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Abstract 

 
 Understanding the mechanics, geometry effects, and process behavior of thin-walled components is 
critical to fully realizing the potential of lightweight design in powder bed fusion of polymers (PBF-LB/P). In 
this work, parts built with rectangular cross sections of different sizes and orientations are described by their 
geometry, surface roughness, mechanical characteristics, and specific component geometry dependent on energy 
input. Experimental findings are supported by a nonlocal material model developed to adequately describe 
weakened material behavior at the surface of PBF-LB/P parts. This approach allows the simulation of the elastic 
modulus and density for complex part geometries while simultaneously considering boundary effects. 
Furthermore, the volume-surface ratio for thin-walled components were linearly correlated to the rectangular 
cross sections in different building orientations. This uniformity indicates that this ratio is a suitable quantity to 
consider. Therefore, the process knowledge is improved, especially in new design standards for thin-walled 
structures in PBF-LB/P. 
 

Introduction 
 
Powder bed fusion of polymers is one of the most important processes in manufacturing lightweight designs and 
multifunctional parts. Due to the absence of support structures, nearly every design can be manufactured. In a 
lightweight design, small structures and features are used to transfer the resulting load to a bigger area. To realize 
the full potential of this kind of part, the mechanical performance of thin-walled features must be understood. 
Furthermore, this knowledge leads to the development of adapted material models to predict and optimize part 
properties in the designing process. 
 
Because of the layerwise creation of the part geometry and the polymer powder's local melting, different boundary 
conditions affect the part creation process in the XY-plane and Z-direction [1]. In the XY plane, the smallest 
geometry possible is given by the laser spot diameter, for a CO2-Laser this is 0.4-0.6 mm [2]. Recent machine 
developments are trying to reduce this spot diameter to manufacture even smaller structures in the future. The 
exposure strategy for the part geometry is split up in a contour scan, following the outer part geometry and a 
hatching scan melting the inner part of the geometry [3]. The hatching scan typically follows a meander scanning 
strategy, moving the scan lines parallel to each other with a given hatch distance [4]. Due to the Gaussian energy 
distribution in the laser focus, the hatch distance is chosen to be smaller than the halved laser spot diameter to 
achieve overlapping scan lines and a homogenous melt pool [5]. Additional exposure strategies (EOS Parameters: 
edge scan) with adapted laser power and scan speed are used for features smaller than the laser spot diameter [3]. 
Therefore, smaller features can be manufactured at the expense of geometry accuracy [6]. The energy is defined 
by the energy density, calculated from laser power, scan speed, and hatch distance. Due to the overlapping hatch 
lines, [7] determined that up to ten hatch lines are needed to achieve the calculated energy density in the process. 
Especially in small parts, this hatch number is not reached and therefore influences the energy input. Reference 
[8] proposed using a normalized energy density, calculated by the exposure area and total energy input for one 
layer. Further, normalized energy density was determined to be affected by the part orientation due to the change 
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in the melt pool. Reference [9] showed that in the first layer, a melt pool is created deeper than the layer thickness, 
leading to an increased gap from the powder surface to the molten layer. This gap increased the theoretical layer 
thickness and melting volume in the next powder deposition. Up to twenty layers are needed to achieve a constant 
layer thickness. Furthermore, reference [10] demonstrated that the melt pool temperature rises over these first 
layers until it reaches a constant temperature. These effects influence part properties. Reference [8,11] showed 
that the mechanical properties are dependent on the part thickness; with reduced wall thickness, the mechanical 
properties, and density decrease nonlinearly. Aside from the explained effects, reference [8] proved with the help 
of CT-Measurements, that the surface roughness is independent of the part size. [12] observed the same behavior 
with roughness measurements. Due to the constant roughness, the impact of the surface increases with decreasing 
wall thickness. 
  
The relevant material property is the elastic modulus. From a mathematical point of view, it is commonly modeled 
via the linear elasticity partial differential equation for small deformations (cf. [13]). From the resulting Hooke's 
Law, the corresponding set of equations yields a connection between elastic modulus, strains, and stresses acting 
on an arbitrary body. The wide usage of the model is explained by the possibility of supplementing it with a wide 
variety of boundary conditions and different levels of anisotropy for materials. Linear elasticity equations are also 
applied in the mathematical description of the material behavior of thin-walled parts (cf. [14, 15]). The elastic 
moduli resulting from the model are assumed to be constant, independent of the sizes of the body. However, as 
stated before, experiments have shown that a significant change in the mechanical behavior occurs, especially 
when decreasing the thickness of the part, which is not captured by the existing descriptions. A remedy for this 
modeling gap consists in using so-called convolutional integrals (cf. [16]) with appropriate integration kernels 
since these allow to obtain different material properties depending on the shape of a part. 
 
This study aims to obtain a deeper understanding of these geometry effects. Therefore, parts with rectangular 
cross sections in different sizes and orientations are built and described by their geometry, surface roughness, 
mechanical characteristics, and the energy input as a function of the specific component geometry. Based on the 
experimental findings, a nonlocal material model is developed and calibrated, which adequately describes the 
observed weakened material behavior of thin-walled PBF-LB/P parts. Measurement data is used to fit the 
convolutional kernel in this nonlocal model. For the first time, this approach makes it possible to simulate the 
elastic modulus and density for complex part geometries under consideration of boundary effects. 
This work further illustrates that the volume-surface ratio for thin wall constructions behave linearly in the case 
of rectangular cross sections in different building orientations, respectively. This uniformity indicates that the 
volume-surface ratio is a suitable quantity to consider. These findings increase the process knowledge, especially 
towards new design standards for thin-walled structures in PBF-LB/P. 

 
Materials and Methodology 

 
Material and machine 
Polyamide 12 (PA12) powder (PA 2200, EOS GmbH, Krailling, Germany) is used for the experiments. The 
powder is mixed according to the manufacturer's recommendation, 50 wt.-% used powder and 50 wt.-% virgin 
powder. Prior to experiments, the powder was characterized. The powder system's bulk density (0.44 ± 0.01 
g/cm³) and the viscosity number (79 ± 1.0 ml/g) and particle size distribution (d10,3 = 45,7 µm, d50,3 = 62,7 µm, 
d90,3 = 83,7 µm) were measured. The experiments are carried out with an EOS P396 from EOS GmbH. The 
machine uses a 70 W CO2-Laser with a 0.6 mm laser focus diameter. 
 
Test specimen and processing parameters 
Adapted tensile test samples based on DIN EN ISO 527 are built with six different wall thicknesses (0.5, 1.0, 1.5, 
2.0, 3.0, and 4.0) in the three main orientations, xy, xz, and z-direction (Fig. 1). The build job layout is shown in 
Fig. 2 (left). Over the z-direction, the layout is sorted by the part orientation leading in total to 336 parts (144 xy, 
96 xz, and 96 z-direction), and a filling degree of 4 vol.-%. The parts are scaled in the pre-processing according 
to the values shown in Fig. 2 (right). A quality build job layout determines the scaling parameters by EOS GmbH 
for the used powder mixture and building temperatures. 
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Fig. 1: Tensile test sample based on DIN EN ISO 527 

 

 

Direction Scaling value 
x-Scaling 3.02 % 
y-Scaling 2.97 % 
z(0mm)-Scaling 2.6 % 
z(300mm)-Scaling 2.0 % 
z-Compensation 0.12 mm 
Parameter Setting 
Build chamber temperature 174 °C 
Removal chamber 
temperature 130 °C 

Layer thickness 0.12 mm 
Building height 310 mm 
Beam offset 0.3 mm 

 

Fig. 2: Build job layout (left), scaling, and process parameters (right) 

Processing parameters used are shown in Fig. 2 (right). For exposure, the EOS Parameters for PA 2200 and 0.12 
mm layer thickness are used (PA2200_120_111). The parameters use a contour scan, a layerwise alternating hatch 
in x and y-direction, and an edge setting for exposure areas smaller than the laser focus diameter in the 
experiments for the 0.5 mm parts. 
After printing, the parts are carefully cleaned with a brush, and post-processed via glass bead blasting. For the 
blast process, a Wiwox DI 12 machine is used for 3 minutes with a blasting pressure of 3 bar and glass beads 
between 100 – 200 µm. After cleaning, the parts are immediately stored in a vacuum to maintain the dry 
conditioning for mechanical testing. 
 
Analysis methods 
To better understand the wall-thickness effects, the normalized energy input is calculated according to [8] by the 
total energy input and the cross section shown in the pre-processing software PSW 3.8 EOS P396. For each layer 
and part, the energy input in the middle area of the tensile bar is evaluated by the planned scan path (Fig. 3, right). 
Therefore, the total contour, hatch, and edge exposure lengths are measured, and the total energy input for each 
layer is calculated. This total energy input is then normalized by the exposure area. The result is further normalized 
with respect to the xy-orientation.  
 

  
Fig. 3: Measuring position for the part geometry (left) and evaluation area for the surface roughness and energy input (right) 

The part thickness and width are measured with a micrometer at three sample positions for the geometry. 
Additionally, the part is digitalized by a scanner (Canon 9000F) with a resolution of 1200 DPI (Pixelsize 21.17 
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µm), and the part area is calculated with the python library OpenCV. The part weight is measured (Mettler Toledo, 
AX105DR), and the density is calculated by the part area, thickness, and weight.  
A 3D-Scanner Comet L3D 2 with a C45 objective lens (Carl Zeiss AG, Oberkochen, Germany) is used to evaluate 
the surface roughness. Based on the 3D-Scans, the average surface roughness (Sa) of the primary surface is 
calculated by MountainsLab 9.1 (Digital Surf, Besançon, France). 
Mechanical testing is performed according to DIN EN ISO 527-1 [17] and -2 [18]. A tensile testing machine of 
Type 1484 (Zwick Roell, Ulm Germany), with an extensometer, is used. The Young's modulus is measured with 
a testing speed of 0.5 mm/min and 0.25 % deformation. The elongation at break is measured at 25 mm/min. The 
clamping length is set to 62 mm. 

 
Results and Discussion 

In relation to the orientation, the theoretical melt pool size differs strongly (Fig. 4, left). While the xy-orientation 
shows the biggest exposure area, it is independent of the part thickness and created by the layer number. For the 
xz-orientation, a long and small exposure area is created, with a direct correlation between the theoretic melt pool 
size and the thickness. While the contour scan length changes only a little, the number of hatch lines reduces with 
decreasing part thickness. This applies to the z-oriented parts as well. The hatch grid is essential, especially for 
the xz and the z-orientation; due to a fixed hatch distance, the hatch line number depends on the part position in 
the xy-plane. The exposure parameters use an alternating hatching strategy, changing the direction of the scan 
vector by 90° with every layer. This leads to a layer-depending effect. If the hatch line is vertically oriented to the 
part thickness, the vector length only slightly changes; however, if the hatch line is horizontal to the thickness, 
the number of hatch lines varies significantly. 
Furthermore, the part position affects the scan pattern due to the hatch grid. Fig. 4 middle illustrates a 3 mm z-
oriented part with the green lines representing the hatch lines. The same part size can have seven or eight hatch 
scans, influencing the energy input of each layer. These effects are observed for each thickness and increase with 
decreasing part thickness 
Based on this data, (Fig. 4, left) shows the calculated normalized energy density (NED). Because of the constant 
exposure area of the xy-part, the NED is constant for all parts thicknesses, and therefore used as a reference. For 
the xz and z-oriented parts, a decrease of the NED is observed for parts thinner than 2 mm. 
Furthermore, a decrease of the NED in the 3 mm part is observed. This is explained due to an error in the part 
placement, resulting in 7 hatch lines instead of 8 hatch lines. A low energy density can lead to a not fully molten 
powder [5]. But further work suggests that the resulting melt pool temperature depends not only on the energy 
density but on additional parameters e.g., the decay time [19]. 

  
 

Fig. 4: Scan strategy depending on the orientation and wall thickness (left), hatch grid and position (middle), normalized energy density (left) 

The dimensional accuracy is of high importance for thin-walled parts. Fig. 5 left shows the dimensional deviation 
of the part thickness. Parts in xy-orientation exhibit a constant offset of 0 – 5 % independent of the set part 
thickness. The layer number that generates the thickness is not freely scalable. For xz and z-oriented parts, an 
increase in the dimensional deviation is observed for parts smaller than 2 mm. The 0.5 mm parts show a sharp 
increase in the deviation, up to 25 %, so the machine cannot produce accurate parts in this thickness due to the 
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laser spot diameter of 0.6 mm. Compared to the thickness, the width of the parts (Fig. 5 middle), which is set to 
10 mm for all parts, shows a higher accuracy. This results in a cross section deviation, which mainly depends on 
the dimensional deviation of the part thickness. Overall, all parts have a larger cross-section than the defined 
dimension.  

   
Fig. 5: Dimensional accuracy of the thickness, width, and cross section depending on the part thickness 

Due to the tactile measurement of the dimension, the surface roughness leads to a systematic measuring error [8]. 
Fig. 6 left shows the parts' average surface roughness (Sa). For xz and z-orientation, no significant difference of 
the orientation nor the part thickness is observed. Overall, the xy-oriented parts display a lower average roughness. 
For the 0.5 mm xy-oriented parts, a slight increase in the roughness can be detected. This part consists of only 
three layers. [10] showed that up to 20 layers are necessary to build up a homogenous temperature field. Due to 
lower temperatures, the particles may not melt up ideally, leading to increased roughness. 
The part density (Fig. 6, right) correlates with the part thickness. With lower thickness, the density decreases as 
the constant surface roughness leads to a significant increase in the surface area with decreasing wall thickness. 
This volume does not contribute to the density or the mechanical properties. [8] showed with CT measurements 
that the porosity volume is decreasing with the part thickness; therefore, the main effect of this nonlinear behavior 
is the surface which must be included in the design process.  

  
Fig. 6: Surface Roughness (left) and Part Thickness (right) 

The dimensional accuracy, surface roughness, and part density influence the mechanical properties depict in Fig. 
7. The apparent Young's modulus (Fig. 7, left) and the tensile strength (Fig. 7, middle) show a similar trend. With 
decreasing part thickness, mechanical properties decrease nonlinearly. The z-oriented parts show the highest E-
Modules, while the xy and xz-oriented parts are the same values. A higher decrease of the modulus for the z-parts 
is detected for only the 0.5 mm parts. This part thickness is too small for the laser focus diameter and is therefore 
molten with an edge scan. This scanning parameter uses, in theory, lower energy parameters. Overall, the tensile 
strength shows the same part behavior. More parameters, e.g., surface defects or pores, must be considered for 
the breaking behavior. The elongation at break is therefore highly sensitive to the processing parameters, material, 
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and part properties. While the xy and xz-oriented parts show close to the same elongation at break (Fig. 7, right), 
the z-orientation is significantly lower. Furthermore, xz and z-oriented parts demonstrate a slight drop for the 3 
mm parts. Due to the hatch grid, these parts do not contain the maximum number of hatch lines, leading to lower 
temperatures and influencing the polymer powder's melting. Furthermore, for the xz and xy-oriented parts, a 
decrease of the elongation at break for parts smaller than 2 mm is observed.  

   
Fig. 7: Mechanical Properties dependent on the part thickness, apparent Young's modulus (left), tensile strength (middle) and elongation at break (right) 

While the density and the mechanical properties show a nonlinear behavior to the part thickness, the surface 
roughness exhibits no such effect. The surface-to-volume area is a possible parameter to describe the relationship 
between the surface and the volume. Therefore, this parameter is used for a better understanding of the behavior 
of thin-walled parts. Fig. 8 left shows the part density, where a linear dependency of the density, and the surface-
to-volume area is detected. The same applies to the Young's modulus (Fig. 8, right). Furthermore, the results show 
a difference between the xy and the xz and z parts. Generally, the surface-to-volume area is a suitable parameter 
to describe the part behavior of thin-walled PBF-LB/P parts. The necessary number of experiments is reduced 
with the linear behavior to evaluate the material properties of new materials. However, for more complex part 
geometries and part optimization, adapted material models are needed to describe the boundary effects of PBF-
LB/P parts. 

  
Fig. 8: Part density (left) and apparent Young's modulus (right) dependent on the surface area to volume ratio 

 
Nonlocal Material Model and Validation with Measured Data 

 
Mathematical model 
This section focuses on the derivation of a suitable mathematical formulation of the observed behavior of thin-
walled parts. As mentioned in the introduction, the part thickness dependent change in the elastic modulus is 
explained by the extent of boundary effects that occur at the surface of the body, which is depicted in the 
subsequent Fig. 9. 
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Fig. 9: Constant material behavior, i.e., bulk (left). Bulk material in the inner region of the part and weakened material behavior at the surface (right) 
 
The illustrated material behavior of the elastic modulus at a location 𝒙𝒙 ∈  ℝ3 in space, especially near its 
boundary, is mathematically represented by the following so-called convolution term (cf. [16]) 
 

𝐸𝐸𝜌𝜌(𝒙𝒙): =
𝐸𝐸0

𝐶𝐶specimen
𝜌𝜌(𝒙𝒙)� 𝜓𝜓𝑟𝑟(𝒚𝒚 − 𝒙𝒙)𝜌𝜌(𝒚𝒚)d𝒚𝒚

 

ℝ3 
. 

 
Here, 𝐸𝐸𝜌𝜌(𝒙𝒙) denotes the elastic modulus of the part with bulk density 𝜌𝜌 in 𝒙𝒙, 𝐸𝐸0 the elastic modulus of the bulk 
density, 𝐶𝐶specimen the upper convolutional integral at the standard specimen with a 10 mm × 4 mm rectangular 
cross section. The term 𝜓𝜓𝑟𝑟 describes a convolution kernel with spherical support of radius 𝑟𝑟 > 0. The modeling 
via the introduced convolution is motivated by the non-uniform heat distribution in a part during the laser sintering 
process. The integration kernel yields the desired effect: When computing the elastic modulus at a point in space 
outside the part, then the considered part density is 0, and thus the elastic modulus vanishes there. For points that 
are inside the part and sufficiently distant from the boundary, then the full density contributes to the integral, 
leading to the bulk density there. For points near the boundary, the integration kernel considers both points within 
and outside of the part leading to an intermediate value for the elastic modulus. 
In this publication, the following, normalized with respect to integration, radially symmetric integration kernel 
𝜓𝜓𝑟𝑟 (cf. [20, p. 14]) is used, which decreases linearly when approaching the boundary of the observation sphere 

 

𝜓𝜓𝑟𝑟(𝒙𝒙) ≔
3
𝜋𝜋𝑟𝑟3

max �1 −
||𝒙𝒙||2
𝑟𝑟

, 0�. 

 
Further, especially in view of a suitable comparison with the measurements illustrated in the previous sections, 
the average elastic modulus 𝐸𝐸𝜌𝜌,mean over the whole part 𝛺𝛺 will be considered (cf. [21, p. 361]), i.e., 
 

𝐸𝐸𝜌𝜌,mean ∶=
1

vol(𝛺𝛺)
� 𝐸𝐸𝜌𝜌(𝒙𝒙)d𝒙𝒙

 

𝛺𝛺 
 

 
where vol(𝛺𝛺) denotes the volume of the part. In general, the computation of 𝐸𝐸𝜌𝜌,mean would require the calculation 
of integrals in a three-dimensional space. However, due to the here considered cuboid geometry of the part and 
the radially symmetric convolution kernel 𝜓𝜓𝑟𝑟, it is possible to reduce the computation to integrals in ℝ2. This is 
an advantage when it comes to a numerical approximation of the integrals, as it will be done in this publication. 
A reduction of dimensions leads to a more accurate approximation with the same number of discretization points, 
and thus to a faster, more efficient numerical scheme (cf. [22]).  
Here, due to the cuboid geometry of the part, the density 𝜌𝜌 is constant along one direction, for simplicity the 𝑧𝑧-
direction. Thus, the density 𝜌𝜌� is considered in the following, which is defined as 𝜌𝜌�(𝑥𝑥, 𝑦𝑦) ∶= 𝜌𝜌(𝑥𝑥,𝑦𝑦, 𝑧𝑧) for every 
(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∈  ℝ3. Further, instead of 𝜓𝜓𝑟𝑟 an equivalent integration kernel 𝜓𝜓�𝑟𝑟 defined on ℝ2 is considered, namely 
by an appropriate change of variables with cylindrical coordinates (cf. [23, p. 252] and [24]). The surrogate term 

 
 
Cross section of part 
 
 
 
 

𝑬𝑬𝟎𝟎 
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𝜓𝜓�𝑟𝑟,cylindrical(𝜏𝜏,𝜑𝜑) ≔ � 𝜓𝜓𝑟𝑟(𝜏𝜏 cos𝜑𝜑 , 𝜏𝜏 sin𝜑𝜑 , 𝑧𝑧)d𝑧𝑧
√𝑟𝑟2−𝜏𝜏2 

−√𝑟𝑟2−𝜏𝜏2 
 

 
yields the corresponding, equivalent kernel 𝜓𝜓�𝑟𝑟 in Cartesian coordinates 
 

𝜓𝜓�𝑟𝑟(𝑥𝑥,𝑦𝑦) ∶=
3
𝜋𝜋𝑟𝑟3

max ��𝑟𝑟2 − (𝑥𝑥2 + 𝑦𝑦2) −
(𝑥𝑥2 + 𝑦𝑦2) 

𝑟𝑟
sinh−1 �

�𝑟𝑟2 − (𝑥𝑥2 + 𝑦𝑦2)
�𝑥𝑥2 + 𝑦𝑦2

� , 0�. 

 
The previous computations lead to 
 

𝐸𝐸𝜌𝜌�(𝒙𝒙�, 𝑧𝑧)� =  𝐸𝐸�𝜌𝜌(𝒙𝒙�) ∶=
𝐸𝐸0

𝐶𝐶specimen
𝜌𝜌(𝒙𝒙�)� 𝜓𝜓�𝑟𝑟(𝒚𝒚� − 𝒙𝒙�)𝜌𝜌(𝒚𝒚�)d𝒚𝒚�

 

ℝ2 
 

 
and thus 
 

𝐸𝐸𝜌𝜌,mean  = 𝐸𝐸�𝜌𝜌,mean ∶=
1

area(𝛺𝛺cs)
� 𝐸𝐸�𝜌𝜌(𝒙𝒙�)d𝒙𝒙�

 

𝛺𝛺cs 
 

 
where 𝛺𝛺cs is the rectangular cross section of 𝛺𝛺 and area(𝛺𝛺cs) its area. 
 
Simulation and validation with measurements 
After describing the nonlocal material model, the average elastic modulus for different parts is computed and 
compared with the experiments. Due to the considered radially symmetric integration kernel, differences in the 
building directions are not regarded in this case. Thus, measurements for every considered width of the rectangular 
cross section are aggregated respectively. Further, the integrals are of a convolutional type such that it allows an 
efficient numerical approximation via a Fast Fourier Transform (cf. [25]). The result is illustrated in Fig. 10. 
 

  
Fig. 10: Comparison of simulated elastic modulus (red) with the respectively averaged measurements (blue). Standard deviations are illustrated with error bars, 
respectively. Plot with respect to thickness (left) and with respect to the perimeter to area ratio (right) 
 
As shown in Fig. 10, the simulated results are contained within every interval given by the mean value of the 
measurements and the standard deviation. Thus, an adequate description of the elastic modulus of thin-walled 
parts is given. Since the simulated mean elastic modulus depends on the radius 𝑟𝑟 of the integration kernel, the 
following approach was used to obtain a suitable radius. For simplicity, radii within the interval (0,1) were 
considered. Now, the radius was chosen such that the typically chosen least-squares minimization task was 
tackled. I.e., the distance of the vector containing 𝑛𝑛 measured elastic moduli (𝐸𝐸𝑘𝑘,measurements)𝑘𝑘=1,…,𝑛𝑛 to the radius 
depending on simulated ones (𝐸𝐸𝜌𝜌𝑘𝑘,mean(𝑟𝑟))𝑘𝑘=1,…,𝑛𝑛  was minimized (cf. [26]). The difference is given by the 
subsequent term 𝐽𝐽 as a function of the radius 𝑟𝑟 
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𝐽𝐽(𝑟𝑟) ≔ �� |𝐸𝐸𝜌𝜌𝑘𝑘,mean(𝑟𝑟) − 𝐸𝐸𝑘𝑘,measurements|2
𝑛𝑛

𝑘𝑘=1

. 

 
The 𝐽𝐽 minimizing radius 𝑟𝑟, which fulfills 𝑟𝑟 ≈ 0.4, was approximated by a bisection scheme (cf. [25]). Motivated 
by Fig. 11, a binary search in the interval (0,1) was performed, and for a sufficiently small given threshold 𝜀𝜀1 >
0 the finite differences 1

−𝜀𝜀1
(𝐽𝐽(𝑟𝑟 − 𝜀𝜀1) − 𝐽𝐽(𝑟𝑟)) and 1

𝜀𝜀1
(𝐽𝐽(𝑟𝑟 + 𝜀𝜀1) −  𝐽𝐽(𝑟𝑟)) were calculated. If in the considered 

iteration both are negative/positive, 𝑟𝑟 is smaller/larger than the optimal one. If the terms possess a different sign 
or if the absolute value of the finite differences is smaller than a second given error tolerance 𝜀𝜀2, the algorithm 
terminates. 
 

 
Fig. 11: Plot of 𝐽𝐽 representing a least-squares task to obtain an adequate radius for the integration kernel  
 
Linear behavior of elastic modulus with respect to the ratio of surface area and volume 
As observed in Fig. 8, the measured elastic moduli follow a linear behavior regarding the part's surface area to 
volume ratio. According to the previous results, it is analogously related to the perimeter to surface area ratio 𝛿𝛿 
of the cross section. The following discussion shows that this is explained by the here-stated nonlocal material 
model. In Fig. 12 a rectangular cross section with sides 𝑎𝑎 and 𝑏𝑏 with 𝑎𝑎 < 𝑏𝑏 is considered. Here, the radius 𝑟𝑟 of 
the integration kernel fulfills 2𝑟𝑟 ≤  𝑎𝑎. The mentioned ratio 𝛿𝛿 corresponds to 
 

𝛿𝛿 =
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The goal is to show that there exist constants 𝑐𝑐1 ≥ 0 and 𝑐𝑐2 ≤ 0 such that 
 

𝐸𝐸𝜌𝜌,mean = 𝑐𝑐1  +  𝑐𝑐2𝛿𝛿. 
 
Due to the positive radius of the circular support of the integration kernel, the calculation of 𝐸𝐸�𝜌𝜌,mean is split into 
the several areas 𝐴𝐴1, … ,  𝐴𝐴4. Together with the linearity of the integral, it holds that 
  

� 𝐸𝐸�𝜌𝜌(𝒙𝒙�)d𝒙𝒙�
 

𝛺𝛺cs 
= � 𝐸𝐸�𝜌𝜌(𝒙𝒙�)d𝒙𝒙�

 

𝐴𝐴1 
 + 2� 𝐸𝐸�𝜌𝜌(𝒙𝒙�)d𝒙𝒙�

 

𝐴𝐴2 
 + 2� 𝐸𝐸�𝜌𝜌(𝒙𝒙�)d𝒙𝒙�

 

𝐴𝐴3 
+ 4� 𝐸𝐸�𝜌𝜌(𝒙𝒙�)d𝒙𝒙�

 

𝐴𝐴4 
.  

 

0.0 0.2 0.4 0.6 0.8 1.0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

J(
r)

r in mm

2041



 
 

Fig. 12: Rectangular cross section of part together with different located integration kernels which are denoted by blue circles with radius 𝑟𝑟. Depending on the several 
areas 𝐴𝐴1, … ,  𝐴𝐴4, different behaviors of the elastic modulus occur 
 
In the region 𝐴𝐴1, the full density 𝜌𝜌 will be considered such that the first integral is (𝑎𝑎 − 2𝑟𝑟)(𝑏𝑏 − 2𝑟𝑟). For the 
second integral, the two-dimensional integral can be rewritten as two iterated, one-dimensional integrals (cf. [27, 
p. 247]). Since the elastic modulus does not change along the direction of the longer side, within the bosy it holds 
that 
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Analogously, it is valid 
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By denoting  
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it yields  
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with 𝑓𝑓 ≔  4(𝑟𝑟2 + 𝐼𝐼2) − 8𝑟𝑟𝐼𝐼1. Due to the normalization of the integration kernel, it holds that 𝐼𝐼2 ≤ 𝑟𝑟𝐼𝐼1 and 𝐼𝐼1 ≤
𝑟𝑟 such that 1 − 𝑓𝑓

𝑏𝑏2 
≥ 0 and  𝐼𝐼1 − 𝑟𝑟 + 𝑓𝑓

2𝑏𝑏
≤ 0. Thus, the observed linear behavior in experiments for the here 

considered geometry for 2𝑟𝑟 < 𝑎𝑎 is mathematically proven.  
Summary and Outlook 
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This work showed that the energy input for thin-walled parts significantly depends on the orientation, the wall 
thickness, and the hatch grid, in turn affecting the pre-processing of the build job. Although scaling parameters 
are used, which were evaluated for the used powder mixture and building temperature, all parts show a bigger 
cross-section than defined. This deviation resulted from a dimensional error of the set thickness. The surface 
roughness is mainly independent of the part thickness and leads to an increased error for smaller parts, which 
leads to a nonlinear decrease in the part density and the elastic modulus. The surface area to volume ratio is used 
to consider the surface roughness, leading to linear part behavior. 
 
The core of the nonlocal material model presented in this publication consists of the integral kernel in a 
convolution term. By this, boundary effects, and thus the observed weakened material behavior at the surface of 
parts, are captured mathematically. In this work, a radially symmetric, linear integration kernel was used. The 
convolutional terms were computed numerically by a Fast Fourier Transform algorithm for an efficient 
approximation. The obtained simulations agreed with high accuracy to the measurements after having derived an 
optimal radius for the sphere of action of the integration kernel. Moreover, by splitting the considered rectangular 
cross-section geometry of the part into appropriate sectors, the observed linear behavior of the elastic modulus 
regarding the surface area to volume ratio was proven mathematically. This yields a more comprehensive 
understanding of thin-walled structures and their material design. 
 
From a mathematical point of view, the nonlocal material model can be modified in different ways to obtain an 
even more accurate description and improved understanding of the behavior of thin-walled parts. In the following, 
three of the several aspects which are worth investigating in future research are described. First, even though only 
cuboid structures were analyzed in this publication, the mathematical description can also be applied to a vast 
range of other geometries, e.g., specimen with circular or elliptical cross sections. Measurements for these further 
geometries can be fed into the nonlocal material model to calibrate the radius of the integration kernel. Second, 
another extension of the derived results consists in substituting the linear integration kernel with a nonlinear one. 
By this, the extent of the simulated boundary effects can vary and adapt according to the experiments. Third and 
finally, while the mathematical model in this publication considered a radially symmetric and isotropic integration 
kernel, using an anisotropic kernel that weights boundary effects depending on the directions to a different extent 
is reasonable. This allows capturing the here illustrated, in experiments visible effect of the construction direction 
to the elastic modulus also in the mathematical description. 
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