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Abstract—Multiple receivers with a priori knowledge about Among these measures, D-optimality outclassed A-optimali
their own initial states are assumed to be dropped in an unknen  gnd E-optimality. In [7], the greedy strategy was extended t
environment comprising multiple signals of opportunity (SOPSs) a multi-step look-ahead strategy. In [8], it was shown that

transmitters. The receivers draw pseudorange observatianfrom . . . .
the SOPs. The receivers’ objective is to build a high-fidelit with proper reformulation, the greedy innovation-basediam

signal landscape map of the environment, which would enable Planning strategy can be cast into a tractable convex pnogra
the receivers to navigate accurately with the aid of the SOPs the solution of which is computationally efficient.

The receivers could command their own maneuvers and such  The work in [6]-[8] considered the case of a single receiver
commands are computed so to maximize the information gath- gnq the problem of simultaneous receiver localization and

ered about the SOPs in a greedy fashion. Several information _. | land . ith “ hor” SOP wh
fusion and decision making architectures are possible. Thi sighal landscape mapping with one “anchor whose

paper studies the price of anarchy in building signal landsape initial states are knowm priori. This is conceptually analo-
maps to assess the degradation in the map quality should the gous to robot simultaneous localization and mapping (SLAM)

receivers produce their own maps and make their own maneuver |n contrast, this paper focuses on signal landscape mapping
decisions versus a completely centralized approach. In adibn, \yith myltiple receivers. The following problem is considdr

a hierarchical architecture is proposed in which the receiers . . . L .
build their own maps and make their own decisions, but share Multiple receivers witha priori knowledge about their own

relevant information. Such architecture is shown to produ@ maps  initial states (e.g., from GNSS observables) are droppeal in
of comparable quality to the completely centralized approah. completely unknown environment comprising multiple tefre

Index Terms—navigation, signals of opportunity, adaptive trial SOPs. The receivers draw pseudorange observations fr
sensing, information fusion the SOPs. The receivers’ objective is to build a high-figielit
signal landscape map of the environment, enabling SORdbase
navigation and removing the dependency on GNSS signals.

To overcome the limitations of global navigation satellite Several information fusion and decision making architec-
systems (GNSS)-based navigation, a new paradigm, ternteces are possible::) decentralized: each receiver builds
opportunistic navigation (OpNav), has been proposed [ils own map and makes its own maneuver decisiond, (
OpNav aims to extract positioning and timing informatiorentralized: the receivers send their observations to iarfus
from ambient radio frequency (RF) signals of opportunitgenter that builds the map and makes maneuver decisions
(SOPs). OpNav treats all RF signals as potential SOPs, fréon all receivers, andi{i) hierarchical: each receiver builds
GNSS signals to communications signals never intended itssown local map and makes its own decisions, but shares
navigation sources. In collaborative OpNav (COpNav), mutelevant information with a fusion center that maintains a
tiple OpNav receivers share information to construct arglobal map. Two variants of the hierarchical architecture are
continuously refine a global signal landscape [2]. considered: with and without feedback from the fusion cente

The observability and estimability of COpNav environment® each receiver. This paper compares the fidelity of the maps
comprising multiple receivers making pseudorange obsernyaoduced by the four architectures and assesses perfoemanc
tions on multiple SOPs were analyzed in [3]-[5]. Whilevia the game-theoretic notion known as the price of anarchy
observability is a Boolean property, i.e. it asserts wheth@0A), which quantifies the degradation in the solution iyal
a system is observable or not, it does not specify which a decentralized approach from a centralized one [9].
trajectory is best for information gathering, and consediye  This paper is organized as follows. Section Il describes the
estimability. To address this, receiver-controlled mames dynamics and observation model. Section Ill summarizes the
were allowed, and an optimal closed-loop information-bdasextended information filter (EIF), which is utilized for aptal
greedy (i.e., single-step look-ahead) strategy was pexpogusion. Section IV states the optimal greedy control (OGC)
for receiver motion planning [6]. Three information-thetic problem that commands the receivers maneuvers. Section V
measures were compared: D-optimality, A-optimality, and Bpresents the various architectures. Section VI presemislai
optimality. It was shown that all three strategies outperfed tion results comparing the maps produced through the variou
a receiver moving randomly or in a pre-defined trajectorgrchitectures. Conclusions are discussed in Section VII.

|. INTRODUCTION



Il. MODEL DESCRIPTION IIl. EXTENDED INFORMATION FILTER

A. Dynamics Model For optimal fusion, the estimation scheme adopted to fuse
Consider a planar environment composed/dfreceivers estimates and associated estimation error covariances fro
that control their own maneuvers and stationary SOPs. The Multiple receivers making observations on the same SOPs
ith receiver dynamics evolve according to cannot be formulated in the standard Kalman filter formula-

_ tion, since this leads to suboptimal fusion [11]. Howevear, b
zr, (k+1) = Fra, (k) + G up, () +wp(k), i =1,.... N expressing the estimation problem in the information space
r Iowo  O2xo | TIaxe Fo 1 T instead of the state space, optimal fusion can be derived
"7l 0axz Fax |77 | Oaxz |77 ™ T L0 1| leading to the EIF [12], [13], a special case of which is
. . N R . summarized next.
whereT" is the sampling periodg,, = {Tw mclk,nJ is the consider the linear dynamics and nonlinear observations
ith receiver state vector, which is composed of the planar

position states”] £ [z, y,,] and the clock bias and drift z(k+1) = Fa(k) + Gu(k) + w(k)
statesal, . = {ét”, Oty |, ul 2 (g, uy,,] is the z(k) = hlz(k)] +v(k)

T

control input vector in the form of velocity commands, angyherez € R?, u € R”, w € R?, 2 € R™, v € R™ are the
wy, is the process noise vector, which is modeled as sgstem state, input, process noise, observation, andwatiser
zero-mean white noise sequence ngh covaria@ze, with  nojse vectors, respectively. Assumeandw to be zero-mean,
Q,; = diag [Qp.r;, Qeik,r; ], Qp,r; = Ty, Iox2, Where mutually-uncorrelated, white noise sequences with cavae

S T4s. T g T2 matricesQ andR, respectively.
Qur, = | 0 T“;“n 8 e 2 Assume the initial knowledge about the system state to be
' Su?g,,‘i = Sﬁ’gt” T captured in the state estimai€0|0) and associated estimation

where the clock bias and drift process noise power spec§4Cr covariance?(0[0). The EIF maintains the informaiion

Sa., and Sy , respectively, can be related to the powers-tate vector and information matrix, defined @¢i|j) =
Yot T ' Y (i|5)%(i|j) and Y(i|j) £ P~!(i|4), respectively, where
law coefficients{h, }> Y (il )2 (ilj (il (i), resp Y:

- —_o, Which have been shown through_ * " L . .
laboratory experiments to characterize the power spectfdfl/) andP(ilj) are the state vector estimate and associated

density of the fractional frequency deviation of an ostita estimation error covariance at timgiven all the observations
from nominal frequency. It is common to approximate suchP to and including timg. The EIF recursive prediction and
orrection equations are given by

relationships by considering only the frequency randomkwal
coefficienth _ and the white frequency coefficiehg, which  Prediction: (k + 1|k) =Y (k + 1|k) [F &(k|k) + G u(k))
lead t0S4,, ~ % and Sy, ~ 27%h_, [10]. Y+ 1K) = [F Y~ (k[k) FT + Q]_l

The jth SOP dynamics evolve according to
(h+1) =F (k) + k), j=1 M Correction: g(k + 1|k +1) = y(k+ 1k) +i(k + 1)
Ls; =Ty, Ws; ’ =4, IV,
g g g J Y(k+1k+1) = Y(k+ 1[k) +I(k+1),
— g T & [T T i
where Fy = diag Loz, Fend, 2, = |7, mc“‘-ﬁfl 'S the wherei(k+1) andI(k+1) denote the information state contri-

jth SOP state vector, which is composed of the SOP's plar}ﬁftion and its corresponding information matrix, respei
position states{j £ [zs,, ys,] and the SOP’s clock bias and P g ' '

: associated with observation(k + 1), and are given by
drift stateSrCle,Sj £ (L(Stsj, 6t51}, andw,, is the process noise - . X

vector, which is modeled as a zero-mean white noise sequenlélé +1) = HT(k +DR . [k +1) + H(k +1)2(k + 1|k)]
with covarianceQs,, with Q,, = diag [02xa, Quix.s, ], where  I(k+1) = H' (k+ DR H(k + 1)

Qciks; is identical to toQcu,r,, €xcept that the spectiy,;,  v(k+1) = z(k + 1) — h[&(k + 1[k)],

andSwé.t” are now replaced with SOP-specific speoﬁ‘@é,tsjj
and Sy, , respectively.

°j

whereH(k+1) is the Jacobian matrix evaluatediat: + 1|k).

IV. OPTIMAL GREEDY CONTROL

B. Observation Model The OGC defi " iimal 4 ver (k)
. it . e efines the optimal greedy maneuwer
The pseudorange observation made by receiver on that receiveri must take so to minimize the constrained D-

the jth SOP can be approximated by invoking mild approxi- .. " o S . L
mations discussed in [3], [5], to yield the model optimality criterion, which is equivalent to minimizing gh

volume of the uncertainty ellipsoid, given by

i (6) = b [, (8), @ (R)] + 0ro; (8) minimize 7 [u,, (k)] = log det[P; (k + 1k + 1)]
h 2, k), @, (8)] 2 0, () =, (B) |12 + ¢ [8t, (k) — 5t (k)] ) 1
subject to |Ju,, (K)|l2 < tr, max )

where c is the speed of light and,, ., is the error in the
pseudorange measurement due to modeling and measurement
errors and is modeled as a zero-mean white Gaussian sequU&Vitere u,, max and a,, max are the maximum speed and
with varianceafi_’sj. acceleration, respectively, with which the receiver carveno

||'U,»,1(I€) - ’U’*(k - 1)”2 S Tari.,max,

Ti



Note that the optimization vectoris,, (k), whereaau; (k—1) prediction equations given in Section IlI, while the cotiec
is a known constant vector representing the velocity conttearstage computations are made according to

that resulted from solving the optimization problem in the

previous time-stefi — 1 and has already been applied. gk +1lk+1)

N
Y+ 1k) + D i (k+1)
V. ACTIVE SIGNAL LANDSCAPEMAP BUILDING AND =1

INFORMATION FUSION ARCHITECTURES

N
Y(k+1lk+1) = Y(k+1k) + > I, (k+1).
This section presents the various active signal landscape i—1
map building architectures. All architectures contain tble This architecture has the following advantagesréceivers

lowing common blocks:# RF front-end (FE) processing andy,ssess their own local maps arid) @ more accurate global
tracking loops (TL), (i) extended information filter (EIF)i&) map is available at the CFC. However, it suffers from the

optimal greedy control (OGC) solver, and) receiver actua- grawhack that receivers have no access to the global map.
tor to command the receiver maneuvers. The architectuees ar

essentially classified according to where active decisamsit D. Hierarchical with Feedback

the maneuvers are made, what information is communicatedThis architecture (depicted in Fig. 3), is identical to the

and where the information is processed. one described in subsection V-C, except that once the CFC

A Decentralized fuses the i_nformation from the various rec_eivers to produce
' theglobal signal landscape map, such map is fed-back to each
In this architecture (depicted in Fig. 1), each receives agleceiver to replace each receiver's local corrected map.

individually: it fuses the observations made on the various This architecture eliminates the drawback of the hieraadhi

SOPs to produce its own signal landscape map and makesyifthout feedback architecture at the expense of requiring
own decisions. The observations made by dftereceiver on communication from the CEC to the receivers.

all the SOPs in the environment are augmented into the vector

Zi 2 [Zrsry ,zri,sM]T, which is subsequently processed anenna
by the EIF to yield thelocal signal landscape state estimate vy :
#,;(k|k) and associated estimation error covariaiék|k). : processing | > L] EIF [ZHR)] oce [ W) Actuator
Based on these local estimates, each receiver solves for its: &TL P;(klk !
own optimal greedy maneuver; (k) defined in (1). 3’Ré'c'éi'\,'é'r'i;';';”l'7"';;'7'N"3 i

This architecture has the advantages of Slmp|IC|ty and Selgg. 1. Decentralized active signal landscape mapping asidri architecture

containment, but suffers from the drawback that receivers d

not exploit information gathered by other concurrent reeses. SAntenna T @ L ug (k)
B. Centralized i RFFE |21 (k)
. . . . . . : Processing
In this architecture (depicted in Fig. 2), the signal laragse ; & TL

map and decision making are made at a central fusion and de-"~ C 1
cision center (CF & DC). The receivers send their obsermatio .................. L

vectors{z;}¥ | to the CF & DC, which fuses such observa- "&9™
tions through an EIF to producegbobal signal landscape map RF FE
with estimate(k|k) and associated estimation error covari- Prgf‘?rsi'"g @‘ §
anceP(k|k). The CF & DC OGC problem is identical to (1), : ... .— L oun(h)
except that it solves for thglobal optimal greedy maneuverrig. 2. centralized active signal landscape mapping anidriuarchitecture
for all receiversu*(k) £ [[ur, (k)]",--- ,[u:N(k)]T]T. the
optimal maneuvers are communicated to each receiver. - P |

This architecture is optimal; however, it requires two-way e ¥ 1 (klk) :
communication between the receivers and the CF & DC.L,] processing [Z*)] &F [ | 06c [ ] pfActustor|: !
Another drawback is that the CF & DC needs to solve a L%T o e : '

potentially large-scale OGC problem.

H -Q—>
C. Hierarchical without Feedback oSSR R

In this architecture (depicted in Fig. 3), the receivers-pro Py ; |
duce their own signal landscape maps and make their oW, processing Y% e | " | occ [ Actuator| | ;

. I S . (k]
decisions. Additionally, they send their information \ast =~ L %1 i
{i,‘i}f.\[:1 and information matrices{IH}ZN:1 to a central fu- ‘ReceverNo L
SIOI.‘I cgnter (CFC)' The CFC is Composed of an EIF, Wh'ycﬂi'g. 3. Hierarchical active signal landscape mapping aséfuarchitecture
maintains aglobal signal landscape map. The CFC EIF'sith feedback and without feedback (no dashed line)

prediction stage computations are made according to the EIF




:m ---- Decentralized - Receiver 1
VI. SIMULATION RESULTS =\ " Hieachica without Feedback
This section compares the architectures discussed inoBecti = .. e ___ Hierarchical with Feedback
V numerically in an environment comprising two receivers L o
whose initial states were chosen randomly and four SOPs. For ?C
purposes of numerical stability, the clock bias and drétes ke
were defined asdot andcdt, respectively. The receivers’ and 5™
SOPs’ clocks were assumed to be temperature-compensated ™07 5 5 4 5 % 5 & 5 % % 6 5w H B B D Hom
and oven-controlled crystal oscillators (TCXOs and OCX0s) _ , Time (5) _
respectively. The simulation settings are given in Table |, Fig. 4. Signal landscape map uncertainty
wherei =1,2andj =1,...,4. o -
TABLE |
SIMULATION SETTINGS i:s: n O -
Param. Values Param. Values MZ:: X o] n
27 (0) 0,150, 10,0.1] P, 10%- diag [1,1,1,0.01] o]
m; (0) [100,—150,20,0.2] s, (0/0) Ni\/[z§sj(0),st(0\o)} ol o
i (0) [200,200,30,0.3] P, (0]0) 10 ~dia2% [1,1,1, 9.2931] @)| ] )
x,,(0) [-150,50,40,0.4] ho,s;,h-2,s; 8x1072Y, 4x10 0%e k0 b mho  mho a0 who " aia o 1900 v 00 o 1ma 550 260 oo o
zr, (0) ~N[Zr,,Pr,] hoyr;yh—2,r, 2x10719 2x2720
=] [60, 15, 100, 10 OprirOrs,  0.1(m/s%)2, 500 (m)? °
&, [-55,50,100,10] T, umax,amax O.1s, 10m/s, 5m/s> . L :
— Receiver 1
Fig. 4 compares the quality of the maps produced by the v - gg‘:‘l“'z
four architectures for a single run, as measured by the aptim x X SOP,
value of the objective function, denoted*. Here, the same - ® 5o
initial conditions and the same process and observatiosenoi © o

0 T T T T T T T T
~4000 -3000 -2000 <1000 00 1000 2000 3000 4000 5000

realizations were used. Fig. 5 shows the receivers trajesto
due to the four architectures. Note that the trajectory fier t N

. . . ) . . Fig. 5. Receiver trajectories for (a) centralized, (b) &iehical with feedback,
.hlerarc.h|cal thOUt feedback was identical to the de@tr 4ng (c) decentralized and hierarchical without feedbackitectures
ized, since receivers had no access to the global map.

The PoOA is defined as the ratio of the objective function
value worst case scenario and that of the optimal outcome.

A PoA close to one means that the candidate solution igl K. Pesyna, Z. Kassas, J. Bhatti, and T. Humphreys, “Tygtbupled
opportunistic navigation for deep urban and indoor pasitig,” in Proc.

comparable to an optimal centralized one. The POA was f |oN GNSS Sep. 2011, pp. 3605-3617.
calculated as the ensemble average at the end of the sianulati2] z. Kassas, “Collaborative opportunistic navigationEEE Aerospace

time for 25 Monte Carlo simulation runs, where the receivers_ 2 Electronic Systems Magazine, vol. 28, no. 6, pp. 38-41, Jun. 2013.
[3] Z. Kassas and T. Humphreys, “Observability analysis ppartunistic

initial states, SOPs initi"_il eStimates’_and noise readinat navigation with pseudorange measurements,Pinc. of AIAA Guid-
were randomized, and is tabulated in Table Il. Note that, ance Navigation, and Control Conference, Aug. 2012, pp. 4760-4775.
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