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Neural circuitry is determined primarily by trillions of synaptic junctions that 

link cells in the nervous system. Understanding how the structure of the synapse 

influences its function has been a central goal of cellular neuroscience since 

synapses were first recognized more than a century ago. Long-term potentiation 

(LTP), a long lasting enhancement of synaptic efficacy, is a well-characterized 

cellular correlate of learning and memory that results in dramatic structural 

remodeling of the synapse. Research has focused heavily on the postsynaptic 

structural remodeling that occurs to support LTP, but concomitant presynaptic 

and subcellular remodeling during LTP has been left largely unexplored. To 

address these questions, three-dimensional reconstructions from serial section 

electron microscopy of presynaptic boutons, vesicle pools, and dendritic smooth 

endoplasmic reticulum (SER) in hippocampal area CA1 were created and 

quantified. The data presented in this dissertation demonstrate that coordinated 

structural plasticity occurs at both pre- and postsynaptic sides of adult 

hippocampal synapses by 2 hours during LTP induced with theta burst 

stimulation. Presynaptically, the number of presynaptic boutons correlated 

perfectly with fewer dendritic spines during LTP that were previously reported, 
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suggesting that synaptic units act as cohesive structures. Vesicle pools were 

mobilized and vesicle transport packets were moved into boutons or were 

released in transit. Dendritic SER is a ubiquitous intracellular membranous 

network involved in calcium signaling and protein modification. The complexity of 

SER influences the movement of diffusible membrane cargo. SER was 

dramatically remodeled during LTP, redistributing from the shaft of the dendrite 

into spines and becoming highly complex near synapses that were largest during 

LTP. As a preliminary investigation into how normal mechanisms of structural 

plasticity described in this dissertation might go awry under conditions of synaptic 

pathology, three-dimensional reconstructions of CA1 synaptic ultrastructure in a 

mouse model of Fragile X, which is known to express exaggerated mGluR-

dependent long-term depression (LTD), were created and quantified. Synaptic 

ultrastructure was similar with that of the wild-type mouse, suggesting that 

structural malformation in FX might be confined to development or to other brain 

regions.               
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Chapter 1: Introduction 

The transfer of information in the nervous system occurs primarily across 

microscopic junctions between neurons called synapses. Synapses are not static 

structures of the nervous system landscape; they can be created and eliminated, 

strengthened and weakened. This flexible nature of the synapse is known as 

synaptic plasticity. Plastic changes at the synapse influence the transfer of 

information from one neuron to the next and can lead to the modification of large-

scale neural circuits. As such, synaptic plasticity is intensely investigated as a 

cellular mechanism underlying learning and memory. Understanding how the 

structure of the synapse influences its function and how this might go awry during 

pathology has therefore been a central goal of cellular neuroscience since the 

infancy of the field. 

One form of synaptic plasticity known as long-term potentiation (LTP) 

induces dramatic structural remodeling of synapses (Bosch and Hayashi, 2012; 

Bourne and Harris, 2007; 2008; Meyer et al., 2014; Yuste and Bonhoeffer, 2001). 

One region of the brain implicated in learning and memory is the hippocampus 

(Jeneson and Squire, 2012; Morris et al., 2003; Morris, 2007; Preston and 

Eichenbaum, 2013) and an investigation into the underlying subcellular and 

synaptic remodeling associated with LTP in the adult hippocampus forms the 

majority of this work. Before delving into the studies presented in this 

dissertation, I consider the anatomy of the synapses in question, early studies on 

synaptic plasticity, the distinct nature of plasticity in the adult animal, and the 

behavioral relevance of the topic.  
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1.1 Anatomical Considerations  

The Hippocampus and Area CA1 

In rodents, the hippocampus is a large, C-shaped structure lying deep to 

the neocortex. It stretches rostrodorsally from septal nuclei, around the thalamus, 

and caudoventrally into the temporal lobe. Relative to humans, the hippocampus 

in rodents makes up a large percentage of total brain volume. This makes it fairly 

easy to access the region experimentally. Additionally, the hippocampus has a 

relatively simple and highly organized laminar structure, which has encouraged 

its use as a model system researchers use to study the structure and function of 

synapses (Amaral and Lavenex, 2007). Consensus on what anatomically 

constitutes the hippocampus is, however, hardly universal. More broadly the term 

hippocampal formation has been used to signify an area of the brain that is 

composed of five main parts: the dentate gyrus, area CA3, area CA1, the 

subiculum, and the entorhinal cortex. For this dissertation, the term hippocampus 

refers specifically to the structure including the dentate gyrus, area CA3, area 

CA1, and the subiculum.    

Santiago Ramón y Cajal noted early on that the vast majority of 

hippocampal input arrives from the entorhinal cortex. Entorhinal efferents form 

connections on molecular layer dendrites of dentate gyrus granule cells. These 

entorhinal efferents make up the famous perforant path as they course through 

(“perforate”) the subiculum and fissure of the hippocampus. Dentate gyrus 

granule cells send unmyelinated axons (mossy fibers) distally to form synapses 

with proximal CA3 pyramidal cell dendrites in a layer of CA3 called stratum 

lucidum (lucidum, as the unmyelinated axons appear translucent in the sectioned 

hippocampus). CA3 pyramidal cells then send axons to form connections with 
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pyramidal cells in area CA1. This so-called “trisynaptic circuit” (entorhinal cortex 

à dentate gyrus à CA3 à CA1) was highlighted early on when researchers 

believed the majority of hippocampal output was directed to subcortical regions 

of the brain (Andersen et al., 1971). It is now know that most hippocampal output 

is directed back to the entorhinal cortex. CA1-entorhinal cortex connections close 

a large hippocampal processing loop (Fig. 1.1). Multimodal information from 

higher order cortical areas is projected to the entorhinal cortex, which relays that 

information into the loop. That information is integrated and processed in the 

hippocampus and the output is returned to the entorhinal cortex. The entorhinal 

cortex projects the processed information back to higher order cortical areas 

(Schultz and Engelhardt, 2014). 

The connections between and within the subfields of the hippocampus are 

themselves more complex than the trisynaptic circuit would lead one to believe. 

For example, area CA1 forms a variety of connections within and beyond the 

hippocampal formation1. Area CA1 has a neatly structured lamellar organization 

and its connections are spatially restricted (Fig. 1.2). The principal cells of area 

CA1 are pyramidal cells, which line up in a layer known as the pyramidal cell 

layer. These cells send axons to synapse with subicular and entorhinal cortical 

cells. In fact, area CA1 is the dominant hippocampal subfield projecting to the 

entorhinal cortex (Naber et al., 2001). The basilar dendrites of CA1 pyramidal 

cells project into stratum oriens and apical dendrites project into stratum  
  
                                            
1 CA1 receives a number of neuromodulatory inputs such as cholinergic inputs from the 
septum, noradrenergic inputs from locus coeruleus, serotonergic inputs from raphae 
nuclei, and dopaminergic inputs from ventral tagmental area. A vast community of 
researchers is keen on investigating how these inputs modulate the activity of CA1 
pyramidal cells.  
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Figure 1.1: The hippocampal processing loop. 70-µm thick transverse section 
through the middle of an adult mouse hippocampus. A schematized diagram of 
information flow with the entorhinal cortex (EC) is superimposed. Information from the 
EC is passed into the hippocampus via the perforant path (PP) to the dentate gyrus 
(DG), which relays that information to area CA3. Area CA3 passes that information to 
area CA1, which is the predominant hippocampal output back to the EC. CA1 also 
projects to the subiculum (Sub), which itself also sends output to the EC. The EC also 
sends direct inputs to areas CA1 and CA3 via perforant path fibers coursing through 
stratum lacunosum-moleculare. The synapses investigated in this dissertation are those 
made by CA3 pyramidal cell axons with CA1 pyramidal cell dendrites in CA1 stratum 
radiatum (see Fig. 1.2). Scale bar = 0.5 mm.  
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Figure 1.2: Hippocampal area CA1 of an adult mouse. Area CA1 in a 70-µm thick 
transverse hippocampal section from an adult mouse embedded in epoxy resin reveals 
the various layers of this hippocampal subfield. The cell bodies of CA1 pyramidal cells 
line up in a layer known at the cell body layer, which appears translucent in transverse 
hippocampal slices. These cells project dendrites into stratum oriens, radiatum, and 
lacunosum moleculare. CA1 pyramidal cells receive direct entorhinal (EC) inputs on their 
distal most dendrites via perforant path (PP) fibers in stratum lacunosum moleculare and 
indirect entorhinal inputs from area CA3 in stratum radiatum and stratum oriens. The 
structure of CA3-CA1 synaptic connections in stratum radiatum is investigated in this 
work. Scale bar = 100 µm. 
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radiatum. Radial oblique branches from the apical dendrite create an elaborate 

dendritic arbor in stratum radiatum. Furthermore, the dentate gyrus is not the 

only subfield of the hippocampus to receive direct entorhinal inputs. A distally 

located apical tuft of dendritic branches reaches into stratum lacunosum 

moleculare, where incoming entorhinal connections are formed. Thus, CA1 cells 

receive both direct and indirect (via dentate gyrus and CA3) input from the 

entorhinal cortex. Ipsilateral and contralateral CA3 pyramidal cells send axons 

that form synapses with CA1 dendrites in stratum oriens and stratum radiatum. 

Axons from ipsilateral CA3 pyramidal cells are known as Schaffer collaterals2, 

while those from contralateral CA3 pyramidal cells are simple known as 

commissural fibers. Thus, Schaffer collateral-commissural fibers is a more 

appropriate term when referring to axons coursing through stratum radiatum of 

CA1. The synapses these fibers make with CA1 pyramidal cell dendrites are the 

focus of this dissertation and, in favor of a more anatomical description, will be 

referred to simply as CA3-CA1 synapses.   

Synaptic Structure 

By the end of the nineteenth-century, several leading anatomists, 

including Ramón y Cajal, had rejected the notion of direct “protoplasmic” 

continuity between neurons, a theory championed most notably by Camillo Golgi. 

The debate between “neuron” and “reticular” theories of neuroanatomy would not 

be definitively settled, however, until after the advent of the electron microscope 

(Harris and Weinberg, 2012). First developed in Germany in the 1930s by Ernst 

Ruska and Max Knoll, electron microscopy (EM) allows visualization of structures 

                                            
2 These collaterals are named after the Hungarian neuroanatomist Károly Schaffer. 
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whose size falls well below the resolution of conventional light microscopy. With 

an electron microscope, anatomists could, for the first time, “see” synapses. 

Thanks in large part to the contributions of Keith Porter and George Palade (both 

of whom will reappear later in this dissertation), the first high-quality EM images 

of neuronal tissue and first descriptions of synapses appeared in the 1950s (De 

Robertis and Bennett, 1955; Palay, 1956; Palay and Palade, 1955). We now 

know the synapses they saw can be either chemical or electrical depending on 

their mode of signal transduction. Electrical synapses form direct connections 

between neurons via gap junctions, which allow propagation of electrical signals 

from one neuron to the next. Chemical synapses, on the other hand, require an 

intermediate chemical signal between pre- and postsynaptic neurons. At 

chemical synapses, an electrical signal from the presynaptic neuron is converted 

to a chemical signal. This chemical intermediate is passed to the postsynaptic 

neuron and reconverted into an electrical signal. The focus of this dissertation is 

on the plasticity of axodendritic chemical synapses in stratum radiatum of 

hippocampal area CA1. Chemical synapses will from this point on be referred to 

simply as synapses. 

A synapse is formed at the close apposition of plasma membranes of two 

discrete cells3 (Fig. 1.3). The majority of excitatory synaptic connections in the 

central nervous system form between a presynaptic terminal (or bouton) and the 

head of short, roughly 1-µm long dendritic protrusions known as dendritic spines  
                                            
3 Even though synaptic junctions typify neural tissue, non-traditional synapses occur 
between non-neuronal cells as well. Most famously, the immunological synapse is a 
transient synapse formed between T lymphocytes and antigen-presenting target cells 
(Grakoui et al., 1999). Ongoing investigations into immunological synapses promise to 
generate findings that might illuminate the function of their more rostral cousins in the 
central nervous system (Dustin, 2012; Dustin and Colman, 2002).    
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Figure 1.3: CA3-CA1 synapse in an adult rat. Example electron micrograph of an 
excitatory CA3-CA1 synapse in stratum radiatum of hippocampal area CA1 fixed in vivo 
from a 77-day-old adult rat. Inset shows magnified view of the synapse. The dendritic 
shaft can be seen on the left with a cross-sectioned mitochondrion (MT). Smooth 
endoplasmic reticulum (SER) can be seen entering the base of a large dendritic spine 
and forming an elaborate spine apparatus (SA), fold of SER stacked between densely 
staining material. The post-synaptic density (PSD) is a thickening along the postsynaptic 
membrane of the synapse where receptor, signaling, and scaffolding proteins 
congregate. The synaptic cleft is almost completely obscured by densely staining 
proteinaceous material. In the presynaptic bouton, pools of vesicles are readily visible. 
At this particular synapse, glia, identifiable by its relatively clear cytoplasm, comes into 
contact with both pre- and postsynaptic compartments. Scale bar = 1 µm.   
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(Harris and Kater, 1994). Dendritic spines can host a number of organelles, most 

notably polyribosomes, the cell’s protein synthesis machinery, and smooth 

endoplasmic reticulum (SER), a membranous network that extends through the 

majority of the cell. (For more on SER, see Chapter 3.) In CA1 stratum radiatum, 

swellings along unmyelinated axons known as boutons (i.e., en passant boutons) 

originate predominately from CA3 pyramidal cells. These boutons host tens to 

hundreds of small synaptic vesicles, which are each ~35-55 nm in diameter, 

electron lucent on EM sections, and contain non-peptide neurotransmitters. At 

excitatory synapses (which are investigated in this dissertation), these vesicles 

primarily carry the neurotransmitter glutamate (Ottersen and Storm-Mathisen, 

1984; Somogyi et al., 1986; Storm-Mathisen et al., 1983). Vesicles are docked 

along a specialized region of the presynaptic plasma membrane known as the 

“active zone”. At the active zone, vesicles are primed for release upon arrival of 

an action potential (Landis et al., 1988; Phillips et al., 2001; Sudhof, 1995). 

Vesicles that are not docked along the plasma membrane make up the “reserve” 

pool of vesicles. (For more on presynaptic boutons and vesicles, see Chapter 2.) 

Upon fusion of the vesicle with the presynaptic membrane, glutamate is 

released into the synaptic cleft, a ~20 nm-wide space4 between the pre- and 

postsynaptic neuron. Glutamate diffuses across the cleft, where it binds to and 

activates postsynaptic glutamate receptors: the ionotropic glutamate receptors, 

AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and NMDA (N-

Methyl-D-aspartate) receptors, and metabotropic glutamate receptors (mGluRs). 

                                            
4 This “space” is, in fact, not a space at all. The synaptic cleft is filled with extracellular 
proteins as well as unique synaptic proteins (Dityatev et al., 2010). Cryo-electron 
microscopy reveals a densely staining, complex web of material that fills the cleft (Lucić 
et al., 2005; Zuber et al., 2005).  
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These receptors congregate in the postsynaptic density (PSD), an electron 

dense thickening along the postsynaptic membrane. Whereas the number of 

NMDA receptors in the PSD is fairly constant from synapse to synapse, the 

number of AMPA receptors directly correlates with the size of the PSD (Nusser et 

al., 1998). Furthermore, the size of the PSD is perfectly correlated with the size 

of the active zone (Lisman and Harris, 1993). Thus, synaptic size has been used 

as an anatomical marker of synaptic strength. The PSD contains a host of 

scaffolding proteins, such as PSD95, Homer, and Shank, and a variety of 

signaling molecules, such as CaMKII (calcium/calmodulin-dependent protein 

kinase II), Ras, Rho, and other small GTPases, all of which seem arranged in a 

very organized manner (Chen et al., 2008b). Activation of glutamate receptors in 

the PSD leads to a net influx of positive ions into the postsynaptic compartment. 

This depolarization (excitatory postsynaptic potential [EPSP]) propagates with 

varying strength along the dendrite. Summation of synaptic potentials in the 

soma influences the firing of the cell. As explored below, inside the dendritic 

spine itself, the local depolarization generated by the synaptic potential can affect 

a variety of cellular processes that influence the function of the synapse. 

1.2 Synaptic Plasticity 

Early LTP/LTD Studies 

Investigations into how memories are encoded in the brain have greatly 

enhanced our understanding of synaptic structure and function. In his 1949 book 

The Organization of Behavior, Canadian psychologist Donald O. Hebb proposed 

that learning and memory was encoded in the brain by a strengthening of 

synapses (Hebb, 1949).  Experimental evidence supporting this hypothesis 
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would not come until decades later, when Tim Bliss and Terje Lømo 

demonstrated that repetition of brief, high-frequency stimulation of perforant path 

inputs resulted in a long-lasting increase in the efficacy of dentate gyrus granule 

cell synapses in rabbits (Bliss and Lomo, 1973). This phenomenon came to be 

known as LTP (after a brief stint as “long-lasting potentiation” or LLP). After the 

introduction of the acute hippocampal slice preparation (Skrede and Westgaard, 

1971), LTP was shown to occur at both dentate gyrus-CA3 synapses and CA3-

CA1 synapses (Schwartzkroin and Wester, 1975). Subsequent studies have 

shown that this form of synaptic strengthening is expressed not only at 

hippocampal synapses but throughout the brain (Bliss et al., 2007) and that LTP 

truly lives up to its moniker, lasting for weeks or even months in non-anesthetized 

animals (Abraham, 2003; Abraham et al., 2002). 

Several molecular mechanisms underlying LTP induction were worked out 

in the 1980s, beginning with the finding that the specific NMDA receptor blocker 

D-AP5 (D-2-amino-5-phosphonopentanoic acid, also known as AP5 or APV) 

blocks the induction of LTP in area CA1 (Collingridge et al., 1983). Furthermore, 

LTP induction was also blocked by injection of calcium chelators into CA1 

pyramidal cells (Lynch et al., 1983; Malenka et al., 1988). These two findings 

were fused together when researchers looked more closely at NMDA receptors. 

Curiously, these receptors were found to be both ligand- and voltage-gated. 

Several groups uncovered evidence of a magnesium block, which sits in the 

NMDA receptor pore. Sufficient depolarization is required to relieve the channel 

of this block (Ault et al., 1980; Mayer et al., 1984; Nowak et al., 1984). 

Subsequent studies showed postsynaptic depolarization can result from back-

propagating action potentials (Debanne et al., 1998; Magee and Johnston, 1997; 
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Stuart and Sakmann, 1994) or locally generated dendritic spikes at more distal 

synapses along CA1 dendrites (Golding et al., 2002). In addition to sodium and 

potassium, NMDA receptors were also found to pass calcium (Ascher and 

Nowak, 1988; Jahr and Stevens, 1987; MacDermott et al., 1986). Thus, NMDA 

receptors were shown to function as coincident detectors at the synapse. These 

receptors could simultaneously detect postsynaptic depolarization (relief of the 

magnesium block) and presynaptic release (binding of glutamate). Upon 

activation, calcium influx through these channels acts as the initial trigger of LTP. 

These results were the first descriptions of an NMDA receptor-dependent LTP. 

While a variety of studies have documented distinct forms of LTP that do not 

depend on NMDA receptor activation (Johnston et al., 1992; Le Duigou and 

Kullmann, 2011; Wang et al., 1996), NMDA receptor-dependent LTP forms the 

basis of our understanding of the processes governing synaptic plasticity. 

Though calcium enters dendritic spines primarily through NMDA receptors 

at CA3-CA1 synapses (Bloodgood and Sabatini, 2007; Sobczyk et al., 2005; 

Yuste et al., 1999), calcium can also enter dendritic spines through voltage-gated 

calcium channels and from internal calcium stores such as the SER or 

mitochondria (Higley and Sabatini, 2012). Calcium inside the spine acts on a 

wide variety of targets, which are able to modify the structure and function of the 

synapse. While a host of protein kinases, including protein kinases A (PKA) and 

C (PKC), are activated by calcium, one of calcium’s most crucial targets (in terms 

of LTP) is CaMKII. CaMKII constitutes 2% of the entire PSD and is activated 

upon binding of calcium-loaded calmodulin (Byth, 2014; Lisman et al., 2002; 

Okamoto et al., 2009). In its inactive state, CaMKII binds filamentous actin and is 

kept at a distance from the PSD (Zhang et al., 2008). Once activated, CaMKII 
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autophosphorylates itself and remains active after intracellular levels of calcium 

return to unstimulated levels (Miller and Kennedy, 1986). CaMKII phosphorylates 

AMPA receptors leading to an increase in single current conductance (Barria et 

al., 1997; Mammen et al., 1997; McGlade-McCulloh et al., 1993) while activating 

other proteins that stabilize AMPA receptors in the PSD (Huganir and Nicoll, 

2013). Perfusing cells with activated CaMKII results in increased AMPA receptor 

responses and LTP (Ehlers, 2000; Lisman et al., 2002; Malenka and Nicoll, 

1999). Furthermore, NMDA receptor activation results in increased fluorescence 

of GFP-fused AMPA receptor subunits in dendritic spines (Shi et al., 1999). While 

it is clear that induction of LTP involves the insertion of AMPA receptors into the 

PSD, the steps linking CaMKII activation to AMPA receptor insertion are still 

murky. Indeed, there might be other kinase intermediates between the two, such 

as the Ras-MAPK (mitogen-activated protein kinase) pathway (Zhu et al., 2002). 

PKC might be another candidate kinase driving the insertion of AMPA receptors. 

The conventional PKC isoform is activated by calcium and diacylglycerol and 

PKC inhibitors have been found to impair LTP, while PKC loading into cells 

enhances LTP (Hu et al., 1987; Klann et al., 1991; Linden and Routtenberg, 

1989; Sacktor et al., 1993). Thus, through its activation of a variety of kinases, 

calcium is necessary and crucial in the induction of LTP. 

Many researchers refer to synaptic potentiation as LTP if the potentiation 

lasts for at least 30 minutes. This precludes those results, however, from 

applying to later LTP phases. Hippocampal LTP has been historically divided into 

multiple phases: short-term potentiation, early LTP, and late LTP. These stages 

are defined by pharmacological blockade of various biochemical mechanisms 

that support synaptic strengthening (Frey et al., 1993). Early on, Krug et al. 
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(1984) showed that infusion of the protein synthesis inhibitor anisomycin caused 

potentiated field recordings in the dentate gyrus of freely moving rats to return to 

baseline over several hours. Importantly, the baseline recordings were found to 

be unaffected by protein synthesis blockade. These results were soon replicated 

in area CA1 (Frey et al., 1988). Subsequent studies have demonstrated that LTP 

returns to baseline within an hour following the administration of broad spectrum 

kinase inhibitors (Lisman et al., 2002; Nguyen and Woo, 2003). CaMKII and PKC 

are two of the more important kinases rapidly activated during early LTP as 

discussed above. Interestingly, protein synthesis inhibitors such as anisomycin or 

transcription inhibitors such as actinomycin cause LTP to return to baseline in 

hours depending on the induction stimulus (Frey et al., 1988; Kang and 

Schuman, 1996; Kelleher et al., 2004a). By directly comparing translational and 

transcriptional blockade, Kelleher et al. (2004b) demonstrated that translation is 

required for 60-90 minutes and is followed by a longer-lasting phase, which is 

dependent on both translation and transcription. Slow-onset, late LTP can be 

induced with cAMP (cyclic adenosine monophosphate) analogues or BDNF 

(brain-derived neurotrophic factor) and these forms of plasticity are also 

dependent on protein translation and gene transcription (Kang and Schuman, 

1996; Leal et al., 2014; Nguyen et al., 1994).                 

The amount of calcium influx into the dendritic spine has been shown to 

influence the magnitude and, interestingly, the direction of plasticity. Building 

upon the Bienenstock-Cooper-Munro (BCM) model, a theoretical framework 

describing plasticity in the developing visual cortex (Bienenstock et al., 1982; 

Cooper and Bear, 2012), Bear (1987) proposed that some threshold (analogous 

to BCM’s modification threshold, θm) of calcium influx through NMDA receptors 
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should be sufficient to induce LTP, whereas input activity that results in less 

calcium influx should weaken the connection and cause an NMDA receptor-

dependent form of LTD. Several years later, Dudek and Bear (1992) were able to 

reliably induce homosynaptic LTD in area CA15. They showed higher and lower 

frequency stimulation induced LTP and LTD respectively, which produced a 

BCM-like curve. In support of this, calcium chelators were found to prevent the 

induction of LTD and reducing extracellular calcium shifts a high frequency 

stimulus from producing LTP to producing LTD (Mulkey and Malenka, 1992). In 

light of the fact that kinases are important in the induction of LTP, Lisman (1989) 

proposed that preferential activation of phosphatases, such as the 

calcium/calmodulin-dependent protein phosphatase calcineurin as well as protein 

phosphatase 1, by low levels of calcium might support the induction of LTD.  

Indeed, it is now well supported that induction of NMDA receptor-dependent LTD 

involves a variety of phosphatases (some of which have higher affinity for 

calcium than most kinases), which ultimately drive the removal of AMPA 

receptors from the PSD (Carroll et al., 2001; Lüscher and Malenka, 2012; Mulkey 

et al., 1994; 1993). Lisman’s proposal forms our “classical” assumptions about 

LTP and LTD: LTP is produced upon large calcium influx into the spine, while 

LTD is produced upon modest calcium influx into the spine.  

Another form of LTD involves the activation of mGluRs (Bashir et al., 

1993; Oliet et al., 1997; Palmer et al., 1997; Stanton et al., 1991) and, in fact, this 

form of LTD seems to predominate in area CA1 of adult animals (Kemp et al., 

                                            
5 Though Dudek and Bear (1992) were the first to demonstrate a reliably inducible form 
of LTD (900 pulses at 1 Hz), Dunwiddie and Lynch (1978) had demonstrated earlier that 
low frequency stimulation (100 pulses at 1 Hz) was able to induce LTD. They found, 
however, that their stimulation protocol was not reliable in inducing LTD. 
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2000). Interesting, mGluR-dependent LTD requires the rapid synthesis of locally 

translated proteins (Huber et al., 2000). The rapid protein synthesis requirement, 

however, has been shown not to exist in older rats (Moult et al., 2008) and in 

animals with pathologically increased levels of protein synthesis (Huber et al., 

2002). One protein that is rapidly translated at the synapses following activation 

of mGluRs is Arc (Arg3.1, activity-regulated cytoskeleton-associated protein). Arc 

associates with endocytic machinery and causes AMPA receptor endocytosis 

(Chowdhury et al., 2006; Shepherd et al., 2006). Perhaps not surprisingly, Arc-/- 

mice show very little mGluR-LTD (Park et al., 2008) and very little depression of 

visual cortex synapses following monocular deprivation (McCurry et al., 2010).     

Adult versus Developmental Synaptic Plasticity 

Development of hippocampus-dependent behaviors is delayed relative to 

elemental conditioning and effector systems development (Dumas, 2005; 

Stanton, 2000). Perhaps not surprisingly, hippocampal synaptic plasticity is 

reported to be categorically different in adult and developing animals. In 

organotypic cultures, LTP induction reliability and magnitude decrease with 

maturation (Muller et al., 1993). In slice, LTP induction with tetanus begins 

promptly at P15 in the rat (Harris and Teyler, 1984; Jackson et al., 1993). With 

TBS, LTP induction begins three days earlier at P12 and, furthermore, TBS 

delivery between P8-11 prevents test-pulse induced depression that normally 

occurs in the developing hippocampus (Cao and Harris, 2012), which is known 

as “developmental LTP”. While CaMKII seems to be of extreme importance for 

induction of synaptic potentiation, during the first postnatal week, CaMKII levels 

are surprisingly low (Kelly and Vernon, 1985). Using protein kinase inhibitors, 
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Yasuda et al. (2003) found that potentiation (“developmental LTP”) in area CA1 

in P7-8 hippocampal slices depends upon the activation of PKA. This was not 

true for slices from > P27 animals. Furthermore, CaMKII inhibitors had no effect 

on potentiation induced in slices from P7-8 animals but did block LTP induction in 

slice from > P27 animals. The group also measured miniature excitatory 

postsynaptic currents (mEPSCs) in slices and found that incubation with 

forskolin, which enhances presynaptic neurotransmitter release via adenylate 

cyclase activation (Chavez-Noriega and Stevens, 1994), caused an increase in 

mEPSC frequency in both younger and older slices but only induced an increase 

in mEPSC amplitude in younger slices. This is presumably reflective of an 

increase in AMPA receptors at synapses in younger slices and further supports 

the notion that PKA plays a larger role in inducing LTP in those slices. Another 

study has shown that PKA and CaMKII work in parallel during P14, an 

intermediate stage of development (Wikström et al., 2003). Thus, there is a 

developmental shift in signaling cascades that are activated downstream from 

NMDA receptors, which might persist in animals as old as P26.  

Another developmental phenomenon that highlights the differences 

between adult and developmental plasticity is the “silent” synapse. Silent 

synapses lack AMPA receptors and do not contribute to dendritic depolarization 

unless NMDA receptors are activated. LTP-inducing stimulation is able to recruit 

AMPA receptors to “unsilence” these synapses (Isaac et al., 1995). Silent 

synapses are, however, more prevalent in neonatal rat hippocampus and their 

number declines steeply after P5-6 (Durand et al., 1996). Using fluorescent 

calcium dyes, Enoki et al. (2009) demonstrated that changes in presynaptic 

machinery contribute heavily to the expression of LTP at CA3-CA1 synapses in 
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animals older than 21-28 days old. The group proposed younger animals, unlike 

mature animals, might express LTP primarily through unsilencing of synapses, 

which is consistent with the developmental profile of silent synapses. (See 

Section 2.1: Presynaptic Physiological Plasticity for a brief description of the 

experiments in Enoki et al.)  

Similarly, LTD has some as-of-yet uncovered developmental profile. As 

noted above, there does, however, appear to be a shift from NMDA receptor-

dependent LTD predominating in young animals to mGluR-dependent LTD 

predominating in older animals (Kemp et al., 2000). Furthermore, with electrical 

stimulation, LTD is much more reliably induced in younger animals than it is in 

adult animals (Bliss et al., 2007; Collingridge et al., 2010). This has led some 

researchers to speculate that LTD might be a phenomenon that is involved in 

sculpting circuits during development only.  

McCutcheon and Marinelli (2009) conducted a systematic review of 314 

papers published on hippocampal LTP from 1997-2007 in the journals Science, 

Nature, European Journal of Neuroscience, and Journal of Neuroscience6. The 

researchers found that the definitions used by study authors to denote “young” 

and “adult” were dramatically varied, “adult” ranging from as young as postnatal 

day (P) 21 to P594 (18 months). They also found that investigators often pooled 

animals of vastly different ages, sometimes spanning critical developmental 

periods such as puberty. Sexual maturity is reached in female rats at ~P32-34 

and in males at ~P45-48 (Lewis et al., 2002). Nearly two-thirds of all the papers 

investigated hippocampal LTP using in vitro methods were conducted on animals 

                                            
6 Specifically the group searched the PubMed database for the following keywords: 
(‘hippocampus’) and (‘LTP’ or ‘long-term potentiation’ or ‘long term potentiation’).  
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just reaching or younger than sexual maturity. This might call into question the 

results’ applicability to plasticity in the adult mammal. Investigation into the 

mechanisms of plasticity in male rats older than P50 should give a better 

impression of those mechanisms that occur specifically in the adult mammalian 

brain.   

Structural Plasticity of the Synapse 

LTP and LTD are two mechanisms whereby synaptic strength is modified. 

What structural remodeling of the synapse is occurring to support these 

changes? Structural reorganization of the synapse is known as synaptic 

structural plasticity. While the synapse includes both pre- and postsynaptic 

compartments, the vast majority of research into structural plasticity has focused 

on dendritic spines changes (though see Section 2.1 Presynaptic Structural 

Plasticity). Indeed, spine numbers along a dendrite changes dramatically with 

hormonal status (Woolley et al., 1990), unfamiliar environments (Moser et al., 

1994), blockade of neurotransmitter release (McKinney et al., 1999), and 

temperature (Kirov and Harris, 1999). Because of these dramatic changes in 

spine structure occurring with internal and external environmental manipulation, 

researchers have been attracted to uncovering how structural changes at the 

level of the synapse influence its function.  

Some of the earliest proposals that suggested a change in spine 

dimensions might support the increase in synaptic efficacy following the induction 

of LTP came in the 70s. By cutting out spine profiles on EM images and weighing 

them, Van Harreveld and Fifková (1975) showed that spine profile cross-

sectional area (indirectly measured by paper weight) increased in the dentate 
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gyrus only in the outer molecular layer, where tetanus had been delivered, and 

not in the inner molecular layer. By implanting electrodes into the angular bundle 

of rats to investigate synapse size on EM sections, Desmond and Levy (1986a; 

1986b) demonstrated that LTP was associated with an increase in the size of the 

PSD. These early studies were followed by a cascade of others that, using a 

variety of techniques, show LTP is associated with an increase in spine or PSD 

size (Bourne and Harris, 2011a; Matsuzaki et al., 2004; Okamoto et al., 2004; 

Popov et al., 2004; Zhang et al., 2008). Ostroff et al. (2002) found that 

polyribosomes in dendritic spines increase 2 hours during LTP induced with 

tetanus. Interestingly, PSDs on spines with polyribosomes were found to be 

significantly larger suggesting that these organelles might provide protein 

translation necessary to expand synapses during LTP.  

Other studies have shown that the number of spines increases following 

potentiation. Investigating the dynamics of dendritic spines in response to high 

frequency stimulation in hippocampal organotypic cultures transfected with GFP, 

Maletic-Savatic et al. (1999) observed the rapid outgrowth of filopodia-like 

structures, thin dendritic protrusions that are thought to be developmental 

precursors to dendritic spines (Fiala et al., 1998). Furthermore, a subset of these 

filopodia developed bulbous heads suggesting they were transitioning into 

becoming full-fledged spines (Maletic-Savatic et al., 1999). Engert and 

Bonhoeffer (1999) showed that bathing organotypic hippocampal neurons in a 

cadmium-containing solution suppressed synaptic transmission, but that local 

perfusion of a calcium-containing solution “activated” an area of the dendrite. By 

delivering high frequency stimulation, they observed the outgrowth of new spines 

in an area, which had calcium available to it. Unfortunately, both studies were 
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unable to definitively show that synapses actually existed on spines that 

appeared throughout the course of their experiments, but glutamate uncaging 

experiments have been used to show that these new spines are functionally 

relevant to the circuit (Kwon and Sabatini, 2011). It is thus tempting to take the 

above data and link LTP with an increase in the number of spines and the size of 

synapses. This, however, appears to be an oversimplification.  

An early study on the structural effects of chemically induced LTP showed 

that the number of dendritic spines did not change, but that spines became long 

and thin (Hosokawa et al., 1995). This finding was corroborated by Matsuzaki et 

al. (2004) with a series of glutamate uncaging experiments. Furthermore, most 

studies have investigated structural plasticity using younger animals (< 30 days 

old). As with physiological plasticity, structural plasticity induced by LTP seems to 

be categorically different in mature animals. In mature animals, EM studies 

reveal synapse number and spine structure are stable following induction of LTP 

with tetanic stimulation (Sorra and Harris, 1998) or following chemically-induced 

LTP (Stewart et al., 2005). LTP induced with theta-burst stimulation (TBS), on the 

other hand, either causes the elimination of small thin spines or prevents a 

constitutive formation a small spines (Bell et al., 2014; Bourne and Harris, 

2011a). Preliminary data supports the idea that spine outgrowth accompanies 

LTP induced with TBS in 15 day-old animals (D. Watson and K. Harris, in 

preparation). It seems reasonable to tentatively assume that younger animals 

most likely express hippocampal LTP through addition of new synaptic contacts, 

while mature animals express hippocampal LTP primarily through modifications 

of existing connections.    
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The structural remodeling of synapses that occurs after LTD induction has 

been far less studied, but researchers seem to reach greater consensus on the 

structural changes that support synaptic depression. Okamoto et al. (2004) 

tagged filamentous (F-) and globular (G-) actin with two different fluorescent 

proteins and observed an increase in F-actin and spine head sizes when tetanic 

stimulation was delivered near the dendrite. Interesting, delivery of low frequency 

stimulation reduced the F- to G-actin ratio as well as caused spine heads to 

shrink. The same year, Zhou et al. (2004) injected fluorescent dye into CA1 

pyramidal cells and stimulated synapses through a glass electrode positioned 

near dendrites. Delivery of low frequency stimulation reduced the size of EPSPs 

measured somatically and also caused spine heads to shrink. Cofillin, an actin 

regulator that causes actin depolymerization, was inhibited by the infusion of p-

coffilin. This prevented the spine head shrinkage observed with low frequency 

stimulation. Other studies have shown that spines retract during LTD (Nägerl et 

al., 2004) and that fluorescent pre- and postsynaptic marker colocalization 

decreases with LTD, both of which suggest synapses might be eliminated during 

LTD (Bastrikova et al., 2008). Thus, LTD appears to be associated with the 

shrinkage of spines and synapses. 

Behavioral Relevance of Synaptic Plasticity 

LTP and LTD are proposed to be necessary for both the encoding and 

retrieval of information and are thus thought to be two cellular mechanisms that 

mediate learning and memory (Bliss et al., 2007; Bourne and Harris, 2007; 

Malenka and Bear, 2004). This idea is frequently thrown into report introductions 

to imbue relevance into studying synaptic plasticity, but what evidence is there to 
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support this claim? Undoubtedly, one of the reasons this question is often 

investigated at hippocampal synapses is due to the most famous patient in 

neuroscience, H.M. (Henry Molaison, 1926-2008). H.M. suffered intractable 

seizures, the focus of which seemed to exist in his medial temporal lobes. 

Removal of a significant amount brain tissue from this region corrected H.M.’s 

seizures, but, for the rest of his life, H.M. suffered profound anterograde 

amnesia, an inability to form new memories (Scoville and Milner, 1957). Since 

the original descriptions of H.M., the hippocampus has come to be known as a 

crucial brain region for declarative memory, consciously recalled memory such 

as new facts and events. Thus, the report by Bliss and Lømo (Bliss and Lomo, 

1973) that hippocampal synapses could act to store information via the 

strengthening of synapses has captivated scientists as a possible cellular 

mechanism of learning and memory. Frankly put, however, LTP and LTD are not 

memory. They are experimentally induced phenomena that involve unnatural 

synaptic activation. But the mechanisms that mediate synaptic plasticity might 

also be the same mechanisms that mediate learning and memory (Eichenbaum, 

2008; Malenka and Bear, 2004). The pioneering early studies of Carol Barnes 

showed that LTP persistence in older animals was statistically correlated with 

rate of learning and spatial memory retention (Barnes, 1979; Barnes and 

McNaughton, 1985). A variety of researchers have subsequently investigated 

hippocampal LTP in the context of spatial learning. Early reports described an 

increase in dentate field EPSPs (fEPSPs) following exploration of novel 

environments (Green et al., 1990; Moser et al., 1993; Sharp et al., 1989).  

Other groups have attempted to approach the question at the molecular 

level. Early on, Morris (1989) showed that APV blockade of NMDA receptors in 
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the dorsal hippocampus impaired learning in the now famous Morris water maze 

task. Though pharmacological blockade might have influenced a host of other 

signaling cascades, genetic techniques have supported the conclusions that 

NMDA receptor perturbation impairs learning. Using a Cre/loxP recombination 

system, Tsien et al. (1996a; 1996b) knocked out a specific NMDA receptor 

subunit in hippocampal area CA1. LTP was found to be normal in the dentate 

gyrus and neocortex, but severely impaired in CA1. These animals recapitulated 

the performance impairment in the Morris water maze that was observed a 

decade earlier. Interestingly, although cells in mice lacking normal CA1 NMDA 

receptors retain preference for position, place fields in these mice are highly 

abnormal (McHugh et al., 1996). A point mutation that blocks the ability of 

CaMKII to autophosphorylate also introduces profound deficits in water maze 

learning (Giese et al., 1998) and fluorescence studies have shown that learning 

induces the recruitment of newly synthesized AMPA receptors into spines 

(Matsuo et al., 2008). Thus, several of the biochemical steps necessary for the 

induction of LTP seem to be involved in some forms of learning and memory.                     

In perhaps one of the more compelling studies on the topic, Whitlock et al. 

(2006) used an inhibitory avoidance (IA) paradigm, a hippocampus-dependent 

task (Isaacson and Wickelgren, 1962), to investigate whether learning induced 

LTP. (Briefly, in this study IA involved animals learning that entry into one of two 

chambers caused delivery of a foot shock. Thereafter, they avoided the chamber 

associated with the shock and this served as a measure of memory.) The group 

found, as many who have investigated hippocampal learning report as well, that 

encoding of this task was dependent on the activation of NMDA receptors. They 

found that AMPA receptor phosphorylation at serine 831, which occurs during 
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LTP (Lee et al., 2000), and recruitment of AMPA receptors at synapses were 

increased in animals that had undergone IA training. By stimulating CA3-CA1 

axons, the group measured fEPSPs in CA1 via a multielectrode recording array 

implanted into stratum radiatum before and after training. They observed an 

increase in fEPSP slope at only a subset of recording sites. Interestingly, at the 

sites that did show this LTP-like effect, subsequent induction of LTP was 

occluded. This study presented strong evidence to support the claim that learning 

induces LTP-like effects in hippocampal area CA1. Other electrophysiology 

studies since Whitlock et al. have supported their claims by demonstrating that 

other hippocampus-dependent tasks, such as trace eye-blink conditioning 

(Gruart et al., 2006) and novel object recognition (Clarke et al., 2010), involve the 

modulation of synaptic efficacy. 

What evidence supports the role of LTD and depotentiation (LTP reversal) 

in learning and memory? Modeling of synaptic circuits suggests that the ability to 

encode experience depends on the ability to both strengthen and weaken 

synapses (Kemp and Manahan-Vaughan, 2007), but little is known about the 

contributions synaptic depression makes to hippocampal-dependent learning. 

mGluR activation produces robust LTD (Bashir et al., 1993; Oliet et al., 1997; 

Palmer et al., 1997; Stanton et al., 1991) and both antagonism and genetic 

deletion of mGluR5 results in impaired learning and extinction of hippocampus-

dependent tasks in a radial arm maze or the Morris water maze (Lu et al., 1997; 

Manahan-Vaughan and Braunewell, 2005; Naie and Manahan-Vaughan, 2004; 

Xu et al., 2009). Manahan-Vaughan and colleagues have shown that LTD seems 

to be somehow important in environment and object novelty recognition (Kemp 

and Manahan-Vaughan, 2004; 2007; 2008; Manahan-Vaughan and Braunewell, 
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1999). In fact, delivering low frequency stimulation while animals explore novel 

objects placed in a hole-board facilitates LTD in CA1 and dentate gyrus. This 

was found to last up to 25 hours. Curiously, and somewhat confusingly, 

exploration of an empty hole-board facilitated LTP. Currently, the molecular steps 

linking LTD to learning and memory are vastly unexplored. Thus, while little 

evidence exists linking LTD with memory, these few tentative findings coupled 

with the many LTP-related molecular events associated with learning, back 

claims that synaptic plasticity serves as a mechanism whereby memories are 

encoded in the mammalian brain. It follows that understanding the cellular 

mechanisms that support synaptic plasticity should illuminate our understanding 

of learning and memory at the behavioral level.   

1.3 Studies Presented in this Dissertation 

In the subsequent chapters of this dissertation, I present studies I 

performed in the lab of Dr. Kristen Harris at the University of Texas at Austin 

(2011-2015). I used three-dimensional reconstructions of neuronal ultrastructure 

from serial section EM images to investigate synaptic structural remodeling 

associated with plasticity at CA3-CA1 synapses in adult rodents. Each chapter 

includes an independent introduction providing context and impetus that 

motivated each part of the study and, following the results, a discussion 

evaluating the implications of my findings. The final chapter of this dissertation 

considers future directions that might naturally lead from these studies.   

As discussed above, LTP induces dramatic postsynaptic structural 

plasticity at CA3-CA1 synapses, synaptic plasticity (both physiological and 

structural) appears to be categorically distinct in adult and juvenile animals, and 



 27 

LTP can be subdivided into various phases (early/late LTP). The studies in this 

dissertation are concerned with elucidating the structural mechanisms that 

support enduring LTP in the adult rodent hippocampus. Postsynaptic structural 

remodeling during LTP has been intensely investigated, but coincident 

presynaptic mechanisms are less clear. In Chapter 2 of this dissertation, I 

present an investigation into the presynaptic structural plasticity that occurs to 

support LTP in the adult rat. The underlying subcellular organelles that might 

coordinate plasticity during LTP have only recently garnered attention from 

researchers. In Chapter 3, I present evidence that supports the role of one 

organelle, SER, in coordinating plasticity along CA1 dendrites. Finally, it is of 

interest to uncover how normal mechanisms of plasticity might break down 

during pathology. Fragile X (FX) is the most commonly inherited form of autism 

and intellectual disability (Hagerman et al., 2010) and is proposed to be caused 

in part by aberrant synaptic signaling (Zoghbi and Bear, 2012). In Chapter 4, I 

present preliminary EM work investigating the synaptic structural deficits in the 

hippocampus of a mouse model of FX. Collectively, the findings in this 

dissertation demonstrate that structural plasticity is coordinated in pre- and 

postsynaptic compartments during LTP in the adult rodent hippocampus and 

provide a starting point from which to study how normal mechanisms of structural 

plasticity go awry during pathology.     
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Chapter 2: Presynaptic Structural Plasticity 

2.1 Introduction  

The locus of LTP induction at CA3-CA1 synapses is generally agreed 

upon by the scientific community to be postsynaptic. It involves the activation of 

postsynaptic NMDA receptors, a sufficient influx of calcium into the postsynaptic 

cytosol, and the activation of downstream signaling molecules, the most 

important of which seems to be CaMKII (Bliss and Collingridge, 2013; Kennedy, 

2013). However, after nearly 50 years of LTP research, considerable controversy 

still surrounds the exact locus of LTP expression. While a select few researchers 

cling to the notion that LTP expression is a purely postsynaptic phenomenon, 

exclusively involving the insertion of AMPA receptors into the PSD (Granger and 

Nicoll, 2014; Kerchner and Nicoll, 2008), a wealth of studies from the early 1980s 

onwards has demonstrated a substantial presynaptic component to LTP 

expression at CA3-CA1 synapses (see below and MacDougall and Fine, 2014). 

Beyond the hippocampus, presynaptic forms of LTP have been observed at 

synapses throughout the brain including in the cerebellum (Bender et al., 2009; 

Salin et al., 1996), thalamus (Castro-Alamancos and Calcagnotto, 1999), 

amygdala (Humeau et al., 2003; Shaban et al., 2006; Shin et al., 2010; Tsvetkov 

et al., 2002), and visual cortex (Sarihi et al., 2012). Whether or not LTP 

expression is governed mainly or solely by one side of the synapse might be 

influenced by the age of the animal (Enoki et al., 2009; Isaac et al., 1995), 

synaptic receptor content present at the time of activity (MacDougall and Fine, 

2014), anatomical location of the synapse (Dolphin et al., 1982), length of the 

experiments (MacDougall and Fine, 2014), and techniques employed to 

investigate the question at hand (Yang and Calakos, 2013). It is not the goal of 
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this chapter to wade into an argument for or against either camp of thinking. It is 

becoming increasingly clear, however, from the sheer volume of work published 

on synaptic plasticity, that LTP expression most likely involves mechanisms 

working in tandem on both sides of the synapse. Thus, it is of interest to use EM 

as a means of investigating what presynaptic ultrastructural remodeling might be 

occurring during LTP and how it might be coordinated with postsynaptic 

structural mechanisms to support physiological plasticity.                   

Presynaptic Physiological Plasticity 

As Norway is the birthplace of LTP research, it is fitting that the earliest 

studies demonstrating a change in presynaptic activity during plasticity were also 

done in the Land of the Midnight Sun. Skrede and Malthe-Sørenssen (1981) 

working at the Norwegian Defense Research Establishment near Oslo monitored 

stimulus-evoked release of radioactive aspartate (D-[3H] aspartate) as a proxy for 

endogenous glutamate release, by measuring levels of radioactivity in 

superfusate running over acute hippocampal slices. The group found that the 

release of D-[3H] aspartate was significantly increased up to an hour after 

delivering tetanus to axons coursing through CA1 and interpreted these results 

as indicating an increase in neurotransmitter release during LTP. A year later 

across the North Sea, Timothy Bliss’s group in the UK supported Skrede and 

Malthe-Sørenssen’s findings by demonstrating an increase in neurotransmitter 

release during LTP in the dentate gyrus in vivo (Dolphin et al., 1982). Using 

similar tactics, the British group infused radioactive glutamine (3H-glutamine) into 

the dentate gyrus of anesthetized rats. 3H-glutamine is converted the 3H-

glutamate by glutaminase and the perfusate, collected via a push-pull cannula, 
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was measured for radioactivity. After inducing LTP with delivery of a 250 Hz 

stimulus for 0.5 s, release of 3H-glutamate was elevated relative to control slices 

for more than an hour. Thus, even in the early days of LTP research, evidence 

was emerging that implicated plasticity of the presynaptic compartment in 

mediating an increase in synaptic strength. 

Several studies have employed classical quantal analyses schemes that 

demonstrate an increase in the probability of release or increase in number of 

release sites without an increase in the response amplitude to a single quantum 

of neurotransmitter. In hippocampal dissociated cultures, Bekkers and Stevens 

(1990) induced LTP by repeatedly triggering action potentials in one neuron at 20 

Hz for 2 s in a bath containing no magnesium. The group measured synaptic 

responses of a neighboring neuron pre- and post-tetanus delivery. While the 

average response amplitude was unchanged, they demonstrated that release 

probability had increased and the number of release sites remained stable. Work 

in dissociated culture was followed up with studies of CA3-CA1 synapses in 

acute hippocampal slice from P14-21 rats, which replicated their previous 

findings. Responses in this study were only measured up to 30 minutes post-

tetanus. Malgaroli and Tsien (1992) demonstrated similar findings in cultured 

CA3-CA1 hippocampal neurons by inducing LTP with 30 s application of 50 µM 

glutamate and 0 mM magnesium to the bath. Quantal analyses have shown that 

after inducing LTP, previously “unreliable” synapses are recruited into the fray 

during synaptic stimulation (Stevens and Wang, 1994). Other studies employing 

quantal analyses have demonstrated that new synaptic sites are built to support 

LTP at CA3-CA1 synapses (Bolshakov et al., 1997) and that these sites come 

online at later phases during LTP (Sokolov et al., 2002).  
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Classical optical analyses suffer from that fact that minimal stimulation of 

afferents activates an unknown number of synapses at unknown sites along a 

neuron’s dendritic arbor. This fact makes it difficult to interpret LTP-associated 

changes at individual synapses. Researchers monitoring calcium transients using 

fluorescent dyes have introduced the idea of optical quantal analyses by applying 

older mathematical techniques to monitor synaptic activity at single dendritic 

spines. Emptage et al. (1999) filled cells in areas CA1 and CA3 of organotypic 

slice cultures with Oregon Green 488 BAPTA-1, a high affinity calcium-sensitive 

dye, and demonstrated the ability to monitor calcium responses (excitatory 

postsynaptic calcium transients [EPSCaTs7]) in individual spines. A follow-up 

study by the same group monitored EPSCaTs 15 minutes before and up to 1 

hour after inducing LTP with tetanic stimulation (Emptage et al., 2003). They 

found that the probability of EPSCaTs occurring increased from 0.11 to 0.44 30 

minutes after inducing LTP. Several studies have argued that the probability of 

EPSCaTs occurring provides an estimate for the probability of presynaptic 

release (Emptage et al., 1999; Yuste and Denk, 1995; Yuste et al., 1999). Thus it 

follows that an increase in EPSCaTs observed after inducing LTP supports the 

idea that the probability of presynaptic release increases with LTP. Enoki et al. 

(2009) extended this optical analysis to explore what influence the activation of a 

single synapse has on somatically recorded EPSPs. Using hippocampal slices 

from P21-28 rats, which have fewer silent synapses than younger animals 

(Busetto et al., 2008; Durand et al., 1996; Kerchner and Nicoll, 2008), the group 

observed that somatically recorded EPSPs tended to be larger when an imaged 

                                            
7 Pronounced eps-kats. 
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CA1 dendritic spine (presumably hosting a CA3-CA1 synapse) was active rather 

than inactive. They reasoned that the difference in somatically recorded EPSPs 

when they observed an EPSCaT in the imaged spine and when they did not 

would account for an average EPSP at the soma arising from the imaged 

synapse. The difference or “unitary” EPSP (i.e., the EPSP measured in the soma 

putatively from the activation of a single synapse) before and after LTP was 

found to be the same, lending more support to the notion that changes in release 

probability can contribute substantially to LTP at CA3-CA1 synapses. 

Interestingly, another study using this method suggested that “unsilencing” of 

silent synapses occurred via the postsynaptic insertion of AMPA receptors, but 

that subsequent rounds of LTP at those synapses occurred primarily via an 

increase in release probability (Ward et al., 2006), again supporting to the idea 

that both pre- and postsynaptic forms of LTP expression exist at individual 

synapses. 

Quantal analyses rely on inferences of presynaptic activity from 

postsynaptic responses (be they measured somatically or by imaging calcium 

transients in dendritic spines). Studies employing fluorescent markers of the 

presynaptic vesicle pool have provided some of the most compelling evidence in 

support of presynaptic plasticity during LTP at CA3-CA1 synapses. FM1-43, a 

fluorescent, amphipathic molecule taken up by synaptic vesicles during 

endocytosis, destains during activity and can serve to measure release of 

neurotransmitter (Betz and Bewick, 1992; Cochilla et al., 1999; Ryan, 2001). 

Both chemically and electrically induced LTP are associated with an increase in 

FM1-43 destaining (Ahmed and Siegelbaum, 2009; Zakharenko et al., 2001; 

2003), which suggests LTP is associated with an increase in neurotransmitter 
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release. Another class of fluorescent molecules used to investigate changes in 

presynaptic function during LTP are the pHluorins, pH-sensitive GFP mutant 

molecules that lose fluorescence as pH decreases. SynaptopHluorins, pHluorins 

fused with the presynaptic protein synaptobrevin, exploit the fact that the inside 

of synaptic vesicles is considerably more acidic (pH = ~5.7) than the surrounding 

cytosol and extracellular space (Miesenböck et al., 1998; Miesenböck, 2012). 

Upon exocytosis of synaptic vesicles, the pHluorin molecule is exposed to the 

more neutral extracellular space (pH = ~7.5), which causes it to suddenly 

fluoresce. Because it is an integral membrane protein, synaptopHluorin can be 

used to monitor vesicle dynamics over multiple rounds of endo- and exocytosis.  

Another advantage to these molecules is that they are genetically 

encoded and mouse lines carrying the gene have been established (Araki et al., 

2005; Li et al., 2005b; Tabares et al., 2007). Using acute hippocampal slices from 

mutant synaptopHluorin-expressing mice (8-12 weeks old), Bayazitov et al. 

(2007) monitored fluorescence changes at CA3-CA1 synapses to a 10 Hz (5 s) 

stimulus before and after the induction of LTP by 200 Hz tetanization. The group 

found that presynaptic function (as measured by peak fluorescence) and synaptic 

strength (field recordings) were both elevated up to 3 hours after inducing LTP. 

Curiously, although the field EPSP slope had reached its maximum by 30 

minutes, changes in presynaptic function did not reach asymptote until roughly 

an hour after the induction of LTP. Using blockers of NMDA receptors and L-type 

voltage-gated calcium channels (L-VGCCs), the group demonstrated that 

activation of postsynaptic NMDA receptors is necessary to induce a rapid onset 

LTP, while activation of L-VGCCs contributes to the formation of a longer lasting 

component of LTP that correlated with their measure of presynaptic function. 
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This work generated the idea that changes in postsynaptic function occur rapidly 

to support LTP at CA3-CA1 synapses, while presynaptic changes, although 

slower to come online, support later phases of LTP.             

Presynaptic Structural Plasticity in the Adult CNS 

The vast majority of studies investigating structural plasticity have focused 

on postsynaptic remodeling following changes in the functional status of the 

synapse (Holtmaat and Svoboda, 2009).  As outlined in this section, presynaptic 

structural plasticity is also, however, associated with dramatic changes in the 

presynaptic compartment. This form of plasticity seems to be somewhat 

conserved through evolution. Early investigations into the morphological correlate 

of long-term sensitization of the gill-withdrawal reflex in the sea slug Aplysia 

californicus found that trained animals had dramatic changes to presynaptic 

compartments, including more synaptic vesicles, presynaptic boutons, and 

axonal branches (Bailey and Chen, 1983; 1988a; 1988b). In the developing 

mammalian brain, structural remodeling of axons had been observed previously 

(Antonini and Stryker, 1993; Portera-Cailliau et al., 2005; Ruthazer et al., 2003). 

Portera-Cailliau et al. (2005) imaged axons in layer 1 of the neocortex of GFP-

transgenic mice during the first three postnatal weeks. The group observed that 

axons exhibited growth and elimination at the same time, but that growth was 

overall more dominant during development. Axons from different types of cells 

displayed different forms of growth. Thalamocortical axons grew quickly in 

straight paths, while local axons of Cajal-Retzius interneurons grew more slowly 

with large growth cones coursing a tortuous path. It is clear from this work that 

different neuron types exhibit different forms of growth. Under more dramatic 
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conditions, axonal plasticity has been investigated during peripheral axotomy, 

which involves the disruption of motor neuron connections to muscle fibers and 

induces massive rearrangements of synaptic connections along damaged 

processes (for review see Coleman and Freeman, 2010; Neukomm and 

Freeman, 2014; Spejo and Oliveira, 2014). In adult neocortex, researchers had 

observed axonal growth in the CNS following lesions of peripheral sensory 

structures (Dancause et al., 2005; Darian-Smith and Gilbert, 1994; Florence et 

al., 1998), but it was not known whether axons were normally plastic in the adult 

CNS or if this was only induced by injury or peripheral sensory deprivation.  

By observing presynaptic structures in vivo, De Paola et al. (2006) and 

Stettler et al. (2006) were the first studies to demonstrate definitively that CNS 

axons and boutons are dynamic in the non-perturbed adult brain. De Paola et al. 

monitored layer 1 and 2 axons through a cranial window above the 

somatosensory cortex of mature transgenic mice (> 2.5 months old) expressing 

cytoplasmic or membrane-bound GFP. The group followed axons for up to an 

impressive 9 months and found that, although the general geometry of the axonal 

arbor in these mice tended to remain stable, shorter side branches and distal 

axonal endings were highly dynamic, stretching and retracting up to ~150 µm 

during recording. Furthermore, although the arbors seemed to remain relatively 

intact, this was not so for boutons along those arbors. Some boutons were stable 

over the course of 9 months of imaging, while other boutons were observed 

disappearing or appearing. The survival rate of boutons was found to be 

dependent on the type of axon imaged; putative thalamocortical synapses were 

more stable than intracortical synapses. Stettler et al. used a different 

methodology and a different animal to demonstrate dynamic presynaptic 
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structures that persist into adulthood. This group injected a non-replicative 

adeno-associated virus carrying the gene for enhanced GFP in to the primary 

visual cortex of adult Macaque monkeys. Again, axonal arbors appeared to be 

stable in the adult Macaque, but terminal branches and boutons were observed 

coming and going, suggesting ongoing synaptogenesis and synaptic elimination 

in V1 of primates. In addition to the cortex, presynaptic terminals of cerebellar 

parallel fibers are dynamic in adult mice and become stabilized during the 

learning of motor tasks (Carrillo et al., 2013). Interestingly, it appears that the 

dynamic nature of axonal boutons, at least in mouse cortex, actually increases 

with age as demonstrated in a follow-up study using 22-24 month old mice (Grillo 

et al., 2013). This might be indicative of an inability to stabilize those structures in 

“elderly” animals. While these studies provide impressive data to support the 

claim that presynaptic structures are highly dynamic after development, they are 

restricted to the resolution of light and thus the structural remodeling occurring 

below that resolution had been left unexplored.  

In classic studies on synaptic vesicle cycling, vesicles retrieved during 

recycling were thought to be reused exclusively at the same synapse (Ceccarelli 

et al., 1973; Heuser and Reese, 1973). Since those early studies, a variety of 

reports have shown that vesicle packets can be mobile at extrasynaptic sites in 

axons (Ahmari et al., 2000; Hopf et al., 2002; Krueger et al., 2003). These 

packets could potentially serve as a way to rapidly build synapses (Ahmari and 

Smith, 2002; Matteoli et al., 2004; Ziv and Garner, 2004). Furthermore, evidence 

of mobile vesicles beyond the synapse put into question the assumption that 

vesicles are restricted to recycling sites. To address whether or not recycling 

vesicles are restricted in this way, Darcy et al. (2006) used two FM dyes to 
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investigate movement of vesicles that had been endocytosed in cell culture. 

Vesicles from recycling pools were loaded with FM4-64 and putative synapses 

were identified where FM fluorescence was apposed to fluorescently tagged 

postsynaptic glutamate receptors. The group photo-bleached adjacent synapses 

and monitored the recovery of fluorescence in neighboring boutons, which 

suggested that recycling vesicles (filled with dye) were able to move through 

inter-bouton axonal regions to neighboring boutons. They subsequently 

stimulated axons and observed fluorescence decrease, which further supported 

the idea that these vesicles were fusion-competent at distant, non-native synaptic 

sites. As anatomical confirmation of the presence of these vesicles at distant 

boutons, the group used a photo-convertible form of FM1-43, which produces an 

electron dense product that can be analyzed at the level of the electron 

microscope. Densely stained vesicles were found on EM sections in distant 

boutons as well as docked along non-native active zones. Using similar 

techniques, a follow-up study by the same group found that vesicles in acute 

hippocampal slices from three-week old rats were also capable of moving to non-

native synapses where they were also release competent (Staras et al., 2010). 

Vesicles in acute slices that moved to non-native synapses were extremely 

mobile and this mobility was found to be under the influence of BDNF. The 

subset of mobile recycling vesicles from multiple adjacent release sites was 

termed the vesicular “superpool” in Staras et al.   

Bourne and Harris (2011) and the Current Study 

Dr. Jennifer Bourne, a former postdoctoral researcher in the Harris lab, 

published a colossal study investigating the temporal aspects of postsynaptic 
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structural plasticity following the induction of LTP with TBS in area CA1 of adult 

(51-65 days old) rats (see Bourne and Harris, 2011a). A large portion of this 

dissertation forms an extension of her original work and a description of her 

findings is warranted. LTP was induced in hippocampal slices with TBS and 

tissue was fixed at 5 minutes, 30 minutes, or 2 hours after LTP induction. CA1 

stratum radiatum tissue from the slices was subsequently prepared for electron 

microscopy (see Section 2.2 below for detailed methods). Interestingly, at 5 

minutes during LTP, she uncovered an increase in the frequency of asymmetric 

shaft synapses and stubby spines, transitory postsynaptic structures that develop 

into spines or are eliminated (Engert and Bonhoeffer, 1999; Fiala et al., 1998; 

Maletic-Savatic et al., 1999). Non-synaptic filopodia were increased at 30 

minutes. By 2 hours, the frequency of all “transitional” structures had returned to 

control levels. These results suggest that early LTP is associated with 

synaptogenesis and that by 2 hours, these structures are either eliminated or 

converted to mature spines. Furthermore, when typical spine types were 

categorized according to their size (by head diameter, small thin spines: < 0.45 

µm, medium thin spines: > 0.45 µm, mushroom spines: > 0.6 µm), an interesting 

finding was uncovered. At 5 and 30 minutes, the frequency of these spine types 

during LTP did not differ from control levels. At 2 hours, however, while the 

frequency of medium thin and mushroom spines remained stable, there were 

significantly fewer small thin spines. Importantly, the study showed that synapse 

area on all remaining spines was increased at 2 hours during LTP, while at 5 and 

30 minutes PSDs had not yet expanded. Inhibitory synapses showed the same 

pattern: there were fewer inhibitory synapses at 2 hours, but those remaining 

were larger than control conditions. Despite this dramatic remodeling of dendritic 
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spines and synapses during LTP, the total sum synaptic input hosted along a 

length of dendrite (excitatory or inhibitory) was the same during LTP as it was 

during control conditions. Thus, as synapses expanded during LTP, the summed 

input along the dendrite remained constant as small thin spines were eliminated 

or prevented from forming (in other words, fewer spines, larger synapses by 2 

hours during LTP, Fig. 2.1). This work provided strong structural evidence 

promoting the idea that adult CA1 dendrites support a finite level of synaptic input 

and modifications of synaptic connections at one synapse can influence 

neighboring synapses. (An investigation into the dendritic resources that might 

shape synaptic coordination along dendrites during LTP is presented in Chapter 

3 of this dissertation.) 

The findings presented in this chapter of my dissertation seek to answer 

several questions that naturally follow from Bourne and Harris (2011) and 

previous studies investigating structural plasticity during LTP. The first obvious 

question is, what presynaptic structural arrangements are occurring to support 

LTP in tissue previously analyzed by Dr. Bourne for postsynaptic remodeling? 

Secondly, the majority of studies investigating hippocampal structural plasticity 

have investigated tissue that had undergone LTP for an hour or less. Because 

there are distinctive mechanisms in early and late phases of LTP (see Section 

1.2: Early LTP/LTD Studies), it is of interest to consider presynaptic structural 

remodeling during both phases (30 minutes and 2 hours). Furthermore, to my 

knowledge, no study has investigated presynaptic structural plasticity using 

electron microscopy in unambiguously adult animals. While light microscopy has 

uncovered dynamic remodeling of axonal branches and boutons in adult 

mammals (De Paola et al., 2006; Grillo et al., 2013; Stettler et al., 2006), the  
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 Control LTP 

Synapses/µm: 4.69 2.70 
Mean synapse size: 0.06 µm2 0.11 µm2 
Σ Synaptic area/µm: 0.32 µm2 0.32 µm2 

 

Figure 2.1: Total synaptic input along a dendrite conserved by 2 hours during LTP. 
Adapted from Bourne and Harris, 2011. Three-dimensional reconstruction of dendrites 
(yellow) with PSDs (red) from both control and LTP conditions from previous work in the 
Harris laboratory investigating postsynaptic structural remodeling during LTP. Despite 
dramatic differences in the number of synapses hosted along a dendritic segment during 
LTP, total synaptic input to the segment was conserved as synapses enlarged. Scale 
cube = 0.5 µm on each side.  
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underlying ultrastructural modifications that might occur fall well below the 

resolution of that technique. Finally, the vesicular superpool provides a 

mechanism whereby synapses along axons “share” recycling vesicles (Darcy et 

al., 2006; Staras et al., 2010). The dynamics of superpool vesicles might be 

altered during LTP and we were curious to investigate if we could uncover 

ultrastructural evidence of the vesicular superpool in our hippocampal tissue and 

whether or not those vesicles contributed to support LTP. 

To consider these questions, we reconstructed axonal segments and 

boutons in three dimensions in hippocampal tissue from serial section electron 

micrographs that Dr. Bourne had previously analyzed for dendritic spines and 

synapses (Bourne and Harris, 2011a). We categorized and quantified bouton and 

vesicle types and searched for evidence of endocytosis. As outlined below, we 

uncovered a remarkably plastic presynaptic component of CA3-CA1 synapses. 

The presynaptic structural remodeling uncovered here appears to be coordinated 

with postsynaptic rearrangements previously described by Dr. Bourne. This study 

was done in conjunction with Dr. Bourne and was published in the Journal of 

Comparative Neurology in 2013 (see Bourne et al., 2013). Dr. Bourne performed 

the physiology experiments and processed the tissue for electron microscopy. 

Together, Dr. Bourne and I reconstructed presynaptic axons and boutons and 

analyzed the data. Dr. Bourne and I wrote the manuscript with Dr. Harris.   

2.2 Methods 

Hippocampal Dissections and Physiology 

All methods were done in accordance with and approved by the 

Institutional Care and Use Committee of the University of Texas at Austin, which 
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follows the National Institutes of Health guidelines for the humane care and use 

of laboratory animals. For this study we used seven adult male Long Evans rats8 

aged 56-65 days old and weighing 263-361 g. In a large glass jar, a metal 

platform with nose hose was placed over cotton gauze, to which ~2 mL of the 

anesthetic halothane had been added. The jar was closed and the halothane was 

allowed to vaporize for 3-5 min. An animal was placed in the jar and, to 

guarantee it was completely unresponsive to external stimulus, it was removed 

only after it become unresponsive to a light toe pinch (~1 min). The animal was 

immediately decapitated and the hippocampus was removed. 400-µm thick slices 

from the middle third of the hippocampus were collected at room temperature (25 

ºC) on a Stoelting tissue chopper (Wood Dale, Illinois). The slices were placed on 

nets in an interface chamber. The nets were over wells filled with artificial 

cerebrospinal fluid (aCSF: 116.4 mM NaCl, 5.4 mM KCl, 3.2 mM CaCl2, 1.6 mM 

MgSO4, 26.2 mM NaHCO3, 1.0 mM NaH2PO4, 10 mM dextrose) that had been 

previously bubbled with carbogen (95% O2, 5% CO2) for at least 30 min. The 

slices were allowed to recover in vitro for ~3 hours at 32 ºC, a length of time 

necessary to allow synapse number to stabilize after trauma induced by cutting 

slices (Kirov et al., 1999)9. To control for the possibility that ultrastructural 

changes uncovered in this work might be a consequence of TBS delivery and not 

LTP, the NMDA receptor blocker APV (D-2-amino-5-phosphonopentanoic acid) 

                                            
8 For a study on the interesting effects of strain type on bidirectional plasticity in another 
region of the hippocampus, the dentate gyrus, see Bowden et al. (2011). 
9 Interestingly, several studies have shown that > 2-4 h of slice recovery is required to 
stabilize a variety of cellular processes that are thrown into disarray after dissection of 
neural tissue (Ho et al., 2004; Huber et al., 2001; Sajikumar et al., 2005; Whittingham et 
al., 1984). One study showed that an impressive 4-6 h of recovery after cutting slices is 
necessary to stabilize protein synthesis in hippocampal slices (Osterweil et al., 2010).   
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was used to prevent induction of LTP. For APV experiments, 50 µM APV in 

aCSF was added to the wells immediately after the slices had recovered.  

After recovery, a glass recording electrode filled with 120 mM NaCl was 

placed in the middle of stratum radiatum in area CA1. Two concentric bipolar 

stimulating electrodes (100 µm diameter, Fred Haer, Brunswick, Maine) were 

placed on either side of the recording electrode separated by a distance of 600-

800 µm (Fig. 2.2a) to guarantee stimulation of distinct populations of synapses 

(Ostroff et al., 2002; Sorra and Harris, 1998). Extracellular field potentials were 

recorded using IGOR (Wave Metrics, Lake Oswego, Oregon). The slope of the 

field excitatory postsynaptic potential (fEPSP) was measured over 400 µs at 170-

250 µs after the stimulus artifact. We determined the responsiveness of the slice 

by performing an input/output curve. Stimulus intensity for set just below 

threshold for firing of a population spike. This stimulus intensity was then held 

constant for the remainder of the physiology experiments and baseline 

recordings were collected for each stimulating electrode with a test pulse every 2 

min (offset by 30 s) for ~30 min. Theta-burst stimulation (TBS, 8 trains of 10 

bursts at 5 Hz of 4 pulses at 100 Hz delivered 30 seconds apart), a protocol that 

mimics naturally occurring oscillations in the hippocampus (Buzsáki, 2002; 

Colgin, 2013; Hyman et al., 2003; Larson et al., 1986; Morgan and Teyler, 2001), 

was delivered to one stimulating electrode to induce LTP. The site of LTP 

induction (CA3 or subicular side of the recording electrode) was alternated 

between experiments. Synaptic responses after delivery of TBS were then 

monitored for 30 min or 2 hours (Fig. 2.2b). 
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Figure 2.2: LTP induction in hippocampal area CA1 of adult rats. (a) Two stimulating 
electrodes (Stim 1 and 2) were positioned 600-800 µm apart on either side of a 
recording electrode (Rec) in the middle of stratum radiatum in hippocampal area CA1. 
Scale bar = 600 µm. Baseline responses were collected for ~40 min. TBS was delivered 
to one stimulating electrode to induce LTP while the other received control stimulation. 
Postsynaptic responses were monitored for (a) 30 minutes (3 slices from 3 animals) or 
(b) 2 hours (2 slices from 2 animals) post-TBS, after which the tissue was rapidly fixed 
(within 30 sec of last test pulse) and prepared for EM. (d) TBS delivered in the presence 
of APV did not produce LTP (2 slices from 2 animals). Insets show example averaged 
waveforms from responses to the stimulating electrode where LTP was induced before 
(pink) and after (red) receiving TBS. Scale bars = 5 mV/5 ms. 
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Fixation and Electron Microscopy 

After the last test pulse, the electrodes were removed and the slice (still on 

its net) was turned into a mixed aldehyde fixative (6% glutaraldehyde and 2% 

paraformaldehyde in 0.1 M cacodylate buffer with 2 mM CaCl2 and 4 mM 

MgSO4). Penetration of the fixative into the middle of the tissue was enhanced by 

microwave irradiating the slice and fixative for 10 s while ensuring the slice did 

not reach greater than 35 ºC (Jensen and Harris, 1989). The slices were then 

kept in fixative overnight at room temperature and then embedded in 7% agarose 

and vibra-slices at 70 µm on a Leica WT 1000S vibratome (Leica, Nussloch, 

Germany) in cacodylate buffer. For each stimulation site, the vibra-slice 

containing the roughly 50-µm indentation of the stimulating electrode in its air 

surface along with two adjacent vibra-slices were kept to be further processing. 

The vibra-slices were processed for EM through 1% osmium and 1.5% 

potassium ferrocyanide mixture, 1% osmium alone, dehydrated through graded 

ethanols (50-100%) and propylene oxide, embedded in a plastic (LX112), and 

placed in a 60 ºC oven for 48 hours (Harris et al., 2006). Approximately 200 serial 

sections (each ~45 nm thick) were collected 150-200 µm lateral to the control 

and LTP electrodes at a depth of 120-150 µm from the air surface of the slice 

and were mounted on pioloform-coated slot grids (Synaptek, Ted Pella Inc., 

Redding, CA). Sections were counterstained with ethanolic uranyl acetate and 

Reynolds lead citrate. The serial sections and a calibration grid (Ted Pella Inc.) 

were then imaged on a JEOL 1230 transmission electron microscope (Peabody, 

MA) with a Gatan digital camera.          
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Three-dimensional Reconstructions 

Each collection of serial section images (a “series”) was coded with a 

random string of 5 letters so as to remain blind to condition. The series was 

imported into RECONSTRUCT™ (freely available at synapses.clm.utexas.edu) 

and aligned (Fiala, 2005; Fiala and Harris, 2001a). Actual section thickness was 

computed using the cylindrical diameters method by dividing the diameters of 

longitudinally sectioned mitochondria by the number of sections the mitochondria 

spanned (Fiala and Harris, 2001a). Dendrites and synapses had previously been 

traced in these series (Bourne and Harris, 2011a). 

Statistical Analyses 

Statistical analyses for this study were performed in Statistica (StatSoft, 

Tulsa, Oklahoma). A two-way ANOVA (factors: condition, slice) was used to 

ascertain whether the induction of LTP resulted in differences in frequency of 

bouton types at each time point. Hierarchical nested ANOVAs (hnANOVAs) were 

used to ascertain whether the induction of LTP resulted in changes in vesicle 

content per axonal bouton. For hnANOVAs, axon was nested in condition and 

experiment. Nested design was used to ensure none of our results were driven 

by a particular axon or experiment. To demonstrate differences from LTP at each 

time point, mean relative change (Δ mean ± standard error) is used in figures. 

This was calculated by subtracting individual measurements from the mean 

control value within each slice. Significance was set to p < 0.05 and asterisks in 

figures denote p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***). Sample sizes are 

indicated in appropriate figure legends. For clarity, APV data is noted in the text. 
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2.3 Results 

Sample Population of Axons and Boutons  

We examined 772 excitatory boutons for the synaptic vesicle analyses. 

For a subset of those boutons, we reconstructed 192 axonal segments. Axons 

were identified as putatively excitatory (glutamatergic) by the presence of clear, 

round small synaptic vesicles opposed to a postsynaptic density (PSD) that was 

thickened (asymmetric). Boutons were classified according their number of 

postsynaptic partners. Single synaptic boutons (SSBs) had one post-synaptic 

partner, multi-synaptic boutons (MSBs) had two or more postsynaptic partners, 

and non-synaptic boutons (NSBs) were clusters of 10 or more vesicles along a 

length of axon with no postsynaptic partners (Fig. 2.3). At all times points and 

conditions, we found mitochondria present in ~50% of the analyzed population of 

boutons.         

Bouton Types and Frequency 

Our lab has previously shown that the number of smallest dendritic spines, 

those with a head diameter of less than 0.45 µm, was reduced by 33% 2 hours 

during TBS-induced LTP (Bourne and Harris, 2011a). Thus, it was of interest to 

investigate the corresponding presynaptic structural changes occurring during 

LTP. We reasoned that boutons would also be concomitantly reduced or there 

would be a shift in frequency of bouton types. To investigate the frequency of 

each type of bouton, we performed an unbiased three-dimensional volume (or 

“brick”) analysis (Fiala and Harris, 2001b) by placing a 3.5 µm × 3.5 µm sampling 

frame on 50 serial sections of each series (Fig. 2.4) . All boutons falling within 

the sample frame or touching two inclusion lines (green) were included in the 
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analysis. Boutons falling outside the sample frame or touching two exclusion 

lines (red) were not analyzed10. A total of 1,334 boutons were identified as SSBs, 

MSBs, or NSBs in the unbiased volume. We calculated the density of each 

bouton type by dividing the number of boutons by the volume of the brick. At 30 

min and 2 hours, the frequency of MSBs and NSBs during LTP was not 

significantly different from control conditions. However, at 2 hours but not 30 

minutes, we uncovered a significant reduction of SSBs during LTP (Fig. 2.5). 

When TBS was delivered in the presence of APV, which blocks induction of LTP, 

the reduction of SSBs was prevented (APV-control: SSB = 2.04 ± 0.11; MSB = 

0.54 ± 0.08; NSB = 0.58 ± 0.02; APV-TBS: SSB = 1.72 ± 0.13; MSB = 0.2 ± 0.11; 

NSB = 0.73 ± 0.13). These results suggest that the SSBs reduced 2 hours during 

LTP were the original partners of the small thin dendritic spines that were also 

eliminated during LTP. (See discussion below for alternate interpretation of these 

data.)               

Vesicular Composition of Boutons 

Vesicles in boutons exist in a variety of states (Alabi and Tsien, 2012; 

Rizzoli and Betz, 2005), which influence their release competency (Dobrunz, 

2002; Murthy et al., 1997) and several studies have shown evidence that 

induction of plasticity is mediated in part by modulation of vesicular dynamics  
  

                                            
10 We refer to this analysis as “unbiased”, because care is taken to prevent over-
counting structures of interest (Fiala and Harris, 2001b). Here, by using a sample frame, 
we are estimating the frequency of boutons in the tissue from a population of sampled 
boutons. One can imagine that, if it were possible on these EM images to place two 
sample frames immediately adjacent to one another, a problem arises: Which sampling 
frame does a bouton belong to if it touches them both? To prevent “double counting”, 
each sample frame includes two exclusion lines, which would overlap two inclusion lines 
of theoretical adjacent sample frames. 
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Figure 2.3 Boutons in area CA1 classified by number of postsynaptic partners. 
Boutons are shown in teal, non-docked synaptic vesicles in green, vesicles docked 
along the presynaptic active zone in dark blue, dendritic spine heads in yellow, and 
PSDs in red. (a) Single synaptic boutons (SSBs) form synapses with single postsynaptic 
partners. (b) Multisynaptic boutons (MSBs) form partners with multiple dendritic spines. 
(c) Non-synaptic boutons (NSBs) are varicosities along an axon containing more than 10 
vesicles and do not have postsynaptic partners. Scale bar = 0.5 µm. Scale cube = 0.125 
µm3. Note: text color for type of bouton will carry through the rest of the figures in this 
chapter (i.e., blue for SSBs, yellow for MSBs, and orange for NSBs).  
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Figure 2.4: The unbiased “brick” allows sampling of bouton types in the neuropil. 
(a) Example of a sampling frame overlaid on an electron micrograph. Each side of the 
sampling fame = 3.5 µm. Exclusion lines (red) and inclusion lines (green) are shown. 
See text for explanation of sampling methods. (b) Reconstructing multiple sampling 
frames over 50 sections reveals the construction of a virtual volume, which can be used 
to sample boutons in the neuropil. Each sphere represents the anatomical center of a 
bouton falling within or touching an inclusion line of the volume. SSBs are shown in blue, 
MSBs in yellow, and NSBs in orange. Scale bar = 1 µm.  
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Figure 2.5: Single synaptic boutons are reduced by 2 hours during LTP. (a) The 
average frequency of each bouton type by time point and condition. The distribution of 
the data is indicated with diamonds. Superimposed black lines represent the mean of 
each group. 30 minute data: n = 3 bricks each for control and LTP. 2 hour data: n = 4 
bricks each for control and LTP. (b) By 30 minutes during LTP, the frequencies of bouton 
types were not significantly different from control conditions. By 2 hours during LTP, 
however, single synaptic boutons were selectively reduced (p < 0.05, mean Δ ± SEM).  
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(Enoki et al., 2009; Ratnayaka et al., 2012). Thus we were interested to 

investigate the vesicular composition of boutons during LTP. Vesicles that are 

docked to the presynaptic membrane are thought to be part of the readily 

releasable pool, vesicles available for release upon stimulation, while non-

docked vesicles form the reserve vesicle pool (Branco et al., 2010; Harris and 

Sultan, 1995; Schikorski and Stevens, 2001). We classified vesicles as either 

docked if the vesicle was completely round and flush with the presynaptic active 

zone or non-docked (Fig. 2.6). By 30 min during LTP, the number of vesicles per 

synapse was reduced (p < 0.01). By 2 hours, however, the number of vesicles 

per synapse returned to control values (Fig. 2.7a). By 30 min during LTP, the 

size of vesicle pools was not different from control values. Interestingly, by 2 h 

during LTP, vesicle pools were significantly smaller than control values (p < 

0.001, Fig. 2.7b). We did not observe changes in the number of docked vesicles 

per synapse or vesicle pool size when TBS was given in the presence of APV 

(APV-control: docked = 3.71 ± 0.3, non-docked = 311.39 ± 33.97; APV-TBS: 

docked = 3.68 ± 0.4, non-docked = 363.51 ± 41.7). 

Endocytosis and Presynaptic Activity 

To sustain release at synapses, vesicles must be recycled via endocytosis 

(Haucke et al., 2011; Lou et al., 2012; Murthy and De Camilli, 2003; Ryan, 2006). 

It was feasible that inducing LTP with TBS might have impaired endocytosis in 

our slices and this was driving the decrease in vesicle pool sizes we observed 

above. It was thus imperative to investigate endocytosis in our slices. 

Additionally, such a tight coupling of vesicular release and recycling suggests 

that anatomical evidence of endocytosis might serve to mark those boutons that  
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Figure 2.6: Morphology of vesicles pools at adult CA3-CA1 synapses. (a) Electron 
micrograph and (b) three-dimensional reconstructions of a dendritic spine (yellow), PSD 
(red), docked vesicles (dark blue), and non-docked vesicles (green). Vesicles were 
considered docked in their membrane were completely flush with that of the presynaptic 
active zone. Scale bar = 0.5 µm. Scale cube = 0.25 µm on each side. 
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Figure 2.7: Decrease in docked vesicles followed by reduction in vesicle pool 
sizes during LTP. (a) Average number of docked vesicles in each condition and time 
point represented by superimposed black lines. Diamonds indicate the distribution of 
data. The number of docked vesicles per bouton decreased at 30 minutes during LTP (p 
< 0.01, mean Δ ± SEM). (b) Average size of vesicle pools in each condition and time 
point represented by superimposed black lines. Diamonds indicate the distribution of 
data. Vesicle pools were smaller at 2 hours during LTP (p < 0.01, mean Δ ± SEM). 30 
minutes control: n = 49 boutons; 30 minutes LTP: n = 59 boutons; 2 hours control: n = 
237 boutons; 2 hours LTP: n = 312 boutons. 
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were most active at fixation. To investigate if vesicle composition of boutons was 

related to endocytosis, we looked for evidence of clathrin-coated pits (CCPs), an 

early stage of endocytosis (Fig. 2.8a). In control conditions, we found CCPs in 

17% of boutons (Fig. 2.8b). Furthermore, those boutons in control conditions 

with CCPs had more vesicles docked along the presynaptic active zone as well 

as larger vesicle pools than boutons without CCPs (Fig. 2.8c, d). We also 

observed CCPs in boutons during LTP, lending support to the notion that 

endocytosis was not impaired in our slices. When we categorized boutons as to 

whether or not they contained a CCP (Fig. 2.9), an interesting result emerged. At 

30 min during LTP, the decrease in docked vesicles per synapse was only 

significant in boutons without a CCP (p < 0.01, Fig. 2.10a). The size of the 

vesicle pools was decreased at 30 min and 2 h during LTP in boutons with a 

CCP (p < 0.05). By 2 h, vesicles pools were also smaller in boutons without a 

CCP (p < 0.01, Fig. 2.10b). In the presence of APV, we did not detect a 

difference in docked vesicles per synapse or vesicle pool sizes regardless of the 

presence or absence of CCPs (APV-control: docked: +CCP = 3.57 ± 0.42, -CCP 

= 3.79 ± 0.4, non-docked: +CCP = 406 ± 79.17, -CCP = 266.33 ± 31.6; APV-

TBS: docked, +CCP = 4.78 ± 0.91, -CCP = 3.21 ± 0.4, non-docked, +CCP = 

453.87 ± 100.03, -CCP = 324.43 ± 40.7).          

Vesicle Transport Packets 

Vesicles are not confined to boutons but can be part of a so-called 

“superpool” of vesicles, that is to say vesicles that are shared between boutons 

along a length of axon (Darcy et al., 2006; Staras et al., 2010; Westphal et al., 

2008). Vesicle “transport packets” that move between boutons might also play a  
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Figure 2.8: Clathrin-coated pits found in boutons with larger vesicle pools. (a) An 
electron micrograph from control conditions with an example of a CCP (black arrow). (b) 
Control data from both 30 minutes and 2 hour experiments were combined and revealed 
that 17% of boutons contained a CCP (n = 48 boutons with and 238 boutons without a 
CCP). Boutons with a CCP had significantly (c) more docked vesicles and (d) larger 
vesicle pools than boutons without a CCP. Scale bar = 0.5 µm.    
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Figure 2.9: Vesicle pools and clathrin-coated pits. Example electron micrographs 
and reconstructions of non-docked vesicles (green), CCPs (orange), and associated 
dendritic spine (yellow) and PSD (red) from (a) 30 minute control data and (b) 2 hour 
LTP data. Inset shows magnified CCP. Scale bar = 0.25 µm. Scale cube = 0.0156 µm3.  
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Figure 2.10: Vesicle pools are smaller in boutons with clathrin-coated pits. (a) 
Average number of docked vesicles shown with black lines in boutons classified by time 
point, condition, and presence or absence of CCPs. Individual data indicated with 
diamonds. At 30 minutes, the decrease in number of docked vesicles was significant in 
boutons without a CCP (p < 0.01, mean Δ ± SEM). (b) Average size of vesicle pools 
shown with black lines in bouton classified by time point, condition, and presence or 
absence of CCPs. Individual data indicated with diamonds. Vesicles pools were smaller 
in boutons with CCPs at 30 minutes (p < 0.05) and 2 hours (p < 0.05). At 2 hours during 
LTP, boutons without CCPs were also significantly smaller during LTP (p < 0.01). 
Control: +CCP, n = 16 boutons, -CCP, n = 33 boutons; 30 minutes LTP: +CCP, n = 20 
boutons, -CCP, n = 39 boutons; 2 hours Control: +CCP, n = 32 boutons; -CCP, n = 205 
boutons; 2 hours LTP: +CCP, n = 43 boutons; -CCP, n = 269 boutons.  
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role in plasticity (Ahmari et al., 2000; Sabo et al., 2006; Ziv and Garner, 2004). 

To investigate if we could observe ultrastructural evidence of vesicle “sharing” 

between boutons, we considered the smallest NSBs, those that contained 10 

vesicles or fewer, as potential vesicle transport packets (Fig. 2.11a). Curiously, a 

small fraction of transport packets in the tissue showed evidence of endocytosis 

(Fig. 2.11c,d), which suggests these vesicles were potentially release competent 

as they were moved along the axon. At 30 min during LTP, we found no 

difference in the number of transport packets. However, at 2 hours during LTP, 

transport packets along axons were nearly eliminated (p < 0.01, Fig. 2.12). We 

did not observe differences in the number of transport packets in control or LTP 

conditions when TBS was delivered in the presence of APV (APV-control = 21.64 

± 4.21% per axon; APV-TBS = 14.75 ± 4.01% per axon).     

2.4 Discussion 

This study uncovered significant presynaptic structural plasticity evident 

on the EM level during LTP in the adult animal. By 30 min during LTP, we found 

that vesicles docked at the active zone were reduced at synapses. By 2 hours 

during LTP, docked vesicles had returned to control levels while vesicles pools 

were reduced and a subset of boutons were lost. Transport packets of vesicles 

were nearly eliminated during LTP, which suggests that they were incorporated 

into boutons or released during transit. We used APV to block the induction of 

LTP and to control for the effects of the TBS paradigm we studied. APV 

prevented the loss of vesicles, boutons, and transport packets, suggesting that 

the results we observed were dependent on the activation of NMDA receptors.  
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Figure 2.11: Transport packets along axons in area CA1. (a) Example 
reconstructions of axonal segments (teal) from each condition showing vesicle pools 
(green), synapses (red) and mitochondria (purple). Transport packets were non-synaptic 
boutons with fewer than 10 vesicles (black arrow). (b) Evidence of omega structures at 
transport packets (black arrow) might indicate potential for release at these sites. (c) A 
small fraction of transport packets contained a CCP (n = 2 transport packets with and 71 
transport packets without a CCP). Scale cube = 0.125 µm3. Scale bar = 0.25 µm.     
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Figure 2.12: Transport packets nearly eliminated by 2 hours during LTP. (a) 
Average percentage of boutons along reconstructed axonal segments that were found to 
be transport packets in each condition shown with superimposed black lines. Diamonds 
indicate the distribution of data. (b) By 2 hours during LTP, the percentage of boutons 
along a reconstructed axonal segments that were transport packets was substantially 
reduced (p < 0.05, mean Δ ± SEM), but not at 30 minutes. 30 minutes control: n = 21 
axons, 77 boutons; 30 minutes LTP: n = 21 axons, 78 boutons; 2 hours control: n = 52 
axons, 118 boutons; 2 hours LTP: n = 58 axons, 126 boutons.  
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Synapses as Dynamic and Cohesive Units 

In a study using mice expressing a plasma membrane targeted enhanced 

GFP (green fluorescent protein) in a subset of neurons, De Paola et al. (2003) 

observed that presynaptic terminals of dentate granule cell mossy fiber axons 

projecting to CA3 appeared and disappeared over the course of 1-3 days in 

organotypic cultures. Furthermore, the group demonstrated that high frequency 

stimulation caused the conversion of stable presynaptic terminals into dynamic 

structures that lasted for 1-2 days. This conversion of stable to dynamic boutons 

required the activation of AMPA receptors and PKA as well at de novo protein 

synthesis. Several other studies have shown an increase in bouton turnover and 

remodeling during plasticity in cultured neurons (Antonova et al., 2001; 

Nikonenko et al., 2003) and this is consistent with the bouton reduction we report 

here in area CA1 of acute hippocampal slices.  

The dynamic nature of boutons in both the hippocampus and cortex is not 

limited to younger animals but lasts into adulthood (Gogolla et al., 2007). In one 

of the first studies to demonstrate this (but see also De Paola et al., 2006), 

Stettler et al. (2006) employed the use of a nonreplicative adeno-associated virus 

to infect cells in the primary visual cortex of adult Macaque monkeys with 

enhanced GFP and were able to visualize boutons up to 500 µm below the 

cortical surface appearing and disappearing over the course of their recordings. 

Thus, not only does bouton turnover last into adulthood, but the dynamic nature 

of boutons and axons observed in rodent studies has also been replicated in 

other mammals more closely related to humans. 

We observed a decrease in the frequency of SSBs without a concomitant 

change in the frequency of MSBs or NSBs. This suggests that complete synaptic 
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units were disassembled or prevented from forming, rather than boutons being 

converted to another type. To lend support to this notion, the 33% reduction in 

SSBs during LTP that we uncovered here corresponds perfectly to a 33% 

reduction in small thin spines previously reported in this tissue (Bourne and 

Harris, 2011a). It is likely these SSBs were the partners of those spines that were 

eliminated or prevented from forming by 2 hours during LTP. This finding argues 

that synapses in adult tissue are cohesive structures; that is to say, elimination of 

structures on either side of the synapse causes a reciprocal elimination of the 

other side. Without high temporal resolution we cannot determine definitely which 

unit is eliminated first. Further work is warranted to investigate whether retraction 

of dendritic spines triggers a disassembly of the associated presynaptic bouton 

or if the bouton is first to be eliminated. Furthermore, it is interesting to note that 

when terminal boutons at neuromuscular junctions are eliminated, the axon 

retracts (Bishop et al., 2004). Here, loss of en passant boutons seems to be 

specific to the particular synapse, as the hosting axon remains whole. 

After the publication of this work, an alternate interpretation has emerged 

regarding the frequency of spines during LTP. Bell et al. (2014) compared the 

original postsynaptic data performed in slice (Bourne and Harris, 2011a) to 

perfusion fixed hippocampus. We found that, at 5 and 30 min in control tissue, 

spines were significantly reduced relative to perfusion fixed hippocampus. At 2 

hours in the control tissue, this frequency had returned to perfusion fixed levels. 

Interestingly, this same pattern was found to occur for small but not large or 

medium spines. This suggested that the frequency of small thin spines were 

recovered by test-pulses delivered to control tissue by 2 hours. Furthermore, the 

frequency of small thin spines at 2 hours during LTP, which was reduced relative 
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to control conditions (Bourne and Harris, 2011a), was found to be similar to that 

at 5 and 30 minutes during control stimulation. This finding presents the intriguing 

possibility that LTP does not produce the elimination of small thin spines, but that 

it instead prevents the normal recovery of small thin spines that occurs between 

30 min and 2 hours with test-pulses in control tissue. In light of this interpretation, 

the elimination of synaptic units during LTP we report above might actually be a 

failure to form new synaptic units as small spines are recovering. The work in 

Bell et al. (2014) does not, however, definitively discount the possibility that 

spines are eliminated during LTP. It would be crucial to increase the number of 

slices at each time point to guarantee variability between animals is not driving 

these results. Furthermore, an interesting next step would be to determine if 

spine number stabilizes by 2 hours or if test-pulses delivered to control tissue 

might produce an overproliferation of small spines at some point after 2 hours.    

Vesicles and Release Probability 

Using the styryl dye FM1-43, Schikorski and Stevens (2001) reported the 

morphological correlates of functionally distinct pools of vesicles in boutons. 

FM1-43 was loaded into cells in hippocampal cultures by stimulation of 40 action 

potentials at 20 Hz, a stimulation protocol previously identified by the same group 

to release a subset of vesicles immediately available for release known as the 

readily releasable pool (Rosenmund and Stevens, 1996). When FM1-43 releases 

photons upon photoconversion, free radicals are produced which oxidize and 

polymerize DAB (diaminobezidine), a substance that stains darkly during EM 

processing (Sandell and Masland, 1988). Schikorski and Stevens found that, 

after loading cells with FM1-43, the number of darkly stained vesicles (in other 
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words, those that had been released and endocytosed along with dye) equaled 

the number of vesicles docked along the presynaptic active zone. This finding 

strongly suggested that docked vesicles evident in EM sections are the 

morphological correlate of the readily releasable pool. Yet docked vesicles 

account for less than 5% of all vesicles in boutons synapsing with spiny dendrites 

in stratum radiatum of CA1, boutons that can have from tens to thousands of 

vesicles (Harris and Sultan, 1995). Release probabilities vary widely from bouton 

to bouton (Dobrunz and Stevens, 1997; Murthy et al., 1997) and it is thought that 

minimal stimulation results in release of just a single vesicle (Hanse and 

Gustafsson, 2001; Hjelmstad et al., 1997; Stevens and Wang, 1995).  

These findings all raise an intriguing question: Why are there so many 

vesicles in these boutons?11 In an interesting study investigating the site of LTP 

expression in CA1 pyramidal cells, Enoki et al. (2009) employed calcium dyes in 

tissue from rats (21-28 days old) and reported an increase in the probability of 

transmitter release but not a significant increase in EPSPs. Though one should 

question whether the use of calcium dyes affected the postsynaptic response in 

their preparations, these findings led the researchers to conclude that LTP at 

CA1 pyramidal cell synapses is driven primarily by an increase in presynaptic 

release probability as opposed to the postsynaptic recruitment and insertion of 

AMPA receptors. Though the debate over the exact location of LTP expression 

(pre- or postsynaptic) rages ever on, this group remarked on their use of animals 

older than those used in studies concluding that LTP is expressed primarily 

                                            
11 Questions that begin with “why” are often difficult to address when considering 
biology. Though they carry the same meaning, it is more appropriate scientifically to 
pose the following questions: What evolutionary pressure(s) might have led this 
outcome? or What is the adaptive significance of this finding to the organism? 
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postsynaptically. Thus, their assumption is that presynaptic plasticity might play a 

larger role during LTP in older animals. To lend further support to this idea, silent 

synapses (post-synaptic densities that are thought to host NMDA receptors only 

and are thus prime candidates for AMPA receptor insertion) become less 

frequent as animals develop (Durand et al., 1996). An array of other studies have 

supported this group’s findings and have concluded that synaptic facilitation and 

LTP can induce a shift from release of single vesicles to multivesicular release or 

can result in enhanced exocytosis of the readily releasable pool (Bayazitov et al., 

2007; Bolshakov et al., 1997; Christie and Jahr, 2006; Sokolov et al., 2002; 

Zakharenko et al., 2001). Thus, it is possible that the reduction in docked 

vesicles we report here is an anatomical reflection of an increase in release that 

accompanies LTP at these synapses. This interpretation of the data is entirely 

consistent with work done in culture that shows resting vesicles are recruited into 

the recycling pool and that also demonstrate an increase in the release and 

recycling of vesicles during LTP (Ratnayaka et al., 2012).           

Reserve Pool Vesicles 

In this work, we also uncovered a significant decrease in the size of 

vesicle pools 2 hours during LTP. To investigate the time course of clathrin-

mediated endocytosis, Granseth et al. (Granseth et al., 2006) took advantage of 

sypHy, an optical reporter of exo- and endocytosis created by the fusion of a pH-

sensitive GFP (Miesenböck et al., 1998) to the synaptic vesicle protein 

synaptophysin. They found that clathrin-mediated endocytosis played a dominant 

role in retrieval of vesicles at synapses and that it occurred over tens of seconds. 

The quick time course of clathrin-mediated endocytosis has been shown in a 



 67 

variety of studies (Rizzoli and Jahn, 2007). Here, the observation of CCPs in 

boutons argues against the idea that exocytic/endocytic machinery was impaired 

in our tissue preparations and does not account for the decrease in vesicle pool 

size we report above.  

Furthermore, while the kinetics of the readily releasable pool might not be 

influenced by LTP, the dynamics of the reserve pool might be influenced by 

plasticity. Spontaneous release of neurotransmitter at very low rates (< 0.1 Hz) 

has been known to occur since the earliest days of synaptic transmission 

research (del Castillo and Katz, 1954; Fatt and Katz, 1950; 1952). More recently, 

Fredj and Burrone (2009) showed evidence of a unique subset of vesicles in 

boutons that was not mobilized by neuronal activity but was instead released 

spontaneously, a so-called “resting” pool of vesicles. While the exact details of 

whether these vesicles are truly a unique category unto themselves or are part of 

the same vesicle pool that is engaged during stimulated release are still intensely 

investigated (Truckenbrodt and Rizzoli, 2014), it follows that an increase in 

spontaneous release during LTP might ultimately decrease the size of the 

reserve pool. Additionally, a variety of studies have demonstrated an increase in 

the frequency of mini-EPSPs during LTP (Bekkers and Stevens, 1990; Malgaroli 

and Tsien, 1992; Wiegert et al., 2009). This supports to idea that mechanisms of 

plasticity might engage vesicles that release in the absence of stimulation.     

Vesicles and Active Zone Expansion 

Another intriguing idea to consider is that some vesicles “lost” during LTP 

might actually have been contributing to the expansion of the presynaptic active 

zone, serving a structural rather than physiological role during plasticity. Yao et 
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al. (2009) described Flower, a novel transmembrane calcium channel in synaptic 

vesicles at the neuromuscular junction of drosophila. Fusion of synaptic vesicles 

containing Flower at the periphery of the active zone resulted in the addition of 

calcium channels that controlled the intracellular levels of presynaptic calcium. 

Dense core vesicles (DCVs), which are slightly larger than synaptic vesicles and 

have (as their name suggests) a characteristic dark core, carry proteins required 

for the assembly of the presynaptic active zone (Shapira et al., 2003; Zhai et al., 

2001). However, only a quarter of boutons in perfusion-fixed hippocampus 

contain DCVs and even less contain DCVs in slices (Sorra et al., 2006). In a 

recent paper from our lab, my colleagues and I demonstrated that the frequency 

of DCVs increases in boutons immediately following the induction of LTP with 

TBS (Bell et al., 2014). Even at a time during LTP when rapid synaptogenesis is 

occurring (Bourne and Harris, 2011a), < 10% of boutons contain DCVs. Thus it 

follows that some subset of vesicles within the reserve pool might also be 

providing the active zone a suite of structural proteins, receptors, channels, and 

necessary membrane that support expansion of synapses at boutons that do not 

contain a DCV. If these vesicles do contain calcium channels, exocytosis could 

theoretically cause an increase in release probability that might further chip away 

at the size of vesicles pools. Immunohistochemical studies on a variety of active 

zone proteins might aid in uncovering if active zone proteins localize to synaptic 

vesicles as well as DCVs. Another more direct way to investigate this question in 

our tissue would be to investigate if we can detect an increase in surface area of 

boutons 2 hours during LTP. An increase in surface area in boutons during LTP 

would support the idea that vesicles have been inserted into the membrane and 

that the vesicle pools are not being dismantled and subsequently degraded.                    
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The Vesicular Superpool during Plasticity 

Synapses do not operate in isolation of their neighboring partners. In fact, 

neighboring synapses can have similar release probabilities (Murthy et al., 1997) 

and plasticity induced at one synapse can spread to nearby synapses 

(Bonhoeffer et al., 1989). Similarly, synaptic vesicles are not restricted to a 

particular bouton but have been shown in culture to move between adjacent 

release sites along axons (Chen et al., 2008a; Darcy et al., 2006; Westphal et al., 

2008). This pool of vesicles has been referred to as the vesicular “superpool” as 

addressed in the introduction to this chapter. Staras et al. (2010) showed the first 

evidence that vesicles arising in one pool are capable of rapid exocytosis upon 

arrival at adjacent active zones along axons in acute hippocampal slices. Using a 

fixable form of FM1-43, the group demonstrated vesicles moving into neighboring 

boutons and fusing with membrane during ongoing stimulation. This work 

provided strong evidence that “non-native” vesicles in boutons are able to 

participate in the presynaptic function of release sites along axons, especially 

under conditions of ongoing stimulation. Furthermore, it was subsequently shown 

in culture that vesicles transported between synapses along axons are also able 

to fuse and release neurotransmitter at interbouton, extrasynaptic sites 

(Ratnayaka et al., 2011). Here, we demonstrate the first evidence of release and 

recycling of vesicles in transport packets along axons in hippocampal tissue from 

adult animals. Furthermore, we observed that transport packets of vesicles were 

all but eliminated 2 hours during LTP. This finding coupled with the observation 

that vesicle pools are smaller at 2 hours during LTP suggests that transport 

packets are moved into existing synaptic sites during plasticity to supplement 

vesicle pools.    
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Concluding Remarks 

Collectively, these results provide evidence to support the idea that 

structural plasticity is coordinated at pre- and postsynaptic sides of the synapse. 

We show that the percentage of boutons reduced during LTP correlated perfectly 

with the percentages of small thin spines reduced during LTP. This finding 

suggests boutons were either concomitantly eliminated with small thin spines or 

they were prevented from forming during LTP. Furthermore, as PSDs enlarge 

(Bourne and Harris, 2011a), several presynaptic structural modifications occurred 

2 hours during LTP, including the decrease in vesicle pool sizes and the 

elimination of transport packets of vesicles. Vesicle pools during LTP might 

shrink as release probability at synapses increases, spontaneous vesicular 

release increases, or vesicles needed to support active zone expansion are 

exocytosed. None of these possibilities are mutually exclusive. More work is 

necessary to uncover vesicle pool variation and whether vesicles pools are 

replenished back to control levels at later stages during LTP.  

While this work has demonstrated that presynaptic remodeling occurs 

concomitantly with postsynaptic structural plasticity, the subcellular elements that 

might determine which synapses expand during LTP are still not clear. Smooth 

endoplasmic reticulum (SER) is an organelle found throughout the neuron and its 

position and functions suggest it might be involved. In the next chapter of this 

dissertation, I discuss an investigation into the plasticity of dendritic SER and 

how it might function to coordinate structural plasticity during LTP.  
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Chapter 3: Plasticity of Dendritic SER 

3.1 Introduction  

The endoplasmic reticulum (ER) is an elaborately interwoven, 

membranous network of tubules and cisterns present in nearly all eukaryotic 

cells12 (Fig. 3.1). ER was first described by the Belgian scientist Albert Claude, 

who, in a 1945 EM study with Keith Porter and Ernest Fullum at the then 

Rockefeller Institute, described a “lace-like” reticulum in the endoplasm (granular 

inner core) of chick embryo cells (Porter et al., 1945)13. (Claude would go on to 

win the Nobel Prize in 1974 with Christian de Duve and George Palade “for their 

discoveries concerning the structural and functional organization of the cell.”) The 

structure described by Claude is by far the largest subcellular organelle, 

traversing vast distances throughout the cell. Even in neurons, whose dendritic 

and axonal arbors put on display some of the extremes in cellular geometry, ER 

extends as an uninterrupted network through their many fine processes 

(Blaustein and Golovina, 2001; Broadwell and Cataldo, 1984; Droz et al., 1975; 

Martone et al., 1993; Terasaki et al., 1994). The ER has a variety of functions, 

including acting as a store of calcium, releasing arachidonic acid, interacting with 

mitochondrial apoptotic machinery, producing steroid hormones, and, in 

conjunction with ribosomes, contributing to the post-translational modification of 

proteins (Berridge, 2002). In the soma and proximal processes of hippocampal 

neurons, ER ornamented with ribosomes, so-called “rough” endoplasmic  
 

                                            
12 Notable exceptions include red blood cells and spermatozoa. 
13 The term endoplasmic reticulum (reticulum, Latin for “net”) was first cautiously 
applied to this organelle in 1948 in a figure caption (Porter and Thompson, 1948). It 
more boldly applied by Keith Porter in a subsequent publication in the early 50s (Porter 
and Kallman, 1952).    
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Figure 3.1: Interconnected membranous SER network in CA1 dendrites. Example 
reconstruction of SER (green) in a CA1 pyramidal cell dendrite from an adult rat. The 
SER forms a highly interconnected network of membranous tubules and cisterns that 
extends through the distal dendritic arbor. Each three-dimensional scale line represents 
0.25 µm.  
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Figure 3.2: SER structures in dendrites and spines on electron micrographs. Two 
outstanding EM examples of SER structures in stratum radiatum of hippocampal area 
CA1 from an adult rat. (a) SER appears as a membranous network with a clear lumen 
on electron micrographs (arrowhead). Note that SER in dendritic spines in continuous 
with SER extending through the dendritic shaft. (b) Occasionally SER is found in 
dendritic spines as an elaborate spine apparatus, folds of SER (bold arrows) stacked 
between densely staining material (wavy arrows) that is known to be enriched in the 
actin-associating protein synaptopodin. Scale bars = 1 µm. Adapted from Spacek and 
Harris, 1997.   

a 

b 
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reticulum (RER), predominates. Smooth endoplasmic reticulum (SER), ER 

lacking ribosomes, is more prominent in distal neuronal processes.  

In CA1 pyramidal cell dendrites, SER is non-uniformly distributed along 

the dendritic shaft and anatomical investigations have demonstrated that spines 

tend to congregate along the dendrite where more SER is found (Spacek and 

Harris, 1997). SER enters a subset of CA1 dendritic spines (< 20%, Fig. 3.2) as 

a simple tubule or as an elaborate SER structure known as a spine apparatus 

(Gray, 1959; Harris and Stevens, 1989; Mignery et al., 1989; Spacek and Harris, 

1997). In other neurons, such as cerebellar Purkinje cells, SER enters almost 

every spine (Harris and Stevens, 1988). As further explored below, the many 

functions of ER, as well as its presence near synapses, mean ER is positioned to 

hold tremendous influence over the malleability of synaptic weight. 

In this chapter of my dissertation, I discuss using three-dimensional 

reconstructions from serial section EM to investigate the structure of SER during 

LTP. Specifically, I investigate whether there is anatomical evidence that SER 

remodeling supports synapse enlargement during LTP in the mature 

hippocampus. (For clarity, ER is only referred to as SER if it was demonstrated 

unambiguously to lack ribosomes on EM sections. Otherwise the term ER is 

used.)                    

Calcium Stores and Synaptic Plasticity 

It is well established that calcium plays a vital role in the modulation of 

synaptic weight thought to underlie learning and memory (Baker et al., 2013; 

Barad, 2006; Berridge, 1998; Franks and Sejnowski, 2002; Malenka and Bear, 

2004). It follows that organelles capable of regulating calcium signaling could 
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serve to modulate plasticity at nearby synapses. Although the role played by the 

sarcoplasmic reticulum (specialized ER in skeletal muscle) in calcium 

homeostasis had been recognized since the late 1950s and early 1960s (Ebashi 

and Endo, 1968; Weber et al., 1966), the first inkling that ER was involved in 

neuronal calcium signaling was not demonstrated until the late 70s with calcium 

flux studies by Blaustein et al. (Blaustein et al., 1978a; 1978b; 1978c). Soon 

thereafter, anatomical studies demonstrated the presence of densely staining 

calcium oxalate precipitates on electron micrographs in SER stores after 

incubation of synaptoneurosomes in a solution containing calcium, oxalate, and 

saponin (McGraw et al., 1980). These findings provided nice structural evidence 

to support the idea that ER in neurons is acting a store of calcium, a near 

universal role for ER in eukaryotic cells (Pozzan et al., 1994).  

Though ER had been shown to be a large store of intracellular calcium, 

the signaling cascades involved in calcium release from those stores were 

unknown. A major step forward came from investigations into the release of 

calcium from non-mitochondrial stores in isolated exocrine cells from the 

pancreas of rats (Streb et al., 1983). In this groundbreaking study, the group 

demonstrated that a small, water-soluble sugar phosphate, inositol 1,4,5-

trisphosphate (IP3), a product of neurotransmitter and hormone-triggered 

phosphoinositide hydrolysis, diffuses rapidly through the cytosol and is able to 

trigger calcium release from ER stores. (Over the past 30 years, these lipid-

derived secondary messengers are now taught to nearly all undergraduate 

biology students as canonical signaling events capable of influencing a vast array 

of cellular processes.) Release of calcium from ER stores upon activation of IP3 

receptors parallels the release of calcium from sarcoplasmic reticulum in muscle 
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cells through the activation of ryanodine receptors by calcium (i.e., calcium-

induced calcium release) or caffeine (Blaustein and Golovina, 2001; Kuo and 

Ehrlich, 2015). In fact, a large assortment of studies since the 90s have shown 

that IP3 receptors and ryanodine receptors coexpress in both neurons and glia 

(Fujino et al., 1995; Galeotti et al., 2008; Kushnir et al., 2010; Seymour-Laurent 

and Barish, 1995; Sharp et al., 1993; Sheppard et al., 1997; Simpson et al., 

1998; Walton et al., 1991). Release of calcium from these stores influences 

synaptic plasticity. Early studies showed that depleting calcium stores with 

thapsigargin, a SERCA (sarco/endoplasmic reticulum calcium ATPase) pump 

inhibitor, prevents the induction of LTP with a single train of tetanic stimulation 

(Harvey and Collingridge, 1992) but not LTP induced with stronger patterns of 

stimulation (Behnisch and Reymann, 1995; Raymond and Redman, 2002; 2006). 

In dendritic SER there appears to be an interesting differential localization of the 

types of receptors involved in calcium release from intracellular stores. Using 

immunohistochemistry, Sharp et al. (1993) found that, in hippocampal area CA1, 

IP3 receptors are predominately expressed along the dendritic shaft and in 

pyramidal cell bodies, whereas ryanodine receptors are more likely to be found in 

dendritic spines. This contrasts with other areas of the brain. IP3 receptors are 

highly concentrated in dendritic spines of cerebellar Purkinje cells where they 

contribute to a slow increase in intracellular calcium (Rose and Konnerth, 2001). 

The localization of ryanodine receptors in CA1 dendritic spines and the 

role calcium plays in plasticity (see Section 1.2: Early LTP/LTD Studies) suggest 

these receptors are closely linked with synaptic signaling and malleability. 

Ryanodine receptors are activated by calcium entering through ionotropic 

glutamate receptors and voltage-gated calcium channels and are able to amplify 
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a weak synaptic stimulus through calcium-mediated release (Berridge, 1998; 

Rose and Konnerth, 2001; Segal and Korkotian, 2014; Verkhratsky and Shmigol, 

1996). Caffeine and low concentrations of ryanodine (nM to ~10 µM) are 

ryanodine receptor agonists while high concentrations of ryanodine (> 100 µM), 

cyclopiazonic acid (CPA), dantrolene, and ruthenian red are ryanodine receptor 

antagonists (Baker et al., 2013; Segal and Korkotian, 2014). Wang et al. (1996) 

showed in the dentate gyrus that a low frequency stimulation pattern (5 Hz, 900 

pulses) normally inducing LTD can be converted to an LTP inducing stimulus by 

applying low concentrations of ryanodine. The group also showed that this was 

blocked in the presence of ruthenian red, suggesting that the added calcium 

released from stores in dendritic spines is able to induce potentiation. 

Furthermore, in area CA1, application of low concentrations of ryanodine 

converts short-term LTP into a longer-lasting potentiation (Sajikumar et al., 

2009). Interestingly, this effect is blocked by CPA and only occurs in the ventral 

hippocampus (Grigoryan et al., 2012). In CA1 of the dorsal hippocampus, where 

the concentration of ryanodine receptors was found to be lower, ryanodine 

receptor agonism does not convert short-term LTP into a longer-lasting 

potentiation. Intrigued in investigating the spatial dynamics of calcium release 

from ryanodine receptors, Raymond and Redmann (2002; 2006) showed 

ryanodine receptor antagonism blocks LTP induced with weak stimulation (a 

single train of TBS: 10 bursts at 5 Hz of 4 pulses at 100 Hz) but not with stronger 

stimulation (4 or 8 trains of TBS). The researchers also showed that the 

ryanodine-dependent release of calcium was localized to dendritic spines, 

supporting Sharp et al. (1993), and suggesting that stronger stimulation patterns 
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are able to access calcium from other intracellular stores – possibly those in the 

dendritic shaft as discussed below. 

IP3 receptors localizing to the shaft of CA1 dendrites suggests that they 

might be coordinating the activity of neighboring synapses. IP3 receptors are 

blocked by heparin (Baker et al., 2013) and Wang and Kelly (1997) showed that 

combined blockade of IP3 receptors with heparin and ryanodine receptors with 

dantrolene blocks the induction of LTP with tetanic stimulation. While this was not 

conclusive evidence to support the role of IP3 receptors in the modulation of LTP, 

further support for the notion came when Kwon and Castillo (2008) demonstrated 

that IP3 receptor antagonism blocks an NMDA receptor-dependent form of LTP 

at mossy fiber-CA3 synapses. Furthermore, IP3 receptors, via the hydrolysis of 

phoshoinositides, act as a go-between in the modulation of AMPA and NMDA 

receptor function by acetylcholine (ACh) and other neuromodulators (Raymond 

and Redman, 2006). A set of interesting studies showed that activation of 

cholinergic afferents synapsing on CA1 pyramidal cells causes an enhancement 

of synaptic transmission through AMPA receptor insertion (Fernández de Sevilla 

and Buño, 2010; Fernández de Sevilla et al., 2008). The activation of muscarinic 

ACh receptor activation and release from IP3-sensitive stores were required for 

this unique form of plasticity. Furthermore, this enhancement could be recreated 

through the uncaging of IP3 alone. Thus, since the activation of both ryanodine 

and IP3 receptors influence synaptic function and since the receptors are thought 

to be localized to different portions of the dendrite, an anatomical investigation 

into the remodeling of ER during LTP might shed light on their function during 

plasticity.                                                
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The Spine Apparatus 

The structure of the spine apparatus is one of the more striking dendritic 

features one encounters on electron micrographs of neural tissue. Spine 

apparatuses are an elaborate structure of multiple SER folds stacked in between 

densely staining material (Fig. 3.2b), which occasionally comes in close contact 

with the PSD (Gray, 1959; Spacek, 1985; Spacek and Harris, 1997).  Eva Fifková 

at the University of Colorado in Boulder proposed that the spine apparatus could 

serve as a large, local source of calcium immediately available to synapses after 

she observed calcium oxalate precipitates in the spine apparatus on electron 

micrographs (Fifková et al., 1983). Furthermore, she correctly posited that this 

would mean the spine apparatus could modulate the plasticity of those nearby 

synapses. Addressing this hypothesis, however, would come after a key 

discovery concerning the densely staining material found in spine apparatuses. 

Originally described in renal podocytes, synaptopodin14, an actin-associating 

protein, was found to be enriched in the dense material found in spine 

apparatuses (Asanuma et al., 2005; Deller et al., 2000; Mundel et al., 1997). 

Since these first descriptions of synaptopodin, many groups have sought to 

uncover its association with synaptic plasticity. Synaptopodin expression has 

been shown to increase following tetanic stimulation and is presumed to be one 

mechanism underlying the transition from short- to long-term potentiation 

                                            
14 Even though our field rarely considers synaptopodin beyond the spine apparatus, -
podin pays homage to the fact that this protein is highly expressed in renal podocytes. 
To my knowledge, the unique structure of the spine apparatus does not exist in 
podocytes. In fact, whereas synaptopodin knock-out mice lack spine apparatuses 
normally present in telencephalic dendrites, they show normal renal podocyte 
ultrastructure (Asanuma et al., 2005). Podocytes in these knockout mice do, however, 
show enhanced susceptibility to glomerular injury induced with chemical or bacterial 
toxins. 



 80 

(Fukazawa et al., 2003; Yamazaki et al., 2001), though this has not been 

definitively demonstrated. Interestingly, a subset of rats exposed to a forced 

swim test also express increased levels of synaptopodin in stratum radiatum of 

area CA1 in dorsal hippocampus (Vlachos et al., 2008). Synaptopodin knockout 

mice completely lack spine apparatuses and a structurally related organelle 

knows as the cisternal organelle (Bas-Orth et al., 2007; Deller et al., 2003). Deller 

et al. (2003) showed that synaptopodin knockout mice have spines that appear 

structurally normal but they show extreme reductions in LTP induced with both 

tetanic stimulation and TBS. A variety of other studies have also supported the 

notion that synaptopodin-deficient mice have deficits in synaptic plasticity, 

including demonstrating impaired LTP induced in vivo (Jedlicka et al., 2009), 

development (Zhang et al., 2013), and abnormal network activity (Korkotian et 

al., 2014). 

What is more interesting is that the spine apparatus appears to be able to 

regulate distinct forms of plasticity. Vlachos et al. (2009) transfected hippocampal 

cultures with GFP-tagged synaptopodin and monitored the differences in 

plasticity expressed at synaptopodin+ and synaptopodin- cells. Cells were patch 

clamped and responses to flash photolysis of caged glutamate at individual 

synapses were recorded. Currents generated in spines with synaptopodin were 

twice as large as those without synaptopodin. As this was found to be true in 

similarly sized spines, their findings suggested that spine apparatuses are able to 

amplify signals generated within the spine. Building upon Sharp et al. (1993), the 

group showed that synaptopodin fluorescence overlapped with ryanodine 

receptors and that ryanodine receptor antagonism with high concentrations of 

ryanodine or CPA treatment reduced AMPA receptor subunit expression in 
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dendritic spines by ~40%. Furthermore, treatment with CPA reduced synapse 

enlargement after chemical induction of LTP. Holbro et al. (2009) investigated the 

role ER plays in another form of plasticity, long-term depression (LTD), and 

showed that ER associated with synaptopodin influences the magnitude of 

plasticity at individual synapses. The group visualized ER by transfecting 

organotypic slice cultures with an enhanced GFP with ER targeting and retention 

sequences. Interestingly, CA1 spines with ER (most likely spine apparatuses) 

were able to express LTD induced by metabotropic glutamate receptor (mGluR) 

activation while those without were not. Spines with ER had a large, slow-onset 

calcium signal that was blocked with mGluR antagonism, heparin, and 

thapsigargin and mimicked with application of IP3. (The group did not, however, 

test ryanodine.) mGluR antagonism or heparin blocked mGluR-LTD induced at 

individual spines. The findings of this work suggested that the spine apparatus is 

capable of influencing the magnitude of physiological depression in spines and 

this requires hydrolysis of phosphoinositides. Finally, there is evidence that 

suggests the spine apparatus plays a role in homeostatic synaptic plasticity as 

well. Using entorhinal denervation of organotypic hippocampal slice cultures, 

Vlachos et al. 2013 (2013) demonstrated that a normal increase in excitatory 

synaptic strength exhibited by dentate granule cells after denervation was not 

present in synaptopodin knockout mice. Strikingly, the group was able to rescue 

this homeostatic synaptic scaling by crossing synaptopodin knockout mice with 

mice expressing a mutant synaptopodin gene under the control of the Thy1.2 

promoter. Thus, the spine apparatus seems to influence bidirectional as well as 

homeostatic synaptic plasticity.  
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SER Contributions to Protein Synthesis 

The maintenance of LTP requires de novo protein synthesis (Aakalu et al., 

2001; Frey and Morris, 1997; Frey et al., 1988; Huber et al., 2000; Kang and 

Schuman, 1996; Nguyen et al., 1994; Otani et al., 1989) and investigations into 

polyribosomes, the cell’s protein synthetic machinery, have generated some 

interesting findings. Work in the Harris lab demonstrated that polyribosomes 

redistribute from the shaft of the dendrite into spines at 2 hours during LTP 

induced with tetanic stimulation in young (Ostroff et al., 2002) and mature rats 

(Bourne et al., 2007). Synapses on spines that contained polyribosomes were 

larger and it was posited that local protein synthesis was serving to support 

growth of potentiated synapses. At 2 hours during LTP induced with TBS in adult 

animals, although there is a reduction in the frequency of polyribosomes, 

synapses on spines that had polyribosomes were still larger during LTP (Bourne 

and Harris, 2011a). These findings suggest that polyribosomes are either “used 

up” in the processes of supporting synapse expansion during LTP or they are 

preferentially redistributed to other synapses. 

Dendritic mRNAs are trafficked from the soma along dendrites toward 

synapses (Hazelrigg, 1998; Kindler and Kreienkamp, 2012; Tiedge et al., 1999) 

where they are translated on demand by polyribosomes (Steward and Levy, 

1982; Steward and Schuman, 2001). The mRNAs that are trafficked to synapses 

encode a variety of products, including cytosolic, secretory, and integral 

membrane proteins (Gao, 1998; Huang, 1999; Kindler and Kreienkamp, 2012; 

Kuhl and Skehel, 1998). Proteins that are inserted into the plasma membrane 

(such as receptors) and proteins that are secreted from the neuron require entry 

into the secretory pathway where posttranslational modifications, such as 
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glycosylation and disulfide bond formation, can occur (Hanus and Ehlers, 2008; 

Palade, 1975). AMPA receptor subunits are an example of locally translated 

integral membrane proteins that presumably must interact with the secretory 

pathway (Ju et al., 2004; Kacharmina et al., 2000). As noted above, however, 

RER is not readily found distally in the dendritic arbor. Polyribosomes located 

distally at synapses might, however, be able to interact with SER. Pierce et al. 

(2000) provided evidence to support this hypothesis by immunogold labeling 

Sec61, the main protein complex constituent of channels that allow translocation 

of the nascent polypeptide chain from the cytosol into the ER (Görlich and 

Rapoport, 1993; Matlack et al., 1998). The group found gold particles labeling the 

Sec61α subunit associated with SER in both distal and proximal dendrites and 

spines in hippocampal area CA1. Thus, SER located near synapses is 

presumably able to provide a platform for the posttranslational modification of 

integral membrane proteins. Interestingly, the group also showed that Sec61α 

was associated with the spine apparatus suggesting that it might represent a 

large protein modification hub in addition to its known role in calcium storage.              

Cui-Wang et al. (2012) and the Current Study 

Secretory organelles are required for the local production and processing 

of integral membrane proteins, such as AMPA receptors and other membrane 

cargo (Hanus and Ehlers, 2008). It was not known, however, how the geometry 

of dendritic ER might influence the diffusion of receptors along dendrites, even 

though several studies had pointed to the powerful influence ER could have on 

spatially restricting receptors for plasma membrane delivery (Greger et al., 2002; 

Herpers and Rabouille, 2004; Penn et al., 2008). A collaborative investigation 
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between the Harris laboratory and the laboratory of Dr. Michael Ehlers at Duke 

University Medical Center shed considerable light on the influence SER 

morphology has on cargo movement along dendritic SER (Cui-Wang et al., 2012) 

and directly led to the main hypothesis tested in this chapter of my dissertation. A 

brief description of those findings is warranted and follows below.  

The Ehlers group monitored the movement of fluorescently tagged integral 

membrane proteins through the ER of cultured hippocampal neurons by 

measuring fluorescence recovery time after photobleaching. To compare the 

motion of nascent AMPA receptors, two ER-retained versions of AMPA receptors 

subunits, GluA1 and GluA2, were investigated as well as an ER-retained version 

of the vesicular stomatitis viral glycoprotein. Using super-resolution light 

microscopy, the group observed clusters of fluorescence along dendrites. These 

clusters became more prominent with time in vitro. Photobleaching experiments 

demonstrated that fluorescence recovery time also increased with time in vitro. 

The Ehlers group hypothesized that local areas of ER complexity might impede 

the diffusion of membrane cargo and that ER complexity must have increased 

during neuronal development. As the fine structure of the SER lies well below the 

resolution of light microscopy (Spacek and Harris, 1997), Jennifer Bourne and 

Deborah Watson of the Harris lab sought to generate structural support for their 

hypothesis by reconstructing SER along CA1 stratum radiatum dendrites of 

young (15 day old) and adult (~60 day old) rats. They were able to confirm that 

SER complexity does increase with age (Fig. 3.3). It was also shown that SER 

tended to be most complex at the base of spines in either age, confirming 

previous work suggesting the same (Spacek and Harris, 1997). These findings  
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Figure 3.3: SER complexity during development. Electron micrographs (a and c) and 
three-dimensional reconstructions (b and d) of CA1 dendritic segments (yellow), 
synapses (red), and SER (green) from young and adult rats. ER tubules (arrowheads), 
ER branching (open arrowheads), and local complexity of SER at the base of spines 
(arrows) are shown. Scale bars = 1 µm (a and c) and 0.5 µm (b and d). (e and f) 
Average SER cross sectional area in spiny, aspiny, and all segments. Mean ± SEM, n = 
528-539 sections in young aspiny and spiny segments, and n = 433-544 sections in 
adult aspiny and spiny segments, n = 10-17 dendrites from 2-4 animals. ANOVA: **p < 
0.01, ***p < 0.001. (Adapted from Cui-Wang et al., 2012.)      
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provided a structural basis for the reduced membrane cargo mobility during 

development observed in the Ehlers lab. 

Further EM investigation revealed that SER was extremely complex at 

dendritic branch points, where, curiously, ER-bound polyribosomes were found to 

be concentrated. This finding suggests that dendritic branch points might 

constitute a cellular hub for locally translated proteins entering the secretory 

pathway. In fact, the Ehlers lab provided some support for this idea by showing 

that dendritic branch points are also sites of secretory exocytosis. This finding 

further demonstrated that diffusional confinement of membrane cargo in highly 

complex ER facilitates the off-loading and delivery of that cargo to the nearby 

plasma membrane. This result left the Ehlers lab keen to investigate whether ER 

complexity might influence the number of AMPA receptors expressed at the 

surface of the neuron. By monitoring miniature excitatory postsynaptic currents in 

neurons expressing a mutant SER-microtubule binding protein that promotes an 

increase in the geometric complexity of ER, the group demonstrated an increase 

in surface and synaptic levels of AMPA receptors in neurons with more complex 

ER. Cui-Wang et al. (2012) thus provided substantial support for the idea that 

SER complexity holds tremendous influence not only over the mobility of 

membrane cargo but also over the export of that cargo to the plasma membrane.  

Since we previously demonstrated that SER complexity influences the 

movement and off-loading of membrane cargo (Cui-Wang et al., 2012) and since 

SER calcium stores influence plasticity (Segal and Korkotian, 2014), we were 

curious to investigate if structural remodeling of SER along dendrites during LTP 

might support synapse enlargement or elimination in tissue that was previously 

analyzed for dendritic spines and synapses (Bourne and Harris, 2011a) as well 
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as for presynaptic axons, boutons, and vesicles (Chapter 2 of this dissertation 

and Bourne et al., 2013).  

Specifically, we hypothesized that redistribution of SER along dendrites 

and into dendritic spines would determine which synapses would be enlarged 

during LTP. To test this hypothesis, we analyzed three-dimensional 

reconstructions from serial section electron microscopy of SER in mature 

hippocampal CA1 dendrites that had undergone LTP induced with TBS for 2 

hours. Four novel and functionally important changes in the structure of SER 

were discovered. First, SER in dendritic spines was more likely to form a spine 

apparatus and occupied a greater volume during LTP. Second, SER in dendritic 

shafts was less complex in regions of the dendrite lacking spines, suggesting a 

more rapid movement of membrane cargo along regions lacking spines and 

synapses. Third, the synapses on spines that contained SER were larger in both 

control and LTP conditions and underwent the most growth during LTP. Finally, 

during LTP the complexity of SER in the dendritic shaft was conserved beneath 

most spines and became significantly more complex at the base of spines that 

contained both polyribosomes and SER. These findings suggest that SER was 

preferentially redistributed along the dendritic shaft to target membrane trafficking 

into dendritic spines where synapse growth was greatest and to support local 

protein synthesis 2 hours during LTP. The work presented in this chapter is, at 

the time of the completion of this dissertation, currently under review for 

publication. The manuscript has also been uploaded to bioRxiv (www.biorxiv.org, 

doi: 10.1101/015974), an online archive and distribution service for unpublished 

manuscripts maintained by Cold Spring Harbor Laboratory (Chirillo et al., 2015).     



 88 

3.2 Methods 

Physiology, Electron Microscopy, and Reconstructions 

The work presented in this study was performed on tissue analyzed for 

postsynaptic content in Bourne and Harris (2011a) and presynaptic content in 

Chapter 2 of this dissertation. All methods relating to physiology, electron 

microscopy, and three-dimensional reconstructions can be found in Section 2.2 

of this dissertation. We reconstructed SER in tissue that had undergone LTP for 

2 hours. We have not yet investigated SER remodeling at 5 minutes or 30 

minutes during LTP.   

Identification of SER Branches 

To identify points where SER branched, we wrote a simple script in 

Python, which treated individual SER traces created in RECONSTRUCT™ as 

vertices. Edges between vertices were identified when the traces overlapped one 

another on adjacent serial sections. We defined the number of SER branching 

events existing on a particular EM section, b(v), as follows: 

 

b(v) = max(deg(v) – 2, 0) 

 

The degree of a vertex v, deg(v), was the number of edges to which the vertex 

belonged. Tubular, non-branching SER traces existed when the vertex had no 

neighboring traces (0 edges, deg(v) = 0), had one neighboring trace (1 edge, 

deg(v) = 1), or had two neighboring traces (2 edges, deg(v) = 2). Branching SER 

existed when the vertex had > 2 neighbors (deg(v) > 2). This metric proceeded 

linearly. 
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Statistical Analyses 

In this study, 9 control dendrites (4 from animal 1, 5 from animal 2) and 9 

LTP dendrites (5 from animal 1, 4 from animal 2) were analyzed. Statistical 

analyses were performed in R (r-project.org) and STATISTICA (StatSoft, Tulsa, 

OK). Hierarchical nested ANOVAs (hnANOVAs) were used (with dendrite nested 

in condition and experiment and experiment nested in condition) to ensure 

results were not driven by a particular dendrite or experiment. The sample sizes 

of spines with SER and polyribosomes versus those without varied widely. 

Therefore, for LTP-related comparisons of data categorized by spine content 

(SER and/or polyribosomes), we performed separate hnANOVAs on each group. 

The sample sizes of dendritic segments categorized as spiny or aspiny were 

comparable, thus a hnANOVA was performed across these groups followed by 

Tukey’s HSD post-hoc test to determine significant differences among the 

groups. Simple regression was used to investigate the effect of a continuous 

predictor on a dependent variable (e.g., PSD area v. SER volume) and chi-

square tests were used to investigate changes in proportions of spines 

categorized by content during LTP. Statistical tests are reported in results and 

figure legends where appropriate. Significance was set to p < 0.05 and asterisks 

in figures denote p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***).   

3.3 Results 

SER Identification on Electron Micrographs 

Slices were prepared from the middle of adult rat hippocampus, and two 

stimulating electrodes were placed on either side of a recording electrode in the 

middle of stratum radiatum of area CA1 (Bourne and Harris, 2011a). LTP was 
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induced with theta-burst stimulation (TBS) at one stimulating electrode while the 

other received control pulses. At 2 hours post-TBS, the slices were rapidly fixed, 

processed, and prepared for 3DEM (see Chapter 2 Methods). SER was identified 

as before (Cui-Wang et al., 2012; Spacek and Harris, 1997) on the basis of its 

appearance as irregularly shaped, membranous cisternae with a clear lumen 

(Fig. 3.4). 

 Correlation between SER and Synaptic Input 

In control conditions, we found that the volume of SER per unit length of 

dendrite was strongly and positively correlated with the amount of synaptic input 

supported by the dendritic segment (Fig. 3.5). Interestingly, even though the total 

amount of SER per length of dendrite did not change significantly during LTP, the 

correlation between SER volume and synaptic input broke down by 2 hours 

during LTP, suggesting that SER was being remodeled. This finding prompted us 

to investigate the underlying structural alterations in SER that might be occurring 

during plasticity. 

SER in Dendritic Spines 

SER enters less than 20% of hippocampal dendritic spines (Cooney et al., 

2002; Spacek and Harris, 1997). In those spines that contain SER, SER exists as 

either a simple tubule (Fig. 3.6a) or as a larger and more complex spine 

apparatus, with folds of SER stacked between densely stained material (Fig. 

3.6b). It is not known whether the occupancy, complexity, or volume of SER in 

dendritic spines changes with LTP. To explore this, SER was reconstructed in 

dendritic spines and identified as a simple SER tubule or as a spine apparatus. 

Overall, the volume of SER in spines was significantly greater during LTP, but we  
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Figure 3.4: Identification of SER on electron micrographs. Example reconstructions 
of dendrites (yellow) with associated PSDs (red) and SER (green) in the dendritic shaft 
from both conditions. Scale cubes = 0.5 µm on each side. Two micrographs illustrate a 
section of the dendritic shaft (yellow) from the dendrites with SER (green). SER was 
identified on EM sections as membranous cisternae with a clear lumen. Scale bar = 250 
µm.  

  

LTP Control 
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Figure 3.5: Total synaptic input and SER volume correlation breaks down during 
LTP. (a) Examples of reconstructed dendritic segments (yellow) with synapses (red) and 
SER (green). Scale cube = 0.5 µm on each side. (b) SER volume versus summed PSD 
area per unit length of dendrite in both conditions. Total SER volume per unit length of 
dendrite did not change with LTP (control: 0.018 ± 0.001 µm3/µm, LTP: 0.018 ± 0.002 
µm3/µm, hnANOVA: F(1, 14) = 0.18 , p = 0.67). Total synaptic input along dendritic 
segments was tightly correlated with total SER volume in control conditions (simple 
regression: r = 0.63, F(1, 7) = 12.01, p < 0.05) but not with LTP (simple regression: r = 
0.03, F(1, 7) = 0.01, p = 0.93). 
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Figure 3.6: SER is more likely to form a spine apparatus during LTP. (a) Example 
electron micrograph and reconstruction of a dendritic spine (yellow) and PSD (red) with 
a single tubule of SER (green arrow in micrograph, green surface in the reconstruction). 
(b) Example electron micrograph and reconstruction of a dendritic spine with a spine 
apparatus using same color scheme as in A. Scale bars and cubes = 250 µm on each 
side in A and B. (c) Volume of SER in spines increased with LTP (hnANOVA: F(1, 47) = 
6.23, p < 0.05); however, there was no difference in the volume of SER tubules in spines 
(F(1, 12) = 1.37, p = 0.26) or in the volume of spine apparatuses during LTP (F(1, 24) = 0.63, 
p  = 0.44). (d) Percentages of spines with SER tubules, with spine apparatuses, and 
without SER. During LTP, there was a shift to more spines containing a spine apparatus 
(chi-squared test: χ2

(1, N = 6) = 8.59, p < 0.05). 
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did not detect a significant change in volume of either SER tubules or spine 

apparatuses (Fig. 3.6c). Under both conditions, we found similar percentages of 

spines containing SER (13-15%); however, there was a significant shift during 

LTP from tubules of SER to spines apparatuses (Fig. 3.6d). Thus, the increase in 

SER volume in spines during LTP was accounted for by the observed shift from 

SER tubules to larger and more complex spine apparatuses. 

Complexity of SER along the Dendritic Shaft  

Integral membrane proteins such as AMPARs move through the dendritic 

shaft more rapidly along simple, tubular SER and more slowly where SER is 

more complex (Cui-Wang et al., 2012). SER tends to be more complex at the 

base of spines (Cooney et al., 2002; Spacek and Harris, 1997), which facilitates 

cargo delivery and ultimately receptor insertion at nearby synapses (Cui-Wang et 

al., 2012). To test whether structural remodeling of dendritic SER could influence 

its complexity during LTP, we analyzed regions of aspiny versus spiny dendritic 

segments. An aspiny dendritic segment was defined as a length of dendrite at 

least 100 nm long without a spine origin (Fig. 3.7a). In the prior paper, SER 

complexity was estimated by a simple index of SER area summed across spiny 

vs. aspiny segments (Cui-Wang et al., 2012). Here we refined this index to 

account for the combined effects of SER volume and branching and to normalize 

for dendritic segment length and caliber as defined by the equation below (Fig. 

3.7b, see Methods above):   

 

𝑆𝐸𝑅  𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =   

!"#  !"#$%&
!"#$%!

  ×  𝐵𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔  𝐹𝑎𝑐𝑡𝑜𝑟

𝑀𝑖𝑐𝑟𝑜𝑡𝑢𝑏𝑢𝑙𝑒  𝐶𝑜𝑢𝑛𝑡  
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SER volume was computed for each segment by summing the SER profile areas 

across EM sections and multiplying by section thickness. The branching factor 

was computed by summing the number of branch points in each dendritic 

segment and then adding 1 to ensure a non-zero value for segments with 

unbranched tubules of SER (Fig. 3.7b). Microtubule count scales with dendrite 

caliber (Fiala et al., 2003), hence the SER complexity index was normalized by 

the number of microtubules to control for larger dendrites having a greater 

capacity for SER. Overall, SER complexity was greater in spiny versus aspiny 

segments of the dendrite (hnANOVA: F(1, 195) = 12.09, p < 0.001). Furthermore, 

during LTP, SER complexity was sustained in spiny segments of the dendrite but 

substantially reduced in the aspiny segments (Fig. 3.7c). Thus, as spines 

acquired spine apparatuses during LTP (see Fig. 3.6d), SER was shuttled from 

aspiny segments to spiny segments of the dendrite. Furthermore, the lower 

complexity of SER in the aspiny segments would speed trafficking across regions 

of the dendrite lacking synapses. 

Synapses on Spines with SER and Polyribosomes  

Next, we considered whether the increase in SER in dendritic spines 

influenced synapse growth during LTP. Dendritic spines with polyribosomes have 

been shown to have larger PSDs than spines without polyribosomes at 2 hours 

during LTP (Bourne and Harris, 2011a; Ostroff et al., 2002). SER is also involved 

in protein synthesis and posttranslational modification of proteins (Pierce et al., 

2001). Hence, we analyzed whether co-localization of polyribosomes and SER in 

spines enhanced synapse enlargement during LTP. Under both control and LTP 

conditions, most spines had neither polyribosomes nor SER (Fig. 3.8a-b, e).  
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Figure 3.7: SER is simplified in aspiny dendritic segments during LTP. (a) Example 
reconstruction of dendrite showing spiny (yellow) and aspiny (teal) segments, PSDs 
(red), and SER (green) extending through the dendritic shaft. An aspiny dendritic 
segment was defined as having a length of at least 100 nm without a spine origin. Scale 
cube = 250 µm on each side. (b) Diagram showing identification of SER (green) 
branches in a model dendritic segment (yellow). SER branch points (black arrows) were 
quantified on each EM section (separated by dotted lines) across the dendritic segment. 
For example, an aspiny dendritic segment 100 nm long, containing 0.0246 µm3 of SER 
with 0 branches, and 12 microtubules, would have a SER complexity value = (0.0246/.1 
× (0+1))/12 = 0.0205. In contrast, a similar dendritic segment that differed only by having 
1 SER branch point would have a SER complexity value = (0.0246/.1 × (1+1))/12 = 
0.0410, etc. (c) During LTP, SER complexity in aspiny segments was substantially 
reduced relative to spiny segments in both LTP (hnANOVA: F(3, 195) = 4.88, p < 0.01, 
Tukey post-hoc, p < 0.01) and control conditions (Tukey post-hoc, p < 0.01). In the 
control condition alone, the difference in SER complexity between spiny and aspiny 
dendritic segments did not reach statistical significance (Tukey post-hoc, p = 0.13). The 
SER complexity was comparable for spiny dendritic segments from both control and LTP 
conditions (Tukey post-hoc, p = 0.99). Sample sizes for each group are shown on the 
corresponding bar of the graph. 
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Figure 3.8: Spines with larger synapses are more likely to contain SER. (a-b) 
Example electron micrographs and reconstructions of dendritic spines (yellow) with no 
SER or polyribosomes from both conditions. (c-d) Example electron micrographs and 
reconstructions of dendritic spines with SER (green), PSDs (red) and polyribosomes 
(PR, black arrows). Scale bars = 250 µm. Scale cube = 250 µm on each side. (e) 
Frequency of spines with just polyribosomes (SER- PR+), just SER (SER+ PR-), neither 
(SER- PR-), or both (SER+ PR+) in control and LTP conditions. SER+ PR+ spines were 
rare and were found in control conditions of one experiment and LTP conditions in 
another experiment. There were no differences in the proportions of spines containing 
SER, PR, neither, or both between control and LTP conditions (chi-square: p = 0.35). (f) 
Comparison of average PSD size in control and LTP conditions on spines with or without 
SER or polyribosomes. Mean PSD area on spines without SER or polyribosomes was 
modestly larger with LTP (hnANOVA: F(1, 347) = 8.39, p < 0.01). PSDs on spines with just 
polyribosomes were even larger with LTP (F(1, 35) = 20.43, p < 0.001). PSDs on spines 
with just SER were larger still with LTP (F(1, 35) = 9.38, p < 0.01). The largest increase in 
PSD area with LTP was on spines with both SER and polyribosomes (F(1, 6) = 9.8167, p 
< 0.05). PSD were larger on control spines that had SER (inset, hnANOVA: F(1, 243) = 
126.68, p < 0.001). 
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Some spines had either polyribosomes or SER, and a small percentage had both 

(Fig. 5c-d, e). Under control conditions, synapses on spines without SER were 

smaller than those on spines with SER, regardless of whether the spine 

contained a polyribosome or not (Fig. 3.8f inset). Synapses on spines without 

SER showed a small but statistically significant increase in size 2 hours during 

LTP whether or not they contained polyribosomes (Fig. 3.8f). In contrast, 

synapses on spines with SER had a more dramatic increase in size (Fig. 3.8f). 

Interestingly, the largest synapses were on spines that contained both SER and 

polyribosomes during LTP. These results suggest that spines with SER were 

primed to undergo greater synaptic enlargement during LTP than those without 

SER. Such a dramatic increase in synapse size on spines containing both SER 

and polyribosomes suggests that these spines were able to mobilize these 

resources, which worked synergistically to support synapse growth during LTP. 

SER Complexity at the Base of Enlarging Synapses 

Finally, since synapses on spines containing both SER and polyribosomes 

were the largest during LTP, we were interested to learn whether the complexity 

of SER at the base of those spines was altered. We reasoned that these spines 

might benefit from highly complex SER at their bases, which would serve as a 

local source of proteins the spine could access during synapse growth (Cui-

Wang et al., 2012). We analyzed SER complexity 0.5 µm around the base of 

each spine (Fig. 3.9a). We removed spines from this analysis if 0.5 µm around 

their base fell outside the length of the analyzed dendritic segment. In agreement 

with our findings above (see Fig. 3.4d), when we analyzed all spines together we 

found that SER complexity was retained at their bases during LTP (control:  
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Figure 3.9: SER complexity is greatest at the base of spines that contain 
polyribosomes and SER during LTP. (a) Example reconstructions of dendritic spines 
(yellow) with PSDs (red) and SER (green) in spines containing both SER and 
polyribosomes from each condition. SER 0.5 µm around the base of each of the spines 
has also been reconstructed. (b) SER complexity 0.5 µm around the base of spines with 
or without SER or polyribosomes under control conditions and during LTP. During LTP, 
SER complexity was conserved at the base of spines without SER or polyribosomes (-
SER -PR, hnANOVA: F(1, 316) = 0.06, p = 0.81), at the base of spines with polyribosomes 
only (-SER +PR, F(1, 30) = 0.13, p = 0.72), and at the base of spines with SER only (+SER 
-PR, F(1, 33) = 2.17, p = 0.15). SER complexity was, however, increased at the base of the 
few spines that contained both polyribosomes and SER during LTP (+SER +PR, F(1, 5) = 
23.15, p < 0.01). 
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0.0082 ± 0.0006, LTP: 0.0077 ± 0.0008, hnANOVA: F(1, 424) = 0.04, p = 0.84). 

Interestingly, only SER complexity at the base of spines that contained both SER 

and polyribosomes was significantly greater during LTP (Fig. 3.9b). Thus, not 

only is SER complexity conserved at the base of spines during LTP, SER 

complexity was even greater at the base of the few “privileged” spines that 

contained both SER and polyribosomes, spines that expanded their synapses 

the most during LTP. This finding suggests that LTP induces structural changes 

in SER that facilitate the movement of cargo to and from the largest synapses, 

providing a local mechanism to enhance their growth. 

3.4 Discussion 

Here we have demonstrated for the first time that the structure of dendritic 

SER is dynamic in ways that support enlargement of specific synapses during 

LTP in the adult hippocampus. Trafficking of membrane and proteins along SER 

is critical for the expression of synaptic plasticity, and movement throughout the 

dendrite is slowed in regions where SER structure is most complex, thereby 

enhancing local delivery of the cargo (Cui-Wang et al., 2012). Under baseline 

conditions in vivo, SER is more complex in portions of the dendritic shaft with 

more or larger dendritic spines (Cui-Wang et al., 2012; Spacek and Harris, 1997). 

We now show that under control conditions in adult hippocampal slices, the 

complexity of dendritic shaft SER was greater where total synaptic input was 

higher, consistent with the prior in vivo findings. By 2 hours during LTP, the total 

SER volume per dendritic segment length was unchanged, yet the structure of 

SER underwent substantial reorganization. Both the volume and complexity of 

SER increased in dendritic spines, and synapse enlargement was greatest on 
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those spines containing SER and a polyribosome. During LTP, SER became 

more complex at the base of spines that contained both SER and a 

polyribosome, and became less complex along portions of the dendrite that 

lacked spines. These findings suggest that spines containing SER and 

polyribosomes were primed to undergo greater synapse enlargement during LTP 

than those lacking them. Furthermore, SER was redistributed from portions of the 

dendritic shaft with no spines to portions where synapses underwent the greatest 

enlargement during LTP. 

SER Remodeling along the Dendritic Shaft 

SER also contributes to the regulation of calcium dynamics (Berridge, 

1998; Emptage et al., 1999; Raymond and Redman, 2002; Sala et al., 2005; 

Simpson et al., 1995). Elevations in calcium can be localized within spines or 

spread through the dendritic shaft (Berridge, 1998; Segal and Korkotian, 2014), 

ultimately propagating to the nucleus where calcium transients influence gene 

transcription (Bading, 2013). In the hippocampus, RyRs localize to SER in 

dendritic spines (Sharp et al., 1993) and respond to calcium entering through 

ionotropic glutamate receptors and voltage gated calcium channels (Berridge, 

1998). RyR activation results in calcium-mediated calcium release that amplifies 

an otherwise weak signal (Blaustein and Golovina, 2001; Raymond and Redman, 

2002; 2006; Rose and Konnerth, 2001; Verkhratsky and Shmigol, 1996). IP3Rs, 

on the other hand, are localized to SER in the dendritic shaft (Sharp et al., 1993; 

Simpson et al., 1995) and are activated by calcium and IP3 (Berridge, 1998). 

Hotspots of IP3Rs occur along SER in CA1 dendrites where SER is more 

elaborate (Fitzpatrick et al., 2009). Furthermore, calcium released from SER via 
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IP3R activation during LTP is involved in coordinating plasticity among synaptic 

sites along dendrites (Nagase et al., 2003; Nishiyama et al., 2000). Thus, the 

SER elaboration during LTP in spines and at their bases could enhance local 

calcium signaling and serve as a potentiating signal to sustain and enlarge those 

synapses (Mellentin et al., 2007; Sajikumar et al., 2009). In contrast, where 

dendritic SER became simplified, less calcium would be released and 

phosphatases would be more likely to be activated (Lisman, 1989; Mulkey et al., 

1993), possibly leading to spine loss along these portions of the dendrite.  

SER Remodeling in Dendritic Spines 

During LTP, the SER in dendritic spines was more likely to form a complex 

spine apparatus, while under control conditions spine SER usually formed just a 

simple tubule. Immuno-reactive markers for the Golgi apparatus, which is 

required for the translation and insertion of integral membrane proteins, have 

been identified in dendritic shafts and the spine apparatus, suggesting the spine 

apparatus could act as a mobile Golgi outpost (Gardiol et al., 1999; Grigston et 

al., 2005; Horton et al., 2005; Pierce et al., 2001). Synaptopodin is an essential 

component of the spine apparatus (Deller et al., 2003) and live-imaging 

experiments in cultured neurons show that dendritic spines containing 

synaptopodin have larger AMPAR-mediated excitatory postsynaptic potentials 

due to ryanodine-triggered calcium release (Vlachos et al., 2009). Two-photon 

microscopy reveals that synaptic depression is also regulated by calcium influx 

into large spines associated with synaptopodin (Holbro et al., 2009). Thus, spine 

apparatus elaboration and polyribosome recruitment to a subset of spines could 

serve to regulate intra-spine calcium and local protein synthesis and support 
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enhanced bidirectional synaptic plasticity, namely enlargement or shrinkage 

during LTP and LTD respectively, at those spines.  

Linking LTP Induction with SER Remodeling  

Several molecular mechanisms could be triggered that would link the 

induction of LTP to the local elaboration and redistribution of dendritic SER. One 

likely mechanism involves CLIMP63, an integral membrane protein in SER, and 

protein kinase C (PKC), which phosphorylates CLIMP63 (Cui-Wang et al., 2012) 

and is activated during LTP (Malinow et al., 1989). PKC-mediated 

phosphorylation of CLIMP63 causes SER to dissociate from microtubules and 

become more elaborate (Cui-Wang et al., 2012; Klopfenstein et al., 1998; 

Vedrenne et al., 2005). Other signaling molecules are also activated in dendritic 

spines and the neighboring dendritic shaft during LTP, such as CaMKII (Lee et 

al., 2009) and the small GTPase Ras (Harvey et al., 2008), which stimulates 

extracellular signal-regulated kinase (ERK). Together with PCK, CAMKII or ERK 

may also phosphorylate CLIMP63 during LTP, resulting in the elaboration of SER 

that would facilitate offloading of cargo and support growth of activated 

synapses. Further along the dendrite, away from activated spines, the 

dephosphorylation of CLIMP63 would cause SER to associate with microtubules 

and become straighter and more tubular (Cui-Wang et al., 2012).  This 

simplification of SER during LTP would enhance movement of proteins and other 

cargo away from less active synapses, possibly preventing the formation of new 

spines or resulting in the elimination of weak spines in those dendritic regions 

(Bourne and Harris, 2011a).  
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Concluding Remarks 

The study presented in this chapter demonstrates a dramatic remodeling 

of SER structure during LTP and supports an important role for SER in 

coordinating synaptic plasticity along adult hippocampal dendrites. So far we 

have only investigated the plasticity of SER occurring at 2 hours during LTP. The 

next step in this investigation would be to reconstruct SER along dendrites at 30 

minutes during LTP, before synapses have expanded. This would reveal if SER 

complexity increased at the base of spines before or after their synapses 

enlarged. If before, this would argue that complex SER is a necessary 

component for synapse growth. If after, this would argue that enlarged synapses 

were able to “capture” SER necessary to support their stability. 30 minute LTP 

data is available (Bourne and Harris, 2011a) and is at the time of completion of 

this dissertation being investigated for SER content. 

In Chapter 2, I showed that structural plasticity is evident on both sides of 

the synapse during LTP and in this chapter I provided evidence to support the 

idea that dendritic SER might coordinate plasticity along hippocampal dendrites. 

As both of these investigations were done in the normal rodent hippocampus, it 

would be interesting to describe how these mechanisms might go awry under 

conditions of synaptic pathology. The Fmr1 knock out (KO) mouse has been 

used as model of the human neurodevelopmental disorder Fragile X. The well-

described synaptic signaling abnormalities in this KO animal (Zoghbi and Bear, 

2012) indicate normal mechanisms of structural plasticity might also be 

disorganized. In the next chapter of this dissertation, I discuss preliminary studies 

meant to determine whether obvious signs of anatomical pathology are present 



 105 

at synapses in the adult Fmr1 KO hippocampus as a first step in addressing this 

question.  
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Chapter 4: Synaptic Structure in Fragile X  

4.1 Introduction 

The studies presented in Chapters 2 and 3 investigated structural 

plasticity that occurs concurrently on both sides of the synapse in the normal 

adult hippocampus. An interesting next step would be to explore how normal 

structural remodeling might break down under conditions of synaptic pathology. 

Fragile X (FX), the most common inheritable cause of autism and intellectual 

impairment in humans (Hagerman et al., 2010), has become the archetypal 

model researchers use to study these disorders (Portera-Cailliau, 2012). 

Investigations into the Fmr1 knockout (KO) mouse, a mouse model of FX, 

indicate that synaptic pathology is the most likely basis for impaired cognition in 

FX (Sidorov et al., 2013; Zoghbi and Bear, 2012). Thus, structural plasticity in the 

Fmr1 KO mice is likely categorically distinct from that in the normal rodent brain. 

A first step in understanding how hippocampal structural plasticity might go awry 

in FX would be to characterize and compare the ultrastructure of synapses in the 

Fmr1 KO mouse with their wild-type (WT) counterparts. This chapter presents 

preliminary probe studies characterizing the synaptic ultrastructure in the adult 

Fmr1 KO mouse on the EM level. 

Autism, Fragile X, and Synaptic Pathology 

Autism spectrum disorders (ASDs) are neurodevelopmental disorders 

characterized by social interaction deficits, difficulty with verbal and non-verbal 

communication, and stereotyped repetitive behaviors. An estimated 43,000,000 

people worldwide are affected by an ASD (Elsabbagh et al., 2012). These 

patients suffer poor behavioral, emotional, and medical outcomes as adults (Gray 
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et al., 2012). They are ~50% more likely to have an intellectual disability 

(Chakrabarti and Fombonne, 2001) and nearly a third of these individuals will 

suffer epilepsy (Tuchman et al., 2010). The majority of autistic patients present 

with comorbid psychiatric disorders such as social anxiety disorder, attention-

deficit/hyperactivity disorder, and oppositional defiant disorder (Simonoff et al., 

2008). Furthermore, autistic patients live shorter lives than non-autistics 

(Shavelle and Strauss, 1998). These diseases have negative consequences for 

society as well. As autism prevalence rises alongside increasing healthcare 

costs, ASD-related healthcare expenditures represent the highest rate of 

increase among all intellectual disabilities in the past decade (Angelis et al., 

2014; Wang and Leslie, 2010). This increase results in greater financial difficulty 

for those raising children with autism. 

Martin and Bell (1943) first described a family with a history of intellectual 

disability that seemed to be sex-linked15 and this disorder would come to be 

known as “fragile X” when researchers characterized a “fragile” site at band 

q27.3 on the long arm of the X-chromosome of FX patients (Lubs, 1969; Lubs et 

al., 2012; Sutherland, 1977). FX occurs in roughly 1 in 4,000 men and 1 in 6,000-

8,000 women (Saul and Tarleton, 2012). It has nearly 100% penetrance and a 

highly variable clinical presentation (Hersh et al., 2011). Prepubertal males grow 

normally but show delays in developmental motor milestones (e.g., sitting and 

walking) and speech. Physical features that typify FX usually develop after the 

onset of puberty and postpubertal FX patients usually present with a suite of 

                                            
15 Fragile X is also known as Martin-Bell Syndrome in reference to J. Purdon Martin and 
Julia Bell who first characterized the disorder in the 1940s. In Latin American countries, 
it is also known as Escalante Syndrome in reference to Julio Anibal Escalante and his 
work on sex-linked intellectual disabilities.  
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characteristic facial features (a long face, prominent forehead and jaw, and 

protruding ears) and macro-orchidism. FX patients typically have an abnormal, 

hyperactive temperament and occasionally display a distinctive flapping motion 

of their hands. While FX is the single most common inheritable form of autism, 

only about 25% of FX patients display autistic behaviors according to criteria 

established by the Childhood Autism Rating Scale (Hatton et al., 2006), but it 

appears that autistic traits become more prominent with age.           

Research into the pathophysiology of FX, the most common genetic cause 

of autism (Hagerman et al., 2010), has greatly increased our knowledge of 

synaptic function and promises to lead to effective treatment for the disease and 

other ASDs (Krueger and Bear, 2011). FX is caused by the transcriptional 

silencing of the FMR1 (fragile X mental retardation protein 1) gene on the X 

chromosome (Pieretti et al., 1991; Verkerk et al., 1991), which codes for FMRP 

(fragile X mental retardation protein), an RNA-binding protein and repressor of 

protein synthesis at the synapse (Bhakar et al., 2012). Stimulation of group 1 

metabotropic glutamate receptors (mGluRs) leads to an increase in synthesis of 

FMRP, which acts in a feedback manner to inhibit further protein synthesis. An 

unchecked increase in protein synthesis at the synapse in the absence of FMRP 

is thought to be pathognomonic of FX (Kelleher and Bear, 2008). Protein 

synthesis in the Fmr1 knockout (KO) mouse is increased both in vitro and in vivo 

(Dölen et al., 2007; Hagerman et al., 2010; Muddashetty et al., 2007; Osterweil et 

al., 2010; Qin et al., 2005). mGluR-dependent long-term depression (mGluR-

LTD), a protein synthesis-dependent form of synaptic plasticity, was found to be 

exaggerated in Fmr1 KO mouse (Huber et al., 2000; 2002; Krueger and Bear, 

2011). This discovery has led to the mGluR theory of FX, whereby a constellation 
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of FX symptoms is thought to be due to excessive mGluR signaling (Bear et al., 

2004; Pieretti et al., 1991; Verkerk et al., 1991). Manipulation of group 1 mGluRs 

by pharmacological or genetic downregulation corrects several aspects of the FX 

phenotype in the Fmr1 KO mouse such as exaggerated mGluR-LTD (Bhakar et 

al., 2012; Choi et al., 2011; Dölen et al., 2007), increased AMPA receptor 

internalization (Darnell et al., 1975; Kelleher and Bear, 2008; Nakamoto et al., 

2007), increased audiogenic seizures (Dölen et al., 2007; Min et al., 2009; 

Thomas et al., 2012; Yan et al., 2005), and abnormal social interactions (Thomas 

et al., 2011).  

Synaptic Structure in the Fmr1 KO 

Golgi staining suggested that cortical spines in postmortem human brain 

appeared developmentally immature, namely long, thin, and tortuous (Hinton et 

al., 1991; Rudelli et al., 1985; Wisniewski et al., 1991). Further work in human 

autopsy material noted that, in addition to the presence of malformed spines, 

spine density along cortical neuron dendrites was increased (Irwin et al., 2001). 

These findings have led to the suggestion that a lack of spine pruning during 

development is a key feature of FX pathology (Bagni and Greenough, 2005; Irwin 

et al., 2002). Golgi studies in the Fmr1 KO mouse generally corroborate the 

increase in spine density in cortical neurons (Comery et al., 1997; Dölen et al., 

2007; Hayashi et al., 2007; McKinney et al., 2005). Other studies have, however, 

suggested the problem might lie not in defective spine pruning but in defective 

spine stabilization and maturation. Viral transduction of enhanced GFP in 

occipital cortex of Fmr1 KO mice demonstrated that by 4 weeks, spine lengths 

and densities in KO animals were similar to WT controls (Nimchinsky et al., 
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2001). GFP electroporation in somatosensory cortex of Fmr1 KO animals 

revealed no difference in spine length or density from WT animals but did 

demonstrate FX spines were more dynamic and less able to stabilize than WT 

spines (Cruz-Martín et al., 2010). Super-resolution light microscopy such as 

STED (stimulated emission depletion) microscopy also corroborates the idea that 

spine maturation seems delayed in KO animals (Wijetunge et al., 2014). 

Research in the hippocampus has pointed to spine density that is decreased 

(Braun and Segal, 2000; Segal et al., 2003) and also to spine density that does 

not differ from WT mice (de Vrij et al., 2008; Grossman et al., 2006). Thus, light 

level studies have not yet definitively characterized a spine deficit in the KO 

mouse. 

Less is known about the ultrastructure of spines in the Fmr1 KO mouse. 

EM has been employed only sparingly in FX structural work and much of it has 

been done on single EM sections. Quantification of PSD length on single human 

EM sections hinted at the possibility that synaptic input might be reduced (Rudelli 

et al., 1985), but the same technique applied in the Fmr1 KO mouse has 

produced conflicting reports (Klemmer et al., 2011; Till et al., 2012). Investigating 

ultrastructure in this manner might be confounding results, since structural 

features only evident in three dimensions are lost (Bourne and Harris, 2011b). 

Three-dimensional reconstructions from serial EM from perfusion-fixed brain are 

thus necessary to investigate unambiguously the synaptic ultrastructure. It is of 

interest to determine if protrusions in the Fmr1 KO mouse make synaptic 

contacts or if there is a build-up of nonsynaptic filopodia (Fiala et al., 1998). The 

necessity of using three-dimensional EM is further warranted, as mature 

hippocampal dendrites are very spiny and, as predicted by light level studies, 
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might be even more so in the Fmr1 KO animal. Moreover, work from our lab has 

shown that polyribosomes in dendrites are dynamic during plasticity. During long-

term potentiation (LTP) in developing animals, polyribosomes moved from the 

dendritic shaft into spines and these spines were more likely to have larger PSDs 

(Ostroff et al., 2002). In the adult, LTP also induced an increase in spines and, 

again, spines with polyribosomes had PSDs that were larger than spines without 

polyribosomes (Bourne et al., 2007). Unchecked protein synthesis is thought to 

cause FX (Bhakar et al., 2012). Thus, it is of interest to quantify the number and 

location of polyribosomes in the Fmr1 KO mouse to determine whether protein 

synthesis machinery in the KO differs from that of the WT. 

The Current Study 

As the majority of studies investigating synaptic malformation in FX has 

been restricted to light level microscopy, any underlying subcellular pathology 

has been left largely unexplored. Structural abnormalities that lie below the 

resolution of light microscopy might negatively influence normal synaptic 

plasticity that was uncovered in Chapters 2 and 3. As a first step in 

understanding how structural plasticity might go awry in FX, it is necessary to 

characterize and compare in vivo synaptic ultrastructure of the Fmr1 KO with that 

of the WT mouse. Thus, the purpose of this study was to preliminarily 

characterize hippocampal area CA1 synaptic ultrastructure in the Fmr1 KO by 

reconstructing dendritic spines and synapses on serial EM sections. We began 

our analysis by investigating the synaptic anatomy of the adult Fmr1 KO mouse 

to determine if structural malformation that might begin during development 

persists in adulthood. In contrast to light level studies in cortex, we demonstrate 
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that synapses in area CA1 of the Fmr1 KO hippocampus differ little from their WT 

counterparts in number and subcellular composition. These findings suggest 

synaptic malformation in FX might be restricted to the developing animal or to 

other areas of the brain.         

4.2 Methods 

Animals and Perfusion-Fixation 

C5BL/6 mice were bred and raised in our university animal care facility 

(Norman Hackerman Building Vivarium, UT Austin). WT (Fmr1y/+) male mice 

were crossed with hemizygous (Fmr1-/+) female mice to produce litters with both 

WT and KO males. Animals were genotyped by polymerase chain reaction in 

house after each perfusion from tail clippings collected after administration of 

anesthetic. To investigate the structure of synapses in vivo, one male WT and 

one male Fmr1 KO animal from the same litter were transcardially perfused with 

fixatives for this study. Both animals were 69 days old at the time of the 

perfusions, well into adulthood (McCutcheon and Marinelli, 2009). The animals 

were anesthetized with continual isoflurane administration throughout the 

perfusion. The chest cavity was opened and retracted to expose the heart. The 

right atrium was clipped and a needle was inserted into the left ventricle to rapidly 

flush the cerebral vasculature of blood with oxygenated Krebs-Ringer-Carbicarb 

buffer for 3-5 seconds. Immediately thereafter, the flush was followed by 37 ºC 

fixative (2% formaldehyde/2.5% gluataraldehyde) in a 0.1 M cacodylate buffer 

with 2 nM CaCl2 and 4 mM MgCl2 at pH 7.4 for 30 minutes. The tissue was 

allowed to rest for an hour, after which the brain was removed from the skull and 

stored in fixative overnight. 
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Electron Microscopy and Ultrastructure Analysis  

As many of the methods used in this study for processing and imaging the 

tissue for serial section EM are similar to those used in Chapters 2 and 3, they 

are briefly mentioned here (for more detail see Section 2.2 Methods). Brains 

were examined under a dissecting microscope to guarantee they were well 

cleared of blood. The brains were bisected along the midsagittal plane and glued, 

medial-side down, onto a vibratome stage. In phosphate buffer, the brains were 

sliced into 70-µm thick parasagittal sections. Brain slices containing the middle of 

the hippocampus were selected. Area CA1 was dissected out of the slice and 

embedded in 7% agarose. The tissue in agarose was then processed for electron 

microscopy as outlined in Chapter 2. Longitudinal sections through CA1 were 

collected and mounted on pioloform-coated slot grids (Synaptek, Ted Pella Inc.). 

The sections were stained with saturated aqueous uranyl acetate followed by 

lead citrate for 5 minutes each. For these sections, large field-of-view images 

were automatically acquired on a transmission-mode scanning electron 

microscope (Zeiss Supra40) at 28 kV detection at 2 nm pixel size (Kuwajima et 

al., 2013).  

EM images were aligned and cropped using TrakEM2 in Fiji 

(fiji.sc/TrakEM2) and analyzed using RECONSTRUCT™. Measurements were 

calibrated using a diffraction grating replica (Ernest Fullam Inc., Lantham, NY) 

and section thickness was determined using the cylindrical diameters method. 

Other methods for ultrastructural analyses are described in detail in Chapter 2.    

Statistical Analyses 

As a preliminary probe study investigating the ultrastructure in the Fmr1 

KO mouse, two littermate animals (1 WT and 1 Fmr1 KO) were used. Statistical 
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analyses were performed in R (r-project.org) and STATISTICA (StatSoft, Tulsa, 

OK). To investigate differences in spine volume and synapse size between WT 

and KO mice, parametric one-way ANOVAs and non-parametric Kolmogorov-

Smirnov (KS) tests were performed. A chi-square test was performed to 

investigate proportions of synapses associated with SER. A two-way ANOVA 

was used to investigate the effect of SER and genotype on synapse size. 

Statistical tests are reported in results and figure legends where appropriate. 

Significance was set to p < 0.05 and asterisks in figures denote p < 0.05 (*), p < 

0.01 (**), and p < 0.001 (***).    

4.3 Results 

General Ultrastructure in WT and Fmr1 KO Mice 

Low magnification views of hippocampal area CA1 stratum radiatum of 

adult WT (Fig. 4.1) and KO mice (Fig. 4.2) reveal no obvious structural 

differences in any synaptic compartment or organelle. There are very few 

degradative structures on EM sections in either genotype. Mitochondria are not 

swollen and cristae appear crisp and unbroken. SER also appears to be intact 

and not swollen. Glial processes can be seen on EM sections and contain darkly 

staining glycogen granules. Boutons are present along axons and contain 

similarly sized, round vesicles in pools and in close apposition with the plasma 

membrane. PSDs in postsynaptic spines are also clearly evident at low 

magnification and do not appear loose or dislodged from the plasma membrane. 

Thus, the general ultrastructure in the Fmr1 KO mouse appears similar to that of 

the WT mouse. 
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Figure 4.1: Low magnification view of area CA1 of an adult WT mouse. A low 
magnification view of hippocampal area CA1 stratum radiatum of an adult WT mouse 
reveals structures evident in area CA1 of the adult rat. PSDs are visible. Mitochondria 
(MT) are not swollen and have cristae that are crisp. Glia processes are present and 
contain darkly staining glycogen granules (Glyc). SER is not swollen. PSDs are clearly 
visible and do not appear loose or dislodged from the plasma membrane. Boutons as 
well as pools of synaptic vesicles are visible along axons. Scale bar = 1 µm.   
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Figure 4.2: Low magnification view of area CA1 of an adult Fmr1 KO mouse. A low 
magnification view of hippocampal area CA1 stratum radiatum in the Fmr1 KO mouse 
reveals that the general ultrastructure in the KO appears similar to that of its WT 
counterpart. PSDs and presynaptic vesicle pools are evident. Mitochondria (MT) are not 
swollen and have crisp cristae. SER is not swollen. Glial processes are present and filled 
with darkly staining glycogen granules (Glyc). Scale bar = 1 µm.   
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Dendritic Spines and Synapses 

As several light level studies indicate an overabundance of small thin 

protrusions along cortical dendrites of the Fmr1 KO mouse (Comery et al., 1997; 

Hayashi et al., 2007; McKinney et al., 2005), we were curious to investigate if 

hippocampal dendritic protrusions also appeared thin and developmentally 

immature. To address this question, we performed an unbiased three-

dimensional volume analysis by placing a 3.5 µm × 3.5 µm sampling frame on 50 

consecutive sections of each series. All dendritic spines and associated PSDs 

falling within the sampling frame or touching two inclusion lines were included in 

the analysis. Spines and PSDs falling outside the sampling frame or touching two 

exclusion lines were not analyzed. (We performed a similar analysis for 

presynaptic content of adult rats in Chapter 2.) In the WT mouse, we identified 86 

total spines with 93 PSDs in a 37.19 µm3 volume (Fig. 4.3 and 4.4) and in the 

KO mouse, we identified 94 total spines with 98 PSDs in a 35.06 µm3 volume 

(Fig. 4.5 and 4.6). Curiously, in the analyzed volumes from both WT and KO 

mice we were unable to identify any dendritic protrusions that were non-synaptic. 

Furthermore, although light level studies suggest cortical spine density is 

increased in the Fmr1 KO mouse, EM reconstructions performed here revealed 

that the density of CA1 spines (2.68 spines/µm3) and synapses (2.80 

synapses/µm3) in hippocampal area CA1 of the KO mouse differed only slightly 

from that in the WT mouse (WT spine density: 2.31 spines/µm3, WT synapse 

density: 2.50 synapses/µm3).  

To investigate if CA1 spines in the Fmr1 KO mouse were smaller than 

their WT counterparts, we calculated and compared the volume of dendritic 

spines that we had identified in each volume analysis (Fig. 4.7). A one-way  
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Figure 4.3: CA1 dendritic spines of the adult WT mouse. Three-dimensional 
reconstructions of analyzed dendritic spines (n = 86, yellow) with synapses (red) falling 
within a 37.19-µm3 unbiased volume in the middle of area CA1 stratum radiatum of an 
adult WT mouse. Scale cube = 0.5 µm on each side. 

 
  

86 total spines/37.19 µm3 

= 2.31 spines/µm3   

Wild-type 



 119 

 
 
 

 
 

Figure 4.4: CA1 synapses of the adult WT mouse. Three-dimensional reconstructions 
of analyzed synapses (n = 93, red) falling within a 37.19-µm3 unbiased volume in the 
middle of area CA1 stratum radiatum of an adult WT mouse. Scale cube = 0.5 µm on 
each side. 
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Figure 4.5: CA1 dendritic spines of the adult Fmr1 KO mouse. Three-dimensional 
reconstructions of analyzed dendritic spines (n = 94, yellow) with synapses (red) falling 
within a 35.06-µm3 unbiased volume in the middle of area CA1 stratum radiatum of an 
adult Fmr1 KO mouse. Scale cube = 0.5 µm on each side. 
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Figure 4.6: CA1 synapses of the adult Fmr1 KO mouse. Three-dimensional 
reconstructions of analyzed synapses (n = 98, red) falling within a 35.06-µm3 unbiased 
volume in the middle of area CA1 stratum radiatum of an adult Fmr1 KO mouse. Scale 
cube = 0.5 µm on each side. 
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Figure 4.7: Example spine reconstructions from WT and Fmr1 KO mice. Example 
reconstructions of spines (yellow) and PSDs (red) in hippocampal area CA1 stratum 
radiatum of WT (a) and Fmr1 KO (b) mice. Spines represent the 0th, 33rd, 67th, and 100th 
percentile in volume from each condition. Scale cube = 500 nm on each side. 
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ANOVA revealed that, on average, spines in the KO were slightly smaller than 

spines in the WT mouse (Fig. 4.8b). Several of the largest spines were found in 

the WT mouse. To uncover if these large outliers were influencing the ANOVA 

result, we isolated spines with volumes larger than 4 standard deviations from 

the overall population mean (WT and KO spines combined: µ = 0.077 µm3, σ = 

0.064 µm3). When these spines were removed from the analysis (2 WT spines), 

the ANOVA did not reveal a significant difference in spine volume between 

genotypes (F(1,174) = 2.03, p = 0.16). Because the distribution of spine volumes is 

not normal and because a few, large outlier spines drove our ANOVA result, we 

performed a KS test on spine volumes in each genotype. The KS test revealed 

that spines in the KO mouse were slightly, but significantly smaller than WT 

spines (p < 0.01, Fig. 4.8c). Thus, spines in the Fmr1 KO are modestly smaller 

than their WT counterparts, but do not appear to be filopodia or developmentally 

immature.  

Fmr1 KO mice express exaggerated mGluR-LTD (Huber et al., 2002; 

Krueger and Bear, 2011) and LTD drives the removal of AMPA receptors from 

the PSD (Collingridge et al., 2010; Lüscher and Malenka, 2012).  To investigate if 

we could detect a difference in synapse size in the Fmr1 KO mouse, we 

compared the size of PSDs in each genotype (Fig. 4.9). Curiously, both a one-

way ANOVA (Fig. 4.10b) and a KS test (Fig. 4.10c) failed to reveal any 

difference in synapse size between the WT and Fmr1 KO mouse. Thus, it 

appears as if the size of CA1 synapses in the Fmr1 KO mouse is comparable 

with that in the WT mouse.    
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Figure 4.8: Comparison of spine volume in WT and Fmr1 KO mice. (a) A histogram 
reveals that the distributions of WT spine volumes (n = 86, teal) and Fmr1 KO spine 
volumes (n = 94, pink) appear to be similar. (b) Bars represent average spine volume in 
each genotype. Error bars represent standard error of the mean. Transparent circles 
represent spread of the data. A one-way ANOVA revealed that the average spine 
volume in the Fmr1 KO mouse was slightly, but significantly smaller than the average 
spine volume in the WT mouse (F(1, 178) = 3.9735, p < 0.05), but when spine volumes 
greater than 4 standard deviations from the overall mean (µ + 4σ, gray dotted line) were 
removed from the analysis (2 WT spines), the effect became non-significant (F(1, 176) = 
2.03, p=.16). (c) A follow-up, non-parametric KS test did, however, reveal that spine 
volumes were slightly smaller in the Fmr1 KO mouse (D = 0.25, p < 0.01).  
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Figure 4.9: Example PSD reconstructions from WT and Fmr1 KO mice. Example 
reconstructions of PSDs in hippocampal area CA1 stratum radiatum of WT (a) and Fmr1 
KO (b) mice. PSDs represent the 0th, 33rd, 67th, and 100th percentile in size from each 
condition. Scale cube = 200 nm on each side.  
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Figure 4.10: Comparison of PSD area in WT and Fmr1 KO mice. (a) A histogram 
reveals that the distributions of WT PSD areas (n = 93, teal) and Fmr1 KO PSD areas (n 
= 98, pink) appear to be similar. (b) Bars represent average PSD area in each genotype. 
Error bars represent standard error of the mean. Transparent circles represent spread of 
the data. A one-way ANOVA revealed that the average PSD area in the Fmr1 KO mouse 
did not differ significantly from the average PSD area in the WT mouse (F(1,189) = 0.054, p 
= 0.82). (c) A follow-up, non-parametric KS test confirmed that the distributions of PSD 
areas in WT and Fmr1 KO mice did not differ significantly (D = 0.092, p = 0.76).  
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SER and Spine Apparatuses 

Because we had revealed that plasticity induces dramatic dendritic SER 

remodeling in the adult rat (Chapter 3), we reasoned that pathologically elevated 

mGluR signaling and protein synthesis in the Fmr1 KO mouse (Bhakar et al., 

2012) might be associated with changes in SER structure. We preliminarily 

addressed this hypothesis by evaluating SER tubules and spine apparatuses 

associated with synapses in each volume analysis (Fig. 4.11a). Of the 93 WT 

synapses, 13 were closely associated with an SER tubule and 4 with a spine 

apparatus. Of the 98 KO synapses, 11 were associated with an SER tubule and 

9 with a spine apparatus (Fig 4.11b). A chi-square test revealed that the 

proportions of synapses associated with SER and spine apparatuses in the Fmr1 

KO mouse did not differ with that in the WT mouse (p = 0.37). In Chapter 3, it 

was demonstrated that SER in spines was associated with larger PSDs and we 

wanted to determine if this was true in WT and KO mice. A two-way ANOVA 

revealed a main effect of SER on synapse size (p < 0.001) but did not reveal a 

main effect of genotype (p = 0.59) or an interaction (p = 0.49, Fig. 4.11c). Thus, 

as in the adult rat (see Chapter 3), WT and KO mouse synapses associated with 

SER are larger than those without and the absence of FMRP does not alter this 

relationship.   

Polyribosomes 

Finally, an unchecked increase in protein synthesis is thought to be 

pathognomonic of FX. Thus, we were interested to learn whether the number of 

polyribosomes is altered in synapses from hippocampal area CA1 of the mature 

Fmr1 KO mouse. Polyribosomes were identified as clusters of 3 or more 

ribosomes, which appear as opaque, roughly 10-25 nm in diameter puncta that 
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have a blurry, gray halo (Fig. 4.12a). Because individual ribosomes are difficult to 

identify unambiguously from other protein complexes in the cytosol on EM 

sections, we selected 15 consecutive EM sections from each genotype that had 

the least staining artifact. (Staining artifact such as lead citrate precipitate might 

obscure these small organelles.) We placed a 7.5 µm × 7.5 µm sampling frame 

on each section and identified every polyribosome that fell completely within the 

volume or touched an inclusion line. Any polyribosomes touching an exclusion 

line were excluded from the analysis. We identified 17 polyribosomes in a 51.47-

µm3 volume in the WT mouse (0.33 polyribosomes/µm3) and 9 polyribosomes in 

a 48.09-µm3 volume in the KO mouse (0.19 polyribosomes/µm3). As the number 

of ribosomes were somewhat comparable between genotypes, we were curious 

to investigate if each polyribosome had more or fewer ribosomes in the Fmr1 KO 

mouse. To investigate this, we summed ribosomes in each polyribosome cluster. 

A one-way ANOVA revealed that the number of ribosomes per polyribosome in 

the Fmr1 KO mouse did not differ significantly with its WT counterpart (Fig. 

4.12b). Each genotype had polyribosomes containing on average ~5 ribosomes.  

4.4 Discussion 

In stark contrast to light level studies that suggest FX is associated with an 

overabundance of small dendritic protrusions (Comery et al., 1997; Dölen et al., 

2007; Hayashi et al., 2007; McKinney et al., 2005), CA1 synapses in this Fmr1 

mouse were similar to those in its WT counterpart. Synapse size, proportion of 

synapses with SER, and polyribosome numbers in the KO mouse were 

comparable to that of the WT mouse. While spine volume was modestly smaller 

in the KO mouse, small, thin dendritic protrusions were not overly abundant in  
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Figure 4.11: SER Tubules and Spine Apparatuses in WT and Fmr1 KO mice. (a) 
Example electron micrographs of a spine apparatus in a large dendritic spine from each 
condition. Note that SER folds in the spine apparatus appear normal and not swollen in 
either genotype. Scale bars = 0.5 µm. (b) Percentages of synapses in each genotype in 
close association with an SER tubule, a spine apparatus (SA), or neither. A chi-square 
test revealed that the these proportions did not differ significantly between genotypes 
(χ2

(1, N = 6) = 1.99, p = 0.37). (c) Bars represent average PSD area of synapses in both 
genotypes associated with or without SER. Error bars represent standard error of the 
mean. A two-way ANOVA revealed that, as in adult rats (see Chapter 3), WT and Fmr1 
KO synapses in close association with SER were larger (F(1, 187) = 12.865, p < 0.001). 
The ANOVA did not, however, reveal a main effect of genotype (F(1, 187) = 0.29, p = 0.59) 
or an interaction (F(1, 187) = 0.49, p = 0.49). 

 

Fmr1 Knockout Wild-type a 

b 

c 

0.000 

0.020 

0.040 

0.060 

0.080 

0.100 

1" 2"

PS
D

 (µ
m

2 )
 

KO WT 

n = 93 synapses n = 98 synapses 

No SER 
(82%) 

No SER 
(80%) 

With SA 
(9%) 

With SA 
(4%) 

With SER 
Tubule 
(11%) 

With SER 
Tubule 
(14%) 

Without SER 
With SER 



 130 

 
 
 

 
 

Figure 4.12: Polyribosomes in adult WT and Fmr1 KO mice. (a) Example electron 
micrographs of polyribosomes at the base of a spine from each genotype (arrows). 
Polyribosomes were identified on the basis of their appearance as clusters of ≥ 3, 
roughly 10-25-nm darkly staining puncta with gray halos. Scale bars = 200 nm. (b) Bars 
represent average number of ribosomes in each polyribosome in each condition. Error 
bars represent standard error of the mean. A one-way ANOVA revealed that the number 
of ribosomes in each polyribosome cluster did not differ significantly between genotypes 
(F(1, 24) = 0.15, p = 0.70).  
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the KO adult. Although the investigation presented in this chapter is a probe 

study employing only two animals, these preliminary findings tentatively indicate 

that gross synaptic malformation might not be readily apparent in this region of 

the adult Fmr1 KO mouse brain. Thus, synaptic malformation might be restricted 

to the developing mouse, might be restricted to other brain regions, or might 

more nuanced than can be detected with the methods employed here. These 

findings do, however, support live imaging studies in occipital and 

somatosensory cortex that demonstrated synaptic malformation was only 

apparent in animals less than a month old (Cruz-Martín et al., 2010; Nimchinsky 

et al., 2001). Thus, any step forward with this project would most likely involve 

characterizing the structure of synapses in area CA1 of younger animals.   

Aberrant Signaling in FX and SER 

FX symptomology is thought to be due to excessive mGluR signaling at 

the synapse (Bear et al., 2004; Krueger and Bear, 2011). In fact, several studies 

have shown that reduction of mGluR signaling reduces the severity of the FX 

phenotype. Dölen et al. (2007) showed that, in FX mice, genetic reduction (but 

not elimination) of the Grm5 gene, which encodes mGluR5, corrected a variety of 

phenotypes associated with these mice including audiogenic seizures (AGSs), 

pathologically increased protein synthesis, and excessive LTD. Other studies 

have shown that pharmacological antagonism of mGluR signaling also corrects 

phenotypes associated with the disorder including protein synthesis (Osterweil et 

al., 2010; 2013), CA3 epileptiform-like activity (Chuang et al., 2005), and spine 

malformation in cultured neurons (de Vrij et al., 2008). mGluR signaling is linked 

to the SER via phosphoinositol hydrolysis pathways described in Chapter 3. In 
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this study, the proportion of synapses in close association with SER were similar 

in WT and KO mice. But the exaggerated mGluR signaling in the KO mouse 

might influence the volume or shape of SER tubules and spine apparatuses 

without altering their numbers. Thus, a next step would be to reconstruct the 37 

SER tubules and spine apparatuses near synapses that were identified and 

compare their volumes. This analysis might demonstrate an influence of aberrant 

FX signaling on SER dimensions.    

Possible Presynaptic Phenotype 

As investigated in Chapter 2, the presynaptic compartment and its 

vesicles are dynamic during normal plasticity. Recently, it was shown that Fmr1 

KO mice express an abnormal form of presynaptic LTP in the anterior cingulate 

cortex (Koga et al., 2015) and that FMRP is involved in the regulation of vesicular 

release probability at CA3-CA1 synapses (Wang et al., 2014). However, very 

little is known about the structure and composition of the presynaptic 

compartment in the Fmr1 KO mouse. What is known, however, is conflicting. In 

primary somatosensory cortex of P14 and P35 animals, vesicle pool size and 

number of docked vesicles have been reported to be normal in the Fmr1 KO 

animal (Till et al., 2012). Moreover, in hippocampal area CA1, vesicle pools have 

been reported to be larger (Deng et al., 2011) and smaller (Klemmer et al., 2011) 

in the KO mouse. Thus, conflicting reports suggest there might be underlying 

presynaptic malformation that has yet to be pinned down. A simple next step in 

the current investigation would be to characterize the presynaptic compartment in 

the Fmr1 KO animal in perfusion fixed hippocampus. If neurotransmitter release 
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is affected by signaling deficits, differences in the number of vesicles docked 

along the presynaptic active zone might be apparent in three dimensions.  

Therapeutic Intervention and Synaptic Structure 

Recently, it has been demonstrated that excessive protein synthesis in the 

Fmr1 KO mouse can be corrected by treating animals with lovastatin (Osterweil 

et al., 2013), a commonly prescribed statin drug used to treat high cholesterol. 

Statin drugs are relatively cheap, widely available, well-tolerated, and FDA-

approved for use in both adults and children, making them attractive therapeutic 

agents. By mildly reducing Ras activation (Li et al., 2005a; Liao, 2002; Vaughan, 

2003), lovastatin reduces ERK1/2 signaling, which links mGluR activation and 

excessive protein synthesis in FX (Osterweil et al., 2010). In hippocampal slices 

from Fmr1 KO mice, application of the GABA-A receptor antagonist bicuculline 

induces epileptiform activity in area CA3 (Chuang et al., 2005). Preincubating the 

slice in lovastatin blocks the induction of this activity. Furthermore, preincubating 

Fmr1 KO visual cortical slices with lovastatin reduces their hyperexcitability. 

Fmr1 KO mice are susceptible to audiogenic seizures (Osterweil et al., 2010; 

Yan et al., 2004), which is thought to be reflective of the increased seizure 

prevalence in humans with FX. Amazingly, lovastatin delivery via food pellets for 

just 2 days, which mimics human administration of the drug, reduces the 

incidence of audiogenic seizures in Fmr1 KO mice by 53%. Thus, it would be 

very interesting to investigate if lovastatin administration is exerting its 

therapeutic effect through structural remodeling of the synapse. While striking 

structural malformations did not appear in this adult animal, treating younger 

animals, which have been proposed to exhibit the most obvious structural deficits 
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in FX (Cruz-Martín et al., 2010; Nimchinsky et al., 2001), with lovastatin might 

reveal a therapeutic structural effect exerted by the drug.      

Concluding Remarks 

Though there are several more detailed analyses than can be undertaken 

in this tissue, this preliminary study revealed no strikingly obvious structural 

malformation in CA1 synapses of the adult Fmr1 KO mouse. Thus, it might be 

more fruitful to investigate structural malformation and abnormal structural 

plasticity in younger KO animals. We currently have CA1 perfusion tissue from 2 

WT and 2 Fmr1 KO animals that are ~22 days old in blocks. Cutting single EM 

sections would be a quick way to assess if spine malformation is obvious in area 

CA1 of developing KO animals.  
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Chapter 5: Concluding Remarks and Future Directions 

The studies presented in this dissertation demonstrate that coordinated 

structural remodeling of the synapse is evident on EM sections and occurs on 

both sides of the synapses during late-phase LTP in the adult animal. The 

reduction in dendritic spines described earlier (Bourne and Harris, 2011a) was 

coupled with a reduction in presynaptic boutons, which argues entire synaptic 

units act as dynamic and cohesive structures. We also uncovered EM evidence 

of the dynamic nature of presynaptic vesicle pools. The findings suggest that 

reserve pool vesicles move toward the plasma membrane, possibly to support 

increased vesicular release or to support active zone expansion that occurs 

during LTP. Vesicles trafficked through interbouton regions of the axon were 

eliminated during LTP suggesting they were either moved into boutons to support 

smaller vesicle pools or they were released during trafficking. Postsynaptically, 

dendritic SER was extensively remodeled during LTP in the adult animal. SER 

was redistributed into dendritic spines where SER formed larger spine 

apparatuses. To conserve SER at the base of spines, SER was redistributed 

from areas of the dendrite that lacked spines. SER at the base of spines with 

synapses that expanded the most during LTP was found to be the most complex. 

As previous investigations have shown that SER complexity slows the diffusion 

of SER cargo through the dendrite and facilitates its offloading (Cui-Wang et al., 

2012), an increase in SER complexity at the base of spines hosting expanding 

synapses could provide those synapses with integral membrane receptors and a 

platform for posttranslational protein modification. As a preliminary investigation 

into how normal mechanisms of structural plasticity might go awry during 
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abnormal synaptic signaling, the structure of CA1 synapses in the adult Fmr1 KO 

mouse was shown to be similar to that of its WT counterpart. Synapse size, 

proportion of SER structures, and polyribosomes are comparable in adult WT 

and KO animals. A next step would be to characterize abnormal synaptic 

structure in developing Fmr1 KO animals to uncover if synaptic malformations 

disappear with age. Of the vastly different directions these results could lead, 

several of the more interesting questions that emerge from the combined findings 

are discussed below.                          

As explored in Chapters 2 and 3, neurotransmission and calcium signaling 

alone might be coordinating plasticity across the synapse; however, it would be 

interesting to know if other molecular signals might also support structural 

coordination across the synapse. As LTP is induced postsynaptically via 

activation of NMDA receptors at CA3-CA1 synapses, there is much interest in 

investigating how retrograde signals produced and released postsynaptically 

might alter presynaptic dynamics (Padamsey and Emptage, 2014; Regehr et al., 

2009). One such diffusible molecule is nitric oxide (NO), which was first identified 

as a possible retrograde signal involved in LTP in the early 1990s (Böhme et al., 

1991; O'Dell et al., 1991; Schuman and Madison, 1991). CA1 pyramidal cells 

express both neuronal and endothelial forms of NO synthase (NOS, Dinerman et 

al., 1994), which is activated by NMDA receptors (Boehning and Snyder, 2003; 

Garthwaite, 2008) and converts L-arginine to NO. Guanylate cyclase appears to 

be a major NO target and subsequent cyclic GMP production further modulates a 

variety of downstream molecules (Garthwaite, 2008). Both genetic deletion and 

pharmacological inhibition of NOS attenuates LTP at CA3-CA1 synapses 

(Padamsey and Emptage, 2014). Application of NO scavengers (e.g., 
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hemoglobin) to hippocampal slices and cultures also severely attenuates LTP 

(Arancio et al., 1996; Schuman and Madison, 1991). Arancio et al. (1996) 

demonstrated that LTP induced by tetanus could be blocked with postsynaptic, 

but not presynaptic, application of NG-monomethyl-L-arginine, a NOS inhibitor. 

Furthermore, when paired with presynaptic stimulation, release of NO by 

activation of an NO donor molecule with UV light can cause LTP. This effect is 

blocked by presynaptic, but not postsynaptic, application of hemoglobin. Thus, 

these findings indicate NO is produced postsynaptically and diffuses into the 

presynaptic compartment where it induces changes that support LTP.  

Curiously, other groups have demonstrated that NO is somehow required 

to produce normal presynaptic plasticity following LTP induction. Nikonenko et al. 

(2003) showed that, in organotypic slice cultures, LTP is accompanied by an 

increase in the rate of bouton remodeling and turnover. The group was able to 

produce similar remodeling in a subset of boutons by incubating slices with NO 

donor molecules. Application of the NOS inhibitor N-omega-nitro-L-arginine-

methylester blocked the effect. Stanton et al. (2005) used FM1-43 to monitor 

changes in vesicular release associated with LTP. The group found that the 

increase in probability of release at CA3-CA1 synapses following the induction of 

LTP was initially reduced with application of L-nitroarginine, a NOS inhibitor. 

Application of NO donors increased release probability when paired with stimuli 

that normally do not alter release. Thus, there is some evidence supporting the 

role of NO in coordinating postsynaptic LTP induction with presynaptic structural 

plasticity. An interesting next step would be to bath-apply low levels of NOS 

inhibitors or NO scavengers to hippocampal slices and induce LTP. Three-

dimensional reconstructions of CA3-CA1 synaptic ultrastructure might reveal 
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whether normal postsynaptic remodeling occurs while presynaptic remodeling 

requires unperturbed NO signaling. If presynaptic structural remodeling is 

impaired and this impairment were to correlate directly with attenuated LTP, this 

follow-up experiment would lend further support to the role presynaptic 

remodeling plays during LTP and provide a molecular mechanism for structural 

coordination across the synapse.  

Molecules physically linking both sides of the synapse might also be 

playing a role in coordinating structural plasticity across the synapse. A variety of 

cell adhesion molecules (CAMs) bridge the synaptic cleft. CAMs act not only in a 

structural role but are also involved in trans-synaptic signaling (Benson and 

Huntley, 2012; Dalva et al., 2007; Missler et al., 2012). CAMs include a variety of 

proteins characterized by their extracellular domains, which include 

immunoglobulin- (Ig-) domains, cadherin domains, laminin A, neurexin, and sex 

hormone-binding protein domains, and leucine-rich repeats. There are several 

lines of evidence that demonstrate CAMs are involved in calcium signaling. In 

particular, three members of the Ig-superfamily of CAMs, neural cell adhesion 

molecules (NCAMs), neuroplastins (NPs), and limbic system-associated 

membrane protein (LAMP), might be functionally linked to the SER at synapses. 

Application of purified NCAM (Bohlen Und Halbach et al., 1992), artificial ligands 

(Kiryushko et al., 2006; Rønn et al., 2002), or antibodies against NCAM (Frei et 

al., 1992; Schuch et al., 1989) all increase intracellular calcium fluorescence. 

Similar results are shown with recombinant NP and LAMP in hippocampal 

neurons (Owczarek et al., 2010; 2011; Zhukareva et al., 1997). While inhibition of 

L- and T-type calcium channels reduces intracellular calcium fluorescence in 

response to NCAM activation, in cultured hippocampal neurons depletion of 
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calcium stores with thapsigargin also attenuates the calcium signal peak with 

NCAM activation (Kiryushko et al., 2006; Shima et al., 2007). Another set of 

canonical CAMs at the synapse are the cadherins and application of recombinant 

forms of atypical cadherins, Celsr2 and Celsr3, both highly expressed in 

hippocampal and forebrain neurons (Shima et al., 2002), also increases 

intracellular calcium in cells, which can be blocked by thapsigargin administration 

(Shima et al., 2007). The link between CAMs and intracellular stores is still murky 

but might involve phosphoinositide hydrolysis pathways described in Chapter 3. 

In fact, inhibitors of diacylglycerol lipase reduce the increase in intracellular 

calcium following NCAM and NP activation (Archer et al., 1999; Owczarek et al., 

2010). Thus, activation of several CAMs present at the synapse appears to 

engage intracellular stores of calcium. Couple these findings with the fact that 

SER is occasionally seen in close physical apposition with the PSD (Harris and 

Weinberg, 2012; Spacek and Harris, 1997) and there might be physical protein 

linkages between cellular adhesion molecules and the SER that have yet to be 

described. Thus, it would be interesting to pharmacologically manipulate NCAMs 

and NPs in particular in hippocampal slices (much in the same vein as the 

proposed NO experiments above) and investigate the resultant ultrastructure of 

dendritic SER. 

SER is not confined to the soma and the postsynaptic compartment of the 

neuron. It can also be found streaming through presynaptic axons and boutons in 

stratum radiatum in area CA1 (for beautiful images see Sorra and Harris, 1993; 

Sorra et al., 2006). As synaptic vesicle exocytosis is under the control of 

presynaptic calcium influx (Sudhof, 2012), intracellular calcium stores might 

serve to modulate presynaptic release. In fact, there is ample evidence that 
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ryanodine receptors are expressed presynaptically in hippocampal neurons of 

the rodent as well as in a variety of species (Llano et al., 2000; Ouyang et al., 

1997; Padua et al., 1996; Sharp et al., 1993). Presynaptically localized ryanodine 

receptors also seem important in modulating both LTP and LTD. BDNF, which is 

released at CA3-CA1 synapses during TBS (Zakharenko et al., 2003) and which 

alone can induce a slow-onset, long-lasting form of LTP (Kang and Schuman, 

1996), is released presynaptically upon ryanodine receptor activation with 

caffeine and ryanodine receptor blockade with dantrolene inhibits its release 

(Balkowiec and Katz, 2002).  

Likewise, CA3-CA1 synaptic depression induced by low frequency 

stimulation can be blocked by inhibiting ryanodine receptors (Unni et al., 2004). 

Plasticity regulation by ryanodine receptors might be occurring through 

modulation of neurotransmitter release (Bouchard et al., 2003; Collin et al., 

2005). By monitoring calcium transients in axons and boutons with fluorescent 

dyes, Emptage et al. (2001) demonstrated that blockade of calcium-induced 

calcium release from internal bouton stores attenuated the frequency of 

spontaneous transmitter release. A variety of studies have also demonstrated 

that the frequency of spontaneous synaptic events increases with LTP (Bekkers 

and Stevens, 1990; Malgaroli and Tsien, 1992; Wiegert et al., 2009). Thus, it is 

possible that changes in the morphology of presynaptic SER are, to some 

degree, regulating the changes in neurotransmitter release that follow the 

induction of LTP. It would be interesting to determine if, with LTP, there are 

concomitant changes in presynaptic SER volume. SER in the presynaptic 

compartment is more difficult to follow in serial sections as the cloud of vesicles 

frequently obscures SER’s fine, membranous tubules. Changes in SER 
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morphology following the induction of LTP might however increase its 

discernibility as vesicle pools become smaller (Chapter 2 and Bourne et al., 

2013). An increase in presynaptic SER volume might serve boutons as a large 

source of calcium that could function in the tuning of neurotransmitter release.  

As noted in Chapter 3, SER also serves as a site of posttranslational 

modification of proteins. Once thought to occur exclusively in the soma, local 

translation of proteins in the postsynaptic compartment has been investigated 

since polyribosomes were first shown to exist near and in dendritic spines 

(Bourne et al., 2007; Harris and Weinberg, 2012; Ostroff et al., 2002; Steward 

and Levy, 1982). Presynaptic protein synthesis is well known to occur in axonal 

growth cones and during nerve degeneration (Holt and Schuman, 2013; Jung et 

al., 2012), but its role under normal, non-developmental synaptic function is just 

now coming online (Akins et al., 2009; 2012; Christie et al., 2009). This is 

curious, however, as axonal protein synthesis in invertebrates and vertebrates 

was first demonstrated nearly 50 years ago (Giuditta et al., 1968; Koenig, 1967; 

Zelená, 1970) and a variety of translational regulators have been shown to exist 

in axons, including FMPR (Antar et al., 2006; Hanson and Madison, 2007; Li et 

al., 2009), survival of motor neuron (SMN, Fallini et al., 2011; Zhang et al., 2006), 

and Hu-antigen D (HuD, Aronov et al., 2002; Smith et al., 2004). This might be in 

part, because axonal ribosomes do not readily form polyribosomes (Bunge, 

1973; Tennyson, 1970; Yamada et al., 1971) and ultrastructural evidence of 

presynaptic polyribosomes are exceedingly rare on electron micrographs (from 

personal observations in area CA1). Finding monosomes (single ribosomes) 

would be challenging on EM sections, as they might be indistinguishable from 

other similarly sized molecular complexes in the cytoplasm. However, as SER 
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acts as a platform for some forms of protein synthesis, it would be interesting to 

know if presynaptic SER takes on a more “beaded” appearance as monosomes 

attach to SER if protein synthesis does increase in axonal compartments 

following LTP induction. This might prove very interesting as active zone 

expansion is thought to occur through arrival of discrete packets known as DCVs 

that carry active zone proteins (Bell et al., 2014; Shapira et al., 2003; Zhai et al., 

2001). An increase in ribosomes at presynaptic SER might suggest that local 

translation of proteins is also necessary to support active zone expansion during 

LTP, allowing for the rarity of DCVs in hippocampal tissue (Sorra et al., 2006). 

The FX study presented in Chapter 4 was a preliminary probe study 

investigating whether structural pathology was evident in the adult Fmr1 KO 

mouse. In addition to possible studies outlined in the discussion of Chapter 4, it 

would be interesting to describe what structural mechanisms might be supporting 

LTP in a system with continual aberrant synaptic signaling such as in this KO 

mouse. Preliminary data from the Harris lab suggests that induction of robust 

LTP in hippocampal area CA1 of the Fmr1 KO mouse begins at the same time as 

the WT mouse (~P35, Guan Cao, unpublished data) and pinning down a 

definitive LTP deficit in the Fmr1 KO mouse has been difficult (Sidorov et al., 

2013). Cohen and Abraham (1996) found that LTP can be “primed” by weakly 

stimulating mGluRs with ACPD (1-amino-cyclopentane-1S,3R-dicarboxylic acid). 

This mGluR-associated LTP priming requires protein synthesis (Raymond et al., 

2000). Interestingly, in the Fmr1 KO mouse, Auerbach and Bear (2010) showed 

that the protein synthesis requirement for LTP priming does not apply. This 

finding fits nicely with the exaggerated protein synthesis occurring under basal 

conditions in the KO mouse (Kelleher and Bear, 2008). Thus, it does appear that 
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LTP modulation is influenced in part by the absence of FMRP and might suggest 

altered structural remodeling to support LTP in its absence. Our lab is currently 

exploring this hypothesis by performing LTP experiments in WT and KO 

hippocampal slices, which will ultimately be imaged in the electron microscope. 

Reconstructions of CA1 neuropil might uncover that, although physiological 

expression of LTP appears normal in the KO mouse, the structural mechanisms 

underlying synaptic enhancement are wildly different from those of the WT 

mouse. 

Finally, LTD results in the active removal of AMPA receptors from the PSD 

via endocytosis (Beattie et al., 2000; Brown et al., 2005; Man et al., 2000; Xiao et 

al., 2001) and light level studies have indicated that LTD causes actin 

depolymerization that results in spines shrinking or disappearing (Chen et al., 

2004; He et al., 2011; Nägerl et al., 2004; Okamoto et al., 2004; Zhou et al., 

2004). LTD induced by activation of mGluRs requires protein synthesis (Huber et 

al., 2000; 2001) and it appears that spines might require SER in order to undergo 

LTD (Holbro et al., 2009). It is curious that, even though there seems to be 

dramatic subcellular remodeling occurring with LTD (PSD structural dynamics, 

polyribosomes supporting protein synthesis, SER modulation) and that LTP has 

been shown over and over to induce dynamic structural plasticity, there are 

precious few studies investigating ultrastructure at the EM level following LTD 

induction (Bourne and Harris, 2008). As a first step into characterizing abnormal 

structural plasticity in the Fmr1 KO mouse, which expresses an exaggerated 

form of LTD (see Section 4.1: Autism, Fragile X, and Synaptic Pathology), it 

would be crucial to use EM to characterize the synaptic remodeling associated 

with LTD in the WT mouse, much in the same vein of Bourne and Harris (2011). 
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The structural mechanisms supporting NMDA receptor-dependent and mGluR-

dependent forms of LTD might be categorically distinct (Bliss et al., 2007; 

Collingridge et al., 2010). Characterizing synaptic remodeling in response to LTD 

induced via mGluR activation might illuminate aberrant structural plasticity in the 

Fmr1 KO mouse. LTD in the Fmr1 KO mouse might involve exaggerated but 

normal synaptic remodeling that is present in the WT mouse. On the other hand, 

LTD associated with unchecked protein synthesis and exaggerated mGluR 

signaling might trigger a host of other structural mechanisms that are unique to 

the pathology.  



 145 

References 

Aakalu, G.N., Smith, W.B., Nguyen, N., Jiang, C., and Schuman, E.M. (2001). 
Dynamic visualization of local protein synthesis in hippocampal neurons. 
Neuron 30, 489–502. 

Abraham, W.C. (2003). How long will long-term potentiation last? Philos Trans R 
Soc Lond, B, Biol Sci 358, 735–744. 

Abraham, W.C., Logan, B., Greenwood, J.M., and Dragunow, M. (2002). 
Induction and experience-dependent consolidation of stable long-term 
potentiation lasting months in the hippocampus. Journal of Neuroscience 22, 
9626–9634. 

Ahmari, S.E., Buchanan, J., and Smith, S.J. (2000). Assembly of presynaptic 
active zones from cytoplasmic transport packets. Nat Neurosci 3, 445–451. 

Ahmari, S.E., and Smith, S.J. (2002). Knowing a nascent synapse when you see 
it. Neuron 34, 333–336. 

Ahmed, M.S., and Siegelbaum, S.A. (2009). Recruitment of N-Type Ca2+ 
Channels during LTP Enhances Low Release Efficacy of Hippocampal CA1 
Perforant Path Synapses. Neuron 63, 372–385. 

Akins, M.R., Berk-Rauch, H.E., and Fallon, J.R. (2009). Presynaptic translation: 
stepping out of the postsynaptic shadow. Front Neural Circuits 3, 17. 

Akins, M.R., Leblanc, H.F., Stackpole, E.E., Chyung, E., and Fallon, J.R. (2012). 
Systematic mapping of fragile X granules in the mouse brain reveals a 
potential role for presynaptic FMRP in sensorimotor functions. J Comp Neurol 
520, 3687–3706. 

Alabi, A.A., and Tsien, R.W. (2012). Synaptic vesicle pools and dynamics. Cold 
Spring Harb Perspect Biol 4, a013680–a013680. 

Amaral, D., and Lavenex, P. (2007). Hippocampal Neuroanatomy. In The 
Hippocampus Book, pp. 37–114. 

Andersen, P., Bliss, T.V., and Skrede, K.K. (1971). Lamellar organization of 
hippocampal pathways. Exp Brain Res 13, 222–238. 

Angelis, A., Tordrup, D., and Kanavos, P. (2014). Socio-economic burden of rare 
diseases: A systematic review of cost of illness evidence. Health Policy. 

Antar, L.N., Li, C., Zhang, H., Carroll, R.C., and Bassell, G.J. (2006). Local 
functions for FMRP in axon growth cone motility and activity-dependent 
regulation of filopodia and spine synapses. Mol Cell Neurosci 32, 37–48. 

Antonini, A., and Stryker, M.P. (1993). Rapid remodeling of axonal arbors in the 
visual cortex. Science 260, 1819–1821. 



 146 

Antonova, I., Arancio, O., Trillat, A.C., Wang, H.G., Zablow, L., Udo, H., Kandel, 
E.R., and Hawkins, R.D. (2001). Rapid increase in clusters of presynaptic 
proteins at onset of long-lasting potentiation. Science 294, 1547–1550. 

Araki, R., Sakagami, H., Yanagawa, Y., Hikima, T., Ishizuka, T., and Yawo, H. 
(2005). Transgenic mouse lines expressing synaptopHluorin in hippocampus 
and cerebellar cortex. Genesis 42, 53–60. 

Arancio, O., Kiebler, M., Lee, C.J., Lev-Ram, V., Tsien, R.Y., Kandel, E.R., and 
Hawkins, R.D. (1996). Nitric oxide acts directly in the presynaptic neuron to 
produce long-term potentiation in cultured hippocampal neurons. Cell 87, 
1025–1035. 

Archer, F.R., Doherty, P., Collins, D., and Bolsover, S.R. (1999). CAMs and FGF 
cause a local submembrane calcium signal promoting axon outgrowth without 
a rise in bulk calcium concentration. Eur J Neurosci 11, 3565–3573. 

Aronov, S., Aranda, G., Behar, L., and Ginzburg, I. (2002). Visualization of 
translated tau protein in the axons of neuronal P19 cells and characterization 
of tau RNP granules. Journal of Cell Science 115, 3817–3827. 

Asanuma, K., Kim, K., Oh, J., Giardino, L., Chabanis, S., Faul, C., Reiser, J., and 
Mundel, P. (2005). Synaptopodin regulates the actin-bundling activity of 
alpha-actinin in an isoform-specific manner. J. Clin. Invest. 115, 1188–1198. 

Ascher, P., and Nowak, L. (1988). The role of divalent cations in the N‐methyl‐D‐
aspartate responses of mouse central neurones in culture. The Journal of 
Physiology 399, 247–266. 

Auerbach, B.D., and Bear, M.F. (2010). Loss of the fragile X mental retardation 
protein decouples metabotropic glutamate receptor dependent priming of 
long-term potentiation from protein synthesis. Journal of Neurophysiology 
104, 1047–1051. 

Ault, B., Evans, R.H., Francis, A.A., Oakes, D.J., and Watkins, J.C. (1980). 
Selective depression of excitatory amino acid induced depolarizations by 
magnesium ions in isolated spinal cord preparations. The Journal of 
Physiology 307, 413–428. 

Bading, H. (2013). Nuclear calcium signalling in the regulation of brain function. 
Nat Rev Neurosci 14, 593–608. 

Bagni, C., and Greenough, W.T. (2005). From mRNP trafficking to spine 
dysmorphogenesis: the roots of fragile X syndrome. Nat Rev Neurosci 6, 
376–387. 

Bailey, C.H., and Chen, M. (1983). Morphological basis of long-term habituation 
and sensitization in Aplysia. Science 220, 91. 



 147 

Bailey, C.H., and Chen, M. (1988a). Long-term memory in Aplysia modulates the 
total number of varicosities of single identified sensory neurons. Proc Natl 
Acad Sci USA 85, 2373–2377. 

Bailey, C.H., and Chen, M. (1988b). Long-term sensitization in Aplysia increases 
the number of presynaptic contacts onto the identified gill motor neuron L7. 
Proc Natl Acad Sci USA 85, 9356–9359. 

Baker, K.D., Edwards, T.M., and Rickard, N.S. (2013). The role of intracellular 
calcium stores in synaptic plasticity and memory consolidation. Neurosci 
Biobehav Rev 37, 1211–1239. 

Balkowiec, A., and Katz, D.M. (2002). Cellular mechanisms regulating activity-
dependent release of native brain-derived neurotrophic factor from 
hippocampal neurons. Journal of Neuroscience 22, 10399–10407. 

Barad, M. (2006). Divide and conquer: an L-type voltage-gated calcium channel 
subtype finds a role in conditioned fear. Learning & Memory 13, 560–561. 

Barnes, C.A. (1979). Memory deficits associated with senescence: a 
neurophysiological and behavioral study in the rat. J Comp Physiol Psychol 
93, 74–104. 

Barnes, C.A., and McNaughton, B.L. (1985). An age comparison of the rates of 
acquisition and forgetting of spatial information in relation to long-term 
enhancement of hippocampal synapses. Behavioral Neuroscience 99, 1040–
1048. 

Barria, A., Muller, D., Derkach, V., Griffith, L.C., and Soderling, T.R. (1997). 
Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII 
during long-term potentiation. Science 276, 2042–2045. 

Bas-Orth, C., Schultz, C., Müller, C.M., Frotscher, M., and Deller, T. (2007). Loss 
of the cisternal organelle in the axon initial segment of cortical neurons in 
synaptopodin-deficient mice. J Comp Neurol 504, 441–449. 

Bashir, Z.I., Bortolotto, Z.A., Davies, C.H., Berretta, N., Irving, A.J., Seal, A.J., 
Henley, J.M., Jane, D.E., Watkins, J.C., and Collingridge, G.L. (1993). 
Induction of LTP in the hippocampus needs synaptic activation of glutamate 
metabotropic receptors. Nature 363, 347–350. 

Bastrikova, N., Gardner, G.A., Reece, J.M., Jeromin, A., and Dudek, S.M. (2008). 
Synapse elimination accompanies functional plasticity in hippocampal 
neurons. Proc Natl Acad Sci USA 105, 3123–3127. 

Bayazitov, I.T., Richardson, R.J., Fricke, R.G., and Zakharenko, S.S. (2007). 
Slow presynaptic and fast postsynaptic components of compound long-term 
potentiation. Journal of Neuroscience 27, 11510–11521. 



 148 

Bear, M.F., Cooper, L.N., and Ebner, F.F. (1987). A physiological basis for a 
theory of synapse modification. Science 237, 42–48. 

Bear, M.F., Huber, K.M., and Warren, S.T. (2004). The mGluR theory of fragile X 
mental retardation. Trends in Neurosciences 27, 370–377. 

Beattie, E.C., Carroll, R.C., Yu, X., Morishita, W., Yasuda, H., Zastrow, von, M., 
and Malenka, R.C. (2000). Regulation of AMPA receptor endocytosis by a 
signaling mechanism shared with LTD. Nat Neurosci 3, 1291–1300. 

Behnisch, T., and Reymann, K.G. (1995). Thapsigargin blocks long-term 
potentiation induced by weak, but not strong tetanisation in rat hippocampal 
CA1 neurons. Neurosci. Lett. 192, 185–188. 

Bekkers, J.M., and Stevens, C.F. (1990). Presynaptic mechanism for long-term 
potentiation in the hippocampus. Nature 346, 724–729. 

Bell, M.E., Bourne, J.N., Chirillo, M.A., Mendenhall, J.M., Kuwajima, M., and 
Harris, K.M. (2014). Dynamics of nascent and active zone ultrastructure as 
synapses enlarge during long-term potentiation in mature hippocampus. J 
Comp Neurol 522, 3861–3884. 

Bender, V.A., Pugh, J.R., and Jahr, C.E. (2009). Presynaptically expressed long-
term potentiation increases multivesicular release at parallel fiber synapses. 
Journal of Neuroscience 29, 10974–10978. 

Benson, D.L., and Huntley, G.W. (2012). Synapse adhesion: a dynamic 
equilibrium conferring stability and flexibility. Current Opinion in Neurobiology 
22, 397–404. 

Berridge, M.J. (1998). Neuronal calcium signaling. Neuron 21, 13–26. 
Berridge, M.J. (2002). The endoplasmic reticulum: a multifunctional signaling 

organelle. Cell Calcium 32, 235–249. 
Betz, W.J., and Bewick, G.S. (1992). Optical analysis of synaptic vesicle 

recycling at the frog neuromuscular junction. Science 255, 200–203. 
Bhakar, A.L., Dölen, G., and Bear, M.F. (2012). The pathophysiology of fragile X 

(and what it teaches us about synapses). Annu. Rev. Neurosci. 35, 417–443. 
Bienenstock, E.L., Cooper, L.N., and Munro, P.W. (1982). Theory for the 

development of neuron selectivity: orientation specificity and binocular 
interaction in visual cortex. J Neurosci 2, 32–48. 

Bishop, D.L., Misgeld, T., Walsh, M.K., Gan, W.-B., and Lichtman, J.W. (2004). 
Axon branch removal at developing synapses by axosome shedding. Neuron 
44, 651–661. 



 149 

Blaustein, M.P., and Golovina, V.A. (2001). Structural complexity and functional 
diversity of endoplasmic reticulum Ca(2+) stores. Trends in Neurosciences 
24, 602–608. 

Blaustein, M.P., Ratzlaff, R.W., and Kendrick, N.K. (1978a). The regulation of 
intracellular calcium in presynaptic nerve terminals. Ann. N. Y. Acad. Sci. 307, 
195–212. 

Blaustein, M.P., Ratzlaff, R.W., and Schweitzer, E.S. (1978b). Calcium buffering 
in presynaptic nerve terminals. II. Kinetic properties of the nonmitochondrial 
Ca sequestration mechanism. J. Gen. Physiol. 72, 43–66. 

Blaustein, M.P., Ratzlaff, R.W., Kendrick, N.C., and Schweitzer, E.S. (1978c). 
Calcium buffering in presynaptic nerve terminals. I. Evidence for involvement 
of a nonmitochondrial ATP-dependent sequestration mechanism. J. Gen. 
Physiol. 72, 15–41. 

Bliss, T.V., and Lomo, T. (1973). Long-lasting potentiation of synaptic 
transmission in the dentate area of the anaesthetized rabbit following 
stimulation of the perforant path. The Journal of Physiology 232, 331–356. 

Bliss, T.V.P., and Collingridge, G.L. (2013). Expression of NMDA receptor-
dependent LTP in the hippocampus: bridging the divide. Mol Brain 6, 5. 

Bliss, T., Collingridge, G.L., and Morris, R. (2007). Synaptic Plasticity in the 
Hippocampus. In The Hippocampus Book, pp. 343–474. 

Bloodgood, B.L., and Sabatini, B.L. (2007). Ca(2+) signaling in dendritic spines. 
Current Opinion in Neurobiology 17, 345–351. 

Boehning, D., and Snyder, S.H. (2003). Novel neural modulators. Annu. Rev. 
Neurosci. 26, 105–131. 

Bohlen Und Halbach, Von, F., Taylor, J., and Schachner, M. (1992). Cell Type-
specific Effects of the Neural Adhesion Molecules L1 and N-CAM on Diverse 
Second Messenger Systems. Eur J Neurosci 4, 896–909. 

Bolshakov, V.Y., Golan, H., Kandel, E.R., and Siegelbaum, S.A. (1997). 
Recruitment of new sites of synaptic transmission during the cAMP-
dependent late phase of LTP at CA3-CA1 synapses in the hippocampus. 
Neuron 19, 635–651. 

Bonhoeffer, T., Staiger, V., and Aertsen, A. (1989). Synaptic plasticity in rat 
hippocampal slice cultures: local “Hebbian” conjunction of pre- and 
postsynaptic stimulation leads to distributed synaptic enhancement. Proc Natl 
Acad Sci USA 86, 8113–8117. 

Bosch, M., and Hayashi, Y. (2012). Structural plasticity of dendritic spines. 
Current Opinion in Neurobiology 22, 383–388. 



 150 

Bouchard, R., Pattarini, R., and Geiger, J.D. (2003). Presence and functional 
significance of presynaptic ryanodine receptors. Prog Neurobiol 69, 391–418. 

Bourne, J.N., and Harris, K.M. (2007). Do thin spines learn to be mushroom 
spines that remember? Current Opinion in Neurobiology 17, 381–386. 

Bourne, J.N., and Harris, K.M. (2008). Balancing structure and function at 
hippocampal dendritic spines. Annu. Rev. Neurosci. 31, 47–67. 

Bourne, J.N., and Harris, K.M. (2011a). Coordination of size and number of 
excitatory and inhibitory synapses results in a balanced structural plasticity 
along mature hippocampal CA1 dendrites during LTP. Hippocampus 21, 354–
373. 

Bourne, J.N., and Harris, K.M. (2011b). Nanoscale analysis of structural synaptic 
plasticity. Current Opinion in Neurobiology. 

Bourne, J.N., Chirillo, M.A., and Harris, K.M. (2013). Presynaptic ultrastructural 
plasticity along CA3→CA1 axons during long-term potentiation in mature 
hippocampus. J Comp Neurol 521, 3898–3912. 

Bourne, J.N., Sorra, K.E., Hurlburt, J., and Harris, K.M. (2007). Polyribosomes 
are increased in spines of CA1 dendrites 2 h after the induction of LTP in 
mature rat hippocampal slices. Hippocampus 17, 1–4. 

Bowden, J.B., Abraham, W.C., and Harris, K.M. (2011). Differential effects of 
strain, circadian cycle, and stimulation pattern on LTP and concurrent LTD in 
the dentate gyrus of freely moving rats. Hippocampus. 

Böhme, G.A., Bon, C., Stutzmann, J.M., Doble, A., and Blanchard, J.C. (1991). 
Possible involvement of nitric oxide in long-term potentiation. Eur. J. 
Pharmacol. 199, 379–381. 

Branco, T., Marra, V., and Staras, K. (2010). Examining size-strength 
relationships at hippocampal synapses using an ultrastructural measurement 
of synaptic release probability. J. Struct. Biol. 172, 203–210. 

Braun, K., and Segal, M. (2000). FMRP involvement in formation of synapses 
among cultured hippocampal neurons. Cereb. Cortex 10, 1045–1052. 

Broadwell, R.D., and Cataldo, A.M. (1984). The neuronal endoplasmic reticulum: 
its cytochemistry and contribution to the endomembrane system. II. Axons 
and terminals. J Comp Neurol 230, 231–248. 

Brown, T.C., Tran, I.C., Backos, D.S., and Esteban, J.A. (2005). NMDA receptor-
dependent activation of the small GTPase Rab5 drives the removal of 
synaptic AMPA receptors during hippocampal LTD. Neuron 45, 81–94. 

Bunge, M.B. (1973). Fine structure of nerve fibers and growth cones of isolated 
sympathetic neurons in culture. J Cell Biol 56, 713–735. 



 151 

Busetto, G., Higley, M.J., and Sabatini, B.L. (2008). Developmental presence and 
disappearance of postsynaptically silent synapses on dendritic spines of rat 
layer 2/3 pyramidal neurons. The Journal of Physiology 586, 1519–1527. 

Buzsáki, G. (2002). Theta oscillations in the hippocampus. Neuron 33, 325–340. 
Byth, L.A. (2014). Ca(2+)- and CaMKII-mediated processes in early LTP. Ann 

Neurosci 21, 151–153. 
Cao, G., and Harris, K.M. (2012). Developmental regulation of the late phase of 

long-term potentiation (L-LTP) and metaplasticity in hippocampal area CA1 of 
the rat. Journal of Neurophysiology 107, 902–912. 

Carrillo, J., Cheng, S.-Y., Ko, K.W., Jones, T.A., and Nishiyama, H. (2013). The 
long-term structural plasticity of cerebellar parallel fiber axons and its 
modulation by motor learning. J Neurosci 33, 8301–8307. 

Carroll, R.C., Beattie, E.C., Zastrow, von, M., and Malenka, R.C. (2001). Role of 
AMPA receptor endocytosis in synaptic plasticity. Nat Rev Neurosci 2, 315–
324. 

Castro-Alamancos, M.A., and Calcagnotto, M.E. (1999). Presynaptic long-term 
potentiation in corticothalamic synapses. Journal of Neuroscience 19, 9090–
9097. 

Ceccarelli, B., Hurlbut, W.P., and Mauro, A. (1973). Turnover of transmitter and 
synaptic vesicles at the frog neuromuscular junction. J Cell Biol 57, 499–524. 

Chakrabarti, S., and Fombonne, E. (2001). Pervasive developmental disorders in 
preschool children. Jama 285, 3093–3099. 

Chavez-Noriega, L.E., and Stevens, C.F. (1994). Increased transmitter release at 
excitatory synapses produced by direct activation of adenylate cyclase in rat 
hippocampal slices. Journal of Neuroscience 14, 310–317. 

Chen, X., Barg, S., and Almers, W. (2008a). Release of the styryl dyes from 
single synaptic vesicles in hippocampal neurons. Journal of Neuroscience 28, 
1894–1903. 

Chen, X., Winters, C., Azzam, R., Li, X., Galbraith, J.A., Leapman, R.D., and 
Reese, T.S. (2008b). Organization of the core structure of the postsynaptic 
density. Proc Natl Acad Sci USA 105, 4458. 

Chen, Y., Bourne, J.N., Pieribone, V.A., and Fitzsimonds, R.M. (2004). The role 
of actin in the regulation of dendritic spine morphology and bidirectional 
synaptic plasticity. Neuroreport 15, 829–832. 

Chirillo, M., Bourne, J., Lindsey, L., and Harris, K. (2015). Complexity of dendritic 
SER increases at enlarging synapses during LTP. 



 152 

Choi, C.H., Schoenfeld, B.P., Bell, A.J., Hinchey, P., Kollaros, M., Gertner, M.J., 
Woo, N.H., Tranfaglia, M.R., Bear, M.F., Zukin, R.S., et al. (2011). 
Pharmacological reversal of synaptic plasticity deficits in the mouse model of 
fragile X syndrome by group II mGluR antagonist or lithium treatment. Brain 
Res. 1380, 106–119. 

Chowdhury, S., Shepherd, J.D., Okuno, H., Lyford, G., Petralia, R.S., Plath, N., 
Kuhl, D., Huganir, R.L., and Worley, P.F. (2006). Arc/Arg3.1 interacts with the 
endocytic machinery to regulate AMPA receptor trafficking. Neuron 52, 445–
459. 

Christie, J.M., and Jahr, C.E. (2006). Multivesicular release at Schaffer collateral-
CA1 hippocampal synapses. Journal of Neuroscience 26, 210–216. 

Christie, S.B., Akins, M.R., Schwob, J.E., and Fallon, J.R. (2009). The FXG: a 
presynaptic fragile X granule expressed in a subset of developing brain 
circuits. J Neurosci 29, 1514–1524. 

Chuang, S.-C., Zhao, W., Bauchwitz, R., Yan, Q., Bianchi, R., and Wong, R.K.S. 
(2005). Prolonged epileptiform discharges induced by altered group I 
metabotropic glutamate receptor-mediated synaptic responses in 
hippocampal slices of a fragile X mouse model. Journal of Neuroscience 25, 
8048–8055. 

Clarke, J.R., Cammarota, M., Gruart, A., Izquierdo, I., and Delgado-García, J.M. 
(2010). Plastic modifications induced by object recognition memory 
processing. Proc Natl Acad Sci USA 107, 2652–2657. 

Cochilla, A.J., Angleson, J.K., and Betz, W.J. (1999). Monitoring secretory 
membrane with FM1-43 fluorescence. Annu. Rev. Neurosci. 22, 1–10. 

Cohen, A.S., and Abraham, W.C. (1996). Facilitation of long-term potentiation by 
prior activation of metabotropic glutamate receptors. Journal of 
Neurophysiology 76, 953–962. 

Coleman, M.P., and Freeman, M.R. (2010). Wallerian degeneration, wld(s), and 
nmnat. Annu. Rev. Neurosci. 33, 245–267. 

Colgin, L.L. (2013). Mechanisms and functions of theta rhythms. Annu. Rev. 
Neurosci. 36, 295–312. 

Collin, T., Marty, A., and Llano, I. (2005). Presynaptic calcium stores and 
synaptic transmission. Current Opinion in Neurobiology 15, 275–281. 

Collingridge, G.L., Kehl, S.J., and McLennan, H. (1983). The antagonism of 
amino acid-induced excitations of rat hippocampal CA1 neurones in vitro. The 
Journal of Physiology 334, 19–31. 

Collingridge, G.L., Peineau, S., Howland, J.G., and Wang, Y.T. (2010). Long-
term depression in the CNS. Nat Rev Neurosci 11, 459–473. 



 153 

Comery, T.A., Harris, J.B., Willems, P.J., Oostra, B.A., Irwin, S.A., Weiler, I.J., 
and Greenough, W.T. (1997). Abnormal dendritic spines in fragile X knockout 
mice: maturation and pruning deficits. Proc Natl Acad Sci USA 94, 5401–
5404. 

Cooney, J.R., Hurlburt, J.L., Selig, D.K., Harris, K.M., and Fiala, J.C. (2002). 
Endosomal compartments serve multiple hippocampal dendritic spines from a 
widespread rather than a local store of recycling membrane. Journal of 
Neuroscience 22, 2215–2224. 

Cooper, L.N., and Bear, M.F. (2012). The BCM theory of synapse modification at 
30: interaction of theory with experiment. Nat Rev Neurosci 13, 798–810. 

Cruz-Martín, A., Crespo, M., and Portera-Cailliau, C. (2010). Delayed 
stabilization of dendritic spines in fragile X mice. Journal of Neuroscience 30, 
7793–7803. 

Cui-Wang, T., Hanus, C., Cui, T., Helton, T., Bourne, J.N., Watson, D., Harris, 
K.M., and Ehlers, M.D. (2012). Local zones of endoplasmic reticulum 
complexity confine cargo in neuronal dendrites. Cell 148, 309–321. 

Dalva, M.B., McClelland, A.C., and Kayser, M.S. (2007). Cell adhesion 
molecules: signalling functions at the synapse. Nat Rev Neurosci 8, 206–220. 

Dancause, N., Barbay, S., Frost, S.B., Plautz, E.J., Chen, D., Zoubina, E.V., 
Stowe, A.M., and Nudo, R.J. (2005). Extensive cortical rewiring after brain 
injury. Journal of Neuroscience 25, 10167–10179. 

Darcy, K.J., Staras, K., Collinson, L.M., and Goda, Y. (2006). Constitutive sharing 
of recycling synaptic vesicles between presynaptic boutons. Nat Neurosci 9, 
315–321. 

Darian-Smith, C., and Gilbert, C.D. (1994). Axonal sprouting accompanies 
functional reorganization in adult cat striate cortex. Nature 368, 737–740. 

Darnell, J.C., Van Driesche, S.J., Zhang, C., Hung, K.Y.S., Mele, A., Fraser, 
C.E., Stone, E.F., Chen, C., Fak, J.J., Chi, S.W., et al. (1975). The smooth 
endoplasmic reticulum: structure and role in the renewal of axonal membrane 
and synaptic vesicles by fast axonal transport. Brain Res. 93, 1–13. 

De Paola, V., Arber, S., and Caroni, P. (2003). AMPA receptors regulate dynamic 
equilibrium of presynaptic terminals in mature hippocampal networks. Nat 
Neurosci 6, 491–500. 

De Paola, V., Holtmaat, A., Knott, G., Song, S., Wilbrecht, L., Caroni, P., and 
Svoboda, K. (2006). Cell type-specific structural plasticity of axonal branches 
and boutons in the adult neocortex. Neuron 49, 861–875. 



 154 

De Robertis, E.D., and Bennett, H.S. (1955). Some features of the 
submicroscopic morphology of synapses in frog and earthworm. J Biophys 
Biochem Cytol 1, 47–58. 

de Vrij, F.M.S., Levenga, J., van der Linde, H.C., Koekkoek, S.K., De Zeeuw, 
C.I., Nelson, D.L., Oostra, B.A., and Willemsen, R. (2008). Rescue of 
behavioral phenotype and neuronal protrusion morphology in Fmr1 KO mice. 
Neurobiol. Dis. 31, 127–132. 

Debanne, D., Gähwiler, B.H., and Thompson, S.M. (1998). Long-term synaptic 
plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal 
slice cultures. The Journal of Physiology 507 ( Pt 1), 237–247. 

del Castillo, J., and Katz, B. (1954). Quantal components of the end-plate 
potential. The Journal of Physiology 124, 560–573. 

Deller, T., Merten, T., Roth, S.U., Mundel, P., and Frotscher, M. (2000). Actin-
associated protein synaptopodin in the rat hippocampal formation: localization 
in the spine neck and close association with the spine apparatus of principal 
neurons. J Comp Neurol 418, 164–181. 

Deller, T., Korte, M., Chabanis, S., Drakew, A., Schwegler, H., Stefani, G.G., 
Zuniga, A., Schwarz, K., Bonhoeffer, T., Zeller, R., et al. (2003). 
Synaptopodin-deficient mice lack a spine apparatus and show deficits in 
synaptic plasticity. Proc Natl Acad Sci USA 100, 10494–10499. 

Deng, P.-Y., Sojka, D., and Klyachko, V.A. (2011). Abnormal presynaptic short-
term plasticity and information processing in a mouse model of fragile X 
syndrome. Journal of Neuroscience 31, 10971–10982. 

Desmond, N.L., and Levy, W.B. (1986a). Changes in the numerical density of 
synaptic contacts with long-term potentiation in the hippocampal dentate 
gyrus. J Comp Neurol 253, 466–475. 

Desmond, N.L., and Levy, W.B. (1986b). Changes in the postsynaptic density 
with long-term potentiation in the dentate gyrus. J Comp Neurol 253, 476–
482. 

Dinerman, J.L., Dawson, T.M., Schell, M.J., Snowman, A., and Snyder, S.H. 
(1994). Endothelial Nitric-Oxide Synthase Localized to Hippocampal 
Pyramidal Cells - Implications for Synaptic Plasticity. Proceedings of the 
National Academy of Sciences 91, 4214–4218. 

Dityatev, A., Schachner, M., and Sonderegger, P. (2010). The dual role of the 
extracellular matrix in synaptic plasticity and homeostasis. Nat Rev Neurosci 
11, 735–746. 

Dobrunz, L.E., and Stevens, C.F. (1997). Heterogeneity of release probability, 
facilitation, and depletion at central synapses. Neuron 18, 995–1008. 



 155 

Dobrunz, L.E. (2002). Release probability is regulated by the size of the readily 
releasable vesicle pool at excitatory synapses in hippocampus. Int. J. Dev. 
Neurosci. 20, 225–236. 

Dolphin, A.C., Errington, M.L., and Bliss, T.V. (1982). Long-term potentiation of 
the perforant path in vivo is associated with increased glutamate release. 
Nature 297, 496–498. 

Dölen, G., Osterweil, E., Rao, B.S.S., Smith, G.B., Auerbach, B.D., Chattarji, S., 
and Bear, M.F. (2007). Correction of fragile X syndrome in mice. Neuron 56, 
955–962. 

Droz, B., Rambourg, A., and Koenig, H.L. (1975). The smooth endoplasmic 
reticulum: structure and role in the renewal of axonal membrane and synaptic 
vesicles by fast axonal transport. Brain Res. 93, 1–13. 

Dudek, S.M., and Bear, M.F. (1992). Homosynaptic long-term depression in area 
CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. 
Proc Natl Acad Sci USA 89, 4363–4367. 

Dumas, T.C. (2005). Late postnatal maturation of excitatory synaptic 
transmission permits adult-like expression of hippocampal-dependent 
behaviors. Hippocampus 15, 562–578. 

Dunwiddie, T., and Lynch, G. (1978). Long-term potentiation and depression of 
synaptic responses in the rat hippocampus: localization and frequency 
dependency. The Journal of Physiology 276, 353–367. 

Durand, G.M., Kovalchuk, Y., and Konnerth, A. (1996). Long-term potentiation 
and functional synapse induction in developing hippocampus. Nature 381, 
71–75. 

Dustin, M.L. (2012). Signaling at neuro/immune synapses. J. Clin. Invest. 122, 
1149–1155. 

Dustin, M.L., and Colman, D.R. (2002). Neural and immunological synaptic 
relations. Science 298, 785–789. 

Ebashi, S., and Endo, M. (1968). Calcium and muscle contraction. Progress in 
Biophysics and Molecular Biology 18, 123–183. 

Ehlers, M.D. (2000). Reinsertion or degradation of AMPA receptors determined 
by activity-dependent endocytic sorting. Neuron 28, 511–525. 

Eichenbaum, H. (2008). Learning & Memory (W. W. Norton & Company, Inc.). 
Elsabbagh, M., Divan, G., Koh, Y.-J., Kim, Y.S., Kauchali, S., Marcín, C., Montiel-

Nava, C., Patel, V., Paula, C.S., Wang, C., et al. (2012). Global Prevalence of 
Autism and Other Pervasive Developmental Disorders. Autism Res. 



 156 

Emptage, N.J., Reid, C.A., and Fine, A. (2001). Calcium stores in hippocampal 
synaptic boutons mediate short-term plasticity, store-operated Ca2+ entry, 
and spontaneous transmitter release. Neuron 29, 197–208. 

Emptage, N., Bliss, T.V., and Fine, A. (1999). Single synaptic events evoke 
NMDA receptor-mediated release of calcium from internal stores in 
hippocampal dendritic spines. Neuron 22, 115–124. 

Emptage, N.J., Reid, C.A., Fine, A., and Bliss, T.V.P. (2003). Optical quantal 
analysis reveals a presynaptic component of LTP at hippocampal Schaffer-
associational synapses. Neuron 38, 797–804. 

Engert, F., and Bonhoeffer, T. (1999). Dendritic spine changes associated with 
hippocampal long-term synaptic plasticity. Nature 399, 66–70. 

Enoki, R., Hu, Y.-L., Hamilton, D., and Fine, A. (2009). Expression of long-term 
plasticity at individual synapses in hippocampus is graded, bidirectional, and 
mainly presynaptic: optical quantal analysis. Neuron 62, 242–253. 

Fallini, C., Zhang, H., Su, Y., Silani, V., Singer, R.H., Rossoll, W., and Bassell, 
G.J. (2011). The survival of motor neuron (SMN) protein interacts with the 
mRNA-binding protein HuD and regulates localization of poly(A) mRNA in 
primary motor neuron axons. Journal of Neuroscience 31, 3914–3925. 

Fatt, P., and Katz, B. (1950). Some observations on biological noise. Nature 166, 
597–598. 

Fatt, P., and Katz, B. (1952). Spontaneous subthreshold activity at motor nerve 
endings. The Journal of Physiology 117, 109–128. 

Fernández de Sevilla, D., and Buño, W. (2010). The muscarinic long-term 
enhancement of NMDA and AMPA receptor-mediated transmission at 
Schaffer collateral synapses develop through different intracellular 
mechanisms. Journal of Neuroscience 30, 11032–11042. 

Fernández de Sevilla, D., Núñez, A., Borde, M., Malinow, R., and Buño, W. 
(2008). Cholinergic-mediated IP3-receptor activation induces long-lasting 
synaptic enhancement in CA1 pyramidal neurons. Journal of Neuroscience 
28, 1469–1478. 

Fiala, J.C. (2005). Reconstruct: a free editor for serial section microscopy. J 
Microsc 218, 52–61. 

Fiala, J.C., and Harris, K.M. (2001a). Cylindrical diameters method for calibrating 
section thickness in serial electron microscopy. J Microsc 202, 468–472. 

Fiala, J.C., and Harris, K.M. (2001b). Extending unbiased stereology of brain 
ultrastructure to three-dimensional volumes. J Am Med Inform Assoc 8, 1–16. 



 157 

Fiala, J.C., Feinberg, M., Popov, V., and Harris, K.M. (1998). Synaptogenesis via 
dendritic filopodia in developing hippocampal area CA1. J Neurosci 18, 8900–
8911. 

Fiala, J.C., Kirov, S.A., Feinberg, M.D., Petrak, L.J., George, P., Goddard, C.A., 
and Harris, K.M. (2003). Timing of neuronal and glial ultrastructure disruption 
during brain slice preparation and recovery in vitro. J Comp Neurol 465, 90–
103. 

Fifková, E., Markham, J.A., and Delay, R.J. (1983). Calcium in the spine 
apparatus of dendritic spines in the dentate molecular layer. Brain Res. 266, 
163–168. 

Fitzpatrick, J.S., Hagenston, A.M., Hertle, D.N., Gipson, K.E., Bertetto-D'Angelo, 
L., and Yeckel, M.F. (2009). Inositol-1,4,5-trisphosphate receptor-mediated 
Ca2+ waves in pyramidal neuron dendrites propagate through hot spots and 
cold spots. The Journal of Physiology 587, 1439–1459. 

Florence, S.L., Taub, H.B., and Kaas, J.H. (1998). Large-scale sprouting of 
cortical connections after peripheral injury in adult macaque monkeys. 
Science 282, 1117–1121. 

Franks, K.M., and Sejnowski, T.J. (2002). Complexity of calcium signaling in 
synaptic spines. Bioessays 24, 1130–1144. 

Fredj, N.B., and Burrone, J. (2009). A resting pool of vesicles is responsible for 
spontaneous vesicle fusion at the synapse. Nat Neurosci 12, 751–758. 

Frei, T., Bohlen und Halbach, von, F., Wille, W., and Schachner, M. (1992). 
Different extracellular domains of the neural cell adhesion molecule (N-CAM) 
are involved in different functions. J Cell Biol 118, 177–194. 

Frey, U., and Morris, R.G. (1997). Synaptic tagging and long-term potentiation. 
Nature 385, 533–536. 

Frey, U., Huang, Y.Y., and Kandel, E.R. (1993). Effects of cAMP simulate a late 
stage of LTP in hippocampal CA1 neurons. Science 260, 1661–1664. 

Frey, U., Krug, M., Reymann, K.G., and Matthies, H. (1988). Anisomycin, an 
inhibitor of protein synthesis, blocks late phases of LTP phenomena in the 
hippocampal CA1 region in vitro. Brain Res. 452, 57–65. 

Fujino, I., Yamada, N., Miyawaki, A., Hasegawa, M., Furuichi, T., and Mikoshiba, 
K. (1995). Differential expression of type 2 and type 3 inositol 1,4,5-
trisphosphate receptor mRNAs in various mouse tissues: in situ hybridization 
study. Cell Tissue Res. 280, 201–210. 

Fukazawa, Y., Saitoh, Y., Ozawa, F., Ohta, Y., Mizuno, K., and Inokuchi, K. 
(2003). Hippocampal LTP is accompanied by enhanced F-actin content within 



 158 

the dendritic spine that is essential for late LTP maintenance in vivo. Neuron 
38, 447–460. 

Galeotti, N., Vivoli, E., Bartolini, A., and Ghelardini, C. (2008). A gene-specific 
cerebral types 1, 2, and 3 RyR protein knockdown induces an antidepressant-
like effect in mice. Journal of Neurochemistry 106, 2385–2394. 

Gao, F.B. (1998). Messenger RNAs in dendrites: localization, stability, and 
implications for neuronal function. Bioessays 20, 70–78. 

Gardiol, A., Racca, C., and Triller, A. (1999). Dendritic and postsynaptic protein 
synthetic machinery. J Neurosci 19, 168–179. 

Garthwaite, J. (2008). Concepts of neural nitric oxide-mediated transmission. Eur 
J Neurosci 27, 2783–2802. 

Giese, K.P., Fedorov, N.B., Filipkowski, R.K., and Silva, A.J. (1998). 
Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in 
LTP and learning. Science 279, 870–873. 

Giuditta, A., Dettbarn, W.D., and Brzin, M. (1968). Protein synthesis in the 
isolated giant axon of the squid. Proc Natl Acad Sci USA 59, 1284–1287. 

Gogolla, N., Galimberti, I., and Caroni, P. (2007). Structural plasticity of axon 
terminals in the adult. Current Opinion in Neurobiology 17, 516–524. 

Golding, N.L., Staff, N.P., and Spruston, N. (2002). Dendritic spikes as a 
mechanism for cooperative long-term potentiation. Nature 418, 326–331. 

Görlich, D., and Rapoport, T.A. (1993). Protein translocation into 
proteoliposomes reconstituted from purified components of the endoplasmic 
reticulum membrane. Cell 75, 615–630. 

Grakoui, A., Bromley, S.K., Sumen, C., Davis, M.M., Shaw, A.S., Allen, P.M., and 
Dustin, M.L. (1999). The immunological synapse: a molecular machine 
controlling T cell activation. Science 285, 221–227. 

Granger, A.J., and Nicoll, R.A. (2014). Expression mechanisms underlying long-
term potentiation: a postsynaptic view, 10 years on. Philosophical 
Transactions of the Royal Society B: Biological Sciences 369, 20130136. 

Granseth, B., Odermatt, B., Royle, S.J., and Lagnado, L. (2006). Clathrin-
mediated endocytosis is the dominant mechanism of vesicle retrieval at 
hippocampal synapses. Neuron 51, 773–786. 

Gray, C.M. (1959). Axo-somatic and axo-dendritic synapses of the cerebral 
cortex: an electron microscope study. J Anatomy 93, 420–433. 

Gray, K., Keating, C., Taffe, J., Brereton, A., Einfeld, S., and Tonge, B. (2012). 
Trajectory of behavior and emotional problems in autism. Am J Intellect Dev 
Disabil 117, 121–133. 



 159 

Green, E.J., McNaughton, B.L., and Barnes, C.A. (1990). Exploration-dependent 
modulation of evoked responses in fascia dentata: dissociation of motor, 
EEG, and sensory factors and evidence for a synaptic efficacy change. J 
Neurosci 10, 1455–1471. 

Greger, I.H., Khatri, L., and Ziff, E.B. (2002). RNA editing at arg607 controls 
AMPA receptor exit from the endoplasmic reticulum. Neuron 34, 759–772. 

Grigoryan, G., Korkotian, E., and Segal, M. (2012). Selective facilitation of LTP in 
the ventral hippocampus by calcium stores. Hippocampus 22, 1635–1644. 

Grigston, J.C., VanDongen, H.M.A., McNamara, J.O., and VanDongen, A.M.J. 
(2005). Translation of an integral membrane protein in distal dendrites of 
hippocampal neurons. Eur J Neurosci 21, 1457–1468. 

Grillo, F.W., Song, S., Teles-Grilo Ruivo, L.M., Huang, L., Gao, G., Knott, G.W., 
Maco, B., Ferretti, V., Thompson, D., Little, G.E., et al. (2013). Increased 
axonal bouton dynamics in the aging mouse cortex. Proc Natl Acad Sci USA 
110, E1514–E1523. 

Grossman, A.W., Elisseou, N.M., McKinney, B.C., and Greenough, W.T. (2006). 
Hippocampal pyramidal cells in adult Fmr1 knockout mice exhibit an 
immature-appearing profile of dendritic spines. Brain Res. 1084, 158–164. 

Gruart, A., Muñoz, M.D., and Delgado-García, J.M. (2006). Involvement of the 
CA3-CA1 synapse in the acquisition of associative learning in behaving mice. 
Journal of Neuroscience 26, 1077–1087. 

Hagerman, R., Hoem, G., and Hagerman, P. (2010). Fragile X and autism: 
Intertwined at the molecular level leading to targeted treatments. Mol Autism 
1, 12. 

Hanse, E., and Gustafsson, B. (2001). Vesicle release probability and pre-primed 
pool at glutamatergic synapses in area CA1 of the rat neonatal hippocampus. 
The Journal of Physiology 531, 481–493. 

Hanson, J.E., and Madison, D.V. (2007). Presynaptic FMR1 genotype influences 
the degree of synaptic connectivity in a mosaic mouse model of fragile X 
syndrome. Journal of Neuroscience 27, 4014–4018. 

Hanus, C., and Ehlers, M.D. (2008). Secretory outposts for the local processing 
of membrane cargo in neuronal dendrites. Traffic 9, 1437–1445. 

Harris, K.M., and Kater, S.B. (1994). Dendritic spines: cellular specializations 
imparting both stability and flexibility to synaptic function. Annu. Rev. 
Neurosci. 17, 341–371. 

Harris, K.M., and Stevens, J.K. (1988). Dendritic spines of rat cerebellar Purkinje 
cells: serial electron microscopy with reference to their biophysical 
characteristics. J Neurosci 8, 4455–4469. 



 160 

Harris, K.M., and Stevens, J.K. (1989). Dendritic spines of CA 1 pyramidal cells 
in the rat hippocampus: serial electron microscopy with reference to their 
biophysical characteristics. J Neurosci 9, 2982–2997. 

Harris, K.M., and Sultan, P. (1995). Variation in the number, location and size of 
synaptic vesicles provides an anatomical basis for the nonuniform probability 
of release at hippocampal CA1 synapses. Neuropharmacology 34, 1387–
1395. 

Harris, K.M., and Teyler, T.J. (1984). Developmental onset of long-term 
potentiation in area CA1 of the rat hippocampus. The Journal of Physiology 
346, 27–48. 

Harris, K.M., and Weinberg, R.J. (2012). Ultrastructure of synapses in the 
mammalian brain. Cold Spring Harb Perspect Biol 4, a005587. 

Harris, K.M., Perry, E., Bourne, J.N., Feinberg, M., Ostroff, L., and Hurlburt, J. 
(2006). Uniform serial sectioning for transmission electron microscopy. 
Journal of Neuroscience 26, 12101–12103. 

Harvey, C.D., Yasuda, R., Zhong, H., and Svoboda, K. (2008). The spread of 
Ras activity triggered by activation of a single dendritic spine. Science 321, 
136–140. 

Harvey, J., and Collingridge, G.L. (1992). Thapsigargin blocks the induction of 
long-term potentiation in rat hippocampal slices. Neurosci. Lett. 139, 197–
200. 

Hatton, D.D., Sideris, J., Skinner, M., Mankowski, J., Bailey, D.B., Roberts, J., 
and Mirrett, P. (2006). Autistic behavior in children with fragile X syndrome: 
prevalence, stability, and the impact of FMRP. Am. J. Med. Genet. A 140A, 
1804–1813. 

Haucke, V., Neher, E., and Sigrist, S.J. (2011). Protein scaffolds in the coupling 
of synaptic exocytosis and endocytosis. Nat Rev Neurosci 12, 127–138. 

Hayashi, M.L., Rao, B.S.S., Seo, J.-S., Choi, H.-S., Dolan, B.M., Choi, S.-Y., 
Chattarji, S., and Tonegawa, S. (2007). Inhibition of p21-activated kinase 
rescues symptoms of fragile X syndrome in mice. Proc Natl Acad Sci USA 
104, 11489–11494. 

Hazelrigg, T. (1998). The destinies and destinations of RNAs. Cell 95, 451–460. 
He, K., Lee, A., Song, L., Kanold, P.O., and Lee, H.-K. (2011). AMPA receptor 

subunit GluR1 (GluA1) serine-845 site is involved in synaptic depression but 
not in spine shrinkage associated with chemical long-term depression. 
Journal of Neurophysiology 105, 1897–1907. 

Hebb, D.O. (1949). The Organization of Behavior (New York: Wiley). 



 161 

Herpers, B., and Rabouille, C. (2004). mRNA localization and ER-based protein 
sorting mechanisms dictate the use of transitional endoplasmic reticulum-
golgi units involved in gurken transport in Drosophila oocytes. Mol. Biol. Cell 
15, 5306–5317. 

Hersh, J.H., Saul, R.A., Committee on Genetics (2011). Health supervision for 
children with fragile X syndrome. Pediatrics 127, 994–1006. 

Heuser, J.E., and Reese, T.S. (1973). Evidence for recycling of synaptic vesicle 
membrane during transmitter release at the frog neuromuscular junction. J 
Cell Biol 57, 315–344. 

Higley, M.J., and Sabatini, B.L. (2012). Calcium signaling in dendritic spines. 
Cold Spring Harb Perspect Biol 4, a005686. 

Hinton, V.J., Brown, W.T., Wisniewski, K., and Rudelli, R.D. (1991). Analysis of 
neocortex in three males with the fragile X syndrome. Am. J. Med. Genet. 41, 
289–294. 

Hjelmstad, G.O., Nicoll, R.A., and Malenka, R.C. (1997). Synaptic refractory 
period provides a measure of probability of release in the hippocampus. 
Neuron 19, 1309–1318. 

Ho, O.H., Delgado, J.Y., and O'Dell, T.J. (2004). Phosphorylation of proteins 
involved in activity-dependent forms of synaptic plasticity is altered in 
hippocampal slices maintained in vitro. Journal of Neurochemistry 91, 1344–
1357. 

Holbro, N., Grunditz, A., and Oertner, T.G. (2009). Differential distribution of 
endoplasmic reticulum controls metabotropic signaling and plasticity at 
hippocampal synapses. Proc Natl Acad Sci USA 106, 15055–15060. 

Holt, C.E., and Schuman, E.M. (2013). The central dogma decentralized: new 
perspectives on RNA function and local translation in neurons. Neuron 80, 
648–657. 

Holtmaat, A., and Svoboda, K. (2009). Experience-dependent structural synaptic 
plasticity in the mammalian brain. Nat Rev Neurosci 10, 647–658. 

Hopf, F.W., Waters, J., Mehta, S., and Smith, S.J. (2002). Stability and plasticity 
of developing synapses in hippocampal neuronal cultures. Journal of 
Neuroscience 22, 775–781. 

Horton, A.C., Rácz, B., Monson, E.E., Lin, A.L., Weinberg, R.J., and Ehlers, M.D. 
(2005). Polarized secretory trafficking directs cargo for asymmetric dendrite 
growth and morphogenesis. Neuron 48, 757–771. 

Hosokawa, T., Rusakov, D.A., Bliss, T.V., and Fine, A. (1995). Repeated 
confocal imaging of individual dendritic spines in the living hippocampal slice: 



 162 

evidence for changes in length and orientation associated with chemically 
induced LTP. J Neurosci 15, 5560–5573. 

Hu, G.Y., Hvalby, O., Walaas, S.I., Albert, K.A., Skjeflo, P., Andersen, P., and 
Greengard, P. (1987). Protein kinase C injection into hippocampal pyramidal 
cells elicits features of long term potentiation. Nature 328, 426–429. 

Huang, E.P. (1999). Synaptic plasticity: regulated translation in dendrites. Curr 
Biol 9, R168–R170. 

Huber, K.M., Kayser, M.S., and Bear, M.F. (2000). Role for rapid dendritic protein 
synthesis in hippocampal mGluR-dependent long-term depression. Science 
288, 1254–1257. 

Huber, K.M., Roder, J.C., and Bear, M.F. (2001). Chemical induction of mGluR5- 
and protein synthesis--dependent long-term depression in hippocampal area 
CA1. Journal of Neurophysiology 86, 321–325. 

Huber, K.M., Gallagher, S.M., Warren, S.T., and Bear, M.F. (2002). Altered 
synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl 
Acad Sci USA 99, 7746–7750. 

Huganir, R.L., and Nicoll, R.A. (2013). AMPARs and synaptic plasticity: the last 
25 years. Neuron 80, 704–717. 

Humeau, Y., Shaban, H., Bissière, S., and Lüthi, A. (2003). Presynaptic induction 
of heterosynaptic associative plasticity in the mammalian brain. Nature 426, 
841–845. 

Hyman, J.M., Wyble, B.P., Goyal, V., Rossi, C.A., and Hasselmo, M.E. (2003). 
Stimulation in hippocampal region CA1 in behaving rats yields long-term 
potentiation when delivered to the peak of theta and long-term depression 
when delivered to the trough. Journal of Neuroscience 23, 11725–11731. 

Irwin, S.A., Patel, B., Idupulapati, M., Harris, J.B., Crisostomo, R.A., Larsen, B.P., 
Kooy, F., Willems, P.J., Cras, P., Kozlowski, P.B., et al. (2001). Abnormal 
dendritic spine characteristics in the temporal and visual cortices of patients 
with fragile-X syndrome: a quantitative examination. Am. J. Med. Genet. 98, 
161–167. 

Irwin, S.A., Idupulapati, M., Gilbert, M.E., Harris, J.B., Chakravarti, A.B., Rogers, 
E.J., Crisostomo, R.A., Larsen, B.P., Mehta, A., Alcantara, C.J., et al. (2002). 
Dendritic spine and dendritic field characteristics of layer V pyramidal neurons 
in the visual cortex of fragile-X knockout mice. Am. J. Med. Genet. 111, 140–
146. 

Isaac, J.T., Nicoll, R.A., and Malenka, R.C. (1995). Evidence for silent synapses: 
implications for the expression of LTP. Neuron 15, 427–434. 



 163 

Isaacson, R.L., and Wickelgren, W.O. (1962). Hippocampal ablation and passive 
avoidance. Science 138, 1104–1106. 

Jackson, P.S., Suppes, T., and Harris, K.M. (1993). Stereotypical changes in the 
pattern and duration of long-term potentiation expressed at postnatal days 11 
and 15 in the rat hippocampus. Journal of Neurophysiology 70, 1412–1419. 

Jahr, C.E., and Stevens, C.F. (1987). Glutamate activates multiple single channel 
conductances in hippocampal neurons. Nature 325, 522–525. 

Jedlicka, P., Schwarzacher, S.W., Winkels, R., Kienzler, F., Frotscher, M., 
Bramham, C.R., Schultz, C., Bas-Orth, C., and Deller, T. (2009). Impairment 
of in vivo theta-burst long-term potentiation and network excitability in the 
dentate gyrus of synaptopodin-deficient mice lacking the spine apparatus and 
the cisternal organelle. Hippocampus 19, 130–140. 

Jeneson, A., and Squire, L.R. (2012). Working memory, long-term memory, and 
medial temporal lobe function. Learn. Mem. 19, 15–25. 

Jensen, F.E., and Harris, K.M. (1989). Preservation of neuronal ultrastructure in 
hippocampal slices using rapid microwave-enhanced fixation. J. Neurosci. 
Methods 29, 217–230. 

Johnston, D., Williams, S., Jaffe, D., and Gray, R. (1992). NMDA-receptor-
independent long-term potentiation. Annu Rev Physiol 54, 489–505. 

Ju, W., Morishita, W., Tsui, J., Gaietta, G., Deerinck, T.J., Adams, S.R., Garner, 
C.C., Tsien, R.Y., Ellisman, M.H., and Malenka, R.C. (2004). Activity-
dependent regulation of dendritic synthesis and trafficking of AMPA receptors. 
Nat Neurosci 7, 244–253. 

Jung, H., Yoon, B.C., and Holt, C.E. (2012). Axonal mRNA localization and local 
protein synthesis in nervous system assembly, maintenance and repair. Nat 
Rev Neurosci 13, 308–324. 

Kacharmina, J.E., Job, C., Crino, P., and Eberwine, J. (2000). Stimulation of 
glutamate receptor protein synthesis and membrane insertion within isolated 
neuronal dendrites. Proceedings of the National Academy of Sciences 97, 
11545–11550. 

Kang, H., and Schuman, E.M. (1996). A requirement for local protein synthesis in 
neurotrophin-induced hippocampal synaptic plasticity. Science 273, 1402–
1406. 

Kelleher, R.J., and Bear, M.F. (2008). The autistic neuron: troubled translation? 
Cell 135, 401–406. 

Kelleher, R.J., Govindarajan, A., and Tonegawa, S. (2004a). Translational 
regulatory mechanisms in persistent forms of synaptic plasticity. Neuron 44, 
59–73. 



 164 

Kelleher, R.J., Govindarajan, A., Jung, H.-Y., Kang, H., and Tonegawa, S. 
(2004b). Translational control by MAPK signaling in long-term synaptic 
plasticity and memory. Cell 116, 467–479. 

Kelly, P.T., and Vernon, P. (1985). Changes in the subcellular distribution of 
calmodulin-kinase II during brain development. Brain Res. 350, 211–224. 

Kemp, A., and Manahan-Vaughan, D. (2004). Hippocampal long-term depression 
and long-term potentiation encode different aspects of novelty acquisition. 
Proc Natl Acad Sci USA 101, 8192–8197. 

Kemp, A., and Manahan-Vaughan, D. (2007). Hippocampal long-term 
depression: master or minion in declarative memory processes? Trends in 
Neurosciences 30, 111–118. 

Kemp, A., and Manahan-Vaughan, D. (2008). The hippocampal CA1 region and 
dentate gyrus differentiate between environmental and spatial feature 
encoding through long-term depression. Cereb. Cortex 18, 968–977. 

Kemp, N., McQueen, J., Faulkes, S., and Bashir, Z.I. (2000). Different forms of 
LTD in the CA1 region of the hippocampus: role of age and stimulus protocol. 
Eur J Neurosci 12, 360–366. 

Kennedy, M.B. (2013). Synaptic Signaling in Learning and Memory. Cold Spring 
Harb Perspect Biol a016824. 

Kerchner, G.A., and Nicoll, R.A. (2008). Silent synapses and the emergence of a 
postsynaptic mechanism for LTP. Nat Rev Neurosci 9, 813–825. 

Kindler, S., and Kreienkamp, H.-J. (2012). Dendritic mRNA targeting and 
translation. Adv. Exp. Med. Biol. 970, 285–305. 

Kirov, S.A., and Harris, K.M. (1999). Dendrites are more spiny on mature 
hippocampal neurons when synapses are inactivated. Nat Neurosci 2, 878–
883. 

Kirov, S.A., Sorra, K.E., and Harris, K.M. (1999). Slices have more synapses 
than perfusion-fixed hippocampus from both young and mature rats. J 
Neurosci 19, 2876–2886. 

Kiryushko, D., Korshunova, I., Berezin, V., and Bock, E. (2006). Neural cell 
adhesion molecule induces intracellular signaling via multiple mechanisms of 
Ca2+ homeostasis. Mol. Biol. Cell 17, 2278–2286. 

Klann, E., Chen, S.J., and Sweatt, J.D. (1991). Persistent protein kinase 
activation in the maintenance phase of long-term potentiation. J. Biol. Chem. 
266, 24253–24256. 

Klemmer, P., Meredith, R.M., Holmgren, C.D., Klychnikov, O.I., Stahl-Zeng, J., 
Loos, M., van der Schors, R.C., Wortel, J., de Wit, H., Spijker, S., et al. 



 165 

(2011). Proteomics, ultrastructure, and physiology of hippocampal synapses 
in a fragile X syndrome mouse model reveal presynaptic phenotype. J. Biol. 
Chem. 286, 25495–25504. 

Klopfenstein, D.R., Kappeler, F., and Hauri, H.P. (1998). A novel direct 
interaction of endoplasmic reticulum with microtubules. Embo J. 17, 6168–
6177. 

Koenig, E. (1967). Synthetic mechanisms in the axon. IV. In vitro incorporation of 
[3H]precursors into axonal protein and RNA. Journal of Neurochemistry 14, 
437–446. 

Koga, K., Liu, M.-G., Qiu, S., Song, Q., O'Den, G., Chen, T., and Zhuo, M. 
(2015). Impaired presynaptic long-term potentiation in the anterior cingulate 
cortex of Fmr1 knock-out mice. Journal of Neuroscience 35, 2033–2043. 

Korkotian, E., Frotscher, M., and Segal, M. (2014). Synaptopodin regulates spine 
plasticity: mediation by calcium stores. Journal of Neuroscience 34, 11641–
11651. 

Krueger, D.D., and Bear, M.F. (2011). Toward fulfilling the promise of molecular 
medicine in fragile X syndrome. Annu Rev Med 62, 411–429. 

Krueger, S.R., Kolar, A., and Fitzsimonds, R.M. (2003). The presynaptic release 
apparatus is functional in the absence of dendritic contact and highly mobile 
within isolated axons. Neuron 40, 945–957. 

Krug, M., Lössner, B., and Ott, T. (1984). Anisomycin blocks the late phase of 
long-term potentiation in the dentate gyrus of freely moving rats. Brain Res. 
Bull. 13, 39–42. 

Kuhl, D., and Skehel, P. (1998). Dendritic localization of mRNAs. Current Opinion 
in Neurobiology 8, 600–606. 

Kuo, I.Y., and Ehrlich, B.E. (2015). Signaling in Muscle Contraction. Cold Spring 
Harb Perspect Biol 7, a006023. 

Kushnir, A., Betzenhauser, M.J., and Marks, A.R. (2010). Ryanodine receptor 
studies using genetically engineered mice. FEBS Lett. 584, 1956–1965. 

Kuwajima, M., Mendenhall, J.M., Lindsey, L.F., and Harris, K.M. (2013). 
Automated transmission-mode scanning electron microscopy (tSEM) for large 
volume analysis at nanoscale resolution. PLoS ONE 8, e59573. 

Kwon, H.-B., and Castillo, P.E. (2008). Long-term potentiation selectively 
expressed by NMDA receptors at hippocampal mossy fiber synapses. Neuron 
57, 108–120. 

Kwon, H.-B., and Sabatini, B.L. (2011). Glutamate induces de novo growth of 
functional spines in developing cortex. Nature 474, 100–104. 



 166 

Landis, D.M., Hall, A.K., Weinstein, L.A., and Reese, T.S. (1988). The 
organization of cytoplasm at the presynaptic active zone of a central nervous 
system synapse. Neuron 1, 201–209. 

Larson, J., Wong, D., and Lynch, G. (1986). Patterned Stimulation at the Theta-
Frequency Is Optimal for the Induction of Hippocampal Long-Term 
Potentiation. Brain Res. 368, 347–350. 

Le Duigou, C., and Kullmann, D.M. (2011). Group I mGluR agonist-evoked long-
term potentiation in hippocampal oriens interneurons. Journal of 
Neuroscience 31, 5777–5781. 

Leal, G., Comprido, D., and Duarte, C.B. (2014). BDNF-induced local protein 
synthesis and synaptic plasticity. Neuropharmacology 76 Pt C, 639–656. 

Lee, H.K., Barbarosie, M., Kameyama, K., Bear, M.F., and Huganir, R.L. (2000). 
Regulation of distinct AMPA receptor phosphorylation sites during 
bidirectional synaptic plasticity. Nature 405, 955–959. 

Lee, S.-J.R., Escobedo-Lozoya, Y., Szatmari, E.M., and Yasuda, R. (2009). 
Activation of CaMKII in single dendritic spines during long-term potentiation. 
Nature 458, 299–304. 

Lewis, E.M., Barnett, J.F., Freshwater, L., Hoberman, A.M., and Christian, M.S. 
(2002). Sexual maturation data for Crl Sprague-Dawley rats: criteria and 
confounding factors. Drug Chem Toxicol 25, 437–458. 

Li, C., Bassell, G.J., and Sasaki, Y. (2009). Fragile X Mental Retardation Protein 
is Involved in Protein Synthesis-Dependent Collapse of Growth Cones 
Induced by Semaphorin-3A. Front Neural Circuits 3, 11. 

Li, W., Cui, Y., Kushner, S.A., Brown, R.A.M., Jentsch, J.D., Frankland, P.W., 
Cannon, T.D., and Silva, A.J. (2005a). The HMG-CoA reductase inhibitor 
lovastatin reverses the learning and attention deficits in a mouse model of 
neurofibromatosis type 1. Curr Biol 15, 1961–1967. 

Li, Z., Burrone, J., Tyler, W.J., Hartman, K.N., Albeanu, D.F., and Murthy, V.N. 
(2005b). Synaptic vesicle recycling studied in transgenic mice expressing 
synaptopHluorin. Proc Natl Acad Sci USA 102, 6131–6136. 

Liao, J.K. (2002). Isoprenoids as mediators of the biological effects of statins. J. 
Clin. Invest. 110, 285–288. 

Linden, D.J., and Routtenberg, A. (1989). The role of protein kinase C in long-
term potentiation: a testable model. Brain Res. Brain Res. Rev. 14, 279–296. 

Lisman, J. (1989). A mechanism for the Hebb and the anti-Hebb processes 
underlying learning and memory. Proc Natl Acad Sci USA 86, 9574–9578. 



 167 

Lisman, J.E., and Harris, K.M. (1993). Quantal analysis and synaptic anatomy--
integrating two views of hippocampal plasticity. Trends in Neurosciences 16, 
141–147. 

Lisman, J., Schulman, H., and Cline, H. (2002). The molecular basis of CaMKII 
function in synaptic and behavioural memory. Nat Rev Neurosci 3, 175–190. 

Llano, I., González, J., Caputo, C., Lai, F.A., Blayney, L.M., Tan, Y.P., and Marty, 
A. (2000). Presynaptic calcium stores underlie large-amplitude miniature 
IPSCs and spontaneous calcium transients. Nat Neurosci 3, 1256–1265. 

Lou, X., Fan, F., Messa, M., Raimondi, A., Wu, Y., Looger, L.L., Ferguson, S.M., 
and De Camilli, P. (2012). Reduced release probability prevents vesicle 
depletion and transmission failure at dynamin mutant synapses. Proc Natl 
Acad Sci USA 109, E515–E523. 

Lu, Y.M., Jia, Z., Janus, C., Henderson, J.T., Gerlai, R., Wojtowicz, J.M., and 
Roder, J.C. (1997). Mice lacking metabotropic glutamate receptor 5 show 
impaired learning and reduced CA1 long-term potentiation (LTP) but normal 
CA3 LTP. J Neurosci 17, 5196–5205. 

Lubs, H.A. (1969). A marker X chromosome. Am. J. Hum. Genet. 21, 231–244. 
Lubs, H.A., Stevenson, R.E., and Schwartz, C.E. (2012). Fragile X and X-linked 

intellectual disability: four decades of discovery. Am. J. Hum. Genet. 90, 579–
590. 

Lucić, V., Yang, T., Schweikert, G., Förster, F., and Baumeister, W. (2005). 
Morphological characterization of molecular complexes present in the 
synaptic cleft. Structure 13, 423–434. 

Lüscher, C., and Malenka, R.C. (2012). NMDA receptor-dependent long-term 
potentiation and long-term depression (LTP/LTD). Cold Spring Harb Perspect 
Biol 4, a005710–a005710. 

Lynch, G., Larson, J., Kelso, S., Barrionuevo, G., and Schottler, F. (1983). 
Intracellular injections of EGTA block induction of hippocampal long-term 
potentiation. Nature 305, 719–721. 

MacDermott, A.B., Mayer, M.L., Westbrook, G.L., Smith, S.J., and Barker, J.L. 
(1986). NMDA-receptor activation increases cytoplasmic calcium 
concentration in cultured spinal cord neurones. Nature 321, 519–522. 

MacDougall, M.J., and Fine, A. (2014). The expression of long-term potentiation: 
reconciling the preists and the postivists. Philosophical Transactions of the 
Royal Society B: Biological Sciences 369, 20130135. 

Magee, J.C., and Johnston, D. (1997). A synaptically controlled, associative 
signal for Hebbian plasticity in hippocampal neurons. Science 275, 209–213. 



 168 

Malenka, R.C., and Nicoll, R.A. (1999). Long-term potentiation--a decade of 
progress? Science 285, 1870–1874. 

Malenka, R.C., Kauer, J.A., Zucker, R.S., and Nicoll, R.A. (1988). Postsynaptic 
calcium is sufficient for potentiation of hippocampal synaptic transmission. 
Science 242, 81–84. 

Malenka, R.C., and Bear, M.F. (2004). LTP and LTD: an embarrassment of 
riches. Neuron 44, 5–21. 

Maletic-Savatic, M., Malinow, R., and Svoboda, K. (1999). Rapid dendritic 
morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. 
Science 283, 1923–1927. 

Malgaroli, A., and Tsien, R.W. (1992). Glutamate-induced long-term potentiation 
of the frequency of miniature synaptic currents in cultured hippocampal 
neurons. Nature 357, 139. 

Malinow, R., Schulman, H., and Tsien, R.W. (1989). Inhibition of postsynaptic 
PKC or CaMKII blocks induction but not expression of LTP. Science 245, 
862–866. 

Mammen, A.L., Kameyama, K., Roche, K.W., and Huganir, R.L. (1997). 
Phosphorylation of the alpha-amino-3-hydroxy-5-methylisoxazole4-propionic 
acid receptor GluR1 subunit by calcium/calmodulin-dependent kinase II. J. 
Biol. Chem. 272, 32528–32533. 

Man, H.Y., Lin, J.W., Ju, W.H., Ahmadian, G., Liu, L., Becker, L.E., Sheng, M., 
and Wang, Y.T. (2000). Regulation of AMPA receptor-mediated synaptic 
transmission by clathrin-dependent receptor internalization. Neuron 25, 649–
662. 

Manahan-Vaughan, D., and Braunewell, K.H. (1999). Novelty acquisition is 
associated with induction of hippocampal long-term depression. Proc Natl 
Acad Sci USA 96, 8739–8744. 

Manahan-Vaughan, D., and Braunewell, K.-H. (2005). The metabotropic 
glutamate receptor, mGluR5, is a key determinant of good and bad spatial 
learning performance and hippocampal synaptic plasticity. Cereb. Cortex 15, 
1703–1713. 

Martin, J.P., and Bell, J. (1943). A PEDIGREE OF MENTAL DEFECT SHOWING 
SEX-LINKAGE. J Neurol Psychiatry 6, 154–157. 

Martone, M.E., Zhang, Y., Simpliciano, V.M., Carragher, B.O., and Ellisman, 
M.H. (1993). Three-dimensional visualization of the smooth endoplasmic 
reticulum in Purkinje cell dendrites. J Neurosci 13, 4636–4646. 

Matlack, K.E., Mothes, W., and Rapoport, T.A. (1998). Protein translocation: 
tunnel vision. Cell 92, 381–390. 



 169 

Matsuo, N., Reijmers, L., and Mayford, M. (2008). Spine-type-specific recruitment 
of newly synthesized AMPA receptors with learning. Science 319, 1104–
1107. 

Matsuzaki, M., Honkura, N., Ellis-Davies, G.C.R., and Kasai, H. (2004). 
Structural basis of long-term potentiation in single dendritic spines. Nature 
429, 761–766. 

Matteoli, M., Coco, S., Schenk, U., and Verderio, C. (2004). Vesicle turnover in 
developing neurons: how to build a presynaptic terminal. Trends in Cell 
Biology 14, 133–140. 

Mayer, M.L., Westbrook, G.L., and Guthrie, P.B. (1984). Voltage-dependent 
block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309, 
261–263. 

McCurry, C.L., Shepherd, J.D., Tropea, D., Wang, K.H., Bear, M.F., and Sur, M. 
(2010). Loss of Arc renders the visual cortex impervious to the effects of 
sensory experience or deprivation. Nat Neurosci 13, 450–457. 

McCutcheon, J.E., and Marinelli, M. (2009). Age matters. Eur J Neurosci 29, 
997–1014. 

McGlade-McCulloh, E., Yamamoto, H., Tan, S.E., Brickey, D.A., and Soderling, 
T.R. (1993). Phosphorylation and regulation of glutamate receptors by 
calcium/calmodulin-dependent protein kinase II. Nature 362, 640–642. 

McGraw, C.F., Somlyo, A.V., and Blaustein, M.P. (1980). Localization of calcium 
in presynaptic nerve terminals. An ultrastructural and electron microprobe 
analysis. J Cell Biol 85, 228–241. 

McHugh, T.J., Blum, K.I., Tsien, J.Z., Tonegawa, S., and Wilson, M.A. (1996). 
Impaired hippocampal representation of space in CA1-specific NMDAR1 
knockout mice. Cell 87, 1339–1349. 

McKinney, B.C., Grossman, A.W., Elisseou, N.M., and Greenough, W.T. (2005). 
Dendritic spine abnormalities in the occipital cortex of C57BL/6 Fmr1 
knockout mice. Am. J. Med. Genet. B Neuropsychiatr. Genet. 136B, 98–102. 

McKinney, R.A., Capogna, M., Dürr, R., Gähwiler, B.H., and Thompson, S.M. 
(1999). Miniature synaptic events maintain dendritic spines via AMPA 
receptor activation. Nat Neurosci 2, 44–49. 

Mellentin, C., Jahnsen, H., and Abraham, W.C. (2007). Priming of long-term 
potentiation mediated by ryanodine receptor activation in rat hippocampal 
slices. Neuropharmacology 52, 118–125. 

Meyer, D., Bonhoeffer, T., and Scheuss, V. (2014). Balance and stability of 
synaptic structures during synaptic plasticity. Neuron 82, 430–443. 



 170 

Miesenböck, G., De Angelis, D.A., and Rothman, J.E. (1998). Visualizing 
secretion and synaptic transmission with pH-sensitive green fluorescent 
proteins. Nature 394, 192–195. 

Miesenböck, G. (2012). Synapto-pHluorins: genetically encoded reporters of 
synaptic transmission. Cold Spring Harb Protoc 2012, 213–217. 

Mignery, G.A., Sudhof, T.C., Takei, K., and De Camilli, P. (1989). Putative 
receptor for inositol 1,4,5-trisphosphate similar to ryanodine receptor. Nature 
342, 192–195. 

Miller, S.G., and Kennedy, M.B. (1986). Regulation of brain type II 
Ca2+/calmodulin-dependent protein kinase by autophosphorylation: a Ca2+-
triggered molecular switch. Cell 44, 861–870. 

Min, W.W., Yuskaitis, C.J., Yan, Q., Sikorski, C., Chen, S., Jope, R.S., and 
Bauchwitz, R.P. (2009). Elevated glycogen synthase kinase-3 activity in 
Fragile X mice: key metabolic regulator with evidence for treatment potential. 
Neuropharmacology 56, 463–472. 

Missler, M., Sudhof, T.C., and Biederer, T. (2012). Synaptic cell adhesion. Cold 
Spring Harb Perspect Biol 4, a005694. 

Morgan, S.L., and Teyler, T.J. (2001). Electrical stimuli patterned after the theta-
rhythm induce multiple forms of LTP. Journal of Neurophysiology 86, 1289–
1296. 

Morris, R.G. (1989). Synaptic plasticity and learning: selective impairment of 
learning rats and blockade of long-term potentiation in vivo by the N-methyl-
D-aspartate receptor antagonist AP5. J Neurosci 9, 3040–3057. 

Morris, R.G.M., Moser, E.I., Riedel, G., Martin, S.J., Sandin, J., Day, M., and 
O'Carroll, C. (2003). Elements of a neurobiological theory of the 
hippocampus: the role of activity-dependent synaptic plasticity in memory. 
Philosophical Transactions of the Royal Society B: Biological Sciences 358, 
773–786. 

Morris, R. (2007). Theories of Hippocampal Function. In The Hippocampus Book, 
(New York: Oxford University Press), pp. 581–713. 

Moser, E., Moser, M.B., and Andersen, P. (1993). Synaptic potentiation in the rat 
dentate gyrus during exploratory learning. Neuroreport 5, 317–320. 

Moser, M.B., Trommald, M., and Andersen, P. (1994). An increase in dendritic 
spine density on hippocampal CA1 pyramidal cells following spatial learning 
in adult rats suggests the formation of new synapses. Proc Natl Acad Sci 
USA 91, 12673–12675. 

Moult, P.R., Corrêa, S.A.L., Collingridge, G.L., Fitzjohn, S.M., and Bashir, Z.I. 
(2008). Co-activation of p38 mitogen-activated protein kinase and protein 



 171 

tyrosine phosphatase underlies metabotropic glutamate receptor-dependent 
long-term depression. The Journal of Physiology 586, 2499–2510. 

Muddashetty, R.S., Kelić, S., Gross, C., Xu, M., and Bassell, G.J. (2007). 
Dysregulated metabotropic glutamate receptor-dependent translation of 
AMPA receptor and postsynaptic density-95 mRNAs at synapses in a mouse 
model of fragile X syndrome. Journal of Neuroscience 27, 5338–5348. 

Mulkey, R.M., and Malenka, R.C. (1992). Mechanisms underlying induction of 
homosynaptic long-term depression in area CA1 of the hippocampus. Neuron 
9, 967–975. 

Mulkey, R.M., Endo, S., Shenolikar, S., and Malenka, R.C. (1994). Involvement 
of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term 
depression. Nature 369, 486–488. 

Mulkey, R.M., Herron, C.E., and Malenka, R.C. (1993). An essential role for 
protein phosphatases in hippocampal long-term depression. Science 261, 
1051–1055. 

Muller, D., Buchs, P.A., and Stoppini, L. (1993). Time course of synaptic 
development in hippocampal organotypic cultures. Brain Res. Dev. Brain Res. 
71, 93–100. 

Mundel, P., Heid, H.W., Mundel, T.M., Krüger, M., Reiser, J., and Kriz, W. 
(1997). Synaptopodin: an actin-associated protein in telencephalic dendrites 
and renal podocytes. J Cell Biol 139, 193–204. 

Murthy, V.N., Sejnowski, T.J., and Stevens, C.F. (1997). Heterogeneous release 
properties of visualized individual hippocampal synapses. Neuron 18, 599–
612. 

Murthy, V.N., and De Camilli, P. (2003). Cell biology of the presynaptic terminal. 
Annu. Rev. Neurosci. 26, 701–728. 

Naber, P.A., Lopes da Silva, F.H., and Witter, M.P. (2001). Reciprocal 
connections between the entorhinal cortex and hippocampal fields CA1 and 
the subiculum are in register with the projections from CA1 to the subiculum. 
Hippocampus 11, 99–104. 

Nagase, T., Ito, K.I., Kato, K., Kaneko, K., Kohda, K., Matsumoto, M., Hoshino, 
A., Inoue, T., Fujii, S., Kato, H., et al. (2003). Long-term potentiation and long-
term depression in hippocampal CA1 neurons of mice lacking the IP(3) type 1 
receptor. Neuroscience 117, 821–830. 

Naie, K., and Manahan-Vaughan, D. (2004). Regulation by metabotropic 
glutamate receptor 5 of LTP in the dentate gyrus of freely moving rats: 
relevance for learning and memory formation. Cereb. Cortex 14, 189–198. 



 172 

Nakamoto, M., Nalavadi, V., Epstein, M.P., Narayanan, U., Bassell, G.J., and 
Warren, S.T. (2007). Fragile X mental retardation protein deficiency leads to 
excessive mGluR5-dependent internalization of AMPA receptors. 
Proceedings of the National Academy of Sciences 104, 15537–15542. 

Nägerl, U.V., Eberhorn, N., Cambridge, S.B., and Bonhoeffer, T. (2004). 
Bidirectional activity-dependent morphological plasticity in hippocampal 
neurons. Neuron 44, 759–767. 

Neukomm, L.J., and Freeman, M.R. (2014). Diverse cellular and molecular 
modes of axon degeneration. Trends in Cell Biology 24, 515–523. 

Nguyen, P.V., and Woo, N.H. (2003). Regulation of hippocampal synaptic 
plasticity by cyclic AMP-dependent protein kinases. Prog Neurobiol 71, 401–
437. 

Nguyen, P.V., Abel, T., and Kandel, E.R. (1994). Requirement of a critical period 
of transcription for induction of a late phase of LTP. Science 265, 1104–1107. 

Nikonenko, I., Jourdain, P., and Muller, D. (2003). Journal of Neuroscience. 
Nimchinsky, E.A., Oberlander, A.M., and Svoboda, K. (2001). Abnormal 

development of dendritic spines in FMR1 knock-out mice. Journal of 
Neuroscience 21, 5139–5146. 

Nishiyama, M., Hong, K., Mikoshiba, K., Poo, M.M., and Kato, K. (2000). Calcium 
stores regulate the polarity and input specificity of synaptic modification. 
Nature 408, 584–588. 

Nowak, L., Bregestovski, P., Ascher, P., Herbet, A., and Prochiantz, A. (1984). 
Magnesium gates glutamate-activated channels in mouse central neurones. 
Nature 307, 462–465. 

Nusser, Z., Lujan, R., Laube, G., Roberts, J.D., Molnar, E., and Somogyi, P. 
(1998). Cell type and pathway dependence of synaptic AMPA receptor 
number and variability in the hippocampus. Neuron 21, 545–559. 

O'Dell, T.J., Hawkins, R.D., Kandel, E.R., and Arancio, O. (1991). Tests of the 
roles of two diffusible substances in long-term potentiation: evidence for nitric 
oxide as a possible early retrograde messenger. Proc Natl Acad Sci USA 88, 
11285–11289. 

Okamoto, K.-I., Nagai, T., Miyawaki, A., and Hayashi, Y. (2004). Rapid and 
persistent modulation of actin dynamics regulates postsynaptic reorganization 
underlying bidirectional plasticity. Nat Neurosci 7, 1104–1112. 

Okamoto, K., Bosch, M., and Hayashi, Y. (2009). The roles of CaMKII and F-
actin in the structural plasticity of dendritic spines: a potential molecular 
identity of a synaptic tag? Physiology (Bethesda) 24, 357–366. 



 173 

Oliet, S.H., Malenka, R.C., and Nicoll, R.A. (1997). Two distinct forms of long-
term depression coexist in CA1 hippocampal pyramidal cells. Neuron 18, 
969–982. 

Osterweil, E.K., Chuang, S.-C., Chubykin, A.A., Sidorov, M., Bianchi, R., Wong, 
R.K.S., and Bear, M.F. (2013). Lovastatin corrects excess protein synthesis 
and prevents epileptogenesis in a mouse model of fragile x syndrome. 
Neuron 77, 243–250. 

Osterweil, E.K., Krueger, D.D., Reinhold, K., and Bear, M.F. (2010). 
Hypersensitivity to mGluR5 and ERK1/2 leads to excessive protein synthesis 
in the hippocampus of a mouse model of fragile X syndrome. Journal of 
Neuroscience 30, 15616–15627. 

Ostroff, L.E., Fiala, J.C., Allwardt, B., and Harris, K.M. (2002). Polyribosomes 
redistribute from dendritic shafts into spines with enlarged synapses during 
LTP in developing rat hippocampal slices. Neuron 35, 535–545. 

Otani, S., Marshall, C.J., Tate, W.P., Goddard, G.V., and Abraham, W.C. (1989). 
Maintenance of long-term potentiation in rat dentate gyrus requires protein 
synthesis but not messenger RNA synthesis immediately post-tetanization. 
Neuroscience 28, 519–526. 

Ottersen, O.P., and Storm-Mathisen, J. (1984). Glutamate- and GABA-containing 
neurons in the mouse and rat brain, as demonstrated with a new 
immunocytochemical technique. J Comp Neurol 229, 374–392. 

Ouyang, Y., Martone, M.E., Deerinck, T.J., Airey, J.A., Sutko, J.L., and Ellisman, 
M.H. (1997). Differential distribution and subcellular localization of ryanodine 
receptor isoforms in the chicken cerebellum during development. Brain Res. 
775, 52–62. 

Owczarek, S., Kiryushko, D., Larsen, M.H., Kastrup, J.S., Gajhede, M., Sandi, C., 
Berezin, V., Bock, E., and Soroka, V. (2010). Neuroplastin-55 binds to and 
signals through the fibroblast growth factor receptor. Faseb J. 24, 1139–1150. 

Owczarek, S., Soroka, V., Kiryushko, D., Larsen, M.H., Yuan, Q., Sandi, C., 
Berezin, V., and Bock, E. (2011). Neuroplastin-65 and a mimetic peptide 
derived from its homophilic binding site modulate neuritogenesis and 
neuronal plasticity. Journal of Neurochemistry 117, 984–994. 

Padamsey, Z., and Emptage, N. (2014). Two sides to long-term potentiation: a 
view towards reconciliation. Philosophical Transactions of the Royal Society 
B: Biological Sciences 369, 20130154. 

Padua, R.A., Nagy, J.I., and Geiger, J.D. (1996). Subcellular localization of 
ryanodine receptors in rat brain. Eur. J. Pharmacol. 298, 185–189. 



 174 

Palade, G. (1975). Intracellular aspects of the process of protein synthesis. 
Science 189, 867. 

Palay, S.L. (1956). Synapses in the central nervous system. J Biophys Biochem 
Cytol 2, 193–202. 

Palay, S.L., and Palade, G.E. (1955). THE FINE STRUCTURE OF NEURONS. J 
Biophys Biochem Cytol 1, 69. 

Palmer, M.J., Irving, A.J., Seabrook, G.R., Jane, D.E., and Collingridge, G.L. 
(1997). The group I mGlu receptor agonist DHPG induces a novel form of 
LTD in the CA1 region of the hippocampus. Neuropharmacology 36, 1517–
1532. 

Park, S., Park, J.M., Kim, S., Kim, J.-A., Shepherd, J.D., Smith-Hicks, C.L., 
Chowdhury, S., Kaufmann, W., Kuhl, D., Ryazanov, A.G., et al. (2008). 
Elongation factor 2 and fragile X mental retardation protein control the 
dynamic translation of Arc/Arg3.1 essential for mGluR-LTD. Neuron 59, 70–
83. 

Penn, A.C., Williams, S.R., and Greger, I.H. (2008). Gating motions underlie 
AMPA receptor secretion from the endoplasmic reticulum. Embo J. 27, 3056–
3068. 

Phillips, G.R., Huang, J.K., Wang, Y., Tanaka, H., Shapiro, L., Zhang, W., Shan, 
W.S., Arndt, K., Frank, M., Gordon, R.E., et al. (2001). The presynaptic 
particle web: ultrastructure, composition, dissolution, and reconstitution. 
Neuron 32, 63–77. 

Pierce, J.P., Mayer, T., and McCarthy, J.B. (2001). Evidence for a satellite 
secretory pathway in neuronal dendritic spines. Curr Biol 11, 351–355. 

Pierce, J.P., van Leyen, K., and McCarthy, J.B. (2000). Translocation machinery 
for synthesis of integral membrane and secretory proteins in dendritic spines. 
Nat Neurosci 3, 311–313. 

Pieretti, M., Zhang, F.P., Fu, Y.H., Warren, S.T., Oostra, B.A., Caskey, C.T., and 
Nelson, D.L. (1991). Absence of expression of the FMR-1 gene in fragile X 
syndrome. Cell 66, 817–822. 

Popov, V.I., Davies, H.A., Rogachevsky, V.V., Patrushev, I.V., Errington, M.L., 
Gabbott, P.L.A., Bliss, T.V.P., and Stewart, M.G. (2004). Remodelling of 
synaptic morphology but unchanged synaptic density during late phase long-
term potentiation (LTP): a serial section electron micrograph study in the 
dentate gyrus in the anaesthetised rat. Neuroscience 128, 251–262. 

Porter, K.R., and Kallman, F.L. (1952). Significance of cell particulates as seen 
by electron microscopy. Ann. N. Y. Acad. Sci. 54, 882–891. 



 175 

Porter, K.R., and Thompson, H.P. (1948). A particulate body associated with 
epithelial cells cultured from mammary carcinomas of mice of a milkfactor 
strain. J. Exp. Med. 88, 15–24. 

Porter, K.R., Claude, A., and Fullam, E.F. (1945). A STUDY OF TISSUE 
CULTURE CELLS BY ELECTRON MICROSCOPY : METHODS AND 
PRELIMINARY OBSERVATIONS. J. Exp. Med. 81, 233–246. 

Portera-Cailliau, C. (2012). Which comes first in fragile X syndrome, dendritic 
spine dysgenesis or defects in circuit plasticity? The Neuroscientist : a 
Review Journal Bringing Neurobiology, Neurology and Psychiatry 18, 28–44. 

Portera-Cailliau, C., Weimer, R.M., De Paola, V., Caroni, P., and Svoboda, K. 
(2005). Diverse modes of axon elaboration in the developing neocortex. PLoS 
Biol 3. 

Pozzan, T., Rizzuto, R., Volpe, P., and Meldolesi, J. (1994). Molecular and 
cellular physiology of intracellular calcium stores. Physiol. Rev. 74, 595–636. 

Preston, A.R., and Eichenbaum, H. (2013). Interplay of hippocampus and 
prefrontal cortex in memory. Curr Biol 23, R764–R773. 

Qin, M., Kang, J., Burlin, T.V., Jiang, C., and Smith, C.B. (2005). Postadolescent 
changes in regional cerebral protein synthesis: an in vivo study in the FMR1 
null mouse. Journal of Neuroscience 25, 5087–5095. 

Ratnayaka, A., Marra, V., Branco, T., and Staras, K. (2011). Extrasynaptic 
vesicle recycling in mature hippocampal neurons. Nat Commun 2, 531. 

Ratnayaka, A., Marra, V., Bush, D., Burden, J.J., Branco, T., and Staras, K. 
(2012). Recruitment of resting vesicles into recycling pools supports NMDA-
receptor dependent synaptic potentiation in cultured hippocampal neurons. 
The Journal of Physiology. 

Raymond, C.R., Thompson, V.L., Tate, W.P., and Abraham, W.C. (2000). 
Metabotropic glutamate receptors trigger homosynaptic protein synthesis to 
prolong long-term potentiation. J Neurosci 20, 969–976. 

Raymond, C.R., and Redman, S.J. (2002). Different calcium sources are 
narrowly tuned to the induction of different forms of LTP. Journal of 
Neurophysiology 88, 249–255. 

Raymond, C.R., and Redman, S.J. (2006). Spatial segregation of neuronal 
calcium signals encodes different forms of LTP in rat hippocampus. The 
Journal of Physiology 570, 97–111. 

Regehr, W.G., Carey, M.R., and Best, A.R. (2009). Activity-dependent regulation 
of synapses by retrograde messengers. Neuron 63, 154–170. 



 176 

Rizzoli, S.O., and Betz, W.J. (2005). Synaptic vesicle pools. Nat Rev Neurosci 6, 
57–69. 

Rizzoli, S.O., and Jahn, R. (2007). Kiss-and-run, collapse and “readily 
retrievable” vesicles. Traffic 8, 1137–1144. 

Rose, C.R., and Konnerth, A. (2001). Stores not just for storage. intracellular 
calcium release and synaptic plasticity. Neuron 31, 519–522. 

Rosenmund, C., and Stevens, C.F. (1996). Definition of the readily releasable 
pool of vesicles at hippocampal synapses. Neuron 16, 1197–1207. 

Rudelli, R.D., Brown, W.T., Wisniewski, K., Jenkins, E.C., Laure-Kamionowska, 
M., Connell, F., and Wisniewski, H.M. (1985). Adult fragile X syndrome. 
Clinico-neuropathologic findings. Acta Neuropathol. 67, 289–295. 

Ruthazer, E.S., Akerman, C.J., and Cline, H.T. (2003). Control of axon branch 
dynamics by correlated activity in vivo. Science 301, 66–70. 

Ryan, T.A. (2001). Presynaptic imaging techniques. Current Opinion in 
Neurobiology 11, 544–549. 

Ryan, T.A. (2006). A pre-synaptic to-do list for coupling exocytosis to 
endocytosis. Curr. Opin. Cell Biol. 18, 416–421. 

Rønn, L.C.B., Dissing, S., Holm, A., Berezin, V., and Bock, E. (2002). Increased 
intracellular calcium is required for neurite outgrowth induced by a synthetic 
peptide ligand of NCAM. FEBS Lett. 518, 60–66. 

Sabo, S.L., Gomes, R.A., and McAllister, A.K. (2006). Formation of presynaptic 
terminals at predefined sites along axons. Journal of Neuroscience 26, 
10813–10825. 

Sacktor, T.C., Osten, P., Valsamis, H., Jiang, X., Naik, M.U., and Sublette, E. 
(1993). Persistent activation of the zeta isoform of protein kinase C in the 
maintenance of long-term potentiation. Proc Natl Acad Sci USA 90, 8342–
8346. 

Sajikumar, S., Li, Q., Abraham, W.C., and Xiao, Z.C. (2009). Priming of short-
term potentiation and synaptic tagging/capture mechanisms by ryanodine 
receptor activation in rat hippocampal CA1. Learn. Mem. 16, 186. 

Sajikumar, S., Navakkode, S., and Frey, J.U. (2005). Protein synthesis-
dependent long-term functional plasticity: methods and techniques. Current 
Opinion in Neurobiology 15, 607–613. 

Sala, C., Roussignol, G., Meldolesi, J., and Fagni, L. (2005). Key role of the 
postsynaptic density scaffold proteins Shank and Homer in the functional 
architecture of Ca2+ homeostasis at dendritic spines in hippocampal neurons. 
Journal of Neuroscience 25, 4592. 



 177 

Salin, P.A., Malenka, R.C., and Nicoll, R.A. (1996). Cyclic AMP mediates a 
presynaptic form of LTP at cerebellar parallel fiber synapses. Neuron 16, 
797–803. 

Sandell, J.H., and Masland, R.H. (1988). Photoconversion of some fluorescent 
markers to a diaminobenzidine product. J. Histochem. Cytochem. 36, 555–
559. 

Sarihi, A., Mirnajafi-Zadeh, J., Jiang, B., Sohya, K., Safari, M.-S., Arami, M.K., 
Yanagawa, Y., and Tsumoto, T. (2012). Cell type-specific, presynaptic LTP of 
inhibitory synapses on fast-spiking GABAergic neurons in the mouse visual 
cortex. Journal of Neuroscience 32, 13189–13199. 

Saul, R.A., and Tarleton, J.C. (2012). FMR1-Related Disorders. GeneReviews. 
Schikorski, T., and Stevens, C.F. (2001). Morphological correlates of functionally 

defined synaptic vesicle populations. Nat Neurosci 4, 391–395. 
Schuch, U., Lohse, M.J., and Schachner, M. (1989). Neural cell adhesion 

molecules influence second messenger systems. Neuron 3, 13–20. 
Schultz, C., and Engelhardt, M. (2014). Anatomy of the hippocampal formation. 

Front Neurol Neurosci 34, 6–17. 
Schuman, E.M., and Madison, D.V. (1991). A requirement for the intercellular 

messenger nitric oxide in long-term potentiation. Science 254, 1503–1506. 
Schwartzkroin, P.A., and Wester, K. (1975). Long-lasting facilitation of a synaptic 

potential following tetanization in the in vitro hippocampal slice. Brain Res. 89, 
107–119. 

Scoville, W.B., and Milner, B. (1957). Loss of recent memory after bilateral 
hippocampal lesions. J. Neurol. Neurosurg. Psychiatr. 20, 11–21. 

Segal, M., and Korkotian, E. (2014). Endoplasmic reticulum calcium stores in 
dendritic spines. Front Neuroanat 8, 64. 

Segal, M., Kreher, U., Greenberger, V., and Braun, K. (2003). Is fragile X mental 
retardation protein involved in activity-induced plasticity of dendritic spines? 
Brain Res. 972, 9–15. 

Seymour-Laurent, K.J., and Barish, M.E. (1995). Inositol 1,4,5-trisphosphate and 
ryanodine receptor distributions and patterns of acetylcholine- and caffeine-
induced calcium release in cultured mouse hippocampal neurons. J Neurosci 
15, 2592–2608. 

Shaban, H., Humeau, Y., Herry, C., Cassasus, G., Shigemoto, R., Ciocchi, S., 
Barbieri, S., van der Putten, H., Kaupmann, K., Bettler, B., et al. (2006). 
Generalization of amygdala LTP and conditioned fear in the absence of 
presynaptic inhibition. Nat Neurosci 9, 1028–1035. 



 178 

Shapira, M., Zhai, R.G., Dresbach, T., Bresler, T., Torres, V.I., Gundelfinger, 
E.D., Ziv, N.E., and Garner, C.C. (2003). Unitary assembly of presynaptic 
active zones from Piccolo-Bassoon transport vesicles. Neuron 38, 237–252. 

Sharp, A.H., McPherson, P.S., Dawson, T.M., Aoki, C., Campbell, K.P., and 
Snyder, S.H. (1993). Differential immunohistochemical localization of inositol 
1,4,5-trisphosphate- and ryanodine-sensitive Ca2+ release channels in rat 
brain. J Neurosci 13, 3051–3063. 

Sharp, P.E., McNaughton, B.L., and Barnes, C.A. (1989). Exploration-dependent 
modulation of evoked responses in fascia dentata: Fundamental observations 
and time course. Psychobiology 17, 257–269. 

Shavelle, R.M., and Strauss, D. (1998). Comparative mortality of persons with 
autism in California, 1980-1996. J Insur Med 30, 220–225. 

Shepherd, J.D., Rumbaugh, G., Wu, J., Chowdhury, S., Plath, N., Kuhl, D., 
Huganir, R.L., and Worley, P.F. (2006). Arc/Arg3.1 mediates homeostatic 
synaptic scaling of AMPA receptors. Neuron 52, 475–484. 

Sheppard, C.A., Simpson, P.B., Sharp, A.H., Nucifora, F.C., Ross, C.A., Lange, 
G.D., and Russell, J.T. (1997). Comparison of type 2 inositol 1,4,5-
trisphosphate receptor distribution and subcellular Ca2+ release sites that 
support Ca2+ waves in cultured astrocytes. Journal of Neurochemistry 68, 
2317–2327. 

Shi, S.H., Hayashi, Y., Petralia, R.S., Zaman, S.H., Wenthold, R.J., Svoboda, K., 
and Malinow, R. (1999). Rapid spine delivery and redistribution of AMPA 
receptors after synaptic NMDA receptor activation. Science 284, 1811–1816. 

Shima, Y., Copeland, N.G., Gilbert, D.J., Jenkins, N.A., Chisaka, O., Takeichi, 
M., and Uemura, T. (2002). Differential expression of the seven-pass 
transmembrane cadherin genes Celsr1-3 and distribution of the Celsr2 
protein during mouse development. Dev. Dyn. 223, 321–332. 

Shima, Y., Kawaguchi, S.-Y., Kosaka, K., Nakayama, M., Hoshino, M., 
Nabeshima, Y., Hirano, T., and Uemura, T. (2007). Opposing roles in neurite 
growth control by two seven-pass transmembrane cadherins. Nat Neurosci 
10, 963–969. 

Shin, R.-M., Tully, K., Li, Y., Cho, J.-H., Higuchi, M., Suhara, T., and Bolshakov, 
V.Y. (2010). Hierarchical order of coexisting pre- and postsynaptic forms of 
long-term potentiation at synapses in amygdala. Proc Natl Acad Sci USA 107, 
19073–19078. 

Sidorov, M.S., Auerbach, B.D., and Bear, M.F. (2013). Fragile X mental 
retardation protein and synaptic plasticity. Mol Brain 6, 15. 



 179 

Simonoff, E., Pickles, A., Charman, T., Chandler, S., Loucas, T., and Baird, G. 
(2008). Psychiatric disorders in children with autism spectrum disorders: 
prevalence, comorbidity, and associated factors in a population-derived 
sample. J Am Acad Child Adolesc Psychiatry 47, 921–929. 

Simpson, P.B., Challiss, R.A., and Nahorski, S.R. (1995). Neuronal Ca2+ stores: 
activation and function. Trends in Neurosciences 18, 299–306. 

Simpson, P.B., Holtzclaw, L.A., Langley, D.B., and Russell, J.T. (1998). 
Characterization of ryanodine receptors in oligodendrocytes, type 2 
astrocytes, and O-2A progenitors. J. Neurosci. Res. 52, 468–482. 

Skrede, K.K., and Malthe-Sørenssen, D. (1981). Increased resting and evoked 
release of transmitter following repetitive electrical tetanization in 
hippocampus: a biochemical correlate to long-lasting synaptic potentiation. 
Brain Res. 208, 436–441. 

Skrede, K.K., and Westgaard, R.H. (1971). The transverse hippocampal slice: a 
well-defined cortical structure maintained in vitro. Brain Res. 35, 589–593. 

Smith, C.L., Afroz, R., Bassell, G.J., Furneaux, H.M., Perrone-Bizzozero, N.I., 
and Burry, R.W. (2004). GAP-43 mRNA in growth cones is associated with 
HuD and ribosomes. J. Neurobiol. 61, 222–235. 

Sobczyk, A., Scheuss, V., and Svoboda, K. (2005). NMDA receptor subunit-
dependent [Ca2+] signaling in individual hippocampal dendritic spines. 
Journal of Neuroscience 25, 6037–6046. 

Sokolov, M.V., Rossokhin, A.V., Astrelin, A.V., Frey, J.U., and Voronin, L.L. 
(2002). Quantal analysis suggests strong involvement of presynaptic 
mechanisms during the initial 3 h maintenance of long-term potentiation in rat 
hippocampal CA1 area in vitro. Brain Res. 957, 61–75. 

Somogyi, P., Halasy, K., Somogyi, J., Storm-Mathisen, J., and Ottersen, O.P. 
(1986). Quantification of immunogold labelling reveals enrichment of 
glutamate in mossy and parallel fibre terminals in cat cerebellum. 
Neuroscience 19, 1045–1050. 

Sorra, K.E., and Harris, K.M. (1993). Occurrence and three-dimensional structure 
of multiple synapses between individual radiatum axons and their target 
pyramidal cells in hippocampal area CA1. Journal of Neuroscience 13, 3736–
3748. 

Sorra, K.E., and Harris, K.M. (1998). Stability in synapse number and size at 2 hr 
after long-term potentiation in hippocampal area CA1. J Neurosci 18, 658–
671. 

Sorra, K.E., Mishra, A., Kirov, S.A., and Harris, K.M. (2006). Dense core vesicles 
resemble active-zone transport vesicles and are diminished following 



 180 

synaptogenesis in mature hippocampal slices. Neuroscience 141, 2097–
2106. 

Spacek, J. (1985). Three-dimensional analysis of dendritic spines. II. Spine 
apparatus and other cytoplasmic components. Anat. Embryol. 171, 235–243. 

Spacek, J., and Harris, K.M. (1997). Three-dimensional organization of smooth 
endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of 
the immature and mature rat. J Neurosci 17, 190–203. 

Spejo, A.B., and Oliveira, A.L.R. (2014). Synaptic rearrangement following 
axonal injury: old and new players. Neuropharmacology. 

Stanton, M.E. (2000). Multiple memory systems, development and conditioning. 
Behav Brain Res 110, 25–37. 

Stanton, P.K., Chattarji, S., and Sejnowski, T.J. (1991). 2-Amino-3-
phosphonopropionic acid, an inhibitor of glutamate-stimulated 
phosphoinositide turnover, blocks induction of homosynaptic long-term 
depression, but not potentiation, in rat hippocampus. Neurosci. Lett. 127, 61–
66. 

Stanton, P.K., Winterer, J., Zhang, X.-L., and Müller, W. (2005). Imaging LTP of 
presynaptic release of FM1-43 from the rapidly recycling vesicle pool of 
Schaffer collateral-CA1 synapses in rat hippocampal slices. Eur J Neurosci 
22, 2451–2461. 

Staras, K., Branco, T., Burden, J.J., Pozo, K., Darcy, K., Marra, V., Ratnayaka, 
A., and Goda, Y. (2010). A vesicle superpool spans multiple presynaptic 
terminals in hippocampal neurons. Neuron 66, 37–44. 

Stettler, D.D., Yamahachi, H., Li, W., Denk, W., and Gilbert, C.D. (2006). Axons 
and synaptic boutons are highly dynamic in adult visual cortex. Neuron 49, 
877–887. 

Stevens, C.F., and Wang, Y. (1994). Changes in reliability of synaptic function as 
a mechanism for plasticity. Nature 371, 704–707. 

Stevens, C.F., and Wang, Y. (1995). Facilitation and depression at single central 
synapses. Neuron 14, 795–802. 

Steward, O., and Levy, W.B. (1982). Preferential localization of polyribosomes 
under the base of dendritic spines in granule cells of the dentate gyrus. J 
Neurosci 2, 284–291. 

Steward, O., and Schuman, E.M. (2001). Protein synthesis at synaptic sites on 
dendrites. Annu. Rev. Neurosci. 24, 299–325. 

Stewart, M.G., Medvedev, N.I., Popov, V.I., Schoepfer, R., Davies, H.A., Murphy, 
K., Dallérac, G.M., Kraev, I.V., and Rodríguez, J.J. (2005). Chemically 



 181 

induced long-term potentiation increases the number of perforated and 
complex postsynaptic densities but does not alter dendritic spine volume in 
CA1 of adult mouse hippocampal slices. Eur J Neurosci 21, 3368–3378. 

Storm-Mathisen, J., Leknes, A.K., Bore, A.T., Vaaland, J.L., Edminson, P., Haug, 
F.M., and Ottersen, O.P. (1983). First visualization of glutamate and GABA in 
neurones by immunocytochemistry. Nature 301, 517–520. 

Streb, H., Irvine, R.F., Berridge, M.J., and Schulz, I. (1983). Release of Ca2+ 
from a nonmitochondrial intracellular store in pancreatic acinar cells by 
inositol-1,4,5-trisphosphate. Nature 306, 67–69. 

Stuart, G.J., and Sakmann, B. (1994). Active propagation of somatic action 
potentials into neocortical pyramidal cell dendrites. Nature 367, 69–72. 

Sudhof, T.C. (1995). The synaptic vesicle cycle: a cascade of protein-protein 
interactions. Nature 375, 645–653. 

Sudhof, T.C. (2012). Calcium Control of Neurotransmitter Release. Cold Spring 
Harb Perspect Biol 4, a011353–a011353. 

Sutherland, G.R. (1977). Fragile sites on human chromosomes: demonstration of 
their dependence on the type of tissue culture medium. Science 197, 265–
266. 

Tabares, L., Ruiz, R., Linares-Clemente, P., Gaffield, M.A., Alvarez de Toledo, 
G., Fernandez-Chacón, R., and Betz, W.J. (2007). Monitoring synaptic 
function at the neuromuscular junction of a mouse expressing 
synaptopHluorin. Journal of Neuroscience 27, 5422–5430. 

Tennyson, V.M. (1970). The fine structure of the axon and growth cone of the 
dorsal root neuroblast of the rabbit embryo. J Cell Biol 44, 62–79. 

Terasaki, M., Slater, N.T., Fein, A., Schmidek, A., and Reese, T.S. (1994). 
Continuous network of endoplasmic reticulum in cerebellar Purkinje neurons. 
Proc Natl Acad Sci USA 91, 7510–7514. 

Thomas, A.M., Bui, N., Graham, D., Perkins, J.R., Yuva-Paylor, L.A., and Paylor, 
R. (2011). Genetic reduction of group 1 metabotropic glutamate receptors 
alters select behaviors in a mouse model for fragile X syndrome. Behav Brain 
Res 223, 310–321. 

Thomas, A.M., Bui, N., Perkins, J.R., Yuva-Paylor, L.A., and Paylor, R. (2012). 
Group I metabotropic glutamate receptor antagonists alter select behaviors in 
a mouse model for fragile X syndrome. Psychopharmacology (Berl.) 219, 47–
58. 

Tiedge, H., Bloom, F.E., and Richter, D. (1999). RNA, whither goest thou? 
Science 283, 186–187. 



 182 

Till, S.M., Wijetunge, L.S., Seidel, V.G., Harlow, E., Wright, A.K., Bagni, C., 
Contractor, A., Gillingwater, T.H., and Kind, P.C. (2012). Altered maturation of 
the primary somatosensory cortex in a mouse model of fragile X syndrome. 
Hum. Mol. Genet. 

Truckenbrodt, S., and Rizzoli, S.O. (2014). Spontaneous vesicle recycling in the 
synaptic bouton. Front Cell Neurosci 8, 409. 

Tsien, J.Z., Chen, D.F., Gerber, D., Tom, C., Mercer, E.H., Anderson, D.J., 
Mayford, M., Kandel, E.R., and Tonegawa, S. (1996a). Subregion- and cell 
type-restricted gene knockout in mouse brain. Cell 87, 1317–1326. 

Tsien, J.Z., Huerta, P.T., and Tonegawa, S. (1996b). The essential role of 
hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial 
memory. Cell 87, 1327–1338. 

Tsvetkov, E., Carlezon, W.A., Benes, F.M., Kandel, E.R., and Bolshakov, V.Y. 
(2002). Fear conditioning occludes LTP-induced presynaptic enhancement of 
synaptic transmission in the cortical pathway to the lateral amygdala. Neuron 
34, 289–300. 

Tuchman, R., Cuccaro, M., and Alessandri, M. (2010). Autism and epilepsy: 
historical perspective. Brain Dev. 32, 709–718. 

Unni, V.K., Zakharenko, S.S., Zablow, L., DeCostanzo, A.J., and Siegelbaum, 
S.A. (2004). Calcium release from presynaptic ryanodine-sensitive stores is 
required for long-term depression at hippocampal CA3-CA3 pyramidal neuron 
synapses. Journal of Neuroscience 24, 9612–9622. 

Van Harreveld, A., and Fifková, E. (1975). Swelling of dendritic spines in the 
fascia dentata after stimulation of the perforant fibers as a mechanism of 
post-tetanic potentiation. Exp. Neurol. 49, 736–749. 

Vaughan, C.J. (2003). Prevention of stroke and dementia with statins: Effects 
beyond lipid lowering. Am. J. Cardiol. 91, 23B–29B. 

Vedrenne, C., Klopfenstein, D.R., and Hauri, H.-P. (2005). Phosphorylation 
controls CLIMP-63-mediated anchoring of the endoplasmic reticulum to 
microtubules. Mol. Biol. Cell 16, 1928–1937. 

Verkerk, A.J., Pieretti, M., Sutcliffe, J.S., Fu, Y.H., Kuhl, D.P., Pizzuti, A., Reiner, 
O., Richards, S., Victoria, M.F., and Zhang, F.P. (1991). Identification of a 
gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster 
region exhibiting length variation in fragile X syndrome. Cell 65, 905–914. 

Verkhratsky, A., and Shmigol, A. (1996). Calcium-induced calcium release in 
neurones. Cell Calcium 19, 1–14. 



 183 

Vlachos, A., Ikenberg, B., Lenz, M., Becker, D., Reifenberg, K., Bas-Orth, C., and 
Deller, T. (2013). Synaptopodin regulates denervation-induced homeostatic 
synaptic plasticity. Proc Natl Acad Sci USA 110, 8242–8247. 

Vlachos, A., Korkotian, E., Schonfeld, E., Copanaki, E., Deller, T., and Segal, M. 
(2009). Synaptopodin regulates plasticity of dendritic spines in hippocampal 
neurons. Journal of Neuroscience 29, 1017–1033. 

Vlachos, A., Maggio, N., and Segal, M. (2008). Lack of correlation between 
synaptopodin expression and the ability to induce LTP in the rat dorsal and 
ventral hippocampus. Hippocampus 18, 1–4. 

Walton, P.D., Airey, J.A., Sutko, J.L., Beck, C.F., Mignery, G.A., Sudhof, T.C., 
Deerinck, T.J., and Ellisman, M.H. (1991). Ryanodine and inositol 
trisphosphate receptors coexist in avian cerebellar Purkinje neurons. J Cell 
Biol 113, 1145–1157. 

Wang, J.H., and Kelly, P.T. (1997). Attenuation of paired-pulse facilitation 
associated with synaptic potentiation mediated by postsynaptic mechanisms. 
Journal of Neurophysiology 78, 2707–2716. 

Wang, L., and Leslie, D.L. (2010). Health care expenditures for children with 
autism spectrum disorders in Medicaid. J Am Acad Child Adolesc Psychiatry 
49, 1165–1171. 

Wang, X.-S., Peng, C.-Z., Cai, W.-J., Xia, J., Jin, D., Dai, Y., Luo, X.-G., 
Klyachko, V.A., and Deng, P.-Y. (2014). Activity-dependent regulation of 
release probability at excitatory hippocampal synapses: a crucial role of 
fragile X mental retardation protein in neurotransmission. Eur J Neurosci 39, 
1602–1612. 

Wang, Y., Wu, J., Rowan, M.J., and Anwyl, R. (1996). Ryanodine produces a low 
frequency stimulation-induced NMDA receptor-independent long-term 
potentiation in the rat dentate gyrus in vitro. The Journal of Physiology 495 ( 
Pt 3), 755–767. 

Ward, B., McGuinness, L., Akerman, C.J., Fine, A., Bliss, T.V.P., and Emptage, 
N.J. (2006). State-dependent mechanisms of LTP expression revealed by 
optical quantal analysis. Neuron 52, 649–661. 

Weber, A., Herz, R., and Reiss, I. (1966). Study of kinetics of calcium transport 
by isolated fragmented sarcoplasmic reticulum. Biochemische Zeitschrift 345, 
329–369. 

Westphal, V., Rizzoli, S.O., Lauterbach, M.A., Kamin, D., Jahn, R., and Hell, 
S.W. (2008). Video-rate far-field optical nanoscopy dissects synaptic vesicle 
movement. Science 320, 246–249. 



 184 

Whitlock, J.R., Heynen, A.J., Shuler, M.G., and Bear, M.F. (2006). Learning 
induces long-term potentiation in the hippocampus. Science 313, 1093–1097. 

Whittingham, T.S., Lust, W.D., Christakis, D.A., and Passonneau, J.V. (1984). 
Metabolic stability of hippocampal slice preparations during prolonged 
incubation. Journal of Neurochemistry 43, 689–696. 

Wiegert, J.S., Hofmann, F., Bading, H., and Bengtson, C.P. (2009). A 
transcription-dependent increase in miniature EPSC frequency accompanies 
late-phase plasticity in cultured hippocampal neurons. BMC Neurosci 10, 124. 

Wijetunge, L.S., Angibaud, J., Frick, A., Kind, P.C., and Nägerl, U.V. (2014). 
Stimulated emission depletion (STED) microscopy reveals nanoscale defects 
in the developmental trajectory of dendritic spine morphogenesis in a mouse 
model of fragile X syndrome. J Neurosci 34, 6405–6412. 

Wikström, M.A., Matthews, P., Roberts, D., Collingridge, G.L., and Bortolotto, 
Z.A. (2003). Parallel kinase cascades are involved in the induction of LTP at 
hippocampal CA1 synapses. Neuropharmacology 45, 828–836. 

Wisniewski, K.E., Segan, S.M., Miezejeski, C.M., Sersen, E.A., and Rudelli, R.D. 
(1991). The Fra(X) syndrome: neurological, electrophysiological, and 
neuropathological abnormalities. Am. J. Med. Genet. 38, 476–480. 

Woolley, C.S., Gould, E., Frankfurt, M., and McEwen, B.S. (1990). Naturally 
occurring fluctuation in dendritic spine density on adult hippocampal 
pyramidal neurons. J Neurosci 10, 4035–4039. 

Xiao, M.Y., Zhou, Q., and Nicoll, R.A. (2001). Metabotropic glutamate receptor 
activation causes a rapid redistribution of AMPA receptors. 
Neuropharmacology 41, 664–671. 

Xu, J., Zhu, Y., Contractor, A., and Heinemann, S.F. (2009). mGluR5 has a 
critical role in inhibitory learning. Journal of Neuroscience 29, 3676–3684. 

Yamada, K.M., Spooner, B.S., and Wessells, N.K. (1971). J Cell Biol 49, 614. 
Yamazaki, M., Matsuo, R., Fukazawa, Y., Ozawa, F., and Inokuchi, K. (2001). 

Regulated expression of an actin-associated protein, synaptopodin, during 
long-term potentiation. Journal of Neurochemistry 79, 192–199. 

Yan, Q.J., Asafo-Adjei, P.K., Arnold, H.M., Brown, R.E., and Bauchwitz, R.P. 
(2004). A phenotypic and molecular characterization of the fmr1-tm1Cgr 
fragile X mouse. Genes Brain Behav. 3, 337–359. 

Yan, Q.J., Rammal, M., Tranfaglia, M., and Bauchwitz, R.P. (2005). Suppression 
of two major Fragile X Syndrome mouse model phenotypes by the mGluR5 
antagonist MPEP. Neuropharmacology 49, 1053–1066. 



 185 

Yang, Y., and Calakos, N. (2013). Presynaptic long-term plasticity. Front 
Synaptic Neurosci 5, 8. 

Yao, C.-K., Lin, Y.Q., Ly, C.V., Ohyama, T., Haueter, C.M., Moiseenkova-Bell, 
V.Y., Wensel, T.G., and Bellen, H.J. (2009). A synaptic vesicle-associated 
Ca2+ channel promotes endocytosis and couples exocytosis to endocytosis. 
Cell 138, 947–960. 

Yasuda, H., Barth, A.L., Stellwagen, D., and Malenka, R.C. (2003). A 
developmental switch in the signaling cascades for LTP induction. Nat 
Neurosci 6, 15–16. 

Yuste, R., and Bonhoeffer, T. (2001). Morphological changes in dendritic spines 
associated with long-term synaptic plasticity. Annu. Rev. Neurosci. 24, 1071–
1089. 

Yuste, R., and Denk, W. (1995). Dendritic spines as basic functional units of 
neuronal integration. Nature 375, 682–684. 

Yuste, R., Majewska, A., Cash, S.S., and Denk, W. (1999). Mechanisms of 
calcium influx into hippocampal spines: heterogeneity among spines, 
coincidence detection by NMDA receptors, and optical quantal analysis. J 
Neurosci 19, 1976–1987. 

Zakharenko, S.S., Zablow, L., and Siegelbaum, S.A. (2001). Visualization of 
changes in presynaptic function during long-term synaptic plasticity. Nat 
Neurosci 4, 711–717. 

Zakharenko, S.S., Patterson, S.L., Dragatsis, I., Zeitlin, S.O., Siegelbaum, S.A., 
Kandel, E.R., and Morozov, A. (2003). Presynaptic BDNF required for a 
presynaptic but not postsynaptic component of LTP at hippocampal CA1-CA3 
synapses. Neuron 39, 975–990. 

Zelená, J. (1970). Ribosome-like particles in myelinated axons of the rat. Brain 
Res. 24, 359–363. 

Zhai, R.G., Vardinon-Friedman, H., Cases-Langhoff, C., Becker, B., 
Gundelfinger, E.D., Ziv, N.E., and Garner, C.C. (2001). Assembling the 
presynaptic active zone: a characterization of an active one precursor vesicle. 
Neuron 29, 131. 

Zhang, H., Xing, L., Rossoll, W., Wichterle, H., Singer, R.H., and Bassell, G.J. 
(2006). Multiprotein complexes of the survival of motor neuron protein SMN 
with Gemins traffic to neuronal processes and growth cones of motor 
neurons. Journal of Neuroscience 26, 8622–8632. 

Zhang, X.-L., Pöschel, B., Faul, C., Upreti, C., Stanton, P.K., and Mundel, P. 
(2013). Essential role for synaptopodin in dendritic spine plasticity of the 
developing hippocampus. Journal of Neuroscience 33, 12510–12518. 



 186 

Zhang, Y.-P., Holbro, N., and Oertner, T.G. (2008). Optical induction of plasticity 
at single synapses reveals input-specific accumulation of alphaCaMKII. Proc 
Natl Acad Sci USA 105, 12039–12044. 

Zhou, Q., Homma, K.J., and Poo, M.-M. (2004). Shrinkage of dendritic spines 
associated with long-term depression of hippocampal synapses. Neuron 44, 
749–757. 

Zhu, J.J., Qin, Y., Zhao, M., van Aelst, L., and Malinow, R. (2002). Ras and Rap 
control AMPA receptor trafficking during synaptic plasticity. Cell 110, 443–
455. 

Zhukareva, V., Chernevskaya, N., Pimenta, A., Nowycky, M., and Levitt, P. 
(1997). Limbic system-associated membrane protein (LAMP) induces neurite 
outgrowth and intracellular Ca2+ increase in primary fetal neurons. Mol Cell 
Neurosci 10, 43–55. 

Ziv, N.E., and Garner, C.C. (2004). Cellular and molecular mechanisms of 
presynaptic assembly. Nat Rev Neurosci 5, 385–399. 

Zoghbi, H.Y., and Bear, M.F. (2012). Synaptic dysfunction in 
neurodevelopmental disorders associated with autism and intellectual 
disabilities. Cold Spring Harb Perspect Biol 4. 

Zuber, B., Nikonenko, I., Klauser, P., Muller, D., and Dubochet, J. (2005). The 
mammalian central nervous synaptic cleft contains a high density of 
periodically organized complexes. Proc Natl Acad Sci USA 102, 19192–
19197. 

 


