed to a single site.  The Ka for the site was taken from the value for cysteine, 10-8.2, 

though this value may be slightly lower for PLC [6].  This leaves K as the only variable 

parameter, and preliminary attempts to fit both the oxidized and reduced adsorption edge 

under these constraints are shown in Figure 28.  A best fit K was estimated by 

minimizing the absolute square error between the percent adsorption for the predicted 
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edge and the experimental data.  An outline of calculations performed are included in the 

appendix.  The resulting parameters are shown in Table 9.   

 

Table 9. Best fit parameters for the baseline model 

  K Stot (M) Sq. Error 

Reduced 1.5 9.8x10-5 0.108 

Oxidized 0.49 5.4x10-5 0.079 

 

Though the reduced isotherm had a maximum adsorption of 10 mg/m2 at pH 7, 

the STOT of the reduced edge in the model was increased to 11.6 mg/m2 Cd2+ to account 

for slight disagreement between the edge and isotherm in order to obtain a satisfactory fit.  

The reduced edge showed 100% adsorption at high pH values and the total metal initially 

added to the experiment was 11.6 mg/m2 of Cd2+, so it followed that there must be at 

least that many sites in that experiment.   
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Figure 27. Baseline model fit for Cd2+ on reduced PLC-RVC. K = 1.5, Stot = 9.8x10-5 M 
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Figure 28. Baseline model fit for Cd2+ on oxidized PLC-RVC. K = 0.49, Stot = 5.4x10-5 M 

The model fit of adsorption on the reduced electrode was not steep enough to 

capture the total adsorption at high pH and overestimated adsorption at low pH.  The 

model fit to the adsorption data for the oxidized electrode using the same binding 

constant (K) but a reduced site density was too steep to match the experimental data.  To 

fit the data for this electrode, it was necessary to reduce the binding constant by a factor 

of three and the total site density by a factor of approximately two.  Even with these 

modifications, the model overpredicted most of the sorption data at high pH and 

underpredicted sorption at low pH.  Thus, the baseline model poorly predicted the pH 

behavior of both oxidized and reduced adsorption edges. Additional complexity is 

necessary to describe the pH dependent behavior of the oxidized and reduced electrode.  

Insights gained from spectroscopic data and reinforced by literature provide a rationale to 

modify the baseline model. 
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4.4.2 Multidentate model for Cd2+ sorption 

A single site-single metal interaction model does not fully capture the complexity 

of the adsorption edge experimental results.  The slope of the transition region of the edge 

is not properly characterized by the baseline model.  Incorrect stoichiometry in the model 

could explain the inability to correctly model the slope.  A rationale for changing the 

stoichiometry of the adsorption reaction is presented in this section. 

Coordination numbers derived from EXAFS imply multiple sulfurs interacting 

per cadmium.  The EXAFS data for the reduced PLC-RVC electrode showed average 

Cd2+ coordination of 3.5 sulfurs per cadmium and the oxidized PLC electrode showed 

average sulfur coordination of 2.2 sulfurs per cadmium. Previous studies of PLC-

cadmium binding also find multiple thiols per cadmium [4].  Multiple sulfurs complexing 

a single cadmium could release multiple protons.  A change in proton stoichiometry has a 

direct effect on the slope of the adsorption edge.  A generalized n site model for cadmium 

surface complexation and x protons released is shown below. 
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[ ] [ ]++−
− += 2)2( MeMeHSMe x

xnnTOT      Eqn. 4.12 

 

This includes two additional parameters to the model – the number of sites 

coordinating per cadmium and the number of protons released per cadmium adsorbed.  

The coordination numbers estimated from EXAFS analysis suggest that the reduced PLC 

has 3.5 sulfurs per cadmium and the oxidized PLC has 2.2 sulfurs per cadmium.  Since 

EXAFS is an averaging technique, the non-integer values indicate that multiple 

coordination numbers are possible.  However, for simplicity only a single whole number 

was used for the value of n.  Multiple values for n necessitate multiple reactions with  

different stoichiometries and binding constants.  More experimental data under a wider 

array of conditions are required to differentiate multiple reactions. 

Using the EXAFS coordination values as a guideline, the adsorption edge for the 

reduced electrode was fit with n = 3 and n = 4, and the oxidized model incorporated 

values of n = 3 and n = 2.  All values of k less than or equal to n were tested for each n.  

As with the baseline model, the range of reasonable values of STOT is determined by 

results from the isotherm experiments.  Again an adjustment to increase STOT was made 

to account for disagreement between the reduced isotherm and edge.  Since each metal in 

this model takes n sites the value of STOT must correspond to n times the maximum metal 

concentration.  A summary of the sources for each parameter are listed in Table 10.  
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Table 10. Multidentate model parameters 

 Parameter Source 

STOT Isotherm/Edge maximum adsorption 

n Estimation from EXAFS coordination 

x Assumption that x ≤ n 

Ka Literature value for cysteine 

K Fitted parameter 

 

Eqn 4.8 and Eqns. 4.10-4.12 were solved for a given pH to give metal 

concentration which was then converted to fraction adsorbed.  The model predicted 

fraction adsorbed was calculated at the same pH as each data point.  The square absolute 

error between the model prediction and the data was summed and minimized by varying 

K.  Square absolute error was chosen as it weights the transition area of the edge more 

than the high and low adsorption areas.  Changes in percent adsorption with respect to pH 

are small at both ends of the edge.  Further evaluation of the fits was carried out by 

examining the fit of the log of the free metal concentration for the data and the fits with 

the least error. Additional description of the model calculations is included in the 

appendix.  This was repeated for each combination of n and x.  The minimum square 

error for each n/x/K combination was tabulated and is shown in Table 11.  Plots for the 

two best reduced fits are shown in Figure 29 and the two best oxidized fits are shown in 

Figure 30. 



 73 

 

Table 11. Best fit parameters for the multidentate model 

  n x K (MX-N) Stot (M) 
Square 
Error 

Reduced 1 1 1.5 9.82x105 0.1078 

Reduced 3 2 2000 2.95x104 0.0627 

Reduced 3 1 2.30x107 2.95x104 0.4366 

Reduced 4 4 0.021 3.93x104 0.0339 

Reduced 4 3 390 3.93x104 0.0341 

Reduced 4 2 4.30x106 3.93x104 0.1194 

Reduced 4 1 5.10x1010 3.93x104 0.6202 

Oxidized 1 1 0.49 5.36x105 0.0792 

Oxidized 2 2 0.19 1.07x104 0.1361 

Oxidized 2 1 5600 1.07x104 0.0423 

Oxidized 3 3 0.038 1.61x104 0.1640 

Oxidized 3 2 1500 1.61x104 0.0980 

Oxidized 3 1 3.20x107 1.61x104 0.0347 

 

Examination of Figure 29 illustrates that increasing the value of n, increases the 

slope of the predicted edge in the transition region.  The baseline model underpredicted 

adsorption at high pH and overpredicted at low pH because of the inability to capture the 

slope of the experimental data.  The multidentate model allows flexibility in the slope 

through the n and x parameters which are exponents in the characteristic equilibrium 

expression shown in eqn. 4-10.  The slope can also be increased by increasing the value 

of k as shown in the difference between the two plotted parameter sets. 
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Figure 29. Multidentate model fits for Cd2+ on reduced PLC-RVC as percent adsorbed (a) and log 
Cd2+ concentration (b). Corresponding parameters are listed in Table 11. 
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Figure 30. Multidentate model fits for Cd2+ on oxidized PLC-RVC RVC as percent adsorbed (a) and 
log Cd2+ concentration (b). Corresponding parameters are listed in Table 11. 
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The parameter sets with n = 4, x = 4 and n = 4, x = 3 had the lowest summed 

square absolute error in percent adsorption.  Since both fits were very close in square 

error values, they were further evaluated by examining predictions of isotherm data for 

both fits as shown in Figure 29b.  The set with n = 4, x = 4 fit the high end of the 

adsorption edge more closely than the n = 4, x = 3 set.  Equilibrium data for isotherms 

were taken at the high end of the edge because that pH range is more characteristic of 

most wastes. Both sets underestimated adsorption at very low pH where there is no 

predicted adsorption.  The underprediction at low pH has been observed in other surface 

complexation modeling efforts and may be the result of adsorption to a small set of high 

affinity sites [68].   

For the oxidized edge the parameter sets that best fit the experimental data were n 

= 3, x = 1 and n = 2, x = 2.  Both sets had similar square error, so both the percent 

adsorption and log metal concentration plots were examined.  As in the case of the 

reduced edge, the high pH region of the edge was taken as the second criterion for 

deciding the best fit.  In Figure 30a it is clear that both models flatten out in terms of 

percent adsorption below the data point near pH 7.  Since there is only one point in this 

region its significance in the square error is diminished in relation to the other regions of 

the edge.  Since the n = 2, x = 1 set more closely captures this point, and the total error 

between these two sets is comparable, the n = 2, x = 1 set was chosen as the best fit 

parameter set for the oxidized electrode. 

The multidentate model has the ability to describe a wider range of pH behavior 

because of the inclusion of proton release.  The multiple site interaction also affects the 

pH dependence since the key characteristic is not only the number of protons released but 

the stoichiometric ratio of protons released to sites consumed. It is possible that an 

additional adsorption contribution from carboxylate functional groups would improve the 
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model fits in both cases, but especially for the oxidized electrode for which the 

coordination number with oxygen increased.  This additional complexity along with the 

addition of multiple sites and electrical interactions in the double layer could be pursued 

if more experimental data, specifically that with a varied ionic strength, were available. 

4.5 NICKEL ADSORPTION RESULTS 

The section presents results from nickel adsorption experiments and compares 

Ni2+ adsorption behavior to previously examined Cd2+ adsorption behavior.  The 

selection of Ni as a second metal ion probe for evaluating adsorption in the ESIE system 

was due to its reduced binding constant to thiol groups compared to Cd2+.  In addition, 

binding constants for Ni2+ to the carboxylate group of amino acids such as glutamate are 

greater than reported values for Cd2+.   

4.5.1 pH dependent adsorption behavior of Ni2+ 

Oxidized and reduced electrodes were exposed to solutions containing a total 

metal concentration of 6.3 mg/L and 22.8 mg/L for the reduced and oxidized electrodes, 

respectively.  In both cases, the step-wise increases in the pH of the recirculating solution 

resulted in typical adsorption behavior for surface complexation of metal ions in which 

protons are released as the metal ion adsorbs as shown in Figure 31.  This behavior was 

evident for both the oxidized and reduced PLC-RVC. 
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Figure 31. Ni2+ adsorption edge on DTT reduced and H2O2 oxidized PLC-RVC. The two conditions 
have different total metal concentrations of  6.3 mg/L for the reduced and 22.8 mg/L for the oxidized. 

Both cases produced a change in adsorption over a wide range of pH in a manner 

similar to the Cd2+ oxidized electrode.  As previously seen, this behavior is more typical 

of a weakly binding cation.  The reduced state did not show a shift to stronger binding as 

in the case of Cd2+. In fact, the Ni2+ binding is stronger on the oxidized electrode as the 

two edges have similar fraction adsorbed but the oxidized edge has a much higher total 

metal concentration.  The ratio of metal adsorbed per gram solid (qe) to metal in solution 

(ce) was calculated for both conditions at the point circled in Figure 31 which was 

approximately pH 7.  The oxidized edge has a slightly greater ratio (qe/ce) of 0.326 L/g 

compared to the reduced value of 0.311 L/g.  Additionally the slope of the pH-adsorption 

transition decreased as a result of oxidation for Cd2+, but for Ni2+ the slope of the 

oxidized edge is actually slightly steeper.  These results imply that either there are more 

sites available on oxidized electrode, the coordination to the sites (and hence the binding 
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constant) is greater, or Ni2+ binds to different types of sites in the oxidized and reduced 

systems.  However, broad edge, that encompasses a large pH range, indicates relatively 

weak binding in both cases.   

4.5.2 Ni Adsorption Isotherm results 

The result of stronger binding in the oxidized state is confirmed by the Ni2+ 

adsorption isotherms.  The oxidized isotherm shows an increase in capacity for nickel.  A 

possible explanation for this reversal in behavior between cadmium and nickel comes 

from the nature of ions and the functional groups on the PLC-RVC surface.  Since Ni2+ is 

a hard metal acid it has a greater affinity for carboxylic acids than Cd2+.  For example, 

glutamic acid is an amino acid with a carboxylic acid functional group and forms 

complexes with Ni2+.  Stability constants for Ni2+ and Cd2+ with glutamate and cysteine 

are shown in Table 12.  

 

Table 12. log K values for complexation of Ni and Cd with two representative amino acids 

  Glutamate Cysteine 

NiL 6.5 10.7 

NiL2 10.6 20.9 

CdL 4.8 13 

CdL2  19 
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Figure 32. Ni2+ adsorption onto DTT reduced and H2O2 oxidized PLC-RVC electrodes. Normal scale 
(a) and log-log scale (b). 
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Carboxylic acids are present at the terminal end of the PLC molecule and also on 

the oxidized surface of the RVC electrode [69].  If the carboxylic acid concentration on 

the surface were high enough, it could drive Ni2+ adsorption even though Ni2+ has a 

significant complexation interaction with cysteine.  Previous research with this same 

electrode by Strong et al., demonstrated that strong acid addition increased both the 

number of carboxylate groups and Ni2+ adsorption to the unmodified surface of the RVC 

electrode [69].  Cd2+ adsorption would not be affected as significantly because the 

difference between its carboxylate and thiol complexation constants span eight orders of 

magnitude, whereas the difference in nickel is only four orders of magnitude.  

4.6 SUMMARY  

Metal cation adsorption was examined on the ESIE apparatus to evaluate binding 

capacity and study the mechanisms of binding in the oxidized and reduced state.  Batch 

equilibrium experiments showed approximately 3 mg/m2 Cd2+ of reversible capacity 

between the reduced and oxidized states.  Total capacity was found to be 10 mg/m2 Cd2+ 

for reduced PLC-RVC and 6 mg/m2 Cd2+ for oxidized.  NaBH4 irreversibly increased the 

capacity of the electrode by 3 mg/m2.  Adsorption edge experiments showed a distinction 

between pH dependent adsorption on the oxidized and reduced surfaces.  The reduced 

surface displays a typical pH dependence for strong binding cation metal adsorption with 

a transition from no binding to complete binding over 1-2 units of pH.  The oxidized 

electrode adsorption edge had a much broader transition over 3-5 units of pH. 

Analysis of XAS data for Cd2+ adsorption to the electrode further confirmed the 

distinction between the oxidized and reduced states of PLC-RVC by yielding a difference 

in coordination.  Reduced PLC-RVC had sulfur and oxygen coordination numbers of 3.5 

and 1.9, respectively.  The oxidized state had decreased sulfur coordination and increased 

oxygen coordination of 2.2 and 2.8, respectively.  The shift to greater sulfur coordination 
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in the presence of a higher concentration of thiols is confirmed by aqueous experiments 

found in the literature [66].  Bonding distances for Cd-S and Cd-O were similar for both 

the oxidized and reduced state in this work as well as in the study of aqueous 

complexation done by Frenkel et al. [66]. 

To explain the difference in pH behavior on adsorption, a pH dependent model 

was developed by extending a site limited model presented in Chapter 2.  Proton release 

was incorporated into the adsorption reaction to form a baseline model. This model did 

not fully capture the effect of pH as it underestimated high pH adsorption for the reduced 

electrode and overestimated high pH adsorption for the oxidized electrode.  The reduced 

experimental data had a steeper slope in the transition region and the reverse was true for 

the oxidized region.  The model was further refined by allowing for multiple sites to 

interact with a single metal in a multidentate manner and multiple protons to be released.  

The rational for multiple site interactions is derived from the XAS analysis and 

reinforced by literature observations of peptide metal interactions. 

Ni2+ adsorption edge experiments showed a broad transition from no adsorption to 

maximum adsorption over 3-5 units of pH in a manner similar to the Cd oxidized edge.  

Nickel adsorption and edge experiments showed a redox trend opposite that of cadmium 

– more adsorption in the oxidized state.  A possible explanation for this is the population 

of carboxylic acid groups on the PLC-RVC surface.  If the concentration of these groups 

is high enough the carboxylate group could drive Ni2+ adsorption even though cysteine 

has a higher affinity for Ni2+. 
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Chapter 5:  Conclusions and Recommendations 

The ESIE system was developed and studied to improve upon existing metal 

removal technologies.  Since metal contaminants cannot be degraded, the character and 

subsequent treatment of waste are important in the evaluation of the sustainability of a 

process.  A modification to traditional ion exchange which employs a conductive resin 

and polypeptide functional group was considered for the purpose of reducing chemical 

regeneration requirements and subsequent waste generation.  The ability to 

electrochemically change binding affinities allows metals to be released without having 

to completely overcome selectivity for contaminant ions.  Several substrates were 

evaluated to provide a support material for the metal binding functional group while 

providing a conductive path for performing redox reactions on the functional group.  

Reticulated Vitreous Carbon (RVC) with poly-L-cysteine (PLC) functional groups 

provided a system selective for heavy metals and sensitive to redox chemistry.   

Three primary hypothesis were tested on this system. 

I. Distinct oxidized and reduced states of the PLC-RVC electrode could be 

produced. 

II.  The two oxidation states of the electrode have different metal ion adsorption 

properties. 

III.  The oxidation states of the electrode can be switched by application of a 

potential. 

Bulk adsorption data and spectroscopic data were used to test each of these 

hypotheses.  First, it was shown that distinct oxidized and reduced states of the PLC-RVC 

electrode could be produced.  Two metal ions, Cd(II) and Ni(II), with differing affinities 

for thiol and carboxylate ligands were used to probe the adsorption behavior of the 
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electrodes.  The differences in adsorption behavior for each of these metal ions were used 

to compare differences in substrate character.  Experiments showed that Ni2+ adsorption 

was enhanced by oxidation, whereas Cd2+ adsorption was enhanced by reduction.  

Reduction increases the number of free thiols which increases the adsorption of Cd2+.  

Oxidation reduces the number of free thiols by converting them to disulfides and 

sulfonates, but also creates additional carboxylic acid functionality on the surface.  The 

increase in carboxylate concentration will increase nickel binding.  Cd2+ adsorption 

would not be affected as significantly because the difference between its carboxylate and 

thiol complexation constants span eight orders of magnitude, whereas the difference in 

nickel is only four orders of magnitude. 

Second, the two oxidation states of the electrode were shown to have different 

metal ion adsorption properties.  Cd2+ adsorption edge experiments showed distinct 

behavior for reduced and oxidized states.  In the reduced state, adsorption showed a sharp 

transition from little binding to complete binding over 1-2 units of pH.  On the other 

hand, the oxidized electrode showed a much broader transition region over 3-5 units of 

pH.  In addition to different pH behavior, the reduced electrode had greater Cd2+ binding 

capacity than the oxidized electrode.  Isotherm experiments run with reduction followed 

by oxidation decreased the total Cd2+ capacity by 0.3 mg over the surface of the 

electrode.  The difference in adsorption behavior was independently verified by X-ray 

Absorption Spectroscopy (XAS) experiments.  The reduced electrode showed greater 

coordination by sulfur (N = 3.5) than the oxidized electrode (N = 2.2).  As sulfur 

coordination decreased, oxygen coordination increased from N = 2.9 to 1.8.  Bonding 

distances were found to be similar in both conditions, which indicates that the nature of 

the Cd-S atomic interaction is similar in both cases. The difference in binding can be 

explained by a greater quantity of Cd-S interactions for each Cd atom. 
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Application of a multi-dentate model for Cd2+ adsorption was consistent with this 

explanation.  A Langmuir site limited adsorption model was first modified by the 

addition of proton release with metal binding.  This model could not fully describe both 

the sharp change in metal adsorption pH behavior on the reduced electrode and the 

shallow change in metal adsorption pH behavior on the oxidized electrode.  The model 

was further refined with the addition of multi-dentate complexes (n) and multiple protons 

released on metal binding (x) based on the coordination information from EXAFS 

analysis.  For the reduced Cd2+ adsorption edge, the parameter set n = 4, x = 4, K = 0.021 

best fit the experimental data.  For the oxidized Cd2+ adsorption edge, the parameter set n 

= 2, x = 1, K = 5600 M-1 best fit the experimental data.  These parameters were in general 

agreement with the values obtained from EXAFS coordination. 

Third, the oxidation states of the electrode can be switched by application of a 

potential.  Comparison of reduced and oxidized adsorption isotherms that were conducted 

sequentially showed the ability to reduce and oxidize the PLC-RVC electrode with a 

variety of redox agents.  A DTT treated reduced electrode was oxidized with H2O2 and 

Cd2+ capacity decreased. Subsequent reduction by electrochemical potential restored the 

lost capacity to that of the DTT electrode.  A similar series of experiments was run with 

an NaBH4 modified electrode.  The modified electrode was electrochemically oxidized 

and capacity was decreased by the same quantity (0.3 g Cd) as the unmodified electrode.  

Chemical redox by DTT and H2O2 was equivalent to application of -0.8 and +0.8 V vs 

Ag/AgCl potentials in the ESIE system, respectively. 

5.1 ENGINEERING IMPLICATIONS  

The total capacity of the ESIE electrode for cadmium was 10 mg/m2 relative to a 

0.1 M HNO3 rinsed electrode.  On a mass basis this is 1.39 mg/g electrode or 0.012 

mmol/g electrode.  The redox reversible capacity of the electrode was 3 mg/m2 of Cd2+ 
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(0.42 mg/g or 3.7 µmol/g).  Previous work with PLC on controlled pore glass reached 

capacities of 20 µmol/g [4] and 4.8 µmol/g [3].  While ESIE represents an increase in 

total capacity over previous work, the process still falls an order of magnitude below the 

range of existing ion exchange resins (0.1 to 10 mmol/g) [9]. 

The reduced specific capacity requires a larger treatment unit to process a similar 

volume of water.  The general design of the ESIE system is scalable, though one of the 

primary limitations is ensuring that the electrochemical processes are complete while 

minimizing current required.  The size of the electrode can be increased until the voltage 

drop across the electrode or the voltage drop across the solution becomes significant 

relative to the total voltage applied.  The geometry of the system and properties of the 

materials dictate the resistance of each component, and therefore the voltage drop.  In 

addition to electrode size and geometry, electrolyte concentration is a significant design 

parameter in the overall performance of the system.  Though the electrolyte concentration 

and its corresponding ionic strength are not true sizing parameters, it provides another 

variable which can be modified to adjust the performance of the ESIE system.  The 

complexity of the electrochemical aspects of the process requires a systematic 

optimization between these parameters and current usage for large scale systems. 

This increase in capital cost could be offset by the decrease in regeneration costs.  

The ESIE process used 0.05 M ionic strength solutions to perform oxidation and 

reduction to regenerate the resin.  Typical ion exchange uses 1 to 2 M solutions for 

regeneration, which is 20 to 40 times greater in ionic strength [8].  ESIE regeneration 

solutions would be much easier and cheaper to treat as proposed at the outset of this 

work.  The reduction in ionic strength can be seen as a tradeoff for the decreased capacity 

and immediately makes ESIE more competitive with traditional ion exchange. 
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5.2 RECOMMENDATIONS  

The system has potential for improvement in performance and capacity and 

several characteristics remain to be studied.  Increases in capacity can be made by 

lengthening the PLC peptide as seen in other peptide-metal binding designs [33].  

Additionally an increase in specific surface area of the RVC electrode would increase 

capacity.  The efficiency of the peptide attachment reaction directly affects the surface 

density of the peptide.  In addition, areas of the electrode which are not accessible to long 

PLC molecules could be reached by subsequent attachment of cysteine to increase total 

surface coverage.  The effect of competing ions such as sodium at high concentrations 

has yet to be established and plays an important role with respect to the ability of the 

ESIE system or any ion exchange system to operate under a variety of conditions. 

Several electrochemical parameters of the system need further study in order to 

develop a method for optimizing a scaled up version of the process.  The current 

consumed by the electrochemical process is split among the reaction of PLC, the 

charging of the double layer at the surface of the electrode, the resistance through the 

electrode material, and resistance in solution.  Understanding the relative contribution of 

each of the these current sinks is essential to any optimization of the ESIE system. 

It is clear that the ESIE system is applicable to the remediation of heavy metal 

contaminated waters, but further work is necessary to establish the scenarios for which 

the system is economical in comparison to traditional ion exchange.  Further 

development in ionic strength behavior, competition with other metals and 

electrochemical behavior will establish the robustness of the process.  
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Appendix – Model Calculations 

The following description applies for both the baseline model and the 

multidentate model.  The multidentate model reduces to the baseline model when n = 1 

and x = 1. 

To calculate the percent adsorption predicted by the model, Eqn. 4.8 and Eqns. 

4.10-4.12 must be solved simultaneously.  Since there is no analytical solution for 

arbitrary values of n and x, the equations must be solved numerically.  The equations 

were rearranged in terms of metal concentration.  To solve the system of equations, STOT, 

n, x, and Ka must be specified.  For each pH where there is a data point a non-linear 

solver was used to find a value for [Me2+] such that: 
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[Me2+] was then converted to percent adsorbed by Eqn 4.6.  The series of model 

percent adsorbed values was then compared to the experimental percent adsorbed values 

at each data point.  The absolute square of the difference between the percent adsorbed 

was summed over all data points to give an evaluation of the fit for that given set of 

parameters.  The absolute difference in percent adsorbed was chosen as it weights the 

points in the transition area of the edge the most.   
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Glossary 

ESIE - Electronically Switchable Ion Exchange 

PLC - poly-L-cysteine 

RVC - Reticulated Vitreous Carbon 

CV - Cyclic Voltammetry 

MALDI-TOF - Matrix Assisted Laser Desorption/Ionization - Time of Flight 

XAS - X-Ray Absorption Spectroscopy 

XANES - X-Ray Absorption Near Edge Structure 

EXAFS - Extended X-Ray Absorption Fine Structure 

DTT - dithiothreitol 

SHE - Standard Hydrogen Electrode 
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