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This dissertation consists of three chapters on questions in Environmental 

Economics, addressing policy and health issues in indoor and outdoor environments.  In 

the first chapter, I explores price and quantity policy solutions to externalities that arise 

from private decisions made over time, focusing on resource extraction as a specific 

example. In the U.S., mining causes more pollution than any other single industry. I show 

how tax policy can optimally address a flow externality associated with resource 

extraction when the policymaker faces asymmetric information in the short run.   

Chapter 2 investigates whether ordinary exposure to a common indoor air 

pollutant—Nitrogen Dioxide (NO2)—affects respiratory health.  About 40 percent of 

occupied homes in the U.S. use gas stoves for cooking, which produce NO2 as a 

byproduct of combustion (US Census, 2006), and peak concentrations in homes may 

reach above 900 ppb when a gas stove is used for cooking (Dennekamp et al., 2001). 

Permanent or fatal lung damage occurs at NO2 concentrations greater than 1000 ppb 
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(Samet and Utell, 1990).  Previous studies find mixed evidence of negative effects from 

indoor NO2 (Basu and Samet, 1999), but exposure may be endogenous in these analyses.  

I address this problem by developing a physical model of indoor NO2 concentrations that 

depends on ventilation decisions and housing characteristics and estimate it using data 

from the third wave of the National Health and Nutrition Examination Survey. In every 

model I consider, I find no significant effects of gas stoves on respiratory outcomes.  

In the final chapter, I combine data on state and local tobacco control ordinances 

from Americans for Non-smokers Rights Tobacco US Tobacco Control Laws Database 

with a sample of 35 million births in the U.S. to examine the impact of smoking bans on 

birth weight and related outcomes.  Using difference-in-difference techniques, I identify 

the effects of state bans net of local bans, as well as the effects of local bans net of state 

bans.  The results suggest less restrictive bans do more to improve birth outcomes than 

“100% smokefree” bans do, particularly in urban settings.   
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Chapter 1:  Prices vs. Quantities in a Dynamic Problem: Externalities 
from Resource Extraction 

 

Abstract:  This paper shows how a Markovian tax policy can optimally address a flow 

externality associated with resource extraction when the policymaker faces asymmetric 

information.  In the model I consider, the policymaker must set policy in each period 

before the realization of a price shock.  Resource owners then learn the value of the 

shock, and the owners choose extraction quantities.  The optimal policy responds to a 

positive shock to the current price by reducing next period’s tax rate.  Intuitively, a 

reduction in next period’s tax rate makes extraction next period cheaper and thus 

dampens the resource owner’s current response to a price increase.  A quota policy 

cannot similarly attain the optimal path in this setting because quotas limit the resource 

owner’s ability to respond to new information.  

 

Keywords: pollution, externality, asymmetric information, non-renewable, resources, 

prices, quantities, taxes, quotas 

 

JEL Codes: Q38, H23 
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Metals mining often generates significant externalites.  Groundwater pollution from 

chemicals like arsenic and cyanide used to leach metals from ore is one example; other 

examples include aquifer depletion, or air pollution from smelting byproducts like NOx 

and mercury.  While the National Income and Product Accounts show that the metals 

mining industry accounted for 1% of US National Income in 2004 [5] it accounted for 

40% of all toxic material disposed or released during the same period—more than any 

other industry [6].  As mineral resources on this planet become more difficult to recover, 

and mining processes intensify, the external costs associated with mining are likely to 

continue to increase. A patchwork of standards and liability laws mitigates most of the 

worst outcomes in the U.S., but the inflexibility of standards and the option of bankruptcy 

make these policies less than optimal. 

Incentive based instruments may offer welfare improvements over these policies.  To 

compare how price instruments (taxes) and quantity instruments (quotas or tradable 

permits) perform in this setting, this paper employs a dynamic model where agents have 

information unavailable to policymakers in the short run and well defined property rights 

over a stock of a non-renewable resource.  The solution to their private decision problem 

ties current and future decisions together because of opportunity costs: any quantity 

extracted in the current period cannot be extracted in the future.  This link implies that 

current policy actions can affect the entire sequence of private decisions and social 

outcomes.  For the same reason, credible threats to change future policy have an impact 

on current decisions.  By using these threats as a policy instrument, I find that the 

policymaker can use a price instrument to attain the first-best.   
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Recent papers in the economics literature extend the original “prices vs. quantities” 

work of Weitzman [7] to dynamic social problems, but in each of these papers the 

economic problems private agents face remain static.  Newell and Pizer [4] and Hoel and 

Karp [2], for example, use dynamic models to examine how the welfare implications of 

price and quantity policies change when the externality comes from a stock instead of a 

flow.  Agents in these models make sequences of static decisions while the policymakers 

maximize welfare over the infinite horizon.  In another paper, Weitzman [8] investigates 

the optimal regulation of a competitive fishery where the stock of fish evolves subject to 

uncertainty.  This also amounts to a dynamic social problem over a sequence of static, 

private decisions.  Private agents in this model do not link current and future fishing 

decisions because of the open access problem: since individual agents do not have 

property rights to the remaining fish, agents simply harvest fish up to the point where 

price equals marginal cost in each period.  

Resource extraction, however, presents private agents with a fundamentally dynamic 

problem.  The contribution of this paper relative to the prior literature is thus a 

comparison of price and quantity policies when both the private and social problems are 

dynamic.  Analogous problems arise when Pigouvian taxes or quotas affect firms who face 

capital investment or research and development decisions.  The results of this analysis 

may therefore inform policy comparisons for these problems as well.  

The main result of this paper is that a stationary tax policy can induce resource 

owners to remain on the socially optimal extraction path despite informational 

asymmetry.  The optimal tax policy under asymmetry works by making sure that future 
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taxes adjust to account both for the present and future changes in marginal external 

damages (MED) that arise from private decisions.  Since private agents care about profits 

over the infinite horizon, rather than just profits in a single period, changes in future tax 

policy can induce socially optimal choices in the present.  Analysis here shows that the 

socially optimal policy requires that future tax rates fall in response to positive, current 

price shocks.  Quantity instruments do not admit such a design, however, because no 

change to next period’s quota can induce agents to respond to positive shocks with 

increases in current extraction, which social optimality requires.  

I proceed to show these results in the next five sections.  The first section begins by 

describing the economic environment and analyzing a representative non-renewable 

resource owner’s extraction problem with future price uncertainty.  Section II examines 

how the resource owner adjusts extraction to comply with a quantity policy, which the 

model generically represents as an extraction quota in each period. The optimal response 

condition for the quantity instrument translates easily into an analytic description of the 

owner’s response to a price instrument, which the model takes to be a tax per unit of 

extraction.  I make use of these response functions in Section III when I solve the social 

planner’s problem.  In Section IV, I analyze the policymaker’s problem under asymmetric 

information.  Assuming an economy with commitment, I construct the optimal tax policy 

and then prove quotas cannot attain the first-best.  I provide further insight into the 

optimal policy with a comparative statics analysis. The paper concludes with a summary 

and questions for further research.   
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I.  A MODEL OF NON-RENEWABLE RESOURCE EXTRACTION UNDER PRICE 
UNCERTAINTY 

In keeping with the timing convention of Weitzman [7], I assume that the 

policymaker must announce policy before uncertainty is resolved in each period.  I 

assume extraction yields a flow externality to represent pollution from private 

“production”.  Where Weitzman [7] focuses on additive shocks to the marginal costs of 

abatement, I choose to work with shocks to the resource price because natural resources 

like gold and oil have volatile price series.  From an economic point of view, price shocks 

do represent shocks to marginal abatement costs in cases where reducing extraction is a 

form of abatement.  In a static model, these assumptions would thus fit precisely into the 

framework Weitzman [7] considers. 

To focus on how the dynamic component of the resource extraction problem affects 

the relative desirability of taxes and quotas, I limit my attention to an economic 

environment populated by a large number of homogeneous, price-taking resource owners. 

Each resource owner employs an extant extraction process to recover a known, fixed level 

of homogeneous reserves.  This formulation of the owners’ optimization problem puts 

distributional concerns aside and allows a single agent to represent a competitive non-

renewable resource market.1 By these assumptions, this paper ignores several important 

facets of non-renewable resource problems: human-made capital investment, resource 

exploration, ore quality, and backstop technologies.  As long as policymakers and 

                                                
1 The results of the paper may generalize to cases of imperfect competition if the regulator knows the 
inverse demand function, but this second market failure changes the structure of the problem at hand.  
Since resource owners would exercise market power by supplying less than in a competitive market, 
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resource owners have the same information over these complicating factors, the main 

results of this paper remain intact.  Additional sources of informational asymmetry, 

however, may affect the findings.  At the conclusion of this paper, I return to these 

assumptions and consider their importance to future research.   

To simplify the presentation of the model, I adopt a compact notation common to 

dynamic programming theory.  At time t, for any parameter or variable  at ,  suppress the 

superscript t and denote it simply as  a .  To distinguish the current value of a from next 

period’s value, denote at+1  by !a .  This notation saves space and emphasizes the 

stationarity of the dynamic programming problems and their solutions.   

Let the representative owner of the non-renewable resource be endowed with a known 

stock  S  of the resource at time  t .  The resource owner may choose to extract a non-

negative quantity of the resource  x  and thereby reduce next period’s stock to !S = S " x .  

By assumption, the resource owner faces a sequence of perfectly competitive markets for 

sale of the quantity extracted.  To simplify exposition, assume that the expected price  p  

is constant across all periods.2  Suppose that the representative owner faces a zero-mean 

shock  !  to the expected price  p  in each period, where  {! t}
t=0

"  is independently and 

identically distributed.3  Assume  p + ! > 0  for all ! .  Let the owner know the outcome 

of  !  in the current period before choosing x .   

                                                                                                                                            
imperfect competition would itself reduce the level of pollution.  The second-best policy in this setting 
requires careful analysis and lies outside the scope of this paper.   
2 The results of this paper continue to hold if expected prices evolve according to some exogenous 
sequence {pt}

t=0

!  known to both the policymaker and the resource owners. 
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On the cost side, assume extraction has costs given by the function C ( x ), where C 

( x ) is increasing, continuous, twice differentiable, and strictly convex.4  Let C (0) = 0 and 

dc

dx
(0) = 0.  Represent the value of any asset in the next period in current terms by 

applying the discount factor  β  = (1 + r ) -1, where  r > 0   is the risk-free rate of return.  

The optimizing representative owner chooses the extraction path that will maximize the 

value of the non-renewable resource over the infinite horizon.  Thus, the owner faces a 

standard “cake-eating” problem that can be described by the value function  

(1) V (S,!) = max
x"[0,X ]
#X =X$ x

(p + !) % x $ C(x) + & %E[V ( #S , #! )] . 

Given the Inada conditions above and p + ! > 0 , it follows that  

!x "(0,S) : p + # $
dc

dx
(x) > 0 , and thus the optimal extraction policy  x : x !(0,S)  !t .  

The assumptions above imply that the current period profit function 

(p + !) " x # C(x)  is strictly concave; that the value function has a non-empty, compact-

valued state-transition correspondence; and that  β  is less than one.  Standard dynamic 

programming theory therefore shows that a solution to this problem exists, and that the 

value function  V  is twice differentiable and strictly concave.  The following first order 

condition describes the optimal choice of  x  as the extraction quantity that equates the 

marginal net benefit and the marginal opportunity cost of extraction, which is the marginal 

                                                                                                                                            
3 Shocks are chosen to have mean zero to reflect the absence of bias in agents’ expectations.  The 
assumption of independently and identically distributed shocks eases the exposition of the model, but is not 
necessary to the existence of an optimal sequence and does not otherwise change the results of the model.   
4 The results of this paper do not change when costs depend on the stock of the resource.   
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change in the value of the remaining resource stock: 

(2) p + ! "
dc

dx
(x) = # $E

%V
%S
( &S , &! )'

()
*
+,

.  

Because  ε  has mean zero, and the current realizations of  ε  do not give information on 

future realizations, the envelope theorem implies 

(3) 
p ! E

dc

dx
( "x )#

$%
&
'(

p + ) !
dc

dx
(x)

=
1

*
 

along the optimal extraction path.  Equation (3) expresses a Hotelling rule [3], which 

states that the optimizing resource owner follows an extraction plan where the royalty—

price less marginal cost—grows at the rate of interest. 

When following this extraction path, the resource owner responds to positive price 

shocks by increasing extraction.  Intuitively, a rise in prices implies a greater marginal 

benefit to extraction, justifying a greater marginal opportunity cost.  To obtain this result 

mathematically, view the optimal extraction  x  as an implicit function of the state 

variables:  x = x ( S, ε ) .  Under the assumptions of this paper, dynamic programming 

theory shows that  x  is well-defined and continuous.  The first order condition (2) is a 

level function of  x ( S, ε )  since it is always zero along the optimal path.  Using the 

implicit function theorem, differentiate the first order condition (2) with respect to  ε    

and solve for  
!x

!"
  to find that 
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(4) !x
!"

=
1

d
2
C

dx
2
(x) # $ %E

!2V
!S2

( &S , &" )
'

(
)

*

+
,

.   

Since C is convex and V is concave, the denominator in (4) is strictly positive and 

therefore 
!x

!"
> 0 .   

The remainder of this paper builds on this model by analyzing its implications for 

optimal policy when extraction has an associated flow externality.  In keeping with the 

“prices vs. quantities” literature, I represent quantity policies by a quota and price 

policies by a per-unit tax.5  To lay the groundwork for the policy problem, the paper first 

addresses how the representative resource owner responds to policies that aim to curb 

pollution.  I then specify a social planner’s problem that takes these private responses 

into account when solving for optimal policy with symmetric information.  The main 

problem this paper considers then comes into focus: can policymakers achieve this first-

best when they must set policy before prices are realized, and when owners choose 

extraction levels?   

II.  POLICY AND EXTRACTION RESPONSE 
To begin, suppose that quantity and price policies depend on variables outside the 

control of any individual resource owner, such as the aggregate resource stock.  From the 

perspective of an individual resource owner, given any such quota  q > 0 , the resource 

owner facing a series of price shocks as described in Section I now solves 
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(5) V (S,!,q) = max
x"[0,q]
#S =S$ x

(p + !) % x $ C(x) + & % (q $ x) + ' %E[V ( #S , #! , #q )] , 

where ! " 0  is the shadow price of the quota—the marginal cost to the resource owner 

from not extracting the next unit of the resource in the current period.6  The optimal 

extraction rule that solves (5) then has the form  

(6)  
p ! E

dC

dx
( "x ) + "#$

%&
'
()

p + * !
dC

dx
(x) ! #

=
1

+
. 

This rule again reflects the Hotelling logic, but includes the impact of the quota on 

royalties.  

Consider the resource owner’s extraction function  xq ( S, ε , q)  under the quota q.  

When the resource owner does not expect the policy to bind in either period, λ  = E [ !" ]= 

0  and the resource owner’s behaves exactly as the unconstrained policy function x ( S, ε ) 

.  Likewise, if the expected policy binds in both periods, λ   > 0  and E[ !" ]> 0  and the 

resource owner sets xq ( S, ε , q)= q .  Finally, if the resource owner expects the policy to 

bind next period but not in the current period, the resource owner responds to higher costs 

in the future by increasing extraction in the present by choosing some extraction  x = xq ( 

S, ε , q):  x > x ( S, ε ) . 

In comparison, consider the resource owner’s response to a per unit tax.  From a 

                                                                                                                                            
5 These linear policies are general enough to approach the question at hand.  It turns out that a sequence of 
either type of policy can attain the first-best under symmetric information.  Under asymmetric information, 
no sequence of quotas can attain the first-best, but a sequence of per-unit tax functions can. 
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resource owner’s perspective, given any tax  τ  per unit extracted the owner’s problem 

has the form 

(7)  V (S,!," ) = max
x#[0,X ]
$X =X% x

(p + ! % " ) & x % C(x) + ' &E[V ( $S , $! , $" )] . 

To guarantee a non-zero optimal extraction choice, assume that the net price is always 

positive, i.e.  ∀τ   and  ε   ,   p + ε  - τ  > 0 .  The optimal extraction rule for this problem 

grows the expected royalty p + ! "
dC

dx
(x) " #  according to the Hotelling rule: 

(8)  
p ! E

dC

dx
( "x ) + "#$

%&
'
()

p + * !
dC

dx
(x) ! #

=
1

+
. 

Under these assumptions, it is easy to show that the optimal extraction function under a 

per-unit tax,  xτ ( S, ε ,τ  ) , is positive, continuous, and increasing in  S  and  ε .   

III.  THE SOCIAL PLANNER’S PROBLEM 
If resource extraction yields an externality, the unconstrained private extraction 

policy of Section I is not socially efficient.  To contrast the private resource owner’s 

choices with the socially optimal policy, I now turn to the formulation and solution of a 

social planner’s problem under symmetric information.  I impose symmetry by supposing 

that both the planner and the representative owner know the value of  ε  in the current 

period, and that neither know the value of future realizations of  ε .  Thus, the planner still 

                                                                                                                                            
6 The marginal cost λ may also represent the cost of a permit in a tradable permit system.  Under the 
assumption of resource owner homogeneity, however, no permit trading occurs if the regulators distribute 
the permits equally amongst the owners. 
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faces some uncertainty, but the representative owner faces that same uncertainty.7   

Consider a partial equilibrium economy where a flow externality with damages  f (x)  

arises for  x  units of resource extracted by resource owners.8  Assume  f (x)  is twice 

differentiable and strictly convex with  f (0) = 0,  df
dx

(0) = 0, and df
dx

(x) > 0  ∀x > 0.  

Suppose that the private discount rate equals the social discount rate, and that the planner 

has perfect information on the representative owner’s cost function.9  By assumption, 

resource owners are homogenous and do not face a common pool problem, so the social 

problem may be written in terms of a representative agent.10  

For parsimony, suppose that the resource owner can only abate pollution by reducing 

extraction.  This modeling choice implies that taxes on extraction equate to taxes on 

pollution, and that the tax rate, in turn, impinges on a private dynamic choice variable.  In 

more general settings, the results derived here hold as long as inputs into abatement are 

similarly dynamic.   I discuss this assumption in light of my results at the end of the 

paper. 

Taking into account the external damages from extraction, the planner maximizes 

welfare: 

                                                
7 Weitzman [8] describes this kind of planner as “myopically omniscient”, but since this planner both 
considers the infinite future and is plainly not omniscient, I eschew this term to avoid confusion.  
Throughout the paper, I simply refer to the planner’s solution as the first-best or optimal path. 
8 This paper focuses on flow externalities, but Farzin [1] suggests that the conclusions here extend to stock 
externalities.  Farzin shows that a pair of Pigouvian taxes can correct simultaneous flow and stock 
externalities if they are separable, but does not explore the effect of asymmetric information nor consider 
the prices vs. quantities question. 
9 The assumption of equal discount rates eases exposition, but is not necessary to the results.  More 
generally, the policymaker must know the representative owner’s discount rate. 
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(9) W (SR ,!) = max
xR "[0,SR ]
#SR =SR $ xR

N %[(p + !) % xR $ C(xR )]$ f (N % xR ) + & %E[W ( #SR , #! )] , 

where  xR  and  SR  respectively denote the representative agent’s extraction and resource 

stock. 

 Assuming that marginal social royalty to extraction is always positive, i.e. 

p + ! "
dC

dx
(xR ) "

df

dx
(N # xR ) > 0 , the optimal plan will always have  xR > 0.  The first 

order condition for this problem is   

(10) N ! p + " #
dC

dx
(xR ) #

df

dx
(N ! xR )

$
%&

'
()
= * !E

+W
+S
( ,SR , ," )-

./
0
12

.  

Applying the envelope theorem to (10) yields the first-best policy rule: 

(11) 
p ! E

dC

dx
( "xR ) +

df

dx
(N # "xR )

$
%&

'
()

p + * !
dC

dx
(xR ) !

df

dx
(N # xR )

=
1

+
.   

Let  x
SO   and !x

SO
 denote the socially optimal extraction policies that satisfy (12).  Note 

that  x
SO

= x
SO
(S

R
,!) : the first-best depends on the representative agent’s stock  SR  and 

the realization of the price shock.   

This extraction rule has the same form as the resource owner’s, but it also takes into 

account the MED of extraction both in the current period and in the future.  As in the 

resource owner’s solution, unexpected price increases in the current period warrant 

increased extraction from the planner’s perspective.  The same intuition applies, as well: 

                                                                                                                                            
10 This assumption holds for solid-phase non-renewables like precious metals but may be violated for 
liquid or gas phase resources like oil or natural gas.   
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because marginal benefits rise, the optimum must occur where marginal costs are also 

higher.  The following comparative static result bears this logic out: 

(12)  !xSO
!"

=
N

N #
d
2
C

dx
2
(xSO ) + N

2 #
d
2
f

dx
2
(N # xSO ) $ % #E

!2W
!SR

2
( &SR , &" )

'

(
)

*

+
,

, 

which is strictly positive along the socially optimal path since the functions  C  and  f are 

strictly convex and  W  is strictly concave in  X.  (See Appendix A. for the derivation of 

!x
SO

!"
).  A quick comparison of (12) and (4) also shows that !xSO

!"
<
!x

!"
.  Because of 

external damages, the social planner responds to a positive price shock with a smaller 

increase in extraction than a private resource owner would choose.   

IV.  ATTAINING THE FIRST-BEST UNDER ASYMMETRIC INFORMATION 
Now consider a welfare-maximizing policymaker with asymmetric information:  

policy must be chosen before  ε  is realized. The first-best result that (11) describes 

suggests that such a policy cannot attain the optimum because the representative owner’s 

allocation x
SO

 depends on  ε .  Nonetheless, in an economy with commitment, a 

stationary tax policy can attain the first-best.  A similar quota policy, it turns out, cannot.   

To see this result, consider a problem where the policymaker maximizes social 

welfare subject to the constraint that individual resource owners choose optimal 

extraction levels.  The tax rate each period must be chosen before the realization of  ε , 

but tax rates in the future may depend on past realizations.  If a stationary tax policy 

exists that can induce the first-best, it must align the resource owner’s optimal private 
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extraction policy as described by (8) with the first-best as described by (11) so that the 

following must hold: 

(13) 
p ! E

dC

dx
( "xSO ( "SR , "# ))$

%&
'
()
! "*

p + # !
dC

dx
(xSO (SR ,#)) ! *

=
1

+
.   

In other words, individually optimizing resource owners facing the tax policy must 

choose the socially optimal path.   

Solving this condition for  τ  and !"   yields a feasible, stationary policy rule that must 

induce the first-best by construction.  Substituting for  !S
R

  using the transition equation  
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This result shows that along the socially optimal path, it isn’t the level of taxes that 

matters so much as the real difference between the current tax rate and next period’s tax 

rate.  In fact, this difference depends only on  ε  and the representative agent’s resource 

stock.  Since  ε  is exogenous and  N  is large, no individual resource owner can affect the 

right hand side of (14).  Thus, for all  τ  , SR , and  ε  there exists a  !"   such that 

individually optimizing resource owners in this setting choose the socially optimal level 

of extraction. 

Quotas cannot be similarly designed to achieve the first-best. In general, quotas fail to 

attain the optimal path because they do not allow private agents to make full use of 

information they have that the policymaker does not.  A quota policy that adjusts next 
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period’s quota in response does not do any better.  Suppose, for example, that the quota 

in the current period binds.  If the realization of  ε  is greater than 0, then (12) shows that 

it must be socially optimal to increase extraction beyond the current quota.  No change in 

next period’s quota, however, can induce optimal behavior, because the current quota 

binds.  

The formal proof of this idea turns on the same fact: quotas limit private choices.  

Consider a quota policy in the spirit of (14), where the shadow prices of the quotas are 

chosen so that individually optimizing resource owners choose the socially optimal 

extraction level.  If such a policy exists, it must satisfy 
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= p # E
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#
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./

0
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The shadow prices  λ  and !"  arise from constraints on the private resource owners 

decision set.  The question, then, is whether the socially optimal choice x
SO
(S

R
,!)  lies 

within the resource owner’s feasible set given the quota.  If it does not, then the quota 

policy cannot induce the social optimum.   

The only way that the policymaker can guarantee that the quota policy can permit the 

optimal choice in the current period, no matter what the realization of  ε , is to set an 

initial quota level that does not limit resource owners at all in the present.  Thus, it must 

be that  λ = 0.  Simple updating shows that this logic must hold in the next period as well: 

the only way to guarantee feasibility of the optimal choice next period is to set !" = 0  as 

well.  Yet, if λ = 0, then the policy condition given by (15) implies 
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If  
df

dx
 > 0, as assumed, (16) implies !" > 0  , so next period’s quota must bind—a 

contradiction.  Therefore, no quota policy exists that can induce the first-best.  

Returning to the optimal tax policy, a comparative statics analysis show that the 

optimal policy reduces next period’s tax rate in response to positive price shocks in the 

current period.  A positive price shock makes an extraction increase both privately and 

socially desirable, but the social planner would increase extraction less than the resource 

owner because of external costs.  Reducing next period’s tax rate makes extracting next 

period relatively more attractive to the private owner.  The optimal policy thereby 

dampens private responses to price shocks to ensure the optimizing owner chooses the 

first-best path.   

Mathematically, this result can be derived as follows.  For any τ , SR , and  ε , 

differentiation of the optimal tax policy described by (15) yields: 
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(See Appendix B for proof).  Since  f  is strictly convex and !xSO
!"

> 0  by (12), it follows 

that  ! "#

!$
< 0.  The intuition behind equation (17) is straightforward: as ε  increases, MED 

increase beyond the current tax rate.  To induce agents to respond correctly to the current 

rise in MED, the policy reduces next period’s tax rate precisely by the change in the 
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present value next period of MED along the optimal path.  

V.  CONCLUSIONS AND FURTHER QUESTIONS FOR RESEARCH 
This paper shows how a stationary tax policy can optimally address a flow externality 

associated with resource extraction when the policymaker faces asymmetric information 

in the short run.  Quotas cannot attain the optimum because they limit the resource 

owner’s ability to respond to new information.  The general idea in this paper is to 

employ a rule that uses future tax rates as a policy instrument to face private agents with 

the correct level of external costs. In this particular setting, the optimal policy reduces 

future taxes as prices rise.  The tax rate reduction gives resource owners an incentive to 

save resources for later extraction, thereby reducing extraction in the current period.   

This intuition points to a key assumption of this paper.  The policy solution derived in 

this paper works precisely because changes in future taxes on extraction imply changes in 

opportunity costs and changes in the present discounted value of the resource stock.  But 

this assumption does not hold in some important cases.  Consider a model where resource 

owners could employ both dynamic and static factors, like capital and labor, to reduce 

pollution.  In a nutshell, the policy described here does not attain the first best in such 

scenarios because, for purely static factors, current levels do not affect future levels.  The 

future tax rates on such factors would therefore not appear in the resource owner’s first-

order conditions, because current levels would not represent an investment in future 

levels of these factors.  The interesting question here then seems to be how the second 

best in such settings depends on not only the relative slopes of the marginal costs and 

marginal benefits of abatement but also the relative cost effectiveness of different types 
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of inputs into abatement.   

Another important assumption made in this paper is that the informational asymmetry 

in this model, though persistent, is short run in nature.  The policymaker learns the value 

of the current shock at some point in the future and can therefore incorporate information 

on realizations of current uncertainty into future policy.  If the asymmetry were instead 

permanent, so that policymakers never learned the value of the shock, a dynamic game 

might arise where policymakers would attempt to extract information from agents’ 

observable decisions.  If an equilibrium exists where the policymaker can identify past 

values of the shock, then a strategy that implements the first best via a price instrument 

may also exist.   

It also seems worth considering how other forms of short run uncertainty affect this 

problem.  For non-renewable resource extraction in particular, policymakers may face 

uncertainty over the resource owner’s capital stock, the quality of ore extracted, and the 

price of the backstop technology.  While an optimal tax sequence seems plausible for any 

one of these cases individually, how do prices and quantities compare when multiple 

sources of asymmetric information arise in a dynamic setting?  Any source of uncertainty 

that implies a corner solution to the agents’ problem may affect the optimality of taxes, 

but it may be possible to use such corner solutions in much the same way as Weitzman 

[8] makes use of the fishery’s zero-profit condition.  
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Chapter 2:  Ventilation Choices and the Effects of Indoor NO2 on 
Respiratory Health: Evidence from NHANES III 

 

Abstract:  
 
This paper investigates whether day-to-day exposure to a common indoor air 

pollutant—Nitrogen Dioxide (NO2)—affects respiratory health. This oxidant gas causes 

permanent and sometimes fatal lung damage at concentrations greater than 1000 ppb 

(Samet and Utell, 1990).  According to the 2005 American Housing Survey, about 40 

percent of occupied homes in the US use gas stoves for cooking, which produce NO2 as a 

byproduct of combustion (US Census, 2006).  Peak concentrations in homes may reach 

above 900 ppb when a gas stove is used for cooking (Dennekamp et al., 2001). Previous 

epidemiological studies find mixed evidence of negative effects from use of gas stoves 

(Basu and Samet, 1999). Economic theory suggests, however, that NO2 exposure may be 

endogenous in these analyses.  In this case, estimates of the effect of exposure in classic 

regression analyses will be biased.  

I address this problem by developing a physical model of indoor NO2 concentrations 

that depends on individual ventilation decisions and housing characteristics. I estimate 

this model using data from the third wave of the National Health and Nutrition 

Examination Survey (NHANES III), examining the effect of natural gas stoves on a set of 

objective measures of lung function (spirometry). County-level statistics on the observed 

housing stock act as instrumental variables, predicting the presence of gas stoves and 

ventilation use independently of health.  
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In every model I consider, I find no significant effects of gas stoves on the outcomes. 

The lower limits of the 95 percent confidence intervals for the coefficient estimates 

suggest only small potential negative effects on respiratory health from ordinary NO2 

exposure. In almost every case, the absolute value of the lower limit is less than one-third 

of a standard deviation of the outcome. Controlling for individual decisions yields 

insignificant but positive coefficients for the unadjusted and adjusted gas stove indicators 

for almost every outcome. The relatively small standard errors of these estimates suggest 

that in typical residential environments in the US, ordinary exposure to NO2 from gas 

stoves does not pose a health risk.  As homes become more energy efficient, however, 

risks of NO2 exposure from gas stoves increase.  Public policies that provide housing or 

encourage energy efficiency may consider complementary actions to mitigate these risks.   
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Indoor air pollutants like NO2 have recently come to the attention of the scientific 

community because people in the US spend approximately 90% of their time indoors, 

where many air pollutant concentrations are higher than they are outdoors.  (Klepeis et 

al., 2001; Wallace, 1991; Wallace et al. 1996).  At the same time, rates of asthma 

morbidity and mortality in the US continue to rise despite dramatic improvements in 

outdoor air quality due to the clean air act (Mannino et al., 1999).  Unlike outdoor air 

pollutants, however, indoor air pollutants do not impose an externality on society.  

Individuals can make decisions that directly affect their exposure to indoor air pollutants 

in their homes.  This paper takes those decisions into account while examining whether 

day-to-day exposure to one indoor air pollutant—nitrogen dioxide—affects respiratory 

health. 

Nitrogen Dioxide (NO2) is one of several air pollutants found at much higher 

concentrations indoors than it is outdoors.  According to the 2005 American Housing 

Survey, about 40 percent of occupied homes in the US use gas stoves for cooking, which 

produce NO2 as a byproduct of combustion (US Census, 2006).  While outdoor 

concentrations averaged below 20 ppb in the US in 2007 (US EPA, 2008a) and average 

indoor to outdoor concentration ratios of NO2 in homes with gas stoves are only 1.19:1 

(Levy et al., 1998), peak concentrations during cooking may reach above 900 ppb when 

gas is used for cooking (Dennekamp et al., 2001).  At this concentration, NO2 may pose 

risks to health: toxicological studies show that NO2 causes permanent and sometimes 

fatal lung damage at concentrations of 1000 ppb and above (Samet and Utell, 1990).   
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I use data from the third wave of the National Health and Nutrition Examination 

Survey (NHANES III) to analyze the relationship between gas stoves and a set of 

objective measures of respiratory health derived from spirometry, which measures 

breathing flow rate and lung capacity.  I focus on four spirometric outcomes in particular: 

forced expiratory volume at one second (FEV1), forced vital capacity (FVC), the ratio of 

FEV1 and FVC, and forced expiratory flow over the middle of the expiration (FEF25%-75%) 

(US DHHS, 1996).  I examine this relationship for adult lifetime non-smokers, 

controlling for individual characteristics using appropriate population reference values 

(Hankinson et al., 1999). 

To identify variation in exposure to NO2 , I use a model of indoor air quality and 

individual choice.  This structural model shows how housing characteristics and 

ventilation decisions affect NO2 concentrations during cooking.  These factors affect the 

volume of air indoors and the rate at which air from outdoors replaces the air indoors, 

referred to as the air exchange rate.  Larger homes have more space for stove emissions 

to diffuse, yielding lower peak pollutant concentrations and.  Homes with relatively 

higher air exchange rates also will tend to have lower pollutant concentrations from stove 

emissions because outdoor air replaces indoor air faster in these homes.   

One way individuals can affect their air exchange rate is by using a mechanical vent 

hood.  Ventilation use can dramatically reduce the concentration of NO2 and other 

cooking emissions, reducing concentrations of pollutants by at least 40-70% depending 

on the size of the home and the power of the exhaust fan.  More generally, individuals 
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may reduce their exposure to NO2 in a number of ways: by decreasing their cooking time, 

cooking with less intensity, or choosing an electric stove over a gas stove.   

To the extent that individual health influences these choices, however, endogeneity 

bias enters regressions that attempt to measure the effects of exposure to NO2.  For sake 

of illustration, suppose that NO2 exposure reduces health.  If less-healthy individuals do 

relatively more to reduce their exposure, then classical regression analyses will bias the 

estimated effects of gas stoves on health upwards.  On the other hand, if healthier 

individuals do relatively more to reduce exposure, the estimated effects will be biased 

downwards.  Both cases seem plausible in the general population, more so than the case 

of no correlation.  I address this problem with instrumental variables (IV) models, 

separately identifying the effect of exposure from gas stove by using county-level 

statistics from the observed housing as instruments.   

I implement two IV models: one that does not adjust for the indoor environment and 

one that does.  In the first stage of the IV analyses, I model exposure as a function of 

housing stock variables, including the percentage of homes with both a gas stove and a 

ventilation hood in the individual’s home county, and statistics on the age of the housing 

stock in that county.  The county-level variables affect the cost to an individual to obtain 

a home with both gas stove and a ventilation hood.  At the same time, housing stock 

variables plausibly do not have direct effects on individual respiratory health because 

individuals spend most of their time in their own home, in transit, or at work (Klepeis et 

al., 2001).  Moreover, individuals cannot have easily selected where to locate their home 

as a function of high prevalence of kitchen ventilation because neither state nor county 
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building codes specifying the need for range hoods existed during the data collection for 

NHANES III.   

Previous epidemiological studies find mixed evidence of negative effects from 

exposure to NO2 from gas stoves.  Basu and Samet (1999) review 45 studies on the 

question and find that roughly half of these studies show significant negative effects on 

respiratory health outcomes while the other half do not.  The authors conclude that: 

 
This failure to find consistent negative associations should not be interpreted as 
indicating safety, i.e. no effect of gas stoves.  Methodological limitations of the 
studies blunt their sensitivity to detecting even modest associations.  On the other 
hand, there are significant data to suggest that large effects of immediate public health 
concern have not been overlooked.   

 

More recently, Eisner and Blanc (2003) analyze the health effects associated with gas 

stoves using NHANES III and find no effect for adults.   

This paper makes two contributions relative to the prior literature.  First, I account for 

the fact that human decisions will both affect the indoor environment and bias the results 

of classical regression analyses.  Eisner and Blanc (2003) recognize this possibility in the 

conclusion of their work, but no prior studies control for the consequences of individual 

choices or the possibility of endogeneity.  To capture the impact of individual decisions, I 

employ a physical model of the indoor environment where ventilation choices and home 

characteristics affect concentrations of NO2 .  This model also sets this paper apart from 

prior studies.  Past examinations of the effect of gas stoves on respiratory health use 

reduced form methods that do no explicitly model the indoor environment.  A handful of 
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small sample studies explicitly monitor indoor concentrations of NO2, while most others 

simply use an indicator variable for the presence of a gas stove.  

The results of this paper suggest that exposure to NO2 from gas stoves in typical 

residential settings does not pose a substantial risk to adult health.  Accounting for 

endogeneity bias does not reverse this finding.  In every model I consider, the effect of a 

gas stove on respiratory health is small or zero.  The lower limits of the 95 percent 

confidence intervals for the coefficient estimates suggest only small potential negative 

effects of ordinary NO2 exposure on most of the outcomes I consider.  In almost every 

case, the absolute value of the lower limit is less than a third of a standard deviation of 

the outcome. Controlling for endogeneity yields insignificant but positive coefficients for 

the unadjusted and adjusted gas stove indicators for almost every outcome.  Under these 

results, the lower limits of the 95 percent confidence intervals again indicate negative 

impacts that are on the order of a third of a standard deviation of the outcomes for a 

typical home with a gas stove.  If gas stoves do pose a risk to respiratory health, it is only 

to occupants of very small homes where kitchen ventilation is not used.   

I proceed to show these results in six sections.  The first section explains the overall 

research design of the paper, drawing out precisely what the presence of a gas stove in a 

home can indicate about NO2 exposure.  In Section II, I offer two theoretical models 

relevant to this research design.  First, I set out a theoretical model of NO2 concentrations 

indoors during stove use and show how housing characteristics and ventilation choices 

affect this concentration.  I then turn to an economic model of ventilation choices to show 

how an individual’s respiratory health may ultimately play a role in determining their 
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NO2 exposure.  I set forth an econometric model to estimate this relationship in Section 

III and describe the data I use to parameterize it in Section IV.  use to analyze it.  I report 

my the results of my analyses in Section V.  The paper concludes with a summary of 

results and a short discussion of policy implications.   

I.  RESEARCH DESIGN  
The construction of a controlled experiment aimed at identifying the effect of routine 

NO2 exposure presents near insurmountable difficulties.  Define total exposure to NO2 as 

the sum of all NO2 exposures in a lifetime, where each individual’s exposure is the 

integral over time of an individual’s breathing rate multiplied by the concentration of 

NO2 in the air.  This definition suggests that the ideal data set for examining the health 

effects of NO2 would randomly assign exposure times and concentrations over 

individuals’ lives and then examine respiratory health outcomes.  An equally valid 

approach would use panel data to look at changes in respiratory health as a function of 

randomly assigned test exposures, comparing outcomes for exposed subjects to outcomes 

for control subjects. 

Pure experiments are not practicable, and precisely measuring exposure 

concentrations—particularly with short time intervals—is cost-prohibitive, especially for 

large data sets.  For this reason, more than 30 of the 45 reviewed studies by Basu and 

Samet (1999) measure exposure by comparing health outcomes between individuals who 

use gas stoves for cooking and those who do not.  These types of studies provide 

information on the results of natural experiments where individuals are non-randomly 

exposed to some positive but unknown concentrations of NO2 for unknown lengths of 
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time throughout the observation period.  In the absence of panel data, studies that make 

use of such data implicitly assume either that current indicators of NO2 exposure are 

typical of an individual’s lifetime exposure pattern or that health effects are dominated by 

current exposures.  Statistically, these studies aim to identify effects of indoor NO2 off of 

cross-sectional variation in exposure indicators.  Assignment to exposure indicators is 

assumed to be random.   

I extend this approach in two ways.  First, I relax the assumption of random 

assignment of health outcomes to exposure indicators by allowing exposure to be 

endogenous to the estimated system.  Second, I employ a physical model of the indoor 

environment to introduce variation in the exposure indicator.  These two extensions are 

inter-related: the model of the indoor environment provides a window onto how 

individual decisions affect exposure.   

In the model of the indoor environment that I use, home characteristics and 

ventilation choices affect the rate at which NO2 emissions build up inside a home.  For 

any given gas-cooking event, the concentration of NO2 rises more slowly and attains a 

lower peak concentration in larger, draftier homes.  Because larger homes have a greater 

volume of indoor air, diffusion of NO2 into the air in these homes drives the 

concentration down.  Draftier homes likewise have lower peak concentrations of NO2 

because air from the outdoors replaces the air indoors at a relatively faster rate.  For the 

same reason, using a kitchen vent hood will also drive down NO2 levels.  I develop this 

model in detain in the next section. 
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II.  THEORETICAL MODEL OF THE INDOOR ENVIRONMENT 
In any indoor environment, the concentration of a pollutant over time depends on the 

rate at which sources add the pollutant to the indoor space and the rate at which the 

pollutant is removed from that space.  I identify typical sources and means of removal, 

referred to as “sinks”, for NO2 and derive a differential equation that characterizes the 

concentration of NO2 indoors.  This “mass balance” equation describes the change in the 

mass of NO2 as a function of the emission and removal rates and characteristics of the 

home.  I find the closed form solution for this differential equation, which is the indoor 

concentration of  NO2  as a function of time when a source is in use.  I analyze this 

equation and discuss its implications for NO2 concentrations indoors. Since the use of 

kitchen ventilation has a substantial effect on the mass balance, I suggest a simple 

economic model for the individual decision to ventilate.  This model illustrates how an 

individual’s health may affect the decision to ventilate or reduce exposure generally.   

Sources of NO2 indoors include NO2 from the outdoors and unvented indoor gas 

appliances, namely gas stoves or kerosene heaters.  Between kerosene heaters and gas 

stoves, gas stoves are the more important source.  Gas stoves are more prevalent in 

homes and are used on a near-daily basis.  In contrast, the use of kerosene heaters is 

largely seasonal.  Other appliances like water heaters or gas furnaces typically add only 

negligible amounts of NO2 to indoor air because they are directly vented to the outdoors.  

Therefore, gas stoves are the only source of NO2 indoors that I consider in this analysis. 

Sinks for NO2 indoors include air exchange, chemical reactions on surfaces 

(“heterogeneous reactions”), and chemical reactions in the indoor air.  Of these three 
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sinks, air exchange and heterogeneous reactions dominate.  Measurements of the speed at 

which NO2 reacts with surfaces in homes—its deposition velocity—show that air 

exchange and heterogeneous reactions reduce NO2 at similar rates (e.g. Yamanaka, 1984).  

Based on these characteristics, the concentration of NO2 in a well-mixed indoor 

environment when a gas stove is on evolves according to the following mass balance 

equation: 
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where the boundary condition is  C (0) = C0 .  In this equation,  V  is the volume of the 

indoor space and  C ( t )  represents the concentration of NO2 at time t ,  λ   is the air 

exchange rate of the indoor space,  δ  is an indicator variable taking the value 1 when a 

ventilation hood is on,  λhood  is the increase in air exchange due to the ventilation hood,  

Cout  is the concentration of NO2 outdoors, E is the mass per unit time of NO2 emitted by 

the gas stove,  vd  is the average rate at which NO2 reacts with surfaces in the home and  A  

is the surface are in the home.  Thus, the rate of change in mass of NO2 is equal to the 

rate at which outdoor air and indoor emissions add NO2 to the indoor space net of the loss 

of indoor NO2 to outdoor air due to air exchange.   

Equation (18) is separable after one substitution and has the following, closed-form 
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In theory, total exposure to NO2 is the integral over time of  C ( t ) multiplied by an 

individual’s breathing rate, but analysis of the function C ( t ) alone leads to several 

inferences.  First, in the absence of indoor sources of NO2, the concentration of NO2 

indoors should tend towards the outdoor concentration.  Next, the volume of the indoor 

space and air exchange dilute the concentration of indoor NO2 as the mass emitted 

spreads throughout the home and outdoors as it flows down the concentration gradient.  

Thus, the use of kitchen ventilation reduces indoor NO2 by facilitating dilution.  Finally, 

homes with relatively higher surface area to volume ratios will tend to have relatively 

lower concentrations of NO2 because of removal of the pollutant to surfaces.  Little data 

on indoor, residential surface-area-to-volume ratios exist, but a recent study suggests that 

typical ratios are about 3:1 (Hodgson et al., 2004).  Because of the lack of data on this 

term, however, I ignore the effects of surface deposition for the remainder of this paper.  

Equation (19) demonstrates, however, that for any given emission rate  E , variation in air 

exchange rates and ventilation use will still lead to variation in indoor NO2 

concentrations, independent of surface deposition.   

While the effects of air exchange on indoor pollutant concentrations are well known, 

the impact of kitchen ventilation has received little attention in the empirical literature.  

In an experimental setting, Traynor et al. (1982) show how variation in ventilation hood 

speed can be used to calculate the NO2 emission rate from a gas stove.  In the course of 

their work, the authors measure the concentration of NO2 emitted from an oven set to 

180°C in a 27m3 experimental chamber.  The vent hood increases the air exchange rate 

from the natural rate of 0.24-0.42 hr -1 to up to 7.0 hr -1.  The difference in air exchange 
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rates has a dramatic impact on the observed concentration of NO2.  With no mechanical 

ventilation, the concentration of NO2 reaches 1 ppm in less than 20 minutes and peaks at 

above 1.5 ppm.  With the vent hood on, the concentration of NO2 reaches a peak of about 

0.1 ppm within the first few minutes of the experiment—90% less than the peak 

concentration reached with the vent hood off.   

Equation (19) implies, however, that the effect of a ventilation hood on the indoor 

concentration of NO2 will depend on the strength of the ventilation fan, the volume of the 

indoor space, and the natural air exchange rate.  Calculation shows that in a typical 600 

m3 home (roughly 2150 sq ft, with 9ft ceilings) and a median natural air exchange rate of 

0.5 hr -1, a vent hood with a speed of between 100 and 400 CFM will increase the air 

exchange rate of the home by 0.28-1.13 hr -1.11  If the air in the home is well mixed, the 

use of kitchen ventilation will reduce the impact a gas stove will have on the indoor 

concentration of NO2 by about 56-126%.  But since emissions from a gas stove typically 

flow upwards in the heat plume, directly towards ventilation hood, the well-mixed 

assumption fails.  These calculations may therefore be seen as lower bounds for the 

effects of kitchen ventilation in a typical home.   

This physical model of indoor air quality explains how the concentration of NO2 

changes given that an individual cooks with a gas stove or uses their ventilation hood, but 

it does not provide insight into how individuals make these choices.  To address how 

individuals make decisions that affect their indoor environment, I offer a simple 

                                                
11 The relevant conversion factor for this calculation is: 1 CFM = 1.699 m3h-1.  The typical range for most 
residential vent hoods is 100-400 CFM according to the Home Ventilating Institute (2008) 
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economic model.  Although this model lacks the precision of physical models, it 

illustrates how individuals may balance the costs and benefits of improved air quality.  

The key hypothesis that this model generates is that individuals who benefit more from 

cleaner air will do more to keep their indoor air clean.  For parsimony, I confine this 

model to one decision: the decision whether or not to use kitchen ventilation.  Decisions 

over how much time to spend cooking, cooking intensity, whether to purchase a vent 

hood, or which type of stove to buy could be included in the model, but the basic 

intuition remains the same.   

For the ventilation choice problem, suppose that people gain utility from health and 

disutility from noise.  If individuals know that ventilation improves their air quality when 

cooking, then the following maximization problem economically characterizes how often 

individuals who own a vent hood will use it: 

(20) max
!"[0,1]

U(h,n #!) :h = H (A(!),X) . 

In equation (20), n > 0  represents noise from running the ventilation hood,  θ is the 

proportion of time the vent hood is turned on during, or equivalently, the probability that 

δ = 1 in equations (18) and (19) ;  U  is a differentiable, concave utility function;  h  is an 

individual’s health,  H  is a differentiable function that gives the health of individual ;  A  

is a differentiable function representing air quality, and  X  is a vector of individual 

characteristics which are fixed at the time of the decision.  Suppose that utility is 

increasing and strictly concave in health  (
!U

!h
> 0 , 

!
2
U

!h
2
< 0 ) while decreasing and 
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strictly convex in noise  (
!U

! n "#( )
< 0 , 

!
2
U

! n "#( )
2
> 0 ).  To complete the model, assume 

that health is increasing and concave with respect to air quality increases   (
!H

!A
> 0

 
, 

!
2
H

!A
2
< 0 ), and that air quality is increasing and concave in vent hood use (

dA

d!
> 0 , 

!
2
A

!"
2
< 0  ).12  

With these assumptions, standard economic theory guarantees that the first order 

conditions of (20) completely characterize its solution.  These first order conditions are: 

(21a) 
!U

!h
"
!h

!A
"
dA

d#
+ n "

!U

!(n "#)
+ µ $ % = 0  

(21b) µ !" = 0  

(21c) ! " (1#$) = 0 , 

where  µ  ≥ 0  and  ρ  ≥ 0  are the Lagrangian multipliers for the respective corner 

solutions.  Intuitively, these first order conditions say that individuals choose the  θ  that 

balances the marginal costs of vent hood use (noise) against the marginal benefits of use 

(improved air quality, which in turn yields greater health).   

This simple model yields a sensible implication for individuals located along different 

iso-characteristic curves on the surface traced out by the health function: individuals 

                                                
12 These conditions simply insure that the marginal costs of vent use are increasing while the marginal 
costs are declining.  It is perhaps worth noting that the functional assumptions of for the air quality function  
A  are consistent with the model described by (2) when initial concentrations of indoor NO2  (C0 ) and the 
outdoor concentration of NO2  (Cout ) are relatively small.    
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whose health is relatively more sensitive to changes in air quality will use their vent hood 

at least as much as those who are not sensitive.  I express this result in Proposition 1. 

 

Proposition 1:  Consider two distinct individuals  x1  and  x2  with characteristics  X1  and  

X2  respectively, each facing the optimization problem (20).  Suppose that  x1  benefits 

more from improved air quality than  x2 , which can be written as: 

(22) !H (A("),X
1
)

!A
>
!H (A("),X

2
)

!A
. 

Under this assumption, θ1 ≥ θ2 , with equality only at corner solutions.   

Proof:  See Appendix C. 

 

This result holds because “sensitive” individuals in this model derive relatively higher 

marginal benefits from air quality than others do at every point while the marginal cost 

curves remains the same for both types of individuals.   

These theoretical predictions have a practical implication.  Insofar as prior health is a 

component of the vector of characteristics that determines current health, health may 

correlate with vent hood use.  In the terms of the model, suppose  
 
X !!

k
= (x

1
,..., x

k
)   with  

xh  representing prior health.  Suppose that: 

(23) 
!

!x
h

!H (A("),X)

!A
# 0 .   
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According to the analysis above, the model now predicts that for any two otherwise 

identical individuals, different levels of prior health imply different ventilation choices.  

Health may influence ventilation choices in either direction, depending on the sign of this 

derivative.  When the derivative is negative, for example, lower prior health implies 

greater “sensitivity” as described by (22), and thus greater marginal returns of air quality 

to health.   

While this simple economic model analyzes only an individual’s decision to use 

ventilation, a more complete model that includes individual cooking time and intensity 

decisions would show similar results.  To the extent that individuals think that exposure 

to stove emissions have an impact on their indoor air quality and thus their respiratory 

health, they may reduce their exposure by operating on a variety of intensive or extensive 

margins.  Depending on their preferences, relatively more sensitive individuals may 

reduce the time they spend cooking, cook on lower heats, cook using less burners or their 

microwave, grill outdoors, eat out more often, or simply choose to own an electric stove 

instead of a gas stove.  In all cases, economic theory predicts that, all else being equal, 

those who benefit more from clean air will do more to keep their air clean.  

III.  ECONOMETRIC METHODS 
I now apply these models to an econometric analysis.  The standard cross-sectional 

model for this problem is a simple linear system:  

(24)  yi  =  Xiβ  i  +  Ziγ i  +  ε i ,  i  = 1, …, M . 
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In this equation,  yi  is a vector of data on respiratory health outcome  i  for the sample,  

Xi  are data on relevant demographic and individual characteristics in explaining 

respiratory health outcome  i ,  β  i  are the coefficients to be estimated for  Xi ,  Zi  are 

data on the environmental factors of interest for  i ,  γ i  is the vector of coefficients to be 

estimated for  Zi , ε i  is the mean zero residual for the equation  i , and  M  is the number 

of respiratory outcomes considered.  In the literature and in this paper, regressors are 

identical across equations:  Xi  =  Xj   =  X  and Zi  =  Zj   =  Z  for all  i , j .  The 

interdependence of the equations is not always considered in the literature, but seems 

appropriate in this application given that factors affecting one measure of respiratory 

health will affect other measures.  The base model thus fits into the seemingly-unrelated 

regressions (SUR) framework.   

The variables  yi  I investigate are three respiratory health outcomes derived from 

spirometry done as part of NHANES III.  Spirometry directly assesses respiratory health 

by measuring the amount of air inhaled and exhaled and the speed at which an individual 

breathes. Analytically, these outcomes have at least two advantages over other health 

outcomes.  First, spirometry provides a high quality, empirical measure of respiratory 

health.  Examinations for NHANES III implemented the 1987 American Thoracic 

Society’s recommendations for performing spirometry, and all results were later 

reviewed for reliability.   

Second, the spirometry of asymptomatic, lifelong non-smokers in NHANES III has 

already received careful study.  Hankinson et al. (1999) develop reference values and 
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predictive equations for normal spirometric outcomes using piecewise polynomial 

functions of individual age, sex, height, and ethnicity.  In accordance with the guidelines 

of the American Thoracic Society and the European Respiratory Society (Pellegrino et al. 

2005), I take these reference values into account in my analysis by using the residual 

between these predicted outcomes and actual spirometric results as my dependent 

variables. Further details on the specific outcomes I analyze appear in Section IV.   

I treat asthma as an independent variable in the  X  matrix.  According to the National 

Heart Lung and Blood Institute, asthma and its persistence begin early in life (NHLBI, 

2007).  Thus, while features of the indoor environment may aggravate their condition, 

adult asthmatics develop their condition in earlier, unobserved circumstances.  For that 

reason, it makes little sense to include asthma status as a dependent variable.  Asthma 

status cannot, however, be excluded from the list of independent variables: asthmatics 

have significantly lower spirometry scores than the general population, with large 

differences in FEV1 and FEF25%-75% in particular.13    

I also use the matrix  X  to control for regional and seasonal variations by including 

indicator variables for the geographic region of the observation (Northeast, South, 

Midwest, or West), and the month that the NHANES medical exam occurred.  I also 

control for relevant socio-demographic variables in some analyses, including years of 

                                                
13 According to the National Heart Blood and Lung Institute, “Asthma is a common chronic disorder of the 
airways that involves a complex interaction of airflow obstruction, bronchial hyperresponsiveness and an 
underlying inflammation. This interaction can be highly variable among patients and within patients over 
time” (NHLBI, 2007).  Asthma is thus not defined by spirometric results, but asthmatics in NHANES III do 
have significantly lower FEV1 and FEF25%-75% scores than similar individuals. Low FEV1 scores with no 
concomitant reduction in FVC typically identifies obstructive conditions like asthma.  Reductions in 
FEF25%-75% may also suggest the onset of obstructive conditions (Pellegrino et al., 2005).  
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education, family income, and the presence of smokers in the home.  Because of the poor 

quality of income data (family incomes are reported only up to $50,000) and because a 

substantial number of observations are missing for income and years of education, I do 

not include these variables in the main results of the paper.  Their inclusion does not alter 

the result.   

The analysis in this paper fundamentally consists of four different models of  Z  and 

its relationship to the errors  ε i : a base model, an extended model that structurally 

accounts for the indoor environment, and two instrumental variables (IV) models (one for 

the base model and one for the extended model) that account for the possible co-

determination of health outcomes and indoor air quality.  I conduct this analysis over all 

non-smoking adults in NHANES III who have location information, reliable spirometry, 

and for whom the national reference equations are valid.  

The base model follows the prior literature and uses an indicator variable for the 

presence of a gas stove in the home to control for exposure to NO2 .  The extended model 

uses a more refined measure of NO2 exposure based on the mass balance model in 

Section II.  Since respiratory health itself may affect NO2 exposure, the IV models 

attempts to independently identify the effect of exposure by using county-level data on 

the housing stock.  The idea behind this identification strategy is that housing stock 

characteristics will affect the relative costs of obtaining a home with a gas stove and the 

cost of obtaining a home with a ventilation hood.   

In the extended model, NO2 in indoor air is assumed to come only from gas stoves.  

To keep the sample as large as possible, I do not include statistics on outdoor NO2 levels 
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as regressors in the analysis.  In each of the four models, analysis shows that county-level 

statistics on outdoor NO2 do not significantly affect respiratory outcomes nor alter the 

fundamental result of the paper.  Thus, from equation (19), the extended model focuses 

only on the term 

(25) E

(! + " # !
hood
) #V

 . 

In the absence of precise data on the variables, I approximate this term as best as possible 

by making use of available data on home characteristics and individual decisions.  As 

other authors implicitly do, I replace  E  with an indicator variable for the presence of a 

gas stove.  For each individual home, I impute the average air exchange by climatic 

region from Murray and Burmaster (1995).   

As a robustness check, I run a separate set of regressions with  λ  set equal to the 

national residential median of  0.5 hr-1, but this change does not affect the results.  I use 

the number of rooms as reported in NHANES III in place of home volume with the idea 

that larger homes will tend to have more rooms.  Calculations suggest  λhood  lies between 

0.28 and 1.13 in a typical home.  In the absence of data, I normalize λhood  = 1 hr-1, which 

is within its expected limits.   

Some direct data on ventilation hood use are available.  For NHANES III who report 

using a gas stove or oven for cooking in their residence, the survey asks: “Is there an 

exhaust fan near this stove that sends fumes outside the house?”  If the respondent 

answers in the affirmative then the survey further asks, “When the stove or oven is being 

used, how often is this exhaust fan used?  Would you say it is used always, sometimes, 
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rarely, or never?”  Since very few observations report “never” and the semantic 

difference between “sometimes” and “rarely” may vary between individuals, I focus on 

individuals who report “always” using their ventilation hood by using an indicator 

variable for this choice.    

In total, these compromises transform (8) into the calculable term 

(25a) 
!
gas

("
r
+ !

hood
) # rooms

, 

where  δ gas  is an indicator variable for the presence of a gas stove,  ! r   is the mean air 

exchange rate for the climatic region, ! hood  is an indicator variable for “always” using a 

ventilation hood, and  rooms  is the number of rooms in the home.14 I refer to this term as 

the IAQ-adjusted gas stove indicator.  Intuitively, this term captures the essence of the 

physical model of indoor air quality by inversely weighting the presence of a gas stove by 

factors that dilute the concentration of NO2 in the home.   

For robustness, I interact available data on home age with the IAQ-adjusted indicator.  

Respondents to NHANES III report whether their home was built before 1946.   These 

interactions provide a means to account for differences in emissions and air exchange 

rates by home age.  Older natural gas stoves may use pilot lights, which constantly emit 

low levels of NO2 into indoor air.  On the other hand, older homes tend to have relatively 

                                                
14 For any given flow rate, the effect that vent hood use will have on a home’s air exchange rate will 
decline as home size increases.  This model does not capture this fact: the use of a vent hood is simply 
treated as having the same additional effect on air exchange across homes.  
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higher air exchange rates compared to newer homes.  These interactions do not change 

the results of the analysis.   

For the first two models, I assume that the outcomes are not correlated with the 

regressors, i.e.  E [ε i | X, Z ] = 0.  I estimate this system using a standard two-step Zellner 

estimate of the coefficients for the system.  Standard errors are corrected for the 

clustering of observations within homes by bootstrapping.  To generate reliable standard 

errors and confidence intervals, I use 1,000 bootstrap iterations per model.   

Because the theoretical model suggests that the use of kitchen ventilation and other 

decisions that affect indoor air quality may be endogenous, the assumption E [ε i | X, Z ] = 

0  may fail.  I address this possibility in the third and fourth regressions by using 

instrumental variables (IV) models.  In these models, I separately identify ventilation fan 

use off of variables that affect the cost of owning a home with a gas stove and ventilation 

hood.  Explicitly, I include a first-stage equation that sets the gas stove term in each 

model equal to a linear function of the county-level percentage of homes with gas stoves, 

the county-level percentage of homes with both gas stoves and ventilation hoods, the 

county-level percentage of homes built before 1946, and the county-level percentage of 

homes built after 1973.  I include an indicator for asthma status regional and seasonal 

controls in these models as well.  I estimate these systems using three stage least-squares, 

bootstrapping standard errors as in the first two models.   
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IV.  DATA AND DESCRIPTIVE STATISTICS 
The data for this study principally come from the US Third National Health and 

Nutrition Examination Survey (NHANES III) (NCHS, 1997).  As in Eisner and Blanc 

(2003), I focus on lifetime non-smokers for whom predicted spirometric values can be 

calculated from the population reference equations of Hankinson et al.  (1999).  I merge 

the NHANES III data with regional statistics on residential air exchange rates from 

Murray and Burmaster (1995) and with ambient NO2 statistics from the US EPA’S 

AirData database.  This procedure requires I restrict the NHANES sample to individuals 

for whom location data is available.  These individuals live in counties of 500,000 or 

more at the time of the survey. In this section, I provide brief details on each of these 

datasets followed by descriptive statistics on the data used in the analysis.   

The NHANES III uses a stratified, multi-stage probability design to select a 

representative sample of the non-institutionalized, civilian population of the US from 

1988 to 1994 (NCHS, 1996).   Observations were gathered in two waves: October 1988-

September 1991 and October 1991-1994.  Participants in NHANES III answer lengthy 

surveys about their individual characteristics, homes, habits, and history.  They also 

receive a complete medical examination, including spirometry.   

The four spirometric results I analyze in this paper are forced expiratory volume at 1 

second (FEV1), forced vital capacity (FVC), the ratio of FEV1 to FVC, and forced 

expiratory flow over the middle 25-75% of expiration (FEF25%-75%).  Forced expiratory 

volume at 1 second is the total amount of air in liters a person can forcibly blow out of 

their lungs after one second.  Similarly, FVC is the total volume of air in liters that a 
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person can forcibly exhale after taking a full breath.  The secondary measure FEF25%-75%  

captures an individual’s speed of exhalation over the middle of the spirometric test in 

liters per second.   

Following Eisner and Blanc (2003), I focus on absolute deviations from predicted 

values.15 Of these four measurements, FEV1/FVC is the primary measurement used to 

diagnose respiratory problems.  On its own, FEV1 is the most indicative of overall lung 

health.  According to the American Thoracic Society, deficiencies in FEV1 from normal 

predicted values generically describe the severity of any pulmonary abnormality 

(Pellegrino et al., 2005).  In conjunction with FEV1/FVC, FVC is used to help identify 

obstructive versus restrictive lung disorders (Pellegrino et al., 2005).  A low FVC score 

relative to normal with no concomitant problem in FEV1/FVC indicates a restrictive lung 

disease, which may be a result of damage to functional lung tissue or of disease of the 

surrounding tissues responsible for helping the lungs draw breath.  Last, deficiencies in 

FEF25%-75% can help identify the early stages of an obstructive abnormality (Pellegrino et 

al., 2005).   

Based on the results of NHANES III, Hankinson et al. (1999) develop spirometric 

reference equations for the US population that describe normal pulmonary function.  The 

reference equations for FEV1, FVC, and FEF25%-75% are piecewise polynomials whose 

parameters vary by age, sex, and ethnicity (non-hispanic white, non-hispanic black, and 

                                                
15 Alternatively, I conduct an analysis of percent deviations from normal predicted spirometric values as 
well.  The results are robust to either specification. 
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Mexican American).  The predicted values are valid for adults aged 80 years and younger 

in these race/ethnicity categories.  Each reference equation has the form: 

(26)  ypredicted  = b0 + b1 age + b2 age2 + b3 height2
.   

The reference equation for FEV1/FVC is similar but depends only on age, with different 

parameter values for each sex and race ethnicity categories.  Using the parameter values 

published in Hankinson et al., I calculate predicted values for each of the spirometric 

measures I use.  

I use location data to connect NHANES observations to data on residential air 

exchange rates.  Murray and Burmaster (1995) analyze air exchange rate data for a non-

random sample of 2,844 homes compiled by the Brookhaven National Laboratory from 

1982-1987.  The US EPA identifies this data as “the most extensive air exchange rate 

database for US residences” (US EPA 2008c).  Air exchange rates in the data are 

measured by the perflourocarbon tracer gas method, which follows the decay of a known 

concentration of an inert gas injected into a home.  Since differences in outdoor 

temperature affect both air exchange and home ventilation design, the authors divide the 

data into four climatic regions based on the average number of heating degree days a 

given location experiences per year.  I geographically match the climatic regions in their 

analysis to counties in the NHANES III and assign individuals the mean annual air 

exchange rate for their climatic region. 

Table 1 presents counts and the sum of weights for observations in NHANES III to 

show how criteria for sample selection affect the number of observations available for 

analysis.  I focus on lifelong non-smokers aged 80 years or less who have location 
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information available and identify themselves as belonging to one the three major 

race/ethnicity categories.  This sample derivation is similar to Eisner and Blanc (2003) up 

to the location criterion, which reduces the size of the sample by more than half.  The  

criterion cannot be relaxed for the IV analysis because the instruments vary by location.  

It can, however, be relaxed for the first model to generate the results similar to Eisner and 

Blanc.  The requirement of location can also be suspended for the second model by 

assigning individuals the national median residential air exchange rate of 0.5. As a 

robustness check, I conduct the first two stages of my analysis over the sample with 

location information as well as the larger sample without location information. The 

overall results do not differ, so I simply present analysis for the sample with location 

information in the next section.  This choice allows a comparison between the results for 

each of the four models.  I present means and standard deviations for the weighted

Criteria N Sum of Weights

Adults in NHANES 20050 187.5 x 10
6

…with reliable spirometry 16300 177.3 x 10
6

…and who are life-long non-smokers 8006 79.4 x 10
6

…and for who reference equations are valid 7114 68.3 x 10
6

…and who have location data available 3294 28.9 x 10
6

Table 1

NHANES III Sample Derivation

Note: 17 individuals in the final sample do not report the number of rooms in their 

home.  The IAQ-adjusted gas stove indicator cannot be calculated for these individuals, 

which reduces the total N to 3277 for that model.  Further requiring data on individual 

education levels and income data reduces the sample to 2912. Requiring outdoor NO2 

data reduces the primary sample to N = 2955. 
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Mean Std. Dev.

Characteristics and Demographics

Female 0.61 0.47

White 0.73 0.41

Black 0.17 0.35

Mexican American 0.10 0.26

Height (cm) 167.77 9.84

Age 38.94 18.13

Asthmatic 0.05 0.22

Spirometry residuals

FEV1 (L) -0.05 0.50

FVC (L) 0.03 0.51

FEV1/FVC -0.01 0.07

FEF25%-75% (L/s) -0.03 0.93

Home Characeristics

Smoker lives in the home 0.14 0.30

Cooks with a gas stove 0.52 0.50

…and has an exhaust 0.29 0.44

…and always uses exhaust 0.11 0.29

Rooms in home 6.01 2.33

Instrumental Variables

Percent pre-1946 homes in county 0.23 0.17

Percent 1946-1973 homes in county 0.42 0.14

Percent homes with gas stove and exhaust in county 0.29 0.16

Statistics for Secondary Samples

Years of education ( N=2912 ) 13.28 2.86

Family income ( N = 2912 ) 33902.66 16311.41

County NO2 mean (ppb) ( N=2955 ) 0.02 0.01

County NO2  max (ppb) ( N=2955 ) 0.01 0.10

County NO2 standard deviation (ppb) ( N=2955 ) 0.21 0.00

Table 2

Descriptive Statistics
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sample with location data in Table 2.16  For completeness, I also include descriptive 

statistics for the sub-samples of note.  While individual characteristics and demographics 

(e.g. sex, age, and ethnicity) do not explicitly appear in this paper’s analysis, they do 

drive the calculation of the spirometry residuals.  Therefore, I include means and standard 

errors for these variables as well. 

The descriptive statistics in this table reveal that the sample has a relatively high 

number of women.  The selection criteria favor women because they are less likely to 

have tried smoking in their lifetime.  Summary statistics from the 2006 American Time 

Use Survey show that women spend nearly twice as much time as men doing food 

preparation and cleanup (US Department of Labor, 2007).  Because of this fact, women 

may be more exposed to NO2 and therefore more likely to demonstrate relatively poorer 

respiratory health as a result.  I do not find support for this hypothesis, however: 

interactions between the female indicator variable and the NO2 exposure terms do not 

yield any significant results.  This feature of the sample thus does not drive the findings.   

Table 2 shows that approximately 52% of the sample cooks with a gas stove.  In 

comparison, the 2005 American Housing Survey shows that 40 percent of homes use gas 

stoves.  While this figure is not weighted for the number of people who live in each 

home, it suggests that homes in the sample are more likely to have gas stoves relative to 

the general housing stock.  A direct comparison confirms this idea: 61% of the unique 

households in the sample use gas stoves for cooking.  This slight over-sampling increases 

                                                
16 Due to the large size of the weighted sample, standard errors for these means are all near zero.   
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the chance of finding an effect of gas stoves on health by presenting a relatively higher 

number of test cases to examine. 

I use geographic variation in the sample in an attempt to identify differences in air 

exchange rates and thus identify some variation in exposure to NO2.  I use the best-fit 

mean air exchange rates for climatic regions defined by Murray and Burmaster (1996).  

These climatic regions are defined by annual average heating degree days.17  Table 3 

reports the air exchange rates I use for these regions and shows how the NHANES III 

sample falls into these regions, indicating the states that each region represents, the 

number of individual observations per region, and the sum of weights for those 

observations.18  

The sample of NHANES III participants I analyze is spread relatively evenly across 

three climatic regions.  Murray and Burmaster consider a fourth region that encompasses 

                                                
17 One heating degree day is counted for each day and for every degree that the mean outdoor temperature 
is below 65 degrees Fahrenheit.  For example, a day with a mean outdoor temperature of 55 degrees would 
be 10 heating degree days.   
18 Air exchange rates also vary by season, but I focus on geographic variation rather than temporal 
variation to emphasize differences in average NO2 exposure.   

Degree Days 0-2499 2500-5499 5500-7000

States in sample CA, AZ, TX, FL
 AZ, CA, MO, OH, 

TX, WA

IL, MA, MI, NY, 

OH, RI

Best-fit mean air exchange 

rate (h
-1
)

* 
0.687 0.439 0.430

N 619 351 370

Sum of weights 4.6 x 10
6

3.5 x 10
6

5.4 x 10
6

* Murray and Burmaster, 1995

Table 3

Imputed Air Exchange Rates by Climatic Region
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the US’s northern states, but none of these appear in the sample.  The absence of 

observations from these states is likely due to the fact that relatively few counties in these  

 

Degree Days

Use a Vent Hood? Yes No Yes No Yes No

1 0.593 1.455 0.695 2.277 0.699 2.326

2 0.296 0.727 0.347 1.139 0.350 1.163

3 0.198 0.485 0.232 0.759 0.233 0.775

4 0.148 0.364 0.174 0.569 0.175 0.581

5 0.119 0.291 0.139 0.455 0.140 0.465

6 0.099 0.242 0.116 0.380 0.117 0.388

7 0.085 0.208 0.099 0.325 0.100 0.332

8 0.074 0.182 0.087 0.285 0.087 0.291

9 0.066 0.162 0.077 0.253 0.078 0.258

10 0.059 0.145 0.069 0.228 0.070 0.233

IAQ-adjusted Gas Stove Indicator Values by Climatic Region, Home Size, and Vent Use

Table 4

R
o

o
m

s

0-2499 2500-5499 5500-7000
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states have populations in excess of 500,000 people.  Thus, any observation from these 

states in the NHANES III will not have location data associated with it.  

Table 3 shows that the main difference between regions in terms of mean air 

exchange lies between the southern areas of the US and the rest of the country.  In the 

warmest region, the mean annual air exchange rate is 0.69 h-1 compared to 0.43 or 0.44 

for the rest of the country.  This relatively small, coarse difference between two sub-

samples does not yield much variation by itself, but it does help generate differences 

between homes when applied to the model of indoor air quality in Section II. 

The implications of this model are drawn out in Table 4.  For each region, I calculate 

the IAQ-adjusted gas stove indicator by vent hood use for homes with between 2 and 10 

rooms.  The calculations in this table show that differences between the regions are more 

important for smaller homes when individuals do not use ventilation.  As the number of 

rooms increases, the model assumes that the volume of the home increases.  The weight 

on the gas stove indicator therefore decreases to reflect the fact that the diffusion of NO2 

in a larger space will result in a lower indoor concentration. Likewise, if an individual 

reports that they always use the vent hood, the model assumes that for any given home 

size, the effective air exchange rate in the home increases when the stove is in use.  The 

model reflects this increase by decreasing the IAQ-weighted gas indicator. 

The economic model in Section II suggests that if individuals know cooking 

emissions may affect their health, exposure itself may be endogenous.  This proposition 

cannot be completely explored because of insufficient data, but some analysis of the 

relationship between health and ventilation decisions is possible.  Descriptive statistics 
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for the sample reveal a small relationship between spirometry and vent use in the general 

sample.  Figure 1 reports the means for each of the four spirometric residuals by self-

reported vent use for the final sample. The differences Figure 1 point out are not large.  In 

terms of normal predicted values for each of the outcomes, the mean differences 

represent deviations of approximately two percent from normal at most.   

Differences are more pronounced, however, for asthmatics.  Of the 22% of asthmatics 

in the sample who own both a gas stove and a ventilation hood, 88% report “always” or 

“sometimes” using their vent hood, while less than one percent “never” use it.  

Individuals who “always” use their vent have FEV1 scores that are 83% of normal and 

FEF25%-75% scores that are 66% of normal on average.  In comparison, asthmatics who 

“never” use their vent have significantly higher FEV1 and FEF25%-75% scores: 89% and 

74% on average, respectively.  These findings give some credence to the theory that 

health status can influence individual actions, which can in turn influence the indoor 

environment.  Based on these findings, I include asthma status as an independent variable 

in the first-stage equation in the IV models. 

For instruments, the IV models in this paper use county-level housing stock data 

calculated from the sample.  Table 5 summarizes the relationship between home age, the 

presence of a gas stove, and the presence of a vent hood.  These statistics show that older 
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homes are more likely to have gas stoves than newer homes: 74% of homes built before 

1946 have a gas stove, compared to to 32% of homes built after 1974.  Newer homes 

with gas stoves, however, are more likely to have a vent hood: less than half of the homes 

with gas stoves built before 1946 have these devices, compared to almost three-quarters 

of such homes built after 1974.  These tabulations suggest that, relative to homes built 

after 1974, homes built in the two earlier eras are more likely to both have a gas stove 

and not use a vent hood.  In a first-stage analysis that uses the percentage of homes built 

before 1946 and built between 1946 and 1973 as instruments, it thus seems likely that 

both terms will be positive relative to the omitted category. 

V.  ANALYSIS 
As described in Section III, I analyze a set of four models: a base model that uses a 

simple indicator for gas stoves, an IAQ-adjusted model that inversely weights the gas 

stove indicator by the number of rooms and an imputed air exchange rate, and IV 

specifications for both of these models.  To maximize the number of observations 

available and maintain parsimony, I present a set of representative results based on 

regressions using the least restrictive set of independent variables.  This set includes 

Era built
Percent of sample individuals 

in homes this age

Use a Gas 

Stove

Use a Gas Stove and 

Have a Vent

Percent of Gas Stove 

Homes w/ a Vent

pre-1946 23.46% 74.38% 30.94% 41.59%

1946-1973 44.23% 52.43% 31.98% 61.00%

1974- 26.02% 31.52% 23.43% 74.33%

Unknown 6.29% 54.71% 26.09% 47.69%

Table 5

Home Age and Gas Stove Use
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indicators for the presence of a smoker in the household, asthma status, month of test, and 

geographic region.  In the three-stage least squares regressions, I regress the gas stove 

indicators against asthma status, the county-level percent of homes built before 1946, the 

county-level percent of homes built between 1946 and 1973, the county-level percent of 

homes with both a gas stove and a vent hood, geographic region indicators, and month of  

test. For each of these models, I bootstrap coefficient standard errors to account for 

clustering within households.   

Table 6 presents the results of this analysis in terms of the estimated coefficients for 

the gas stove indicators.  In addition to the coefficient estimate for each outcome in each 

model, I report the standard error of the estimate, the normal z-score, the normal 

probability associated with scores greater than the absolute value of z, and the 95 percent 

confidence interval associated with the coefficient.  The results uniformly show no 

significant effect of gas stoves on any of the spirometry outcomes. I find similar results 

across other specifications: interactions of home age, sex, or asthma status with the gas 

stove indicators do not yield significant or substantial changes in coefficient values.  The 

results are also robust to changes in the imputed air exchange rate; inclusion of education, 

income, or outdoor NO2 data; or specifying outcomes in terms of percent deviations from 

predicted normal values rather than absolute deviations.  Using first-stage 

models that include the four spirometric outcomes as independent variables or that do not 

include the regional and month indicators also produces similar results.   
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Model Estimate SE z P > |z|

Base

FEV1 -0.001 0.032 -0.050 0.964 -0.064 0.061

FVC -0.054 0.030 -1.780 0.076 -0.113 0.006

FEV1/FVC 0.003 0.004 0.770 0.444 -0.005 0.011

FEF25%-75% 0.019 0.059 0.330 0.742 -0.097 0.136

IAQ-adjusted

FEV1 -0.002 0.041 -0.040 0.967 -0.082 0.079

FVC -0.054 0.047 -1.170 0.243 -0.146 0.037

FEV1/FVC -0.004 0.008 -0.500 0.614 -0.019 0.011

FEF25%-75% -0.088 0.114 -0.770 0.438 -0.311 0.135

3SLS unadjusted

FEV1 0.054 0.081 0.670 0.506 -0.104 0.212

FVC -0.015 0.083 -0.180 0.859 -0.176 0.147

FEV1/FVC -0.001 0.012 -0.070 0.942 -0.024 0.022

FEF25%-75% 0.104 0.172 0.610 0.543 -0.232 0.441

3SLS, IAQ-adjusted

FEV1 0.010 0.139 0.070 0.940 -0.262 0.283

FVC -0.190 0.150 -1.270 0.204 -0.484 0.103

FEV1/FVC 0.003 0.004 0.670 0.504 -0.005 0.010

FEF25%-75% 0.114 0.236 0.480 0.629 -0.348 0.577

Regression Results: Gas Stove Effects for Adults in NHANES III*

Table 6

*This table reports the coefficients and related statistics for the unadjusted and IAQ-adjusted gas stove 

coefficients and related statistics.  Standard errors and confidence intervals are based on bootstrapping to 

account for clustering of observations within households.  These regressions use absolute deviations from 

normal spirometry outcomes as dependent variables and do not include additional regressors such as 

individual education, family income, or outdoor NO2 statistics.  Similar results obtain for models that 

include these regressors and models that regress the independent variables on percent deviations from 

normal outcomes.  Likewise, interacting data on home age or sex with the unadjusted and IAQ-adjusted 

gas stove terms does not produce any significant results.  

Normal 95% CI
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The results for the base model compare well with Eisner and Blanc’s (2003) findings.  

For a similar model estimated over a larger sample, Eisner and Blanc find no significant 

effects of gas stoves.  For FEV1, FVC, FEV1/FVC, and FEF25%-75%, they report coefficient 

estimates of 0.021, 0.008, 0.0052, and 0.086, respectively.  These previous estimates are 

nearly spot-on with my results.   All of them lie well within the 95 percent confidence 

interval for the base model estimated here.   

The coefficients for the IAQ-adjusted model are uniformly negative in sign and look 

deceptively larger in absolute value than the coefficients of the base model.  In fact, they 

indicate a slightly weaker effect on FEV1 and FVC for individuals in most homes because 

the IAQ-adjusted indicator usually takes a value of less than one.  After accounting for 

the fact that the mean value of the adjusted indicator is 0.36 (standard error: 8.07 x 10-5) 

in homes with gas stoves, the central estimates of the coefficients in this model are not 

significantly different from the estimates in the unadjusted model.19  In homes with few 

rooms or low air exchange rates, however, the adjusted indicator can be greater than 2.0.  

At the 95 percent confidence level, the largest potential negative impact on occupants of 

such homes nonetheless remains substantially less than a standard deviation of any of the 

outcomes.   

The bottom-half of Table 6 shows the coefficient estimates for the IV models.20  In 

both of these models, the estimated effects of gas stoves remain insignificant.  The 

                                                
19 A mean adjusted indicator of 0.36 is approximately consistent with living in a six room home with the 
median national residential air exchange rate of 0.5.   
20 The  R2  statistics of these regressions do not suggest weak instrument issues (Staiger and Stock, 1997).   
The first-stage estimated equation for the unadjusted gas stove indicator has R2 =0.23.  The third stage 
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confidence intervals for these estimates are small.  Comparing the lower limits of the 95 

percent confidence intervals to the standard deviations of the spirometric outcomes in 

Table 2, the results for the unadjusted model suggest that the potential negative impact of 

a gas stove are on the order of one-third of a standard deviation of the outcomes or less.   

Somewhat similar inferences can be drawn from the IAQ-adjusted model, but the 

interpretation of the effect of a gas stove in this model depends on the characteristics of 

the home and ventilation decisions.  At the conditional mean of 0.36, the lower limit of 

the 95 percent CI implies that the negative impacts of a gas stove on health outcomes are 

again on the order of one-third of a standard deviation of the outcomes or less.  Solving 

for the critical values where the IAQ indicator would imply a negative impact on 

respiratory health greater than one standard deviation of the outcome reveals that gas 

stoves pose are not likely to pose any risk to FEV1/FVC or FEF25%-75%.  This level of 

damage would require the IAQ-adjusted indicator to take values outside the range shown 

in Table 4.  For FEV1 and FVC, however, these critical values are 1.9 and 1.1, 

respectively.  For one and two room homes where ventilation is not used, the adjusted 

indicator does exceed these values.  At the largest indicator values in the data (2.326), the 

central estimate of the effect of FVC implies a decrease of approximately 0.9 standard 

deviations as well.  These results thus suggest that if NO2 exposure does pose a risk, 

                                                                                                                                            
estimates The percent of homes in the county built before 1946 and the percent of homes with gas stoves 
and vent hoods are both positive and significant at the 99.9% level.  The remaining instrument, the percent 
of homes built between 1946 and 1973, is positive with a z-score of 1.92.  For the IAQ-adjusted indicator, 
R2 = 0.17 and the significance of the instruments follows the same pattern.   
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individuals living in very small homes without adequate ventilation are more likely to be 

affected than others.   

VI.  CONCLUSIONS 
The results of this paper show that NO2 from gas stoves is unlikely to pose a risk to 

health in typical residential environments.  Central estimates of the effect of gas stoves 

are not significantly different from zero for any of the outcomes I examine.  The lower 

limits of the confidence intervals for these estimates suggest that gas stoves have only 

small impacts on respiratory health in typical homes.  This result is robust across all four 

models I consider in this paper and across several specifications of these models. Results 

from the final model indicate that occupants of small homes (two rooms or less) where 

kitchen ventilation is not used may be at some risk.  Gas stoves may have more of an 

impact in these settings because NO2 will build up faster and dissipate more slowly in 

smaller homes with lower air exchange rates.  Future research on the effects of indoor 

NO2 might therefore target occupants of small, energy-efficient dwellings as a population 

of interest. 

Since gas stoves do not seem to pose a significant risk to health in typical residential 

settings, the findings here do not support any policy actions aimed at the existing housing 

stock.  Indeed, standard economic theory argues against such policy generally insofar as 

individuals are well-informed of the potential risks of NO2 exposure and the costs of 

avoiding it.  But to the extent that housing or other related goods are publicly provided, 

policymakers might consider that increases in home energy efficiency may lead to 

increased risks of gas stove use.  Energy efficiency is often improved by reducing a 
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home’s air exchange rate.  Lower air exchange rates, however, imply NO2 from a gas 

stove will reach higher peak concentrations and remain in the home’s air for a longer 

time.  

The coarse IAQ-adjusted stove indicator developed in this paper suggests that 

occupants of a four room home with a gas stove may face risks to their health from 

exposure to NO2 when air exchange rates of 0.2hr -1 or less, which are not atypical for 

energy-efficient homes. The adjusted indicator reaches a level of 1.25 or greater in such 

homes, which exceeds the critical value calculated for a gas stove to imply a negative 

impact greater than one standard deviation of FVC at the lower limit of the 95 percent 

confidence interval.  Thus, increases in home energy efficiency may lead to increased 

health risks from indoor NO2 .   

If the expected marginal benefits outweigh the marginal costs, providers of public 

housing with gas stoves may mitigate this risk by either designing adequate natural 

ventilation into the structure or by simply including a vent hood and providing occupants 

with information about its benefits.  By the same token, public initiatives that encourage 

or subsidize increased energy efficiency might improve welfare by providing individuals 

with information about the potential risks of NO2 exposure, why those risks increase with 

energy efficiency, and what steps they can take to reduce risk if they so choose.  Indoor 

air quality policies that complement existing policies in the housing market make sense 

from an economic standpoint because they reduce the chances that a publicly provided 

good imposes inadvertent costs on society.   
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CHAPTER 3: THE IMPACT OF SMOKING BANS ON BIRTH WEIGHT: IS 
LESS MORE? 

 
Abstract: I combine data on state and local tobacco control ordinances from Americans 

for Non-smokers Rights Tobacco US Tobacco Control Laws Database with a sample of 

35 million births from national natality data files to examine the impact of smoking bans 

on birth weight, the probability of low birth weight, and weeks of gestation.  Using 

difference-in-difference techniques, I identify the effects of state bans net of local bans, 

as well as the effects of local bans net of state bans.  If ban choice is endogenous, then 

these effects will be biased in opposite directions.  Estimated effects may therefore be 

viewed as lower bounds of central estimates for state ban effects, or upper bounds of 

central estimates for local ban effects.  Applying this logic to the analysis of results 

suggests that less restrictive bans do more to improve birth outcomes than “100% 

smokefree” bans do, particularly in urban settings. 

 

JEL Codes: I18, Q53 
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Forty-eight states and 2,960 cities and counties in the US currently enforce one or 

more forms of no-smoking ordinances, usually termed “smoking bans.”  Smoking bans 

aim to protect public health from environmental tobacco smoke (ETS) by restricting or 

eliminating the right to smoking in public or semi-public venues. The direct health 

benefits of smoking bans, however, remain poorly understood.  Contrary to popular 

belief, smoking bans may not uniformly benefit public health. 

A handful of studies analyze the effects of smoking bans on the incidence of acute 

myocardial infarctions (AMI) in specific counties or municipalities.  Overall, these 

studies find support for the hypothesis that smoking bans decrease the risk of AMI but 

cannot separate the effects of bans on smokers versus non-smokers, nor track effects over 

a constant population (Meyer and Neuberger 2008).  Markowitz (2008) improves over 

these studies by using individual-level data to examine the effect of bans on Sudden 

Infant Death Syndrome (SIDS), but this study finds only mixed support for the 

hypothesis that smoking bans reduce SIDS cases. Likewise, Adda and Cornaglia (2006) 

examine individual non-smoker exposure to ETS, as measured by blood sera cotinine, 

and find that bans have no effect on average cotinine levels in the US.  The authors 

suggest that this zero-net effect occurs because bans shift smoking into private 

environments where non-smoking family members are still exposed.21   

                                                
21 Adda and Cornaglia’s result raises the question of whether secondhand or “third hand” smoke drives the 
observed exposure to nicotine because the chemical profile of these two sources of nicotine are different.  
Secondhand smoke contains hundreds of volatile organic compounds (VOCs) and high concentrations of 
particulate matter at elevated temperatures.  Third hand smoke, which arises from the desorption of 
cigarette tar from indoor surfaces, contains many of the same VOCs at room temperature and very little of 
the particulate matter.  Both are dangerous to health, but because of the presence of PM in secondhand 
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The purpose of this paper is to investigate separately the impact of state and local 

smoking bans on birth weight and related outcomes.  According to the US Surgeon 

General, ETS exposure increases the risk of low birth weight (defined as less than 2500 g 

or 5.5 pounds) and “represents an avoidable contribution to birth weight reductions” (US 

Department of Health and Human Services, 2006).22  Lower birth weight possibly occurs 

in part because ETS may cause children to be born earlier than they otherwise would, but 

evidence from the Surgeon General considers evidence on this link only “suggestive” at 

this point (ibid). In turn, birth weight significantly affects the probability of infant death 

and a variety of individual outcomes later in life.23  Any increases in mean birth weight 

due to smoking bans may therefore be viewed as a direct benefit of the ban.   

Beyond its first-order implications, birth weight also provides an interesting, 

continuous measure of the effects of environment on human health, both because of the 

relatively short period of fetal gestation and because of the likelihood of increased risk 

aversion during pregnancy.  Although mothers are mobile over their lives and may in fact 

choose where to live or work based on local amenities like smoking bans, nine months is 

a relatively small interval in their lifetime.  Thus, individuals observed in the data as 

living in a given location are likely to have spent their pregnancy in that location.  

                                                                                                                                            
smoke, secondhand smoke is more likely to cause damage to the lungs in the near term.  See Singer et al. 
(2003) for an investigation of the contribution of third hand smoke to exposure profiles.   
22 The meta-analysis of Windham et al. (1999), which contributes to the Surgeon General’s finding, 
estimates a mean reduction of 28 g (about 1 ounce) in birth weight due to ETS exposure.  In an updated 
meta-analysis over a larger set of studies, Leonardi-Bee et al. (2008) estimate a mean decrease of 33 g in 
birth weight due to ETS exposure, a figure similar in magnitude albeit somewhat larger.  Both studies 
estimate that maternal exposure to ETS increases the risk of low birth weight by about 20%.   
23 See Royer (2009); Almond, Chay, and Lee (2007); or Black, Devereux, and Salvanes (2007) for the 
most recent work in the area. 
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Research can thus reasonably connect the policies of an individual’s location to their 

infant’s birth outcomes.   

Further, to the extent that pregnancy increases a woman’s aversion to environmental 

risks, the measured effects of environmental variables on fetuses will be biased 

downwards.  If pregnant women do not spend a lot of time in bars, for instance, bans on 

smoking in bars may have little effect on their infant’s birth weight.  Labor supply 

decisions may have a similar impact on the estimated effects of workplace bans on birth 

outcomes: if women decrease their labor supply during pregnancy, work-place smoking 

bans may have a less pronounced effect on their infant’s birth outcomes. 

On the other hand, it may be the case that bans reduce the health costs of some 

behaviors, such as working or spending time in bars, which in turn negatively affect birth 

outcomes.  While work does not appear to negatively affect birth outcomes (Baum, 

2005), increased time in bars may reduce birth weight if it is positively correlated with 

alcohol consumption.  Smoking bans may also negatively affect birth outcomes by 

crowding more smoking into private environments.  For pregnant women who live or 

socialize with smokers, a ban on smoking in any kind of public or semi-public space may 

lead their partner or friends to smoke more in shared private environments. In the 

reduced-form analysis I present here, I cannot separately identify the contributions of 

these factors to the estimated effects.  Instead, I aim simply to estimate a lower bound for 

the effect of state-level smoking bans by differencing between infants who were covered 

by local smoking bans while in utero and those who were not.   



 68 

City and county governments have a longer history of smoking bans than states do, 

beginning in 1974 in Sacramento County, California.  Before state-level bans, local bans 

covered highly populated areas such as Los Angeles County and New York City, which 

began restricting smoking in 1985 and 1988 respectively.  In contrast, statewide bans 

begin in 1979 (Nebraska) with the bulk occurring after the EPA declared ETS a Class A 

carcinogen in 1993.  Thus, if state smoking bans have a true positive effect on a given 

outcome, then estimations of their effect derived from analyses that do not account for 

the local bans may be biased downward.  In essence, the impact of local bans may dilute 

the measured effect of state bans.   

At the same time, the presence of a ban at either the state or local level indicates that 

the median voter in that jurisdiction prefers a ban.  If stronger preferences for smoking 

bans correlate with relatively stronger preferences for health goods in general, the 

measured effect of smoking bans on health outcomes will be biased upward.  A simple 

story for this endogeneity problem is that the people who vote for a smoking ban may be 

the same health conscious people who consider the impact of their activities and 

environments on their unborn child’s health.  Thus, observed birth weights in 

jurisdictions with smoking bans may be higher because people in those areas do more in 

general to promote healthy birth weight.   

The ideal instrument for this problem would identify individuals with a taste for 

health goods independently of people who live in an area subject to a smoking ban.  In 

this paper, I settle for a second-best: I eschew precise estimation of local smoking bans 

for a conservative estimate of state-level bans by using the presence of a local ban to 
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identify observations in my data who may be more likely to have a relatively stronger 

preferences for health goods.  If local bans correlate better with individual preferences 

than state bans, then the effects of statewide bans on jurisdictions that did not put a local 

ban in place will be underestimated.  

This paper thus contributes to the research on the effects of state-level smoking bans 

by providing estimates of their impact that accounts for both the dilution of state ban 

effects and the endogeneity of ban choice.  To obtain these estimates, I connect birth 

weight data from the National Vital Statistics System (NCHS, 1989-2004) to state and 

local policy data compiled by Americans for Non-smokers Rights (ANR, 2008), 

controlling for differences in cigarette prices across states and years using standard data 

from Orzechowski and Walker (2007).  I then use difference-in-difference techniques 

within local-level fixed effects models to measure the impact of state-level bans on 

populations that did not previously have a local ban in place.   

If people choose where to live based on preferences for health-related goods, and 

smoking bans reveal local preferences for those goods, then estimates of the effects of 

state-level smoking on locations that did not previously ban smoking will be biased 

downwards.  At the same time, estimates of the effects of local bans in jurisdictions not 

covered by state bans will be biased upwards.  Thus, the estimates reported here may be 

viewed as lower bounds for the effects of state bans and upper bounds for the effects of 

local bans.  To the extent that local and state bans are comparable, both estimates taken 

together may inform policymakers about the consequences of smoking bans in general.   
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Using this approach, I estimate the impact of bans on birth weight and the probability 

of low birth weight.  I also analyze their effect on weeks of gestation.  Exposure to ETS 

has known negative effects on the first two outcomes, but the link between ETS and 

weeks of gestation is less well established.  I therefore consider the analysis of the impact 

of smoking bans on gestation as a contribution to the exploration of this link.  For each of 

these outcomes, I estimate the effects of smoking bans using two samples: one with 34.8 

million births linked to county and state policy, and a sub-sample of 9.8 million births 

linked to the municipal level as well.  

I estimate two sets of models for each sample, using one of two distinct sets of policy 

controls to account for smoking bans.  The data on bans identify the type of venues the 

ban covers (workplaces, restaurants, or bars), the level of government responsible for the 

ban, and ANR’s rating of the ban’s strength.  Strength ratings fall into three categories: 

“100% smokefree”, “qualified”, or “some coverage”.  Bans that are “100% smokefree” 

essentially prohibit smoking with almost no exceptions, “qualified” bans allow for 

smoking in separately ventilated spaces, and bans that provide “some coverage” restrict 

smoking in a way that does not meet the standard of “qualified.  In the first set of models, 

I simply use indicator variables to control for the presence of the various types of 

smoking bans at the time of birth.   

In the second model, each policy control counts the number of months that a fetus 

was covered by various types of smoking bans while in utero.  This continuous set of 

control variables provides a more precise measure of policy coverage than the indicators 

used in the first set of models and in prior studies and therefore a better way to test ban 
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effectiveness.  While I prefer this set of controls, it has at least one limitation: its semi-

functional dependency on weeks of gestation makes it ill suited to analyze the impact of 

bans on gestation itself.  Thus, for weeks of gestation, I report results only for models that 

use indicator variables to control for smoking bans.   

Estimates of the impact of smoking bans using the county-within-state policy sample 

show that strong state level bans covering restaurants have positive and significant effects 

on infant birth weight across both models, although “100% smokefree” bans may not 

outperform slightly weaker bans, which appear to increase birth weight by at least  4.4 g  

for every month covered while in utero in this sample.  Only the weakest workplace bans 

show positive and significant impacts on birth weight and reduced chances of low birth 

weight, and these effects are somewhat small: an increase of approximately 0.8 g in birth 

weight and approximately an 0.1% point reduction in the probability of low birth weight 

for every month covered.  None of the estimates of the effects of county level bans on 

birth weight or the probability of low birth weight contravene these results.  Bar bans 

have little significant impact relevant to this analysis, and gestation does appear to be 

significantly and positively related to smoking bans in this sample. 

The municipality-within-county-within-state sample affords a better-specified model, 

but uses a smaller number of observations drawn from more urban environments.  In this 

sample, weaker workplace and restaurant bans imposed by states appear to significantly 

improve birth outcomes in the policy month control models, increasing birth weight by at 

least 3.5 g and 14.5 g for every month of coverage, respectively.  On the other hand, the 

estimated effects at the local level in this model suggest that “100% smokefree” bans may 
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worsen birth outcomes.  In both the indicator and policy month models, “100% 

smokefree” bans are associated with significant decreases in birth weight and increases in 

the probability of low birth weight.  Under the assumption of endogeneity, these are 

upper bounds for the effects of 100% bans, which would suggest that their true impact is 

more negative.  Bar bans again have little relevant impact, and gestation does not appear 

to be as tightly linked to policy in this sample.   

Overall, these results suggest that bans that are less than “100% smokefree” may do a 

better job at improving birth outcomes. This finding has at least two implications.  First, 

the impact of bans likely differs between urban and non-urban settings.  Significant 

problems with “100% smokefree” bans only appear in the more urban sub-sample.  State-

level policy may therefore do more to improve public health by imposing less restrictive 

smoking bans and allowing communities to self-determine stricter “100% smokefree” 

coverage.  Second, less may be more for smoking bans because prohibiting smoking in 

public places entirely shifts more smoking into private spaces where non-smokers are 

exposed.  Given that people are going to smoke, public health might be improved by 

providing designated space for smokers where no non-smokers will be exposed to their 

emissions rather than prohibiting smoking entirely.   

I proceed to show these results in five sections.  In the first section, I describe the 

research design of the paper in more detail and provide the econometric framework for my 

analysis.  Information on the natality and smoking policy data that I use appear in Section 

II.  I report descriptive statistics for the sample I analyze in Section III.  In Section IV, I 

present and discuss the results of the regression analyses, focusing on the estimates of the 
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policy control variables by model and outcome.  I conclude the paper by summarizing my 

results, considering their limitations, and offering questions for further research.   

I.  RESEARCH DESIGN AND ECONOMETRIC METHODS 
In this paper, I use a reduced-form, difference-in-difference approach to identify the 

treatment effect of state level smoking bans on birth outcomes.  Riechman et al. (2006) 

investigate the use of reduced-form analyses of infant birth weight and consider how 

estimations of effects might be affected by typically-unobserved-but-theoretically-

important variables (TUV), other non-standard covariates (NSC), and input reporting.  

While the authors find that self-reporting of some inputs—like tobacco use—can lead to 

overestimates of their effects and that both TUV and NSC have significant effects on 

birth outcomes, they conclude that neither the use of self-reported variables nor the 

exclusion of TUVs or NSCs appreciably affects other input estimates.  In the context of 

this paper, if the presence of a smoking ban results in increased under-reporting of 

tobacco use, the estimated effect of the smoking ban would be biased downwards.  The 

reduced-form approach is thus in keeping with the aim to provide a conservative estimate 

of the effects of bans.   

To investigate the effect of smoking bans on birth outcomes, I estimate a set of 

regressions based on the following fixed-effects model: 

(27) yicst = !
1
bst + ! 2bct + ! 3bstbct + ! 4Pst + "

1
Xi +# c + $ist  . 

In equation (27),  yilst  denotes the birth outcome of individual  i  whose mother resides in 

location  l  within state  s  at the time of birth  t , bst  denotes a vector of state- and time-
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varying policy controls,  bct  is a vector of county- and time-varying controls,  Pst  is the 

average real price of cigarettes in state s  and time t ,  Xi  is a vector of maternal, infant, 

and birth characteristics,  αc  is a time-invariant fixed effect for county  c , and  εist is a 

mean zero random error. The vector bstbct captures the values of state and county policy 

controls when both state and local policy are controls non-zero, taking on the value (bst , 

blt ).  The vectors of parameters  γ1-γ4 and β1  are to be estimated.  I use ordinary least 

squares (OLS) to estimate the model.   

Since the vector  bst bct  takes on the values of both state and county bans when both 

are present, the vector of parameters  γ1  represents the effects of state bans on individuals 

in counties where no county ban is in place.  Likewise,  γ2  represents the effects of 

county level bans on individuals living in counties that have ban within a state that does 

not.  Thus, the presence of a county level ban does not dilute the estimate of the effect of 

state bans given by  γ1.  Further, if the presence of county bans indicates relatively 

stronger individual preferences for health related goods,  γ2  is biased upwards and  γ1  is 

biased downwards.  In this case, γ1  represents a set of lower bound estimates for the 

effects of state bans.   

I extend this approach to the municipal level where data is available by using the 

following model: 

(28) yiscmt = !
1
bst + ! 2bct + ! 3bmt + ! 4bstbct + ! 5bctbmt + ! 6bstbmt + ! 7bstbctbmt + ! 8Pst + "

1
Xi +#m + $isct . 

The definitions of the data and parameter variables in (28) are similar to the model 

described by (27) with some additions.  I use the subscript  m  to denote variables that 
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depend on municipal characteristics.  In particular, the vector  bmt  represents bans present 

in municipality  m  at time  t  and the fixed effects  αm  are set at the municipal level.  As 

in (27), this model uses interaction terms to capture when an observation in the data is 

simultaneously covered by policy at any combination of the state, county, or municipal 

levels.  Specifically, the vector  bst bct  gets the values  (bst , bct )  when both state and 

county policy are present  bct bmt  takes the value  (bct , bmt) when both county and 

municipal policy are present,  bst bmt  takes the value  (bst , bmt )  when both state and 

municipal policy are present, and  bst bct bmt  takes the value  (bst , bct , bmt ) when an 

observation is covered by policy at all three levels.  I again use OLS to estimate the 

model parameters.   

Model (28) has both advantages and disadvantages relative to model (27).  As in the 

first model, the interaction terms imply that the vector of parameters  γ1  represents the 

effects of state bans on birth outcomes for infants not covered by county or local policy.  

Thus, the estimate  γ1  represents the undiluted effect of state bans.  Likewise,  γ1  is again 

biased downwards if the presence of county or municipal bans indicates relatively 

stronger individual preferences for health related goods.  The second model does a better 

job than the first, however, in controlling for dilution of state policy by local policy and 

in controlling for idiosyncratic local effects that may be correlated with outcomes.  On 

the other hand, because the data requirements for the second model constrain the sample, 

the analysis may be less broadly applicable.  I turn to this and other issues in the next 

section.   
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II.  DATA  
For this paper, I integrate data on smoking bans, cigarette prices, and births.  In this 

section, I report on the granularity of each data set, the length of time that it covers, the 

time intervals of observations, and any limiting factors that lead to notable lacunae in the 

samples I use in my analyses.  After describing each data set in turn, I discuss the 

samples of interest and how I construct the policy control variables for analysis.     

 

Smoking Bans 

State and Local tobacco control ordinance data were provided by the American 

Nonsmoker’s Rights (ANR) Foundation U.S. Tobacco Control Laws Database© (2008).24  

This database provides information on smoking bans put into effect at the state, county, 

and municipal levels of government. At the county level, the data set provides 

information on whether the ban covers incorporated areas as well as unincorporated areas 

in the county.  For each ban, the database reports what type of venue it covers 

(workplaces, restaurants, or bars), the effective date for the ban by venue; the state, 

county, or place FIPS code that the ban covers; and the “strength” of the ban coverage.  

The three characterizations of ban strength are defined by ANR (2008) as follows: 

Workplaces 
100% Smokefree:  All workplaces must be completely smokefree, with some minor exceptions:  
A) Workplaces with only one employee are exempt.  B) Family-owned businesses and businesses 
run by self-employed persons, in which all the employees are related to the owner or the self-
employed person and which are not open to the public are exempt.  C) With respect to public 
workplaces, jails or interrogation rooms are exempt. 
 
Qualified:  Workplaces must be smokefree with two possible general exceptions:  A) Workplaces 
with a specified number of employees or fewer (but more than one employee) are exempt.  If the 

                                                
24 Abstracts based on this data are available online at ANR’s website, www.no-smoke.org.   
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exemption in a law is for one employee only (whether or not the employer), this field will be 
marked “Yes.”  B) Smoking is permitted in enclosed, separately ventilated smoking rooms. 
 
Some Coverage:  There is some coverage for workplaces, but less than either of the above two 
categories. 

 
Restaurants 

100% Smokefree:  All restaurants, including attached bars, must be completely smokefree, without 
exception.  If, by law, there are no bars in the community, this field will be marked “Yes” even 
though the law does not specifically address attached bars. 
 
Qualified:  Restaurants must be smokefree with three possible exceptions:  A) Smoking is 
permitted in enclosed, separately ventilated dining rooms.  B) Restaurants with a specified number 
of seats or fewer.  C) Smoking is permitted in attached bars that are separately ventilated. 
 
Some Coverage:  There is some coverage for restaurants, but less than either of the above two 
categories. 
 

Bars  
100% Smokefree:  All freestanding bars must be completely smokefree, without exception. 
 
Qualified:  Freestanding bars must be smokefree with one possible exception: Smoking is 
permitted in enclosed, separately ventilated rooms. 
 
Some Coverage:  There is some coverage for bars, but less than either of the above two categories. 

 
The data also provide information on when a ban was weakened, partially repealed, or 

repealed.  In total, the ANR U.S. Tobacco Control Laws Database represents a historical 

record of tobacco ordinances in the US from 1974 to present.  To my knowledge, no key 

observations are missing from this data.  With respect to data on smoking bans, this data 

set is ideal for addressing the research question in this paper.   

 

Cigarette Prices 

To account for variation in the after-tax price of cigarette, I use data from the annual 

Tax Burden on Tobacco (Orzechowski and Walker, 2007).  This data set gives average 

after-tax prices for a pack of 20 cigarettes by state and year, from 1970 to present.  I 

deflate these prices using the US Bureau of Labor Statistics National Consumer Price 
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Index (1982–1984 = 100).  While these data provide some control for variation in 

cigarette prices, they fall short of ideal data in that they do not account for variation 

within states or within years.  To my knowledge, however, this is the best available 

national data series on cigarette prices.  I link these data to births by year and state.    

 

Birth data 

The US National Center for Health Statistics provides data on all births in the US in 

each month from 1968 to present.  Variables that connect mothers to their place of 

residence by FIPS county codes first appear in the national birth data in 1982.  To protect 

privacy, these data are only available for births to mothers living in counties with 100,000 

or more people.  Data that connect births to municipal place of residence by FIPS codes 

are available from 1994 forward.  As with counties, this information is also restricted to 

births to mothers living in cities with greater than 100,000 people as of the most recent 

census.  Beginning in 2005, the natality files no longer contain location in publicly 

available data above the state level due to privacy concerns.   

The birth data include a wide variety of maternal and infant controls.  I use a small set 

of these in this study.  The controls I use include mother’s age, race/ethnicity, education, 

marital status, total number of prior live births, self-reported smoking during pregnancy, 

infant’s sex, weeks of gestation, and plurality of birth (singleton, twin, etc).  Self-reported 

risk factors, including maternal tobacco use, are first reported in the data beginning in 

1989.  These factors directly affect birth weight and are likely affected by tobacco 
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policy.25  Maternal tobacco use is not reported for births occurring in California.  Before 

1999, maternal tobacco use was also not reported for the states of Indiana; the state of 

New York, excluding of New York City; and South Dakota.26  

 

Samples of interest and ban controls 

These data constraints suggest two samples of interest.  The larger, primary sample 

uses data from 1989 to 2004, when county location and the full set of appropriate controls 

are available.  Analyses of this sample can provide estimates of the effects of statewide 

smoking bans on counties that do not have bans in place.  Because of a lack of data, 

births to mothers living in counties of less than 100,000 cannot be connected to policy 

and therefore are not included in the sample.  Interpretation of the results thus may not 

extend to more rural counties.  Indeed, it is plausible that smoking bans may have less 

impact on more rural counties because rural counties tend to be less densely populated.  

Estimated effects based on this sample can therefore be interpreted as the effect of a 

statewide smoking ban on birth outcomes for people living in a county of population 

100,000 or more that did not previously have a ban in place.   

Estimated effects based on the primary sample do not account for dilution of effects 

due to municipal smoking bans.  The ideal data set would thus control for municipal 

policy as well.  I construct a sub-sample of observations from the birth data that meet this 

requirement for a supplementary analysis.  This sub-sample runs from 1994 to 2004 and 

                                                
25 See for example Evans et al. (1999).   
26 New York City, however, reports maternal tobacco use from 1989 forward.   
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contains data on all births in the US in municipalities with populations greater than 

100,000.  The greater population density of these areas suggests that results from these 

analyses apply only to larger cities.  The results from analyses on this sample can be 

interpreted as the effects of state-level bans on births to people living in cities of greater 

than 100,000 people that did not previously have a ban in place.  

For observations in each of these two samples, I construct two sets of controls for 

smoking bans.  Each set of controls identifies smoking bans that cover the mother’s area 

of residence by the level of government responsible for the ban, the type of place it 

covers, and the strength of the bans. The first set of controls are simple indicator 

variables which take a value of one if the area of residence was covered by the ban it 

represents during the year and month of the infant’s birth.  Because similar controls 

appear in other smoking ban studies, the results I offer based on can be compared to 

findings in other research. 

The data, however, allow for a more precise measurement of policy coverage.  I 

construct a second set of controls that count the number of months that the infant was 

covered by a ban during its gestation.  I calculate the number of months of ban coverage 

based on the ban’s effective date, the infant’s total number of weeks of gestation at the 

time of birth, and the month and year of birth.27  For example, if a smoking ban were 

passed in January and the infant were born in March, then the infant would have been 

covered by the ban for two months while  in utero.  Because this measure relies in part on 

                                                
27 Because only the month and year of birth are reported, I convert weeks of gestation to months by using 
an average of 365.25/12*7 ≈ 4.35 weeks per month.  
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weeks of gestation, however, it cannot be used to analyze the impacts of ban coverage on 

weeks of gestation itself.   

III.  DESCRIPTIVE STATISTICS 
In this section, I present descriptive statistics for the samples of interest to provide 

adequate background for the interpretation of regression analyses in the next section.  I 

focus on the basic means and standard deviations of the maternal and infant birth controls 

for the two samples of interest.  I also provide some basic tabulations of the policy 

control variables.  For the price data, I only report overall mean and standard deviations 

for observations within the sample—see Orzechowski and Walker (2007) for further 

information on these data.   

Table 7 presents sample means and standard deviations of outcomes and select 

controls for the county-within-state sample.  This sample contains 34.8 million of the 

64.3 million births that occurred from January 1989 through December 2004.  

Observations within the sample come from 530 different counties spread across every 

state in the US except Wyoming.  Because California does not report maternal tobacco 

use, only a scant 6,000 births in this data are to California residents. The summary 

statistics reflect the fact that the births within this sample are drawn from more urban 

settings, where the percentages of minority populations are relatively higher.  The 

percentage of self-reported smokers in this sample appears to underestimate the true 

percentage of smokers: 12% of mothers report smoking at some time during their 
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pregnancy, while national estimates suggest that the true figure is closer to 19% 

(SAMSHA, 2000).  Twenty-six percent of births in this sample were to mothers who 

lived in an area covered by at least one smoking ban, and 23% were covered by at least 

one state ban.  

Similar sample characteristics appear in the summary statistics of the municipality-

within-county-within-state sub-sample shown in Table 8.  This sub-sample contains data 

on 9.8 million births that occurred from 1994-2004.  Observations come from 235 

Mean Std. Dev.

Birth Weight (g) 3311.14 608.32

Percent with low birth weight 0.08 0.27

Infant controls

Weeks of Gestation 38.84 2.63

Plural birth 0.03 0.17

Female 0.49 0.50

Maternal controls

Smoked during pregnancy 0.12 0.33

Age 27.25 6.08

Number of prior living births 2.03 1.22

Years of education 12.94 2.72

Married 0.68 0.47

Hispanic 0.16 0.37

White, non-Hispanic 0.60 0.49

Black, non-Hispanic 0.19 0.39

Other 0.05 0.22

Price and policy controls

Real price of cigarettes (pack of 20), 1982-84 = 100 1.56 0.45

Covered by at least one county smoking ban 0.26 0.44

Covered by at least one state smoking ban 0.23 0.42

Table 7

Summary Statistics: County-within-State Sample

N=34817843
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different municipalities within 201 different counties across 44 states.28  Relative to the 

larger sample, mothers in the sub-sample tend to be slightly younger, slightly less 

educated, and much more likely to be minority.  A large share of the births in this 

sample—69%—belongs to mothers who live in areas covered by a municipal smoking 

ban.  Thirty-three percent are covered by a county ban, and only 18% are covered by state 

bans.  

                                                
28 Delaware, Maine, Montana, North Dakota, Vermont, West Virginia, and Wyoming are not represented.   

Mean Std. Dev.

Birth Weight (g) 3254.2741 615.4404

Percent with low birth weight 0.09 0.28

Infant controls

Weeks of Gestation -1.32 2.74

Plural birth 0.03 0.17

Female 0.49 0.50

Maternal controls

Smoked during pregnancy 0.10 0.30

Age 26.55 6.23

Number of prior living births 2.08 1.31

Years of education 12.46 2.86

Married 0.56 0.50

Hispanic 0.27 0.44

White, non-Hispanic 0.39 0.49

Black, non-Hispanic 0.28 0.45

Other 0.06 0.24

Price and policy controls

Real price of cigarettes (pack of 20), 1982-84 = 100 1.74 0.50

Covered by at least one municipal ban 0.69 0.46

Covered by at least one county smoking ban 0.33 0.47

Covered by at least one state smoking ban 0.18 0.39

Table 8

Summary Statistics: Municipality-within-County-within-State Sub-sample

N=9781176
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Mean Std. Dev. Mean Std. Dev.

Workplaces

Some Coverage 0.189 0.391 1.646 3.453

Qualified 0.004 0.066 0.033 0.522

100% Smokefree 0.009 0.096 0.051 0.593

Restaurants

Some Coverage 0.128 0.334 1.122 2.957

Qualified 0.0004 0.021 0.004 0.186

100% Smokefree 0.021 0.144 0.149 1.089

Bars

Some Coverage 0.008 0.090 0.070 0.786

Qualified

100% Smokefree 0.007 0.086 0.045 0.580

Workplaces

Some Coverage 0.233 0.423 2.039 3.738

Qualified 0.006 0.079 0.053 0.682

100% Smokefree 0.004 0.066 0.031 0.499

Restaurants

Some Coverage 0.089 0.285 0.789 2.533

Qualified 0.012 0.107 0.098 0.925

100% Smokefree 0.005 0.072 0.038 0.556

Bars

Some Coverage 0.008 0.090 0.072 0.797

Qualified

100% Smokefree 0.005 0.068 0.035 0.532

C
o
u

n
ty

NA

Table 9 

Summary Statistics for Policy Controls: County-within-State Sample

Ban type

NA

S
ta

te

Indicators Policy Months

Mean Std. Dev. Mean Std. Dev.

Workplaces

Some Coverage 0.153 0.360 1.342 3.184

Qualified 0.005 0.071 0.039 0.569

100% Smokefree 0.006 0.080 0.031 0.443

Restaurants

Some Coverage 0.093 0.290 0.819 2.577

Qualified

100% Smokefree 0.015 0.120 0.098 0.878

Bars

Some Coverage 0.014 0.119 0.125 1.045

Qualified

100% Smokefree 0.003 0.059 0.020 0.373

Workplaces

Some Coverage 0.601 0.490 5.335 4.381

Qualified 0.014 0.118 0.117 1.005

100% Smokefree 0.017 0.131 0.128 1.022

Restaurants

Some Coverage 0.533 0.499 4.729 4.460

Qualified 0.030 0.170 0.242 1.424

100% Smokefree 0.013 0.115 0.095 0.874

Bars

Some Coverage 0.041 0.199 0.346 1.707

Qualified 0.001 0.024 0.003 0.142

100% Smokefree 0.008 0.090 0.057 0.677

M
u

n
ic

ip
a

l 

NA

Table 10 

Summary Statistics for Policy Controls: 

Municipality-within-County-within-State Sub-sample

Ban type

NAS
ta

te

Indicators Policy Months
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Tables 9 and 10 contain descriptive statistics for the policy control variables I 

analyze.  For each ban type, I report the mean and standard deviations for the policy 

indicator and months of coverage variables.  For the county-within-state sample, these 

statistics appear in Table 9.  Table 10 reports this summary for the municipality-within-

county-within state sub-sample.  These means reveal that bans offering “some coverage” 

are the most common for observations in these samples.  Bans rated “qualified” or “100% 

smokefree” cover relatively few infants born in these samples from a proportional 

perspective, but the raw numbers covered are still large.  For example, in the main sample 

over 200,000 births are covered by “qualified” workplace bans and more than 150,00 are 

covered by “100% smokefree” bans.  Similar calculations show that bar bans, while 

relatively uncommon, nonetheless covered hundreds of thousands of births.  “Qualified” 

bans covering bars are completely absent from both samples, and “qualified” restaurant 

bans at the state level are absent in the sub-sample.  Last, policy month variables are not 

simply equal to nine times indicator variables, due to variation in weeks of gestation and 

bans taking effect in the middle of some pregnancies. 

IV.  REGRESSION ANALYSES 
In this section, I report the parameter estimates and standard errors for policy control 

variables using the county-within-state sample. I also report the effects of price on 

outcomes in each model, but the effects of price are likely attenuated because of the lack 

of variation in tobacco prices within years and within states.  I briefly discuss the precise 

implementations of my models and the general interpretation of estimates for this 

analysis before reporting results.   
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For both the county-within-state sample and the municipality-within-county-within-

state sub-sample, I separately regress birth weight, probability of low birth weight, and 

weeks of gestation against the policy control variables at both the state and county level 

as well as a set of interactions as described in Section I. I report these results in Tables 11 

and 12, respectively.  The first three columns in each table represent estimates of ban 

impacts based on indicator control variables.  The last two columns represent estimates 

based on policy month controls.   

I do not report estimates of the impact of policy month controls on weeks of 

gestation.  Other control variables not reported include the maternal and infant 

characteristics tabulated in Section III, as well as sets of dummy variables for each year 

(2004 omitted), a separate set of dummies for each month (January omitted), and a set of 

county-level fixed effects.  I do not include weeks of gestation as an explanatory variable 

in models where it is a dependent variable.  County policy effects are estimated in the 

models for the municipality-within-county-within-state sample, but I do not report them 

because they lack clear interpretation in this context.  Each model is estimated via 

ordinary least squares, with linear probability models used for the probability of low birth 

weight. 

The estimates in the upper-half of Tables 11 and 12 represent the effects of state-level 

smoking bans on birth outcomes to mothers living in areas with no local ban coverage in 

place. Under the assumption of endogeneity, estimates in this half of the table are biased 

downwards and estimates in the lower half are biased upwards.  Estimated negative 

effects of state policy controls on birth weight or weeks of gestation, as well as positive 
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Policy Controls

Birth Weight 

(g)

Low Birth 

Weight (P )

Gestation 

(weeks)

Birth Weight 

(g)

Low Birth 

Weight (P )

State Bans

Workplaces

Some Coverage -1.105 -0.001 ** -0.018 ** 0.802 *** -0.001 ***

          (0.761)          (0.0004)            (0.004)           (0.085)          (0.0000)

Qualified -9.375 ** 0.001 0.044 ** -0.542 0.000

          (2.875)          (0.0013)            (0.015)           (0.389)          (0.0002)

100% Smokefree -13.093 *** 0.000 0.032 ** -1.182 ** 0.000

          (2.056)          (0.0010)            (0.011)           (0.367)          (0.0002)

Restaurants

Some Coverage -23.027 *** 0.003 *** -0.020 ** -1.578 *** 0.000 ***

          (1.262)          (0.0006)            (0.007)           (0.130)          (0.0001)

Qualified 35.192 *** 0.003 0.079 ** 4.435 *** 0.000

          (5.770)          (0.0027)            (0.031)           (0.646)          (0.0003)

100% Smokefree 5.613 *** 0.001 -0.011 0.473 ** 0.000 *

          (1.513)          (0.0007)            (0.008)           (0.174)          (0.0001)

Bars

Some Coverage 3.275 -0.002 -0.095 *** 0.187 -0.001 ***

          (3.565)          (0.0017)            (0.019)           (0.457)          (0.0002)

100% Smokefree -1.822 0.000 -0.035 *** -0.076 0.000 **

          (2.005)          (0.0009)            (0.011)           (0.389)          (0.0002)

County Bans

Workplaces

Some Coverage -0.039 0.000 0.013 *** 0.223 *** -0.001 ***

          (0.520)          (0.0002)            (0.003)           (0.058)          (0.0000)

Qualified 3.209 -0.002 -0.049 4.007 *** -0.003 ***

          (4.775)          (0.0023)            (0.025)           (0.533)          (0.0002)

100% Smokefree 3.058 -0.002 -0.027 * 0.368 -0.001 ***

          (2.582)          (0.0012)            (0.014)           (0.345)          (0.0002)

Restaurants

Some Coverage 5.076 *** -0.002 *** -0.006 1.320 *** -0.001 ***

          (1.056)          (0.0005)            (0.006)           (0.118)          (0.0001)

Qualified             7.759 *** 0.001              0.039 ***             1.574 *** -0.001 ***

          (1.920)          (0.0012)            (0.010)           (0.226)          (0.0001)

100% Smokefree -8.106 0.002 0.105 *** -2.361 *** 0.001

          (4.433)          (0.0022)            (0.023)           (0.718)          (0.0003)

Bars

Some Coverage 3.922 -0.002 -0.315 *** -2.723 -0.010 *

        (15.598)            (0.007)            (0.083)           (2.099)            (0.001)

100% Smokefree -4.744 -0.001 -0.160 *** 0.893 0.000

          (5.177)            (0.002)            (0.027)           (0.794)            (0.000)

Average Price -0.021 0.003 *** 0.110 *** -0.826 0.003 ***

          (0.633)            (0.000)            (0.003)           (0.633)            (0.000)

*** Significant at ! = 0.001

**   Significant at ! = 0.01

*     Significant at ! = 0.05

Policy Month Controls

Table 11

 Effects of Smoking Bans on Birth Outcomes: County-within-State Sample

Indicator Controls
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Policy Controls

Birth Weight 

(g)

Low Birth 

Weight (P )

Gestation 

(weeks)

Birth Weight 

(g)

Low Birth 

Weight (P )

State Bans

Workplaces

Some Coverage -20.825 *** -0.001 -0.099 * 2.911 *** -0.006 ***

          (5.556)          (0.0027)            (0.031)           (0.676)          (0.0003)

Qualified -27.196 * 0.001 -0.035 3.528 * -0.006 ***

        (10.748)          (0.0053)            (0.059)           (1.555)          (0.0008)

100% Smokefree -38.256 *** 0.008 0.046 -1.443 -0.004 ***

          (8.489)          (0.0042)            (0.047)           (1.206)          (0.0006)

Restaurants

Some Coverage -46.624 -0.033 -1.601 14.472 *** -0.025 ***

      (164.362)          (0.0810)            (0.903)           (1.349)          (0.0007)

100% Smokefree 19.938 * -0.002 0.046 -2.273 * 0.004 ***

          (7.957)          (0.0039)            (0.044)           (0.952)          (0.0005)

Bars

Some Coverage 13.640 -0.003 -0.023 -5.302 ** 0.005 ***

        (12.649)          (0.0062)            (0.069)           (1.746)          (0.0009)

100% Smokefree 2.711 0.004 0.094 -1.962 0.002

          (8.977)          (0.0044)            (0.049)           (1.956)          (0.0010)

Municipal Bans

Workplaces

Some Coverage -5.255 -0.005 -0.038 2.421 *** -0.018 ***

          (6.166)          (0.0030)            (0.034)           (0.433)          (0.0002)

Qualified 4.633 0.001 0.009 0.953 -0.002 ***

          (6.094)          (0.0030)            (0.033)           (0.846)          (0.0004)

100% Smokefree -11.164 *** 0.002 * -0.098 *** -1.491 *** 0.000

          (2.403)          (0.0012)            (0.013)           (0.330)          (0.0002)

Restaurants

Some Coverage -5.145 0.005 *** 0.040 * -1.793 *** -0.002 ***

          (2.893)          (0.0014)            (0.016)           (0.297)          (0.0001)

Qualified 1.750 0.000 0.009 0.510 0.000 **

          (2.280)          (0.0011)            (0.013)           (0.268)          (0.0001)

100% Smokefree -15.647 ** 0.004 0.111 * -1.916 * 0.000

          (5.722)          (0.0028)            (0.031)           (0.774)          (0.0004)

Bars

Some Coverage -7.944 0.001 -0.053 * -1.151 0.000

          (4.433)          (0.0022)            (0.024)           (0.642)          (0.0003)

Qualified -11.286 0.004 -0.046 -4.431 -0.004 *

        (14.378)          (0.0071)            (0.079)           (3.850)          (0.0019)

100% Smokefree 15.941 * -0.003 -0.110 ** 1.999 * 0.000

          (6.309)          (0.0031)            (0.035)           (0.834)          (0.0004)

Average Price 2.568 * 0.0028 *** 0.138 * 3.321 ** 0.0015 *

          (1.246)            (0.001)            (0.007)           (1.249)            (0.001)

*** Significant at ! = 0.001

**   Significant at ! = 0.01

*     Significant at ! = 0.05

Indicator Controls Policy Months Controls

Table 12

 Effects of Smoking Bans on Birth Outcomes: Municipality-within-County-within-State Sub-sample
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marginal effects on the probability of low birth weight may therefore be explained by 

endogeneity: poor outcomes may be due to location selection based on preferences for 

health related goods.  For the same reason, however, positive impacts of state policy on 

birth weight or weeks of gestation, or reductions in the probability of low birth weight, 

are likely underestimated.  Therefore, significant results in this analysis that show state 

bans improve outcomes are credible even under the assumption of endogeneity.   

The lower half of the tables may be read in the opposite fashion.  Estimates in this 

half of the table represent the impact of local bans in areas without state bans.  Under the 

assumption of endogeneity, estimates in this half of the table are biased upwards.  

Estimated positive effects of local policy on birth weight or weeks of gestation, or 

reductions in probability of low birth weight, may be due to stronger local preferences for 

health related goods.  On the other hand, if estimates suggest that local bans worsen 

outcomes despite an upward bias, unbiased estimates would still suggest bans have a 

negative impact.  Thus, in this half of the table, significant results that show local bans 

worsen outcomes are credible even under the assumption of endogeneity.  

Results in the top half of Table 11 suggest that weaker state-level bans on smoking in 

restaurants and workplaces do more to improve birth weight than 100% smokefree bans, 

and that bar bans have small but significant impacts on the probability of low birth 

weight. This disparity in the effects, as well as the general lack of positive and significant 

results for 100% smokefree bans, may be due to a true difference in relative ban impacts 

or due to endogeneity bias. .  At a minimum, however, the results show that state bans on 

smoking in restaurants rated “qualified” are associated with birth weight increases of 35.2 
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g, or 1.2 oz, in the indicator model and 4.4 g per month of coverage in the policy month 

model.  One hundred percent smokefree restaurant bans at the state-level are significantly 

associated with an increase of 5.6 g in birth weight or 0.47 g increase per month of 

coverage.  State-enforced workplace bans that provide “some coverage” per ANR’s 

ratings are also associated with small but significant reductions in the probability of low 

birth weight in both types of models, and birth weight increases of 0.8 g per month of 

coverage in the policy month models.   

The bottom half of Table 11 offers no contrary evidence on the impacts of bans on 

birth weight in this sample.  They do suggest, however, that county-level workplace bans 

that are “100% smokefree” decrease weeks of gestation.  The estimated effect is small 

(equivalent to less than a fraction of a day), but may be biased upwards.  Local bar bans 

also significantly reduce weeks of gestation by at least one to two days.   

Average cigarette prices have little beneficial impact on birth outcomes in this 

sample.  While an increase of $1 in the real price of cigarettes increases gestation by 

approximately 0.8 days, it paradoxically increases the probability of low birth weight by 

0.3 percentage points.  The available data do not permit a thorough investigation of this 

result.   

Analysis of the municipality-within-county-within-state sub-sample shown in Table 

12 yields some similar results, but offers more caveats. Weaker state bans on smoking in 

workplaces again appear to significantly improve birth outcomes: bans that offer “some 

coverage” increase birth weight by at least 2.9 g per month and reduce the probability of 

low birth weight by more than ½ a percentage point for each month they are in place.  
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Estimates of the effects of “qualified” state-level workplace bans are similar.  Restaurant 

bans that offer “some coverage” have dramatic effects on birth weight: at a minimum, the 

results suggest that for every month of coverage, these bans increase birth weight by 14.5 

g  and decrease the probability of low birth weight by 2.46 percentage points for births in 

this sample. Unfortunately, no states in this sample offer “qualified” restaurant bans, so 

their impact in this sample cannot be analyzed.  

State bans that are “100% smokefree” are associated with some positive impacts in 

this sample, but estimates of their effects at the local level give cause for some concern.  

In the indicator control model, “100% smokefree” restaurant bans increase birth weight 

by 19.9 g, but this result is only weakly significant (α = 0.05).  No similar results for 

“100% smokefree” restaurant bans appear in other models.  Likewise, “100% smokefree” 

state bans on smoking in workplaces significantly reduce the probability of low birth 

weight in the policy indicator model, but similar effects do not appear in other models or 

for other outcomes.   

At the same time, however, municipal workplace and restaurant bans that are “100% 

smokefree” are associated with significantly worse birth outcomes in several models.  In 

particular, workplace bans of this type appear to reduce birth weight by at least 11.2 g or 

1.5 g per month of coverage while increasing the probability of low birth weight by 0.25 

percentage points.  They also have a significant and negative marginal effect on weeks of 

gestation.  Similarly, municipal “100%-smokefree” restaurant bans reduce birth weight 

by at least 15.6 g or 1.9 g per month of coverage in this sample.  It is worth noting that 

municipal restaurant bans that meet the “some coverage” and “qualified” criteria also 
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appear to significantly worsen birth outcomes.  While the estimated marginal effects for 

these policies are not as large in magnitude, the small estimates may again be due to a 

true difference in relative policy impacts or due to endogeneity bias.  Municipal bans 

rated “qualified,” however, appear to cause no problems in workplaces.   

Moving beyond birth weight, bans do not appear to have a significant positive effect 

on weeks of gestation in this sample.  In fact, municipal “100% smokefree” workplace 

bans and bar bans rated “some coverage” and “100% smokefree” have significant and 

negative impacts on weeks of gestation.  These negative impacts are consistent across 

both samples.   

Last, increases in average real cigarette prices significantly improve birth weight 

outcomes in this sample.  They are also again associated with an increase in weeks of 

gestation.  However, the paradoxical result that higher cigarette prices lead to greater 

chances of low birth weight persist in this sample as well.   

 

V. CONCLUSIONS AND FURTHER QUESTIONS FOR RESEARCH 
The results of this analysis suggest that less-restrictive bans may do more to improve 

birth outcomes than “100% smokefree” bans.  In both samples, workplace and restaurant 

bans with “some coverage” or “qualified” ratings appear to outperform “100% smokefree 

bans”, although the difference in these effects cannot conclusively be attributed to superior 

effectiveness for less restrictive bans.  At the municipal level, however, “100% 

smokefree” bans in restaurants and workplaces appear to significantly worsen birth weight 

outcomes.   
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Overall, state bans that meet ANR’s “qualified” rating seem to perform best:  looking 

across the results from both samples, bans at this level of coverage show the strongest 

positive results when implemented at the state level and the fewest significant problems at 

the municipal level.  While summary statistics reveal that only a small proportion of births 

were covered by these kinds of bans, the total number of births that this proportion 

represents are nonetheless large and estimated effects tend to be highly significant.   

In general, the results in this paper suggest some small but significant impacts of 

smoking bans on weeks of gestation.  These results, however, are not consistent across 

both samples.  In the main sample, the effects of bans work in the expected direction: bans 

appear to increase weeks of gestation.  In the sub-sample, however, no significant positive 

effects of state bans on weeks of gestation appear.  On the contrary, municipal bans that 

offer “100% smokefree” coverage of workplace or coverage of bars significantly reduce 

weeks of gestation.  

While the data used in this paper are not well suited to analyze the effectiveness of 

cigarette prices as policy instruments to protect health, the findings here show that 

increases in cigarette prices significantly increase the probability of low birth weight.  

This unexpected finding may be due to any number of factors that may be illuminated by 

an analysis of cigarette prices.  Greater expenditures on healthcare or access to better neo-

natal care in states with higher cigarette taxes may explain this finding.  Investigation of 

this relationship may provide insight into determinants of maternal smoking, maternal 

ETS exposure, or the effectiveness of public health spending on birth outcomes.    
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This analysis cannot determine why less restrictive bans appear to perform better or 

why bans may cause harm.  One explanation is that more restrictive bans crowd smoking 

into private environments where non-smokers are exposed.  Another explanation may be 

that bans reduce the costs to pregnant women of spending time in workplaces, restaurants, 

or bars.  In turn, time spent in these places may correlate with activities or consumption 

that reduces infant health.  I do not find this explanation plausible for the effects of 

workplace bans (Baum, 2005), but it may well explain the effect of bar bans on weeks of 

gestation.  A careful analysis over a smaller sample with more information on maternal 

choices may be able to provide more insight into this issue. 

Finally, while birth outcomes do have long-run implications, they provide information 

only on the short-run effects of smoking bans.  More strict smoking bans may reduce the 

probability that someone begins smoking, increase the probability that they will quit 

smoking, or reduce their smoking habit.  Evans et al. (1999) shows support for the idea 

that workplace bans will reduce cigarettes smoked (by 10%) and decrease smoking 

prevalence (by 5%), but I know of no research that investigates whether these effects vary 

by ban strength and if so, by how much.  In any case, however, bans do not target these 

outcomes well.  Supplementing less restrictive bans with continued support for cessation 

and education programs may be the best approach.   
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APPENDIX A. 
Equation (12) in Chapter 1 arises from invoking the implicit function theorem and 

differentiating the social planner’s first order condition (11) on the optimal path with 

respect to  ε .  Beginning with that differentiation, 
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(A5) 

N ! 1"
d
2
C

dx
2
(xSO (SR ,#)) !

$xSO
$#

" N !
d
2
f

dx
2
(N ! xSO (SR ,#)) !

$xSO
$#

%
&'

(
)*
= + !E "

$2W
$SR

2
(SR " xSO (SR ,#), ,# ) !

$xSO
$#

-

.
/

0

1
2 .

 

After using the transition equation once more and noting that the expectation is over  !"   

and not  ε , (A5) may be simplified to  
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which is equation (12) .   
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APPENDIX B. 
The proof for equation (17) in Chapter 1 goes as follows.  Begin with equation (15), 

and let τ , SR , and  ε  be given.  Solving for !"  
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The expectation operator in (iii) is over  !"   , not  ε  , so the derivative  
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(B4) ! "#
!$

=
1

%
&
!x

SO

!$
&
d
2
C

dx
2
(x

SO
) '1

(

)
*

+

,
- +

!x
SO

!$
&E

d
2
C

dx
2
( "x

SO
)

(

)
*

+

,
- . 

Substitution for  !xSO
!"

  using into (12) yields 

(B5)  

! "#
!$

=
1

%
&

N &
d
2
C

dx
2
(xSO )

N &
d
2
C

dx
2
(xSO ) + N

2 &
d
2
f

dx
2
(N & xSO ) ' % &E

!2W
!SR

2
( "SR , "$ )

(

)
*

+

,
-

.

/

0
0
0
0

1

2

3
3
3
3

'1

(

)

*
*
*
*
*

+

,

-
-
-
-
-

+

N &E
d
2
C

dx
2
( "xSO )

(

)
*

+

,
-

N &
d
2
C

dx
2
(xSO ) + N

2 &
d
2
f

dx
2
(N & xSO ) ' % &E

!2W
!SR

2
( "SR , "$ )

(

)
*

+

,
-

. 



 100 

After obtaining a common denominator for all terms, (B5) can be rewritten as 
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Arithmetic simplification of (B6) yields: 
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which can be further simplified by applying the identity for !xSO
!"

 given in (13).  This 

procedure gives: 
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Equation (B8) yields (17) after the application of the envelope theorem to find 

E
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R
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'

(
) .   
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First, note that  
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Differentiating once more and substituting using the transition equation, (B9) implies  
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But note that by the envelope theorem (twice applied) that: 
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Thus, from (B10) and (B11), it follows that 
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which completes the lemma. 

 

Returning to the derivation of ! "#

!$
, substitute (B12) into (B8) to find  
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which reduces to  
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.   

Equation (B14) is equation (17), which was to be shown.   
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APPENDIX C. 
Proposition 1 of Chapter 3 may be proved as follows.  Consider the interior case first, 

and suppose that θ2 > θ1 .  Assumption (22) implies that: 

(C1)  !U
!h

"
dA

d#
"
!H (A(#),X

1
)

!A
#=#2

>
!U

!h
"
dA

d#
"
!H (A(#),X

2
)

!A
#=#2

 

Equation (C1) simply shows that the marginal benefits of  x1  at the optimal choice for x2  

are greater than the marginal benefits x2 receives at that choice of  θ2 .  This observation 

leads to a contradiction.  Since the first order condition for  x2  holds, (C1) may be 

appended to read: 

(C2)  !U
!h

"
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"
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"
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"
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= $n "
!U

!(n "#)
#=#2

.   

At the same time, however, the first order condition for  x1  and the functional 

assumptions imply 

(C3) !n " #U

#(n "$)
$=$2

>
#U

#h
"
dA

d$
"
#H (A($),X

1
)

#A
$=$2

. 

In words, (C3) states that marginal costs at  θ2  exceed marginal benefits for  x1 .  This 

relationship holds because as  θ  increases from  θ1 , marginal benefits decrease and 

marginal costs increase.  The result (C3) directly contradicts (C2), which depends on the 

assumption  θ2 > θ1 .  Therefore, at an interior solution,  θ1 > θ2 . 

For the corner solutions, the proof is identical.  Consider the case where θ1 = 0 and θ2 

> 0.  Assumption (22) and the first order condition for  x2  imply (C2).  At the same time, 

the first order condition for  x1  implies 
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(C4)  !n " #U

#(n "$)
$=0
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1
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#A
$=0

.   

Since  θ2 > 0, marginal costs are even higher at for  x1 at θ2 , so the functional 

assumptions again imply (C3) holds, which again contradicts (C2).  Thus  θ1 = 0 and θ2 > 

0 cannot hold.  If θ1 = 0 and θ2 = 0, however, the first order conditions and assumption 

(5) imply 

(C5) !n "
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#(n "$)
$=0

>
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#H (A($),X

1
)
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$=0

>
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#h
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d$
"
#H (A($),X

2
)

#A
$=0

, 

which does not contradict any assumptions.  The final corner solution is easily proved by 

the same arguments.   
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