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Abstract 

 

Structural Equation Modeling Compared with Ordinary Least Squares 

in Simulations and Life Insurers’ Data 

 

Xuan Xiao, M.S.Stat. 

The University of Texas at Austin, 2013 

 

Supervisor:  Thomas W. Sager 

 

Structural equation model (SEM) is a general approach to analyze multivariate 

data. It is a relatively comprehensive model and combines useful characteristics from 

many statistical approaches, thus enjoys a variety of advantages when dealing complex 

relationships. This report gives a brief introduction to SEM, focusing especially the 

comparison of SEM and OLS regression. A simple tutorial of how to apply SEM is also 

included with the introduction and comparison. SEM can be roughly seen as OLS 

regression added with features such as simultaneous estimation, latent factors and 

autocorrelation. Therefore, SEM enjoys a variety of advantages over OLS regression. 

However, it is not always the case that SEM will be the optimal choice. The biggest 

concern is the complexity of SEM, for simpler model will be preferable for researchers 

when the fitness is similar. Simulations on two datasets, one requires special features of 

SEM and one satisfies assumptions of OLS regression, are applied to illustrate the choice 
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between SEM and OLS regression. A study using data from US life insurers in the year 

1994 serves as a further illustration. The conclusion is when special features of SEM is 

required, SEM fits better and will be the better choice, while when OLS regression 

assumptions are satisfied, SEM and OLS regression will fit equally well, considering the 

complexity of SEM, OLS regression will be the better choice. 
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INTRODUCTION 

Structural equation model (SEM) is a general approach to analyze multivariate 

data. More specifically it can be viewed as a series of statistical methods allowing 

complex relationships between independent variables and dependent variables. SEM is 

relatively comprehensive and combines the characteristics of several analysis approaches. 

Multiple regression, path analysis, factor analysis, time series analysis, analysis of 

covariance, etc. can all be seen as special cases of SEM. In SEM, there are two variable 

specification methods. One way is to categorize variables as exogenous and endogenous, 

and the other is to categorize variables as manifest and latent. The relationship between a 

manifest variable and a latent variable is called loading, factor loading, or factor 

coefficient, while the relationship between two latent variables is called path, path 

loading, or path coefficient. Since SEM enjoys an increasing popularity, many software 

programs have developed tools to assist analyzing SEM, such as LISREL, EQS, Mplus, 

Amos, MX, SYSTAT, STATA, R, and SAS. This report employs SAS to analyze both 

SEM and OLS regression. 

Compared to OLS regression, SEM enjoys a variety of advantages, such as the 

ability to analyze simultaneously, the ability to include latent variables, the ability to 

analyze time series data, more flexible assumptions, ability to test non-normal data, 

testing models with large number of equations as a whole and obtain global fit measures, 

ability to model mediating variables rather than additive models, ability to model error 

terms, and graphical modeling, etc. 
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However, it is not always optimal to choose SEM over OLS regression. The 

biggest concern is the complexity of SEM. Many would say that the choice depends upon 

the appropriateness of the model forms. If the fitting ability is similar, researchers will 

prefer the simpler models. In this sense, when the data are not so complex and satisfy the 

assumption of OLS regression, SEM may be overkill and OLS regression will be the 

better choice. 

To illustrate the comparison of SEM and OLS regression, simulations on two 

datasets with randomly generated data and a case with real data are applied. In the first 

simulation case, we generate a set of random variables with an underlying structure, and 

then simulate predicted variables with fixed coefficients. We simulate the two predicted 

variables to explain each other, thus the model needs to be estimated simultaneously. 

When fitting this model, SEM provides estimated coefficients much closer to the "true” 

coefficients we set, which means SEM fits better than OLS regression. Then in the 

second simulation case, we generate another set of random variables which are mutually 

independent, then simulate predictor variables with fixed coefficients. In this simulation, 

the two predictor variables do not explain each other. Such a model meets the 

assumptions of OLS regression. When fitting this model, SEM provides almost the same 

estimated coefficients as OLS regression, and both of the coefficients are very close to 

the "true" coefficients we set, which means in the situation where OLS regression 

assumptions are satisfied, both SEM and OLS regression fit well. Considering the 

complexity of SEM, the optimal choice will be OLS regression. 
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In this report, we also use the data from annual statement of US life insurers in the 

year 1994 to further illustrate the comparison of SEM and OLS regression. The model 

here is to study how the risks of a life insurer affect its capital structure decision. In order 

keep the model simple and clear, we only include product risks which align with product 

underwriting, one of the major activities of life insurers. Because different products 

should have different risks, we focus on the risks of two life insurance products: health 

insurance and annuities, which represent relatively higher and lower risk respectively. 

Since risks cannot be observed directly, proxies are used to represent them. Here we use 

proportions of premium for each product line to the total premium as the risk proxies. 

However, in theory, risk proxy can be viewed as a mixture of “true" risk and other 

variables. In order to separate the pure effect of "true" risk, the feature of latent variables 

is applied, and we call this pure risk a "risk factor". Also, when separating the effects of 

risk factors from corresponding risk proxies, simultaneous estimation is needed. The 

model uses capital ratio of insurers to represent the capital structures, and three control 

variables are included, which are size of the insurer, the governance structure (whether 

the insurer is a mutual insurance company or a stock company), and group membership 

(whether the insurer is affiliated with a group of companies. In SEM, capital ratio is 

regressed on the two risk factors and the three control variables, while in OLS regression, 

capital ratio is regressed on the two risk proxies and also the three control variables. The 

results show although the overall fit of both models is not especially close, the R-square 

of SEM is higher than the R-square of OLS regression, which indicates a better fit of 
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SEM. Since SEM is very complex in nature, R-square alone is not a perfect index to 

indicate better fit. Moreover, although the purpose of comparing SEM and OLS 

regression is served, if we want to explain an actual economic phenomenon or reach 

useful theoretical conclusions, the SEM model here needs further improvements.   
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STRUCTURAL EQUATION MODELING 

Structural equation modeling (SEM) is a general approach to multivariate data 

analysis. One definition of SEM is: "a statistical technique for testing and estimating 

causal relations using a combination of statistical data and qualitative causal 

assumptions", which was articulated by Sewall Wright (1921), TrygveHaavelmo (1943) 

and Herbert A. Simon (1953), and formally defined by Judea Pearl (2000) using a 

calculus of counterfactuals. In some circumstances, SEM is also known by other names 

including covariance structural analysis, latent variable modeling, or causal modeling. 

SEM is a series of statistical methods allowing complex relationships between 

one or more independent variables and one or more dependent variables, some of which 

can be hypothesized or unobservable. That is, SEM can be thought of as a hybrid 

between regression and some form of factor analysis. In fact, SEM is a general model 

combining characteristics of multiple regression, path analysis, factor analysis, time 

series analysis, analysis of covariance, etc. Therefore, these procedures can be seen as 

special cases of SEM. For instance, ordinary least-square (OLS) regression can roughly 

be seen as SEM without simultaneity, latent factors, and autocorrelation(the comparison 

of SEM and OLS will be discussed later in this report); path analysis can be seen as SEM 

with only manifest variables thus without the part of measurement model. 

In SEM, there are two variable specification methods. The first method is to 

distinguish variables to be exogenous variables and endogenous variables. Exogenous 

variables are variables that other variables regress on, while never regress on other 

http://en.wikipedia.org/wiki/Statistical
http://en.wikipedia.org/wiki/Sewall_Wright
http://en.wikipedia.org/wiki/Trygve_Haavelmo
http://en.wikipedia.org/wiki/Herbert_A._Simon
http://en.wikipedia.org/wiki/Judea_Pearl
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variables, and which means that exogenous variables are only used to predict others but 

never be predicted by others. In a directed graph of the model, as shown in Figure 1, an 

exogenous variable is recognizable as an oval from which arrows only emanate, where 

the emanating arrows denote which variables that exogenous variable predicts. 

Endogenous variables are variables that regress on other variables, even if other variables 

also regress on them. In a directed graph, as shown in Figure 1, an endogenous variable is 

recognizable as any variable that receives an arrow. If comparing with regression, 

exogenous variables are similar to independent variables, whereas endogenous variables 

are similar to dependent variables.  

 

Figure 1: Endogenous and exogenous variables in SEM. 

 

 

 

One of the advantages SEM takes from factor analysis is the ability to include 

unobserved factors, which are referred to as latent variables or latent factors. Latent 

variables are not directly observed but are rather inferred through a theoretical model 

from other variables that are observed.  In SEM, the directly observed variables are 
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referred to as manifest variables or indicator variables. This is the second method to 

distinguish variables by their roles. In some circumstances, latent variables correspond to 

aspects of reality which could be measured in principle, but may not be measured for 

practical reasons. In other circumstances, latent variables correspond to abstract concepts, 

like living standard, business confidence, or happiness.  

In SEM graph, as shown in Figure 2, squares or rectangles denote manifest 

variables; circles or ellipses denotes latent variables; curve, double-headed arrows denote 

bi-directional relationships (often referred to as correlations or covariance),and straight, 

single-headed arrows denote causal relationships. There are two types of causal 

relationships shown in most SEM graphs: loading (also referred to as factor loading or 

factor coefficient), which is assumed causal relationship between a latent factor and its 

indicator or manifest variables, and path (also referred to as path loading or path 

coefficient), which is hypothesized causal relationship between two latent factors. 
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Figure 2: Manifest and latent variables in SEM. 

 

 

 

The two main components of SEM are the structural model and the measurement 

model. The structural model shows the potential causal dependencies between 

endogenous and exogenous variables, involving all variables in the model, both manifest 

and latent; while the measurement model shows the relations between latent variables and 

their indicators. Path analysis can be viewed as SEM with only the structural part, while 

factor analysis can be viewed as SEM with only the measurement part. 

Many software programs are available to analyzing SEM, including: 

LISREL, one of the earliest SEM program and perhaps the most frequently 

referenced program in SEM articles.  Software web site: http://www.ssicentral.com/. 

EQS, provides many general statistics functions including SEM. Software web 

site: http://www.mvsoft. com/. 
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Mplus, has base program to analyze single-level models and add-on modules to 

analyze multilevel models and models with latent categorical variables. Software web 

site: http://www.statmodel.com/. 

Amos, is distributed with SPSS. Software web site: http://www.smallwaters.com 

or http://www.spss.com/ amos/. 

MX, software web site: http://www.vcu.edu/mx/. 

SYSTAT, the RAMONS module. Software web site: http://www.systat.com/. 

STATA, software web site: http://www.stata.com/ 

R, has packages for SEM such as sem, lavaan. Software web site: http://www.r-

project.org/. 

In this report, I use SAS with the CALIS procedure to analyze SEM. SAS, 

originally Statistical Analysis System, is an integrated system of software products 

provided by SAS Institute Inc.( http://www.sas.com/). 

  

http://www.stata.com/
http://www.r-project.org/
http://www.r-project.org/
http://en.wikipedia.org/wiki/SAS_Institute_Inc.
http://www.sas.com/
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COMPARISON OF SEM AND OLS REGRESSION 

As stated in previous paragraphs, SEM can roughly be seen as OLS regression, to 

which may be added simultaneity, latent factors and autocorrelation. Therefore, SEM has 

several advantages over OLS regression and enjoys wider applications in a variety of 

research situations than OLS regression.  

The first advantage is that, in SEM, a variable can be both predicted and 

explanatory, which means a variable can appear on the left side of one equation and on 

the right side(s) of one or more equation(s) in the same model, thus multiple interacting 

equations can be modeled simultaneously, whereas in OLS regression, a variable can 

only either be response or explanatory, thus if theoretical study requires a variable to play 

both roles, it has to be in separated models and cannot estimated at the same time. This is 

the simultaneous feature SEM has over OLS regression.  

The second advantage is the allowance of including unobserved latent variables in 

SEM. Latent variables are useful tools in a variety of analyses. For instance, they can be 

used to present variables that cannot be observed or measured directly, or to reduce the 

number of variables by concentrating information of several variables into less 

conceptual variables, as in factor analysis. Also, by having multiple indicators per latent 

factor, the measurement error may reduce.  

The third advantage is that SEM is able to deal with time series data. OLS 

regression has relatively strict assumptions: (1) observations are identical and 

independent distributed, (2) no perfect multicollinearity, i.e. independent variables are 
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linear independent, (3) expected values of error terms conditioned on independent 

variables equal zero, (4) homoscedasticity, i.e. variance of error terms on condition of 

independent variables equal zero. Such assumptions restrict the applications of OLS 

regression, for if any of the assumptions is invalidated, the estimation will be inaccurate. 

Time series data often has time-dependent correlations which invalids OLS regression 

assumption that error terms are independent. If applying OLS regression to 

autoregressive data, the estimated error terms are often too small and the probability of 

type I error often increase. 

Furthermore, there are more advantages of SEM compared to OLS regression, 

including more flexible assumptions, particularly allowing interpretation even when 

multicollinearity exists; the ability to test non-normal data, incomplete data which do not 

meet OLS regression assumptions; the availability of testing a complex model involving 

a large number of equations as a whole and obtain global fit measures which provides a 

summary evaluation of the overall model; the ability to model mediating variables rather 

than be restricted to additive model as in OLS regression where the dependent is a 

function of the sum of independents' effects; the ability to model error terms; the 

attraction of graphical modeling interface. 

However, SEM also has disadvantages. One of the biggest concerns is its 

complexity, for researchers prefer simpler models when the fitting ability is similar. 

Another concern is requirement of large sample size. Over the years, a number of 

simulation studies have assessed the influence of variations in sample size of SEM 
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analyses (Boomsma&Hoogland 2001, Hoogland&Boomsma 1998), and there is no 

recommended minimum sample size broadly applicable in all contexts (Tomarken& 

Waller, 2005). Several general rules suggest the lowest reasonable sample size is 200 for 

relatively simple models, and for more complicated models, larger sample size will be 

recommended. In fact, SEM is powerful when done with adequately large sample size, 

and the larger, the better. Also, SEM like most statistical models, are typically 

approximations of reality (Browne&Cudeck 1993, Cudeck & Henley 1991, MacCallum 

2003, MacCallum & Austin 2000, Meehl & Waller 2002). One of ways SEM 

approximates is by omitting variables, but such omissions will lead to misleading 

measurements and/or cause structures and biased estimates. Although such problem is not 

unique to SEM, it is a well-known criticism of SEM (Cliff 1983, Freedman 1987). 

In summary, although SEM has various advantages over OLS regression, it also 

has disadvantages and it is not always the case that applying SEM is preferred to OLS 

regression. If the data satisfies the assumptions of OLS regression well enough, OLS 

regression should be used rather than SEM. Even though in this case, SEM will produce 

basically the same result, using a much more complex model will be overkill. 
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SIMULATIONS TO ILLUSTRATE COMPARISON 

Simple simulations on two datasets are used here to illustrate the comparisons 

made in previous part. The idea of these simulations is we have already known all the 

variables and the relationships among them, i.e. the "true" coefficients of equations are 

known, then fitting the model with either SEM or OLS regression, the closer the 

estimated coefficients to the "true" coefficients, the better a model fits. 

The first simulation is designed to have variables with underlying structures and 

some predictor variables need to be predicted by others as well, thus a simultaneous 

feature is needed. The purpose is to illustrate when variables in the data set have more 

complicated relationships and the model requires more sophisticated form, SEM will 

provides coefficients closer to the "true" ones, thus fits better than OLS regression. 

The second simulation is designed to have variables satisfying the assumptions of 

OLS regression and does not need simultaneous feature. The purpose is to illustrate when 

OLS regression is suitable, SEM will provide the same estimated coefficients, and thus 

also fits well. However, if the fitting abilities are the same, a much simpler model, such 

as OLS regression, is a better choice. 

 

Simulation One:  

Here we use three random generated variables, x1, x2, x3, which have an 

underlying structure described as below, and two random generated variables r1, r2, which 
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are independent and acting as error terms. Each of these five variables has 500 

observations. We program it in SAS and the code is
1
: 

do i=1 to 500; 

x1=i + normal(12345678); 

x2=500 + i + normal(12345678); 

x3=1000 + i + normal(12345678); 

r1=normal(12345678); 

r2=normal(12345678); 

Then simulate y1, y2 under following structure (here y1 and y2 appear on both the 

left and right sides of the equations), in this way, the "true" coefficients are known: 

y1 = x1 + 2*x2 + y2 + r1 

y2 = 3*x1 + 4*x3 + 2*y1 + r2 

The structural model can be graphically presented as in Figure 3. 

 

 

 

 

 

 

                                                            

1normal( ) is the SAS function for generating random N(0, 1) observations with a given seed as argument. 
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Figure 3: Structural model of simulation one. 

 

 

 

A mathematically equivalent reduced form model is: 

y1 = -(4*x1 + 2*x2 + 4*x3 + r1 + r2) 

y2 = -(5*x1 + 4*x2 + 4*x3 + 2*r1 + r2) 

Fitting with SEM using PROC CALIS in SAS, the estimated structural model for 

non-standardized data is: 

y1= 1.0499*x1 + 1.9166*x2 + 0.9974*y2 + 1.0000*e1 

y2= 2.7934*x1 + 3.7667*x3 + 1.9560*y1 + 1.0000*e2 

Fitting with OLS regression using PROC REG with separate models for each 

equation, the result is: 

y1 = 0.96770*x1+ 1.60976*x2+ 0.96748*y2 

y2 = 2.19927*x1+ 3.19942*x3+ 1.83988*y1 

Comparing the two results, the estimated coefficients from SEM (1.0499, 1.9166, 

0.9974; 2.7934, 3.7667, 1.9560) are much closer than the estimated coefficients from 
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OLS regression (0.9677, 1.60976, 0.96748; 2.19927, 3.19942, 1.83988) to the "true" 

coefficients in original designed structure model (1, 2, 1; 3, 4, 2), therefore, SEM is 

proved to fit better in this case. 

 

Simulation Two: 

Here we use five random generated variables, x1, x2, x3, x4, x5, which are 

independent from each other, and two generated random variables, r1, r2, which are 

independent and acting as error terms. In this way, OLS regression assumptions are met. 

Each of these seven variables has 500 observations. We program it in SAS and the code 

is: 

do i=1 to 500; 

x1=5+1*normal(123456); 

x2=4+2*normal(123456); 

x3=3+3*normal(123456); 

x4=2+4*normal(123456); 

x5=1+5*normal(123456); 

r1=normal(123456); 

r2=normal(123456); 

 

Then simulate y1, y2 under following structure (here both y1 and y2appear on only 

one side of the equations), in this way, the "true" coefficients are known: 
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y1=x1 +2*x3 +  x5 + r1 

y2=2*x1 +x2 +2*x4 +r2 

Fitting with SEM using PROC CALIS in SAS, the estimated structural model for 

non-standardized data is: 

y1= 0.9648*x1 + 2.0060*x3 + 1.0014*x5 + 1.0000*e1 

y2= 1.9912*x1 + 1.0033*x2 + 1.9917*x4 + 1.0000*e2 

Fitting with OLS regression using PROC REG with separate models for each 

equation, the result is: 

y1 = 0.99851*x1 +2.00889*x3 +1.00201*x5 

y2 = 2.01160*x1 +1.00777*x2 +1.99255*x4 

The estimated coefficients from SEM (0.9648, 2.0060, 1.0014; 1.9912, 1.0033, 

1.9917) are very similar to the estimated coefficients from OLS regression (0.99851, 

2.00889, 1.00201; 2.01160, 1.00777, 1.99255). Both are very close to the "true" 

coefficients in original designed structure model (1, 2, 1; 2, 1, 2). Therefore, SEM and 

OLS regression fit equally well in this case. There is no need to apply a much more 

complex model as SEM, and OLS regression is the preferred choice here. 

 

In summary, SEM, as a more general and powerful model, enjoys a variety of 

advantages over OLS regression, and can be applied in much wider research fields. 

However, although SEM can serve all the functions OLS regression can, it is not always 

the best choice and it cannot replace OLS regression. When it comes to simple situations 
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where OLS regression can fit well, SEM will be overkill due to its complex nature. Also, 

SEM has a higher requirement for sample size than OLS regression, which is a 

disadvantage of SEM. It is more difficult to meet required sample size of SEM to avoid it 

losing power.  
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REAL DATA MODEL 

The model provides a simple analysis of how capital structure decisions are made 

within the framework of certain risks enterprises are facing. For life insurers, two 

principal activities are asset investing and product underwriting. Therefore, one of the 

major categories of enterprise risks is product risk, which aligns with activity of product 

underwriting. Product risk arises from the nature and volume of products sold, thus 

different level of risks are associated with different product lines. Although a variety of 

products are underwritten by life insurers, health insurance contracts and annuity 

contracts are chosen in this model to represent relatively higher and lower risk 

respectively.  

Risks cannot be observed directly. Thus in empirical studies, proxies are used in 

order to measure them. However, there are numerous risks aligned with product 

underwriting, many of which are not neatly distinct but overlapping to some degree. Thus 

listing all the product risks and analyzing the impact of each of them is neither practical 

nor necessary. In this sense, proxies for the risks could be viewed as a mixture of 

different underlying theoretical risks. Thus instead of analyzing separately, a factor 

analysis is applied here to view product risks as two unobserved risk factors, for health 

insurance products and annuity products respectively.  

In the model, some important control variables are also included in order to 

represent elements of capital structure decision that are not from product risks for life 

insurer. In previous studies, size, organization form, and group membership are used and 
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considered to be of the most importance with regards to capital structure decisions. Size 

is the measure for whether the scale of a life insurer is large or small, which has been 

generally recognized to be of significant effect on the capital structure decisions. 

Organization form is the measure for whether a life insurer is a mutual insurance 

company or a stock company, and under agency theory, risk taking is inversely related to 

the degree of separation of ownership from management, which implies that managers of 

mutual insurance companies will take less risk than those of stock companies. Group 

membership is a dummy variable for whether a life insurer is a member of an affiliated 

group or not.  

The data is for US life insurers taken from the annual statement of life insurers 

filed with NAIC for the year 1994.  

Capital structure decision is represented by capital ratio, which is calculated as the 

logarithm of the ratio of adjusted book value of capital to total firm invested asset. 

Adjusted book value of capital is the sum of capital and surplus, asset valuation reserve, 

voluntary investment reserve, dividends apportioned for payment, dividends not yet 

apportioned, and the life subsidiaries asset valuation reserve, voluntary investment 

reserve and dividend liability less property/casualty subsidiaries non-tabular discount. 

Previous studies argue that economic capital, such as market value of equity, would be a 

preferable measure to accounting data used here. But since most life insurers are not 

publicly traded, such data are not available. 
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The two product risk proxies are calculated as the logarithms of the proportions of 

insurers' premiums derived from health insurance lines and annuity lines respectively. In 

the case that an insurer does not write health insurance or annuities and the proportion is 

zero, the corresponding risk index is set to be a very small value which is less than any of 

the nonzero data in order to calculating logarithms. As discussed above, proxies here are 

mixtures of a number of underlying risks, so factor feature of SEM is applied here by 

constructing two unobservable factors, namely F
ph

 and F
pan

. Instead of directly using 

calculated proxies as surrogates for two kinds of product risks, unobservable factors are 

constructed in this model in order to provide purer proxies than the measured variables. 

As discussed above, three control variables are derived from the data set and 

presented as categorical variables. An insurers with total assets larger or equal to the 

median of sample total asset is considered to be large, which is indicated by size=1 in the 

SAS dataset, otherwise, the insurer will be considered to be small and indicated by 

size=0.  In the SAS dataset, type=1 means an insurer is a stock insurer, and type=0 means 

a mutual insurance company. In similar way, group=1 means an insurer is affiliated with 

a group of companies, otherwise, group=0. 

In order to fit in the model, the insurers with missing values for any of these 

variables, insurers with nonpositive capital ratio, negative proportions of health insurance 

or annuity premium are removed from data set. After adjustment, 796 insurers remained 

for analysis. 
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SEM is applied due to two main reasons: (1) product risks are estimated by 

unobservable factors instead of directly calculated proxies, (2) the relationship among 

capital ratio and two product risk factors, the relationship between product risk factors 

and product risk proxies are simultaneously estimated. 

Specifically, the SEM model can be described both analytically and graphically. 

Analytically, the SEM model can be presented by a set of equations: 

C   =   αc * S     +    βc * T      +    γc* G    +   λph*F
ph

    +    λpan* F
pan

 +   ε
c
    (1) 

P
h
   =   αph * S   +    βph* T    +    γph* G   +          F

ph
    +   ε

ph
                          (2) 

P
an

  =   αpan * S  +    βpan * T   +    γpan* G  +          F
pan

  +   ε
pan

                         (3) 

In this set of equations, C stands for capital ratio; P
h 

and P
an

 stand for health 

insurance and annuity risk proxies respectively; S, T and G are control variables standing 

for size, organization type and group membership, respectively; F
ph 

and F
pan 

stand for the 

unobservable factors for health and annuity risk. Equation (1) describes the relationship 

among capital ratio and risk factors for both health insurance and annuity, controlled by 

size, organization type and group membership, and the coefficients λph, λpan describe how 

health insurance / annuity influence the capital structure. Equation (2), (3) describe the 

relationships between risk proxies and risk factors, which are directly observable risk 

proxies consist of underlying true risks ( i.e. unobservable factors) and other variables. In 

Equations (2), (3), the coefficients of F
ph 

and F
pan 

are restricted to be 1.0, in order to 

provide identifiability of parameters without loss of generality. The three ε terms are 

residual error terms standing for the unexplained part of each equation. 
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Graphically, the SEM model can be presented in the form of a path diagram, 

shown in Figure 4.  

 

Figure 4: SEM model for US insurers' risks and capital decision. 

 

 

 

As discussed in part II Structural Equation Modeling, manifest variables (C, P
h
, 

P
an

, S, T, G) are presented in rectangles, whereas latent factors (F
ph

, F
pan

 ) are presented in 

ovals, error terms without enclosures. Straight, one-headed arrows stand for relationships, 

for instance, C receives straight arrows from two factors, S, T, G and error term ε
c
, which 

means capital ratio is explained by a function with explanatory variables F
ph

, F
pan

, S, T, 

G, and error term ε
c
. On the other hand, health insurance risk factor F

ph
 emanates two 

straight arrows to C and p
h
, which means F

ph
 is used to explain both C and p

h 
in two 

equations in the model. 

In SAS, the SEM model can be coded with procedure CALIS. CALIS is designed 

to analyze models in which hypothesized relationships among variables specified in 
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terms of the variances and covariances of variables and fit to an observed covariance 

matrix.  

For this model, the SAS code is written as: 

PROC CALIS  DATA = real_data; 

LINEQS  

cap_ratio = alpha_c size + beta_c type + gamma_c group + lambda_phF_ph + 

lambda_panF_pan + e1, 

p_health  =alpha_ph size + beta_ph type + gamma_ph group +  F_ph + e2, 

p_annuity = alpha_pan size + beta_pan type + gamma_pan group +  F_pan + e3; 

STD  

e1-e3 = vare1-vare3, 

size = 0.500315, 

type = 0.322918, 

group = 0.441651, 

F_ph = 1, 

F_pan = 1; 

COV  

F_ph F_pan = cov, 

size type       = -0.03141, 

size group    = 0.06972, 

type group   = 0.01267, 
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F_ph size     = 0, 

F_pan size   = 0, 

F_ph type    = 0, 

F_pantype  =0, 

F_phgroup  =0, 

F_pan group = 0; 

RUN; 

In the code, LINEQS is one of CALIS's model specification statements, which is 

to define the model type and specify the main model. The endogenous variables used on 

the left side can be manifest variables (with names that must be defined by the input data 

set) or latent variables (which must have names starting with F). The variables used on 

the right side can be manifest variables, latent variables (with names that must start with 

an F), or error variables (which must have names starting with an E or D).  The 

coefficients to be estimated are indicated by names. If no name is used, the coefficient is 

constant, either equal to a specified number or, if no number is used, equal to 1. The 

equation here is directly from the SEM equations (1), (2), (3). The other main model 

specification statements in CALIS are RAM, FACTOR, and COSAN, which give slightly 

different statements from LINEQS. 

STD statement specifies which variance to be estimated. Here e1-e3 = vare1-

vare3 means we want to estimate the standard deviation of error terms e1, e2, e3, and 

name them as vare1, vare2, vare3. F_ph = 1, F_pan = 1 means we fix the standard 
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deviation of latent factors to be 1, the reason for which is to set scale to latent factors. The 

standard deviations of size, type and group are also fixed at their sample standard 

deviations (calculated from the data set), the reason for which is in theory, when the 

sample size is large, the sample standard deviation is unbiased estimate of population 

standard deviation. Also, to prove fixing these standard deviations is statistically 

reasonable, another model with these three standard deviations not fixed but to be 

estimated is run, i.e. size = 0.500315, type = 0.322918, group = 0.441651, is replaced by: 

size = stdev_size, type = stdev_type, group = stdev_group, all the rest are the same, and 

the result shows the coefficients of cap ratio functions is very similar to the original 

model, only the  R square for capital ratio is 0.7499, a little less than that from original 

model which is 0.8204. 

COV statement specifies which covariance to be estimated. Here F_ph F_pan = 

cov means we want to estimate the covariance of the two latent factors F
ph

 and F
pan

and 

name it as cov. And size type = -0.03141, size group = 0.06972, type group = 0.01267 

means we fix the covariances between size, type and group at their sample covariance 

(calculated from the data set), the reason for which is in theory, when sample size is 

large, sample covariance is unbiased estimate of population covariance. Also, to prove 

fixing these covariances is statistically reasonable, another model with these covariances 

not fixed but to be estimated is run, i.e. size type = -0.03141, size group = 0.06972, type 

group = 0.01267, is replaced by: size type = covst, size group = covsg, type group = 

covtg, all the rest are the same, and the result shows the coefficients of cap ratio functions 
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is very similar to the original model, only the  R square for capital ratio is 0.8178, a little 

less than that from original model which is 0.8204. The covariances between factors and 

control variables are all fixed at 0, for in this model, size, type and group only serves as 

control variables and it assumes that the two latent factors underlie only the part of 

capital ratio, two product risk proxies, but not explained by the control variables. 

Result: 

The output of CALIS procedure includes both non-standardized and standardized 

results for linear equations. Table 1 displays the non-standardized estimates of 

coefficients and corresponding t values for variable capital_ratio.  

 

Table 1: Result of CALIS procedure. 

  size type group F_ph F_pan 

coefficient -1.1248 0.0475 0.0723 0.1366 -0.0837 

t value -31.2172 1.0703 1.8893 12.7684 -9.4853 

 

The coefficients describe the how capital_ratio is modeled to change when the 

value of either of the two factors changes controlled for all the rest variables. For 

instance, the estimated coefficient of health insurance risk factor, F_ph, equals to 0.1366, 

which means for one unit change of the value of the factor, capital ratio will change 

0.1366 units, ceteris paribus. In similar ways, the effect of whether the insurer is large or 
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small, its governance structure, group membership, as well as the annuity risk factor can 

be analyzed. 

CALIS procedure provides a variety of model fitting indices, including absolute 

indices, parsimony indices and incremental indices, presented in the Fit Summary part of 

the output, as well as the R-squares for each equation in Squared Multiple Correlations 

part. Table 2 displays some of the information about model fitting. 

 

Table 2: Fitting indices of CALIS procedure. 

Pr> Chi-Square GFI RMSR R-Square for capital_ratio 

< .001 0.6953 1.8829 0.8204 

 

Although Pr> Chi-Square is less than 0.001, which may be a good sign for model 

fitting, GFI and RMSR both indicated the fitting is not so good. However, the reason to 

build this model here is to illustrate how to use SEM and whether SEM is better than 

OLS regression facing particular situations, but not to build a preferred model to actually 

solve a real economic problem. Therefore, R-Square is used here, for it is provided in 

both models and then can be used to compare CALIS output with OLS regression (the 

comparison will be in the following OLS regression model part). 

 

OLS Regression 
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Using the same data set as in SEM model. Since there is no latent factor feature 

available in OLS regression model, the proxies of health insurance and annuity are used 

directly in this model, and the linear equation for capital ratio is built as: 

C   =   α0 + α1 * S + α2 * T + α3 * G + α4 * P
h
 + α5* P

an
 + ε 

The interaction terms of size, type and group are omitted from the equation 

because they are tested to be statistically insignificant. In SAS, procedure REG is used to 

estimate OLS regression model. The code will be: 

PROC REG DATA=real_data; 

MODEL cap_ratio = p_healthp_annuity  size  type  group; 

RUN; 

The estimated coefficients and responding t values for capital ratio variable is 

displayed in table 3. 

 

Table 3: Result of REG procedure. 

  intercept size type group p_health p_annuity 

coefficient -1.86455 -0.68209 0.06027 0.09317 0.00492 -0.08434 

t value -21.25 -13.18 0.87 1.82 1.02 -15.07 

 

The estimated coefficients are not exactly the same but comparable with those 

given by SEM. Both models show that capital ratio will increase as health insurance risk 
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increases, while decrease as annuity risk increase. The direction of change for the three 

control variables is also consistent. 

In order to compare the models, model fitting information is needed, as shown in 

table 4. 

 

Table 4: Fitting indices of REG procedure. 

F value Pr> F R-Square Adj R-Sq 

206.94 <.0001 0.5671 0.5643 

 

F value shows the explanatory variables overall do have effects on capital_ratio, 

while the R-square and Adjusted R-square are only 0.5671 and 0.5643, which are less 

than the R-square from the SEM model, which is 0.8204. Despite the fact that neither of 

these two models fits very well, SEM does fit better than OLS regression, which could be 

evidence for the discussions that in certain situations, SEM will provide a better 

estimation than OLS regression does. 
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SUMMARY 

This report gives a brief description of structural equation modeling (SEM), 

focusing mainly on the differences of SEM from ordinary least square (OLS) regression. 

Since SEM is a comprehensive model which combines characteristics of a variety of 

different modeling methods, we assume that it is able to deal with more complex 

situations than many other models, such as multiple regression, path analysis, factor 

analysis, time series analysis, analysis of covariance, which in fact can be viewed as 

special cases of SEM, especially when compared with OLS regression, which is a very 

simple model with relatively strict assumptions. Several advantages of SEM over OLS 

regression are introduced in the report, and three of them are discussed: the ability of a 

variable to be both predictor and response in the same model; the ability to include 

unobserved latent factors; and the ability to deal with time series data. 

Although SEM enjoys a variety of advantages over OLS regression, it is not 

always the better choice. Since OLS regression can be viewed as one special case of 

SEM, SEM is able to deal with all the situations where OLS regression fits and provides 

the same results as OLS regression. However, SEM is a much more complex model, 

while in research, simpler models are always preferable. Therefore, applying SEM to 

simple situations is neither necessary nor preferable, and may be viewed as overkill. 

Simulation cases on two datasets are used in the report to illustrate whether SEM 

or OLS regression is a preferable choice in different situations. In the first simulation 

case, data are random generated with an underlying structure, and variables are required 
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to be on both sides of the equations. In this case, the coefficients provided by SEM are 

much closer to the "true" coefficients we set than those by OLS regression. In the second 

simulation case, data are randomly generated to satisfy the assumptions of OLS 

regression. In this case, the coefficients provided by SEM are almost the same with those 

by OLS regression, and both are very close to the "true" coefficients we set, which means 

both SEM and OLS regression fit the model well. However, when multiple models all fit 

well, researchers will prefer the simpler ones, so incurring the complexity of SEM here is 

unnecessary and OLS regression is the better choice. In conclusion, SEM and OLS 

regression are modeling different situations. If simultaneous estimation or latent factors, 

for instance, are supposed to be involved, SEM may be appropriate while OLS regression 

is not. On the other hand, if there is only one equation and no latent factors, SEM is 

unnecessary and OLS regression is appropriate. 

A further example is provided by a real data model. The model use information 

on US life insurers in the year 1994. We assume that the capital structure decisions made 

by life insurers are influenced by the risks aligned with their product underwriting 

activities. Those risks can be called product risks. In our model, we focus on two groups 

of product: health insurance and annuity, which are of relatively higher risk and lower 

risk respectively. Since risks cannot be observed directly, one way to represent the risks 

is to use proxies. In our data, such risk proxies are proportion of health insurance 

premium to total premium and proportion of annuity premium to total premium, which 

can be calculated from the data set. While proxies are actually mixture of pure " true" 
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risks and other variables. The "true" risks cannot be measured directly, so applying the 

concept of latent factors can be a good way to represent them. In our model, we use two 

latent factors, which can be referred to as health insurance risk factor and annuity risk 

factor, to represent such purer risks implied by risk proxies. Here in the model, capital 

structure is presented by the insurer's capital ratio, and three control variables, size, type, 

group,  are included for insurer' size, governance structure and group membership. 

CALIS procedure in SAS is used by SEM, where capital ratio is regressed on the two risk 

factors and the three control variables, while the two risk proxies are regressed on the 

corresponding risk factors as well as the three control variables respectively. REG 

procedure in SAS is used by OLS regression, where capital ratio is regressed directly on 

the two risk proxies and the three control variables. Because the purpose of building this 

model is to compare SEM and OLS regression, but not to explain real economic 

phenomena, some useful variables are omitted in order to make tour model not too 

complicated. The overall fitting of both SEM and OLS regression are not very good. 

However, the results can still serve our purpose to compare the relative fitness of SEM 

and OLS regression. We use the two R-squares of estimated linear equations of capital 

ratio. From the outputs, the R-square provided by SEM is 0.8204, while the R-square 

provided by OLS regression is only 0.5671, which concludes that SEM fits relatively 

better than OLS regression in our situation where latent factors is included and 

simultaneous estimation is needed. 
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APPENDIX 

SAS code for the simulations on two datasets in this report is: 

Simulation One: 

data simu1;/* generating random data */  

do i=1 to 500; 

x1=i + normal(12345678); 

x2=500 + i + normal(12345678); 

x3=1000 + i + normal(12345678); 

r1=normal(12345678); 

r2=normal(12345678); 

y1 = - (4*x1 + 2*x2 + 4*x3 + r1 + r2); 

y2 = - (5*x1 + 4*x2 + 4*x3 + 2*r1 + r2); 

output; 

end; 

run; 

/* SEM for simulation one */ 

proc calis data=simu1; 

lineqs y1=a1 x1 +a2 x2 + a3 y2 + e1, 

       y2=b1 x1 +b2 x3 + b3 y1 + e2; 

std e1=vare1, e2=vare2; 

run; 

 

/* OLS regression for simulation two */ 

proc reg data=simu; 

model y1=x1 x2 y2 /NOINT; 

model y2=x1 x3 y1/NOINT; 

run; 

quit; 

 

Simulation Two: 

data simu2; /* generating random data */ 

do i=1 to 500; 

x1=5+1*normal(123456); 

x2=4+2*normal(123456); 

x3=3+3*normal(123456); 

x4=2+4*normal(123456); 

x5=1+5*normal(123456); 

r1=normal(123456); 

r2=normal(123456); 

y1=x1       +2*x3       +x5+ r1; 

y2=2*x1 +x2       +2*x4+ r2; 

output; 

end; 



35 
 

run; 

/* SEM for simulation two */ 

proc calis data=simu2; 

lineqs y1=a1 x1 +a2 x3 +a3 x5 +e1, 

       y2=b1 x1 +b2 x2 +b3 x4 +e2; 

std e1=vare1, e2=vare2; 

run; 

/* OLS regression for simulation two */ 

proc reg data=simu2; 

model y1=x1 x3 x5/NOINT; 

model y2=x1 x2 x4/NOINT; 

run; quit; 

 

Real data model: 

The data for this report are taken from the annual statements of life insurers filed 

with the NAIC for the year 1994.  

For capital structure, this report uses the ratio of adjusted book value of capital to 

total firm invested assets. The adjusted capital formula is the sum of Capital and Surplus, 

Asset Valuation Reserve (AVR), Voluntary Investment Reserve, Dividends Apportioned 

for Payment, Dividends not yet Apportioned, and the Life Subsidiaries AVR, Voluntary 

Investment Reserves and Dividend Liability less Property/Casualty Subsidiaries Non-

Tabular Discount. (Source: page LR022 of the 1996 Life NAIC Risk Based Capital 

Report Including Overview and Instructions for Companies.) For product risk proxies, 

this report uses the proportions of firm premium derived from health insurance and 

annuities, which represents higher and lower product risk respectively. For the size 

measure, this report uses the medium of total assets. The insurer with total asset larger 

than the medium is given size=1, otherwise size=0. For the type measure, the insurer 
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which is a stock insurer is given type=1, and a mutual insurance company is given 

type=0. For the group measure, the insurer which is affiliated with a group of companies 

is given group=1, otherwise, group=0. 

The insurers with missing values for any of the six variables, insurers with 

nonpositive capital ratio, negative proportion of health insurance or annuity premium are 

removed from the data set. After adjustment, 796 insurers remained in the data sat. 

Then we take the logarithms of the capital ratio and two product risk proxies. 

Some insurers do not involve in either health insurance or annuity and thus the 

responding proportion of premium equals zero. In order to calculate the logarithm, we set 

a very small value which is less than any of the nonzero data before taking the logarithm. 

Specifically, for health insurance risk product, the minimum value is 3.40897E-07, and 

we replace the zeros with 3.40000E-07; for annuity risk product, the minimum value is 

3.80630E-06, and we replace the zeros with 3.80000E-06.  

Below is the full SAS code: 

data logdata; 

set data; 

   cap_ratio= log(cap_ratio); 

   p_health = log(p_health); 

   p_annuity = log(p_annuity); 

run; 

 

/* SEM for real data model */ 

proc calis data=logdata; 

lineqs  

       cap_ratio = alpha_c size + beta_c type + gamma_c group + 

lambda_ph F_ph + lambda_pan F_pan + e1, 

    p_health  = alpha_ph size + beta_ph type + gamma_ph 

group +  F_ph + e2, 

    p_annuity = alpha_pan size + beta_pan type + gamma_pan 

group +  F_pan + e3; 

std e1-e3 = vare1-vare3, 
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    size = 0.500315, 

    type = 0.322918, 

    group = 0.441651, 

    F_ph = 1, 

    F_pan = 1; 

cov F_ph F_pan = cov, 

    size type = -0.03141, 

    size group = 0.06972, 

    type group = 0.01267, 

    F_ph size = 0, 

    F_pan size = 0, 

    F_ph type = 0, 

    F_pan type = 0, 

    F_ph group = 0, 

    F_pan group = 0; 

run; 

 

/* OLS regression for real data model */ 

proc reg data=logdata; 

model cap_ratio = size  type group p_health p_annuity; 

run; quit; 
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