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Building a computer system that can understand human languages

has been one of the long-standing goals of artificial intelligence. Currently,

most state-of-the-art natural language processing (NLP) systems use statis-

tical machine learning methods to extract linguistic knowledge from large,

annotated corpora. However, constructing such corpora can be expensive and

time-consuming due to the expertise it requires to annotate such data. In

this thesis, we explore alternative ways of learning which do not rely on direct

human supervision. In particular, we draw our inspirations from the fact that

humans are able to learn language through exposure to linguistic inputs in the

context of a rich, relevant, perceptual environment.

We first present a system that learned to sportscast for RoboCup simu-

lation games by observing how humans commentate a game. Using the simple

assumption that people generally talk about events that have just occurred,
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we pair each textual comment with a set of events that it could be referring

to. By applying an EM-like algorithm, the system simultaneously learns a

grounded language model and aligns each description to the corresponding

event. The system does not use any prior language knowledge and was able

to learn to sportscast in both English and Korean. Human evaluations of the

generated commentaries indicate they are of reasonable quality and in some

cases even on par with those produced by humans.

For the sportscasting task, while each comment could be aligned to one

of several events, the level of ambiguity was low enough that we could enumer-

ate all the possible alignments. However, it is not always possible to restrict

the set of possible alignments to such limited numbers. Thus, we present an-

other system that allows each sentence to be aligned to one of exponentially

many connected subgraphs without explicitly enumerating them. The system

first learns a lexicon and uses it to prune the nodes in the graph that are

unrelated to the words in the sentence. By only observing how humans fol-

low navigation instructions, the system was able to infer the corresponding

hidden navigation plans and parse previously unseen instructions in new en-

vironments for both English and Chinese data. With the rise in popularity of

crowdsourcing, we also present results on collecting additional training data

using Amazon’s Mechanical Turk. Since our system only needs supervision in

the form of language being used in relevant contexts, it is easy for virtually

anyone to contribute to the training data.
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Chapter 1

Introduction

Being able to communicate with a computer in human languages is one

of the ultimate goals of artificial intelligence (AI) research. Instead of learning

special commands or control sequences (e.g. a series of mouse clicks, typing,

or gestures), we could articulate what we want in our own words. In response,

the computer could also present information to us or ask questions verbally

without those responses having been programmed into the system. In order

to achieve this goal, there are two tasks the computer must become compe-

tent at: the ability to interpret human languages and the ability to generate

coherent natural language content. The research areas of semantic parsing

(Mooney, 2007; Zettlemoyer & Collins, 2007; Lu, Ng, Lee, & Zettlemoyer,

2008; Kwiatkowski, Zettlemoyer, Goldwater, & Steedman, 2010; Liang, Jor-

dan, & Klein, 2011; Goldwasser, Reichart, Clarke, & Roth, 2011) and natural

language generation (NLG) (Barzilay & Lee, 2002; Duboue & McKeown, 2003;

Barzilay & Lapata, 2005; Wong & Mooney, 2007; Lu, Ng, & Lee, 2009; Angeli,

Liang, & Klein, 2010) aim to solve these two tasks, respectively.

Formally, semantic parsing is the task of translating natural language

sentences into formal representations of their meanings. The choice of the

1



representation language depends on the specific application domain and can

range from predicate logic to SQL statements to any other formal language

that supports automated reasoning. There are typically two parts to build-

ing a semantic parser. One is building a lexicon that defines the meanings

of words or short phrases. The other part is building compositional rules

that successively combine smaller meaning representations into larger, coher-

ent representations of complete sentences.

Natural language generation is the reciprocal task where the goal is to

generate natural language content from formal representations. However, un-

like semantic parsing where the correct output is usually well-defined, generally

there are many acceptable outputs for a NLG system due to the expressiveness

of natural languages. In addition to being able to translate a formal represen-

tation into natural language sentences (surface realization) (Barzilay & Lee,

2002; Wong & Mooney, 2007; Lu et al., 2009), a NLG system must also decide

what information to express (content selection) (Duboue & McKeown, 2003;

Zaragoza & Li, 2005; Barzilay & Lapata, 2005).1

The traditional approach to building systems that learn to perform

semantic parsing and NLG requires careful semantic annotations of natural

language sentences (Ge & Mooney, 2005; Kate & Mooney, 2007; Wong &

Mooney, 2007; Zettlemoyer & Collins, 2007; Lu et al., 2008). A typical training

1Here we are only looking at generating a single sentence at a time and do not consider
other NLG issues such as making the content of a longer document coherent or merging
multiple sentences to make it more readable.
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corpus would consist of hundreds or thousands of natural language sentences

paired with their semantic representations. While supervised training in this

manner has been shown to work well, the effort required to construct such

training corpora is non-trivial. Performing these semantic annotations is akin

to translation where the annotator must be fluent in both the natural language

and the formal language being used.

In order to reduce the amount of supervision required to train these

systems, we draw our inspirations from how children learn language. Clearly

children do not learn language from carefully annotated corpora. Instead,

they learn to connect words and phrases to objects and events in the world

through simultaneous exposure to linguistic inputs and their perceptual en-

vironment. While we are not trying to emulate exactly how a child learns

language, we note that this form of training data is more natural and does

not require human annotations of semantics. Thus, our goal is to build a sys-

tem that would observe language being used in relevant perceptual contexts,

and learn the correspondences between language and objects/actions/events

in the world. In this manner, the semantics of languages is grounded in the

perceptual experience of the world (Harnad, 1990).

This type of grounded language acquisition sits at the intersection of

many different subareas of AI, including natural language processing, robotics,

cognitive science, and computer vision. Consequently, there has been many dif-

ferent approaches to this problem, coming from different research perspectives

(Bailey, Feldman, Narayanan, & Lakoff, 1997; Roy, 2002; Barnard, Duygulu,
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Forsyth, de Freitas, Blei, & Jordan, 2003; Yu & Ballard, 2004; Gold & Scas-

sellati, 2007; Fleischman & Roy, 2008; Branavan, Chen, Zettlemoyer, & Barzi-

lay, 2009; Liang et al., 2009; Vogel & Jurafsky, 2010; Feng & Lapata, 2010;

Branavan, Silver, & Barzilay, 2011; Tellex, Kollar, Dickerson, Walter, Baner-

jee, Teller, & Roy, 2011). Compared to most of the earlier work which focus

on building systems to accomplish a particular real-world task, we are more

concerned with learning the semantics of language, using the specific appli-

cations only to demonstrate the results of the language learning. Our goal is

to learn not only just meanings of words and phrases, but also how to com-

pose them together to form complete meanings. In this regard, we also take

a language-agnostic approach by disallowing any language-specific resources

in our systems. While this usually makes learning more difficult, it also en-

sures that our system can work across different languages. Given that our

focus is on language learning, we do not attempt to solve the computer vision

or robotics problems, opting to study the problem in simulated environments

instead. Nevertheless, we tried to retain many important properties of a dy-

namic world with multiple agents and actions while avoiding the complexities

of real-world perceptions.

The central question this thesis tries to address is how to solve the

reference ambiguity problem. In order to utilize the perceptual environment as

a form of semantic supervision, we need to determine which parts of the world

the speaker is referring to. This relates to the indeterminacy of translation, or

“gavagai” problem raised by Quine (1960). In his book, Quine described the
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problem a field linguist faces trying to learn an unknown language from the

natives. If the native uttered “gavagai” upon seeing a rabbit run past, it would

be natural to think that “gavagai” means rabbit. However, other translations

would also be consistent with the evidence: “Something is running”, “Let’s

go hunting”, “An animal”, “An undetached rabbit-part”, etc. Similarly, our

system faces the same problem trying to establish correspondences between

language and the observed perceptual contexts. From all the perceptual data

that co-occurred with the language, the system must decide which objects,

actions, or events were being referred to. In some cases, the utterance might

not even be connected to any of the perceptions. The system would thus also

have to decide if an alignment should be made at all.

The reference ambiguity problem is difficult to solve and humans rely

on other cues such as gaze following and the theory of mind to help resolve

the ambiguity. Thus, instead of presenting the computer system with raw

sensory data, we define for the computer system the space of possible align-

ments to make the problem more manageable. The size of this space depends

on the complexity of the domain and the level of granularity of the formal

representations of meanings.

We first present a system that deals with small amounts of ambiguity:

each natural language sentence can only be aligned to a handful of events.

We study this system in the context of learning how to sportscast a RoboCup

simulation game. The system observes how humans commentate the games

and try to align each textual comment to one of the events that has just oc-
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curred. While performing the alignment, the system also learns a translation

model between the natural language comments and the representations of the

events. Using an EM-like approach, the system alternates between aligning

the data and building the translation model. The learned translation model

allows the system to describe any events defined by the formal representations.

The system is limited in its ability to deal with reference ambiguity because

it enumerates all the possible alignments and computes a score for each one.

Thus, the time complexity grows at least linearly with the number of possible

alignments (there is also additional cost in training the translation model).

We experimented with different initial alignments as well as different scoring

functions for selecting the best alignments according to our translation model.

Overall, the best system with no initial alignments was able to correctly align

about 70% of the sentences for both the English and Korean data we collected.

To produce an actual sportscast, we also developed a content selection algo-

rithm for learning which events to describe at any given time. Evaluation of

the overall sportscasting system was performed using crowdsourcing. In most

cases, our system produced reasonable sportscasts and sometimes even on par

with those produced by humans.

The second system we present can deal with a much higher degree of ref-

erence ambiguity. Instead of a list of potential meanings for each sentence, we

represent the space of possible meanings as a connected graph. Consequently,

each of the sentences can now be aligned to one of exponentially many con-

nected subgraphs. The graphical representation is often more natural because
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Figure 1.1: Graphical representation of a passing event from Pink player #5
to Pink player #8

entities in the ambiguous context are usually related. For example, in the

sportscasting domain we had two separate events that represented kicking the

ball and passing the ball. However, passing the ball includes kicking the ball

as part of the action. Using a graph we could instead represent passing as a

kicking event followed by a receiving event as shown in Figure 1.1. We study

this more advanced system in the context of learning to interpret natural lan-

guage navigation instructions in a virtual environment. The system observes

how humans follow navigation instructions and infers the correct navigation

plans specified by those instructions. The space of possible plans is a con-

nected graph with the edges representing temporal orders and parameters of

actions. After the system has determined the navigation plans associated with

each instruction in the training data, it then learns a semantic parsing model

which can be used to interpret novel instructions. During testing, the parsed

plans are carried out by a virtual robot for the end-to-end task evaluation.

The system was able to infer close to 80% of the human-annotated navigation

plans for both the English and Chinese data. Moreover, it reached the correct

destination over half the time for interpreting a single sentence in an instruc-
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tion. However, the task completion rate is much lower when evaluated on

longer instructions consisting of several sentences and the overall performance

is still worse than a previous, hand-coded system (MacMahon et al., 2006).

Given that one of the motivations for doing grounded language learning

is to lessen the efforts required to collect the training data, we demonstrate

the ease of labeling new data for the navigation domain through an inter-

active application. The human annotator can either provide new navigation

instructions for a specified path, or follow an existing instruction in the virtual

environment. The first task generates potential new instructions for the sys-

tem to train or evaluate on, and the second task verifies the qualities of those

instructions. Neither of these tasks require knowledge about the formal repre-

sentations and can be done by a layperson. Using Amazon’s Mechanical Turk,

we collected over 2,400 instructions and 14,000 follower traces in two months

for under $300. After filtering for quality using a strict majority agreement,

there were over 1,000 good instructions. This pilot data collection suggests

that a non-expert is indeed capable of providing useful training data.

1.1 Thesis Contributions

This thesis makes two main contributions to the area of grounded lan-

guage acquisition. First, we defined two tasks that serve as testbeds for systems

that aim to learn from ambiguous supervision. We made available to the pub-

lic all the data we collected and annotated. Given that this a relatively young

area of research with no standard datasets for training and testing, we aimed
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to contribute to the pool of common resources people could use to compare

relative system performance. The sportscasting data has already been adopted

by other researchers for evaluating their algorithms (Liang et al., 2009; Bor-

des, Usunier, & Weston, 2010; Angeli et al., 2010; Hajishirzi, Hockenmaier,

Muellar, & Amir, 2011). Moreover, the tasks we defined are end-to-end tasks

that could be broken up into many subtasks. For example, the navigation

task could be broken up into three smaller tasks: inferring navigation plans

for the instructions in the training data, building a semantic parser for in-

terpreting navigation instructions, and building a robot (physical or virtual)

for carrying out navigation plans. This allows researchers interested in differ-

ent subproblems to concentrate on a particular portion of the problem while

working within the larger framework.

The second contribution we make is presenting two algorithms for solv-

ing the reference ambiguity problem. The first algorithm learns to align a nat-

ural language sentence to a formal representation of meaning out of a small

list of possible meanings. We experimented with different ways of utilizing

various semantic parsing and natural language generation models for selecting

the most likely representation. The second algorithm bypasses the need to

enumerate the set of meanings and consequently can deal with much larger

spaces of possible alignments. By first learning a lexicon that maps words

and short phrases to their meanings, the system can determine the most likely

meaning of a sentence by inspecting a part of the sentence at a time. We

demonstrated how the system can map each sentence to a connected subgraph
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from a graphical representation of the space of possible meanings. Finally,

we also built complete end-to-end systems that combine our algorithms with

off-the-shelf components to solve the two complete tasks (sportscasting and

navigation) that we have defined.

1.2 Thesis Outline

The remainder of the thesis is organized as follows.

• Chapter 2 reviews previous work this thesis directly builds upon as well

as terminologies and notations that are used throughout this thesis.

• Chapter 3 presents our framework for learning from limited ambiguity

and its application to the sportscasting task.

• Chapter 4 describes our more advanced framework that deals with am-

biguous relational data. We also present the result of using this frame-

work to learn to interpret navigation instructions and how to collect

additional training data for this task using Mechanical Turk.

• Chapter 5 reviews related work in grounded language acquisition, am-

biguously supervised learning, semantic parsing, and NLG.

• Chapter 6 discusses future work and chapter 7 concludes the thesis.

We note that some the material presented in Chapter 3 and Chapter 4 have

appeared in our previous publications (Chen & Mooney, 2008; Chen, Kim, &

Mooney, 2010; Chen & Mooney, 2011).
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Chapter 2

Background

In this chapter we will discuss previous work that this thesis directly

builds upon. In particular, we will describe a couple of supervised learning

systems for semantic parsing and natural language generation. These systems

assume training data in the form of parallel corpora where each natural lan-

guage sentence is aligned with its correct formal representation. Our work

extends these existing techniques to deal with ambiguous training data where

the alignments to the correct representations are unknown and only the space

of potential alignments are given. While we concentrate on describing only a

handful of related pieces of work in this chapter to give the readers sufficient

background to understand the rest of the thesis, we will have a more detailed

review of relevant research in robotics, computer vision, computational lin-

guistics and machine learning in Chapter 5.

The goal of this thesis can be formally described as learning how to

build semantic parsers and language generators from perceptual data. Seman-

tic parsers map natural language (NL) sentences to meaning representations

(MRs) in some formal logical language. On the other hand, language gener-

ators performs the reverse mapping (MRs to NL). Existing work has mostly
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focused on learning from supervised corpora in which each sentence is manually

annotated with its correct MR (Mooney, 2007; Zettlemoyer & Collins, 2007;

Lu et al., 2008; Kwiatkowski et al., 2010). Such human annotated corpora are

expensive and difficult to produce, limiting the utility of this approach.

Kate and Mooney (2007) introduced an extension to one such such

system, Krisp (Kate & Mooney, 2006), so that it can learn from ambiguous

training data that requires little or no human annotation effort. However, the

resulting system , Krisper, is unable to generate language or scale to high

levels of ambiguity.

Since our sportscasting task requires language generation, we enhanced

another system called Wasp (Wong & Mooney, 2006) that is capable of lan-

guage generation as well as semantic parsing. We briefly describe these existing

systems below. All of them assume they have access to a formal deterministic

context-free grammar (CFG) that defines the formal meaning representation

language (MRL). Since MRLs are formal computer-interpretable languages,

such grammars are usually readily available.

2.1 Krisp and Krisper

Krisp (Kernel-based Robust Interpretation for Semantic Parsing) (Kate

& Mooney, 2006) uses support vector machines (SVMs) with string kernels to

build semantic parsers. SVMs are state-of-the-art machine learning methods

that learn maximum-margin separators to prevent over-fitting in very high-

dimensional data such as natural language text (Joachims, 1998). They can
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be extended to non-linear separators and non-vector data by exploiting kernels

that implicitly create an even higher dimensional space in which complex data

is (nearly) linearly separable (Shawe-Taylor & Cristianini, 2004). Kernels over

strings and trees have been effectively applied to a variety of problems in text

learning and NLP (Lodhi, Saunders, Shawe-Taylor, Cristianini, & Watkins,

2002; Zelenko, Aone, & Richardella, 2003; Collins, 2002; Bunescu & Mooney,

2005). In particular, Krisp uses the string kernel introduced by Lodhi et al.

(2002) to classify substrings in a NL sentence.

First, Krisp learns classifiers that recognize when a word or phrase

in an NL sentence indicates that a particular concept in the MRL should

be introduced into its MR. It uses production rules in the MRL grammar

to represent semantic concepts, and it learns classifiers for each production

that classify NL substrings as indicative of that production or not. When

semantically parsing a sentence, each classifier estimates the probability of

each production covering different substrings of the sentence. This information

is then used to compositionally build a complete MR for the sentence. Given

the partial matching provided by string kernels and the over-fitting prevention

provided by SVMs, Krisp has been experimentally shown to be particularly

robust to noisy training data (Kate & Mooney, 2006).

Krisper (Kate & Mooney, 2007) is an extension to Krisp that han-

dles ambiguous training data in which each sentence is annotated with a set

of potential MRs, only one of which is correct. Psuedocode for Krisper is

shown in Algorithm 1. It employs an iterative approach analogous to expec-
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Algorithm 1 Krisper

input sentences S and their associated sets of meaning representations MR(s)
output BestExamplesSet , a set of NL-MR pairs,

SemanticModel , a Krisp semantic parser
1:
2: main
3: //Initial training loop
4: for sentence si ∈ S do
5: for meaning representation mj ∈MR(si) do
6: add (si ,mj ) to InitialTrainingSet
7: end for
8: end for
9: SemanticModel = Train(InitialTrainingSet)

10:
11: //Iterative retraining
12: repeat
13: for sentence si ∈ S do
14: for meaning representation mj ∈MR(si) do
15: mj .score = Evaluate(si,mj, SemanticModel)
16: end for
17: end for
18: BestExampleSet ← The set of consistent examples T = {(s,m)|s ∈

S, m ∈ MR(s)} such that
∑

T m.score is maximized
19: SemanticModel = Train(BestExamplesSet)
20: until Convergence or MAX ITER reached
21: end main
22:
23: function Train(TrainingExamples)
24: Train Krisp on the unambiguous TrainingExamples
25: return The trained Krisp semantic parser
26: end function
27:
28: function Evaluate(s, m, SemanticModel)
29: Use the Krisp semantic parser SemanticModel to find a derivation of

meaning representation m from sentence s
30: return The parsing score
31: end function
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tation maximization (EM) (Dempster, Laird, & Rubin, 1977) that improves

upon the selection of the correct NL–MR pairs in each iteration. In the first

iteration (lines 3-9), it assumes that all of the MRs paired with a sentence are

correct and trains Krisp with the resulting noisy supervision. In subsequent

iterations (lines 11-27), Krisper uses the currently trained parser to score

each potential NL–MR pair, selects the most likely MR for each sentence, and

retrains the parser on the resulting disambiguated supervised data. In this

manner, Krisper is able to learn from the type of weak supervision expected

for a grounded language learner exposed only to sentences in ambiguous con-

texts. However, the system has previously only been tested on supervised data

with randomly added ambiguities or artificially generated data.

2.2 Wasp and Wasp−1

Wasp (Word-Alignment-based Semantic Parsing) (Wong & Mooney,

2006) uses state-of-the-art statistical machine translation (SMT) techniques

(Brown, Cocke, Della Pietra, Della Pietra, Jelinek, Lafferty, Mercer, & Roossin,

1990; Yamada & Knight, 2001; Chiang, 2005) to learn semantic parsers. SMT

methods learn effective machine translators by training on parallel corpora

consisting of human translations of documents into one or more alternative

natural languages. The resulting translators are typically significantly more

effective than manually developed systems and SMT has become the domi-

nant approach to machine translation. Wasp adapted such methods to learn

to translate from NL to MRL rather than from one NL to another.
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First, an SMT word alignment system, GIZA++ (Och & Ney, 2003;

Brown, Della Pietra, Della Pietra, & Mercer, 1993), is used to acquire a bilin-

gual lexicon consisting of NL substrings coupled with their translations in the

target MRL. As formal languages, MRLs frequently contain many purely syn-

tactic tokens such as parentheses or brackets which are difficult to align with

words in NL. Consequently, Wasp aligns words in the NL with productions

of the MRL grammar used in the parse of the corresponding MR. Therefore,

GIZA++ is used to produce an N to 1 alignment between the words in the

NL sentence and a sequence of MRL productions corresponding to a top-down

left-most derivation of the corresponding MR.

Complete MRs are then formed by combining these NL substrings and

their translations using a grammatical framework called synchronous CFG

(SCFG) (Aho & Ullman, 1972), which forms the basis of most existing syntax-

based SMT (Yamada & Knight, 2001; Chiang, 2005). In a SCFG, the right

hand side of each production rule contains two strings, in this case one in

NL and the other in MRL. Derivations of the SCFG simultaneously produce

NL sentences and their corresponding MRs. The bilingual lexicon acquired

from word alignments over the training data is used to construct a set of

SCFG production rules. A probabilistic parser is then produced by training

a maximum-entropy model using EM to learn parameters for each of these

SCFG productions (Riezler, Prescher, Kuhn, & Johnson, 2000; Zettlemoyer &

Collins, 2005). To translate a novel NL sentence into its MR, a probabilistic

chart parser (Stolcke, 1995) is used to find the most probable synchronous
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derivation that generates the given NL, and the corresponding MR generated

by this derivation is returned.

Since SCFGs are symmetric, they can be used to generate NL from MR

as well as parse NL into MR (Wong & Mooney, 2007). This allows the same

learned grammar to be used for both parsing and generation, an elegant prop-

erty that has important advantages (Shieber, 1988). The generation system,

Wasp−1, uses a noisy-channel model (Brown et al., 1990):

argmaxe Pr(e|f) = argmaxe Pr(e) Pr(f |e) (2.1)

Where e refers to the NL string generated for a given input MR, f . Pr(e) is

the language model, and Pr(f |e) is the parsing model provided by WASP’s

learned SCFG. The generation task is to find a sentence e such that (1) e is a

good sentence a priori, and (2) its meaning is the same as the input MR. For

the language model, Wasp−1 uses a standard n-gram model, which is useful

in ranking candidate generated sentences (Knight & Hatzivassiloglou, 1995).

Since both Wasp and Wasp−1 learn the same underlying SCFG rules,

we will refer to both system jointly as Wasp in the rest of this thesis.
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Chapter 3

Learning from Supervision with Limited

Ambiguity

In this chapter we will look at the language learning problem when

there is limited ambiguity in the training data. In particular, we will examine

this problem in the context of building a sportscasting application. The goal

of the application is to generate NL descriptions of events as they occur in a

simulated soccer game. The training data consists of a stream of descriptive

textual comments generated by humans and automatically extracted events

from the simulation. We present a framework that simultaneously establishes

correspondences between the individual comments and the events they are

describing as well as builds a translation model that supports both semantic

parsing and natural language generation. We also present a novel algorithm

for selecting the relevant events to describe during the course of a game.

We evaluated each component of our system individually as well as the

overall system. Human judges recruited over the Internet indicated that the

sportscasts generated by our system are of reasonable quality and in some

cases even on par with those produced by humans for our limited domain. We

evaluated our system on both English and Korean data with similar results.
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This demonstrates that our system is flexible in adapting to learning differ-

ent natural languages since the system does not rely on any prior linguistic

knowledge.

3.1 Overview

Our overall goal is to build systems that can learn the semantics of

language from its usage in a relevant perceptual context without any direct

supervision. This is a difficult task even for humans. Typically a child would be

exposed to language specifically geared towards teaching them the meanings of

words or phrases (e.g. when a care-giver points to an object and says the name

of the object). Since we assume the system has no knowledge of the language

to start with, the training data must be closely correlated with the perceptual

environment to make this task possible. One source of such data comes from

descriptive languages where the speaker gives a literal description of what can

or should be seen. Some examples include captions of photos, scripts of movies,

audio descriptions (additional narration track for blind and visually impaired

consumers of visual media), product descriptions (e.g. clothing), and play-

by-play calls of a sports game. For our initial exploration of the ambiguous

language learning problem, we chose to use sportscasts as our training data.

By observing how humans describe events in a simulated soccer game, our

system is able to learn to generate its own sportscast for previously unseen

games. A screenshot of our system with generated commentary is shown in

Figure 3.1.
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Figure 3.1: Screenshot of our sportscasting system

It is important to note that real sportscasts typically include a play-by-

play commentator and a color commentator who fill in the gaps when no ac-

tions are taking place. Since we are concerned with language that is connected

to the actions being observed, we concentrate only on the play-by-play por-

tion. We make no attempts at generating a realistic sportscast that contains

background information, opinions, and comments that make the sportscast

interesting and engaging.

Ideally, our system would be able to process raw visual information

and identify relevant objects and events automatically. However, to avoid

the complexity of solving the computer vision issues, we studied the prob-

lem in a simulated environment instead. Nevertheless, we aimed to retain

many of the important properties of a dynamic world with multiple agents
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and actions. Specifically, we use the RoboCup simulator (Chen, Foroughi,

Heintz, Kapetanakis, Kostiadis, Kummeneje, Noda, Obst, Riley, Steffens,

Wang, & Yin, 2003) which provides a fairly detailed physical simulation of

robot soccer. While several groups have constructed RoboCup commentator

systems (André, Binsted, Tanaka-Ishii, Luke, Herzog, & Rist, 2000) that pro-

vide textual NL transcripts of simulated games, those systems all use manually-

developed templates and do not learn from data.

Our commentator system learns to semantically interpret and generate

language in the RoboCup soccer domain by observing an on-going commentary

of the game paired with the evolving simulator state. By exploiting existing

techniques for abstracting a symbolic description of the activity on the field

from the detailed states of the physical simulator (André et al., 2000), we

obtain a pairing of natural language with a symbolic description of the per-

ceptual context in which the comment was uttered. However, such training

data is ambiguous because each comment usually co-occurs with several events

in the game. We integrate and enhance existing methods for learning seman-

tic parsers and NL generators (Kate & Mooney, 2007; Wong & Mooney, 2007)

in order to learn to understand and generate language from such ambiguous

training data. We also developed a system that, from the same ambiguous

training data, learns which events are worth describing, so that it can also

perform content selection, that is, deciding what to say as well as how to say

it (surface realization).

We evaluate our system and demonstrate its language-independence by
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training it to generate commentaries in both English and Korean. Experiments

on test data (annotated for evaluation purposes only) demonstrate that the

system learns to accurately semantically parse sentences, generate sentences,

and decide which events to describe. Finally, subjective human evaluation

of commentated game clips demonstrate that in our limited domain, the sys-

tem generates sportscasts that are in some cases similar in quality to those

produced by humans.

In the rest of this chapter, we will first describe the sportscasting data

we collected to train and test our system in Section 3.2. Section 3.3 and

Section 3.4 present the details of our framework for learning surface realiza-

tion and content selection, respectively, as well as experimental evaluations

of each component. Section 3.5 presents human evaluations of the overall

sportscasting system. We will then discuss a couple of extensions to the basic

framework including initializing the system with training data disambiguated

by a method proposed by Liang et al. (2009) in Section 3.6 and detecting and

removing “superfluous” sentences that do not refer to any extracted events in

Section 3.7. Finally, we discuss other potential extensions to the system and

summarize the contributions in Section 3.8 and Section 3.9, respectively.

3.2 Sportscasting Data

To train and test our system, we assembled human-commentated soccer

games from the RoboCup simulation league (www.robocup.org). Since our fo-

cus is on language learning and not computer vision, we chose to use simulated
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games instead of real game videos to simplify the extraction of perceptual in-

formation. Based on the Rocco RoboCup commentator’s incremental event

recognition module (André et al., 2000) we manually developed symbolic rep-

resentations of game events and a rule-based system to automatically extract

them from the simulator traces. The extracted events mainly involve actions

with the ball, such as kicking and passing, but also include other game in-

formation such as whether the current playmode is kickoff, offside, or corner

kick. The events are represented as atomic formulas in predicate logic with

timestamps. These logical facts constitute the requisite MRs, and we manu-

ally developed a simple CFG for this formal semantic language. Details of the

events detected and the complete grammar can be found in Appendix A.

For the NL portion of the data, we had humans commentate games

while watching them on the simulator. We collected commentaries in both

English and Korean. The English commentaries were produced by two differ-

ent people while the Korean commentaries were produced by a single person.

The commentators typed their comments into a text box, which were recorded

with a timestamp. To construct the final ambiguous training data, we paired

each comment with all of the events that occurred five seconds or less before

the comment was made. Examples of the ambiguous training data are shown

in Figure 3.2. The edges connect sentences to events to which they might

refer. English translations of the Korean commentaries have been included in

the figure for the reader’s benefit and are not part of the actual data. Also

note that the use of English words for predicates and constants in the MRs
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Purple goalie turns the ball over to 
Pink8

Purple team is very sloppy today
Pink8 passes to Pink11

Pink11 looks around for a teammate

Pink11 makes a long pass to Pink8

Pink8 passes back to Pink11

badPass ( PurplePlayer1 , 
PinkPlayer8 )

turnover ( PurplePlayer1 , 
PinkPlayer8 )

kick ( PinkPlayer8 ) 

pass ( PinkPlayer8 , PinkPlayer11 ) 

kick ( PinkPlayer11 ) 

kick ( PinkPlayer11 ) 

ballstopped 

kick ( PinkPlayer11 ) 

pass ( PinkPlayer11 , PinkPlayer8 )

kick ( PinkPlayer8 ) 

pass ( PinkPlayer8 , PinkPlayer11 )

Natural Language Commentary Meaning Representation

(a) Sample trace of ambiguous English training data

kick ( PurplePlayer10 )

pass ( PurplePlayer10 , PurplePlayer11 )

kick ( PurplePlayer11 )

pass ( PurplePlayer11 , PurplePlayer10 )

steal ( PinkPlayer3 )

turnover ( PurplePlayer10 , PinkPlayer3 )

kick ( PinkPlayer3 )

playmode ( free_kick_r )

보라10이보라11에게패스합니다.
(purple10 passes to purple 11)

보라11이보라10에게다시패스합니다.
(purple11 passes again to purple 10)

보라10이수비하던분홍3에게공을빼앗깁니다.
(pink3 steals the ball from purple 10)

분홍3이분홍골키퍼에게패스합니다.
(pink3 passes to pink goalie)

Natural Language Commentary Meaning Representation

(b) Sample trace of ambiguous Korean training data

Figure 3.2: Examples of our sportscasting training data. Each of the outgoing
edges from the comments indicate a potentially associated meaning represen-
tation considered by our system. The bold links indicate correct matches
between the comments and the meaning representations.
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English dataset Korean dataset
Total # of comments 2036 1999
Total # of words 11742 7941
Vocabulary size 454 344
Avg. words per comment 5.77 3.97

Table 3.1: Word statistics for the English and Korean sportscasting datasets

is for human readability only, the system treats these as arbitrary conceptual

tokens and must learn their connection to English or Korean words.

We annotated a total of four games which consist of the final matches

for the RoboCup simulation league from 2001 to 2004. Word statistics about

the data are shown in Table 3.1. While the comments are fairly short due to

the nature of sportscasts, this data provides challenges in the form of synonyms

(e.g. “Pink1”, “PinkG” and “pink goalie” all refer to the same player) and

polysemes (e.g. “kick” in “kicks toward the goal” refers to a kick event whereas

“kicks to Pink3” refers to a pass event.)

For evaluation purposes only, a gold-standard matching was produced

by examining each comment manually and selecting the correct MR if it exists.

The matching is only approximate because sometimes the comments contain

more information than present in the MRs. For example, a comment might

describe the location and the length of a pass while the MR captures only the

participants of a pass. The bold lines in Figure 3.2 indicate the annotated

correct matches in our sample data. Notice some sentences do not have cor-

rect matches. For example, the sentence “Purple team is very sloppy today”
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in Figure 3.2(a) cannot be represented in our MRL and consequently does not

have a corresponding correct MR. For another example, the Korean sentence

with the translation “pink3 passes to pink goalie” in Figure 3.2(b) can be rep-

resented in our MRL, but does not have a correct match due to the incomplete

event detection. A free kick was called while pink3 was passing to the pink

goalie so the pass event was not retrieved. Finally, in the case of the sentence

“Pink11 makes a long pass to Pink8” in Figure 3.2(a), the correct MR falls

outside of the 5-second window.

Alignment statistics for the datasets are shown in Table 3.2. The 2001

final has almost twice the number of events as the other games because it

went into double overtime. For each game, the number of NL sentences col-

lected are shown as the total number of comments. Some of these comments

are discarded from the training set if they are not associated with any poten-

tial MRs (e.g. “Pink11 looks around for a teammate” in Figure 3.2(a)). This

happens when no events occur within the 5-second window preceding the com-

ment. The remaining sentences are shown as the number of comments that

have MRs. Finally, of these sentences, some of them do not have the correct

MR in their set of potential MRs as discussed previously. These essentially

become noise in the training data (18% of the English dataset and 8% of the

Korean dataset). For example, the 2001 final contains 671 training sentences,

but only 520 of them can be aligned correctly. The last part of the table shows

the level of ambiguity in the training data. The maximum and the average

number of comments associated with each comment are shown as well as the
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English dataset Korean dataset
Game year 2001 2002 2003 2004 2001 2002 2003 2004

# events 4003 2223 2113 2318 4003 2223 2113 2318
Number of comments
Total 722 514 410 390 673 454 412 460
Have MRs 671 458 397 342 650 444 396 423
Have Correct MR 520 376 320 323 600 419 369 375
Events per comment
Max 9 10 12 9 10 12 10 9
Average 2.24 2.40 2.85 2.73 2.14 2.49 2.55 2.60
Std. Dev. 1.64 1.65 2.05 1.70 2.08 3.08 3.67 2.59

Table 3.2: Alignment statistics for the English and Korean datasets. The total
numbers of events and comments for each game are shown. The training set
only consists of those comments that have at least one MR associated with it.
Of the training sentences, 82% of the English dataset and 92% of the Korean
dataset contain the correct MRs in their set of potential MRs. The number
of events per comment are also shown, with more than two events associated
with each comment on average.

standard deviation. On average each comment is associated with more than

two possible events so at least 50% of the potential links are incorrect.

3.3 Learning Surface Realization from Ambiguous Su-
pervision

While existing systems are capable of solving parts of the sportscasting

problem, none of them are able to perform the whole task. We need a system

that can both deal with ambiguous supervision like Krisper and generate

language like Wasp. We introduce three systems below that can do both. An

overview of the differences between the existing systems and the new systems
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Algorithm Main Generate Ambiguous Disambiguation
Learner data criteria

Krisp SVM No No n/a
Krisper Krisp No Yes Krisp’s parse score
Wasp GIZA++ Yes No n/a

& SCFG
Wasper Wasp Yes Yes Wasp’s parse score
Krisper-Wasp Krisper Yes Yes Krisp’s parse score

& Wasp
Wasper-Gen Wasp Yes Yes NIST score of

best NL given MR

Table 3.3: Overview of the various learning systems presented. The first three
algorithms are existing systems. We introduce the last three systems that
are able to both learn from ambiguous training data and acquire a language
generator. They differ in how they disambiguate the training data.

we present are shown in Table 3.3.

All three systems introduced here are based on extensions to Wasp,

our underlying language learner. The main problem we need to solve is to

disambiguate the training data so that we can train Wasp to create a language

generator. Each of the new system uses a different disambiguation criteria to

determine the best matching between the NL sentences and the MRs.

3.3.1 Wasper

The first system is an extension of Wasp in a manner similar to how

Krisp was extended to create Krisper. It uses an EM-like retraining to

handle ambiguously annotated data, resulting in a system we call Wasper.

In general, any system that learns semantic parsers can be extended to handle
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ambiguous data as long as it can produce confidence levels for given NL–MR

pairs. Given a set of sentences s ∈ S and the set of MRs associated with

each sentence MR(s), we disambiguate the data by finding pairs (s,m) such

that s ∈ S and m = argmaxm′∈MR(s) Pr(m′|s). Although probability is used

here, a ranking of the relative potential parses would suffice. The pseudocode

for Wasper is shown in Algorithm 2. The only difference compared to the

Krisper pseudocode is that we now use a Wasp semantic parser instead of

a Krisp parser. Also, we produce a Wasp language generator as well which

is the desired final output for our task.

3.3.2 Krisper-Wasp

Krisp has been shown to be quite robust at handling noisy training

data (Kate & Mooney, 2006). This is important when training on the very

noisy training data used to initialize the parser in Krisper’s first iteration.

However, Krisper cannot learn a language generator, which is necessary for

our sportscasting task. As a result, we create a new system called Krisper-

Wasp that is both good at disambiguating the training data and capable of

generation. We first use Krisper to train on the ambiguous data and produce

a disambiguated training set by using its prediction for the most likely MR for

each sentence. This unambiguous training set is then used to train Wasp to

produce both a parser and a generator.

29



Algorithm 2 Wasper

input sentences S and their associated sets of meaning representations MR(s)
output BestExamplesSet , a set of NL-MR pairs,

SemanticModel , a Wasp semantic parser/language generator
1: main
2: //Initial training loop
3: for sentence si ∈ S do
4: for meaning representation mj ∈MR(si) do
5: add (si ,mj ) to InitialTrainingSet
6: end for
7: end for
8: SemanticModel = Train(InitialTrainingSet)
9:

10: //Iterative retraining
11: repeat
12: for sentence si ∈ S do
13: for meaning representation mj ∈MR(si) do
14: mj .score = Evaluate(si,mj, SemanticModel)
15: end for
16: end for
17: BestExampleSet ← The set of consistent examples T = {(s,m)|s ∈

S, m ∈ MR(s)} such that
∑

T m.score is maximized
18: SemanticModel = Train(BestExamplesSet)
19: until Convergence or MAX ITER reached
20: end main
21:
22: function Train(TrainingExamples)
23: Train Wasp on the unambiguous TrainingExamples
24: return The trained Wasp semantic parser/language generator
25: end function
26:
27: function Evaluate(s, m, SemanticModel)
28: Use the Wasp semantic parser in SemanticModel to find a derivation of

meaning representation m from sentence s
29: return The parsing score
30: end function
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3.3.3 Wasper-Gen

In both Krisper and Wasper, the criterion for selecting the best NL–

MR pairs during retraining is based on maximizing the probability of parsing

a sentence into a particular MR. However, since Wasper is capable of both

parsing and generation, we could alternatively select the best NL–MR pairs by

evaluating how likely it is to generate the sentence from a particular MR. Thus,

we built another version of Wasper called Wasper-Gen that disambiguates

the training data in order to maximize the performance of generation rather

than parsing. The pseudocode is shown in Algorithm 3. The algorithm is the

same as Wasper except for the evaluation function. It uses a generation-based

score rather than a parsing-based score to select the best NL–MR pairs.

Specifically, a NL–MR pair (s,m) is scored by computing the NIST

score, a machine translation (MT) metric, between the sentence s and the

best generated sentence for m (lines 9-12).1 Formally, given a set of sen-

tences s ∈ S and the set of MRs associated with each sentence MR(s), we

disambiguate the data by finding pairs (s,m) such that s ∈ S and m =

argmaxm′∈MR(s) NIST (s, argmaxs′ Pr(s′|m′)).

NIST measures the precision of a translation in terms of the proportion

of n-grams it shares with a human translation (Doddington, 2002). It has also

been used to evaluate NL generation. Another popular MT metric is BLEU

1A natural way to use a generation-based score would be to use the probability of an
NL given a MR (Pr(s|m)). However, initial experiments using this metric did not produce
very good results. We also tried changing Wasp to maximize the joint probability instead
of just the parsing probability. However, this also did not improve the results.
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score (Papineni, Roukos, Ward, & Zhu, 2002), but it is inadequate for our

purposes because we are comparing one short sentence to another instead of

comparing whole documents. BLEU score computes the geometric mean of the

n-gram precision for each value of n, which means the score is 0 if a matching

n-gram is not found for every value of n. In the common setting in which the

maximum n is 4, any two sentences that do not have a matching 4-gram would

receive a BLEU score of 0. Consequently, BLEU score is unable to distinguish

the quality of most of our generated sentences since they are fairly short. In

contrast, NIST uses an additive score and avoids this problem.

Algorithm 3 Wasper-Gen

input sentences S and their associated sets of meaning representations MR(s)
output BestExamplesSet , a set of NL-MR pairs,

SemanticModel , a Wasp semantic parser/language generator
1: main
2: same as Algorithm 2
3: end main
4:
5: function Train(TrainingExamples)
6: same as Algorithm 2
7: end function
8:
9: function Evaluate(s, m, SemanticModel)

10: GeneratedSentence ← Use the Wasp language generator in
SemanticModel to produce a sentence from the meaning representation
m

11: return The NIST score between GeneratedSentence and s
12: end function
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3.3.4 Experimental Evaluations

This section presents experimental results on the RoboCup data for

four systems: Krisper, Wasper, Krisper-Wasp, and Wasper-Gen. Since

we are not aware of any existing systems that could learn how to semantically

parse and generate language using ambiguous supervision based on perceptual

context, we constructed our own lower and upper baselines using unmodified

Wasp. To construct the lower baseline, we randomly pick a meaning for each

sentence from its set of potential MRs and trained Wasp on this unambiguous

data. We use Wasp trained on the gold matching which consists of the correct

NL–MR pairs annotated by a human as the upper baseline. This represents

an upper-bound on what our systems could achieve if they disambiguated the

training data perfectly.

We evaluate each system on three tasks: matching, parsing, and gen-

eration. The matching task measures how well the systems can disambiguate

the training data. The parsing and generation tasks measure how well the

systems can translate from NL to MR, and from MR to NL, respectively.

Since there are four games in total, we trained using all possible com-

binations of one to three games. For matching, we measured the performance

on the training data since our goal is to disambiguate this data. For parsing

and generation, we tested on the games not used for training. Results were

averaged over all train/test combinations. We evaluated matching and parsing

using F-measure, the harmonic mean of recall and precision. Precision is the

fraction of the system’s annotations that are correct. Recall is the fraction of
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the annotations from the gold-standard that the system correctly produces.

Generation is evaluated using BLEU scores which roughly estimates how well

the produced sentences match the target sentences. We treat each game as a

whole document to avoid the problem of using BLEU score for sentence-level

comparisons mentioned earlier. Also, we increase the number of reference sen-

tences for each MR by using all of the sentences in the test data corresponding

to equivalent MRs, e.g. if pass(PinkPlayer7, PinkPlayer8) occurs multiple

times in the test data, all of the sentences matched to this MR in the gold

matchings are used as reference sentences for this MR.

3.3.4.1 Matching NL and MR

Since handling ambiguous training data is an important aspect of grounded

language learning, we first evaluate how well the various systems pick the cor-

rect NL–MR pairs. Figure 3.3 shows the F-measure for identifying the correct

set of pairs for the various systems.2 All of the learning systems perform sig-

nificantly better than random which has a F-measure below 0.5. For both the

English and Korean data, Wasper-Gen is the best system. Wasper also

equals or outperforms the previous system Krisper as well.
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Figure 3.3: Matching results on the English and Korean datasets. Wasper-
Gen performs the best, outperforming the existing system Krisper on both
datasets.
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Figure 3.4: Semantic parsing results on the English and Korean datasets.
The results largely mirrors that of the matching results with Wasper-Gen
performing the best overall.
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3.3.4.2 Semantic Parsing

Next, we present results on the accuracy of the learned semantic parsers.

Each trained system is used to parse and produce a MR for each sentence in

the test set that has a correct MR in the gold-standard matching. A parse is

considered correct if and only if it matches the gold standard exactly. Parsing

is a fairly difficult task because there are usually multiple ways of describing

the same event. For example, “player1 passes to player2” refers to the same

event as “player1 kicks the ball to player2.” Thus, accurate parsing requires

learning all the different ways of describing an event. Synonymy is not limited

to verbs. In our data, “Pink1”, “PinkG” and “pink goalie” all refer to the same

player. Since we are not providing the systems with any prior knowledge, they

have to learn all these different ways of referring to the same entity.

The parsing results shown in Figure 3.4 generally correlate well with

the matching results. Systems that did better at disambiguating the training

data also did better on parsing because their supervised training data is less

noisy. Wasper-Gen again does the best overall on both the English and

Korean data. It is interesting to note that Krisper did relatively well on the

English data compared to its matching performance. This is because Krisp

is more robust to noise than Wasp (Kate & Mooney, 2006) so even though

it is trained on a noisier set of data than Wasper-Gen it still produced a

comparable parser.

2Krisper-Wasp is not shown here since it uses Krisper to disambiguate the data so it
has the same performance as Krisper on this task
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3.3.4.3 Generation

The third evaluation task is generation, or more specifically, surface

realization in which a MR is transformed into a corresponding NL sentence.

All of the Wasp-based systems are given each MR in the test set that has a

gold-standard matching NL sentence and asked to generate an NL description.

The quality of the generated sentence is measured by comparing it to the gold-

standard using BLEU scores.

This task is more tolerant of noise in the training data than parsing

because the system only needs to learn one way to accurately describe an event.

This property is reflected in the results, shown in Figure 3.5, where even the

baseline system, Wasp with random matching, does fairly well, outperforming

Krisper-Wasp on both datasets and Wasper on the Korean data. As the

number of event types is fairly small, only a relatively small number of correct

matchings is required to perform this task well as long as each event type

is associated with some correct sentence pattern more often than any other

sentence pattern.

As with the other two tasks, Wasper-Gen is the best system on

this task. One possible explanation of Wasper-Gen’s superior performance

stems from its disambiguation objective function. Systems like Wasper and

Krisper-Wasp that use parsing scores attempt to learn a good translation

model for each sentence pattern. On the other hand, Wasper-Gen only tries

to learn a good translation model for each MR pattern. Thus, Wasper-Gen

is more likely to converge on a good model as there are fewer MR patterns than
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Figure 3.5: Surface realization results on the English and Korean datasets.
While the relative performances of the various systems changed, Wasper-
Gen is still the best system.
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sentence patterns. However, it can be argued that learning good translation

models for each sentence pattern will help to produce more varied commen-

taries, a quality that is not captured by the BLEU score. Another possible

advantage for Wasper-Gen is that it uses a softer scoring function. While the

probabilities of parsing from a particular sentence to a MR can be sensitive to

noise in the training data, Wasper-Gen only looks at the top generated sen-

tences for each MR. Even with noise in the data, this top generated sentence

remains relatively constant. Moreover, minor variations of this sentence do not

change the results dramatically since NIST score allows for partial matching.

3.4 Learning for Content Selection

A language generator alone is not enough to produce a sportscast. In

addition to surface realization which is deciding how to to say something, a

sportscaster must also preform content selection which is choosing what to say

(McKeown, 1985).

We developed a novel method for learning which events to describe.

For each event type (i.e. for each predicate like pass, or goal), the system

uses the training data to estimate the probability that it is mentioned by

the sportscaster. Given the gold-standard NL–MR matches, this probability

is easy to estimate; however, the learner does not know the correct match-

ing. Instead, the system must estimate the probabilities from the ambiguous

training data. We compare two methods for estimating these probabilities.

Even though we do not have gold-standard matching, the systems we
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described in the previous section has already produced reasonable NL–MR

pairs. Thus, we could treat these inferred matchings as gold standard match-

ings and estimate the probabilities directly by counting. The probability of

commenting on each event type, ei, is estimated as the percentage of events

of type ei that have been matched to some NL sentence.

3.4.1 IGSL

In addition to directly estimating the probabilities from the inferred

matchings, we also developed a separate learning algorithm that estimates

the probabilities from the ambiguous data without leveraging the outputs of

the other systems. This algorithm, Iterative Generation Strategy Learning

(IGSL), is a variant of EM that alternates between estimating the NL–MR

matchings and computing the prior probability of each event type being com-

mented on. Unlike our first method of using the inferred matchings, IGSL uses

information about MRs not explicitly associated with any sentences in train-

ing. Algorithm 4 shows the pseudocode. The main loop alternates between

two steps:

1. Calculating the expected probability of each NL–MR matching given the

current model of how likely an event is commented on (line 6)

2. Update the prior probability that an event type is mentioned by a human

commentator based on the matchings (line 9).
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Algorithm 4 Iterative Generation Strategy Learning (IGSL)

input event types E = {e1, ..., en}, the number of occurrences of each event
type TotalCount(ei) in the entire game trace, sentences S and the event
types of their associated meaning representations Event(s)

output probabilities of commenting on each event type Pr(ei)
1: Initialize all Pr(ei) = 1
2: repeat
3: for event type ei ∈ E do
4: MatchCount = 0
5: for sentence s ∈ S do

6: ProbOfMatch =
P

e∈Event(s)∧e=ei
Pr(e)

P

e∈Event(s) Pr(e)

7: MatchCount = MatchCount + ProbOfMatch
8: end for
9: Pr(ei) = min( MatchCount

TotalCount(ei)
,1) {Ensure proper probabilities}

10: end for
11: until Convergence or MAX ITER reached

In the first iteration, each NL–MR match is assigned a probability

inversely proportional to the amount of ambiguity associated with the sentence

(
∑

e∈Event(s) Pr(e) = |Event(s)|). For example, a sentence associated with five

possible MRs will assign each match a probability of 1
5
. The prior probability of

mentioning an event type is then estimated as the average probability assigned

to instances of this event type. Notice this process does not always guarantee

a proper probability since a MR can be associated with multiple sentences.

Thus, we limit the probability to be at most one. In the subsequent iterations,

the probabilities of the NL–MR matchings are updated according to these new

priors. We assign each match the prior probability of its event type normalized

across all the associated MRs of the NL sentence. We then update the priors

for each event type as before using the new estimated probabilities for the
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Figure 3.6: An example of how our content selection component works. At
every timestep, we stochastically select an event from all the events occurring
at that moment. We then decide whether to verbalize the selected event based
on IGSL’s estimated probability of it being commented upon.

matchings. This process is repeated until the probabilities converge or a pre-

specified number of iterations has occurred.

To generate a sportscast, we use the learned probabilities to determine

which events to describe. For each time step, we first determine all the events

that are occurring at the time. We then randomly select one based on their

relative likelihood of being commented on. We do this by normalizing over the

probabilities of all the events. To avoid being overly verbose, we do not want

to make a comment every time something happens, especially if it is an event

rarely commented on. Thus, we stochastically decide whether to comment

on this selected event based on its probability. An example of this process is

shown in Figure 3.6. Given the three events that were occurring, bad pass

and turnover both have about the same probability of being selected. Once

we selected turnover as the event to comment on, we then decide if we should

generate a comment at all.
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3.4.2 Experiments

The different methods for learning content selection were evaluated

based on how often the events they describe in the test data coincide with

those the humans decided to describe. For the first approach, results using

the inferred matchings produced by Krisper, Wasper, and Wasper-Gen

as well as the gold and random matching for establishing baselines are all

presented in Figure 3.7. From the graph, it is clear that IGSL outperforms

estimating the probabilities from the inferred matchings and actually performs

at a level close to using the gold matching. However, it is important to note

that we are limiting the potential of learning from the gold matching by using

only the predicates to decide whether to talk about an event.

Next we will evaluate qualitatively the probabilities learned by IGSL

and those inferred from matchings produced by Wasper-Gen. Table 3.4

shows the probabilities learned by these two methods for the five most fre-

quent events in the English dataset. While Wasper-Gen learns fairly good

probabilities in general, it does not do as well as IGSL for the most frequent

events. This is because IGSL uses occurrences of events that are not associ-

ated with any possible comments in its training iterations. Rarely commented

events such as ballstopped and kick often occur without any comments being

uttered. Consequently, IGSL assigns low prior probabilities to them which

lowers their chances of being matched to any sentences. On the other hand,

Wasper-Gen does not use these priors and sometimes incorrectly matches

comments to them. Thus, using the inferred matches from Wasper-Gen re-
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Figure 3.7: Content selection results for our various systems. Our novel al-
gorithm IGSL performs the best, almost on par with the upper bound which
uses gold-standard matchings.
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event # occurrences % commented IGSL inferred from
Wasper-Gen

ballstopped 5817 1.72× 10−4 1.09× 10−5 0.016
kick 2122 0.0 33 0.018 0.117
pass 1069 0.999 0.983 0.800
turnover 566 0.214 0.909 0.353
badPass 371 0.429 0.970 0.493

Table 3.4: Top 5 most frequent events, the % of times they were commented
on, and the probabilities learned by the top algorithms for the English data

sults in learning higher probabilities of commenting on these rarely commented

events.

While all our methods only use the predicates of the MRs to decide

whether to comment or not, they perform quite well on the data we collected.

In particular, IGSL performs the best, so we use it for content selection in the

rest of this chapter.

3.5 Human Subjective Evaluation

At best, automatic evaluation of generation is an imperfect approxi-

mation of human assessment. Moreover, automatically evaluating the quality

of an entire generated sportscast is even more difficult. Consequently, we

used Amazon’s Mechanical Turk to collect human judgements of the produced

sportscasts. Each human judge was shown three clips of simulated game video

in one sitting. There were 8 video clips total. The 8 clips use 4 game segments

of 4 minutes each, one from each of the four games (2001-2004 RoboCup fi-
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nals). Each of the 4 game segments is commentated once by a human and

once by our system. We use IGSL to determine the events to comment on and

Wasper-Gen (our best performing system for surface realization) to produce

the commentaries. To make the commentaries more varied, we took the top

5 outputs from Wasper-Gen and chose one stochastically weighted by their

scores. The system was always trained on three games, leaving out the game

from which the test segment was extracted. The video clips were accompanied

by commentaries that appear both as subtitles on the screen as well as audio

produced by automated text to speech systems (FreeTTS for English and Tex-

tAloud for Korean).3 The videos are shown in random counter-balanced order

to ensure no consistent bias toward segments being shown earlier or later. We

asked the judges to score the sportscasts using the following metrics:

Semantic Sportscasting
Score Fluency Correctness Ability

5 Flawless Always Excellent
4 Good Usually Good
3 Non-native Sometimes Average
2 Disfluent Rarely Bad
1 Gibberish Never Terrible

Fluency and semantic correctness, or adequacy, are standard metrics in

human evaluations of NL translations and generations. Fluency measures how

well the commentaries are structured, including syntax and grammar. Seman-

tic correctness indicates whether the commentaries accurately describe what

3Sample video clips with sound are available on the web at http://www.cs.utexas.
edu/users/ml/clamp/sportscasting/.
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is happening in the game. Finally, sportscasting ability measures the overall

quality of the sportscast. This includes whether the sportscast is interesting

and flows well. In addition to these metrics, we also asked them whether they

thought the sportscast was produced by a human or a computer (Human?) as

a simple form of a Turing test.

Since Mechanical Turk recruits judges over the Internet, we had to

make sure that the judges were not assigning the ratings randomly. Thus, in

addition to asking them to rate each video, we also asked them to count the

number of goals in each video. Incorrect responses to this question caused their

ratings to be discarded. This is to ensure that the judges faithfully watched

the entire clip before assigning ratings. After such pruning, there were on

average 36 ratings (from 40 original ratings) for each of the 8 videos for the

English data. Since it was more difficult to recruit Korean judges over the

Internet, we recruited them in person and collected 7 ratings on average for

each video in the Korean data. Table 3.5 and 3.6 show the results for English

Korean, respectively. Statistically significant results are shown in boldface.

Results are surprisingly good for the English data across all categories

with the machine actually scoring higher than the human on average. How-

ever, the differences are not statistically significant based on an unpaired t-test

(p > 0.05). Nevertheless, it is encouraging to see the machine being rated so

highly. There is some variance in the human’s performance since there were

two different commentators. Most notably, compared to the machine, the hu-

man’s performance on the 2002 final is quite good because the commentary in-
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Game Semantic Sportscasting
Year Commentator Fluency Correctness Ability Human?
2001 Human 3.74 3.59 3.15 20.59%

Machine 3.89 3.81 3.61 40.00%
2002 Human 4.13 4.58 4.03 42.11%

Machine 3.97 3.74 3.29 11.76%
2003 Human 3.54 3.73 2.61 13.51%

Machine 3.89 4.26 3.37 19.30%
2004 Human 4.03 4.17 3.54 20.00%

Machine 4.13 4.38 4.00 56.25%

Average Human 3.86 4.03 3.34 24.31%
Machine 3.94 4.03 3.48 26.76%

Table 3.5: Human evaluation of the English sportscasts. Bold numbers in-
dicate statistical significance between the ratings of the human and machine
sportscasts.

Game Semantic Sportscasting
Year Commentator Fluency Correctness Ability Human?
2001 Human 3.75 4.13 4.00 50.00%

Machine 3.50 3.67 2.83 33.33%
2002 Human 4.17 4.33 3.83 83.33%

Machine 3.25 3.38 3.13 50.00%
2003 Human 3.86 4.29 4.00 85.71%

Machine 2.38 3.25 2.88 25.00%
2004 Human 3.00 3.75 3.25 37.50%

Machine 2.71 3.43 3.00 14.29%

Average Human 3.66 4.10 3.76 62.07%
Machine 2.93 3.41 2.97 31.03%

Table 3.6: Human evaluation of Korean sportscasts. Bold numbers indi-
cate statistical significance between the ratings of the human and machine
sportscasts..
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cluded many details such as the position of the players, the types of passes, and

comments about the overall flow of the game. On the other hand, the human’s

performance on the 2003 final is quite bad because the human commentator

was very “mechanical” and used the same sentence pattern repeatedly. The

machine performance was more even throughout although sometimes it gets

lucky. For example, the machine serendipitously said “This is the beginning

of an exciting match.” near the start of the 2004 final clip simply because this

statement was incorrectly learned to correspond to an extracted MR that is

actually unrelated.

The results for Korean are not as impressive. The human beats the

machine on average for all categories. However, the largest difference between

the scores in any category is only 0.8. Moreover, the absolute scores indicate

that the generated Korean sportscasts are at least of acceptable quality. The

judges even mistakenly thought they were produced by humans one third of

the time. Part of the reason for the worse performance compared to the En-

glish data is that the Korean commentaries were fairly detailed and included

events that were not extracted by our limited perceptual system. Thus, the

machine simply had no way of competing because it is limited to only express-

ing information that is present in the extracted MRs.

We also elicited comments from the human judges to get a more qual-

itative evaluation. Overall, the judges thought the generated commentaries

were good and accurately described the actions on the field. Picking from

the top 5 generated sentences also added variability to the machine-generated
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sportscasts that improved the results compared with earlier experiments (Chen

& Mooney, 2008). However, the machine sometimes still misses significant

plays such as scoring or corner kicks. This is because these plays happen much

less frequently and often coincide with many other events (e.g. shooting for

the goal and kickoffs co-occur with scoring). Thus, the machine has a harder

time learning about these infrequent events. Another issue concerns our repre-

sentation. Many people complained about long gaps in the sportscasts or lack

of details. Our event detector only concentrates on ball possession and not on

positions or elapsed time. Thus, a player holding onto a ball or dribbling for a

long time does not produce any events detected by our simulated perceptual

system. Also, a short pass in the backfield is treated exactly the same as a

long pass across the field to near the goal. Finally, people were expecting

more color-commentary (background information, statistics, or analysis of the

game) typical of a normal sportscast to fill in the voids. This is a somewhat

orthogonal issue since our goal was to build a play-by-play commentator that

described events that were currently happening.

3.6 Using a Generative Alignment Model

After we published about our initial system (Chen & Mooney, 2008),

Liang et al. (2009) developed a generative model that can be used to match

natural language sentences to facts in a corresponding database to which they

may refer. The generative model first selects a sequence of records, then selects

a sequence of fields within the records to describe, and finally generates words
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English dataset Korean dataset
Algorithm Uninitialized Initialized Uninitialized Initialized

Liang et al. (2009) 75.7 69.4
Wasper 59.7 79.3 72.8 76.6
Wasper-Gen 68.1 75.8 75.3 80.0

Table 3.7: Matching results (F1 scores) on 4-fold cross-validation for both the
English and the Korean datasets. Systems run with initialization are initialized
with the matchings produced by Liang et al.’s (2009) system.

English dataset Korean dataset
Algorithm Uninitialized Initialized Uninitialized Initialized

Wasp n/a 80.3 n/a 74.01
Wasper 61.84 79.32 69.12 75.69
Wasper-Gen 70.15 77.59 72.02 77.49

Table 3.8: Semantic parsing results (F1 scores) on 4-fold cross-validation for
both the English and the Korean datasets. Systems run with initialization are
initialized with the matchings produced by Liang et al.’s (2009) system.

English dataset Korean dataset
Algorithm Uninitialized Initialized Uninitialized Initialized

Wasp n/a 0.4580 n/a 0.5828
Wasper 0.3471 0.4599 0.4524 0.6118
Wasper-Gen 0.4560 0.4414 0.5575 0.6796

Table 3.9: Surface realization results (BLEU score) on 4-fold cross-validation
for both the English and the Korean datasets. Systems run with initialization
are initialized with the matchings produced by Liang et al.’s (2009) system.
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based on the fields selected. Their model simultaneously segments streams of

text into utterances and aligns them to their meaning representations. As one

of their evaluation domains, they used our English RoboCup sportscasting

data. Their method solves the matching (alignment) problem for our data,

but does not address the tasks of semantic parsing or language generation.

However, their generative model elegantly integrates the surface realization

and content selection steps in order to find the overall most probable alignment

of sentences and events. They demonstrated improved matching performance

on our English data, generating more accurate NL–MR pairs than our best

system, Wasper-Gen. Thus, we were curious if their results could be used to

improve our own systems, which also perform semantic parsing and generation.

We also ran their code on our new Korean data but that resulted in much worse

matching results compared to our best system as can be seen in Table 3.7.

The simplest way of utilizing their results is to use the NL–MR pairs

produced by their method as supervised data for Wasp. As expected, the

improved NL–MR pairs for the English data resulted in improved semantic

parsers as can be seen in the results in Table 3.8. Even for the Korean dataset,

training on matchings produced by their system ended up doing fairly well even

though the matching performance was poor. For surface realization, using

their matching only produced marginal improvement on the English dataset

and a surprisingly large improvement on the Korean data as shown in Table

3.9. Overall, using the alignments produced by Liang et al.’s system resulted

in good semantic parsers and language generators.
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In addition to training Wasp with their alignment, we can also utilize

their output as a better starting point for our own systems. Instead of initializ-

ing our iterative alignment methods with a model trained on all the ambiguous

NL–MR pairs, they can be initialized with the disambiguated NL–MR pairs

produced by Liang et al.’s system.

Initializing the systems in this manner almost always improved the

performance on all three tasks (Tables 3.7, 3.8, and 3.9). Moreover, the re-

sults from the best systems exceeded that of simply training Wasp with their

alignments in all cases except for semantic parsing on the English data. Thus,

combining Liang et al.’s alignment with our disambiguation techniques seems

to produce the best overall results. For the English data, Wasper with initial-

ization performs the best on both matching and generation. It does slightly

worse on the semantic parsing task compared to Wasp trained on Liang et al.’s

alignment. For the Korean data, all the systems do better than just training

Wasp on the alignment. Wasper-Gen with initialization performs the best

on all three tasks.

Overall, initializing our systems with the alignment output of Liang

et al.’s generative model improved performance as expected. Starting with a

cleaner set of data led to better initial semantic parsers and language genera-

tors which led to better end results. Furthermore, by incorporating a semantic

parser and a language generator, we were able to improve on the alignments

produced by Liang et al.’s algorithm and achieve even better results in most

cases.
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3.7 Removing Superfluous Comments

So far, we have only discussed how to handle ambiguity in which there

are multiple possible MRs for each NL sentence. During training, all our

methods assume that each NL sentence matches exactly one of the potential

MRs. However, some comments are superfluous, in the sense that they do not

refer to any of the extracted events in the set of potential MRs. As previously

shown in Tables 3.2, about one fifth of the English sentences and one tenth of

the Korean sentences are superfluous in this sense.

There are many reasons for the existence of superfluous sentences. They

occur naturally in language because people do not always talk about the cur-

rent environment. In our domain, sportscasters often mention past events or

more general information about particular teams or players. Moreover, de-

pending on the application, the chosen MRL may not represent all of the

things people talk about. For example, our RoboCup MRL cannot represent

information about players who are not actively engaged with the ball. Finally,

even if a sentence can be represented in the chosen MRL, errors in the percep-

tual system or an incorrect estimation of when an event occurred can also lead

to superfluous sentences. Such perceptual errors can be alleviated to some

degree by increasing the size of the window used to capture potential MRs

(a 5-second window in our experiments). However, this comes at the cost of

increased ambiguity because each sentence would be matched with more MRs.

To address the problem of superfluous sentences, we can eliminate the

lowest-scoring NL–MR pairs (e.g. lowest parsing scores for Wasper or lowest
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NIST scores for Wasper-Gen). However, in order to set the pruning thresh-

old, we need to automatically estimate the amount of superfluous commentary

in the absence of supervised data. Notice that while this problem looks similar

to the content selection problem (estimating how likely a MR participates in

a correct matching as opposed to how likely a NL sentence participates in a

correct matching), the approaches used there cannot be applied here. First,

we cannot use the matches inferred by the existing systems to estimate the

fraction of superfluous comments since the current systems match every sen-

tence to some MR. It is also difficult to develop an algorithm similar to IGSL

due to the imbalance between NL sentences and MRs. Since there are many

more MRs, there are more examples of events occurring without commentaries

than vice versa.

3.7.1 Estimating the Superfluous Rate Using Internal Cross Vali-
dation

Since our previous techniques do not apply here, we propose a different

method of estimating the superfluous rate using a form of internal (i.e. within

the training set) cross-validation. First we split the training data into training

and validation sets. We then train many different semantic parsers that assume

different superfluous rates. Each of the semantic parser is then evaluated on the

held-out validation set and the best semantic parser is chosen. We then retrain

on the entire training data (training + validation) using the corresponding

superfluous rate. While this algorithm can be used in conjunction with any of

our systems, we chose to implement it for Krisper which trains much faster
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than our other systems. This makes it more tractable to train many different

semantic parsers and choose the best one.

The key issue with this approach is that our held-out validation set does

not contain the correct answers. Instead, they only contain potential MRs for

each sentence. However, if we assume a reasonable superfluous sentence rate,

then most of the time the correct MR is contained in the set of MRs associated

with an NL sentence. Thus, it follows that a semantic parser that parses an

NL sentence into one of the MRs associated with it is generally better than

one that parses it into an MR not in the set. With this approximate method

of estimating accuracy, we can evaluate the trained semantic parsers and pick

the best one. The algorithm is briefly summarized in the following steps:

1. Split the training set into an internal training set and an internal vali-

dation set.

2. Train Krisper N times on the internal training set using N different

threshold values (eliminating the lowest scoring NL–MR pairs below the

threshold in each retraining iteration in Algorithm 1).

3. Test the N semantic parsers on the internal validation set and determine

which parser is able to parse the largest number of sentences into one of

their potential MRs.

4. Use the threshold value that produced the best parser in the previous

step to train a final parser on the complete original training set.
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3.7.2 Experiments

We evaluated the effect of removing superfluous sentences on all three

tasks: matching, parsing, and generation. We present results for both Krisper

and Krisper-Wasp. For matching, we only show results for Krisper be-

cause it is responsible for disambiguating the training data for both systems

(so Krisper-Wasp’s results are the same). For generation, we only show

results for Krisper-Wasp, since Krisper cannot perform generation.

The matching results shown in Figure 3.8 demonstrate that removing

superfluous sentences does improve the performance for both the English and

Korean data, although the difference is small in absolute terms.

The parsing results shown in Figure 3.9 indicate that removing superflu-

ous sentences usually improves the accuracy of both Krisper and Krisper-

Wasp marginally. As we have observed many times, the parsing results are

consistent with the matching results.

Finally, the surface realization results shown in Figure 3.10 suggest

that removing superfluous comments actually decreases performance some-

what. One potential explanation is that generation is less sensitive to noisy

training data. While removing superfluous comments improves the purity of

the training data, it also removes potentially useful examples. Consequently,

the system does not learn how to generate sentences that were removed from

the data. Overall, for generation, the advantage of having cleaner disam-

biguated training data is likely outweighed by the loss of data.
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Figure 3.8: Matching results comparing the effects of removing superfluous
comments.
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Figure 3.9: Semantic parsing results are improved marginally after superfluous
comment removal.
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Figure 3.10: Surface realization performance decreases after removing super-
fluous comments.
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3.8 Discussion and Possible Extensions

The systems presented so far are limited in the scope of problems that

they can solve. While our framework is very flexible in that we can use prac-

tically any scoring function to determine the best NL–MR pairs, it is limited

in its scalability. In particular, we need to enumerate all the possible MRs for

a NL sentence and score each alignment. Thus, our computation time grows

at least linearly with the amount of ambiguity. Moreover, the initial iteration

of the algorithm (assuming we are not initializing the system with an initial

matching) requires training a translation model with all the possible pairings.

This is typically a very expensive operation where the computation complexity

increases more than just linearly with the number of pairings. This limits the

framework to only deal with ambiguous training data where there are only a

handful of choices for each sentence.

In addition to the pure computational issue, there is a separate issue in

that the different MRs are considered separately. This precludes any interac-

tion between the different MRs. For example, two MRs could have non-trivial

overlapping components, or one MR could be temporally related to another

MR. For example, a pass is preceded by a kick, and a bad pass is followed

by a turnover. A more natural way to represent these kinds of relationships

is to use a graph to represent not only the entities and events but also the

relationships between them. We explore both the computational issues and

the relationships between entities further in our navigation domain where the

space of potential MRs is represented as a connected graph rather than a list
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of independent events.

3.9 Chapter Summary

We have presented an end-to-end system that learns to generate natural-

language sportscasts for simulated RoboCup soccer games by training on sam-

ple human commentaries paired with automatically extracted game events.

By learning to semantically interpret and generate language without explic-

itly annotated training data, we have demonstrated that a system can learn

language by simply observing linguistic descriptions of ongoing events. We

demonstrated the system’s language independence by successfully training it

to produce sportscasts in both English and Korean. Finally, our system also

learns a model for content selection from the ambiguous training data by es-

timating the probability that each event type evokes human commentary.

Dealing with the ambiguous supervision inherent in the training envi-

ronment is a critical issue in learning language from perceptual context. We

have evaluated various methods for disambiguating the training data in order

to learn semantic parsers and language generators. Using a generation eval-

uation metric as the criterion for selecting the best NL–MR pairs produced

better results than using semantic parsing scores when the initial training data

is very noisy. We also demonstrated that our system can be initialized with

alignments produced by a different system to achieve better results than either

system alone. Finally, experimental evaluation verified that the overall system

learns to accurately parse and generate comments and produce sportscasts
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that are competitive with those produced by humans.

However, the framework presented so far is also limited in its ability

to scale to larger and more complex scenarios. In particular, it requires enu-

merating each of the possible NL–MR pairings to select the best ones. We

address this problem in the next chapter in which each NL sentence can be

aligned to an exponential number of possible MRs. Thus, we have to perform

the alignment without explicitly enumerating all the possible choices. Another

issue is representing the relationships between the different MRs. While thus

far we have presented a scenario where each potential MR is independent from

one another, for many applications the MRs are related (e.g. temporally, or

hierarchically where one concept encompasses the other). We also address

this issue in our navigation domain where the MRs are connected by edges to

represent temporal relationships or argument structures.
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Chapter 4

Learning from Ambiguously Supervised

Relational Data

In this chapter we will look at a more difficult ambiguous supervision

setting in which the number of possible alignments is exponential. In particu-

lar, we will examine this problem in the context of building a (virtual) mobile

robot that can following natural language navigation instructions. In addition

to the increased amount of ambiguity in the training data, we also take into

account the relationships between the different semantic entities. We repre-

sent the MRs as connected graphs where the edges represent either temporal

relationships or argument structures.

The goal of our navigation system is to transform natural language in-

structions into executable formal plans. Given no prior linguistic knowledge,

the system learns by simply observing how humans follow navigation instruc-

tions. The training data consists of textual navigation instructions and the

corresponding sequences of primitive actions (forward, turn left, turn right)

recorded from the human followers. We construct the space of possible naviga-

tion plans from these action sequences and represent it as a connected graph.

We then align each instruction to a plan in this space (a connected subgraph).
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Since there are an exponential number of subgraphs, our previous approach of

enumerating all possible alignments and scoring each one becomes intractable

for moderately large graphs. Instead, we first learn a lexicon of words and

short phrases and use it to prune the nodes in the graph. We then train

Krisp, a supervised semantic parser learner, on the resulting refined graphs.

We evaluate the system on data collected from three complex virtual

indoor environments, each containing several objects and landmarks. The

system is able to find good alignments and execute a majority of the single-

sentence instructions. However, its performance on longer instructions is lower

and overall it does worse than humans and a previously hand-built system.

Given that one advantage of a learning system is that it can adapt to new do-

mains or languages, we also translated all the English instructions into Man-

darin Chinese. The system performed similarly on the Chinese data as on the

English data, again demonstrating the generality of our systems.

4.1 Overview

We have already looked at one method of dealing with ambiguous su-

pervision in Chapter 3. By using an EM-like algorithm, we alternated between

training a translation model and selecting the best NL–MR pairs by scoring all

possible alignments for each sentence. The complexity of the algorithm thus

grows at least linearly with the number of potential MRs for each sentence.

In practice, the complexity is usually even worse because we have to train our

initial translation model with all the possible pairings.
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The amount of ambiguity in the supervision partly depends on the

MRL. For example, in the sportscasting task we have concentrated on gen-

erating events related to the player in control of the ball. Had we generated

events for every player as they moved around the field (e.g. pink4 is running

down the sideline), the amount of ambiguity would likely grow by an order-

of-magnitude. In addition to the issue of the range of events to include in the

MRL, the granularity of the MRL also affects the amount of ambiguity. For

example, we represented a passing event with just two arguments: the passer

and the receiver. We did not include any information about the type of the

pass (e.g. a quick pass or a pass across the field) or the location of the pass

(e.g. a pass backward or a pass down to near the corner). If we included such

information we would then need to allow partial matchings since not all NL

sentences would contain every detail. This leads to an exponential number of

possible alignments as we need to consider all possible combinations of whether

to include a particular argument or not.

One way to address the combinatorial problem is to make independence

assumptions. For example, we could use a generative model to first select the

MRs, then select the arguments of each MR to describe, and finally generate

the actual words (Liang et al., 2009). However, such an approach ignores the

relationships between different MRs and also between the different arguments

of a MR. Thus, we take a different approach in solving this problem. Instead of

trying to initially map entire sentences to their representations, we first build

a lexicon of words and short phrases. We encode the relationships between
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the semantic entities as edges in a graph. The meanings of each word or short

phrase thus correspond to connected subgraphs. Using this learned lexicon,

we can then refine the potential MRs by removing parts of the graphs that are

irrelevant.

To study this more complicated scenario of learning from ambiguously

supervised relational data where the MRs are related rather than independent

records, we look at the task of interpreting navigation instructions (MacMa-

hon et al., 2006; Shimizu & Haas, 2009; Matuszek, Fox, & Koscher, 2010;

Kollar, Tellex, Roy, & Roy, 2010; Vogel & Jurafsky, 2010). An important ap-

plication of natural language processing is understanding human instructions.

The ability to parse instructions and perform the intended actions is essen-

tial for smooth interactions with a computer or a robot. Some recent work

has explored learning how to map natural-language instructions into actions

that can be performed by a computer (Branavan et al., 2009; Lau, Drews, &

Nichols, 2009).

The goal of the navigation task is to take a set of natural-language

directions, transform it into a navigation plan that can be understood by

the computer, and then execute that plan to reach the desired destination.

Route directions are a unique form of instructions that specifies how to get

from one place to another, and understanding them depends heavily on the

spatial context. The earliest work on interpreting route directions was done

by linguists (Klein, 1982; Wunderlich & Reinelt, 1982). While this domain

is restricted, there is considerable variation in how different people describe
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Figure 4.1: This is an example of a route in our virtual world named Jelly.
The world consists of interconnecting hallways with varying floor tiles and
paintings on the wall (butterfly, fish, or Eiffel Tower.) Letters indicate objects
(e.g. ‘C’ is a chair and ‘H’ is a hatrack) at an intersection.

the same route. Below are some examples from our test corpus of instructions

given for the route shown in Figure 4.1:

“Go towards the coat rack and take a left at the coat rack. go all

the way to the end of the hall and this is 4.”

“Position 4 is a dead end of the yellow floored hall with fish on the

walls.”
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“turn so that the wall is on your right side. walk forward once.

turn left. walk forward twice.”

“foward [sic] to the fish. first left. go tot [sic] the end.”

“Place your back to the wall of the ’T’ intersection. Turn right.

Go forward one segment to the intersection with the yellow-tiled

hall. This intersection contains a hatrack. Turn left. Go forward

two segments to the end of the hall. This is Position 4.”

As seen in these examples, people may describe routes using landmarks

(e.g. yellow floored hall) or specific actions (e.g. walk forward once). They

may describe the same object differently (e.g. coat rack vs. hatrack). They

also differ in the amount of details given, from just information about the des-

tination (e.g. Position 4 is a dead end ...) to step-by-step instructions along

with verification steps (e.g. This intersection contains a hatrack). Thus, even

ignoring spelling and grammatical errors as well as logical errors (e.g. confus-

ing left and right), navigation instructions can be quite diverse and contain

different information which makes interpreting them a challenging problem.

In this chapter we introduce a general framework for learning to inter-

pret navigation instructions given only sample observations of humans follow-

ing such instructions. The system first infers a formal navigation plan for each

instruction based on the observed actions. Using this as supervision, it then

learns a semantic parser that can map novel instructions into navigation plans

executable by a (simulated) robot. Using a learned lexicon to refine the plans
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is shown to help correctly infer more complex navigation plans. This is vital

in successfully following longer instructions where error recovery is necessary.

The rest of the chapter is organized as follows. We first formally define

our learning problem and the virtual environment we use to test our navigation

system in Section 4.2. We then present the basic framework of our system along

with some experimental results in Section 4.3. We then describe an alternate

online lexicon learning algorithm that can scale to larger data in Section 4.4.

Additional experimental results are presented in Section 4.5 and 4.6, contain-

ing experiments on modifying the parameters of our system and testing with

different folds and translations of the data, respectively. Section 4.7 describes

our effort in collecting additional training data using Mechanical Turk. Fi-

nally, we discuss some potential extensions to the framework in Section 4.8

and summarize the chapter in Section 4.9.

4.2 Navigation Task and Data

The goal of the navigation task is to build a system that can understand

free-form natural-language instructions and follow them to move to the desired

destination. We again approach the problem assuming no prior linguistic

knowledge: syntactic, semantic, or lexical. Consequently, we have to learn

the meanings of all the object names, verbs, spatial relations, as well as the

syntax and compositional semantics of the language. The only supervision we

receive is in the form of observing how humans behave when following sample

navigation instructions.
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Formally, the system is given training data in the form: {(e1, a1, w1),

(e2, a2, w2), . . . , (en, an, wn)}, where ei is a natural language instruction, ai is

an observed action sequence, and wi is a description of the world including the

patterns of the floors and walls as well as the locations of the objects. The goal

is then to build a system that can produce the correct aj given a previously

unseen (ej, wj) pair.

The main challenge of this problem is that the navigation plans de-

scribed by the instructions are not directly observed. As the example in Sec-

tion 4.1 showed, several different plans can be used to navigate the same route.

In other words, there is not always a direct correspondence between ei and ai.

Rather, ei corresponds to an unobserved plan pi that when executed in wi

will produce ai. Thus, we need to first infer the correct pi from the training

data and then build a semantic parser that can translate from ei to pi. This

scenario is similar to the problem of building semantic parsers from question

and answer pairs (Clarke, Goldwasser, Chang, & Roth, 2010; Liang et al.,

2011). The semantic representations are not observed, but must be inferred

from their effects on the world (e.g. actions performed following a navigation

plan or retrieved answer for a question.)

To train and test our system, we use the data and virtual environments

assembled by MacMahon et al. (2006). The data was collected for three differ-

ent virtual worlds (Grid, L, and Jelly) consisting of interconnecting hallways.

An overview map of one of the worlds, Jelly, is shown in Figure 4.1. Each

world consists of several short concrete hallways and seven long hallways each
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with a different floor pattern (grass, brick, wood, gravel, blue, flower, and yel-

low octagons). The worlds are divided into three areas, each with a different

painting on the walls (butterfly, fish, and Eiffel Tower). There are also furni-

tures placed at various intersections (hatrack, lamp, chair, sofa, barstool, and

easel). The three worlds contain the same elements but are arranged in differ-

ent configurations. Grid has the most compact design, resulting in a grid-like

world. L is slightly more spread out while Jelly has the sparest layout. Each

world also has seven chosen positions labeled 1 thorough 7. Details of the

three worlds can be found in Appendix B.

MacMahon et al. (2006) collected both human instructor data and hu-

man follower data. The instructors first familiarized themselves with the envi-

ronment and the seven positions. They were then asked to give a set of written

instructions on how to get from a particular position to another. Since they did

not have access to the overview map, they had to rely on their explorations of

the environments and recall the routes from memory. These instructions were

then given to several human followers whose actions were recorded as they

tried to follow the instructions. On average, each instruction was 5 sentences

long. However, to simplify the learning problem, we manually split the action

sequences and aligned them with their corresponding sentences. Thus, each

training example for our system consists of only a single sentence paired with

a sequence of actions taken in response to this instruction. All the actions are

discrete and there are only three action types in total: turning left, turning

right, and moving from one intersection to another. In addition to collecting
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Figure 4.2: An overview of our system

instruction and follower data, MacMahon et al. (2006) also developed a system

called Marco that can follow natural language navigation instructions. We

utilize part of Marco in our own navigation system.

4.3 System Description

Figure 4.2 shows the general framework of our system. Given the ob-

servation (wi, ai, ei), we first construct a formal navigation plan pi based on

the action sequence ai and the world state wi. An optional step refines this

navigation plan based on the instruction ei. The resulting pair (ei, pi) is then

used as supervised training data for learning a semantic parser. During test-

ing, the semantic parser maps new instructions ej into formal navigation plans

74



pj which are then carried out by the execution module.

While we built the top two components that are responsible for creating

the supervised training data (ei, pi), we use existing systems for building se-

mantic parsers and for executing navigation plans. Specifically, we use Krisp

to train our semantic parsers and Marco’s execution module (MacMahon

et al., 2006) for executing the navigation plans in our test environments. We

will now examine each component in more details.

4.3.1 Constructing Navigation Plans

A simple way to generate a formal navigation plan is to model only the

observed actions. In our case, this means forming plans that consist of only

turning left and right, and walking forward a certain number of steps. This

is often sufficient if the instruction directly refers to the specific actions to be

taken (e.g. turn left, walk forward two steps). We refer to these navigation

plans which capture such direct instructions as basic plans.

To capture more complex instructions that refer to objects and loca-

tions in the environment (e.g. face the pink flower hallway, go to the sofa), we

simulate executing the given actions in the environment. We collect sensory

data during the execution and form a landmarks plan that adds interleaving

verification steps to the basic plan. The verification steps specify the land-

marks that should be observed after executing each basic action. Examples of

both a basic plan and a landmarks plan are shown in Figure 4.3.

We define a formal language called Steering Action Instruction Lan-
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Figure 4.3: Examples of automatically generated plans.

guage (SAIL) that can represent both the basic plans and the landmarks plans.

Details about SAIL and the CFG for the language can be found in Appendix B.

4.3.2 Plan Refinement

While landmarks plans capture more of the meaning of the instructions,

they usually also include a lot of superfluous information. Thus, we need to

determine what information are actually included in the NL instructions. This

turns into the combinatorial alignment problem we mentioned in Section 4.1.

Moreover, we want to maintain the temporal relationships between the actions

as the order of the actions is critical for correct navigation.

Instead of trying to determine the meaning of the entire training sen-

tence as we did in Chapter 3, we first learn a lexicon of words and short

phrases. The learned lexicon is then used to try to identify and remove the

extraneous details in the landmarks plan.
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4.3.2.1 Learning a Lexicon

We build a semantic lexicon by finding the common parts of the for-

mal representations associated with different occurrences of the same word or

phrase (Siskind, 1996). More specifically, we represent the navigation plans as

graphs and compute their common parts by finding an intersection between

them (Thompson & Mooney, 2003). Here we use the term intersection to

mean a maximal common subgraph such that there does not exist a common

subgraph that contains more nodes. In general, there might be multiple possi-

ble intersections between two graphs. For our intersection operation, we bias

toward finding large connected components. We greedily remove the largest

common connected subgraph from both graphs until the two graphs have no

overlapping nodes. The output of the intersection process consists of all the

removed subgraphs. An example of the intersection operation is shown in

Figure 4.4. Given two navigation plans, we first find the largest common con-

nected subgraph. In this case, this is a graph with 4 nodes and shown in the

bottom left corner of the figure. We then remove this subgraph from both of

the navigation plans, and find the next largest common connected subgraph

which is shown in the bottom right corner of the figure. After this subgraph is

removed, there are no more common nodes between the two navigation plans

so the intersection operation is complete. The intersection thus consists of the

two subgraphs shown.

Using the intersections to help us find candidate meanings, we build

lexical entries for all n-grams in the training data. Pseudo-code for our Graph
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Figure 4.4: Example of computing the intersections of two graph representa-
tions of navigation plans.

Intersection Lexicon Learning (GILL) algorithm is shown in Algorithm 5. Ini-

tially, all navigation plans whose instruction contains a particular n-gram w

are added to meanings(w), the set of potential meanings of w. Then, the

algorithm repeatedly computes the intersections of all pairs of potential mean-

ings and adds each connected component of the intersections to meanings(w)

until further intersections do not produce any new entries. Each potential

word-meaning pair is given a score (described below) that evaluates its qual-

ity. After meanings(w) converges, its members with scores higher than a

given threshold are added as lexical entries for w. Unless otherwise speci-

fied, we consider only unigrams and bigrams, and use threshold t = 0.4 and
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Algorithm 5 Graph Intersection Lexicon Learning (GILL)

input Navigation instructions and the corresponding navigation plans
(e1, p1), . . . , (en, pn)

output Lexicon, a set of phrase-meaning pairs
1: main
2: for n-gram w that appears in e = (e1, . . . , en) do
3: for instruction ei that contains w do
4: Add navigation plan pi to meanings(w)
5: end for
6: repeat
7: for every pair of meanings in meanings(w) do
8: Add intersections of the pair to meanings(w)
9: end for

10: Keep k highest-scoring entries of meanings(w)
11: until meanings(w) converges
12: Add entries of meanings(w) with scores higher than threshold t to

Lexicon
13: end for
14: end main

maximum meaning set size k = 100.1

We use the following scoring function to evaluate a pair of an n-gram

w and a graph g:

Score(w, g) = p(g|w)− p(g|¬w)

Intuitively, the score measures how much more likely a graph g appears when

w is present compared to when it is not. A good (w, g) pair means that w

should be indicative of g appearing (i.e. p(g|w) should be close to 1), assuming

1We used k = 1000 in our previously published paper (Chen & Mooney, 2011) which
required a lot more computational time. Consequently, there are some minor differences
between the results presented here than ones previously published.
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w is monosemous.2 However, the reverse is not true since an object or action

may often be referred to by other expressions or omitted from an instruction

altogether. Thus, the absence of a word w when g occurs, p(¬w|g), is not

evidence against g being the meaning of w. To penalize g’s that are ubiquitous,

we subtract the probability of g occurring when w is not present. We estimate

all the probability measures by counting how many examples contain the words

or the graphs, ignoring multiple occurrences in a single example.

4.3.2.2 Refining Navigation Plans Using the Lexicon

One we have built a lexicon, we will use it to help us remove extraneous

components from the landmarks plans. Ideally, a refined plan only contains

actions and objects referred to in the instructions. However, we want to be

conservative in pruning nodes so that important information is not removed

from the data given to the semantic parser learner. Therefore, nodes are only

removed if we are quite certain that they are not mentioned in the instructions.

We do this by removing nodes that do not correspond to the meaning of any

of the words in the instructions. Pseudo-code for our algorithm for refining

the navigation plans is shown in Algorithm 6.

To refine (ei, pi), we first select the highest-scoring lexical entry (w, g)

such that w and g appear in ei and pi, respectively. We then remove all

occurrences of w from ei and mark all occurrences of g in pi, ignoring any

2Notice that the actual magnitude of p(g|w) matters and not just the ratio between
p(g|w) and p(g|¬w). Using odds ratios as the scoring function did not work as well.
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Algorithm 6 Plan Refinement

input A navigation instruction e, the corresponding navigation plan p and a
lexicon L

output A refined navigation plan p′

1: main
2: for highest to lowest scoring entry (w, g) in L do
3: if w in e and g in p then
4: remove all occurrences of w from e
5: mark all occurrences of g in p
6: if e is empty then
7: break
8: end if
9: end if

10: end for
11: remove any node in p that was not marked and return the remaining

graph p′

12: end main

redundant markings. This process is repeated until no words remain in ei

or the entire lexicon has been exhausted. Finally, we remove all nodes in

pi that were not marked and the remaining graph becomes the new refined

plan p′i. If after removing the unmarked nodes the remaining graph becomes

disconnected, we add edges between the actions so they preserve the original

ordering. If there are any orphan arguments that are not connected to any

actions, we simply drop them from the graph.

An example of the plan refinement process is shown in Figure 4.5. Given

the instruction “walk to the couch and turn left” and the associated landmarks

plan, we look for lexical entries that map words in the instruction to subgraphs

of the landmarks plan. In this example, we select the lexical entries for “turn

left” and “walk to the couch” based on their scores. Removing these n-grams
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Figure 4.5: Example of refining the landmarks plan using the lexicon. Only
nodes that correspond to the lexical entries selected are kept.

from the instruction leaves us with only the word “and”. After failing to find

any lexical entry (“and”, g) where g appears in the given graph, we remove

all the nodes in the graph that do not correspond to the lexical entries for

“turn left” and “walk to the couch”. The bottom row shows the result of the

resulting refined landmarks plan p′.

4.3.3 Learning a Semantic Parser

Once we obtain the supervised data in the form of (ei, pi), we can train

a semantic parser that will be responsible for transforming novel instructions

ej into navigation plans pj (i.e. transform turn to face the sofa into Turn(),
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Verify(front: SOFA).) Since the plans inferred by the system are not always

completely accurate representations of the instructions, we chose to use Krisp

which has been shown to be particularly robust to noisy training data (Kate

& Mooney, 2006). Nevertheless, other general-purpose supervised semantic-

parser learners (Zettlemoyer & Collins, 2005; Wong & Mooney, 2006; Lu et al.,

2008) could also be used.

4.3.4 Executing Instructions

After semantically parsing the instruction, we need to execute the nav-

igation plan to reach the intended destination. We use the execution module

in Marco (MacMahon et al., 2006) for this purpose. Marco is a system that

is designed to follow free-form natural language route instructions in our test

environment. Using a syntactic parser and hand-engineered transformation

rules for encoding knowledge about object names, verbs and spatial relation-

ships, raw text is first translated into a compound action specification. The

executor then carries out the specification by interleaving actions and percep-

tions to gain knowledge of the environment and to execute the actions. It has

error recovery mechanisms for reconciling conflicting specifications (e.g. if the

instruction is walk two steps to the chair when the chair is actually three steps

away) and for inferring implicit commands.

To execute a navigation plan, we first transform it from our formal

representation in SAIL into a compound action specification. Since SAIL

represents only a subset of the concepts expressible using compound action
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specifications, this transformation is deterministic and straightforward. The

resulting compound action specification is then given to Marco’s executor to

be carried out in the virtual worlds.

4.3.5 Experimental Evaluations

To evaluate our approach, we use the instructions and follower data

collected by MacMahon et al. (2006) to train and test our system. The data

contains 706 non-trivial route instructions for the three virtual worlds Grid,

L, and Jelly. The instructions were written by six instructors (3 male and 3

female) for 126 unique starting and ending position pairs spread evenly across

the three worlds. A separate group of 36 subjects (21 male, 15 female) followed

these instructions and had their actions (turn left, turn right, or walk forward

from one intersection to the next) recorded. Each instruction had between 1

to 15 human followers.

Since this data was originally collected only for testing purposes and

not for learning, each instruction is quite long with an average of 5 sentences.

However, for learning, it is more natural to observe the instructors interact

with the followers as they progress. Thus, to create our training data, we first

segmented the instructions into individual sentences. Then for each sentence,

we paired it with an action sequence based on the majority of the followers’

actions and our knowledge of the map. During this process, close to 300

sentences that could not be matched to any actions were discarded. Most of

them were of the form “This is position n”. Statistics for the original and
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Original Single-sentence
# instructions 706 3236
Vocabulary size 660 629
Avg. # sentences 5.0 (2.8) 1.0 (0)
Avg. # words 37.6 (21.1) 7.8 (5.1)
Avg. # actions 10.4 (5.7) 2.1 (2.4)

Table 4.1: Statistics about the original corpus collected by MacMahon et
al. as well as the segmented version of it that we use for learning. The
average statistics for each instruction are shown with standard deviations in
parentheses.

segmented data can be seen in Table 4.1. We use the single-sentence version

of the corpus for training and both versions for testing.

4.3.5.1 Inferring Navigation Plans

We first examine how well our system infers the correct navigation plans

from the observed actions. To do this, we hand-annotated each instruction in

the single-sentence corpus with the correct navigation plans and compared

the inferred plans to these gold-standard plans. We used a partial correctness

metric to measure the precision and recall of the inferred plans. To calculate

precision, each step in the inferred plan receives one point if it matches the

type of the corresponding step in the gold-standard plan. An additional point

is then awarded for each matching argument. Precision is computed as the

sum of the points divided by the total number of possible points. Since the two

plans may contain different number of steps, we used a dynamic programming

algorithm to find a order-preserving mapping of steps from one plan to the
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Precision Recall F1
Basic plans 81.46 55.88 66.27
Landmarks plans 45.42 85.46 59.29
Refined landmarks plans 78.54 78.10 78.32

Table 4.2: Partial parse accuracy of how well the inferred navigation plans
match gold-standard annotations.

other such that precision is maximized. Recall is computed similarly with the

roles of the inferred and gold-standard plans swapped. We also compute the

F1 score, the harmonic mean of precision and recall.

The results are shown in Table 4.2. Since the basic and landmarks

plans do not require training, their results are simply the average accuracy

of the generated plans for all the examples. For the refined landmarks plans,

the lexicon is trained on examples from two of the three maps and used to

refine plans from the same two maps. The results are averaged over the three

pairings of maps. Compared to the basic plans, landmarks plans have better

recall but considerably lower precision. However, if we use the lexicon to help

refine these plans then we retain both the high precision of the basic plans and

the high recall of the landmarks plans. This indicates the system is inferring

fairly accurate plans which in turn produces reasonably accurate supervised

examples for training the semantic parser.

4.3.5.2 Building a Semantic Parser

Next, we evaluated the performance of the semantic parsers trained on

these inferred plans. We also compared to semantic parsers trained on gold-
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Precision Recall F1
Basic plans 86.68 48.62 62.21
Landmarks plans 50.40 31.10 38.39
Refined landmarks plans 90.16 55.41 68.59
Gold-standard plans 88.24 71.70 79.11

Table 4.3: Partial parse accuracy of how well the semantic parsers trained on
the different navigation plans performed on held-out test data.

standard plans as an upper baseline. We used a leave-one-map-out approach

where the semantic parser is trained on examples from two maps and tested

on instructions from the third, unseen map. The parse outputs are compared

to the gold-standard plans using partial correctness as before. The results are

shown in Table 4.3. As expected, semantic parsers trained with cleaner data

performed better. However, one thing to note is that precision of the training

data is more important than recall. In particular, semantic parsers trained on

landmark plans performed the worst in all aspects despite the plans having

relatively high recall. This suggests the amount of noise exceeded what could

be handled by Krisp and the system fails to learn to generalize properly.

Thus, our refinement step is vital in keeping the plans relatively clean in order

for Krisp to learn effectively.

4.3.5.3 Executing Navigation Plans

Next, we tested our end-to-end system by executing the parsed nav-

igation plans to see if they lead to the desired destinations. We evaluated

on both the single-sentence and the original (multi-sentence) versions of the
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Single-sentence Complete
Simple generative model 11.08% 2.15%
Learning from basic plans 56.99% 13.99%
Learning from landmarks plans 21.95% 2.66%
Learning from refined landmarks plans 54.18% 16.19%
Learning from gold-standard plans 58.29% 26.15%
Marco 77.87% 55.69%
Human followers N/A 69.64%

Table 4.4: Experimental results comparing different versions of our learning
system and several baselines on following both the single-sentence and the
complete instructions. The numbers are the percentages of trials that resulted
in reaching the correct destinations.

corpus. We employ a strict metric in which a trial is successful if and only

if the final position (and orientation for the single-sentence version) exactly

matches the intended position. This makes the experiments on the original,

complete instructions especially difficult since any error parsing any of the sen-

tences in the instruction can lead to a failure on the task. We again performed

leave-one-map-out cross-validation. For each plan, we executed it 10 times

since the execution component is non-deterministic when the plan is under-

specified (e.g. the plan specifies a turn, but does not specify any directions or

post-conditions). The average results are shown in Table 4.4.

In addition to evaluating the trained semantic parsers, we also com-

pared to several lower and upper baselines. We constructed a lower baseline

that does not utilize any of the linguistic information in the instructions. In-

stead, it builds a simple generative model of the actions in the training data.

It estimates from the data the probability distribution over the number of
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actions, the probability of each action type occurring, and the probability of

each argument occurring given the action type. During testing, the generative

model first selects the number of actions to perform for each instruction, and

then stochastically generates the action type and arguments. The low perfor-

mance of this baseline indicates that the task is non-trivial even though there

are only few available actions (turning and walking forward).

For the upper baselines, we compared to three different performances.

First, we compare to the performance of the semantic parser trained on the

gold-standard plans. This represents what could be achieved if we were able

to solve the ambiguous supervision problem perfectly and produce clean su-

pervised data to train on. Both the basic plans and refined landmarks plans

approach this performance on the simpler, single-sentence task. To better

understand what could be achieved by an engineered (non-learning) system,

we also compared to the full Marco system that parses and executes in-

structions. Finally, we also compared to the performance of human followers

who tried to follow these instructions. While none of our systems perform as

well as Marco, it is important to note that our system must learn the com-

plete language interpreter just from observations. Moreover, our system could

be easily adapted to other languages (see Section 4.6.2) and environments

with different objects and landmarks. On the other hand, Marco was fully

manually-engineered for this environment and hand-tuned on this specific data

to achieve the best performance. As expected, human followers performed the
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Figure 4.6: A plan produced by the semantic parser trained on refined land-
marks plans. While the parser misses some of the redundant information, the
plan contains sufficient details to lead to the correct destination.

best, although even they were still only able to complete 70% of the tasks,3

indicating the difficulty of the complete task.

Of the different versions of our system, landmarks plans performed

the worst as expected because it failed to learn an effective semantic parser.

Between the systems trained on the basic plans and the refined landmarks

plans, basic plans performed slightly better on the single-sentence task and

refined landmarks plans performed better on the complete task. The better

performance of the basic plans on the single-sentences task shows that for these

shorter instructions, directly modeling the low-level actions is often sufficient.

3Sometimes the instructions were wrong to begin with, since they were recreated from
memory by the instructors.

90



The additional benefit of modeling the landmarks is not seen until testing on

complete instructions. In this case, landmarks are often vital for recovering

from small mistakes in the instructions or the parsing, or both. The system

using refined landmarks plans performed the best out of the three variations

in this setting, matching the trend observed in the parse-accuracy experiments

(Table 4.3). A sample parse for this system is shown in Figure 4.6. While the

plan is not a perfect representation of the instruction, it contains sufficient

details to complete the task successfully in all trials.

4.4 Online Lexicon Learning

Central to our navigation system is the GILL algorithm described in

Section 4.3.2.1. The lexicon it learns is our primary tool for solving the am-

biguous supervision problem. We refine the navigation plans by removing

parts of the plans that do not correspond to any of the words or phrases in the

instructions according to the lexicon. Consequently, learning a good lexicon is

vital to the success of our overall system.

One issue we have not considered so far is the scalability of our sys-

tems. Part of the motivation for studying language learning from ambiguous

supervision is the abundance of training data potentially available since no

semantic annotations are required. However, to make use of such data, our

learning system must be computationally efficient to realistically scale to large

datasets. One problem with GILL is that the intersection operation can be

quite expensive. It requires finding the largest common connected subgraph
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between two graphs which is a time-consuming step. Moreover, the algorithm

requires computing the intersections between every pair of potential meanings.

While we can limit the beam size (k) to reduce the computation time, doing

so could also hurt the quality of the lexicon learned.

In this section, we present another lexicon learning algorithm that is

much faster than GILL and could be used in an online setting. The main

insight is that most words or short phrases correspond to small graphs. Thus,

we could concentrate our attention on only candidate meanings that are less

than a certain size. Using this constraint, we could generate all the potential

small connected subgraphs for each navigation plan in the training examples

and discard the original graph. We will call this new algorithm the Subgraph

Generation Online Lexicon Learning (SGOLL) algorithm. Pseudo-code for

SGOLL is shown in Algorithm 7.

As we encounter each new training example that consists of a navi-

gation instruction and a corresponding navigation plan, we will update the

co-occurrence count between all n-grams w that appear in the instruction and

all connected subgraphs g of the navigation plan with size less than or equal to

m. We will also update the counts of how many examples we have encountered

and counts of the n-grams w and subgraphs g. At any given time, we can com-

pute a lexicon using these various counts. Specifically, for each n-gram w, we

will look at all the subgraphs g that co-occurred with it, and compute a score

for the pair (w, g). If the score is higher than the threshold t, we will add the

entry (w, g) to our lexicon. We use the same scoring function as before, which
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Algorithm 7 Subgraph Generation Online Lexicon Learning
(SGOLL)

input A sequence of navigation instructions and the corresponding navigation
plans (e1, p1), . . . , (en, pn)

output Lexicon, a set of phrase-meaning pairs
1: main
2: for training example (ei, pi) do
3: Update((ei, pi))
4: end for
5: OutputLexicon()
6: end main
7:
8: function Update(training example (ei, pi))
9: for n-gram w that appears in ei do

10: for connected subgraph g of pi such that the size of g is less than or
equal to m do

11: Increase the co-occurrence count of g and w by 1
12: end for
13: end for
14: Increase the count of examples, each n-gram w and each subgraph g
15: end function
16:
17:
18: function OutputLexicon()
19: for n-gram w that has been observed do
20: for subgraph g that has co-occurred with w do
21: if score(w, g) > threshold t then
22: add (w, g) to Lexicon
23: end if
24: end for
25: end for
26: end function
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can be computed efficiently using the counts we keep. We again consider only

unigrams and bigrams, and use threshold t = 0.4, and maximum subgraph

size m = 3 unless otherwise specified.

It should be noted that SGOLL can also become computationally in-

tractable if the sizes of the navigations plans are large or if we set the maximum

subgraph size m to a large number. Moreover, the memory requirement can

be quite high if there are many different subgraphs g associated with each

n-gram w. To deal with such scalability issues, we could use beam-search as

we did in GILL, and only keep the top k candidates associated with each w.

Another important step is to define canonical orderings of the nodes in the

graphs. This allows us to determine if two graphs are identical in constant

time and also lets us use a hash table to quickly update the co-occurrence

and subgraph counts. Thus, even given a large number of subgraphs for each

training example, each subgraph can be processed very quickly. Finally, this

algorithm readily lends itself to being parallelized. Each processor would get

a fraction of the training data and compute the counts individually. Then the

counts can be merged together at the end to produce the final lexicon.

4.4.1 Experiments

While computational efficiency is the main goal for designing the SGOLL

algorithm, we must first verify that it can solve the ambiguous supervision

problem for the navigation task. We measure its performance on three tasks

as before. First, we compute the partial precision and recall of the refined
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Precision Recall F1
GILL 78.54 78.10 78.32
SGOLL 82.91 71.28 76.65

Table 4.5: Partial parse accuracy of how well SGOLL can infer the gold-
standard navigation plans.

plans generated using the lexicon learned by SGOLL. Then we measure the

performance of the semantic parsers trained on these refined plans. Finally,

we evaluate on the end-to-end navigation task. We include the performance

of GILL as reported in Section 4.3.5 for easy comparisons. All the results

reported are from using the lexicons learned by GILL and SGOLL to refine

the landmarks plans.

First, we examine the quality of the refined navigation plans produced

using SGOLL’s lexicon. The precision, recall, and F1 of these plans compared

to gold-standard annotations are shown in Table 4.5. Compared to GILL, the

plans produced by SGOLL has higher precision and lower recall. This is due to

the fact that SGOLL explicitly limits the size of the subgraphs in the lexicon (in

this case, a maximum of size 3). On the other hand, graph intersections often

produce large graphs because there are usually a lot of similarities between the

different navigation plans. Consequently, GILL is more likely to mark more of

the original landmarks plan and retain more of the nodes.

Next we look at the performance of the semantic parsers trained on the

navigation plans produced by SGOLL. The results are shown in Table 4.6. We

see that the numbers are almost identical, an encouraging sign that SGOLL
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Precision Recall F1
GILL 90.16 55.41 68.59
SGOLL 90.04 55.06 68.31

Table 4.6: Partial parse accuracy of the semantic parsers trained on navigation
plans produced by SGOLL.

Single-sentence Complete
Basic plans 56.99% 13.99%
GILL 54.18% 16.19%
SGOLL 55.63% 14.84%

Table 4.7: End-to-end navigation task completion rate for SGOLL.

is performing at least as well as the more time-consuming GILL algorithm.

Finally, we evaluate SGOLL on the end-to-end navigation task. Com-

pletion rates for both the single-sentence tasks and the complete tasks are

shown in Table 4.7. While SGOLL does better than GILL on the single-

sentence task, it is still worse than just training on the basic plans. Its perfor-

mance on the complete task is worse than GILL although still slightly better

than the basic plans. Overall this is not a particularly positive result but we

will see in Section 4.6 later how to modify the algorithm slightly to improve

its performance on this navigation task.

Having established that SGOLL is at least comparable to GILL on

most of the tasks we evaluated on, we will next look at the computation times

required by both algorithms. The timing results for the three different splits

of data as well as the average times are shown in Table 4.8. All the results
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Grid-L Grid-Jelly L-Jelly Average
GILL 1,544.25 2,670.98 2,467.65 2,227.63
SGOLL 146.5 245.34 223.54 205.13

Table 4.8: The time (in seconds) it took for each algorithm to run on the
different data splits. The last column shows the average time across the three
data splits.

are obtained running the algorithms on Dell PowerEdge 1950 servers with 2x

Xeon X5440 (quad-core) 2.83GHz processors and 32GB of RAM. Here SGOLL

has a decidedly large advantage over GILL, requiring an order of magnitude

less time to run.

4.4.2 Discussion

We have introduced an alternative lexicon learning algorithm that is

much faster than GILL and potentially could scale to learning from much

larger datasets. Moreover, its performance is generally comparable to that of

GILL. As we will see in the next section, by making some further modifications

to the lexicon learning algorithms, SGOLL even surpasses the performance of

GILL in many instances.

One thing to note though is that while SGOLL makes the lexicon learn-

ing step much faster and scalable, another bottleneck in our overall system is

training the semantic parser. Existing semantic parser learners such as Krisp

or Wasp were not designed to scale to very large datasets and have trou-

ble training on more than a few thousand examples. This remains an open

problem for future research.
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4.5 Modifying the Basic Framework

In this section we look at other, more minor ways of improving our

systems that do not require changing our entire learning algorithms. We first

look at adding the constraint of minimum support to the lexicon learning algo-

rithms. In other words, we require an n-gram to be observed at least m times

before we will create a lexicon entry for it. We then look at learning higher-

order n-grams beyond just unigrams and bigrams. Finally, we examine how

changing the context-free grammar for our formal navigation plan language

SAIL allows Krisp to learn better semantic parsers.

4.5.1 Requiring Minimum Support

One of the issues with the current lexicon learning algorithms is that

often a lexical entry consisting of a rare n-gram and a rare graph will receive

a very high score. Recall that the scoring function we use to rank the lexical

entries is as follows for an n-gram w and a graph g:

Score(w, g) = p(g|w)− p(g|¬w)

If an n-gram w that only appears once in the training data co-occurs with a

graph g that also only appears once in the data, the pair (w, g) will receive

a perfect score of 1. Since we use a greedy approach of selecting the highest

scoring lexical entries first, having such entries in the lexicon could potentially

cause us to skip over another high-scoring lexical entry that has a lot more

evidence supporting it. One way to alleviate the problem is to add smoothing
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Minimum GILL SGOLL
Support (m) Precision Recall F1 Precision Recall F1

0 78.54 78.10 78.32 82.91 71.28 76.65
10 91.52 68.80 78.49 86.48 72.18 78.68
20 94.04 64.76 76.61 87.30 72.09 78.97
30 94.86 60.49 73.74 87.90 70.80 78.43
50 96.30 52.56 67.86 88.19 67.58 76.52
100 97.86 41.99 58.62 89.10 60.33 71.94

Table 4.9: Accuracy of the inferred plans when requiring minimum support in
the lexicon learning step. The highest value in each column is shown in bold.

Minimum GILL SGOLL
Support (m) Precision Recall F1 Precision Recall F1

0 90.16 55.41 68.59 90.04 55.06 68.31
10 95.86 51.59 66.96 91.81 55.64 69.25
20 97.34 49.91 65.90 91.99 54.67 68.55
30 97.72 47.60 63.94 92.81 53.81 68.06
50 98.15 43.35 60.10 92.52 50.59 65.33
100 98.92 37.48 54.30 94.44 46.10 61.93

Table 4.10: Accuracy of the trained semantic parsers when requiring minimum
support in the lexicon learning step.

to the estimated probabilities. Here we take an even simpler approach of

requiring minimum support for an n-gram before we add it to our lexicon.

This constraint can easily be added to both the GILL and SGOLL algorithms.

For GILL, we do not try to compute the meaning of an n-gram if its initial

set of candidate meanings has size less than m. For SGOLL, we skip over any

n-gram that has counts less than m when we are computing the lexicon. We

test the performance of both algorithms on refining the landmarks plans.
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Minimum GILL SGOLL
Support (m) Single-sentence Complete Single-sentence Complete

0 54.18% 16.19% 55.63% 14.84%
10 56.25% 14.46% 57.19% 17.90%
20 55.94% 13.46% 56.85% 18.04%
30 52.35% 8.18% 55.57% 16.68%
50 49.34% 4.52% 53.23% 11.94%
100 43.86% 1.92% 51.26% 7.45%

Table 4.11: End-to-end navigation task completion rate when requiring mini-
mum support in the lexicon learning step.

The results on the three tasks: inferring navigation plans, training the

semantic parser, and executing navigation plans, are shown in Tables 4.9, 4.10,

and 4.11, respectively. Increasing the minimum support required generally in-

creases the precision of the inferred plans but lowers the recall, a result that

carries over to the semantic parsing results as well. This is as expected since we

are basically throwing away entries from our original lexicon. Consequently,

it is likely we will mark less of the nodes in the landmarks plans. One ex-

ception is when we add a minimum support of 10 to SGOLL, which actually

resulted in slightly better recall and precision. For the navigation task, re-

quiring minimum support improved the single-sentence performance for GILL

but decreased the complete task performance. On the other hand, SGOLL

performed better in both settings and even outperforms GILL now. One thing

to note is that the two algorithms do not always count the number of occur-

rences for a n-gram w the same way. GILL counts the size of the set of the

initial candidate meanings, thus potentially counting multiple occurrences of
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w only once if they are all associated with the same graph. This is because we

want to ensure that we have observed w in many different contexts so we can

generate a good list of intersections. However, the same is not necessary for

SGOLL which does not rely on intersections to generate candidate meanings.

Overall, requiring at least some minimal support seems to be beneficial. Thus,

we set m to be 10 for the rest of the experiments.

4.5.2 Varying the Maximum N-grams Learned

So far we have only looked at learning the meanings of unigrams and

bigrams. Part of the reason we initially avoided trying to learn higher-order

n-grams is due to the sparsity of the data as we increase n. As mentioned

already, rare n-grams often resulted in high scoring entries in the lexicon due

to the lack of negative evidence. However, since we added the requirement of

minimal support, this is less of a concern. In general, trying to learn higher-

order n-grams should at worst result in no changes in the lexicon as they would

not have the requisite support. We again ran the same experiments as before,

this time varying the maximum n-grams learned by GILL and SGOLL.

The results on the three tasks: inferring navigation plans, training the

semantic parser, and executing navigation plans, are shown in Tables 4.12,

4.13, and 4.14, respectively. In general, increasing the maximum n-grams

improved the results on all three tasks. At worst, it made no difference when

we try to learn the higher-order n-grams. We set n to be 4 for the rest of the

experiments as it empirically gave the best results overall.
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Maximum GILL SGOLL
N-Gram Precision Recall F1 Precision Recall F1

1 93.27 65.84 77.12 85.24 74.96 79.76
2 91.52 68.80 78.49 86.58 72.38 78.85
3 91.45 70.44 79.51 87.22 73.20 79.60
4 91.48 70.37 79.48 87.32 72.96 79.49
5 91.48 70.36 79.47 87.27 72.61 79.27

Table 4.12: Accuracy of the inferred plans when varying the maximum n-grams
learned in the lexicon learning step.

Maximum GILL SGOLL
N-Gram Precision Recall F1 Precision Recall F1

1 97.74 50.01 66.05 90.21 56.70 69.61
2 95.86 51.59 66.96 91.50 55.24 68.85
3 95.78 53.02 68.15 91.86 55.55 69.22
4 95.80 53.48 68.54 92.22 55.70 69.43
5 95.77 52.91 68.07 91.96 55.26 69.02

Table 4.13: Accuracy of the trained semantic parsers when varying the maxi-
mum n-grams learned in the lexicon learning step.

Maximum GILL SGOLL
N-Gram Single-sentence Complete Single-sentence Complete

1 55.90% 13.05% 55.96% 15.66%
2 56.11% 14.52% 56.30% 17.38%
3 56.81% 17.53% 56.67% 16.65%
4 57.22% 17.33% 57.16% 17.56%
5 56.55% 16.42% 57.10% 17.53%

Table 4.14: End-to-end navigation task completion rate when varying the
maximum n-grams learned in the lexicon learning step.
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4.5.3 Changing the Context-Free Grammar for SAIL

Finally, we look at a change to the system that does not affect the

lexicon learning process. Looking at all our results, we notice that even the

semantic parsers trained on gold-standard data do not perform all that well.

Thus, to boost the performance of our system, we would also need to improve

the semantic parser learning step. Without altering Krisp or designing a new

semantic parser learning algorithm, we look at changing the CFG we have

used to parse the MRs. Since Krisp is learning when to apply a production

rule in the CFG based on the natural language input, it is important that the

production rules mirror the structure of the natural language (Kate, 2008).

Thus, even using the same MRL (in this case, SAIL), changing its CFG could

lead to improved semantic parsing performance.

Our original CFG for SAIL was designed to be compact with a small

number of production rules. There were many recursive rules that can be used

to generate an infinite number of actions or arguments. While these rules are

quite expressive, they do not really correspond to any words or phrases in the

NL. To alleviate this problem, we designed another CFG by expanding out

many of the rules. While this resulted in many more production rules, each

rule is better aligned with the NL. Details of both the original, compact CFG

and the new, expanded CFG can be found in Appendix B.

Since this modification only affects the semantic parsing step, we only

look at the results of two tasks: semantic parsing and navigation plan execu-

tion. We look at all the results we had training semantic parsers on different
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Navigation Compact CFG Expanded CFG
Plan Type Precision Recall F1 Precision Recall F1
Basic 86.68 48.62 62.21 85.39 50.95 63.76
Landmarks 50.40 31.10 38.39 52.20 50.48 51.11
GILL 95.80 53.48 68.54 94.13 54.29 68.79
SGOLL 92.22 55.70 69.43 88.36 57.03 69.31
Gold-standard 88.20 71.74 79.11 90.09 76.29 82.62

Table 4.15: Accuracy of the trained semantic parsers when using different
CFGs for the MRL.

Navigation Compact CFG Expanded CFG
Plan Type Single-sentence Complete Single-sentence Complete
Basic 56.92% 14.30% 58.72% 16.21%
Landmarks 22.04% 2.64% 18.67% 2.66%
GILL 57.14% 17.53% 57.85% 16.15%
SGOLL 57.09% 17.56% 57.28% 19.18%
Gold-standard 58.24% 26.51% 62.67% 29.59%

Table 4.16: End-to-end navigation task completion rate when using different
CFGs for the MRL.
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plans, including the gold-standard annotations and see how they are affected

when we switch to the expanded CFG. The results are shown in Tables 4.15 and

4.16. In general, using the expanded CFG produced better semantic parsers

and also improved navigation results. Thus, in the rest of the experiments we

use this expanded CFG instead of the original CFG.

4.6 Experimenting on Different Data

So far we have used the exact same training/testing data splits for

all our experiments. In this section we will look at two other experiment

scenarios. First, we will perform leave-one-instructor-out experiments. Instead

of training on data from two maps and testing on the third, we will train on

data from 5 out of the 6 instructors, and test on the 6th. This surprisingly

resulted in much worse performance even though each training split contained

more training examples. We will take a close look at the results to examine

some of the reasons why this might have happened. The other experiment we

will show is training and testing our system on Mandarin Chinese data. As

was the case with the sportscasting task when we evaluated on Korean data,

we want to demonstrate the generality of our system on the navigation task.

The results for Chinese are about the same as for English, an encouraging sign

that our system is indeed language-independent.
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4.6.1 Cross-Instructor Experiments

The navigation corpus was collected from 6 different instructors over 3

different maps. The experimental results we have presented thus far have all

split the data along the different maps. We train the system on examples from

2 of the 3 maps, then test the system on the held-out map. This gives us an

idea of how the system might perform if we use it in an unseen, but relatively

similar environment. However, another way to perform the cross-validation

is to split the data among the different instructors. This would provide us

with information about how the system might perform when it faces a new

instructor.

To see how well our system could generalize across instructors, we ran

the cross-instructor experiments, evaluating on the same three tasks as before.

The results for inferring the navigation plans, training the semantic parser,

and the end-to-end navigation task are shown in Tables 4.17, 4.18, and 4.19,

respectively. On inferring the navigation plans, the performance is slightly

better than in the cross-map experiments. This is partly due to the fact that

each training split is larger in this scenario, composed of roughly 5
6

of the total

data rather than just 2
3
. However, the performances of the trained semantic

parsers and consequently the overall navigation system are much worse than

in the cross-map scenario.

We can gain some insight into why the cross-instructor scenario resulted

in much worse performances by taking a closer look at the results. Table 4.20

shows the breakdown of the navigation task completion rate for each individual
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Precision Recall F1
GILL 91.80 70.96 80.01
SGOLL 87.73 74.03 80.28

Table 4.17: Accuracy of the inferred navigation plans in the cross-instructor
experiments.

Precision Recall F1
GILL 91.95 38.70 53.82
SGOLL 84.03 40.54 54.24

Table 4.18: Accuracy of the semantic parsers in the cross-instructor experi-
ments.

Single-sentence Complete
GILL 35.33% 3.02%
SGOLL 37.71% 5.25%

Table 4.19: End-to-end navigation task completion rate for the cross-instructor
experiments.

Test GILL SGOLL
Instructor Single-sentence Complete Single-sentence Complete
WLH 42.82% 4.52% 41.47% 2.89%
EDA 56.21% 3.44% 56.90% 1.48%
EMWC 53.37% 2.34% 68.98% 14.76%
KLS 16.44% 1.31% 16.14% 3.52%
KXP 27.29% 3.20% 24.19% 5.60%
TJS 15.85% 3.31% 18.58% 3.22%

Table 4.20: End-to-end navigation task completion rate broken down by each
training-testing split in the cross-instructor experiments.
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training-testing split. As can be seen, there is a huge variance between the

performances on following navigation instructions from different instructors.

For example, the single-sentence completion rates for the instructors WLH,

EDA, and EMWC are much higher than for the other three instructors. This

is evidence that there are a lot more differences between instructions provided

by different people than between instructions provided by the same person

for different, but similar environments. As we showed in some of the sample

instructions in Section 4.1, there are many different styles of giving navigation

instructions. Not only do they differ in the words or sentence structures used,

they also differ in how they formulate the navigation plans. Given the small

sample size (only trained on 5 instructor styles), our learning system has a

hard time generalizing to unseen instructors. To make the system useful for

a practical application, we would thus have to collect instructions from many

different instructors rather than from just a few people.

4.6.2 Chinese Translation Data

One of the advantages of a learning system is that it can adapt to new

scenarios given the proper training data. While our cross-instructor experi-

ments showed that we did not have a sufficient number of different instructor

styles in our data to properly generalize across them, here we look at adapting

the system in another way. Since we take a language-independent approach,

our system is able to learn a new language without any modifications to the

system. Thus, we translated all of our English instructions into Mandarin
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Word Segmentation Precision Recall F1
GILL By character 90.90 73.21 81.02
GILL Stanford Segmenter 91.79 71.41 80.23
SGOLL By character 85.88 75.18 80.17
SGOLL Stanford Segmenter 87.07 71.67 78.61

Table 4.21: Accuracy of the inferred plans for the Chinese corpus.

Chinese and tested to see if our system could indeed adapt to the translated

training and testing data. The translation was done by a single native Chinese

speaker.

One issue that does affect our system is the fact that Chinese is usually

written without spaces between the words. Consequently, we would have to

first segment the Chinese characters into words before we can apply our lexicon

learning algorithms. We tried two different approaches. The first approach

just naively inserts a space between every character, effectively treating each

Chinese character as a word. While this may seem conceptually unpleasing

at first, we are actually guaranteed to build lexical entries for all real Chinese

words that contain less than 4 characters. This is because we are learning

n-grams rather than just words. Thus, with the maximum n set to 4, we will

consider all possible sequences of characters up to length 4. Of course, in this

process we will also introduce many noisy lexical entries for sequences that

start or end in the middle of words. The second approach we tried is using an

existing tool to segment the characters. We used the Stanford Chinese Word

Segmenter (Chang, Galley, & Manning, 2008) to perform the segmentation.
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Word Segmentation Precision Recall F1
GILL By character 92.48 56.47 70.01
GILL Stanford Segmenter 94.36 55.72 70.00
SGOLL By character 87.95 61.20 72.16
SGOLL Stanford Segmenter 88.87 58.76 70.74

Table 4.22: Accuracy of the semantic parsers trained on the Chinese data

Word Segmentation Single-sentence Complete
GILL By character 57.27% 16.73%
GILL Stanford Segmenter 57.53% 15.93%
SGOLL By character 58.54% 16.11%
SGOLL Stanford Segmenter 58.70% 20.13%

Table 4.23: Navigation task completion rates for the Chinese corpus

The results for the experiments can be seen in Tables 4.21, 4.22, and

4.23. The performance on all three tasks are similar to those for the English

data, indicating that our system can indeed readily adapt to learn different

languages. The results for our two different word segmentation approaches are

also about the same, except for the complete navigation task where SGOLL

trained on words segmented by the Stanford Segmenter achieved the best

completion rate. Nevertheless, this is an encouraging sign that even without

an external tool to perform the word segmentation, a simple approach like

segmenting by character can produce comparable results.

110



4.7 Collecting Additional Data using Mechanical Turk

One of the motivations for studying ambiguous supervision is the po-

tential ease of acquiring large amounts of training data. Without requiring the

annotations of MRs, a human only has to demonstrate how language is used

in context. This is generally simple to do and consequently the system can

be trained by anyone. We validate this claim by collecting additional train-

ing data for the navigation domain using Amazon’s Mechanical Turk (Snow,

O’Connor, Jurafsky, & Ng, 2008).

There are two types of data we are interested in collecting for the

navigation task: natural language navigation instructions and follower data.

Thus, we created two tasks on Mechanical Turk. The first one asks the workers

to supply instructions for a randomly generated sequence of actions. The

second one asks the workers to try to follow a given navigation instruction in

our virtual environment. The latter task is used to generate the corresponding

action sequences for instructions collected from the first task.

4.7.1 Task Descriptions

To facilitate the data collection, we first recreated the 3D environments

used by MacMahon et al. (2006) for collecting the original data. This Java

application allows the user to freely navigate our three worlds, Grid, L, and

Jelly using the discrete controls of turning left, turning right, and moving

forward one step. While we did not do so, we could also define new worlds

with new objects and floor patterns with relative ease by supplying new 3D
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Figure 4.7: A screenshot of the follower task. Given a previously collected
instruction, the worker is asked to follow that instruction to reach the intended
destination.

mesh models or texture patterns.

The follower task is fairly straightforward using our application. The

application first connects to our server requesting a follower problem to be

solved which consists of an instruction and a starting location in a map. The

worker is then placed at the starting location and asked to follow the navigation

instruction as best as they could using the three discrete controls. When they

have finished following the instruction, they press the submit button to get

to the next problem. Alternatively, they could also skip the problem if they

could not understand the instruction or if the instruction did not describe a

viable route. A screenshot of this task can be seen in Figure 4.7. For each

Human Intelligence Task (HIT), we asked the worker to complete 5 follower

problems. We paid them $0.05 for each HIT, or 1 cent per follower problem.
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Figure 4.8: A screenshot of the instructor task. After watching a simulation
of moving through a randomly generated path, the worker is asked to write
an instruction that would lead someone to follow that path.

The instructions used for the follower problems were mainly collected from

the Mechanical Turk instructor task. However, some of the instructions came

from data collected by MacMahon (2007) that we previously did not use (hence

did not segment into single sentences and align to the corresponding action

sequences.)

The instructor task is slightly more involved because we ask the workers

to provide new navigation instructions. The application again first connects to

our server requesting an instructor problem. An instructor problem consists

of a randomly generated action sequence in one of the worlds. The action

sequences have a maximum length of 4 to keep the instructions short (we

asked for a single sentence but this was not enforced). The worker is then
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asked to watch a simulation of the action sequence and provide instructions

that would lead someone to perform those actions. This is similar to how

Tellex et al. (2011) collected instruction data for their forklift application. A

screenshot of this task is shown in Figure 4.8. Since this task requires more

time to complete, each HIT consists of only 3 instructor problems. Moreover,

we pay the workers $0.10 for each HIT, or about 3 cents for each instruction

they write.

One issue with collecting data using Mechanical Turk is quality control.

This is especially problematic for the instructor task because there are no cor-

rect answers we can verify against. Consequently, we employ a tiered payment

structure (Chen & Dolan, 2011) to reward and retain the good workers. The

workers who have been identified to consistently provide good instructions

were allowed to do higher-paying version of the same HITs that pay $0.15

instead of $0.10.

4.7.2 Data Statistics

Over a 2-month period we accepted 2,884 follower HITs and 810 instruc-

tor HITs from 653 workers. This corresponds to over 14,000 follower traces

and 2,400 instructions. The total cost of the data collection was $277.92.

While there were 2,400 instructions, we needed to filter them to make sure

they were of reasonable quality. First, we discarded any instructions that did

not have at least 5 follower traces. Then we looked at all the follower traces

and discarded any instruction that did not have sufficient follower agreement
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# instructions 1011
Vocabulary size 590
Avg. # words 7.69 (7.12)
Avg. # actions 1.84 (1.24)

Table 4.24: Statistics about the navigation instruction corpus collected using
Mechanical Turk. The average statistics for each instruction are shown with
standard deviations in parentheses.

(> 0.5). In other words, we require that the majority of the followers agree on

a single path.

Using our strict filter, we were left with slightly over a thousand in-

structions. Statistics about this corpus can be seen in Table 4.24. Overall,

this corpus has a slightly smaller vocabulary than the original data, and each

instruction is slightly shorter both in terms of the number of words and the

number of actions.

4.7.3 Using Mechanical Turk Data as Additional Training Data

One way to utilize the newly collected instructor and follower data is

to use it to augment our existing training data. We added the corpus collected

from Mechanical Turk to our original dataset and performed leave-one-map-

out cross-validation. To make comparisons to earlier results easier, the test set

only contains examples from the original dataset and not from the Mechanical

Turk data.

The results of augmenting the original training data with the Mechan-

ical Turk data is shown in Tables 4.25, 4.26, and 4.27. While there were not
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Precision Recall F1
GILL 92.04 70.21 79.61
SGOLL 87.35 73.25 79.67

Table 4.25: Accuracy of the inferred plans for the original data using lexicon
learned from the original data plus data collected from Mechanical Turk

Precision Recall F1
GILL 95.12 52.86 67.87
SGOLL 88.11 56.57 68.90

Table 4.26: Accuracy of the semantic parsers trained on the original data
plus data collected from Mechanical Turk. The parsers are only tested on the
original data.

Single-sentence Complete
GILL 58.16% 18.30%
SGOLL 57.62% 20.64%
GILL (without Mechanical Turk data) 57.85% 16.15%
SGOLL (without Mechanical Turk data) 57.28% 19.18%

Table 4.27: End-to-end navigation task completion rates for systems trained
on the original data plus data collected from Mechanical Turk. The systems
are only tested on the original data.
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much difference in the first two tasks compared to training on just the origi-

nal data, we see some improvements on the end-to-end navigation task. For

both the single-sentence and the complete tasks, training with the addition

data increased the performance. This is indication that the data we collected

were indeed useful for solving the original problem even though the data were

collected in very different manners from very different populations (controlled

subjects versus Mechanical Turk workers).

4.7.4 Using Mechanical Turk Data as a Novel Test Set

Another way to utilize the Mechanical Turk data is to use it as a true

test set since the data was never observed during training or development of

our system. We train on all the original data and test on the Mechanical

Turk data. This can be seen as another cross-instructor experiment as we are

testing how well the system can generalize to unseen instructors.

The results for the experiments are shown in Tables 4.28 and 4.29. No

semantic parsing results are reported since we do not have gold-standard an-

notations for the Mechanical Turk data. For the navigation task, there are no

differentiations between the single-sentence and complete settings because all

of the Mechanical Turk data were single sentences.4 The completion rates are

much worse than when we performed cross-map validation, although better

than when we performed cross-instructor validation on the original data. This

4Some workers did write a few sentences, but we ignored the sentence boundaries and
treated them as a single sentence
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Precision Recall F1
GILL 92.27 71.69 80.69
SGOLL 87.99 74.33 80.59

Table 4.28: Accuracy of the inferred plans training on the entire original data
collected by MacMahon et al. (2006)

GILL 39.59%
SGOLL 40.53%
Marco 55.89%

Table 4.29: Task completion rates testing on the newly collected instructions
from Mechanical Turk

again confirms that we need to train on more instructor styles to properly

generalize to unseen instructors. The relative positive performance compared

to the previous cross-instructor experiment is likely due to the fact that the

instructions in the Mechanical Turk corpus are shorter and simpler in gen-

eral. The task completion rate of Marco on this new test set is also provided

as comparison. As expected, Marco also performed significantly worse even

though it does not do any learning. This is because Marco was manually

engineered using the original data and does not necessarily adapt to new in-

structors.

4.8 Discussion and Possible Extensions

Currently, our system goes through the various stages of learning in a

pipelined manner. First, we learn a lexicon which is then used to create the

supervised training data for the semantic parser learners. The semantic-parser
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learner then produces a semantic parser which is used during test time to

transform new instructions into navigation plans. Finally, the executor carries

out the navigation plans. As a result of this pipelined approach, a mistake

made in earlier steps will propagate to later stages. A better approach would

be to build feedback loops to iteratively improve the estimates in each stage.

Moreover, since the MRs are executable actions, we can test our understanding

of the language in the environment itself to receive additional reinforcements.

For example, we could require that all refined plans must lead to the intended

destinations when executed. However, it should be remembered that reaching

the correct destination is not necessarily indicative of a good inferred plan (e.g.

landmarks plans always lead to the correct destinations but do not correspond

to the actual instructions.)

4.9 Chapter Summary

We have presented a novel framework for dealing with ambiguous su-

pervision that is more sophisticated than the one in the previous chapter. By

allowing any subgraph to be potentially aligned as the MR of a sentence, we

are faced with an exponential problem where our previous approach of enumer-

ating all the possible alignments and scoring them would not scale. In addition

to the scalability problem, we also explicitly represent relationships between

the different semantic entities with edges in a graph. This allows us to consider

whether to align each semantic component to a NL sentence in conjunction

with other components rather than make strong independence assumptions.
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The key component of our framework is a lexicon learning algorithm called

GILL that learns the meanings of n-grams by taking graph intersections of the

potential meanings.

Applying our framework to the problem of learning to follow navigation

instructions, we were able to infer most of the correct navigation plans associ-

ated with each instruction. Moreover, our system was able to reach the desired

destination a majority of the time when the instructions are single sentences.

We also introduced an alternative lexicon learning algorithm SGOLL that is

an order of magnitude faster than GILL and has comparable performance.

In addition to being faster, SGOLL also has the potential to scale to much

larger datasets since it can be easily parallelized. Other modifications to our

framework including requiring minimal support for an n-gram to be included

in the lexicon and using a CFG for the MRL that is closer to natural language

helped improve our system further.

In addition to testing our system using cross-map validation, we also

tried cross-instructor validation. This resulted in much worse performance,

which suggests that the variance between different instructors is higher than

that between different, but similar environments. This is again confirmed when

we tested on new data collected from Mechanical Turk. Thus, for building a

practical application, we would need to collect instructions from many more

different people for the system to generalize to unobserved instructors.

One advantage of our language-independent approach to language learn-

ing is that our system can adapt to learning new languages without any mod-

120



ifications. As we demonstrated in the previous chapter that our sportscasting

system could learn to sportscast in Korean, we showed that our navigation

system can learn to follow Mandarin Chinese navigation instructions. While

Chinese introduces the problem of word segmentation, we showed that a naive

approach of simply treating each character as a word performed about as well

as first using an external word segmenter to determine the word boundaries.

Finally, we presented the results from collecting additional training

data using Mechanical Turk. Since our system only requires training data

in the form of language being used in a relevant context, virtually anyone

can provide useful training data. In particular, for the navigation task, the

teacher only has to demonstrate how to follow navigation instructions in a

virtual environment without having to provide any semantic annotations of

the instructions. Incorporating the additional data collected from Mechanical

Turk into the training data resulted in the best end-to-end task completion

rate on the original navigation problem.
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Chapter 5

Related Work

In this chapter we will review relevant research work in the areas of

robotics, computer vision, and computational linguistics. We will first look

at the broad class of problems that aims to establish relationships between

language and the world. The problem domains addressed span across a wide

range including image captions, summaries of sports games, game playing and

robot controllers, among many others. We will then review some recent work

in dealing with the ambiguous supervision problem. Finally, we discuss some

relevant work in semantic parsing and natural language generation.

Since language grounding encompasses a wide range of problems, we

first categorize the existing work in this area by looking at the assumptions

they make about the problems, including the type of supervision and the

world context provided. We will then look at specific application areas these

different approaches have addressed. As Deb Roy discusses in his theoretical

framework for grounding language (Roy, 2005), the meaning of language can be

divided into two types: referential and functional. Referential meanings talk

about objects and events in the world in a descriptive manner. On the other

hand, functional meanings aim to achieve some actions in the world. These
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are typically used in commands to cause the listener to perform particular

actions. We divide the various application areas into these two large groups.

Most of the earlier work focuses on learning referential meanings, or learning

how to describe the world with words. However, some more recent work has

explored using language as a guide to help accomplish certain tasks. We

have looked at learning both types of meanings with our sportscasting and

navigation applications. The sportscasting task requires the system to learn

how to describe objects and events in the world. On the other hand, the

navigation task requires the system to interpret instructions to perform certain

actions in the world.

The main learning problem this thesis aims to solve is the ambiguous

learning problem. So we will look at other approaches to tackling this prob-

lem including generative methods, ranking, and grammar induction. They all

implicitly or explicitly solve the matching problem of determining the relevant

parts of the world context that are referred to by the language.

Finally, we discuss work in the areas of semantic parsing and natural

language generation. Since both of these areas are quite large, we will only

look at the work most closely related to this thesis. In particular, we focus our

attention on semantic parser learners that require less than full supervision

and learning methods for performing surface realization.

The rest of the chapter is organized as follows. We first categorize

existing work in grounded language learning along several common character-

istics in Section 5.1. We then look at specific application areas that aim to
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learn referential and functional meanings in Sections 5.2 and 5.3, respectively.

Next we review relevant work in solving the ambiguous supervision problem in

Section 5.4. Finally, we discuss related work in semantic parsing and natural

language generation in Sections 5.5 and 5.6, respectively.

5.1 Connecting Language and the World

While there are many different approaches to connecting natural lan-

guage to the world, we can categorize them by looking at various assumptions

they make about the problems. We discuss several different dimensions that

we can characterize these approaches by below.

• Type of supervision Most work assumes some form of parallel data

where the natural language is paired with a relevant grounding context to

which the language refers to. However, they differ in how tightly coupled

the context is to the language. The earliest work aims to learn names of

objects/people and simple attributes (Siskind, 1996; Satoh, Nakamura,

& Kanade, 1997; Roy, 2002; Barnard et al., 2003; Berg, Berg, Edwards,

& Forsyth, 2004). Here the context is assumed to be static and contain

direct representations of the words to be learned. Beyond these static

scenarios, other work uses more dynamic context such as videos (Fleis-

chman & Roy, 2007; Gupta & Mooney, 2009; Buehler, Everingham, &

Zisserman, 2009) where temporal cues are used to get the approximate

context in which an event occurred. Another dimension of complex-

ity comes from grounding complete sentences rather than just words,
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which requires understanding words that are not directly represented in

the context (Gorniak & Roy, 2005; Farhadi, Hejrati, Sadeghi, Young,

Rashtchian, Hockenmaier, & Forsyth, 2010; Matuszek et al., 2010; Qu

& Chai, 2010). Our work assumes both dynamic contexts and tries to

ground complete sentences.

There is also work that does not use parallel data at all, instead using

responses from the world to guide its learning (Branavan et al., 2009;

Branavan, Zettlemoyer, & Barzilay, 2010; Vogel & Jurafsky, 2010; Brana-

van et al., 2011). These methods use reinforcement learning to establish

the correspondence between language and the actions that lead to re-

wards (e.g. completing the desired task, winning a game, etc).

• Representation of the grounding context Depending on the end

goal of the grounding task, different representations of the world are

used which varies in their granularity and structure. For dealing with

real world perceptions, often the raw pixels of an image or video frames

are used as the representation of the world (Roy, 2002; Berg et al., 2004;

Fleischman & Roy, 2007; Gupta & Mooney, 2009; Buehler et al., 2009).

These raw visual features can then be additionally processed to identify

certain structures. Examples include segmenting an image into different

regions (Barnard et al., 2003) and detecting faces (Satoh et al., 1997;

Berg et al., 2004).

Our work does not use real world perceptions and assumes a symbolic

representation of the world instead. Symbolic representations can range
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from simple state-action transitions (Branavan et al., 2009; Vogel & Ju-

rafsky, 2010; Branavan et al., 2011), to records of events (Snyder &

Barzilay, 2007; Liang et al., 2009), and to more hierarchical representa-

tions (Kollar et al., 2010; Tellex et al., 2011). The sportscasting task

assumes a record structure where each record is independent of each

other. On the other hand, the navigation task deals with more compli-

cated relational data that models how entities in the world relate to each

other.

• Ambiguity level For parallel data, one way to characterize the com-

plexity of the alignment problem is by how ambiguous the training data

is. The data could be unambiguous if alignment is provided as part of

the training data (Kollar et al., 2010; Tellex et al., 2011). The data could

exhibit small amounts of ambiguity as in the sportscasting task where

a handful of possible representations can be aligned to (Siskind, 1996;

Satoh et al., 1997; Roy, 2002; Barnard et al., 2003; Berg et al., 2004;

Matuszek et al., 2010). Finally, if we allow for partial alignments as

for the navigation task, there can be an exponential number of possible

choices for each alignment (Liang et al., 2009).

• End task Since grounding is a complicated problem, various work has

concentrated on different components of the problem. Some work has

focused on solving the alignment problem (Siskind, 1996; Satoh et al.,

1997; Roy, 2002; Barnard et al., 2003; Berg et al., 2004; Liang et al.,
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2009; Kim & Mooney, 2010; Bordes et al., 2010) where the goal is to

find the correct correspondences between the language and the corre-

sponding parts of the context. Moving beyond alignment, some work

has evaluated on semantically parsing (Clarke et al., 2010; Liang et al.,

2011; Borschinger, Jones, & Johnson, 2011) or generating (Kulkarni,

Premraj, Dhar, Li, Choi, Berg, & Berg, 2011; Li, Kulkarni, Berg, Berg,

& Choi, 2011) entire sentences. Both of our domains evaluate on se-

mantic parsing and the sportscasting domain also tests on generating

sentences.

For some tasks, the end goal is to perform certain tasks such as for

our navigation domain (Branavan et al., 2009, 2010; Vogel & Jurafsky,

2010; Matuszek et al., 2010; Kollar et al., 2010; Tellex et al., 2011;

Branavan et al., 2011). Here the interpretation of the language is used

as guidance to accomplishing the overall task. The tasks can range from

other navigation tasks to performing computer tasks to playing games.

We will discuss more of the specific application areas in Section 5.3.

The differences in the nature of the problems addressed contribute to

the different approaches developed. As the context becomes more complicated

and ambiguous, often additional cues beyond just the language are required to

learn well. Similarly, dealing with more sophisticated language often requires

additional linguistic knowledge such as a syntactic parser or a partial lexicon.

Our work tries to push the limit on what can be learned without using either

form of additional prior information.
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5.2 Learning Referential Meanings

Referential meanings are useful both for describing the world and for

understanding descriptions of the world. The former allows a computer system

to automatically generate linguistic reports about its knowledge and percep-

tions. The latter helps a computer system understand a visual scene from the

descriptions. We will review work that deals with referential meanings as well

as several problem domains that have generated a lot of interests, including

captions of images, sports videos, and spatial relations.

One of the most ambitious end-to-end visually-grounded scene-description

system is VITRA (Herzog & Wazinski, 1994) which comments on traffic scenes

and soccer matches. The system first transforms raw visual data into geomet-

rical representations. Next, a set of rules extract spatial relations and inter-

esting motion events from those representations. Presumed intentions, plans,

and plan interactions between the agents are also extracted based on domain-

specific knowledge. However, since their system is hand-coded it cannot be

adapted easily to new domains.

Srihari and Burhans (1994) used captions accompanying photos to help

identify people and objects. They introduced the idea of visual semantics, a

theory of extracting visual information and constraints from accompanying

text. For example, by using caption information, the system can determine

the spatial relationship between the entities mentioned, the likely size and

shape of the object of interest, and whether the entity is natural or artificial.

However, their system is also based on hand-coded knowledge.
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Siskind (1996) performed some of the earliest work on learning grounded

word meanings. His learning algorithm addresses the problem of ambiguous

training or “referential uncertainty” for semantic lexical acquisition, but does

not address the larger problems of learning complete semantic parsers and

language generators.

Around early 2000s, several robotics and computer vision researchers

started working on inferring grounded meanings of individual words or short

referring expressions from visual perceptual context (e.g., Bailey et al., 1997;

Roy, 2002; Barnard et al., 2003; Yu & Ballard, 2004). However, the complex-

ity of the natural language used in this earlier work is usually very restrictive,

with many of the systems using pre-coded knowledge of the language, and

almost all use static images to learn language describing objects and their

relations, and cannot learn language describing actions. The most sophisti-

cated grammatical formalism used to learn syntax in this work is a finite-state

hidden-Markov model. By contrast, our work exploits the latest techniques in

statistical context-free grammars and syntax-based statistical machine trans-

lation that handle more of the complexities of natural language.

Some more recent work include the work by Gold and Scassellati (2007)

and Buehler et al. (2009). Gold and Scassellati (2007) built a system called

TWIG that uses existing language knowledge to help it learn the meaning of

new words. The robot uses partial parses to focus its attention on possible

meanings of new words. By playing a game of catch, the robot was able to

learn the meanings of “you” and “me” as well as “am” and “are” as identity
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relations. Buehler et al. (2009) built a system that learned sign language from

TV broadcasts. While hand signs are generally aligned with the subtitles

temporally, the alignments are not exact. Thus, they use a sliding window

to generate multiple sequences of hand signs that could be aligned to each

word. This problem is similar to our sportscasting task in that they also use

the weak temporal signals to construct candidates. However, they are only

learning at the word level rather than at the sentence level. They solve the

ambiguity problem using multiple instance learning by treating each word with

all the possible candidate hand signs as positive bags. Negative bags can be

constructed easily from video windows that are far from the target word.

The area of language acquisition is also of great interest to the psychol-

ogy community. For example, Regier and Carlson (2001) presented a com-

putational model for capturing geometric features of spatial relations. Frank,

Goodman, and Tenenbaum (2009) studied the CHILDES corpus (MacWhin-

ney, 2000) which included videos of two infants and their mothers playing with

a set of toys. They built a model that simultaneously learns the speaker’s in-

tentions and a lexicon and showed improvement over other cross-situational

learning methods. Fazly et al. (Fazly et al., 2010) also studied the same cor-

pus and proposed a probabilistic incremental model for cross-situational word

learning. Their algorithm can learn online similar to our algorithm SGOLL

and was shown to exhibit many of the same word learning behaviors as those

observed in children. They later extended their model to incorporate syntactic

knowledge as well to further improve the performance of the model (Alishahi &
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Fazly, 2010). However, in their experiments, the semantic representations were

artificially generated from the text itself rather than from the environment and

do not encode any relational data. Moreover, the referential ambiguities were

also artificially introduced by including the correct semantic representations

of adjacent sentences.

5.2.1 Captions of Images and Videos

One application that has received a lot of attention, especially from

the computer vision community, is the task of learning from captions that

accompany photos or videos (Satoh et al., 1997; Berg et al., 2004). This area

is of particular interest given the large amount of captioned images and videos

available on the web including from news articles and photo-sharing sites such

as Flickr.

Early work mainly used the captions to identify names of people in the

images. Satoh et al. (1997) built a system to detect faces in newscasts and

associate them with names in the captions. They used fairly simple manually-

written rules to determine how to assign the names to the faces. Berg et al.

(2004) used a more elaborate learning method to cluster faces in news articles

and label the clusters with names. Using contextual features, they estimated

the likelihood a person named in the captions actually appears in the given

image. This helps improve the precision of their system by avoiding trying to

attach all the names in a caption to a face.

Beyond just names of people, captions also provide cues for what ob-
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jects are depicted in the images. Morsillo, Pal, and Nelson (2009) devised a

semi-supervised learning approach that uses both visual and textual features

of web documents to determine whether an image contains an object of in-

terest. Their system first retrieves a set of candidate images using an image

search engine and then refines the set of returned results based on the image

itself and nearby text. They then use the set of filtered images as training

data to build visual classifiers.

Recently, there has also been some interest in the task of generating

captions. Given an image, the goal is to produce a sentence that describes

the content of the image. Farhadi et al. (2010) constructed a dataset of image

descriptions by asking Mechanical Turk workers to write sentences describing

selected images from the 2008 PASCAL development kit. They also annotated

each image with a triplet of <object, action, scene> which serves as the com-

mon meaning space between the images and the NL descriptions. Similarity

between an image and a description can be measured by first mapping both

to these triplets. This allows retrieval of an image based on a description and

vice versa. Similar work was done by Feng and Lapata (2010) who defined a

single distribution model for both visual and textual features. They learn to

generate captions for images in news articles by selecting sentences or phrases

from the accompanying text. While these approaches rely on existing text

that describes the images, there has also been work on generating novel sen-

tences using various scoring metrics (Kulkarni et al., 2011; Li et al., 2011).

They first use visual detectors to determine the subject, object, and action
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depicted in the images. They then fuse these components together using tem-

plates, language models, or web-scale n-grams to produce fluid and coherent

descriptions.

In addition to captions providing cues for what are in the images, im-

ages can also help build the semantics of language. Bruni, Tran, and Baroni

(2011) combined text and image features into a single lexical semantic model.

These combined features can then be used for similarity judgements between

two words.

5.2.2 Sporting Events

Sports videos is another interesting domain for grounded language ac-

quisition due to the abundance of data. Sportscasts and articles about sports

games naturally contain lots of descriptions about the events that occurred.

Moreover, the events are somewhat structured according to the rules of the

sport. Some recent work on video retrieval has focused on learning to recog-

nize events in sports videos (baseball and ice skating) and connecting them to

English words that appear in the accompanying closed captions (Fleischman

& Roy, 2007; Gupta & Mooney, 2009). However, these projects only learn

the connections between individual words and video events and do not learn

to describe events using full grammatical sentences. Our sportscasting task,

on the other hand, avoids the computer vision issues in processing the videos,

and concentrates on the language issues instead.

There has also been some work on aligning sentences in sports articles to
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box scores from the game (Snyder & Barzilay, 2007; Liang et al., 2009). Snyder

and Barzilay (2007) used a supervised approach to learn the correspondence

between text in recaps of American football games and database records that

contain statistical information about the game (e.g. passing yards, number

of touchdowns, etc). Liang et al. (2009) also built a system that performed

alignment on this data, but used a generative model that did not require

annotations of the correct correspondences.

5.2.3 Spatial Relations

When describing objects in the world, the spatial relations between

them are of particular importance for constructing referring expressions. In

addition to identifying and describing different attributes of an object, it is

often helpful or necessary to specify its spatial relationships to other objects

in order to disambiguate among similar objects. Regier and Carlson (2001)

studied how humans perceive these spatial relations and built a computational

model called the attention vector-sum (AVS) model that captures the seman-

tics of various spatial and geometric relations. This provides a quantitative

way of defining these spatial relations.

Beyond just understanding how to describe specific spatial relations,

the pragmatics of selecting the most useful set of spatial relations to describe

are also important. Golland, Liang, and Klein (2010) devised a language game

where the goal is for the speaker to identify a particular object in a scene,

and for the listener to select that object. The speaker model that contains an
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embedded listener model produced the best result because it took into account

how well the spatial descriptions can help the listener disambiguate among the

set of objects.

Spatial relations are also useful when describing certain actions. For

example, Tellex and Roy (2009) built a system that learns to identify human

locomotive actions in videos that could be used for video retrieval. They

studied prepositional phrases such as to, across, through, out, along, towards,

and around to help determine how the person in the video is moving in relation

to the other objects. They collected training data by asking the annotators

to describe the human motion in the videos by completing the sentence ”the

person is going ... ”.

5.3 Learning Functional Meanings

Instead of just describing the world, functional meanings are used to

induce actions that affect the world. Recently, there has been a rise in the

number of projects that use language to aid computer agents in completing

certain tasks. The type of tasks include playing games, controlling mobile

robots, and performing other computer-related tasks such as setting up an

email account. In most cases, the language is used to instruct the computer

agents on what to do, either explicitly (e.g. “press the OK button”, “go down

this hallway”, etc) or as high-level advice (e.g. “build cities near rivers”, “go

back to the charging station when the battery is low”, etc). In more interactive

settings, the computer agent must also be able to respond in natural language
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(e.g. “the soup of the day is a french onion soup”) or prompt the user to

perform certain tasks (e.g. “I am holding the lever that releases the door

so you should be able to get out now”) or to ask clarification questions (e.g.

“should I press the red button on the left or on the right”). Our navigation

task falls into this category of understanding functional meanings as the goal

is to learn to follow navigation instructions to reach the desired destination.

We will review work in several application domains that deals with functional

meanings in the following sections.

5.3.1 Controlling Mobile Robots

Building computer systems that can interpret navigation instructions

is particularly important to robotics, where such a system would provide a

natural interface to controlling mobile robots. For example, Kruijff, Zender,

Jensfelt, and Christensen (2007) designed a robot that uses human linguistic

inputs to help it build a topological map. The robot also asks the human to

clarify uncertainties such as whether there is a door in the nearby vicinity.

The system uses a hand-built combinatory categorial grammar to parse the

language.

Our work on the navigation task is the most similar to that of Matuszek

et al.’s (2010). Their system learns to follow navigation instructions from ex-

ample pairs of instructions and map traces with no prior linguistic knowledge.

They used the semantic-parser learner Wasp (Wong & Mooney, 2006) to learn

a semantic parser and constrain the parsing results with physical limitations

136



imposed by the environment. However, their virtual world is relatively simple

with no objects or attribute information as it is constructed from laser sensors.

Similarly, Shimizu and Haas (2009) built a system that learns to parse

navigation instructions. They restrict the space of possible actions to 15 la-

bels and treat the parsing problem as a sequence labeling problem. This has

the advantage that the context of the surrounding instructions are taken into

account. However, their formal language is very limited in that there are only

15 possible parses for an instruction.

There is some recent work that explores direction following in more

complex environments. Vogel and Jurafsky (2010) built a learning system for

the HCRC Map Task corpus (Anderson, Bader, Bard, Boyle, Doherty, Gar-

rod, Isard, Kowtko, McAllister, Miller, Sotillo, Thompson, & Weinert, 1991)

that uses reinforcement learning to learn to navigate from one landmark to

another. The environment consists of named locations laid out on a map.

Kollar et al. (2010) presented a system that solves the navigation problem for

a real office environment. They use LIDAR and camera data collected from

a robot to build a semantic map of the world and to simulate navigation. Fi-

nally, Tellex et al. (2011) built a forklift simulator that could interpret natural

language commands such as picking up pallets and loading them onto spe-

cific trucks. They crowdsourced the training data by showing the annotator a

short simulation and asking them to write down commands that would lead to

the observed actions. They then manually annotated the spatial description

clauses contained in these commands.
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Since the focus of most of this work is on building controllers for robotic

systems, they are not as concerned with the language learning issues and

usually rely on some amount of external linguistic information such as object

names, predefined spatial terms (e.g. above, right, through, etc), or manual

annotations. In contrast, our approach does not assume any existing linguistic

knowledge or resources and can be readily applied to languages other than

English.

5.3.2 Playing Games

In addition to navigation tasks, there has also been recent work on

learning to perform other tasks such as puzzle solving or playing computer

games. The computer can play several different roles in these games. It can

take instructions or advice from humans to perform certain tasks in the games,

it can provide guidance to the human player by giving hints or providing

instructions, and it can also participate as another player in the game and

interact or cooperate with real human players.

As with the case of building navigation systems, most of the early work

in this domain focus on solving system-building issues and usually rely on

language-specific resources such as syntactic parsers or predefined lists of ob-

jects and actions. Gorniak and Roy (2005) built a computer player that could

communicate and cooperate with human players in order to jointly accomplish

a task in a role-playing game. The players have to navigate to certain loca-

tions and perform various actions such as pushing levers and lighting torches
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in the correct sequence in order to complete the task. The system first syntac-

tically parses the spoken instructions and then maps them to specific actions.

Kerr, Cohen, and Chang (2008) developed a system that learns grounded

word-meanings for nouns, adjectives, and spatial prepositions while a human

is instructing it to perform tasks in a virtual world. This system also assumes

an existing syntactic parser. It also relies on prior knowledge of verb semantics

and is unable to learn these from experience.

In contrast to these goal-orientated games, Orkin and Roy (2009) de-

veloped a more open-ended game called the Restaurant Game where there

are no clearly defined objectives to achieve. One player assumes the role of a

customer in a restaurant while another player assumes the role of the waitress.

While the players generally follow a typical restaurant script, they can also

deviate from the normal behavior and act as they please (e.g. fill the tables

with wine glasses). The goal of the project is to produce a computer player

that learns to act and talk like human players. Some work has been done

to learn to associate words to objects in this game (Reckman, Orkin, & Roy,

2010).

When humans learn language, they are typically able to use additional

cues beyond just the language and the perceptual environment. Qu and Chai

(2010) builds upon the work by Yu and Ballard (2004) and incorporates user

language behavior, domain knowledge, conversation context, and eye gaze to

help it learn language. Set in a treasure hunting game, the agent learns to

carry on conversations with the human player.
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Most recently, Branavan et al. (2011) presented a system that learns

to play a complex turn-based strategy game by reading the instruction man-

ual for the game. The game requires sophisticated strategies and long-term

planning that are difficult even for humans to master. They showed that by

incorporating the knowledge gleaned from the manual, the system improved

its gameplay significantly .

5.3.3 Performing Computer Tasks

Other than navigation and game playing, there has also been some

interest in learning how to interpret English instructions for performing com-

puter tasks. Lau et al. (2009) collected a corpus of instructions using Me-

chanical Turk for performing common tasks on the web such as performing a

search or signing up for an email account. Their goal is to build a system that

can assist users in following natural-language instructions. The actions in this

domain include going to certain URLs, clicking on links, and entering infor-

mation into a web form. They compared three different approaches, with the

keyword-based approach outperforming the grammar-based and the machine

learning approaches on identifying the correct action to perform.

Working on a similar task, Branavan et al. (2009) built a system that

could follow troubleshooting instructions for a Windows machine. They use

a reinforcement learning approach to map instructions into low-level GUI ac-

tions such as clicking on buttons and menus or typing into text fields. They

later expanded this framework to also learn high-level instructions that do not
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directly correspond to a single GUI action (e.g. “open control panel” requires

a series of clicks on different menu items) (Branavan et al., 2010). They learn

a model of the environment guided by their instruction interpreter. The en-

vironment model in turn helps them compute look-ahead features that assess

the longer-term consequences of an action. Overall, the system was able to

correctly interpret high-level instructions a majority of the time and its perfor-

mance on the low-level instructions also improved compared to their previous

model.

5.4 Learning from Ambiguous Supervision

One of the core problems this thesis addresses is how to learn from

ambiguous supervision where it is not clear what the correct annotations are.

This can be formulated as an alignment problem where the goal is to match

sentences to facts in the world to which they refer. As mentioned previously,

there has been work aligning text from English summaries of American foot-

ball games to database records that describe events and statistics about the

game (Snyder & Barzilay, 2007; Liang et al., 2009). Snyder and Barzilay

(2007) use a supervised approach that requires annotating the correct corre-

spondences between the text and the semantic representations. On the other

hand, Liang et al. (2009) have developed an unsupervised approach using a

generative model to solve the alignment problem. They also demonstrated

improved results on matching sentences and events on our RoboCup English

sportscasting data. However, their work does not address semantic parsing or
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language generation. Section 3.6 presented results showing how we could ini-

tialize our system with the output of their algorithm to achieve better results

on matching, semantic parsing, and language generation. Kim and Mooney

(2010) further improved the generative alignment model from Liang et al.

(2009) by incorporating the full semantic parsing model from Lu et al. (2008).

This results in a joint generative model that outperforms all previous results

on the matching and language generation tasks and produces competitive per-

formance on the semantic parsing task in our sportscasting domain.

In addition to treating the ambiguous supervision problem as an align-

ment problem, there have been other approaches such as treating it as a rank-

ing problem (Bordes et al., 2010), or a PCFG learning problem (Borschinger

et al., 2011). Similar to how we solved the superfluous comment problem in

Section 3.7, Bordes et al. (2010) use the idea that semantic tokens in the can-

didate sets should generally be preferred to ones that are not. Thus, they use a

supervised ranking approach that optimizes to rank the semantic tokens in the

candidate sets above tokens selected randomly. The learned ranker is then used

to select the best token in the candidate set. They showed improved results on

the matching task for our sportscasting data as well as another dataset about

weather forecasts. Borschinger et al. (2011) takes a very different approach

that reduces the grounded language learning task to a grammatical inference

problem. They created a PCFG that incorporates information about both the

forms and the meanings of the sentences. The PCFG contains context symbols

for each observed set of candidate meanings and rules that map every semantic
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concept to every word in the data. The context symbols restrict which MRs

might parse into a particular string but are marginalized out during testing

since the set of candidate meaning are not available. The weights of the PCFG

is learned using the Inside-Outside algorithm. They showed competitive re-

sults on the semantic parsing task on the sportscasting data and surpassed the

previous result when they augmented their model to learn the canonical word

order in the language as well.

5.5 Semantic Parsing

As mentioned in Chapter 2, most existing work on semantic-parser

learning has focused on supervised learning where each sentence is annotated

with its semantic meaning. Some semantic-parser learners additionally re-

quire either syntactic annotations (Ge & Mooney, 2005) or prior syntactic

knowledge of the target language (Ge & Mooney, 2009; Zettlemoyer & Collins,

2005, 2007). Since the world never provides any direct feedback on syntactic

structure, language-learning methods that require syntactic annotation are not

directly applicable to grounded language learning. Therefore, methods that

learn from only semantic annotation are critical to learning language from

perceptual context.

While we use logic formulas as our MRs, the particular MRLs we have

used contain only atomic formulas and can be equivalently represented as

frames and slots. There are systems that use transformation-based learning

(Jurcicek, Gasic, Keizer, Mairesse, Thomson, & Young, 2009), or Markov logic
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(Meza-Ruiz, Riedel, & Lemon, 2008) to learn semantic parsers using frames

and slots.

Both of the semantic parsers we have used, Krisp and Wasp, require

a CFG for the MRL. As seen in Section 4.5.3, the particular choice of CFG

can greatly affect the quality of the semantic parsers learned depending on

how close the CFG mimic the structure of natural language. Lu et al. (2008)

introduced a more flexible generative model that does not make use of an

explicit grammar. Instead, it models the correspondence between NL sentences

and MRs with a generative model using hybrid trees. The implicit grammar

representation leads to models that generalize well.

One of the reason for the low performance of our navigation system on

the complete task is that we parse each sentence in the instruction indepen-

dently. Zettlemoyer and Collins (2009) showed that by taking into account the

context in which a sentence appears, they can achieve better semantic parsing

results.

Parallel to our work on building semantic parsers from ambiguous su-

pervision, other recent work has also looked at training semantic parsers from

supervision other than logical-form annotations. Clarke et al. (2010) and Liang

et al. (2011) describe approaches for learning from question and answer pairs.

They automatically find semantic interpretations of the questions that would

generate the correct answers. This is similar to our navigation task where we

have to infer the semantic interpretations of the navigation plans that would

lead to the correct action sequences. Artzi and Zettlemoyer (2011) use conver-
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sation logs between a computer system and a human user to learn to interpret

the human utterances. While the meaning of the human-side of the conversa-

tion is unknown, the state of the system and the semantic interpretation of its

utterances are all available. In a conversation, the system can ask clarification

questions which helps make clear the meaning of the prior human utterances.

There have also been some unsupervised approaches to semantic pars-

ing. Poon and Domingos (2009, 2010) introduced an unsupervised system for

extracting knowledge from raw text. They automatically cluster semantically

equivalent dependency tree fragments, and identify their predicate-argument

structures. While their system is useful for applications such as question an-

swering, they do not parse the language into a pre-defined formal language. On

the other hand, Goldwasser et al. (2011) presented an unsupervised approach

of learning a semantic parser by using an EM-like retraining loop. They use

confidence estimation as a proxy for the model’s prediction quality, preferring

models that have high confidence about their parses.

5.6 Natural Language Generation

The research area of NLG address many different problems related to

language generation, ranging from long-term conversation planning to more

local problems such as lexical choice and word order. We have mostly focused

on the surface realization issues of learning how to map from concepts to

natural language. To generate complete sportscasts, we have also looked at

the content selection problem of deciding the relevant facts to talk about.

145



Evaluating generation can be difficult as there are usually many ac-

ceptable solutions. Moreover, subtle differences in the generation quality can

be difficult to quantify. The recently introduced Generating Instructions in

Virtual Environments (GIVE) challenge aims to solve this problem by pro-

viding an end-to-end generation task (Byron, Koller, Striegnitz, Cassell, Dale,

Moore, & Oberlander, 2009).1 Each generation system is responsible for pro-

viding instructions to human players to help them solve a treasure hunting

puzzle game. The quality of the generation systems can be quantified by how

fast the players complete the puzzles. Our navigation task was partly inspired

by this challenge in that we wanted to construct a task-based evaluation that

could quantify the performance of an entire system.

There are several existing systems that generate sportscasts for RoboCup

games (André et al., 2000). Given game states provided by the RoboCup sim-

ulator, they extract game events and generate real-time commentaries. These

systems take into account many practical issues such as timeliness, coher-

ence, variability, and emotion that are needed to produce good sportscasts.

However, these systems are all hand-built and generate language using pre-

determined templates and rules. In contrast, we concentrate on the learning

problem and induce the generation components from ambiguous training data.

Nevertheless, augmenting our system with some of the other components in

these systems could improve the final sportscasts produced.

1We participated in the first GIVE challenge by submitting a simple template system.
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As mentioned in Section 2.2, we use Wasp−1 to learn a natural language

generator for our sportscasting task. Using the same SCFG rule we use for

semantic parsing, Wasp−1 can also translate a MR into a NL sentence. There

is also prior work on learning a lexicon of elementary semantic expressions

and their corresponding natural language realizations (Barzilay & Lee, 2002).

This work uses multiple-sequence alignment on datasets that supply several

verbalizations of the corresponding semantics to extract a dictionary.

Similar to how Wasp defines a single model that can support both

semantic parsing and natural language generation, the hybrid tree generative

model proposed by Lu et al. (2008) can also be used for both tasks. By

using tree conditional random fields to parameterize the model to capture

some longer range dependencies, the inverted hybrid tree model was shown to

outperform Wasp−1 (Lu et al., 2009).

Prior to transforming a MR into a NL utterance, the system must first

decide what to say (content selection). Duboue and McKeown (2003) were the

first to propose an algorithm for learning content selection automatically from

data. Using semantics and associated texts, their system learns a classifier

that determines whether a particular piece of information should be included

for presentation or not.

There has been some work on learning content selection using rein-

forcement learning (Zaragoza & Li, 2005). They use a setting similar to our

navigation task in a video game environment where the speaker must aid the

listener in reaching the destination while avoiding obstacles. They repeatedly
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played the game to find an optimal strategy that conveyed the most pertinent

information while minimizing the amount of messages. We consider a differ-

ent problem setting where such reinforcements are not available to our content

selection learner.

In addition, there has also been work on performing content selection

as a collective task (Barzilay & Lapata, 2005). By considering all the content

selection decisions jointly, they capture dependencies between each uttered

items. This creates more consistent overall output and aligns better with how

humans perform on this task. Such an approach could potentially help our

system produce better overall sportscasts.

While content selection and surface realization are typically handled

separately, Angeli et al. (2010) introduced a unified framework for performing

both tasks. They break up the end-to-end generation process into a sequence

of local decisions and train each discriminatively. They achieve competitive

results in three domains, including our RoboCup sportscasting domain.
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Chapter 6

Future Work

The work presented in this thesis has only started to scratch the surface

of the problem of grounded language learning. While we have made some

progress toward solving the ambiguous supervision problem, there is still a

lot of room for improvements both in terms of the overall performance of the

learning algorithms and the scalability of the systems to larger datasets. In

this chapter we will describe both immediate potential extensions to our work,

and also some longer-termed research ideas in this area.

6.1 Algorithmic Improvements to Learning from Am-
biguous Supervision

Since the central question we are concerned with in this thesis is how to

resolve the ambiguous supervision problem to learn the semantics of language,

we will first look at some potential algorithmic improvements to our learning

systems.

6.1.1 Integrating Different Components

Both our sportscasting and navigation systems are ad-hoc systems that

do not have unified frameworks. We have mainly focused on resolving the am-
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biguity in the training data to create traditional, supervised semantic annota-

tions. The other components of the systems were created to build a working

system and are not integrated into the learning algorithms. For example, the

content selection and surface realization steps are dealt with separately and

each component is trained without regards to the other. However, conceptu-

ally they are much more closely related, and solving one problem should help

solve the other. As shown by Liang et al. (2009), using a single generative pro-

cess that selects the MRs to express and produces the actual words resulted

in better performance on the matching task. Kim and Mooney (2010) further

showed that by additionally incorporating a semantic parser into the model,

the system performed better on the other tasks as well.

Similarly for the navigation system, the lexicon-learning step is not

integrated with building the semantic parser. This is actually quite odd as

the semantic-parser learner also has to build a lexicon, either explicitly or

implicitly. A more natural way to build the system would be to utilize the

lexicon we learned already and to only learn compositional rules to create a

semantic parser. The executor could also provide feedback to the learning

algorithms. As mentioned in Section 4.8, refined plans that do not lead to the

intended destinations are generally indicative of errors in the refinement step.

Part of the reason for the ad-hoc nature of our systems is that we

treat the semantic-parser learner or the language-generator learner as black-

boxes. Both Krisp and Wasp were designed with supervised training data in

mind. To create a unified framework, it would make more sense to modify the
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learning algorithms for semantic parsing and NLG so that they can deal with

ambiguous supervision directly.

6.1.2 Learning Higher-order Concepts

In the sportscasting problem, some statements in the commentaries

specifically refer to a pattern of activity across several recent events rather

than to a single event. For example, in one of the English commentaries,

the statement “Purple team is very sloppy today.” appears after a series of

turn-overs to the other team. The simulated perception could be extended to

extract patterns of activity such as “sloppiness”; however, this assumes that

such concepts are predefined, and extracting many such higher-level predicates

would greatly increase ambiguity in the training data. The sportscasting sys-

tem assumes it already has concepts for the words it needs to learn and can

perceive these concepts and represent them in the MRL. However, it would be

interesting to include a more “Whorfian” style of language learning (Whorf,

1964) in which an unknown word such as “sloppiness” could actually cause the

creation of a new concept. For content words that do not seem to consistently

correlate with any perceived event, the system could collect examples of recent

activity where the word is used and try to learn a new higher-level concept

that captures a regularity in these situations. For example, given examples

of situations referred to as “sloppy,” an inductive logic programming system

(Lavrac̆ & Dz̆eroski, 1994) should be able to detect the pattern of several

recent turnovers.
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The ability to automatically construct higher level abstractions will

free us from building a representation that encompasses all possible things we

want to talk about. Instead of anticipating all potential actions and events,

we could keep the representation at a low level and let the system build new

concepts as needed. In particular, in certain continuous domains, we would

not have to build specific bins for possible ranges of value. Instead, the sys-

tem can infer how to categorize these ranges automatically. For example,

for a weather forecast application, the system can learn the correspondences

between temperature ranges and descriptions such as hot, warm, cool, or cold.

The navigation system does learn some high-level instructions since it

learns to map words to any connected subgraph. Thus, the lexicon learning

step is free to discover new concepts that were not predefined. However, the

different candidate meanings learned are listed as separate entires in the lexi-

con. Moreover, we use a greedy approach of picking the highest scoring entries

and ignoring the rest. Ideally we would use a more probabilistic representation

that incorporates all the different candidates into a single graph to allow more

flexible interpretations of the meaning dependent on the actual context.

6.1.3 Incorporating Syntactic Information

Even though we have chosen to not rely on any syntactic information in

our language learning process, for many practical applications we would have

access to at least some of that information. Moreover, there are unsupervised

approaches to syntax learning (Klein & Manning, 2004; Ponvert, Baldridge, &
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Erk, 2011; Spitkovsky, Alshawi, Chang, & Jurafsky, 2011) that could help us

learn the semantics of language. Being able to parse the sentences first could

help the system determine which words are the content words and also how

the different words interact with each other. This would make the ground-

ing problem easier since we would have a better idea of which words might

correspond to which semantic entities. Even basic information such as part

of speech tags would bias the learning to map nouns to objects and verbs to

actions in the world. Preliminary experiments using this idea have shown that

it can help eliminate some bad entries in the lexicon.

6.1.4 Scaling the Systems

One of the issues we discussed while introducing the SGOLL algorithm

in Section 4.4 is scaling the system. Since we use weaker supervision, we would

expect to require more training data to achieve the same performance. Con-

sequently, a system that learns from ambiguous supervision should be able to

scale to larger datasets than a fully-supervised system to be competitive. The

main bottlenecks in our systems currently are in the semantic-parser learning

step. Building a fast, distributed system for learning semantic parsers would

allow our systems to scale to larger datasets. Moreover, we would be able to

incorporate more retraining loops to iteratively improve our estimation of the

supervised training data and in turn train better semantic parsers.
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6.2 Task-specific Improvements

Even though we have only used the sportscasting and navigation tasks

as testbeds for our language grounding systems, there are many improvements

that could be made if we were interested in building practical systems that

would solve these particular problems. In this section, we look at specific

changes we can make to enhance our existing systems in these two domains.

6.2.1 Sportscasting

Some of the limitations of the current sportscasting system are due to

inadequate representation of the world. The event extraction system mostly

only concentrates on who has possession of the ball. Some of the comments in

our data, particularly in the Korean data, refer to information about events

that are not currently represented in the extracted MRs. For example, a player

dribbling the ball is not captured by our perceptual system. Thus, we could

extend the event extractor to include more event types as well as more detailed

information such as the length of a pass or the location of a player, etc.

In addition to including more events about what’s happening on the

field, it should also be noted that commentators do not always talk about the

immediate actions that are happening. In typical, real sportscasts, there would

be a play-by-play announcer that talks about the play on the field, and a color

commentator that fills in the gaps when no interesting actions are happening.

The color commentaries can refer to statistics about the game, background

information, or analysis of the game. While some of these are difficult to
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obtain, it would be simple to augment the potential MRs to include events

such as the current score or the number of turnovers, etc. Although these may

be difficult to learn correctly, they potentially would make the commentaries

much more natural and engaging.

From a purely entertainment point of view, good sportscasts are more

about managing the emotions of the audience rather than reporting facts.

Thus, to build a practical system, we would have to make sure the comments

are not repetitive and go beyond just stating the facts about the games. For

example, varying the voice depending on the game situation could make the

audience feel more in sync with the actions in the game.

6.2.2 Navigation

For the navigation domain, we have only looked at the task of semantic

parsing. However, it would also be useful to build a system that could generate

navigation instructions such as for a GPS device. Since our work is focused on

resolving referential ambiguity, there are no inherent limitations to extending

our system to perform language generation as well. Similar to what we did

for the sportscasting task, we could use the supervised training data we have

estimated as input to a supervised learning algorithm such as Wasp−1 for

training a language generator.

In terms of building a controller for mobile robots, the interface should

allow more interactive dialogues. This allows the system to ask clarification

questions and also allows the users to correct erroneous behaviors.
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6.3 Data Acquisition

In Section 4.7 we have shown that data annotation can be quite easy

when all we require the annotators to do is to use language in a relevant

perceptual context. In the navigation domain, this amounted to gathering

navigation instructions and follower traces. However, we randomly selected

the routes for which to collect instructions. A natural extension would be

to use active learning (Cohn, Atlas, & Ladner, 1994) to select more useful

annotations. Since we work in virtual environments, we could set up the

world any way we want. Consequently, we could manipulate the world in such

a way as to allow the system to get instructions about actions or landmarks

it is the least confident about.

We have thus far described how to collect data in an offline manner.

However, it would make sense to build interactive systems that continually

try to learn while they are in service. This could be done for both systems

that do semantic parsing and NLG. For example, a mobile robot could ask

for feedback from the human users indicating whether or not it is performing

the correct actions. An instruction generating system could observe whether

the user is behaving as intended. Beyond just reinforcements that indicate

whether the previous actions or instructions were good or bad, the system

could also additionally ask the users for demonstrations of good behaviors.

In this “benevolent teacher” setting, the user is incentivized to improve the

system because they would also benefit from a better system.
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6.4 Real Perceptions

So far we have only dealt with virtual environments for both the sportscast-

ing and the navigation tasks. An obvious extension to the sportscasting task is

to apply it to real RoboCup games or real soccer games rather than simulated

ones. Recent work by Rozinat, Zickler, Veloso, van der Aalst, and McMillen

(2008) analyzed games in the RoboCup Small Size League using videos from

the overhead camera. By using the symbolic event trace extracted by such

perceptual system, our methods could be applied to real-world games. Using

speech recognition to accept spoken language input is another obvious exten-

sion.

For the navigation domain, we could build a real robot to navigate in a

real environment. We would need to use an object recognition system to help

us identify landmarks in the environment. Once the world has been processed

into various tokens of landmarks, we could then use our system to ground the

natural language. Here the ability to recognize patterns and automatically

build higher level representations will be even more useful. Instead of pre-

defining what tokens to learn and use, we can directly process the low level

vector representation (e.g. SIFT descriptors of interest points (Lowe, 1999))

and automatically discover objects and the words that are used to describe

that object.
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6.5 Machine Translation

The idea behind Wasp is to borrow method from statistical machine

translation. Thus, it is only natural that we can apply the lessons we have

learned back to the task of machine translation. We can use our algorithm

to build translation models from ambiguously paired parallel corpora. This

kind of data can occur when the translation is loose and not sentence-aligned.

Thus, we can build a system that simultaneously aligns the sentences to each

other and builds a translation model using an EM-like retraining loop. We

could first train on sentences in one language matched to every sentence in

the corresponding paragraph in the other language. Then we can use the

translation model to help decide which sentences are the best matches. We

can then iterate this process until convergence.

One import characteristic of the ambiguous problem we have examined

is that the information expressed on the two sides are not equal. In partic-

ular, the NL sentences in our data only corresponds to a subset of the MRs

we extract. This is similar to the translation scenario where one document is

a summary of the other. For example, Wikipedia articles in other languages

often contain only a subset of the information in the corresponding English

article. Thus, deciding whether an alignment should even be made is impor-

tant. We could use a method similar to our technique for superfluous comment

removal to not align the least-likely sentence pairs. Since the ambiguity level

can be high and many sentences may not have matches, we can also exploit

token similarities or known word translations (e.g. the name of the wikipedia
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article) to reduce the number of possible alignments.

Another way to use our idea for machine translation is to do interlingual

translation (Wong, 2007). The MRL can be used as an intermediate language

for translating to any language. In other words, we would first parse the source

sentence into its MR. Then, we would use the MR to generate sentences in

the target language. For translating between n languages, we only need 2n

models instead of n·(n−1)
2

models. Furthermore, we no longer need parallel

corpora between the different languages. It is only necessary that they align

to the same MRL. In other words, we are aligning the different languages using

the world they describe instead of directly to each other. This can be a very

useful application for the sportscasting domain where simultaneous broadcasts

in many different languages are often required for large international sporting

events such as the Olympics or the World Cup.
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Chapter 7

Conclusion

Learning the semantics of language from the perceptual context in

which it is uttered is a useful approach because only minimal human supervi-

sion is required. Instead of annotating each sentence with its correct semantic

representation, the human teacher only has to demonstrate to the system how

to use language in a relevant context. However, resolving the ambiguity of

which parts of the perceptual context are being referred to can be a difficult

problem. In this thesis, we have looked at a couple of frameworks aimed to

solve this problem. The first system uses an EM-like retraining loop that al-

ternates between building a semantic model of the language and estimating

the mostly likely alignments between NL sentences and MRs. We demon-

strated the feasibility of this system by applying it to a sportscasting task

where the training data consist of textual commentaries and streams of au-

tomatically extracted events from simulated RoboCup games. We evaluated

several scoring functions for disambiguating the training data in order to learn

semantic parsers and language generators. Using a generation evaluation met-

ric as the criterion for selecting the best NL–MR pairs produced better results

than using semantic parsing scores when the initial training data were very

noisy. Our system also learned a simple model for content selection from the
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ambiguous training data by estimating the probability that each event type

evokes human commentary. Experimental evaluation verified that the overall

system learned to accurately parse and generate comments as well as generate

complete play-by-play sportscasts that are competitive with those produced

by humans. We achieved similar results learning to sportscast in English and

in Korean, demonstrating that our system is indeed language-independent and

can adapt to learning new languages without modifications.

Given that this approach requires enumerating all the possible NL–MR

alignments and scoring each one, we next look at another framework that can

deal with more complicated data. In particular, we represent the space of can-

didates using a graph instead of a list and allow each NL sentence to potentially

map to any of the exponential number of connected subgraphs. In addition to

compactly representing the space of candidates, the graphical structure also al-

lows us to encode the relationships between the different semantic entities. We

use a lexicon-learning algorithm to first learn the meanings of words and short

phrases, and then use the learned lexicon to prune the graph. This framework

is applied to the problem of learning to interpret navigation instructions. The

training data consist of textual navigation instructions and recorded action

traces of people trying to follow those instructions. Since only the low-level

actions are observed and not the actual navigation plans referred to in the

instructions, we first construct the graph that represents the space of possible

plans for each instruction. Experimental results showed that our system is

able to infer the correct navigation plans from this space and correctly follow
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over half of the novel single-sentence instructions encountered during testing.

Learning to follow Chinese navigation instructions produced similar results,

again affirming the generality of our system. Finally, we looked at collecting

more training data using Mechanical Turk. We showed that the task is indeed

easy enough for anyone to annotate since they only have to understand how

to give and take navigation instructions.

Learning natural language is a difficult and potentially never-ending

task. As the world changes, the way we use language is also constantly evolv-

ing. Consequently, it is vital for a computer system to be able to continually

adapt and learn from its experiences. Fortunately, the world is full of exam-

ples of how language is used. The difficulty, of course, is that these examples

provide only very weak supervision. Here we have looked at one type of weak

supervision in which the correct semantic annotations are assumed to be in-

side a finite hypothesis space. There are many other types of supervision as

well. For example, the system might receive positive or negative reinforce-

ments for a particular interpretation of language. Or the system could observe

the results of using language (ask a question, issue a command, etc). Properly

identifying and acquiring relevant data and utilizing the different kinds of su-

pervision available are all keys to building a system could eventually solve the

language-understanding problem.
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Appendix A

Details of the Sportscasting Task

We use a rule-based system to automatically extract events from sim-

ulated RoboCup games. The type of events we detect are listed in Table A.1

along with a brief explanation of each event type.

Event Description
Playmode The current play mode as defined by the game including

kickoff, corner kick, goals, etc
Ballstopped The ball speed has fallen below a minimum threshold
Turnover The current possessor of the ball and the last possessor

are on different teams
Kick A player having possession of the ball in one time interval

but not in the next
Pass A player gains possession of the ball from a different

player on the same team
BadPass A pass in which the player gaining possession of the ball

is on a different team
Defense A turnover to the defensive team in their penalty area
Steal A player having possession of the ball in one time interval

and another player on a different team having it in the
next time interval

Block Turnover to the opposing goalie.

Table A.1: Description of the different events detected

Below we include the context-free grammar we developed for our mean-

ing representation language. All derivations start with the root symbol *S.
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*S -> playmode ( *PLAYMODE )
*S -> ballstopped
*S -> turnover ( *PLAYER , *PLAYER )
*S -> kick ( *PLAYER )
*S -> pass ( *PLAYER , *PLAYER )
*S -> badPass ( *PLAYER , *PLAYER )
*S -> defense ( *PLAYER , *PLAYER )
*S -> steal ( *PLAYER )
*S -> block ( *PLAYER )

*PLAYMODE -> kick_off_l
*PLAYMODE -> kick_off_r
*PLAYMODE -> kick_in_l
*PLAYMODE -> kick_in_r
*PLAYMODE -> play_on
*PLAYMODE -> offside_l
*PLAYMODE -> offside_r
*PLAYMODE -> free_kick_l
*PLAYMODE -> free_kick_r
*PLAYMODE -> corner_kick_l
*PLAYMODE -> corner_kick_r
*PLAYMODE -> goal_kick_l
*PLAYMODE -> goal_kick_r
*PLAYMODE -> goal_l
*PLAYMODE -> goal_r

*PLAYER -> pink1
*PLAYER -> pink2
*PLAYER -> pink3
*PLAYER -> pink4
*PLAYER -> pink5
*PLAYER -> pink6
*PLAYER -> pink7
*PLAYER -> pink8
*PLAYER -> pink9
*PLAYER -> pink10
*PLAYER -> pink11
*PLAYER -> purple1
*PLAYER -> purple2
*PLAYER -> purple3
*PLAYER -> purple4
*PLAYER -> purple5
*PLAYER -> purple6
*PLAYER -> purple7
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*PLAYER -> purple8
*PLAYER -> purple9
*PLAYER -> purple10
*PLAYER -> purple11
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Appendix B

Details of the Navigation Task

The navigation task was originally designed by MacMahon et al. (2006)

who collected the English instructions and the follower data that we use in our

experiments. Below we show maps of the three virtual worlds as well as CFGs

for the formal language we use to describe navigation plans. For more details

about how the original task was designed, see MacMahon’s (2007) Ph.D. thesis.

B.1 Maps of the Virtual Worlds

MacMahon et al. (2006) constructed three virtual worlds for which they

collected navigation instructions and follower data for. The three worlds are

named Grid, L, and Jelly. The world Grid has the most compact design,

forming a grid-like world. The world Jelly has the sparsest design, with the

hallways spread out from each other. World L lies between those two in terms

of compactness. Maps of the three worlds can be seen in Figures B.1, B.2,

B.31.

1The map for the world Jelly has an extra concrete hallway compared to what was
previously presented (MacMahon, 2007; Chen & Mooney, 2011). There were some discrep-
ancies in the Marco code and the documentations so we decided to just include it when
we reconstructed the worlds for our data collection on Mechanical Turk.
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Figure B.1: Map of the virtual world Grid

Figure B.2: Map of the virtual world L
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Figure B.3: Map of the virtual world Jelly

Each world consists of seven hallways with floor patterns and several

short concrete hallways. The seven floor patterns are grass, brick, wood,

gravel, blue, flower, and yellow octagons. In addition to the floor patterns,

the world is divided into three areas, each with a different painting on the

walls (butterfly, fish, and Eiffel Tower). There are also furnitures placed at

various intersections (hatrack, lamp, chair, sofa, barstool, and easel). These

are indicated on the maps with the first letter of their names.

B.2 Meaning Representation Language

To facilitate learning, we did not use the navigation plan representa-

tions used by MacMahon et al. (2006) which were too complex and included

many equivalent representations. Instead, we developed another formal lan-
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guage called the Steering Action Instruction Language (SAIL) that more easily

captures the space of potential plans. All derivations start with the root sym-

bol *S. *Num is a special non-terminal that can map to any integers.

The first grammar shown below is the initial CFG we developed for

SAIL. It is compact and contains many recursive rules for describing arbitrarily

long action sequences or list of arguments.

*S -> NULL
*S -> *Action

*Action -> *Action, *Action
*Action -> *Travel
*Action -> *Turn
*Action -> Verify( *Condition )

*Travel -> Travel( )
*Travel -> Travel( steps: *Num )

*Turn -> Turn( )
*Turn -> Turn( LEFT )
*Turn -> Turn( RIGHT )

*Condition -> *Condition, *Condition
*Condition -> *Direction *Object

*Direction -> at:
*Direction -> left:
*Direction -> right:
*Direction -> front:
*Direction -> back:
*Direction -> side:

*Object -> CHAIR
*Object -> BARSTOOL
*Object -> SOFA
*Object -> LAMP
*Object -> HATRACK
*Object -> EASEL
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*Object -> 4-INTERSECTION
*Object -> 3-INTERSECTION
*Object -> *Wall
*Object -> *Hallway

*Wall -> WALL
*Wall -> *WallPaintings WALL

*WallPaintings -> FISH
*WallPaintings -> TOWER
*WallPaintings -> BUTTERFLY

*Hallway -> HALLWAY
*Hallway -> *HallwayTiles HALLWAY

*HallwayTiles -> GRASS
*HallwayTiles -> FLOWER
*HallwayTiles -> BLUE
*HallwayTiles -> WOOD
*HallwayTiles -> YELLOW
*HallwayTiles -> BRICK
*HallwayTiles -> GRAVEL
*HallwayTiles -> CONCRETE

As explained in Section 4.5.3, we developed another CFG for SAIL that

corresponds better to natural language. This new grammar expands many of

the production rules in the compact grammar.

*S -> NULL
*S -> Travel( )
*S -> Travel( steps: *Num )
*S -> Turn( )
*S -> Turn( LEFT )
*S -> Turn( RIGHT )
*S -> Verify( at: *Object )
*S -> Verify( left: *Object )
*S -> Verify( right: *Object )
*S -> Verify( front: *Object )
*S -> Verify( back: *Object )
*S -> Verify( side: *Object )
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*S -> Verify( at: *Object, *Condition )
*S -> Verify( left: *Object, *Condition )
*S -> Verify( right: *Object, *Condition )
*S -> Verify( front: *Object, *Condition )
*S -> Verify( back: *Object, *Condition )
*S -> Verify( side: *Object, *Condition )
*S -> Verify( at: *Object ), Travel( )
*S -> Verify( left: *Object ), Travel( )
*S -> Verify( right: *Object ), Travel( )
*S -> Verify( front: *Object ), Travel( )
*S -> Verify( back: *Object ), Travel( )
*S -> Verify( side: *Object ), Travel( )
*S -> Verify( at: *Object, *Condition ), Travel( )
*S -> Verify( left: *Object, *Condition ), Travel( )
*S -> Verify( right: *Object, *Condition ), Travel( )
*S -> Verify( front: *Object, *Condition ), Travel( )
*S -> Verify( back: *Object, *Condition ), Travel( )
*S -> Verify( side: *Object, *Condition ), Travel( )
*S -> Verify( at: *Object ), Travel( steps: *Num )
*S -> Verify( left: *Object ), Travel( steps: *Num )
*S -> Verify( right: *Object ), Travel( steps: *Num )
*S -> Verify( front: *Object ), Travel( steps: *Num )
*S -> Verify( back: *Object ), Travel( steps: *Num )
*S -> Verify( side: *Object ), Travel( steps: *Num )
*S -> Verify( at: *Object, *Condition ), Travel( steps: *Num )
*S -> Verify( left: *Object, *Condition ), Travel( steps: *Num )
*S -> Verify( right: *Object, *Condition ), Travel( steps: *Num )
*S -> Verify( front: *Object, *Condition ), Travel( steps: *Num )
*S -> Verify( back: *Object, *Condition ), Travel( steps: *Num )
*S -> Verify( side: *Object, *Condition ), Travel( steps: *Num )
*S -> Verify( at: *Object ), Turn( )
*S -> Verify( left: *Object ), Turn( )
*S -> Verify( right: *Object ), Turn( )
*S -> Verify( front: *Object ), Turn( )
*S -> Verify( back: *Object ), Turn( )
*S -> Verify( side: *Object ), Turn( )
*S -> Verify( at: *Object, *Condition ), Turn( )
*S -> Verify( left: *Object, *Condition ), Turn( )
*S -> Verify( right: *Object, *Condition ), Turn( )
*S -> Verify( front: *Object, *Condition ), Turn( )
*S -> Verify( back: *Object, *Condition ), Turn( )
*S -> Verify( side: *Object, *Condition ), Turn( )
*S -> Verify( at: *Object ), Turn( LEFT )
*S -> Verify( left: *Object ), Turn( LEFT )
*S -> Verify( right: *Object ), Turn( LEFT )
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*S -> Verify( front: *Object ), Turn( LEFT )
*S -> Verify( back: *Object ), Turn( LEFT )
*S -> Verify( side: *Object ), Turn( LEFT )
*S -> Verify( at: *Object, *Condition ), Turn( LEFT )
*S -> Verify( left: *Object, *Condition ), Turn( LEFT )
*S -> Verify( right: *Object, *Condition ), Turn( LEFT )
*S -> Verify( front: *Object, *Condition ), Turn( LEFT )
*S -> Verify( back: *Object, *Condition ), Turn( LEFT )
*S -> Verify( side: *Object, *Condition ), Turn( LEFT )
*S -> Verify( at: *Object ), Turn( RIGHT )
*S -> Verify( left: *Object ), Turn( RIGHT )
*S -> Verify( right: *Object ), Turn( RIGHT )
*S -> Verify( front: *Object ), Turn( RIGHT )
*S -> Verify( back: *Object ), Turn( RIGHT )
*S -> Verify( side: *Object ), Turn( RIGHT )
*S -> Verify( at: *Object, *Condition ), Turn( RIGHT )
*S -> Verify( left: *Object, *Condition ), Turn( RIGHT )
*S -> Verify( right: *Object, *Condition ), Turn( RIGHT )
*S -> Verify( front: *Object, *Condition ), Turn( RIGHT )
*S -> Verify( back: *Object, *Condition ), Turn( RIGHT )
*S -> Verify( side: *Object, *Condition ), Turn( RIGHT )

*S -> Travel( ), *Action
*S -> Travel( steps: *Num ), *Action
*S -> Turn( ), *Action
*S -> Turn( LEFT ), *Action
*S -> Turn( RIGHT ), *Action
*S -> Verify( at: *Object ), *Action
*S -> Verify( left: *Object ), *Action
*S -> Verify( right: *Object ), *Action
*S -> Verify( front: *Object ), *Action
*S -> Verify( back: *Object ), *Action
*S -> Verify( side: *Object ), *Action
*S -> Verify( at: *Object, *Condition ), *Action
*S -> Verify( left: *Object, *Condition ), *Action
*S -> Verify( right: *Object, *Condition ), *Action
*S -> Verify( front: *Object, *Condition ), *Action
*S -> Verify( back: *Object, *Condition ), *Action
*S -> Verify( side: *Object, *Condition ), *Action
*S -> Verify( at: *Object ), Travel( ), *Action
*S -> Verify( left: *Object ), Travel( ), *Action
*S -> Verify( right: *Object ), Travel( ), *Action
*S -> Verify( front: *Object ), Travel( ), *Action
*S -> Verify( back: *Object ), Travel( ), *Action
*S -> Verify( side: *Object ), Travel( ), *Action
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*S -> Verify( at: *Object, *Condition ), Travel( ), *Action
*S -> Verify( left: *Object, *Condition ), Travel( ), *Action
*S -> Verify( right: *Object, *Condition ), Travel( ), *Action
*S -> Verify( front: *Object, *Condition ), Travel( ), *Action
*S -> Verify( back: *Object, *Condition ), Travel( ), *Action
*S -> Verify( side: *Object, *Condition ), Travel( ), *Action
*S -> Verify( at: *Object ), Travel( steps: *Num ), *Action
*S -> Verify( left: *Object ), Travel( steps: *Num ), *Action
*S -> Verify( right: *Object ), Travel( steps: *Num ), *Action
*S -> Verify( front: *Object ), Travel( steps: *Num ), *Action
*S -> Verify( back: *Object ), Travel( steps: *Num ), *Action
*S -> Verify( side: *Object ), Travel( steps: *Num ), *Action
*S -> Verify( at: *Object, *Condition ), Travel( steps: *Num ), *Action
*S -> Verify( left: *Object, *Condition ), Travel( steps: *Num ), *Action
*S -> Verify( right: *Object, *Condition ), Travel( steps: *Num ), *Action
*S -> Verify( front: *Object, *Condition ), Travel( steps: *Num ), *Action
*S -> Verify( back: *Object, *Condition ), Travel( steps: *Num ), *Action
*S -> Verify( side: *Object, *Condition ), Travel( steps: *Num ), *Action
*S -> Verify( at: *Object ), Turn( ), *Action
*S -> Verify( left: *Object ), Turn( ), *Action
*S -> Verify( right: *Object ), Turn( ), *Action
*S -> Verify( front: *Object ), Turn( ), *Action
*S -> Verify( back: *Object ), Turn( ), *Action
*S -> Verify( side: *Object ), Turn( ), *Action
*S -> Verify( at: *Object, *Condition ), Turn( ), *Action
*S -> Verify( left: *Object, *Condition ), Turn( ), *Action
*S -> Verify( right: *Object, *Condition ), Turn( ), *Action
*S -> Verify( front: *Object, *Condition ), Turn( ), *Action
*S -> Verify( back: *Object, *Condition ), Turn( ), *Action
*S -> Verify( side: *Object, *Condition ), Turn( ), *Action
*S -> Verify( at: *Object ), Turn( LEFT ), *Action
*S -> Verify( left: *Object ), Turn( LEFT ), *Action
*S -> Verify( right: *Object ), Turn( LEFT ), *Action
*S -> Verify( front: *Object ), Turn( LEFT ), *Action
*S -> Verify( back: *Object ), Turn( LEFT ), *Action
*S -> Verify( side: *Object ), Turn( LEFT ), *Action
*S -> Verify( at: *Object, *Condition ), Turn( LEFT ), *Action
*S -> Verify( left: *Object, *Condition ), Turn( LEFT ), *Action
*S -> Verify( right: *Object, *Condition ), Turn( LEFT ), *Action
*S -> Verify( front: *Object, *Condition ), Turn( LEFT ), *Action
*S -> Verify( back: *Object, *Condition ), Turn( LEFT ), *Action
*S -> Verify( side: *Object, *Condition ), Turn( LEFT ), *Action
*S -> Verify( at: *Object ), Turn( RIGHT ), *Action
*S -> Verify( left: *Object ), Turn( RIGHT ), *Action
*S -> Verify( right: *Object ), Turn( RIGHT ), *Action
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*S -> Verify( front: *Object ), Turn( RIGHT ), *Action
*S -> Verify( back: *Object ), Turn( RIGHT ), *Action
*S -> Verify( side: *Object ), Turn( RIGHT ), *Action
*S -> Verify( at: *Object, *Condition ), Turn( RIGHT ), *Action
*S -> Verify( left: *Object, *Condition ), Turn( RIGHT ), *Action
*S -> Verify( right: *Object, *Condition ), Turn( RIGHT ), *Action
*S -> Verify( front: *Object, *Condition ), Turn( RIGHT ), *Action
*S -> Verify( back: *Object, *Condition ), Turn( RIGHT ), *Action
*S -> Verify( side: *Object, *Condition ), Turn( RIGHT ), *Action

*Action -> *Action, *Action
*Action -> Travel( )
*Action -> Travel( steps: *Num )
*Action -> Turn( )
*Action -> Turn( LEFT )
*Action -> Turn( RIGHT )
*Action -> Verify( at: *Object )
*Action -> Verify( left: *Object )
*Action -> Verify( right: *Object )
*Action -> Verify( front: *Object )
*Action -> Verify( back: *Object )
*Action -> Verify( side: *Object )
*Action -> Verify( at: *Object, *Condition )
*Action -> Verify( left: *Object, *Condition )
*Action -> Verify( right: *Object, *Condition )
*Action -> Verify( front: *Object, *Condition )
*Action -> Verify( back: *Object, *Condition )
*Action -> Verify( side: *Object, *Condition )

*Condition -> *Condition, *Condition
*Condition -> at: *Object
*Condition -> left: *Object
*Condition -> right: *Object
*Condition -> front: *Object
*Condition -> back: *Object
*Condition -> side: *Object

*Object -> CHAIR
*Object -> BARSTOOL
*Object -> SOFA
*Object -> LAMP
*Object -> HATRACK
*Object -> EASEL
*Object -> 4-INTERSECTION
*Object -> 3-INTERSECTION
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*Object -> WALL
*Object -> FISH WALL
*Object -> TOWER WALL
*Object -> BUTTERFLY WALL

*Object -> HALLWAY
*Object -> GRASS HALLWAY
*Object -> FLOWER HALLWAY
*Object -> BLUE HALLWAY
*Object -> WOOD HALLWAY
*Object -> YELLOW HALLWAY
*Object -> BRICK HALLWAY
*Object -> GRAVEL HALLWAY
*Object -> CONCRETE HALLWAY
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