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1.  Abstract 

 

When fabricating cellular material using the material extrusion process, manufacturing 

errors arise due to approximation of geometries during slicing and tool-path generation, as well 

as the finite filament size. Moreover, since a cellular material generally consists of a large 

number of structural elements such as struts and plates, it has large bounding surfaces to be 

approximated during the AM process, which can increase manufacturing error. The errors 

degrade the mechanical properties of a fabricated cellular material. In this paper, an as-fabricated 

voxel modeling approach is proposed to quantify mechanical property degradation. An additively 

manufactured strut is modeled using voxels based on material extrusion and its effective 

structural characteristics such as a cross-sectional area and the second moment of area are 

evaluated. The property degradation is assessed by comparing mechanical properties from tensile 

tests and performing discrete homogenization with obtained structural characteristics  

 

2. Introduction 

 

Cellular materials have received attention from researchers and engineers in various 

fields due to their favorable mechanical properties such as high strength to weight ratio, high 

energy absorption and thermal insulation [1, 2]. Various methods have been proposed and 

implemented in order to manufacture cellular materials. However, conventional subtractive 

manufacturing processes are not suitable for cellular materials because of their complex 

geometries, which impose high manufacturing cost [3]. Recent advances in the field of additive 

manufacturing (AM) have begun to offer new opportunities to manufacture complex parts and 

fabricate cellular materials. 

 

The fundamental concept of an AM process is to repeatedly stack layers that are cut, 

deposited or melted along desired material boundaries. This process requires no space for tools, 

and it can produce parts that have complex geometries without special preparation and without 

long setup time. This reduces manufacturing complexities, such as wiring, pressing and welding, 

found in conventional manufacturing processes. This advantage is the unique characteristic of 

AM processes and can be exploited for the manufacture of cellular materials. A material 

extrusion process such as fused deposition modeling (FDM) is a well-defined AM process that 

uses a nozzle to deposit thin filaments, and it has emerged in various applications from the low-

end three dimension printing machines to high-end rapid manufacturing machines [4-6].  
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The effects of AM processes can distort the mechanical properties in fabricated parts [7]. 

In general, additively manufactured parts inherently exhibit geometrical errors due to slicing, and 

process-dependent manufacturing tolerances affect the final manufacturing quality [8].  In the 

material extrusion process, the errors are influenced by a filament deposition pattern and a stair 

step phenomenon [9]. The filament deposition pattern depends on geometries and process 

parameters such as finite filament size, deposition direction and raster angle. In addition, the 

pattern is also affected by machine tolerance or manufacturing uncertainties. Moreover, since a 

cellular material consists of a large number of structural elements, the material has large 

bounding surfaces to be approximated during the slicing process. These leads to property 

degradation on cellular materials manufactured using a material extrusion based AM process. 

 

In order to quantitatively assess parts manufactured by material extrusion, two classes of 

approaches have been proposed. The first class of the approach focuses on deposition or tool 

path planning. Jin et al. implemented an optimization technique to increase machining efficiency 

and improve fabrication precision [10]. Kulkarni and Dutta estimate the resulting part stiffness 

based on the tool-path pattern [11]. However, these approaches are not suitable to cellular 

material, since the approaches focus on parts which have large in-build plane area. The second 

approaches are based on microscope observation or on reconstruction devices such as computed 

tomography (CT) devices. Ravari et al. reported variation in strut diameter in the additively 

manufactured lattice structure in the form of a probabilistic distribution [7] and Gajdos and Slota 

measured internal non-filled volume in FDM specimens [12]. Although the approaches 

successfully quantified the geometrical degradation in AM processed parts, the approaches 

cannot relate the geometrical degradation to mechanical characteristics.  

 

The goal of this research is to develop a quantification method for the effect of a material 

extrusion AM process on the mechanical properties of additively manufactured cellular material. 

To achieve this goal, a two-step approach is used. The conceptual procedure of the proposed 

method is presented in Figure 1. In the first step, an as-fabricated voxel modeling method is 

proposed and implemented. An as-fabricated voxel model of a representative strut in a cellular 

material is generated based on material extrusion AM process parameters. The geometrical and 

structural parameters of the strut as a structural element are determined such as volume, effective 

strut size and joint size. Next, the resulting parameters are applied to the discrete homogenization 

procedure to estimate the mechanical properties of the cellular material. The proposed method 

will be validated by comparing the estimation with experimental results. 

  

 

Figure 1 Conceptual procedure of proposed approach 
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3. As-fabricated Voxel Modeling  

 

In the FDM process, a part is manufactured through a process of layer-by-layer stacking. 

Filaments are deposited along pre-calculated deposition paths at each layer. The deposition paths 

are determined through pre-processing steps: slicing, contour generation, and raster generation. 

In each step, the path depends on manufacturing parameters such as layer thickness, nozzle tip 

size, raster direction and filament width. A fabricated geometry may be degraded due to three 

phenomena. Firstly, voids may be generated in a fabricated part. Since a filament has finite size, 

deposition path segments are not generated near geometrically discontinuous regions and 

features smaller than the filament size. Secondly, stair steps occur between the deposited layers 

in the build direction due to the stacking process. Stair steps become more critical in fabricating 

cellular material, because cellular material is typically composed of small struts or thin walls, 

which yield more boundary surfaces that increase the possibility of stair steps. Finally, AM 

machines are controlled only within a given tolerance, which can lead to filaments being 

deposited inaccurately or to features being distorted.  

 

In this paper, the proposed as-fabricated voxel model approach aims to quantitatively 

assess geometric degradation due to phenomena that include voids, stair steps and machine 

tolerance. To achieve this goal, the preprocess steps and the stacking process are simulated based 

on tool-path generation and 3D voxel model generation methods. To clarify the proposed method, 

five manufacturing parameters are mainly considered; (1) the nozzle tip size and layer thickness, 

(2) contour and raster width, (3) raster direction, (4) deposition location uncertainty and (5) 

feature size scaling uncertainty. The first three parameters are deterministic parameters, and the 

latter two parameters are probabilistic parameters for representing machine tolerance. Figure 2 

illustrates steps of the as-fabricated voxel model generation procedure.  

 

 

 
Figure 2 As-fabricated voxel model generation procedure 

 

The procedure starts with specifying a strut design, including a joint shape, as an input in 

form of the stereo-lithography (STL) file format. The input STL file is sliced based on the layer 

thickness, and a contour at each layer is determined using layer boundaries. Next, the tool-paths 

for the contour are generated by offsetting contours by half the contour width. After that, the 

tool-paths for the inside raster lines are determined based on the raster direction and the raster 

width. To validate the tool-path generation algorithm, the resulting tool-paths are compared with 

the commercial tool-path generation software, Catalyst EX® , with 0.178mm layer thickness and 
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±45
◦
 degree raster direction. Figure 3 compares the tool-path in 8 layers of a 45

◦
 inclined strut 

model. The resulting paths yield similar raster and void patterns. 

 
4th Layer 7th Layer 13th layer 17th layer 21st layer 26th layer 28th layer 30th layer 

   
  

 

  

(a) Deposition layout from CatalystEX®  software 

     
 

  

(b) Estimated deposition layout from the proposed as-fabricated model 

Figure 3 Validation of toolpath generation 

 

The last step in the proposed as-fabricated modeling approach is to construct a voxel 

model of an input STL model based on the tool-path. In order to model a deposition filament, we 

need to assume the cross section of filaments. Three assumptions have been proposed in previous 

research; (a) an ellipse [9, 13], (b) a rectangle [14], and (c) a mixed rectangle with ellipse corners 

[15]. In this research, the mixed rectangle assumption is used for the cross section as shown in 

Figure 4 (a). The filament width is assumed to be 1.75 times larger than the height. At the 

filament boundaries, the width and height are reduced by a size reduction ratio, C, which is 

related to the inter-filament coalescence phenomenon [15]. The ratio is set to be 2/3 in this 

research. To model a filament using 3D voxels, we need to approximate the cross section using 

three layers of rectangles as shown in Figure 4 (b). The width and thickness at each layer are 

determined based on the area equivalence so that three rectangles yield the same area as the cross 

section.  

 

  
(a) Assumed cross-section of a filament (b) Rectangle approximation 

Figure 4 Assumption for filament cross section 
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A voxel model of a deposited geometry is generated based on the rectangle 

approximation. The procedure is represented in Figure 5. In this model, one layer of deposition is 

composed of three layers of voxels to approximate the cross section as mentioned above. In order 

to generate each layer of voxels, a deposition image is constructed by drawing a series of 

rectangles and circles along the deposition path segments with the calculated width in the 

rectangle approximation. Next, the resolution of the image is reduced down to the target voxel 

resolution sufficient for representing filament geometries. As resolution increases, the detail of 

geometries can be represented, but more processing time and computational resources are 

required.  In this research, five pixels are compressed into one voxel element based on 

parametric study of the resolution. Finally, each pixel in the reduced resolution image can be 

converted to a voxel by extruding the pixel along the build direction by an amount equal to the 

calculated thickness. This procedure is repeated for each layer, and the resulting voxels are 

combined to form a layer.  

 

In this method, the effect of machine tolerances can be incorporated by probabilistically 

disturbing the center of the deposition path segments and scaling the size of the deposition path 

segments disturbed based on observed distributions.   

 

 

Figure 5 Voxel model generation   

 

4. Determination of Geometric and Structural Parameters 

 

In this research, five geometrical and structural parameters are considered. The first is a 

filling ratio, which relates to the volume and density of the as-fabricated model. The others are 

effective strut length, strut diameter, eccentricity and fixity, which are associated with strut and 

joint characteristics. Since the cellular material consists of many struts, their mechanical 

characteristics depend on the geometrical and structural characteristics of these struts.  

 

The filling ratio is defined by a volume ratio between the as-fabricated model and the 

STL model as follows:  
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 as-fabricated

STL

Vf

V

V
    (1) 

 

where, fV , as-fabricatedV and STLV  are the filling ratio, the volume of the as-fabricated model, and the 

volume of the STL file, respectively. In the literature, the ratio is in the range of 0.85 to 0.95.  

 

When modeling a cellular material using the conventional finite element method to 

analyze the characteristics, the struts are represented using a beam or a frame element. The 

mechanical responses depend on geometrical dimensions such as a cross sectional diameter or 

the length of an element. In typical formulations, the joints among struts are treated as points that 

do not have any volume, and therefore the mechanical characteristics of the joints are not 

considered at all. However, in reality, the joints should be modeled with a volume, since the 

joints affect the mechanical responses by reducing effective strut length and augmenting 

structure stiffness. In order to take account of joint characteristics in determining the geometrical 

and structural parameters of as-fabricated voxel models, the semi-rigid jointed frame formulation 

proposed by Sekulovic and Salatic [16] is implemented into our quantification procedure. In this 

formulation, a strut is treated as an effective frame with two flexible joints at the both ends, as 

shown in Figure 6.  

 

 

Figure 6 Semi-rigid jointed frame element model 

 

The gross stiffness of the strut is determined based on the stiffness of the two regions. 

The stiffness of the effective frame region depends on the effective cross sectional dimension 

and its effective length. With the assumption that the strut shape is cylindrical, the stiffness of the 

region can be defined as follows, based on solid mechanics: 

 

 

2

4

eff eff

strut

eff eff

EA Ed
k

L L


    (2) 

 

where, E , effA , effd   and effL  are the elastic modulus of the filament material, the effective 

cross-sectional area, the strut diameter and the strut length, respectively. The stiffness of a 

flexible joint relies on the size of the joint and its rigidity. To define the joint stiffness more 

clearly, two parameters, eccentricity and fixity, are introduced. The eccentricity is defined as the 

ratio between length of the joint and the effective strut diameter. The fixity is defined as the ratio 

between the nominal and actual stiffness of the joint. The joint stiffness can be represented as 

follows: 

Flexible joint

Effective frame

1075



 
joint joint

1 1

eff nom

eff

EA
k k

e d

 

 

   
    

     
  (3) 

 

where, e  and   are eccentricity and fixity, respectively and 
joint

nomk  is the nominal stiffness of the 

joint. Based on equation (3), as the fixity goes to one, the joint stiffness approaches infinity, 

which means that it is a rigid joint, and when the fixity goes to 0.5, the joint stiffness is the same 

as the nominal stiffness.  

 

In order to calculate the structural parameters in equations (2) and (3), the mechanical 

response of an as-fabricated model is required. Since the model is composed of voxels, the finite 

element method can be directly implemented to the model. To simulate a tensile test of a strut, 

fixed-force displacement boundary conditions are applied as shown in Figure 7. The typical 

resulting axial displacement field is shown in Figure 8. Theoretically, the axial displacement of a 

prismatic truss is linearly increased through the axial direction based on solid mechanics. 

However, the resulting displacement field is not linear due to the augmented joint stiffness. The 

slope of the displacement field near the joints is less than that in the middle of the strut. Thus, we 

can divide a strut into three regions, based on the slope and approximate the displacement field, 

using three lines. The lines are determined using the least squares method. From this 

approximation, the effective joint size is determined, based on the point where the slope is 

changed, and the effective strut length is obtained as shown in Figure 8. 

 

                 
(a) Undeformed strut and boundary condition (b) Deformed strut 

Figure 7 Tensile test using as-fabricated model 

 

 
Figure 8 Axial displacement field in a strut and effective joint size determination 
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The stiffness of the effective frame and flexible joint regions is calculated according to 

the following equations: 

 

 
fixed

strut

strut

F
k


   (4) 

 fixed
joint

joint

F
k


   (5) 

 

where, fixedF  is the reaction force at a fixed boundary, and strut  and joint  are elongations in the 

strut region and joint region. Using equations (2) and (4), the effective strut diameter is 

calculated as follows: 

 

 
fixed

strut

4 eff

eff

L F
d

E 
   (6) 

 

The eccentricity is calculated by finding a ratio between the effective joint size and the effective 

strut diameter according to the following equation: 

 

 
joint

eff

d
e

d
   (7) 

 

where, 
jointd  is the effective joint size. The fixity is found as follows using equations (3) and (5): 

 

 
joint

joint joint

nom

nom

k

k k
 


  (8) 

 

 

5. Determining mechanical properties using discrete homogenization 



Discrete homogenization approach 

 

The discrete homogenization approach was proposed by Vigliotti and Pasini in order to 

determine the mechanical properties of a periodic lattice structure [17]. This approach has been 

successfully implemented to various lattice structures manufactured from a material extrusion 

AM process based on the effective strut diameter [18]. Since this method determines the 

mechanical properties of the lattice structure based on the mechanical responses of a 

representative unit cell, the problem size is relatively smaller than that of conventional finite 

element analysis, which requires an entire numerical model of a lattice structure. One advantage 

of this method is that the finite element formulation for a strut in a unit cell is changeable since 

the method uses an unconstrained stiffness matrix in its formulation. In this research, the 

approach is augmented by the semi-rigid jointed frame element formulation, presented in section 

1077



4, as well as by the shear deformable beam formulation; we do this in order to consider the 

structural characteristics of a joint in a strut, using cellular materials that have low slenderness.  

In the discrete homogenization approach, the topology of the unit cell is defined by edges 

that connect two nodes and by periodicity vectors, as shown in Figure 9. Nodes in a unit cell can 

be classified into two groups based on dependency. Independent nodes are reference nodes to 

define the topology. The location at all other nodes in the unit cell can be represented by those at 

independent nodes and by periodicity vectors as follows: 

 

 0k i in r r a   (9) 

 

where, 0r is a position vector of the independent node and kr  is a position vector of at the k
th

 node 

in the unit cell. in  and ia  are the integer multiple and the i
th

 periodic vector, respectively. After 

the unit cell is deformed, displacement at each node is also expressed, based on displacements at 

independent nodes and elongation of the periodic vectors as follows:  

 

 0k i in  u u a   (10) 

 

where, 0u  is a displacement vector at the independent node and ku  is a displacement vector at 

the k
th 

node. ia  is the elongation of the i
th

 periodic vector after deformation. To formulate the 

finite element equation, the vector of the nodal degrees of freedom (DOF) in the unit cell is 

represented as follows: 

 

 0 0  
a

d B d B a   (11) 

 

where, d  and 0d  are the collective nodal DOF vector in the unit cell and the nodal DOF at 

independent nodes. 0B  is a dependency matrix among nodal DOF, and aB  is the periodicity 

dependency matrix.  

 

 

Figure 9 Cubic unit cell and node classification [18]  

 

Since the unit cells are periodically arranged in the lattice structure, the reaction force at 

each node should vanish. This state is called the self-equilibrium state and is represented as 

follows: 
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  0 0 0 0 0T T

uc uc   
a

B K d B K B d B a   (12) 

 

 0 0 0 0

T T

uc uc  
a

B K B d B K B a   (13) 

 

where, ucK  is the constrained stiffness matrix of the unit cell. This matrix contains the element 

formulation information and is modified in this research. Since ucK  is not constrained in 

equation (13), the equation is singular. Thus, a pseudo-inverse is used to obtain a non-unique 

solution.  

 

  0 0 0 0 0

T T

uc uc



    ad B K B B K B a D a   (14) 

 

Using equation (11), the nodal DOF vector is obtained as follows: 

 

  0 0    
a a

d B D B a D a   (15) 

  

Thus, the strain energy stored in the unit cell after deformation is derived as follows: 

 

 
1 1

2 2

T T T

uc ucW    a ad K d a D K D a   (16) 

 

Since the elongation of the periodicity vector is the same as the macroscopic elongation of the 

lattice structure, the elongation can be represented as follows, using the macroscopic strain, M : 

 

 M a B   (17) 

 

where, B  is the macroscopic strain – periodic vector conversion matrix.  The homogenized 

stiffness matrix is determined using the following equation 

 

 
1 1

2 2

T T T T

M uc M M H MW      a aB D K D B K   (18) 

 

where, HK  is the homogenized stiffness matrix. 

 

Formulation of shear deformable semi-rigid jointed frame element 

 

This section presents the finite element formulation for the semi-rigid jointed frame 

element with the shear deformable beam theory. The structural parameters determined in section 

4 are incorporated into this formulation to consider the geometrical degradation. The resulting 

stiffness matrix is integrated into the discrete homogenization procedure presented in the 

previous section to estimate the mechanical properties of a selected cellular material. 
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Struts in a cellular material play the role of frame elements, which combine a truss and a 

beam in view of solid mechanics. The important difference between a conventional and a semi-

rigid jointed frame element involves relative displacements or rotations at the joint among 

connected frames. In conventional frame structures, joints are represented as nodes, and 

deformations inside of frames are interpolated based on nodal displacements and rotations. Thus, 

no relative displacements or rotations are allowed after deformation. However, in the semi-rigid 

jointed frame element, internal degrees of freedom are defined to consider the relative 

displacements and rotations as shown in Figure 10.  

 

 

Figure 10 Nodal DOF in semi-rigid jointed frame element and deformed configuration 

 

The semi-rigid jointed frame element has two stiffness components in the axial direction 

and the flexural direction. To formulate the axial stiffness matrix, the joint region is assumed as a 

reinforced bar due to the overlap. The frame can be considered as three connected trusses in 

series. The axial stiffness of the element is derived using equations (2) and (3) as follows: 

 

 
strut joint

1 1 1t t

T
tt t

k k

k k k k k

 
   

 
K   (19) 

 

where, TK  is an axial stiffness matrix and tk  is an equivalent axial spring constant of the semi-

rigid jointed frame. For the flexural stiffness matrix, the joint region is assumed as a rigid bar 

with a rotational spring at the end of the region, and the remaining region in the middle is 

considered as a conventional shear deformation beam. There are two sets of nodal displacements. 

One is a nodal displacement vector for the entire semi-rigid jointed frame in terms of 

 1 1 2 2

T v v d  and the other is an internal nodal displacement vector for the frame region 

in the middle in terms of as shown in Figure 10. In this formulation, the 

relative difference of the displacement and rotation is expressed by eccentricity, e, and additional 

rotations, 1  and 2  due to rotational springs with spring constants 1c  and 2c
 
as shown in Figure 

10. The relationship between the two displacement vectors is defined as follows from the 

kinematics: 

 

1u 2u

2v1v

1 2 Deformed configuration under flexural load
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I E d α   (20) 

 

The force-displacement equation for the frame region follows from the conventional finite 

element formulation: 

 

 (21) 

 

where, 1V  and 2V  are the shear force and 1M  and 2M  are bending moment in the frame, 

respectively. I  is the second moment of area about the neutral axis.  sK  is the shear correction 

factor for the shear deformable beam. The additional rotation vector is derived from equations 

(20) and (21), since the bending moment on the spring is the same as those at the end of the 

frame. 
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  (22) 

 

After solving equation (22) for α , 
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Substituting equation (23) into (20),  

 

     d I S I E d   (24) 

 

Finally, including rotational spring stiffness, the flexural stiffness matrix of the semi-rigid jointed 

frame element is derived as follows: 

 

        
T T T

F F s
      
 

K I E I S K I S S C S I E   (25) 

 

where, sC  is the stiffness matrix of the rotational spring. 

The stiffness matrices in equations (19) and (25) are applied into equation (18) in order to 

consider the semi-rigid jointed frame element. The effective structural parameters in section 4 

are incorporated into the axial and flexural stiffness matrices.  

 

6. Effect of Material Extrusion AM process on Geometrical and Structural Parameters  

 

In this section, the effect of the material extrusion AM process parameters is assessed 

using the proposed as-fabricated voxel model. To study how the fabricated model is degraded 

due to the process, a parametric study was designed and conducted. The parameters of interest in 

this parametric study are the joint shape, the inclined angle, and the raster direction. In addition, 

two geometrical uncertainties are given based on observing fabricated cellular materials. 

 

Effects of the joint shape 

 

As joints become larger, the effect of a joint becomes more significant by reducing 

effective strut length. To examine the effects of the joint shape in a cellular material, four 

different shapes are selected, as shown in Figure 11. The strut diameters are 2 mm for cubic type 

unit cells and 1.5 mm for a diamond type unit cell. As-fabricated voxel models are generated 

with varying inclined angles with respect to the build direction and the raster direction, and the 

resulting geometric and structural parameters are calculated.  

The mean values of the parameters are listed in Table 1. The filling ratios for the same 

unit cell shape are similar. From the effective strut size and eccentricity of cubic lattice struts, as 

more struts are overlapped at the joints, the size of a joint is increased. The trend of fixity values 

indicates that a joint becomes stiffer as it becomes larger. Based on this parametric study, it can 

be concluded that the joint shape has a large impact on the structural parameters. Thus, the joint 

models (c) and (d) in Figure 11 are used in later parametric studies.  

 

 
   

(a) Cube - 0 overlap (b) Cube - 3 overlaps (c) Cube - 5 overlaps (d) Diamond – 4 overlaps 

Figure 11 Joint model 
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Table 1  Mean value of calculated geometric and structural parameter of 4 types of joints 

 
Cube – 0 overlap Cube - 3 overlaps Cube - 5 overlaps Diamond – 4 overlaps 

Filling ratio 0.90 0.91 0.90 0.94 

Effective strut length / 

Specified length (mm) 
3.90 / 5 3.50 / 5 3.38 / 5 1.21 / 2.1651 

Effective strut diameter / 

Specified diameter (mm) 
1.75 / 2 1.76 / 2 1.76 / 2 1.35 / 1.5 

Eccentricity 0.55 0.75 0.81 0.64 

Fixity 0.51 0.54 0.58 0.57 

 

 

Effects of the incline angle and the raster direction angle 

 

In this section, two direction angles are considered. The inclined angle is the angle with 

respect to the build plane, and it is closely related to the stair step; deposition paths are 

determined based on the raster angle direction. Thus, internal and external deposition shapes are 

affected by these two direction angles. Figure 12 shows the inclined angle and the raster 

direction angle.  

 

 

 

(a) Inclined angle (b) Raster direction angle 

Figure 12 Inclined angle and raster direction angle 

 

The filling ratio is shown in Figure 13. Since this parameter is related to the amount of a 

raw material in the fabricated strut, the mechanical properties of a low density material such as 

cellular material can be easily affected. The ratio is insensitive to changes in the inclined angle. 

However, changes in the raster angle lead a trend wherein the filling ratio reaches a minimum 

value at ± 45◦, parallel or perpendicular to the strut direction. This means the fabricated cellular 

material would be weaker in this direction than other directions due to decreased amounts of raw 

material.  

 

Inclined angle

Raster direction 

angle
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Figure 13 Filling ratio associated with the direction change 

 

The change of structural parameters due to change in the inclined angle and raster 

direction are shown in Figure 14 and Figure 15, respectively. From Figure 15, it can be 

concluded that the structural parameters are insensitive to the raster direction. However, the 

change in inclined angle affects the structural parameters significantly. The effective strut 

diameters are reduced up to 10% at a 45 degree inclined angle. This is because the effect of stair 

steps increases as the inclined angle approaches 45 degrees. The effective joint size and joint 

stiffness in terms of the eccentricity and fixity decrease as the inclined angle increases, since the 

deposited filaments are connected through the joint region and the strut region at the low inclined 

angle but not in larger angles as represented in Figure 16. 

 

 

Figure 14 Structural parameters associated with the inclined angle change 
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Figure 15 Structural parameters associated with the raster direction angle change 

 

 

   

 
 

 
(a) 0◦ inclined angle (b) 45◦ inclined angle (c) 90◦ inclined angle 

Figure 16 Deposition path near joint 

 

Effects of geometrical uncertainty  

 

To study the effect of the geometrical uncertainties due to machine tolerance, the location 

and size of deposition are perturbed. From microscopic observation of the fabricated specimens, 

1085



two distributions were constructed. Firstly, the distribution of the difference from designed 

center to fabricated center of the deposition was constructed; it was approximated as a normal 

distribution with zero mean and 0.0182 mm standard deviation. Next, the distribution of the 

scaling factor for the deposition size was established. The distribution followed the normal 

distribution with 1.044 times the mean value and 0.0135 times the standard deviation. To 

integrate the distribution into the as-fabricated voxel model, the deposition paths were translated 

and scaled based on the observed distribution. Twenty as-fabricated voxel models were 

generated at each inclined angle and raster angle to establish distributions of structural 

parameters. An as-fabricated voxel model with uncertainties is compared with a fabricated strut 

in Figure 17. 

Table 2 lists the mean value and the standard variation of the filling ratio at each 

combination of the inclined angle and the raster angle. Since the standard deviation is relatively 

much smaller than the mean value, the distributions can be explained with only the mean values. 

The result indicates that the geometrical uncertainties reduce the filling ratios by about 4~5%.   

 

  
(a) As-fabricated voxel model  (b) Fabricated strut 

Figure 17 As-fabricated voxel model with geometrical uncertainty 

 

Table 2 Comparison of filling ratio associated with uncertainty 

Mean value / 

Standard deviation 

Inclined angle (degree) Raster angle fixed 
Difference 

(%) 
0 15 45 75 90 

Mean with 

uncertainty 
Mean without 

uncertainty 

Raster angle 

(degree) 

0 
0.884 / 

0.0032 

0.875 / 

0.0042 

0.877 / 

0.0029 

0.876 / 

0.0029 

0.864 / 

0.0033 
0.875 0.910 -3.82% 

30 
0.860 / 

0.0030 

0.854 / 

0.0027 

0.854 / 

0.0020 

0.852 / 

0.0019 

0.839 / 

0.0025 
0.852 0.890 -4.30% 

45 
0.854 / 

0.0025 

0.855 / 

0.0031 

0.856 / 

0.0019 

0.859 / 

0.0023 

0.847 / 

0.0039 
0.854 0.887 -3.66% 

Inclined 

angle fixed 

Mean with 

uncertainty 
0.866 0.862 0.862 0.862 0.850 

 
Mean without 

uncertainty 
0.910 0.901 0.899 0.901 0.895 

Difference (%) -4.86% -4.38% -4.09% -4.32% -5.04% 
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Figure 18 Degradation of structural parameters due to manufacturing uncertainty 

 

The resulting structural parameters are shown in Figure 18. The results indicate that 

geometric uncertainties caused by machine tolerance have little impact on the structural 

parameters associated with a joint. However, the effective strut diameters are affected by the 

machine tolerance. The amount of reduction is increased as the inclined angle is increased. This 

is because the deposited geometries can be disturbed in two directions at the high inclined angle 

since the cross section on the build plane is small, but only one direction is dominant at the low 

inclined angle as shown in Figure 16.   

 

 

7. Effect of Material Extrusion AM process on Mechanical Properties of Cellular Material  

 

The structural parameters determined in the previous section are incorporated into the 

discrete homogenization procedure to estimate the elastic modulus of a cellular material. Cellular 

materials which are composed of cubic-type unit cells with rotation and diamond-type unit cells 

are fabricated to validate estimation results from the proposed approach. The specification of 

specimens is listed in Table 3 and Table 4. The specimens are built in a Fortus 400mc machine 

from Stratasys®  with a T12 nozzle tip which yields 0.178 mm layer thickness. The first batch of 

specimens has the same unit cell shape and size specification, but the unit cell is rotated. This is 

designed for studying property degradation due to change in the inclined angle. The unit cell type 

is fixed as diamond type, but each specimen has different size specification in the second batch. 

This is intended for considering property degradation due to size specification.  

 

Figure 19 shows experimental results and estimates from the homogenization procedure 

with and without the property quantification procedure in section 4, using as-fabricated models 

for elastic moduli. The relative errors compared to experimental results are listed in Table 5. The 

estimates from the proposed method show up to 16% error compared to the test results. However, 

the estimates without considering manufacturing process effects tend to be overestimated. From 
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first two columns in Table 5, the errors become larger as the inclined angle increase. This 

indicates that fabricated parts experience more property degradation as the inclined angle 

increases. This is also seen in the proposed method. Thus, we can conclude that the as-fabricated 

voxel modeling approach can be used for quantifying geometrical degradation during the 

material extrusion AM process and that the degradation can be integrated with the estimation 

procedure. 

 

Table 3 Specification of cubic type unit cell specimens 

 
Specimen Unit cell 

Unit cell size 

(mm) 

Strut diameter 

(mm) 

1 

  

5x5x5 2 

2 

  

5x5x5 2 

3 

  

5x5x5 2 

 

 

Table 4 Specification of diamond type unit cell specimens 

 Specimen Unit cell 
Unit cell size 

(mm) 

Strut diameter 

(mm) 

1 

 

 

5x5x5 1 

2 

 

5x5x5 1.5 

3 

 

10x10x10 3 
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(a) Cubic type (b) Diamond type 

Figure 19  Comprison among results  

 

Table 5 Relative error of estimation compared to experiment result 

 

Cubic unit cell Diamond unit cell 

Experiment 
Without As-

fabricated model 

Proposed 

method 
Experiment 

Without As-

fabricated model 

Proposed 

method 

Specimen 1 230.6 
254.02 

 (+10.41%) 

244.35 

(+5.85%) 
20.40 

32.59 

(+59.76%)  

22.36 

(+8.77%) 

Specimen 2 111.86 
132.53 

(+18.48%) 

102.36 

(-9.29%) 
107.81 

151.01  

(+40.07%) 

110.72 

(+2.63%) 

Specimen 3 49.39 
67.74 

(+37.16%) 

42.30 

(-16.76%) 
79.17 

107.58 

(+35.88%) 

90.11 

(+12.14%) 

 

8. Conclusion 

 

This research proposes and develops a new quantification method for mechanical 

property degradation due to the material extrusion AM process. The proposed method is divided 

into two parts, an as-fabricated voxel model generation and a discrete homogenization approach 

with semi-rigid jointed frame elements. As-fabricated voxel models are constructed based on 

slicing and deposition path finding, and the model can demonstrate the stair step phenomenon. 

The geometrical and structural parameters of the struts in a cellular material can be obtained by 

analyzing as-fabricated voxel models. Based on the parametric studies, it is found that the joint 

shape has an impact on the structural parameters and that more overlaps at the joint increase the 

stiffness of a joint. It is also concluded that the inclined angle with respect to build plane 

degrades the structural parameters.  

The semi-rigid jointed frame formulation is incorporated into the discrete 

homogenization procedure. The formulation allows consideration of the joint characteristics 

obtained from the as-fabricated model. The estimation from the approach shows good agreement 

with the test results. Thus, the proposed method can be applied to the mechanical property 

estimation procedure for cellular material from the material extrusion AM process.   
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