

Copyright

by

Marcos Suguru Kajita

2009

The Report Committee for Marcos Suguru Kajita Certifies that this is the approved

version of the following report:

Google App Engine Case Study:

A Micro Blogging Site

Committee:

Adnan Aziz, Supervisor

Sarfraz Khurshid

Google App Engine Case Study:

A Micro Blogging Site

by

Marcos Suguru Kajita

BSCS

Report

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

December, 2009

 iv

Google App Engine Case Study:

Micro Blogging Site

Marcos Suguru Kajita, MSE

The University of Texas at Austin, 2009

Supervisor: Adnan Aziz

Cloud computing refers to the combination of large scale hardware resources at

datacenters integrated by system software that provides services, commonly known as

Software-as-a-Service (SaaS), over the Internet. As a result of more affordable

datacenters, cloud computing is slowly making its way into the mainstream business

arena and has the potential to revolutionize the IT industry. As more cloud computing

solutions become available, it is expected that there will be a shift to what is sometimes

referred to as the Web Operating System. The Web Operating System, along with the

sense of infinite computing resources on the “cloud” has the potential to bring new

challenges in software engineering. The motivation of this report, which is divided into

two parts, is to understand these challenges. The first part gives a brief introduction and

analysis of cloud computing. The second part focuses on Google’s cloud computing

platform and evaluates the implementation of a micro blogging site using Google’s App

Engine.

 v

Table of Contents

List of Tables ... vii

List of Figures ... viii

Introduction ..1

Cloud Computing ...4

Impact on Business ..4

Cloud Computing Challenges ..6

Choosing the Right Cloud Computing Platform ..7

Google App Engine..8

Java and Sandbox ...8

GAE Plug-in for Eclipse ..9

Google Web Toolkit ..12

Datastore ..13

Micro Blogging Site on Google App Engine ...14

Motivations ..14

Basic Approach ..15

MyMicroBlog Architecture ...17

MicroBlog ..18

IBlogView ..21

 Create Blog View ..23

 Edit Blog View ...24

 Image List Viewer and Uploader ..25

BlogEntry and ImageEntry Classes ...26

BlogItem and ImageItem Classes ..26

IBlogEntryService and IBlogServiceAsynch Interfaces 27

BlogEntryServiceImpl Class ..27

Formatting and Style ..29

Image Location Tagging ...30

 vi

Other Utility Tools ..32

 Selenium IDE ...32

Work Breakdown ...34

Results ..36

Development Experience ..36

Performance ..37

Lessons Learnt ..40

Future Work ...41

Conclusion ...43

Bibliography ...44

Vita ..46

 vii

List of Tables

Table 1: List of Views in MyMicroBlog ..21

Table 2: Work breakdown of main development tasks34

Table 3: Total lines of code in the client and server side36

Table 4: Project deployment time information ...36

Table 5: System description and development environment37

Table 6: First vs. Subsequent page load time ..38

Table 7: Page load time measurement ..38

 viii

List of Figures

Figure 1: The Computing Platform Lifecycle ..2

Figure 2: The Cloud Computing Arena ..5

Figure 3: GAE menu buttons on Eclipse ..10

Figure 4: Eclipse Package Explorer ...10

Figure 5: GAE Web Application Wizard ...11

Figure 6: GAE Deployment Tool on Eclipse ...11

Figure 7: MyMicroBlog main page using GWT Dark Theme16

Figure 8: Model-View-Controller Diagram ...17

Figure 9: MyMicroBlog Diagram ..18

Figure 10: Google Sign-in Screen ..19

Figure 11: MicroBlog Class Diagram ..20

Figure 12: Partial Class Diagram of View Classes in MyMicroBlog22

Figure 13: Layout of CreateBlogView using GWT Panels23

Figure 14: Create Blog view...24

Figure 15: Edit Blog view ..24

Figure 16: Image List Viewer and Image Uploader ...25

Figure 17: Image Uploader expanded ..25

Figure 18: BlogItem Entity on Google App Engine Datastore26

Figure 19: BlogEntry RPC Implementation ...28

Figure 20: BlogEntry Servlet Configuration ..28

Figure 21: The MyMicroBlog.gwt.xml file ..29

Figure 22: Custom style settings for GWT widgets ...30

Figure 23: Image viewer with lat-long values ..31

 ix

Figure 24: Image pin on map..31

Figure 25: Selenium IDE for Firefox ...33

Figure 26: Script used to measure page load time ..39

Figure 27: YSlow statistics for MyMicroBlog main page40

Figure 28: YSlow statistics for a commercial blogging site...............................40

 1

Introduction

Cloud computing received its name from the representation of the Internet as a

cloud on blackboard diagrams. Cloud computing refers to the hardware, systems

software, and datacenters that provide services over the Internet [1]. Cloud computing is

not a new concept. In fact, it is in use in many places, but on a smaller scale. For

example, researchers at university campuses perform complex computations on bio-

chemical models and weather pattern predictions much faster on grid computers [2].

Users play the same online game from different geographical locations. Documents are

created and shared by many users through Google Docs.

These are examples of cloud computing concepts in use in smaller scale.

Recently, cloud computing has made into the main stream business arena due to the

commoditization of computers. Many companies have started to offer their own cloud

computing solutions. Companies like Amazon, Google, Microsoft, IBM, and Sun have

released innovative cloud computing solutions. These solutions vary from virtualized

hardware to well designed APIs [4]. In a few months, users will have an increased

number of options when more companies release their own cloud computing solutions.

The business of providing cloud computing solutions is growing very fast because

businesses taking advantage of such offerings are growing as well [10].

As users move to the cloud, it is expected that there will a migration to the Web

Operating System (Web OS). Cloud computing is setting the stage for a revolution in the

IT industry. There is a possibility that desktop applications will be replaced by web

applications and companies will use cloud computing solutions for their IT needs [10]. At

the moment, cloud computing is at its infancy. As any other platform development cycle

(Figure 1), there will be an adjustment phase followed by the standardization of cloud

computing technologies [9].

and gain expertise on the cloud

there will be a few technologies more successful than others

become familiar with the different technologies in order to choose the prevailin

technology when the industry stabilizes.

the user needs to evaluate an

short term. For the long term, the user needs to compare and contrast diff

technologies. These experiments should not be a problem since the cloud technologies

are cheap. The affordability of

to users [10].

Figure 1: The Computing Platform Lifecycle

2

. During the initial phase, it is important that users

cloud technologies because as in any other development cycle

there will be a few technologies more successful than others. It is important that users

become familiar with the different technologies in order to choose the prevailin

technology when the industry stabilizes. Until the cloud computing industry stabil

and choose the cloud technology that best fits his needs

For the long term, the user needs to compare and contrast diff

technologies. These experiments should not be a problem since the cloud technologies

he affordability of cloud solutions makes the technology even more attractive

The Computing Platform Lifecycle

, it is important that users evaluate

because as in any other development cycle

It is important that users

become familiar with the different technologies in order to choose the prevailing

cloud computing industry stabilizes,

technology that best fits his needs for the

For the long term, the user needs to compare and contrast different

technologies. These experiments should not be a problem since the cloud technologies

solutions makes the technology even more attractive

 3

The Google App Engine (GAE) platform, which is evaluated in the second part of

the paper, is free up to a point. With affordable solutions like GAE, there is no reason for

users to stay away from the cloud technologies. In fact, there are plenty of reasons to stay

up to date with the technology because the cloud enables creativity to drive the

development of products and businesses. The sudden competition from fast-followers can

cause a major impact on businesses in general [9]. Therefore, careful evaluation of

technologies like GAE helps keep one eye on the technology and the other eye on the

competition.

 4

Cloud Computing

IMPACT ON BUSINESS

Cloud computing and the promise of the Web OS is stirring the IT Industry.

Businesses that traditionally had very little presence in IT have become major players on

this new business endeavor. Amazon is a good example of such company. From its

humble beginnings as an online store, Amazon has become one of the leading cloud

computing providers [10]. Many other companies are using their strengths to create

successful cloud computing offerings. Some companies seem to have an advantage over

the competitions since they built their company’s DNA around the web. One example of

such company is Google. Google has harnessed its experience and presence on the web to

provide enterprise solutions on cloud computing. Traditionally, Google has not been

involved in enterprise solutions but with its release of GAE it has plans to expand its

businesses beyond online advertisements [10]. Many cloud providers are offering new

cloud solutions and the market does not seem to be limited to large companies only. The

same commoditization of computers that has initially boosted the cloud business has also

opened the doors for smaller companies who want to provide their unique solutions [1].

The cloud has become a large centrifugal force that keeps attracting companies and

businesses.

 5

Figure 2: The cloud computing arena [10]

For users, the bottom line is that cloud computing is affordable. Amazon sells its

service for only 10 cents per hour and its Scalable Storage Service (S3) for $0.12 per

gigabyte-month. The majority of today’s cloud computing clientele are medium and

small businesses (i.e., startups). For these companies, affordable services like S3 provide

a golden opportunity to launch new products with significantly less capital upfront [10].

The economics around cloud computing allow innovative companies to create products

that were economically challenging or are significantly cheaper than the competition [9].

Traditionally, many business ideas took time to realize because of the prohibitive cost of

computing power, scalability issues, and primarily the high risk due to large capital. This

has all changed and innovation is now the key.

 6

CLOUD COMPUTING CHALLENGES

Many of the challenges in cloud computing are connected to security. The idea of

moving the entire company’s private data to some remote data center controlled by a

third party company may seem like exposing business secrets. It will take time to adjust

to this new model and security will be one of the biggest challenges to cloud providers

[10]. Imagine that a company has put all its data on Amazon’s S3. Despite the fact that

Amazon has built its reputation on reliability, there is still the risk of the service going

offline for a few hours. If that happens, the user’s data is no longer available and he is at

the mercy of Amazon’s ability to recover [10]. However, with heavier investments on

systems software and hardware, Amazon’s services should still be more resilient to

system failures and secure than any in-house IT solution.

There is also the concern that “once you are in, you are really in” [5]. For many

startups, the decision whether to adopt a cloud computing platform is simpler. However,

for more established companies, the worry about lock-in is a real concern. Some

companies are concerned that if they opt for a platform, they may lose their investment if

the cloud provider goes under. There is always the risk of lock-ins if a technology is used

before fully understanding it. For example, naïve implementation on Google’s App

Engine may result in a suite of applications that may be challenging to port to another

environment. If for some reason Google decides to increase their fees and the cost no

longer makes economical sense for the client to stay with Google, the migration back to

the client company’s environment or another provider may turn out to be difficult and

costly. The challenge is to understand the strengths and limitations of each cloud

computing solution to make intelligent long term decisions.

 7

CHOOSING THE RIGHT CLOUD COMPUTING PLATFORM

As mentioned above, there are several cloud computing solutions in the market

today. The choices range from virtualized hardware to all-in-one API packages. The key

to model computation, storage, communication, and the illusion of infinite resources is

the level of abstraction these different solutions provide. Each solution seems to focus on

different aspects of abstraction [1]. For example, Amazon’s Elastic Compute Cloud

(EC2) provides very low level abstraction to the hardware. EC2 virtualizes the hardware

and offers a set of libraries that allow developers full control over the software stack. In

contrast, Google’s App Engine (GAE) provides a framework based on well defined

interfaces and APIs that allow quick development with quality. The development on

GAE is done on either Java or Python. There is support for a few other languages but

they are not as significant as for these two. For example, Google’s data storage service

supports Java Data Object (JDO), which completely abstracts the implementation of the

database.

At the moment, it is difficult to determine the right cloud computing platform. It

is up to the user to determine whether he needs the level of hardware control provided by

Amazon’s EC2 or the easy migration of Java code to the App Engine environment [9].

Hopefully, as the platform development cycle comes to a full circle, there will be enough

standards that allow users to develop on one platform and store data on another. At that

point, the right choice will be the platforms that support the standards and allow users to

migrate seamlessly from one provider to another.

 8

Google App Engine

Google App Engine (GAE) is the platform that allows software developers to

leverage Google’s cloud computing infrastructure for web application development [3].

Similar computing resources (or services) used by Google Docs are available under the

GAE. Google offers the same reliability and openness as its other flagship products like

Google Search and Google Mail. GAE is free up to a point, but there is plenty of room

for the experiments that are needed to evaluate the technology. The following are some of

GAE’s key features [3].

• Dynamic web serving, with full support for common web technologies

• Persistent storage with queries, sorting, and transactions

• Automatic scaling and load balancing

• APIs for authenticating users and sending email using Google Accounts

• A fully featured local development environment that simulates Google App

Engine on your computer

• Task queues for performing work outside of the scope of a web request

• Scheduled tasks for triggering events at specified times and regular intervals

JAVA AND SANDBOX

GAE released the support for Java only recently. Initially, it only supported

Python, but since most of web enterprises have standardized to either .NET of Java, it

was a matter of time to have Java support in GAE. The Java run time environment in

GAE is feature rich and offers comprehensive support of Java’s standard libraries and

APIs. All the development can be done in native Java and the application interacts with

GAE via Java Servlet Interfaces. The Java environment provides Java 6 JVM, JavaMail,

 9

JCache, and standard interfaces for GAE’s datastore with Java Data Object (JDO) and

Java Persistence API (JPA). Java standards make the development on GAE easy and

familiar.

There are some limitations due to sandboxing, so migrating existing code to GAE

requires some minor changes. The JVM runs on a sandbox to provide security to

applications. The sandbox assures that each application on GAE do not interfere with

each other. It also guarantees performance and scalability.

GAE PLUG-IN FOR ECLIPSE

Eclipse is an open source community with the objective of building a standard

development platform. The Eclipse Integrated Development Environment (IDE) provides

Java as its primary programming language, but it supports plug-ins for many other

languages such as C, C++, etc. Development on GAE is straight forward with the GAE

plug-in for Eclipse IDE. Eclipse manages the workspace and makes the development on

GAE as simple as developing any other Servlet-based web application. The Eclipse plug-

in allows developers to create new GAE application from within Eclipse IDE. Provided

that the user has a GAE account, the user can create, deploy, and run web applications

directly from the IDE. The App Engine SDK provides a web server for testing

applications locally in a simulated environment. The plug-in adds extra buttons to the

Eclipse menu bar (Figure 3) that allows the applications to run on the local web server in

hosted mode.

 10

Figure 3: GAE Menu Buttons on Eclipse

The management of client and server source files is also done from within the

IDE (Figure 4). Eclipse’s development tools and debugging facilities are available for

developing web applications. GAE application development on Eclipse is no different

than writing a Servlet or desktop application. Once the application is ready, the

deployment is as easy as a button click.

Figure 4: Eclipse Package Explorer

 11

When creating a new web application, the wizard (Figure 5) takes care of the

creation of the necessary configuration files needed to run applications on GAE. The

web.xml and the main HTML files are generated automatically by the GAE plug-in.

Figure 5: GAE Web Application Wizard

Figure 6: GAE Deployment Tool on Eclipse

 12

GOOGLE WEB TOOLKIT

Developing web applications can be tedious and time consuming. It is fair to say

that software developers spend most of their time trying to figure out little quirks in

JavaScript or compatibility issues on certain browsers. Asynchronous JavaScript plus

XML (AJAX) is usually a popular option for writing interactive and attractive web

applications. AJAX is a web development technique based on standards such as

JavaScript, XML, HTML, and CSS. AJAX allows client web applications to

communicate with the server asynchronously in the background allowing the

development of interactive web applications. However, writing scalable, reusable, and

maintainable code in AJAX can be challenging.

Google Web Toolkit (GWT) abstracts the complexity of JavaScript by providing

a rich set of Java tools to develop attractive front end applications. Developers use GWT

to design the layout of web applications and the display of Graphical User Interface

(GUI) elements in pure Java. GWT’s interfaces and libraries mimic those of existing User

Interface (UI) frameworks such as Swing and Standard Widget Tool (SWT). The main

difference is that GWT dynamically generates HTML instead of pixel based graphical

elements. For example, GWT’s Button results in HTML’s ‘<button>’ instead of an image

or pixel based element. As a result, there are virtually no cross-browser incompatibility

issues.

Behind the scenes, GWT compiles the Java code into optimized JavaScript that

runs on most of commercial browsers. Events, such as button clicks, are coded directly to

the GUI element in Java so it follows object oriented programming. GWT code running

on Eclipse in hosted mode enables programmers to use debugging tools allowing them to

step into the code line by line. Writing interactive web applications with attractive GUI

elements in GWT is very similar to writing desktop applications.

 13

DATASTORE

GAE makes data persistency on Google’s distributed data storage facilities very

simple. GAE abstracts the administrative work required to maintain a distributed system

and database such as Bigtable [6]. Bigtable is Google’s solution for high availability

distributed storage system. The system manages petabytes of structured data across

multiple scalable commodity servers. As resources are needed more machines can be

added to the clusters without interrupting the system. Depending on the type of web

application, the user could be interacting with several servers at any given time. With

GAE, the programmer does not worry about any of the intricacies needed to maintain and

synchronize data in the datastore. The engine takes care of all the transactions, load

distributions, and even backups. The access to GAE datastore is provided via standard

APIs, which result in a portable system. In other words, web applications built on these

interfaces can be ported to and from Google environment effortlessly. This is an

important characteristic of Google’s datastore because the resulting system has no risk of

lock-in with Google’s BigTable. The engine supports the Java Data Object (JDO) and

Java Persistence API (JPA). Both standards are from the DataNucleus Access Platform,

which is an open source platform of many Java standards [7].

GAE also supports a SQL like query language called GQL. Because the datastore

is not a traditional relational database, GQL provides a layer of abstraction with query

notations similar to SQL. GQL simply provides familiarity to programmers accustomed

with SQL statements on relational databases. Since GQL is a proprietary abstraction of

Google’s Bigtable, it is not recommended to design the system on it because of the risk of

coupling and lock-in. The resulting system would not allow the user to port to a non-

Google environment easily.

 14

Micro Blogging Site on Google App Engine

MOTIVATIONS

The main motivation for implementing the micro blogging site is to evaluate

GAE’s services and technologies. A standard micro blogging site has the following

features:

• User registration and secure login

• Client-server model

• Dynamic updates and data persistence

• Events and notifications

• Email communication

The goal is to implement the features listed above using the tools and APIs

provided by GAE development platform. This effort will provide an insight on the level

of usability, scalability, portability, and flexibility in developing web applications on the

GAE’s platform.

The secondary motivation for developing the application is to design components

for a micro blogging framework. The goal is to develop a set of modular components and

building blocks for developing micro blogging sites. The use of micro blogs has made

into corporate life where the tool helps create communities within the company

environment [8]. The messaging and notification functionality of blogging tools help the

exchange of information among colleagues at work. The exchange of messages does not

need to be between people. Systems can be integrated to the blogging system so that it

can notify users of events. For example, a blogging system could be used by a software

engineering team to monitor the development efforts. When new code is checked into the

Version Control System (VCS), a text message is sent to the software architect or

developer about certain events (e.g., build or compilation errors). Depending on the type

 15

of business the requirements for a micro blogging application can vary and commercial

products may not support them out of the box. Hence, there is a need for a platform for

quick development of customized features [8].

BASIC APPROACH

The MyMicroBlog micro blogging site (Figure 7) is implemented in GWT and

Java on GAE using the Eclipse IDE. The Web Application Wizard, which is a tool

provided by GAE plug-in for Eclipse, helped create all the preliminary client and server

code, configuration files, and application settings (Figure 5). Once the application was

created, the deployment to Google’s cloud environment was a two button click process

using the Web Application Deployment tool (Figure 6). Once the deployment completed,

the site was running on http://mymicroblog.appspot.com/. The entire process of creating

and deploying the web application did not take more than a few seconds. The client and

server folder structure shown in Figure 5 is created by the wizard and the environment is

ready for development of the remaining pieces that makes the micro blogging site.

 16

Figure 7: MyMicroBlog main page on GWT Dark Theme

 17

MICROBLOG ARCHITECTURE

The basic architecture of MyMicroBlog is based on the Model View Controller

(MVC) architectural pattern (Figure 8). The pattern has the benefit of isolating the

business logic from the presentation and data layers. The model encompasses the object

or data structure used by the application. Any manipulation to the domain’s data is dealt

within the model and notification is sent to the views. The view presents the model (i.e.,

data) to the user. Typically, the view has only the implementation of the GUI elements

that visualizes the state of the model. The controller is the object that receives inputs

(usually user inputs) and notifies the model or the view. The resulting application using

the MVC pattern is modular and easy to test. Modular applications have the benefit of

reusability, extensibility, and rapid development.

Figure 8: Model-View-Controller Diagram

The implementation of applications using MVC pattern usually uses the Observer

design pattern. In the observer pattern, the object, called the subject, manages a list of

“observers” and notifies them when an event occurs. In MVC, the controller is usually

implemented using the observer pattern.

 18

The MyMicroBlog does not use the observer pattern, but implements a controller

class in the MVC pattern. The following diagram depicts the high level architecture of

MyMicroBlog.

Figure 9: MyMicroBlog Diagram

MICROBLOG CLASS

The MicroBlog class is the main entry point for the application. It implements the

EntryPoint interface from com.google.gwt.core.client package. The ‘onModuleLoad’

method from the EntryPoint interface is called when the application first starts. The user

validation is performed in the onModuleLoad method. The user authentication is done via

GAE’s UserServieFactory, which is a service that authenticates users with Google

accounts. If the user is validated successfully, the main MyMicroBlog page is loaded. If

the user is not validated, the user is directed to the Google account sign-in page (Figure

10). The class is also the controller on the MVC pattern. The class handles the messages

from the views and generates notifications. Figure 12 shows the MicroBlog class

diagram.

 19

Figure 10: Google Sign-in Screen

 The main navigation bar for the application is also in the MicroBlog class. The

navigation bar receives the user input and the MicroBlog class loads the appropriate

views or re-routes the notifications to the model.

 The MicroBlog class has unnecessary complexity. In order to improve the object,

the controller logic can be replaced by an observer pattern. The navigation bar also adds

complexity and makes the MicroBlog class less flexible. If the navigation bar logic is

moved into its own class, it will allow for better customization and reuse. The result

would be a lightweight MicroBlog class that serves as the entry point for the application

and delegates the core functionality to the MicroBlog MVC architecture.

 One important point to make about the class is the fact that it uses the EntryPoint

interface. The use of EntryPoint can impose a problem for portability since the interface

is part of the GWT package. However, after the two improvements mentioned above, the

class should be very light weight and porting the application to a non-Google

environment would require very little refactoring. In addition to that, GWT is open

source and is available under the Apache 2.0 license.

 20

Figure 11: MicroBlog Class Diagram

 21

IBLOGVIEW

IBlogView implements the interface that allows the different views in the

MyMicroBlog application to be displayed. The interface implements the following

methods.

• void Initialize(MicroBlog)

• Widget GetWidget()

• void Reset()

The view that implements the IBlogView interface can be plugged into the

MicroBlog main page seamlessly. Each of the view classes renders the GUI interface and

handles the user inputs. The following table shows the different views implemented in

MyMicroBlog.

View Name Description

AboutUsView Displays the AboutUs page

CreateBlogView Displays the create blog page with controls to allow new blog entries

DisplayBlogListView Diplays a page with a list of blogs

DisplayBlogView Displays the blog entry

DisplayImageView Displays the page for image loading and display

EditBlogView Displays the page to edit blog entries

HelpView Displays the Help

ReportAbuseView Displays the report abuse page

ReportProblemsView Displays the report problems page

SearchBloggerView Displays the search page for bloggers

SearchByCategoryView Displays the search page for categories

SendEmailView Displays the email communication page

UserProfileView Displays the user profile page

Table 1: List of Views in MyMicroBlog

 22

Figure 12: Partial Class Diagram of View Classes in MyMicroBlog

 Each view class renders the GUI interface for a particular function in the system.

For example, the EditBlogView class creates the controls needed to edit the blog entry

and handles the user commands (i.e., Update or Cancel). The commands (events) are sent

to the MicroBlog class, which in turn re-routes it to the BlogEntry object, which is an

object in the model component on MVC.

 The micro blog view classes use GWT to create the GUI elements. The layout of

the controls is done via the GWT panels. The concept of paneling allows developers to

take a page layout and translate it into code. The alignment of controls within a page is all

done by specialized GWT panels. Having an upfront idea of the layout helps the selection

 23

of the panels. Figure 13 shows the different panels used in the layout of the

CreateBlogView.

Figure 13: Layout of CreateBlogView using GWT Panels

Since the view classes make heavy use of GWT, the same observation regarding

lock-in due to GWT applies. However, as long as the application conforms to the Apache

2.0 license, the code should be fairly portable.

Create Blog View

The Create Blog view allows users to create a new blog entry. The view is a

simple page with the blog title input box, the blog category selection box, and the blog

body input box (Figure 14).

 24

Figure 14: Create Blog view

Edit Blog View

The Edit Blog view allows user to edit, delete, or show images associated with the

blog entry.

Figure 15: Edit Blog view

 25

Image List Viewer and Uploader

The Image List Viewer displays the images associated with the blog entry. The

view also allows the upload of new images with location tags (Figure 17).

Figure 16: Image List Viewer and Image Uploader

Figure 17: Image Uploader expanded

 26

BLOGENTRY AND IMAGEENTRY CLASSES

The BlogEntry and ImageEntry classes are the data structure that handles the blog

and image entries. They both make the model component in the architecture. The

BlogEntry class has the interfaces to create and edit a new blog entry. The ImageEntry

class has the interfaces that allow the loading and storage of images in the application.

They both implement the Serializable interface allowing them to be passed to the server

by the Servlets (see BlogEntryServiceImpl below).

BLOGITEM AND IMAGEITEM CLASSES

The BlogItem and ImageItem classes are the counterparts for the BlogEntry and

ImageEntry on the server side. The BlogEntry and ImageEntry are stored in the datastore

as instances of BlogItem and ImageItem respectively (Figure 18). The main difference is

that the item classes are simple data structures that allow the storage of blog and image

information. Both BlogItem and ImageItem classes have only getter and setter functions.

On the other hand, BlogEntry and ImageEntry can perform specialized functionality to

handle events in the application.

Figure 18: BlogItem Entity on Google App Engine Datastore

 27

IBLOGENTRYSERVICE AND IBLOGSERVICEASYNCH INTERFACES

The IBlogEntrySernvice and IBlogServiceAsynch interfaces makes up the code

needed for the Remote Procedure Call (RPC). The interfaces are used to invoke the

server and pass the BlogEntry object between the client and server. Although both

interfaces are written in Java, GWT compiles then into JavaScript. Both the client and

server serialize and deserialize the data object to and from simple text form during the

data exchange.

BLOGENTRYSERVICEIMPL CLASS

The BlogEntryServiceImpl class inherits from the RemoteServiceServlet and

implements the IBlogEntryService (Figure 19). RemoteServiceServlet is the servlet base

class that manages the RPC calls and automatically performs deserialization on incoming

data (e.g., BlogEntry and ImageEntry) from the client and serialization on the outgoing

data to the client. Ultimately, the BlogEntryServiceImpl is a Servlet that handles the

requests from clients through the methods implemented by the IBlogEntryService

interface.

 28

Figure 19: BlogEntry RPC Implementation

 The configuration of the new Servlet is done on the war.WEB-INF.web.xml

(Figure 20) and MyMicroBlog.gwt.xml files (Figure 21). After adding new Servlets the

web.xml file needs to be updated and re-deployed.

Figure 20: BlogEntry Servlet Configuration

 29

Figure 21: The MyMicroBlog.gwt.xml file

FORMATTING AND STYLE

GWT provides a very simple mechanism to format and style its widgets. By

adding a stylesheet the programmer or designer has full control over the look and feel of

the overall web application. The display properties of each GWT control can be

customized in the stylesheet by following a naming convention. The naming convention

follows a strict structure “.gwt-[WidgetName]” (e.g., ‘.gwt-Button’). The stylesheet used

in the MyMicroBlog application uses the GWT default styles with a few modifications.

There are limited customizations to make the overall display area and button smaller to fit

the application in smaller screens. The following is a snippet of the stylesheet used in

MyMicroBlog that modifies the appearance of the GWT DialogBox.

 30

Figure 22: Custom style settings for GWT widgets

 The overall application style can also be configured by setting the module

to inherit a style from any of the GWT styles (Figure 21). The application style is applied

in the Application GWT XML file (i.e., MyMicroBlog.gwt.xml).

IMAGE LOCATION TAGGING

The images loaded via the micro blogging site can be tagged with latitude and

longitude values (Figure 23). This enables the application to display the exact location on

the map where the picture was taken. The application uses another utility from GWT

called Geocoder. The Geocoder is a web service that takes the user input address and

converts it into latitude and longitude values. The latitude and longitude values are used

to display a “pin” on a map indicating the location where the picture was taken. The map

is another GWT tool called MapWidget. The MapWidget allows programmers to display

maps on web applications with similar functionalities as in Google Maps.

 31

Figure 23: Image viewer with lat-long values

Figure 24: Image pin on map

 32

Both Geocoder and MapWidget are Java libraries and the integration of location

and mapping capabilities to a web application is almost effortless. The only configuration

required in order to use any of Google Mapping services is the creation of an account

with Google and the use of the key provided with the account in the application xml file

(i.e., MyMicroBlog.gwt.xml).

OTHER UTILITY TOOLS

Selenium IDE

The use of automated testing tool was limited during the initial development due

to constant changes in the user interface. Once the user interface became stable, Selenium

IDE [11] (Figure 25) was used to automatically test the user interface. The tool integrates

with Mozilla Firefox and helps record users actions on the web page. Once the recording

is complete, the tool helps play back the users actions. The utility assisted finding a bug

in the implementation of the blog Servlet where an occasional error was preventing the

insertion of new blog entries. Selenium created new blog entries via the CreateBlogView

page by automatically filling in the fields. Once the script completed the form and hit the

Create button it waited for one second and verified if the entry was on the datastore by

querying the newly created entry from the SearchByCategory page. The script repeated

the steps every second until the problem re-occurred. The script helped pinpoint the

problem and resolve it. When a new blog entry was inserted to the datastore an error was

occurring intermittently because the Create method in BlogEntryServiceImpl on the

server was not using javax.jdo.Transaction. Once the problem was resolved, the same

script was used to verify the fix.

 33

Figure 25: Selenium IDE for Firefox

 34

WORK BREAKDOWN

Table 2 shows the breakdown of the major tasks performed during the

development of the MyMicroBlog application.

MyMicroBlog Work Breakdown

Task Feature Development
Time (days)

Comments

MyMicroBlog
Application

Overall
application setup

0 Application setup took no time due to the help of the
Application and Deployment Wizards.

Client-server
folder structure

Deployment
configuration

Deployment files

Application
Deployment

Requirements
Gathering

 1 Time spent gathering requirements

Specification 1 Time spent drafting the specifications

Architecture 2 Total time spent on the architecture of the
MyMicroBlog architecture. This includes the time
spent on researching for modeling tools to use in
Eclipse. These modeling tools helped generate the class
and data flow diagrams used to define the software
architecture.

Design 7 Time spent on designing the MyMicroBlog system.
This includes the time spent on researching for the
different GWT technologies and prototyping. About
80% of the time spent in this stage was on reading and
learning on GWT.

Table 2: Work breakdown of main development tasks

 35

Task Feature Development
Time (days)

Comments

Implementation Total 11 views 3 Once the IBlogView interface was defined, the
development of the different views were very straight
forward. The system now supports the plug-in for any
view seamlessly.

MicroBlog
controller

4 The initial implementation of the MicroBlog class was
not intended to use it as a controller. As a result, it
required refactoring to adapt to the MVC pattern and
support the IBlogView interface.

Blog Entry Data
Object

3 Large amount of time was spent on debugging
problems with the servlet configuration files.
Automatically generated files helps development but
when edited manually can lead to hard to find bugs.

Image Upload 7 95% of the time was spent on debugging the Servlet
code and GWT configuration files (i.e., xml files). The
initial implementation was done using sample code
from online sources. It turned out that some of these
sources contained errors in the Servlet code or
configuration files. The errors were very hard to find
because at runtime the debugger generated messages
that were very cryptic and hard to understand. Some of
the errors were due to an extra '/' in front of the path
name in the xml file and only caused problems at
runtime.

Image Data
Object

3 Similar problems understanding the need for dedicated
objects in the server side caused delays in the
development of the image data object. It is important
to understand that client and server objects follow very
strict Servlet or JDO rules.

Style and
Formatting

2 Time spent on researching for techniques to apply
styles to the web application.

Mapping 1 The development of the mapping feature was very
straight forward.

 Total 34

Table 2, cont.: Work breakdown of main development tasks

 36

RESULTS

Development Experience

The overall development experience in GAE was extremely rewarding. The

platform and GWT allow for quick development of interactive web applications. The

GWT plug-in for Eclipse is a must have. There is very little to do as far as configuration

and setup once you use the Create and Deploy Application Wizards. The developer can

truly focus on the architecture and design of the web application. The resulting code base

is very small. Table 3 shows the breakdown of the total number of lines of code in the

client and server side of the application. Table 4 shows the average time it takes to

compile and deploy the application to Google servers.

Total Lines of Code

Client side 3406

Server side 1782

Table 3: Total lines of code in the client and server side

Project Deployment

 Avg. (sec)

Compilation Time 47.876

Files Upload Time 25.362

Total Deployment Time 73.238

Table 4: Project deployment time information

 37

 Table 5 shows the system description and development environment on which the

application was developed

System Description

Operating System Windows Vista

System Type 32-bit Operating System

Processor Intel Dual Core 1.73GHz

Memory (RAM) 2.0 GB

Laptop Model Hewlett-Packard Presario C500

Development Environment

IDE Eclipse Galileo

Java Version 1.6.0_03

Network Information

Type Wireless Broadband

Download 7.18 Mb/sec

Upload 4.71 Mb/sec

Table 5: System description and development environment

Performance

The overall performance of GWT does not seem to affect the usability of the

application. GWT compiles the GWT components in optimized JavaScript, so at run time

there is no performance difference between JavaScript coded manually and auto

generated by GWT. In fact, Google states that the JavaScript code generated by GWT

performs better because of optimizations.

The only noticeable performance problem is during the initial creation of the

PersistenceManagerFactory. The PersistenceManagerFactory used during JDO data

transactions is very costly at first. In order to cope with the initial hit, a singleton class

wraps the PersistenceManagerFactory instance. After the singleton class is created, the

 38

PersistenceManagerFactory instance is kept in memory, and there is no significant

performance hit thereafter. The performance hit is noticeable only if the singleton is

unloaded due to low traffic or the application is reloaded. In that case, the user who visits

the site for the first time will notice a 5~6 seconds of delay (Table 6).

Page load time (msec) Comments

First time ~6000 Most of the time is spent on

the instantiation of the

PersistenceManagerFactory.

Subsequent times <500 PersistenceManagerFactory is

in memory and JDO

transactions can take place

immediately.

Note: The time was measured at the server side by placing timers in the server code and it

does not account for the network latency. The objective was to find the place in the code that

was causing the long page load time. The number above is the average of 100 page loads.

Table 6: First vs. Subsequent page load time

 Table 7 shows the page load time comparison between MyMicroblog and some of

the commercial web sites. The value is the average of 1000 page load requests. The

measurement was taken programmatically using a script written in C# as shown in Figure

26.

MyMicroblog Twitter Google Yahoo CNN MSN Ebay

487.5577194 379.7156 492.8234 542.9673 503.1726 550.1769 579.463

Table 7: Page load time measurement in msec.

 39

Figure 26: Script used to measure page load time

Figure 27 shows the statistics generated by YSlow [12] for Firebug when loading

the MyMicroBlog main page. According to the report generated by YSlow, the main

page makes poor use of Content Delivery Network (CDN) and gave MyMicroBlog main

page an overall grade of C. However, this is because the main page displays images and

use stylesheet and these are standard files for any web page. Figure 28 shows the YSlow

statistics for a commercial blogging site. The YSlow report also points out the problem

with CDN and gave a D grade to the site.

 40

Figure 27: YSlow statistics for MyMicroBlog main page

Figure 28: YSlow statistics for a commercial blogging site

Lessons Learnt

The Create Application and Deploy Application wizards are very useful. They

automatically generate configuration files, folder structure, and source code. The

configuration of the application is done once, so the auto configuration feature is very

helpful. The auto generation of the greeting page is useful because the wizard builds the

package structure for the client and server as well. The only drawback of auto generation

of code and configuration files is that the developer may end up with unnecessary code.

Debugging through auto-generated code can be time consuming due to unfamiliarity and

amount of unnecessary code. Errors in the configuration file introduced by new features

 41

added manually can be hard to detect, especially when programmer is a novice on Servlet

coding. As reported in table 2, most of the time spent during the development of the

client and server code was spent on troubleshooting Servlet and configuration file errors.

These errors can be extremely hard to find if the programmer does not have a good

understanding on the technology. The wizard does most of the work, but it is important

that the programmer knows exactly what the wizard is doing because manual changes are

needed.

FUTURE WORK

There is room for improvement on the MyMicroBlog platform. The current

implementation requires refactoring on the MicroBlog class in order to make the platform

truly modular. For example, the complexity of the MicroBlog controller class does not

allow for easy plug-in of new functionality in the navigation bar. The two refactoring

points made in the MicroBlog Class section will result in a better design.

Security is also another aspect that needs attention in the platform. The calls to

blog and image Servlets have no authentication at the moment. Any malicious web

crawler could invoke the Servlets causing unnecessary loads on the server.

The user interface uses the default GWT styles. The default styles are regular

Google styles and the page has the look and feel of any other Google application. Adding

a mechanism to load a custom style sheet will allow the user to add personality to the

web application. GWT controls have their own properties and need to be set on the main

style sheet.

 42

The image location tagging uses only the user entered street address. Further

improvements to the system will be to allow users to use GPS coordinates from devices

such as the iPhone to tag images.

 43

Conclusion

There is no doubt that cloud computing has opened new business opportunities

and has started a new Internet revolution. For end users, the cloud promises unlimited

computing power at very affordable prices. Creative companies can take advantage of the

cloud services to deploy applications that before were too expensive to develop or

maintain. There is the opportunity of getting rid of the IT department in the company all

together resulting in savings and less overheads. For cloud providers, there is a new

business opportunity where commoditized computer resources can be sold as pay-as-you-

go model.

The race is on for cloud providers and the market does not have a clear winner

yet. All the cloud solutions available in the market today make the early stage of the

platform development cycle. Until the cycle comes to a full circle, users should gain

experience on the cloud technologies available. This is a very important step to create the

sense of direction in the industry and the creation of standards. From the start of the cycle

to the end when the cloud computing platform stabilizes, users will most likely be

winners since the capital to experiment on technologies such as GAE is low. GAE has

proven to be a well thought-out and designed platform. The use of standard APIs in GAE

allows the development of well designed and attractive web applications. The experience

on GAE shows that users can focus on the business logic while developing flexible and

portable web applications.

 44

Bibliography

[1] Armbrust, M., et al., Above the Clouds: A Berkeley View of Cloud

Computing, February 10th, 2009.

[2] Delic, K. A., et al., Emergence of the Academic Computing Clouds, Hewlett-

Packard Co., ACM Ubiquity, Volume 9, Issue 31, August 5, 2008.

[3] Google App Engine, http://code.google.com/appengine/

[4] Hinchcliffe, D., How the Web OS Has Begun to Reshape IT and Business,

September 6, 2009, http://blogs.zdnet.com/Hinchcliffe/?cat=78.

[5] Rogers, G., The Problem with Google App Engine, April 11, 2008,

http://blogs.zdnet.com/Google/?p=1002

[6] Chang, F., et al., Bigtable: A Distributed Storage System for Structured Data,

OSDI'06: Seventh Symposium on Operating System Design and Implementation,

Seattle, WA, November, 2006, http://labs.google.com/papers/bigtable-osdi06.pdf

[7] DataNucleus Access Platform, http://www.datanucleus.org/

[8] Hinchcliffe, D., Twitter in your Intranet: 17 Micro Blogging Tools for

Business, June 1, 2009, ZDNet, http://blogs.zdnet.com/Hinchcliffe/?p=414.

[9] Hinchcliffe, D., Cloud Computing and the Return of the Platform Wars,

March 26, 2009, ZDNet, http://blogs.zdnet.com/Hinchcliffe/?p=303#more-303.

[10] Hinchcliffe, D., Cloud Computing: A New Era of IT Opportunity and

Challenges, March 3, 2009, ZDNet,

http://blogs.zdnet.com/Hinchcliffe/?p=261#more-261.

[11] Selenium IDE Web Application Testing System,

http://seleniumhq.org/projects/ide/

 45

[12] Yahoo! YSlow, http://developer.yahoo.com/yslow/

 46

Vita

Marcos Suguru Kajita was born in Ituiutaba, Minas Gerais, Brazil. After completing high

school at CETEBAN in Tokyo, Japan, he entered Hawaii Pacific University in Honolulu,

Hawaii. After completing his freshman year at Hawaii Pacific University, he transferred

to the University of Texas at Austin and enrolled in the Computer Science program. In

May of 2003, he graduated from the University of Texas at Austin with a Bachelor of

Science in Computer Science. He has been working in a major oil service company since

his graduation in 2003 as a software engineer. In January of 2007, he entered the

Graduate School at the University of Texas at Austin and enrolled in the Software

Engineering Program

Permanent Address: 2703 Skyview Crest Ct.

 Houston, Texas 77047

This report was typed by Marcos Suguru Kajita

