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We present new modes of computational drug discovery in each of the

three key themes of target identification, mechanism, and therapy regimen de-

sign. In identifying candidate targets for therapeutic intervention, we develop

novel applications of unsupervised clustering of whole genome RNAi screening

in prioritizing biological systems whose inhibition differentially sensitizes dis-

eased cells apart from a normal population. When applied to lung cancer, our

approach identified protein complexes for which various tumor subtypes are

especially dependent. Consequently, each complex represents a candidate drug

target specifically intended for a particular patient sub-population. The cellu-

lar functions impacted by the protein complexes include splicing, translation,

and protein folding. We obtained experimental validation for the predicted

sensitivity of a lung adenocarcinoma cell line to Wnt inhibition.

For our second theme, we focus on genetic interactions as a mechanism

underlying sensitivity to target inhibition. Experimental characterization of
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such interactions has relied on brute-force assessment of gene pairs. To allevi-

ate the experimental burden, our hypothesis is that functionally related genes

tend to share common genetic interaction partners. We thereby examine a

method that recognizes functional network clusters to generate high-confidence

predictions of different types of genetic interactions across yeast, fly and hu-

man. Our predictions are leave-one-out cross-validated on known interactions.

Moreover, by using yeast as a model, we simulatr the degree to which further

human genetic interactions need to be screened in order to understand their

distribution in biological systems.

Finally, we employ yeast as a model organism to assess the feasibility of

designing synergistic or antagonistic drug pairs based on genetic interactions

between their targets. The hypothesis is that if the target genes of one chemical

compound are close to those of a second compound in a genetic interaction

network, then synergistic or antagonistic growth effects will occur. Proximity

between sets in a gene network are quantified through graph metrics, and

predictions of synergy and antagonism are validated by literature-curated gold

standards. Ultimately, integrating knowledge of druggable targets, how gene

perturbations interact with the genetic background of an individual, and design

of personalized therapeutic regimens will provide a general framework to treat

a variety of diseases.
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Chapter 1

Introduction

From various perspectives, drug discovery and development is an intri-

cate and arduous process. The total cost of a drug, which includes pre-clinical

investigations through clinical trials, varies according to estimates, but an

agreeable figure is on the order of hundreds of millions of U.S. dollars [1].

On average, over seven years are spent to bring a drug to market [40]. It is

clear that advancements within the drug development pipeline to lessen the

time and cost burden would alleviate the burden of disease on patients and

healthcare systems.

On the other hand in recent years, a wealth of molecular and genetic

data on organisms ranging from bacteria to multicellular eukaryotes including

humans has been generated with the maturity of high-throughput experiments.

With computing resources requiring relatively low barriers to entry in terms

of cost and accessibility, it has become natural to employ computational tech-

niques on readily available data to not only construct a clearer understanding

of biology but also to generate applications, in particular to drug discovery and

development. Traditionally, drug discovery involves construction or identifica-

tion of a druggable target or lead biologic or chemical compound. Following
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this process is drug development, which involves turning an agent into an

actual marketable drug through clinical trials and regulatory approval.

In this work, we address the development of computational techniques

to address three key themes in the drug discovery process. Chapter 2 discusses

the first theme of therapeutic target identification, in which we investigate how

to choose genetic vulnerabilities that sensitize diseased cells but not normal

healthy cell populations. An crucial goal to achieve here is specificity - to

inhibit only those cells causing disease and distinguish non-responders versus

responders. Responders are patients for whom an intended therapeutic inter-

vention is successful, while non-responders are refractory to treatment. The

particular application we address in this theme is lung cancer, in which we

wish to computationally establish novel candidate drug targets specific to the

various subtypes of the disease.

The second theme in Chapter 3 involves uncovering the mechanism un-

derlying how targeting a gene or biological system brings about the desired

therapeutic effect. From cancers to infectious diseases, a commonly desired

outcome is to selectively inhibit tumors or infected cells while leaving nor-

mal cells unaffected. While such diseases can be extraordinarily diverse in

their pathophysiology, characterization a generally applicable mechanism for

selective inhibition would benefit any drug discovery effort. The particular

mechanism addressed here is genetic interactions, which involves how the be-

havior of a gene depends on the action of other genes. Because experimental

determination of genetic interactions is technically intensive and laborious, our

2



goal will be establishing a computational prediction algorithm to either guide

the experimental testing or reliably predict novel such interactions.

Our final theme presented in Chapter 4 involves general guiding prin-

ciples for developing therapeutic regimens. Using yeast as a model organism,

we attempt to design effective drug combinations by exploiting genetic inter-

actions as therapeutic targets. Yeast serves as an ideal platform for proof-of-

concept due to the multitude of chemical and genetic screening data available,

owing to its experimental tractability relative to mammalian cells. Tradition-

ally, there have been two main strategies in drug discovery. One such strategy

is phenotypic screening, in which biologics or small-molecules of interest are

selected based on generation of desired phenotypes in high-throughput assays.

A second approach is target-based screening relies on the discovery of a drug-

gable point of intervention for a disease; agents are then developed to specif-

ically target the vulnerability. A recent survey of history of phenotypic and

target-based screening concluded that the majority of FDA-approved drugs

originated from the phenotypic approach [77]. Yet many effective therapies

were discovered through target-based screening; a notable example is imatinib

for chronic myelogenous leukemia [21]. In addressing the three-part theme of

target, mechanism, and therapy, we believe that aspects of the target-based

approach are amenable to computational advances.
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Chapter 2

Computational Discovery of Pathway-Level

Genetic Vulnerabilities in Non-Small-Cell

Lung Cancer1

2.1 Abstract

Motivation: Novel approaches are needed for discovery of targeted therapies

for non-small-cell lung cancer (NSCLC) that are specific to certain patients.

Whole genome RNAi screening of lung cancer cell lines provides an ideal source

for determining candidate drug targets.

Results: Unsupervised learning algorithms uncovered patterns of differential

vulnerability across lung cancer cell lines to loss of functionally related genes.

Such genetic vulnerabilities represent candidate targets for therapy and are

found to be involved in splicing, translation and protein folding. In particular,

many NSCLC cell lines were especially sensitive to the loss of components of

the LSm2-8 protein complex or the CCT/TRiC chaperonin. Different vulner-

abilities were also found for different cell line subgroups. Furthermore, the

predicted vulnerability of a single adenocarcinoma cell line to loss of the Wnt

1Published as Young JH, Peyton M, Kim HS, McMillan E, Minna JD, White MA, Mar-
cotte EM, Computational Discovery of Pathway-Level Genetic Vulnerabilities in Non-Small-
Cell Lung Cancer. Bioinformatics, 32(9): 1373-1379 (2016). J.H.Y. designed the study,
performed data analysis, and wrote the paper.
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pathway was experimentally validated with screening of small-molecule Wnt

inhibitors against an extensive cell line panel.

Availability and implementation: The clustering algorithm is implemented

in Python and is freely available at https://bitbucket.org/youngjh/nsclc_

paper.

Contact: marcotte@icmb.utexas.edu or jon.young@utexas.edu

Supplementary information: Supplementary data are available at Bioin-

formatics online.

2.2 Introduction

Non-small-cell lung cancer (NSCLC) remains a significant healthcare

burden despite recent progress in drug discovery and development. Recent

FDA-approved targeted therapies are only intended for appropriate subpop-

ulations of patients. The drug Xalkori (crizotinib) is highly effective, but

only for ˜4% of lung cancer patients [69]. Similarly, Iressa (gefitinib) and

other EGFR inhibitors target mutations found only in a portion of patients

while the majority have the wild-type version [44]. Compared with cyto-

toxic chemotherapy, targeted therapy has the advantage of greater specificity.

However, discovery and development of such agents requires the identification

of druggable targets. Inhibitors of certain characteristic mutations, such as

KRAS G12C and G12D, are still under extensive development for clinical use

[17, 36]. The heterogeneity of NSCLC is another barrier confronting drug dis-
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covery. A number of different subtypes exist, and identifying the appropriate

patient subpopulation for therapy is crucial. Therefore, the problem becomes

one of identifying druggable targets in NSCLC that will guide discovery of

small-molecule compounds or antibodies against these targets, and also to

identify the patient subpopulations to which the targets apply. We attempt to

tackle the former issue through computational analysis of a high-throughput

whole genome RNA interference (RNAi) screen against a panel of NSCLC cell

lines.

When identifying drug targets, one approach is to identify genes whose

knockdown selectively leads to death of cancer cells but not matched normal

cells. Such genes represent genetic vulnerabilities and potential drug targets.

Several studies have been able to use whole genome RNAi to identify genetic

vulnerabilities for cancer drug target discovery. A screen against all genes in

two lung cancer cell lines identified proteasome members as candidate targets

and discovered that small-molecule proteasome inhibition synergized with ra-

diotherapy in a mouse xenograft model [18]. Another study applied a whole

genome shRNA screen on lung cancer cell lines to discover genes that were

part of the Wnt pathway whose knockout potentiates EGFR inhibition [11].

For drug discovery, it is desirable to investigate many cell lines. A ma-

jor effort, termed Project Achilles, involved RNAi knockdown of more than

11000 human genes using shRNA libraries in over 100 cancer cell lines. Ovar-

ian cancer cell lines were found to be especially dependent upon ˜50 genes

[12]. A follow-up study sought to uncover essential cancer genes based on

6



the hypothesis that certain genes that are not themselves oncogenes but show

copy-number loss could be cancer vulnerabilities. A scoring scheme was devel-

oped to prioritize genes that were essential to cancer cell lines and also exhib-

ited partial copy number loss [53]. Recently, independent of Project Achilles,

extensive high-throughput chemical and genetic screens were employed to ex-

plore new avenues of treating NSCLC. The study found molecular signatures

of FLIP and COPI addiction and indolotriazine sensitivity that indicate ge-

netic vulnerabilities present in patient populations [41]. The genetic screens

leading to these results included siRNA screening of a number of lung cancer

cell lines. This screening was ultimately conducted on a whole genome scale,

which motivated this study.

Here, we propose a novel computational approach to prioritize candi-

date drug targets for NSCLC by subdividing cell lines into different groups

and identifying genetic vulnerabilities targeted to each group. In particular,

we aim to attain a binary partitioning of cell lines into either sensitive or resis-

tant to targeting of a particular genetic vulnerability. We are interested only

in genetic vulnerabilities that sensitize a subgroup of cell lines rather than all

cell lines because due to the genetic heterogeneity of lung cancer, an effective

universal treatment for all NSCLC types is not thought to exist. Applications

of unsupervised learning algorithms were developed that identify biological

processes and protein complexes to which NSCLC cell lines are differentially

sensitive upon siRNA knockdown. The top-scoring results represent lung can-

cer genetic vulnerabilities and candidate therapy targets.
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2.3 Methods

2.3.1 Experimental datasets and procedures

Our study centers on a cell line panel consisting of 12 patient-derived

NSCLC cell lines and one immortalized normal epithelial cell line (Table 2.1).

Included among the cell lines are subtypes commonly observed in patients:

adenocarcinoma, squamous-cell and large-cell carcinoma. As described previ-

ously [41], a whole genome knockdown screen with Ambion and Dharmacon

siRNA libraries in the 96-well plate format was conducted against the cell line

panel. For each gene, either three siRNAs (Ambion) or four siRNAs (Dharma-

con) were pooled, and cell line viability was measured using the CellTiter-Glo

(Promega) assay. Raw data were row and column median normalized. Using

siMacro [72], a robust Z score was calculated from the screening data to reflect

the viability of each cell line to knockdown of a single gene. A robust Z score

is defined as

Cell viability−median

Median absolute deviation

and is less sensitive to outliers than a traditional Z score. Both the

median and median absolute deviation were calculated over data grouped by

experimental batch.

It was determined that robust Z scores less than -3.0 reflected non-

viability. Scores were combined from both Ambion and Dharmacon libraries

by taking the minimum of the scores. Thus, it was assumed that disagreement
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H1155 Large cell neuroendocrine
HCC366 Adenosquamous
H1819 Adenocarcinoma
HCC44 Adenocarcinoma
HCC4017 Large cell carcinoma
H1993 Adenocarcinoma
H460 Large cell carcinoma
H2073 Adenocarcinoma
H2009 Adenocarcinoma
H2122 Adenocarcinoma
H1395 Adenocarcinoma
HCC95 Squamous cell carcinoma
HBEC30 Normal bronchiole epithelial

Table 2.1: Thirteen cell lines on which our whole genome RNAi screen and
computational analyses were conducted.

between the results of the two libraries were more likely to be due to false-

negatives. The siRNA screen Z scores were further simplified by binarizing as

follows. All robust Z scores less than -3.0 were set equal to 1; otherwise the

score was set equal to 0. In essence, a binarized score of 1 represents a hit or

sensitivity of a cell line to the corresponding gene knockdown.

A larger pool of NSCLC cell lines encompassing the cell line panel

described above was screened with the tankyrase inhibitors IWR-1-endo (Cal-

biochem) and XAV 939 (Tocris) in an 8-point 4-fold dilution series (top dose

= 100 M) in 96-well plates. Cells were plated 24 h prior to the addition of

drug, incubated for 4 days, and assayed using MTS (CellTiter 96 Aqueous

One Solution Cell Proliferation Assay) according to the manufacturer’s in-

structions (Promega). Cell number per well was determined empirically and

9



ranged from 500 to 4000 per well, inversely proportional to doubling times

(typically 2000/well). Dose response curves were generated and IC50s calcu-

lated using in-house software, DIVISA. All cells were grown in RPMI-1640

(Sigma) supplemented with 5% FBS and incubated at 37°C in a humidified

atmosphere with 5% CO2. Cell lines were authenticated using the Power-Plex

1.2 kit (Promega) and confirmed to match the DNA fingerprint library main-

tained by ATCC and the Minna/Gazdar laboratory and confirmed to be free

of mycoplasma by e-Myco kit (Boca Scientific).2

RNAi screens of cancer cell lines from Project Achilles [16] were uti-

lized as an external comparison dataset for our study. Results from shRNA

knockdown of 5711 genes on 19 NSCLC cell lines were extracted from Project

Achilles v2.4.3. NaN values were imputed by replacement with row medians.

No thresholding of the data was carried out so viability was assessed on a

continuous spectrum. We followed the Project Achilles convention of identi-

fying lower gene knockdown values with greater essentiality and higher values

with reduced essentiality. A number of genes were associated with multiple

knockdown values for each cell line; these data were kept as is.

2.3.2 Application of k-means clustering

The gene sets examined for genetic vulnerabilities were protein com-

plexes chosen from CORUM [64] and literature sources (http://metazoa.

med.utoronto.ca) [31]. The full RNAi data were represented as a m × n

2Paragraph contributed by Michael Peyton.
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matrix M where m is the number of genes, n is the number of cell lines, and

Mij =

{
0, if cell line j survives knockdown of gene i
1, otherwise

Extracting the RNAi sensitivity profiles for genes in a protein complex

yields a r×n submatrix P of M where r is the number of genes in the complex.

Thus, every protein complex is represented as a matrix of ones and zeros.

For each protein complex, we measured the degree of bimodal response

to gene knockdowns as follows. Denoting by P the matrix for a protein complex

as above, we computed a vector v by calculating the column means of P :

vj = (1/r)
∑r

i=1 Pij. Then k -means clustering with k = 2 was applied to v,

and the difference between the resulting centroids was the score assigned to

each protein complex. By calculating the column means, we normalized for

the size of the complex. We considered two different implementations of the k -

means clustering algorithm. First, we used the standard implementation found

in the Python library scikit-learn, which runs the algorithm 10 times with

different centroid seeds, choosing the result on the basis of the within-cluster

sum-of-squares [59]. The technique from k -means++ was followed for centroid

initialization [3]. Second, an alternative implementation was Ckmeans.1d.dp,

which employs dynamic programming to guarantee optimal solutions for the

one-dimensional case [81].

A permutation test to determine statistical significance was performed

in the following manner. For each protein complex, the entire RNAi data

11



for all genes were permuted, followed by repeating the k -means clustering on

the same complex. The permutations were repeated 1000 times to generate

a distribution of scores from the randomized data. Then the score from the

actual complex was compared with the distribution to calculate a P -value. For

every protein complex, this entire process of generating a distribution of scores

from permuted data to compare against the complex’s actual score to yield

a P -value was repeated. Finally, multiple hypothesis correction at 10% FDR

was carried out using the q-value statistical package [76]. One alternative

to the permutation test in assessing statistical significance is Fisher’s exact

test. Specifically, for each protein complex, a contingency table was tabulated

according to the number of viable and non-viable gene knockdowns, and which

cell line cluster (according to the 2-means clustering) those knockdowns fell

within. The Bonferroni correction at 10% FDR was applied to the P -values

from Fisher’s exact test.

A procedure to benchmark the performance of the 2-means clustering

method was based on a leave-one-out strategy. For each protein complex, a

single gene member was randomly withheld. The remaining gene members

formed a training set, on which the 2-means clustering was calculated. The

clustering resulted in assignments of cell lines to either a knockdown-sensitive

or knockdown-resistant cluster. Using these assignments, we tested whether

the average number of RNAi hits in the sensitive cell lines for the withheld

gene was greater than that of the resistant lines. To assess for statistical signif-

icance in the training set, multiple hypothesis correction was performed using

12



a permutation test as described above. A receiver operating characteristic

(ROC) curve was plotted from the test set consisting of the withheld genes,

given that the corresponding training samples were statistically significant.

This benchmarking procedure was repeated multiple times and a mean ROC

curve was generated by vertical averaging.

2.3.3 Biclustering

Independent of the 2-means clustering approach, a second method was

employed to detect NSCLC genetic vulnerabilities without reliance on anno-

tated gene sets. The entire RNAi knockdown dataset was represented as a

matrix as described above, where each row is a gene knockdown and each col-

umn is a cell line. The Large Average Submatrix (LAS) biclustering algorithm

was applied to this matrix to uncover biclusters in which the rows (genes) ex-

hibit similar behavior across a set of columns (cell lines) [67]. In particular,

the desired biclusters have the property of being large in average value relative

to other submatrices of similar size and represent biological systems to which

certain NSCLC cell lines are especially dependent. The genes corresponding to

each bicluster were then used to query the Database for Annotation, Visualiza-

tion and Integrated Discovery (DAVID) for functional enrichment [35, 34]. We

also searched each bicluster for enrichment of protein complexes by calculat-

ing the hypergeometric probability of obtaining at least the observed number

of overlap between a complex and the bicluster genes. Statistical significance

of complex enrichment was controlled at 5% FDR by the BenjaminiHochberg

13



procedure [6].

2.3.4 Alternative methods for determination of gene set sensitivity

We also considered alternative measures of gene set sensitivity. For

every cell line within each gene set, the probability of observing the number of

‘hit’ genes (gene knockdowns producing non-viability) was computed according

to a hypergeometric distribution. The resulting probabilities for each line were

then multiplied together to obtain an overall score for the gene set. Statistical

significance of the scores was found using a permutation test, as was done for

the 2-means clustering.

2.4 Results

From a whole genome RNAi screen of NSCLC cell lines, we identified

candidate drug targets in the form of genetic vulnerabilities specific to cell

line subgroups. A couple of factors were considered when determining genetic

vulnerabilities. First, given the heterogeneity of NSCLC, gene deletions that

are almost universally toxic across the cell line panel would likely be toxic to

other normal human cells as well. In addition, it is desirable to specifically

target lung cancer cells but not normal cells, yet only one cell line in the panel

was from a non-cancerous normal lineage. This suggests that in the interest of

specificity, the number of cell lines constituting a genetic vulnerability should

not be too large. On the other hand, a vulnerability consisting of a single

cell line may be less likely to generalize to an appreciable number of patients.
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Therefore, the challenge stems from identifying groups of genes to which some,

but not all, NSCLC cell lines are especially dependent. Ideally, these cell lines

would represent a particular patient subpopulation. Another challenge was to

avoid a combinatorially intractable problem of having to examine all possible

combinations of cell lines against all possible combinations of genes. Novel

applications of unsupervised learning algorithms were developed to overcome

these challenges to prioritize potential NSCLC targets from RNAi sensitivities.

The general workflow of this study is outlined in Figure 2.1. From the

whole genome RNAi screen on 12 NSCLC cell lines and one normal epithelial

line, we extracted knockdown sensitivity profiles for selected gene sets. Each

gene set was clustered, scored and ranked by statistical significance. The

clustering score measures the degree to which the cell lines segregate into

sensitive and resistant groups upon knockdown of genes in the set. Gene sets

with a clear segregation of sensitive and resistant lines are termed bimodal. It

is imperative that our scoring scheme prioritizes such bimodal sets over other

patterns of RNAi sensitivity that would be less desirable as a candidate drug

target. For example, gene sets that are all toxic or half-toxic are undesirable

due to predicted toxicity beyond those in our cell line panel. In addition, gene

sets that are largely resistant or having a random pattern of sensitivity clearly

would not be desired as well.

15
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II.

Extract 

gene 

sets

Cluster gene sets and calculate significance by permutation test

High ranking Low ranking

"All toxic"

"Bimodal"

"Bimodal"

"Half-toxic""Resistant"

"Random"

Sensitive Resistant

Sensitive Resistant

Non-viable

Viable

Figure 2.1: Gene sets with bimodal sensitivity represent NSCLC vulnerabil-
ities. RNAi sensitivity profiles were extracted for selected gene sets (six ex-
amples shown). A ranking scheme was designed to prioritize gene sets whose
knockdown leads to a bimodal response of cell lines.
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2.4.1 Subgroup-specific NSCLC vulnerabilities are found among
protein complexes

The selected gene sets we chose to examine were 2820 protein com-

plexes. As calculated by the 2-means clustering approach, 35 had statistically

significant scores at 10% FDR from a permutation test (Appendix 1). Fisher’s

exact test also determined 33 of those 35 complexes to be highly statistically

significant (Figure 2.2). We found that the standard k -means algorithm and

the 1-D optimal k -means method, Ckmeans.1d.dp, yielded identical results al-

though Ckmeans.1d.dp demonstrated marked runtime speedup. Finally, sim-

ulations of a synthetic dataset showed that the permutation test for statistical

significance was not biased toward larger or smaller complexes (Figure 2.3).

Overall, the 2-means clustering method found strong genetic vulnera-

bilities including components of splicing and translation (Figure 2.4). The top-

ranking gene sets are protein complexes that all exhibit the desired bimodal

behavior, in which one particular group of cell lines is far more vulnerable

to loss of components in the complex than the other cell lines. Notably, the

HBEC30 normal cell line did not generally show sensitivity to knockdown of

any of the top-ranking vulnerabilities.

RNA splicing is a major category of lung cancer vulnerabilities, as

evidenced by the RNAi sensitivity patterns of the LSm2-8, 17S U2 snRNP and

CDC5L complexes. Components of the translation machinery, represented by

the eIF3 complex and ribosome small subunit, constitute another major class

of vulnerabilities. Two notable candidate drug targets are the proteasome and
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Figure 2.2: Circled in red are 33 of the 35 protein complexes from the per-
mutation test to indicate where they rank according to Fisher’s exact test,
which discovered 116 significant complexes at 10% FDR. Also shown are two
complexes not prioritized by the permutation test.
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Figure 2.3: Simulations of 2-means clustering and permutation test-
ing on a synthetic dataset. To evaluate whether permutation testing for
statistical significance of 2-means clustering scores is biased towards larger
or smaller complexes, simulations on synthetically generated data were con-
ducted. A 90% random sparse matrix of ones and zeros with the same dimen-
sions as the actual RNAi data (24866 rows and 13 columns) was constructed.
Each simulation run consisted of randomly choosing 200 submatrices with the
row size of each submatrix drawn from the same size distribution as that of
the actual protein complexes. Therefore, each submatrix simulates a protein
complex, with the number of genes in the simulated protein complex corre-
sponding to the number of rows in the submatrix. Of those 200 submatrices,
30 were constructed to be bimodal by setting between 4 and 7 columns equal
to 1. The 2-means clustering and permutation test were run on all 200 sub-
matrices. The entire procedure just described constitutes one simulation run.
For every simulation run, the percentage of bimodal submatrices that were
called significant at 10% FDR was calculated for the various complex sizes.
Shown is a plot over 10 simulation runs; the permutation scheme approach is
not biased toward larger or smaller complexes, particularly for complexes with
more than 2 genes.
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Figure 2.4: k -means clustering uncovers differential essentiality of NSCLC cell
lines to protein complexes. The clustering partitions the cell line panel into
two groups: sensitive and insensitive to loss of components of the complex.
Shown are eight of 35 protein complexes that yielded statistically significant
scores (10% FDR)
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the CCT/TRiC chaperonin complex, which gives one of the cleanest signals

in terms of clustering the cell lines into sensitive and insensitive groups.

Moreover, different cell line subgroups exhibit different sensitivities.

For example, HCC95, HCC44, H460 and H2122 are especially vulnerable to

loss of the LSm2-8 complex, while a slightly broader cell line set is highly

dependent upon the CCT complex. A few cell lines, particularly HCC95,

are frequently sensitive to many of the genetic vulnerabilities. For some of

the genetic vulnerabilities, the cell lines affected do not belong to a single

histological subtype. Rather, they encompass at least one of the three main

NSCLC subtypes of adenocarcinoma, squamous-cell and large-cell carcinoma.

In assessing the performance of our 2-means clustering by a leave-one-

out strategy, only protein complexes above a certain size were considered.

For complexes with at least five members, the 2-means clustering achieves a

mean AUC of 0.62, with the average being computed over five iterations of

withholding a random gene from each complex. When considering protein

complexes containing at least eight members, a mean AUC of 0.66 is attained

over eight iterations (Figure 2.5).

We applied our 2-means clustering method to data from Project Achilles

on sensitivity of 19 NSCLC cell lines to shRNA knockdown of 5711 genes.

Due to the lower coverage of genes compared to our whole genome knockdown

dataset, the 2-means clustering is able to be applied to only a portion of many

of the protein complexes. According to a permutation test, we were unable to

find any statistically significant protein complexes at the same FDR 10% level
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Figure 2.5: Receiver operating characteristic (ROC) benchmarking of
2-means clustering. The top plot was obtained from 8 iterations of a leave-
one-out benchmarking scheme for protein complexes with at least 8 members.
Each iteration, a gene member was randomly withheld from each complex.
2-means clustering of the remaining members predicted average sensitivity vs.
resistance of cell lines in the withheld test gene. The bottom plot shows the
analogous results for 5 iterations when restricting to complexes with at least
5 members.
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previously used. The top scoring result is a ribosomal complex, followed by

two proteasome complexes. A majority of the significant protein complexes

found from our own RNAi dataset also maintain the general pattern of parti-

tioning into sensitive and resistant cell lines in the Project Achilles experiment

(Appendix 1). Because no statistical significance was found, we did not carry

out the benchmarking procedure as above.

2.4.2 Biclustering finds genetic vulnerabilities without reliance on
annotated gene sets

LAS biclustering was employed as an independent and complementary

approach to identifying candidate drug targets. The 2-means clustering ap-

proach relies on annotated gene sets, namely protein complexes, to address the

challenge of selecting gene groups to interrogate for bimodal response to RNAi

knockdown. On the other hand, biclustering offered an alternative strategy

to tackle this challenge as it could find genetic vulnerabilities without regard

to any prior annotation. The LAS algorithm found 22 statistically significant

biclusters with Bonferroni-corrected P -values < 10−5. Of the top 10 highest

ranking biclusters, the first represents a nearly universally toxic set - all of

the lung cancer cell lines are vulnerable to loss of almost any of the genes.

The next best-ranking results are those which are toxic only to a single cell

line. The lower-ranked statistically significant biclusters tend to represent vul-

nerabilities for a broader set of cell lines (Table 2.2). Functional enrichment

was not found for three of the top 10 results. In addition, searching each bi-

cluster for enrichment of protein complexes yielded heavy enrichment for the
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spliceosome. For most of the biclusters, the functions of the enriched protein

complexes match those found from the DAVID enrichment (Table 2.3).

Bicluster rank Size (genes ×
lines)

Lines affected Enriched
annotations

1 1591× 12 all but HBEC30 Translation,
splicing,

kinetochores,
mitosis

2 756× 1 HBEC30 No functional
enrichment

3 1060× 1 HCC4017 Translation,
splicing, nuclear

lumen
4 1141× 1 HCC366 Nuclear

proteins,
proteasome
non-ATPase

subunits
5 1219× 1 H1819 Translation,

splicing
6 813× 1 H1155 Nucleolar,

cytoskeletal
proteins

7 1154× 1 H2073 Wnt pathway
8 859× 2 H460, H2122 No functional

enrichment
9 920× 1 H1395 Translation
10 1254× 1 H1993 No functional

enrichment
11 1629× 1 HCC95 Translation,

splicing,
lysosomal
ATPase

12 450× 2 HCC44, H2009 No functional
enrichment

Table 2.2, Continued on next page
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Bicluster rank Size (genes ×
lines)

Lines affected Enriched
annotations

13 104× 9 9 lines Ribosome,
splicing, nuclear

lamin,
proteasome

14 159× 2 H460, H2009 No functional
enrichment

15 119× 2 H2009, H2122 No functional
enrichment

16 216× 2 HCC44, H460 No functional
enrichment

17 177× 2 HCC44, H2122 No functional
enrichment

18 66× 3 H1155, H2073,
H1395

No functional
enrichment

19 74× 4 H1155, H2009,
H1395, HCC95

Ribosome,
proteasome,

COPI transport
20 120× 3 H1993, H2073,

H1395
No functional
enrichment

21 14× 5 5 lines No functional
enrichment

22 20× 7 7 lines Splicing

Table 2.2: All statistically significant biclusters (Bonferroni-corrected P <
10−5) discovered from Large Average Submatrix (LAS) biclustering. Func-
tional enrichment as discovered through DAVID also shown.

Bicluster rank Number of genes
in bicluster

Number of
enriched protein

complexes

Significant
enrichments
(P -value)

1 1591 71 Spliceosome
(2.1× 10−43);
40S ribosomal

subunit
(2.3× 10−16)

2 756 4 20S proteasome
(5.5× 10−5)

Table 2.3, Continued on next page
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Bicluster rank Number of genes
in bicluster

Number of
enriched protein

complexes

Significant
enrichments
(P -value)

3 1060 30 Spliceosome
(1.5× 10−15);

Nop56p-
associated
pre-rRNA
complex

(5.4× 10−11);
NRD complex
(8.0× 10−6)

4 1141 21 NuA4/Tip60-
HAT complex B

(2.1× 10−5);
PA700-20S-

PA28 complex
(1.7× 10−6)

5 1219 24 Spliceosome
(2.9× 10−13)

6 813 2 109-member
metabolic and
motor protein

complex
(1.1× 10−4)

7 1154 2 PID complex
(1.4× 10−4)

8 859 10 Spliceosome
(1.5× 10−11)

9 920 5 140-member
ribosomal

protein complex
(1.8× 10−9)

10 1254 0 No enrichment
11 1629 25 Spliceosome

(1.8× 10−17)
Table 2.3, Continued on next page

26



Bicluster rank Number of genes
in bicluster

Number of
enriched protein

complexes

Significant
enrichments
(P -value)

12 450 1 SAR1A-TPD52
complex

(8.9× 10−5)
13 104 50 Spliceosome

(8.6× 10−13)
14 159 2 Nop56p-

associated
pre-rRNA
complex

(5.2× 10−7)
15 119 0 No enrichment
16 216 18 Spliceosome

(4.4× 10−6)
17 177 0 No enrichment
18 66 0 No enrichment
19 74 23 PA700-20S-

PA28 complex
(2.8× 10−18);
40S ribosomal

subunit
(5.1× 10−7)

20 120 0 No enrichment
21 14 0 No enrichment
22 20 3 C complex

spliceosome
(4.2× 10−8)

Table 2.3: Protein complex enrichment of bicluster genes discovered
from LAS biclustering. Enrichment was computed from the hypergeomet-
ric probability of obtaining at least the observed amount of overlap between
protein complex and bicluster genes. All enriched protein complexes are statis-
tically significant at 5% FDR as determined by the Benjamini-Hochberg proce-
dure. For brevity, statistically significant complexes with biological functions
also found to be enriched with DAVID are shown.
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Many of the protein complexes from 2-means clustering also participate

in biological processes found in LAS biclustering (Table 2.2). In particular,

there appears to be frequent enrichment for translation and splicing, which

are the functions of the ribosome small subunit, and the LSm2-8, CDC5L and

17S U2 snRNP complexes. No functional enrichment was found for the bi-

cluster genes affecting HBEC30, which was also often resistant to knockdown

of the protein complexes prioritized by 2-means clustering. Interestingly in

2-means clustering, HCC4017, HCC366, and H1819 were mostly among the

groups of resistant cell lines although in biclustering, their genes were enriched

in translation, splicing and proteasome components. Upon closer examination,

the genes responsible for this enrichment are different from those comprising

the translation, splicing and proteasome protein complexes. Apparently, bi-

clustering complements the 2-means clustering in uncovering certain genetic

vulnerabilities not found by the latter. We also note that the Wnt pathway,

which is enriched in the 7th-ranked bicluster, was not discovered by the 2-

means clustering as many of its genes either did not appear in our protein

complex set or were only present individually in single complexes.

2.4.3 Small-molecule screen confirms predicted cell line sensitivity

One notable bicluster showed enrichment for the Wnt pathway (Figure

2.6A and B). The H2073 adenocarcinoma cell was highly vulnerable to loss of

Wnt pathway members. This suggests that small-molecule compounds target-

ing Wnt should reproduce the RNAi gene knockdown sensitivity pattern when
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tested on the cell line panel. Two Wnt inhibitors, IWR-1 and XAV939, were

screened on a larger group of cell lines encompassing the panel, and the results

confirmed the predicted sensitivity (Figure 2.6C). The two compounds had a

selective deleterious effect on H2073 while essentially sparing the other cell

lines. Each cell line denoted by a diamond was colored according to a normal

mixture model that predicted the number of groups. If there were two groups,

green and red were used for sensitive and resistant, respectively. Otherwise,

the diamonds were colored gray.

2.4.4 Alternative approaches to measuring complex sensitivity do
not prioritize bimodality

We evaluated several other methods to measure complex sensitivity.

These approaches depended on annotated gene sets, as opposed to bicluster-

ing, which has no such constraints. Cell line viability results from our whole

genome screen are not approximately normally distributed (Figure 2.7), which

precludes the use of a simple z-test comparing the complex members’ scores

to the background distribution. Even if the data were normally distributed

(as the Project Achilles data is), this method would not distinguish bimodal

from half-toxic complexes (Figure 2.8), and in fact would prioritize universally

toxic complexes.

We also considered using the hypergeometric distribution to assess the

significance of multiple occurrences of sensitivity within a protein complex.

From a permutation test, we found 544 statistically significant protein com-
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Figure 2.6: Biclustering finds strong vulnerability of H2073 to loss of Wnt
signaling. (A) The seventh-ranked bicluster, containing 1154 genes, is enriched
for the Wnt pathway. (B) The sensitivity profile of the gene set comprising the
functional enrichment shows sensitivity of H2073 to knockdown of any of the
genes in the set. (C) Screening of IWR-1 and XAV939 against an expanded
panel of NSCLC cell lines (each denoted by a diamond) indeed shows that
H2073 is markedly vulnerable to chemical inhibition of the Wnt pathway.
Figure courtesy of Michael Peyton.
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Figure 2.7: Q-Q plot (left) shows that the robust Z scores from the whole
genome siRNA screen are not normally distributed. The score distribution
(right) is skewed; scores to the left of the red line indicate non-viability.

Figure 2.8: Even if the data were normally distributed, a z-test comparing
complex sensitivity to the background distribution would not distinguish a
half-toxic complex (left) from a bimodal complex (right).
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plexes at FDR 10% (Figure 2.9). With the large number of protein complexes

being statistically significant, we felt that this method was less discriminative

than the 2-means clustering approach in prioritizing complexes.

Figure 2.9: Circled in red are the 35 protein complexes from 2-means clustering
to indicate where they rank according to an alternative hypergeometric scoring
method, which discovered 544 significant complexes. Both methods used a
permutation test and q-value to control the FDR at 10%. Also shown are two
complexes not prioritized by 2-means clustering.

2.5 Discussion

Collectively, the protein complexes we discovered to be NSCLC genetic

vulnerabilities span various cellular processes including splicing, translation
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and protein folding. It is natural to ask how they fit in with currently estab-

lished cancer therapies and whether known drugs could be repurposed for these

complexes. Clearly, they contrast with hormonal therapy or the usual mitotic

targets of cytotoxic chemotherapy. It turns out that some of the strongest

genetic vulnerabilities are known targets of small-molecules.

Arsenic trioxide (As2O3) targets the TRiC/CCT complex [54] and has

been used to treat acute promyelocytic leukemia in patients who did not re-

spond well to other types of chemotherapy [70, 74, 73]. As2O3 can perhaps be

repurposed for NSCLC, particularly for patients whose tumors bear similar-

ity to the sensitive cell line subgroups identified from the 2-means clustering

analysis. Several studies have evaluated the effect of As2O3 in human lung

primary fibroblasts and in the lung cancer cell lines A549 and H460 [48, 56].

Collectively, they suggest that H460 is markedly more sensitive to As2O3 than

lung fibroblasts, consistent with the CCT complex vulnerability we observed.

We also identified the proteasome as a candidate NSCLC drug tar-

get and recently, proteasome inhibitors have been investigated as anti-cancer

agents. One such inhibitor is Velcade (bortezomib), which has been FDA-

approved for multiple myeloma [42]. Bortezomib has shown to be effective

in combination with other chemotherapy agents for NSCLC [19] and has been

evaluated in clinical trials for NSCLC as well [7, 39, 61]. This also suggests that

newer and more specific proteasome inhibitors, such as Kyprolis (carfilzomib)

could be efficacious for patients with NSCLC.

In addition, translation and splicing emerged as strong genetic vulner-
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abilities from the 2-means analysis. Previously, translation has been proposed

as a potential target in cancer [28]. Moreover, eIF3 is known to be overex-

pressed in lung cancers [60], and ectopic expression of five eIF3 subunits has

been shown to transform immortalized fibroblasts into malignant cells [88].

Notably, in our study we found that knockdown of four of those five sub-

units strongly sensitizes six of the 12 NSCLC cell lines in our panel, while

an immortalized epithelial line is comparatively unaffected (Figure 2.4). The

splicing apparatus has been suggested as a cancer target as well [27, 80]. Of

the splicing-associated protein complexes discovered from the 2-means analysis

(Figure 2.4), the SF3b component of U2 snRNP is known to be targeted by a

number of small-molecule compounds. Both the pladienolides and meayamycin

target SF3b, and the latter has been shown to be more deleterious in human

lung cancer cells than normal lung fibroblasts [2, 10].

Some of the NSCLC genetic vulnerabilities that were found by our com-

putational analysis include protein complexes that may appear to be entirely

essential. It is perhaps surprising that certain cell lines are largely resistant

to knockdown of many of these genes. One explanation may simply be a re-

sult of the strict thresholding of the RNAi data to produce binary readings

of cell line viability, which could be affected by the <100% sensitivity of the

assay. Another explanation may be provided by essential gene “moonlight-

ing” and “flipping” of protein complex essentiality between distantly related

species [65]. It was shown that certain protein complexes almost completely

flip essentiality between Saccharomyces cerevisiae and Schizosaccharomyces
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pombe. A similar phenomenon may be occurring among our NSCLC cell line

panel. Although the cell lines are not necessarily distantly related, they likely

differ sufficiently due to different mutational compositions. Different yeast

species flip protein complex essentiality as a result of adaptations to differing

needs and environments, a phenomenon likely common to cancer cells as well.

Moreover, particular NSCLC cell lines are largely resistant to loss of most, but

not all, members of certain protein complexes. Those genes that are mostly

essential in both sensitive and insensitive cell line subgroups could exhibit

“moonlighting” behavior by having multiple functions in both essential and

nonessential processes.

The NSCLC genetic vulnerabilities uncovered by the computational

analysis described here extends an earlier study [41] in uncovering additional

potential targets for therapy that were not previously reported. While our

study shares the general aim of identifying genetic vulnerabilities, we exclu-

sively focus on identification of biological systems, such as protein complexes,

that certain lung cancers are especially dependent upon. Our results also

present a complementary viewpoint to the Project Achilles effort in analyzing

whole genome RNAi knockdown of cancer cells. One goal from Project Achilles

was to discover genes that simultaneously had partial copy number loss and

were essential to cancer cells [53]. Interestingly, the results from that analysis

found single gene vulnerabilities in splicing, translation and the proteasome as

well. One such vulnerability was LSM4, which is a part of the LSm2-8 com-

plex. A key difference is that the NSCLC vulnerabilities presented here are
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from the viewpoint of looking not only at single genes but biological systems

such as protein complexes. In contrast with previous analyses, we obtain cell

line subgroups that may represent particular patient populations along with

candidate targets for each of those subgroups.

2.6 Summary

Novel candidate drug targets were found from computational analysis

of a whole genome RNAi knockdown screen in NSCLC cell lines. The targets

are protein complexes specific for particular lung cancer cell lines and func-

tion in splicing, translation and protein folding. Results of previous studies

support further investigation of these protein complexes as avenues of ther-

apeutic intervention in NSCLC. Moreover, the candidate targets provide an

opportunity for drug repurposing, which could lead to reduced time in the

drug development pipeline. Our results simultaneously establish lung cancer

cell line subgroups and potentially novel druggable targets that are specific to

each subgroup. This study contributes to a deeper understanding of therapeu-

tically relevant events at the molecular scale in NSCLC.
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Chapter 3

Predictability of Genetic Interactions from

Functional Gene Modules1

3.1 Abstract

Characterizing genetic interactions is crucial to understanding cellu-

lar and organismal response to gene-level perturbations. Such knowledge can

inform the selection of candidate disease therapy targets. Yet experimen-

tally determining whether genes interact is technically non-trivial and time-

consuming. High-fidelity prediction of different classes of genetic interactions

in multiple organisms would substantially alleviate this experimental burden.

Under the hypothesis that functionally-related genes tend to share common

genetic interaction partners, we evaluate a computational approach to predict

genetic interactions in Homo sapiens, Drosophila melanogaster, and Saccha-

romyces cerevisiae. By leveraging knowledge of functional relationships be-

tween genes, we cross-validate predictions on known genetic interactions and

observe high-predictive power of multiple classes of genetic interactions in all

three organisms. Additionally, our method suggests high-confidence candidate

1Published as Young JH and Marcotte EM. Predictability of Genetic Interactions from
Functional Gene Modules. bioRxiv (2016): 049627 and submitted to G3 (Bethesda). J.H.Y.
designed the study, performed data analysis, and wrote the paper.
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interaction pairs that can be directly experimentally tested. A web application

is provided for users to query genes for predicted novel genetic interaction part-

ners. Finally, by subsampling the known yeast genetic interaction network, we

found that novel genetic interactions are predictable even when knowledge of

currently known interactions is minimal.

3.2 Introduction

Determining the genetic interactions in an organism provides a ba-

sis for understanding how the role of a gene is influenced by the action of

any other gene. By definition, two or more genes interact when combining

variants of each gene produces a significantly pronounced phenotype when

compared to the phenotypes of individual variants [52, 5]. The applications

of exploiting such interactions extend to drug target discovery. Strategies

such as targeting genes that interact with cancer-specific mutations have been

proposed and reviewed extensively [4, 23] and have led to clinical trials [24].

Because experimental determination of genetic interactions involves examin-

ing all possible pairs from a group of genes, practical difficulties arise when

a comprehensive interaction map of an entire organism is desired. Multicel-

lular organisms present the challenge of various differentiated cell types, each

having potentially differing genetic interactions. Moreover, there are different

kinds of genetic interactions, ranging from those based on growth effects to

other phenotypic effects. There exists a need to either reduce the search space

for testing genetic interactions or to reliably predict them. Here, we evalu-
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ate a computational approach to predict and validate different types genetic

interactions across multiple organisms.

Previous studies to predict genetic interactions leveraged existing sources

of biological information. Integration of biological features in yeast (i.e. gene

co-expression, protein interaction and function) and their associated network

topological properties guided the training of probabilistic decision trees to

predict synthetic sick or lethal (SSL) interactions [84]. In a similar vein, an

ensemble classifier was trained on a set of 152 genetic interaction-independent

features to predict SSL in yeast [55]. Compiling multiple biological features

has also been extended to more than one organism. By considering the or-

thologous gene pairs among yeast, fly and worm, features such as functional

annotation were used to train a logistic regression model to predict a genome-

wide map of genetic interactions [89]. Alternatively, studies have also explored

network-based approaches for genetic interaction prediction. Novel SSL inter-

actions were predicted by way of a diffusion kernel on a network of known SSL

gene pairs [62]. Interrogating functional gene networks that were constructed

from integration of biological data from literature have proven useful in pre-

dicting modifier genes in yeast and worm [46]. Many of these approaches have

focused on a single genetic interaction type in a single organism.

Here, we examine an algorithm to predict multiple types of genetic in-

teractions across diverse organisms based on the hypothesis that genes strongly

participating in shared functions also share common genetic interaction part-

ners. Our approach relies on a functional gene network for a given organism
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and knowledge of known genetic interactions of a particular type. We tested

our approach on three organisms - human (Homo sapiens), fly (Drosophila

melanogaster), and yeast (Saccharomyces cerevisiae) - and found predictabil-

ity across different types of genetic interactions. We also investigated how

some interactions are enriched in yeast and human gene modules, specifically

protein complexes, and the degree to which genetic interactions need to ex-

perimentally determined before enrichment can be found.

3.3 Materials and Methods

For various classes of genetic interactions in human, fly, and yeast, a

list of genes and each of their known genetic interaction partners were assem-

bled. A gene and its known interaction partners are collectively referred to as

a “seed set.” Receiver operating characteristic (ROC) analysis was performed

to quantify whether the interaction partners of any given gene are clustered

in the organism’s functional gene network. Specifically, for every group of in-

teraction partners of a gene, a score vector consists of entries that are sums of

functional network edge weights between each gene in the network to the inter-

action partners. Because there are no self-edges in the network, leave-one-out

cross-validation is carried out on the known interaction partners. An accom-

panying label vector indicates whether each gene in the network is indeed an

interaction partner. The two vectors yield a ROC curve and the corresponding

area under the curve (AUC). A seed set’s AUC is the measure of how tightly

connected the interaction partners are in the functional network and therefore
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how predictive the seed set is for novel interactions [46]. None of the known

genetic interactions used for prediction were contained in the functional gene

network.

Enrichment of genetic interactions within yeast and human protein

complexes was calculated with a binomial model defined as P (X = k) =(
n
k

)
pk(1− p)n−k, where the background probability p equals the proportion of

all possible gene pairs that are genetically interacting. The number of trials n

is the number of possible gene pairs in the complex, and k equals the number

of interacting pairs in the protein complex.

3.3.1 Statistical Analysis

If k is the number of genetic interactions within a protein complex,

then the corresponding p-value is P (X ≥ k) according to a binomial model

as previously described, with control of FDR at 5% through the Benjamini-

Hochberg procedure [6]. Seed sets with AUC ≥ 0.9 were considered highly

predictive of novel genetic interactions.

3.3.2 Data Availability

All genetic interactions were downloaded from version 3.4.130 of BI-

OGRID [75]. Organism-specific functional gene networks were downloaded

for human [45], fly [71], and yeast [47]. Previous studies served as sources

of protein complexes for yeast and human [30, 64]. Python code using the

Matplotlib [37], scikit-learn [59], and mygene [86] libraries is available at
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https://bitbucket.org/youngjh/genetic_interact. All network visual-

izations were produced in Cytoscape [68]. A supplementary web page at

http://marcottelab.org/Genetic_Interact/ allows users to query a gene

of interest. If the gene has known genetic interaction partners that are pre-

dictive, then the functional network cluster is displayed. Raw data files listing

the seed sets with AUC ≥ 0.7 are also available.

3.4 Results

We sought to determine whether clusters of functionally related genes,

for example genes A-E in Figure 3.1, are predictive of genetic interactions.

In this example, genes A and C-E are known to share genetic interactions

with gene X, and our hypothesis would suggest gene B as a novel interaction

partner of X. Our method identifies predictive clusters by leave-one-out cross-

validation and receiver operating characteristic (ROC) analysis; when applied

to the network in Figure 3.1, each of genes A and C-E are individually withheld

as known interaction partners one at a time and predicted back with high

recall. Subsequently, gene B is a novel high-confidence predicted interaction

partner of X. The approach described here was evaluated for several classes of

phenotypic and growth-based genetic interactions in human, fly and yeast.
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Functional network Genetic interaction

Figure 3.1: Genetic Interaction Prediction. Dashed edges indicate known
genetic interactions. Solid edges connect genes that participate in the same
biological process, with log-likelihood (LLS) scores as edge weights reflecting
the degree of confidence in the genes’ shared functionality. Genes A, C-E are
genetic interaction partners of gene X and members of a functional net cluster;
then the remaining cluster member, gene B, is a predicted interaction partner
of gene X as well. Candidate clusters are evaluated by first assigning scores
to each gene in the network by summing the edge weights, as shown in the
first row of the matrix. LLS g,A denotes the log-likelihood score between genes
g and A. The second row is populated with binary labels indicating whether
the gene is a known interaction partner of X. In this fashion, a ROC curve is
constructed to yield an AUC.
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3.4.1 The human functional gene network is predictive for phenotype-
based genetic interactions

As shown in Figure 3.2A, our method demonstrated high performance

in predicting phenotypic enhancing and suppressing human gene pairs. In

these interactions, a double mutant has an enhanced or suppressed phenotype

(other than growth) in comparison to either of the single mutants. The plots

for phenotypic enhancement and suppression in Figure 3.2A display the perfor-

mance of seed sets, each of which are defined as a group of known phenotypic

enhancing or suppressing partners of a particular gene. There are 238 pheno-

typic enhancement seed sets, of which 30 have AUC ≥ 0.9. Similarly, 36 of 215

phenotypic suppression seed sets have AUC ≥ 0.9. The AUC is the area under

the receiver operating characteristic (ROC) curve that measures how well the

known interaction partners rank in our leave-one-out cross-validation scheme.

Those that are not predictive are the ones with AUC = 0.5, indicating that

their predictability is no better than random. For the most part, seed sets are

either at least moderately predictive, or not at all.

Shown in Figure 3.2B are illustrative seed sets with high predictability

that form well-defined clusters in the human functional gene network, Hu-

manNet. For clarity, only functional network edges with log-likelihood scores

(LLS) above 3.0 are shown. Furthermore, HumanNet genes are shown only if

they connect to at least 2 of the known genetic interaction partners. The seed

set consisting of the SNW domain containing 1 in phenotypic enhancement

with members of the SMAD family and nuclear receptor coactivators yielded
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Figure 3.2: Predictive functional net clusters yield novel phenotypic
enhancing and suppressing human gene pairs. (A) Each horizontal bar
represents the set of known genetic interaction partners of a specific human
gene; each of these sets is referred to as a “seed set.” High AUC scores indicate
that the interaction partners participate together in a cluster in HumanNet,
the human functional gene network. Therefore, other members of the cluster
are predicted as novel interaction partners. (B) Shown are two examples of
well-defined HumanNet clusters that are highly predictive for phenotypic en-
hancement (left) and suppression (right), with the known interactions from
the seed set denoted by the boxed genes and dashed edges.
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an AUC of 0.91. The prediction is that the SNW domain containing 1 also

phenotypically enhances with other members of the SMAD family along with

members of the forkhead box. In the phenotypic suppression case, we find

that known phenotypic suppressors of caspase 2 are tightly functionally linked

with members of the BCL2-like family, among other genes. With a resulting

AUC of 0.90, these BCL2-like genes are expected to participate in phenotypic

suppression with caspase 2.

3.4.2 Fly phenotypic enhancement and suppression interactions are
predicted from functional net clusters

Similar to the human case, the fly functional network FlyNet is partic-

ularly predictive of phenotypic enhancement and suppression, as shown in Fig-

ure 3.3. A larger proportion of the seed sets are predictive than in the human

case. For phenotypic enhancement, 322 out of 754 seed sets had AUC ≥ 0.9,

and 398 phenotypic suppression seed sets (out of 818) met the same threshold.

Figure 3.3B shows a well-defined gene cluster (AUC = 0.94) containing pheno-

typic enhancement interaction partners of seven up. From this cluster, genes

involved in the sevenless signaling and the Drosophila epidermal growth factor

receptor signal transduction pathways achieved high recall, and neighbor genes

also involved in the same signaling pathways are expected to phenotypically

enhance seven up. Turning to phenotypic suppression, several Enhancer of

split genes are tightly clustered (AUC = 0.98) with known phenotypic sup-

pressors of hairy that include the achaete-scute complex, thereby implicating

them as additional, novel phenotypic suppressors of hairy.
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Figure 3.3: FlyNet predictability for phenotypic enhancing and sup-
pressing genetic interactions. (A) Each horizontal bar represents a single
fly gene that is known to interact with a number of other genes. (B) Predictive
seed gene sets are shown for phenotypic enhancement (left) and suppression
(right).
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3.4.3 High-confidence predictability is found in human, fly and
yeast

The full range of various genetic interaction classes that were analyzed

from BIOGRID are listed in Table 3.1. Genetic interactions were generally

based on phenotypic effects or growth and lethality measurements. Each entry

in Table 3.1 lists the number of predictive seed sets having AUC ≥ 0.9 of

out the total examined. In human, our method performed well primarily for

phenotypic enhancement and suppression as described above, but did not offer

predictability for the dosage lethality and synthetic growth defect and rescue

interactions determined to date. For fly, most of the known interactions fall

into the phenotypic enhancement and suppression categories, for which high

predictability was observed. Although a moderate number of fly dosage rescue

interactions are known, no predictive seed sets were found. In both human

and fly, several classes of interactions have not been extensively determined

and thus were untested in our prediction scheme.

Our method also performed well in most of the interaction categories

for S. cerevisiae (Table 3.1, Appendix 2). Notably, negative and positive

genetic interactions fared poorly as few predictive seed sets were identified,

even though most of the experimentally determined interactions in yeast fall

into these categories.
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H. sapiens D. melanogaster S. cerevisiae

Dosage Growth Defect Not tested Not tested 176/1146
Dosage Lethality 2/108 Not tested 116/689
Dosage Rescue 5/65

0/144
203/1358

Phenotypic
Enhancement

30/238
322/754

287/1958

Phenotypic
Suppression

36/215
398/818

223/1751

Synthetic Growth De-
fect

4/445
1/5

576/3417

Synthetic Rescue 2/131
5/26

218/2089
Synthetic Lethality Not tested Not tested 221/2706
Negative Genetic Not tested Not tested 65/4618
Positive Genetic Not tested Not tested 55/3586

For each fraction, the numerator indicates the number of seed sets with AUC ≥ 0.9
and the denominator equals the total number of seed sets tested.

Table 3.1: Predictive power of functional networks across different genetic inter-
actions.
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3.4.4 Trends of interaction enrichment within gene modules vary
with interaction type

With genetic interactions predicted across multiple organisms, it was

natural to investigate their evolutionary conservation. In particular, if a pro-

tein complex were enriched in genetic interactions, then perhaps a homologous

protein complex would also exhibit similar enrichment. We found enrichment

of various types of interactions within yeast protein complexes, but none thus

far for human. Therefore, instead the problem shifted to identifying the degree

to which genetic interactions must be determined in order to find enrichment,

and therefore predictability. Using yeast as a test case, simulations succes-

sively withheld increasing proportions of genetic interactions, with enrichment

within yeast protein complexes computed at each point. The interaction types

considered were negative and positive genetic, and synthetic growth defect and

lethality. As shown in Figure 3.4, when withholding genes with a genetic in-

teraction degree (the number of interacting partners of a certain gene) of more

than 5, corresponding to withholding >90% of synthetic growth defect and

>80% of synthetic lethality pairs, then an immediate drop-off in enrichment

resulted. No such behavior was observed for negative and positive genetic in-

teractions, for which enrichment linearly decreased as a function of the with-

held proportion. Similarly, when removing interacting pairs at random, there

was a steady decrease in the number of significantly enriched complexes among

all types. Finally, when withholding pairs under a degree cutoff, there was also

no point beyond which enrichment failed to be found (3.5).
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Figure 3.4: Predictability of genetic interactions can be found even
when known interactions are sparse. By successively withholding known
yeast genetic interactions according to each gene’s interaction degree (e.g.
number of interaction partners), enrichment and therefore predictability is still
detectable when information of known interactions is minimal. This effect is
especially pronounced for synthetic growth defect and lethality, provided genes
possess sufficiently high interaction degree.
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Figure 3.5: Alternative subsampling methods find predictability even
when known genetic interactions are sparse. (A) In edge-based subsam-
pling, synthetic growth defect and lethality, and negative and positive genetic
interacting gene pairs were withheld uniformly at random over three trials.
(B) Considering the same genetic interactions as in (A), except that at each
point, genes under a set interaction degree cutoff are removed.
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3.5 Discussion

Our results demonstrate that various classes of genetic interactions in

different organisms can be successfully predicted based on the hypothesis that

functional gene clusters tend to share genetic interaction partners. For S.

cerevisiae in particular, predictability was obtained whether the genetic in-

teraction type was based on growth effects or non-growth phenotype-based

measurements (i.e. phenotypic suppression). Interestingly, our method did

not yield predictability for negative and positive genetic interactions, which

happen to be the interaction types for which most of the pairs have been tested

[15]. While the range of predictable genetic interaction classes for human and

fly were limited to phenotypic enhancement and suppression, we believe that

this is probably due to the sparsity of known genetic interactions for these

organisms. In this study, the source of known genetic interactions, BIOGRID,

had over 150000 yeast gene pairs but only ˜2800 pairs for fly and ˜1500 for hu-

man. As shown in Table 3.1, many types of genetic interactions could simply

not be tested for fly and human.

This sparseness of experimentally-determined genetic interactions, es-

pecially in human, led to the lack of enrichment in gene modules such as protein

complexes. In our simulations of withholding genetic interacting pairs, we ex-

pected that regardless of the interaction type, there would be a point after

which no enrichment would be found. Thus, it was surprising that negative

and positive genetic interactions exhibited a linear decrease in enrichment, re-

gardless of how the pairs were withheld (by degree or at random). On the other
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hand, the enrichment signal in synthetic growth defect and lethality is sensi-

tive to the interaction degree, as there was a steep drop-off when most of the

interaction pairs were withheld. In the negative and positive genetic networks,

there appears to sufficient genetic interaction density such that even when high

numbers of interacting pairs are withheld, enrichment under a binomial model

can still be found. By extrapolating to the human case, a modest increase

in the number of screened human gene pairs is likely to dramatically increase

the ability to predict additional genetic interactions, especially for synthetic

growth defect and lethality where the genes have multiple interaction partners.

Similar to previous genetic interaction prediction approaches [62, 89],

our algorithm requires knowledge of known experimentally determined genetic

interactions. While other studies proceed without such requirements, the as-

similation of a host of biologically annotated features are still necessary for

their prediction method [55, 84]. In contrast to the aforementioned studies,

our methodology systematically examined more than one class of genetic inter-

action and was successfully applied to multiple eukaryotic organisms, thereby

generalizing results from a previous study by Lee et al. [46]. Since the detec-

tion of tightly connected sets of nodes in a network is central to our method,

further avenues for exploration perhaps include investigating methods such as

graph clustering [22] or community detection algorithms [25], though these

algorithms lack built-in validation. It would also be interesting to explore us-

ing tissue-specific gene networks instead of a single integrated functional gene

network for more targeted predictions [26].
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As one major goal of any genetic interaction prediction is to at least

narrow down the search space for experimentally testing genetically interacting

pairs, our predictions are specifically testable experimentally, perhaps through

CRISPR-Cas9 for human cells [83]. We also contribute to available prediction

methodologies for suggesting genetic interactions as candidate therapeutic tar-

gets. Ultimately, we demonstrate the power of leveraging knowledge of known

genetic interactions and integrated biological information in functional gene

networks to predict novel genetic interactions from single-cell to multicellular

organisms.
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Chapter 4

Development of Drug Combination Regimens:

Yeast as a Model System

4.1 A History of Yeast in Drug Discovery1

In the field of drug discovery, yeast provide a useful high-throughput

platform both to select candidate drug compounds and to identify drug targets.

In perhaps the simplest case, screening an overexpression or deletion yeast

strain collection can identify strains that are overly sensitive or resistant to

drug treatment. For example, screening a set of kinase-directed compounds

against a yeast overexpression library revealed several compounds targeting

the PKC1-MAPK1 pathway. One compound was found to directly target

yeast Pkc1 [50]. In a complementary approach, Lum et al. [51] assayed a

heterozygous yeast deletion mutant library looking for haploinsufficiency in

response to a set of known therapeutics and successfully identified protein

targets for several compounds.

Other approaches to drug discovery have been made possible by com-

bining chemogenomic screens of the yeast deletion library [32] and high through-

1Adapted from Laurent JM, Young JH, Kachroo AH, Marcotte EM. Efforts to make and
apply humanized yeast. Briefings in Functional Genomics, 15(2):155-163 (2016). Portions
of the paper written by J.H.Y comprise this section.
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put quantification of yeast genetic interactions [15]. Identifying mutants that

are sensitive to a drug of interest relative to wild-type suggests that the drug’s

target may be a genetic interaction partner of the deleted gene. Bioinformatic

querying of genetic interaction and chemical sensitivity databases has yielded

both drug targets and off-target effects for multiple compounds, e.g. tamoxifen

and benomyl [57, 58]. Experimental screens of chemical-genetic interactions

have also been fruitful. For example, significant genetic interactions between

yeast SOD1 and the DNA damage and checkpoint repair (DDCR) pathway

guided the discovery of a small-molecule inhibitor of DDCR in yeast. Sod1δ

strains showed sensitivity to several compounds in a screen of over 3000 small

molecules. One compound allowed partial rescue of yeast growth inhibition in

the presence of DNA-damaging agents, suggesting DDCR as the target for the

compound, which was confirmed in human colorectal cancer cell lines [79].

Genetic interaction is also evident when overexpression of one gene in-

hibits growth in the deletion background of another gene. In some cancers,

Mad2, a critical cell-cycle checkpoint control protein, is overexpressed and

screening for genes whose deletion causes reduced growth in Mad2-overexpressing

yeast identified candidate target genes [8]. Thirteen of the identified yeast

genes had human orthologs, and knockdown of one of these (PPP2R1A) caused

lethality in human cells (HeLa) that had MAD2 overexpressed. Interestingly,

PPP2R1A is a regulatory subunit of protein phosphatase 2 (Ppa2), the target

of cantharidin, which was found to inhibit the MAD2-overexpressing osteosar-

coma cell line OS-17.
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Finally, alternative high-throughput techniques for drug target identi-

fication that do not involve genetic interaction screening have also been devel-

oped. The molecularly barcoded yeast open reading frame (MoBY-ORF) col-

lection comprises a library of ˜5000 yeast genes cloned in expression plasmids

flanked by upstream and downstream barcodes that enable plasmid identifica-

tion in pooled growth assays, greatly lowering the amount of drug necessary. In

the case of a drug-resistant mutant, the MoBY-ORF collection is transformed

into mutant strains and assayed for renewed sensitivity to the drug, followed

by amplification and identification of the responsible gene via microarray [33].

The method was validated by identifying targets of rapamycin and several

antifungals.

In previous chapters, we established methods for identifying candidate

therapeutic targets and a mechanism, namely genetic interactions, by which

inhibiting those targets sensitize the desired population. With yeast serving as

our model system, we now examine a strategy to integrate genetic interactions

as targets to design drug combination regimens.
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4.2 Predicting Synergistic and Antagonistic Drug Pairs
in Yeast2

4.2.1 Abstract

Although drug combinations have proven efficacious in a variety of dis-

eases, the design of such regimens often involves extensive experimental screen-

ing due to the myriad choice of drugs and doses. To address these challenges,

we utilize the budding yeast Saccharomyces cerevisiae as a model organism

to evaluate whether drug synergy or antagonism is mediated through genetic

interactions between their target genes. Specifically, we hypothesize that if

the inhibition targets of one chemical compound are in close proximity to

those of a second compound in a genetic interaction network, then the com-

pound pair will exhibit synergy or antagonism. Graph metrics are employed

to make precise the notion of proximity in a network. Knowledge of genetic in-

teractions and small-molecule targets are compiled through literature sources

and curated databases, with predictions validated according to experimentally

determined gold standards. Finally, we test whether genetic interactions prop-

agate through networks according to a “guilt-by-association” framework. Our

results suggest that close proximity between the target genes of one drug and

those of another drug does not strongly predict synergy or antagonism. In

addition, we find that the extent to which the growth of a double gene mutant

deviates from expectation is moderately anti-correlated with their distance in

2Published as Young JH and Marcotte EM. Predicting Synergistic and Antagonistic Drug
Pairs in Yeast. bioRxiv, (2016): 050567. J.H.Y. designed the study, performed data analysis,
and wrote the paper.
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a genetic interaction network.

4.2.2 Introduction

Drug combinations have an established history in treating disease, dat-

ing to the MOPP regimen for Hodgkin’s lymphoma in the 1960s to highly

active antiretroviral therapy (HAART) for HIV in the 1990s [29, 20]. In com-

bating antibiotic resistance, combination regimens have proven effective and

are actively under continued development [85]. Yet in designing combina-

tion therapies, it is not immediately clear which drugs and doses to group

together; there are simply a myriad of possible choices and the combinatorial

space quickly grows unwieldy. As a result, any computational technique to

either guide readily testable candidates or reliably predict the effect of drug

combinations would be desirable. In this study, using the budding yeast Sac-

charomyces cerevisiae as a test platform, we determine whether the effect of

drug pairs can be predicted from genetic interactions between their target

genes.

The effect of a drug combination can be classified as synergistic, an-

tagonistic, or additive. Two drugs are synergistic if they cause a significantly

greater growth defect than expected, based on the effect of each drug individu-

ally. Antagonism is similar, although the effect is far more pronounced growth

than expected. Drug additivity implies that no interaction exists between the

agents, and the resulting phenotype is the sum of each drug’s individual effect.

There is more than one choice of a null model that defines the “expected ef-
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fect” - commonly used models include Loewe additivity and Bliss independence

[49, 9, 87].

Previous studies to uncover genetic interactions as a mechanism un-

derlying drug combinations have involved exhaustive screening of a number of

small-molecule chemical compounds. An examination of 200 compound pairs

administered in Saccharomyces cerevisiae found 38 of them to be synergistic,

but genetic interactions were determined to be responsible for only 14 of those

38 [14]. Another study screened all possible pairs of 128 compounds from a

chemically diverse library to experimentally deduce synergy and antagonism,

thereby establishing a validation set. Moreover, a model based directly on

chemical-genetic and genetic interactions had low predictive power for syn-

ergy or antagonism, but combining naive Bayes and random forests trained on

additional features led to successful predictions [82].

We hypothesized that the proximity in a genetic interaction network

between one drug’s target genes and another drug’s targets controls the de-

gree to which the drug pair is synergistic or antagonistic. In particular, rather

than considering only direct interactions between genes, our approach factored

in whether a gene is within a neighborhood of (though not necessarily adja-

cent to) some other gene in the network. We leveraged knowledge of known

small-molecule inhibition targets in S. cerevisiae from the Search Tool for

Interactions of Chemicals (STITCH) database [43] and experimentally deter-

mined negative and positive genetic interactions [15]. Finally, predictions of

synergy or antagonism were validated against gold standards assembled from
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the literature.

4.2.3 Methods

4.2.3.1 Negative and positive genetic interaction network

Negative and positive genetic interactions were compiled from a high-

throughput yeast synthetic genetic array (SGA) screening dataset [15]. The

intermediate cutoff for the genetic interaction score ε was chosen as the thresh-

old for interacting versus non-interacting gene pairs. For the purposes of data

processing, the suffixes “ tsq” and “ damp” were removed from gene symbols.

Both unweighted and weighted versions of each of the negative and positive ge-

netic interaction networks were assembled. Nodes in the networks correspond

to genes and two genes are connected by an edge if they interact according to

the intermediate cutoff ε. Because a larger magnitude of ε indicated stronger

genetic interaction, in the weighted networks the edge weights were assigned

by reversing the ε values. For instance, the strongest genetically interacting

pair was assigned an edge weight with the smallest ε instead. All edge weights

were set to be non-negative.

4.2.3.2 Chemical compound targets and gold standards for synergy
and antagonism

Two literature sources were used as the gold standard to validate chem-

ical synergy predictions [14, 82]. The inhibition targets in S. cerevisiae of

chemical compounds (identified by CID) were assembled from STITCH ver-

sion 4 [43]. Only chemical names were available from the Cokol et al. dataset;
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these were converted to CIDs with PubChemPy https://pypi.python.org/

pypi/PubChemPy. SMILES strings from the Wildenhain et al. dataset were

also converted to CIDs. Prediction performance was assessed with receiver

operating characteristic (ROC) analysis as implemented in scikit-learn [59].

4.2.3.3 Distances in networks

Distances between all pairs of nodes in unweighted and weighted ver-

sions of both the negative and positive genetic network were computed us-

ing Dijkstra’s algorithm as implemented in NetworkX [66]. The distance be-

tween two sets A and B of nodes in an unweighted network was calculated

using the earth mover’s metric (EMD) [63]. Here in the 1-dimensional special

case, the EMD reduces to differences between cumulative distribution func-

tions [13]. For the purpose of measuring the distance between two sets of

nodes, EMD(A,B) =
∑

i∈N0
|FXref

(i)− FX(i)|, where FXref
and FX are the cu-

mulative distribution functions (CDFs) of a reference distribution Xref and a

random variable X. The reference distribution is intended to represent the sce-

nario where every node in A is adjacent to some node of B. In an unweighted

network, the reference probability mass function (pmf) of FXref
is defined as

P (Xref = k) :=

{
1 if k = 1

0 if k 6= 1, k ∈ N

and the pmf for X is constructed from the frequencies of all possible node pair

distances between A and B as found from Dijkstra’s algorithm.

In a weighted network, we have
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EMD(A,B) =

∫ +∞

0

|FXref
(t)− FX(t)| dt

=
∑
i=1

(xi − xi−1)(FXref
(xi−1)− FX(xi−1))

=
∑
i=1

(xi − xi−1)(1− FX(xi−1))

= (x1 − x0) +
∑
i=2

(xi − xi−1)(1− FX(xi−1))

where by choosing x0 to be the minimum edge weight P (Xref = x0) := 1 and

0 elsewhere, and P (X) is non-zero only for the node pair distances x1, x2, . . .

with x0 ≤ x1 < x2 < · · · .

4.2.3.4 Software Availability

Computational analyses were performed with Python version 3.4; scripts

and Jupyter notebooks are available under the BSD license at

https://bitbucket.org/youngjh/yeast_chem_synergy.

All plots were created with Matplotlib and Seaborn [37].

4.2.4 Results

4.2.4.1 Close proximity between drug target genes in the genetic
interaction network does not strongly predict synergy or
antagonism

We hypothesized that if two chemical compounds are synergistic, then

the inhibition target genes of one compound would be close to those of the
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second compound in a negative genetic interaction network. Similarly, antag-

onistic compound pairs would have their respective targets near one another

in a positive genetic network. Proximity between target genes were assessed in

both unweighted and weighted genetic interaction networks. An experimental

screen in S. cerevisiae provided the gold standard benchmark for testing the

synergy hypothesis [82]. In this dataset, all possible pairs of 128 chemical

compounds were screened, but only 7 compounds had inhibition target genes

found in both the negative genetic network and the Search Tool for Interac-

tions of Chemicals (STITCH) database. Thus, there were 21 possible pairs

available for validation, three of which exhibited synergy from the screening

results. None of the antagonistic compounds in this dataset contained targets

listed in STITCH. As shown in Table 4.1, close proximity of the target genes

were only weakly predictive of synergy, according to the area under the curve

(AUC) from the receiver operating characteristic (ROC) analysis. The AUC

from the unweighted network was reasonably consistent with that from the

weighted network.

For the antagonism case, the gold standard was constructed from an-

other experimental screen [14]. Of the 200 pairs screened from 33 compounds,

only 10 pairs had compounds whose inhibition targets were both listed in

STITCH and in the positive genetic network. Of these 10, 8 were experimen-

tally determined to show antagonism. None of the synergistic compounds in

this dataset contained targets listed in STITCH. No evidence was found to

suggest that close proximity of target genes was predictive of antagonism (Ta-
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Synergy Antagonism

Unweighted network 0.61 0.41
Weighted network 0.57 0.19

Synergy and antagonism prediction performance assessed by AUC, the area under
the receiver operating characteristic (ROC) curve.

Table 4.1: Chemical compound pairs were scored and ranked for synergy or
antagonism by the distance between their inhibition targets in a genetic in-
teraction network. The predictions were validated through receiver operating
characteristic (ROC) analysis with true interactions labeled according to gold
standards for synergy and antagonism. In the synergy case, target gene prox-
imity is only marginally more predictive than random for chemical synergy or
antagonism.

ble 4.1). In fact, the results suggest that the farther apart one set of target

inhibition genes is from those of a second compound in the positive genetic net-

work, the more likely the compound pairs are to be antagonistic. Strikingly,

in contrast to the synergy case above, the AUC value from the unweighted

network was quite far apart from that of the weighted network.

4.2.4.2 Genetic interaction strength is moderately correlated with
network distance

One assumption underlying our hypothesis was that any two genes

that were not adjacent in the genetic interaction network but within a suffi-

ciently small neighborhood of one another would still express some degree of

interaction. Conversely, if the genes were located very far apart, they would

essentially not interact at all. To examine the validity of this assumption, we

sought to determine the correlation, if any, between a gene pair’s distance in
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the network and its corresponding strength of genetic interaction. The inter-

action strength was simply the magnitude of the genetic interaction score |ε|

from the raw results of the synthetic genetic array (SGA) screening [15]. The

network distance of a gene pair was once again the distance computed from

Dijkstra’s algorithm as described above, such that smaller distances implied

stronger interaction and consequently larger |ε|. Therefore, we expected to

observe negative correlations for both negative and positive genetic. As shown

in Figure 4.1, indeed the Spearman’s rank correlation correlation is in fact

moderately negative and statistically significant.

4.2.5 Discussion

Our results suggest that there is no evidence to support the claim that

synergy or antagonism arises when the target genes of one chemical compound

are close in a genetic interaction network to those of another compound. We

confirmed previous results that such drug interactions are not directly medi-

ated through genetic interactions [14, 82], and also showed that neighborhoods

of genetic interactions are neither a contributing factor as well. In the process,

we presented an application of distance measures satisfying the mathemati-

cal definition of a metric to quantify proximity between sets of nodes in gene

networks. Prediction performance was measured through AUC due to its ro-

bustness to unbalanced data in positive versus negative class labels [38].

It is particularly notable that the gold standard for synergy produced

results different than those from the antagonism gold standard. One potential
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Figure 4.1: The magnitude of the genetic interaction score ε is moderately
anti-correlated with gene network distance. Thus, the greater the growth
deviation from expectation of a double mutant, the closer the two genes are
in the genetic interaction network.
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contributing factor is that the benchmark derived from Cokol et al. used the

Loewe additivity model [49, 78] to determine synergy and antagonism, while

Wildenhain et al. instead utilized Bliss independence [9]. The Bliss theory

is closer to the multiplicative fitness model employed in calling negative and

positive genetic interactions, which was defined as εij = fij−fifj with fij equal

to the double mutant fitness and fi, fj as the single mutant fitness scores [15].

The moderate correlation between genetic interaction strength and net-

work distance goes some way towards supporting the results from the synergy

gold standard, where AUCs of 0.57 and 0.61 were attained. In any case, the

weak correlation implies that genetic interactions cannot be reliably identified

through “guilt-by-assocation” in the network. It should be noted that both

datasets used to benchmark prediction performance were highly imbalanced,

thus reflecting the need for even more data on which chemical compounds are

synergistic or antagonistic, and which genes are inhibited by the compounds

of interest. Yet despite the relatively limited data available to construct gold

standards, our results and those of others indicate that a more nuanced mech-

anism beyond genetic interactions of target genes is responsible for explaining

effects of chemical compound interactions.
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Chapter 5

Conclusion

At the outset, we sought to develop computational methodologies to

address barriers in each of the areas of target identification, mechanism, and

therapy design in drug discovery and development. In choosing lung cancer

as an application, it was important that inhibiting identified targets would

sensitize some, but not all, of the cancer cell lines in our sample. As a result,

specificity and relative non-toxicity to normal cells would be expected, given

the genetic heterogeneity of lung cancer. One barrier to overcome was the com-

binatorially large space from which sets of functionally related genes were to be

chosen as pathway-level vulnerabilities. A method based on k -means clustering

successfully identified candidate targets with functions ranging from splicing,

translation, protein folding and ribosome biogenesis. In fact, certain agents

targeting some of the targets have been through clinical trials. Biclustering

was also evaluated for candidate target selection and implicated many of the

same biological functions prioritized by the k -means-based approach. We are

able to obtain experimental validation for one of the highly ranked predictions

from biclustering.

In our second aim, we concentrated on genetic interaction as one mech-
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anism underlying disease vulnerability to gene perturbation. In order for such

a mechanism to be generally applicable, knowledge of which genes interact

without resorting to exhaustive experimental testing would be especially valu-

able. As such, we successfully applied a computational algorithm to produce

high-confidence predictions for various classes of genetic interactions in mul-

tiple organisms. High recall was obtained when the predictions were cross-

validated on known interactions curated from databases. Our results sup-

ported the hypothesis that functional network gene clusters - which are genes

that participate in similar molecular or cellular functions - tend to share ge-

netic interaction partners. The algorithm described proved to be valid for

genetic interactions observed as growth defects and other phenotypic effects,

although negative and positive genetic interactions in yeast proved to be an

exception. We concluded with simulations of yeast genetic interaction net-

works to infer the manner in which homologous genetic interactions populate

human biological systems such as protein complexes.

Finally, we focused on yeast as a model organism to integrate the

themes of target identification and genetic interaction for design of therapeutic

regimens. We began by reviewing the history of fungal species, particularly

Saccharomyces cerevisiae, in biological assays relevant to human disease and

contributing to drug discovery and development. Subsequently, a model for

computationally predicting synergistic and antagonistic drug pairs in yeast was

evaluated. The model was based on the hypothesis that close proximity in a

genetic interaction network between the target genes of one drug and those
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of another drug would lead to synergy or antagonism. Graph metrics were

chosen to quantify proximity in networks. As no evidence was found to sup-

port our hypothesis, we deduced that genetic interactions did not propagate

through networks through “guilt-by-association.” In total, we have applied

and developed computational tools to advance various steps in the targeting,

mechanism and therapy of the drug discovery pipeline.
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Appendix A

NSCLC Genetic Vulnerabilities

Figure A.1, continued on next page
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Figure A.1, continued on next page

85
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Figure A.1: Genetic vulnerability patterns of protein complexes.

Shown are all 35 protein complexes found from the 2-means clustering ap-

proach to be statistically significant at 10% FDR. Also shown for each com-

plex is its corresponding shRNA knockdown sensitivity profile from Project

Achilles. Note that some genes in certain protein complexes are absent in

the Project Achilles heatmaps, which had knockdown data available for only

5711 genes. There are also some genes with multiple knockdown values for

each cell line in Project Achilles. Complex labels indicate source (cellcmplx,

Havugimana et al., 2012; cxscmplx, http://metazoa.med.utoronto.ca).
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Appendix B

Genetic Interactions Predicted from YeastNet
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Figure B.1: Yeast functional networks are predictive for diverse

genetic interactions. The horizontal bar plots on the left hand side show

the number of predictive functional net clusters for each genetic interaction.

Each bar is a seed set, which is a group of genes all known to share genetic

interactions with a particular gene. If the gene group is clustered in the yeast

functional network, then it is predictive of additional novel genetic interactions

as measured by the AUC, the area under a receiver operating characteristic

curve. On the right are highly predictive functional net clusters for each genetic

interaction type, with genetic interactions and functional connections indicated

by dotted and solid lines, respectively. For clarity, only edges above a weight

cutoff and genes with more than one interaction to the seed set are shown. In

the case of phenotypic suppression for instance, the seed set consists of the

gene group CHK1, MEC1, RAD9, RAD17 and RAD24, which are all known

to phenotypically suppress PSY2.
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