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A novel method for integrating the time-dependent Schrödinger equation is 

presented. The moving boundary truncation (MBT) method is a time-dependent adaptive 

method that can significantly reduce the number of grid points needed to perform 

accurate wave packet propagation while maintaining stability. Hydrodynamic quantum 

trajectories are used to adaptively define the boundaries and boundary conditions of a 

fixed grid. The result is a significant reduction in the number of grid points needed to 

perform accurate calculations. A variety of model potential energy surfaces are used to 

evaluate the method. Excellent agreement with fixed boundary grids was obtained for 

each example. By moving only the boundary points, stability was increased to the level of 

the full fixed grid.  

Variations of the MBT method are developed which allow it to be applied to any 

potential energy surface and used with any propagation method. A variation of MBT is 

applied to the collinear H+H2 reaction (using a LEPS potential) to demonstrate the 

stability and accuracy. Reaction probabilities are calculated for the three dimensional 
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non-rotating O(3P)+H2 and O(3P)+HD reactions to demonstrate that the MBT can be used 

with a variety of numerical propagation techniques. 
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1BChapter 1: Introduction 

It is a central goal of science to understand the world and how it works on the 

deepest level possible. When there are observations in the world that cannot be explained 

by current scientific principles, new theories are developed. Any new theory must not 

only clarify and predict the unexplained observations, but it must also be reconciled with 

current scientific principles. In the early twentieth century, chemists and physicists faced 

observations that could not be explained with the principles of the time. Experimental 

observations of black body radiation and the photoelectric effect were impossible 

according to Newton’s laws of physics. As a result, some of the most brilliant minds of 

the time developed quantum mechanics. 

The principles of quantum mechanics were able to explain observations like black 

body radiation and the photoelectric effect. They can also be extended to describe 

“classical” motion so that they reconcile with Newton’s laws of motion. Quantum 

mechanics hinges on the idea that matter can be described as both a particle and a wave. 

Heisenberg’s uncertainty principle, a core component of quantum mechanics, dictates 

that we cannot measure both position and momentum with infinite precision. There is a 

finite amount of error in everything that we observe. For large objects, like humans, cars, 

golf balls, etc., this error is not significant and Newton’s laws of motion can be used. For 

small objects, like atoms and subatomic particles, the Heisenberg uncertainty principle 

becomes important and the motion must be described by quantum mechanics. A new 

equation of motion was developed to explain the behavior of particles governed by 

quantum mechanics. The result is the Schrödinger equation, named for Erwin 

Schrödinger, the scientist who first purposed the idea, and in one dimension is:  
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txxV
x

tx

mt

tx
i 








 


                               (1.1) 



 -     - 2

In this equation, ),( tx is a complex valued function called the wave function and 

gives a complete description of the system (or particle) of interest and )(xV is the 

potential being applied to the system. The real valued quantity  ),(),( txtx    , often 

called the density of the wave function, is the probability of finding the particle at a given 

point, x, at a given time, t.  

If the system is not varying in time, then the time independent version of the 

Schrödinger equation can be solved:  

                                
)()()(

)(

2 2

22

xExxV
x

x

m





 

.                                   (1.2) 

Here ),( tx  is chosen to be an eigenfunction of the differential equation and E is an 

eigenvalue representing the total energy of the wave function. There are few real 

examples where there is an analytical solution to the time independent Schrödinger 

equation, but many times an approximation can be made to generate analytical solutions. 

Time independent solutions of the Schrödinger equation have been successfully applied 

to problems like atomic and molecular structure. These applications have given scientists 

a deeper understanding into why an atom or molecule might respond to an external 

potential, but in order to gain an understanding of how atoms react and develop rates of 

chemical reactions, the time dependent Schrödinger equation must be used. 

 Time-dependent solutions to the Schrödinger equation can provide great insights 

into chemical dynamics. Unfortunately, there are even less situations than in the time 

independent case where an analytical solution can be found. As such, approximations to 

the overall Schrödinger equations and numerical approximations must be used to solve 

the time dependent Schrödinger equation. Some approximations used in time dependent 

solutions of the Schrödinger equation will be discussed in Chapter 2. As for the 

numerical techniques used for propagating the solution to the time dependent 

Schrödinger equation, there are generally two competing concerns: accuracy and stability 

vs. efficiency.  One way of obtaining accurate solutions is to evaluate the spatial 
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derivatives, either on a grid or through basis sets, and advance the solution in small time 

steps. There are a variety of well developed methods for obtaining the derivatives on 

large fixed grids, such as finite differences and finite element.  

In a traditional fixed grid approach to numerical integration of the time-dependent 

Schrödinger equation, the wave function, as described above, is represented as the 

complex-valued function ),( tx . The initial wave function is usually in the form of a 

wave packet. A wave packet is a superposition of standing waves, each with a different 

wavelength, weighted in such a way that the position and momentum are localized but 

still obey the Heisenberg uncertainty principle. The spatial and time domains are 

discretized such that )(...0 xnxxxx nN   and )(...0 tktttt kK  . This function is 

then represented by values at grid points nx , and time steps kt : k
nkn tx ),( . Initial 

value and boundary conditions for ),( tx  are provided by equations: 

                     .),(           ;),(           ;),( 000
0

0 btxatxtx Nnn                (1.3) 

One way of assigning boundary conditions is to set the boundary points far 

enough apart so the wave function can be calculated for all times of interest. This requires 

some advance knowledge of the movement and spreading of the wave packet. Another 

possibility is to set “absorbing potentials” at the boundaries [1-3]. This type of boundary 

condition forces ),( tx  to decay smoothly to a small value at the boundary, but the total 

probability is not necessarily conserved. The spatial derivatives are then calculated 

numerically and the solution is advanced in small time steps.  

The main drawback to the use of large fixed (Eulerian) grids is the number of 

calculations and amount of memory required to store data at all the grid points. This data 

may or may not be important at every time step. In quantum transport problems, for 

example, grid points introduced at early times where the wave packet initiates may not be 

needed at later times because the packet has moved to a different location. The result is 

wasted effort in calculating solutions for grid points that are of little significance to the 

overall dynamics of the problem. 
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One way to improve the efficiency of generating solutions is to use a trajectory 

method [4-9,12-24]. In trajectory methods, the wave function is discretized into small 

parts of probability that are propagated in time according quantum hydrodynamic 

equations of motion. The quantum hydrodynamic equations of motion for trajectory 

methods were developed by Bohm [10,11] as part of a program to develop an alternative 

to the traditional Copenhagen interpretation of quantum mechanics. These equations and 

their implications will be discussed in detail in Chapter 3. There are several methods to 

generate solutions based on trajectory dynamics, including the quantum trajectory 

method [5-7] (QTM) and the derivative propagation method [12,13] (DPM). These 

methods generally use significantly fewer points than fixed grid methods. There are 

several drawbacks to the hydrodynamic approach, including under or over sampling and 

preservation of accuracy near nodes in the density. There has recently been a great deal of 

work addressing these problems, including the use of a linearized quantum force [14-16], 

covering functions [17,18], arbitrary Lagrangian-Eulerian (ALE) grids [19-22], and 

hybrid methods [23,24].  

All of the above methods will be discussed in detail in Chapter 3. In particular, 

the derivation of QTM and DPM will be presented. In addition to QTM and DPM, a 

thorough explanation of ALE and hybrid methods will be presented as they provided the 

inspiration for this work. In ALE, the boundaries of the grid are frequently moved at 

Lagrangian speeds, while the interior grid points move with a velocity that maintains 

constant spacing. This may be the perfect solution to the sampling problem, but moving 

grids have unique stability issues [25,26]. Various results of ALE calculations will be 

presented along with situations where ALE is unsuccessful in generating a solution. In 

hybrid methods a combination of trajectory methods and fixed Eulerian methods is 

implemented. 

The unique approach developed in this study is to utilize quantum trajectories at 

the boundaries where the wave function is smooth and adapting a fixed grid in the 
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interior to compute the wave function by traditional fixed grid means. A full explanation 

of the initial form of the method [27,28] will be presented in Chapters 4 along with the 

results of model problems. The method uses the advantages of trajectory methods while 

avoiding some of the problems and inaccuracies that can develop by computing the bulk 

of the solution on a traditional fixed grid. The goal is to combine the accuracy of solving 

the Schrödinger equation on a fixed grid with the efficiency of trajectory methods. The 

interior grid points are stationary and the number involved at each time step varies based 

on the distance between the boundary trajectories. The result is a significant decrease in 

computational effort without loss of accuracy or stability. Chapter 5 introduces a 

generalized version of the method that has been proven on potential energy surfaces 

generated from ab initio calculations and with a variety of numerical propagators [29]. 
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2BChapter 2: The Born-Oppenheimer Approximation and Potential 
Energy Surfaces 

8B2.1: THE BORN-OPPENHEIMER APPROXIMATION 

In chemical dynamics, the complete Schrödinger equation is extremely difficult to 

solve. This is due to the large number of particles in a chemical system. The complete 

Hamiltonian (right hand side of the TDSE) for a chemical reaction is:  
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.      (2.1) 

 In this notation, lower case letters represent the N number of electrons in coordinate 

space r


 and capital letters represent the M number of nuclei in coordinate R


. A more 

compact form commonly used takes advantage of operator notation: 

                                 )()(),()()( RVrVRrVRTrTH NeNeNe

 

 .                          (2.2) 

Even for a molecule as simple as H2, there is no known analytical solution to the 

Schrödinger equation. Two general approaches have been developed to generate 

approximate solutions to the TDSE for chemical systems. One approach involves creating 

efficient numerical methods for generating a solution to the TDSE and the bulk of this 

dissertation will describe a novel method developed for that purpose. A second approach 

is to simplify the Hamiltonian in some way in order to reduce the number of terms. A 

common application of the latter approach is called the Born-Oppenheimer 

approximation. The remainder of this chapter will describe this approximation and how it 

is used in chemical dynamics. 

In examining Equation 2.2, there are two main groups of particles: electrons and 

nuclei. The mass of an electron is thousands of times smaller than the mass of a nucleus. 

As such, electrons are moving much faster than nuclei on average. The Born-

Oppenheimer approximation states that this difference in motion allows the Schrödinger 

equation to be solved into two stages; one for the electrons and one for the nuclei. The 
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first stage involves solving a truncated version of the Hamiltonian which only concerns 

the electrons, often called the electronic Hamiltonian:  

                                    )(),()( rVRrVrTH eNee

 

 .                                       (2.3) 

It is important to note that this operator still has a dependence on the nuclear coordinate, 

R


. The nuclei are so slow in comparison to the electrons that they can be considered 

fixed and the electronic Hamiltonian becomes parametrically dependent on the nuclear 

coordinate:  

                                    )();()( rVRrVrTH eNee

 

 .                                       (2.4) 

Eigenvalues and eigenstates for this operator can now be calculated at various fixed 

nuclear coordinates. If the nuclear portion of the Hamiltonian is also to be calculated, the 

eigenvalue obtained from the electronic Hamiltonian at given internuclear distance, R


, is 

added to the value of the nuclear potential operator, )(RV N



. This process is then repeated 

for a variety of internuclear distances to generate a single potential energy surface only 

dependent on the nuclear coordinate, )(RV


. This creates a second Hamiltonian for the 

nuclei, called the nuclear Hamiltonian, 

                                              )()( RVRTH N






.                                              (2.5) 

The Born-Oppenheimer approximation allows for quantum dynamics to be 

studied in chemical reactions. It holds well for situations where the electronic eigenstates 

are far apart in energy. As the eigenstates become closer in energy, some coupling must 

be considered. Large volumes of work exist and continue to be developed to incorporate 

this coupling in numerical calculations of chemical systems. In the remainder of this 

work, only the nuclear Hamiltonian will be considered (Eq. 2.5) and only potential 

energy surfaces dependent on a single eigenstate.  

9B2.2 MODEL POTENTIAL ENERGY SURFACES 

The simplest potential energy surface is derived from two nuclei involved in a 

chemical bond. The nuclei are attracted to each other so that the electrons can be shared, 
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and they also repel each other because both nuclei have positive charges. There is a 

distance, therefore, where the nuclei balance their attractive and repulsive forces. The 

nuclei are in constant motion, however, so the distance between them constantly 

oscillates around point of lowest energy called the equilibrium bond distance, Re. The 

bond between the nuclei can be envisioned as a spring holding one nucleus to the other. If 

the bond gets stretched, the attractive forces pull the nuclei back together and if the nuclei 

get too close, their repulsive forces push them apart again. This model of the chemical 

bond is called the harmonic oscillator. The mathematical form of the potential energy 

surface is based on the displacement of a spring: 

                                                   

2

2

1
)( kRRV 

                                                 (2.6).  

The constant, k, is based on the attractive force between the nuclei. As vibrational energy 

increases, the maximum deflection from Re also increases.  

While the harmonic oscillator is a good model for nuclear vibration, at higher 

energy states the nuclei can achieve distances that are very far away or very close 

together. In reality, there is a distance beyond which the nuclei are no longer attracted to 

each other. At separations greater than this dissociation length, RD, the electronic 

attraction is not strong enough to restore the chemical bond and the nuclei can move 

independently of each other. The simple harmonic oscillator does not account for this 

dissociation. The potential energy of the harmonic oscillator model also does not 

approach infinity quickly enough as the nuclei become close together. To correct these 

errors, a more complex type of vibrational model is often used called the Morse 

oscillator. The Morse oscillator has the form:  

                                           
2)( )1()( eRRa

e ehcDRV                                        (2.7) 

where De is the depth of the potential surface and a is related to both k(force constant in 

the harmonic oscillator, Eq. 2.6) and De. The Morse oscillator accounts for dissociation as 

well as approaching infinity faster as the nuclei come close together. The Morse oscillator 

also has energy levels that become closer and closer together as dissociation is 
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approached. Both the harmonic oscillator and the Morse oscillator are simple ways of 

incorporating molecular vibration into a potential energy surface.  

Modeling vibrations is important, but what about chemical reactions? Eckart in 

1934 [30] first considered how to represent a simple chemical reaction in one dimension. 

He considered a three nuclei system following the reaction AB + C → A + BC. The 

nuclear potential for this system is represented in Figure 2.1.When atom C is far from 

molecule AB, the potential will resemble the vibration of molecule AB shown in Region 

1 of Fig. 2.1. As atom C approaches, there will be a transition state ABC where all three 

nuclei are interacting (Region 2 in Fig. 2.1). Finally, as atom A moves away from 

molecule BC, the potential resembles the vibration of molecule BC seen in Region 3 of 

Figure 2.1. Eckart successfully reduced the potential energy surface to one dimension by 

moving along the minimum energy path. This is accomplished by finding the continuous 

line that connects all three regions while maintaining the lowest possible energy value. 

He derived an expression the shows how the potential energy varies moving from the 

equilibrium bond distance of the reactants, through the minimum transition state and into 

the equilibrium bond distance of the products. The resulting function is called the Eckart 

barrier and has the form:V(x)= Vo sech2[a(x-xb)], where Vo is the barrier height, a 

measures the barrier width, and xb is the position of the barrier maximum. The 

symmetrical case in which products and reactants have the same energy is represented in 

Figure 2.2a. The barrier height represents the amount of energy the nuclei need to enter 

the transition state (Region 2 in Figure 2.1). Unsymmetrical cases are also possible in 

which the reactants and products have different energies. Extreme cases have the form: 

)1()( )(
0

bxxaeVxV  where the sign of Vo determines which side is higher in energy. A 

negative value for Vo generates a downhill ramp (Fig 2.2b) and could model exothermic 

reactions or photodissociation of an excited state. A positive Vo generates an uphill ramp 

(Fig 2.2c) representing an endothermic reaction or creation of an excited state. The slope 

of the ramp is determined by a and the midpoint is located at xb.  Linear  
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FIGURE 2.1 COLLINEAR REACTION BETWEEN AN ATOM AND A DIATOMIC MOLECULE. 

Contours increase in energy from -0.17 to -0.08 a.u. 
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FIGURE 2.2 VARIOUS ONE DIMENSIONAL MODEL POTENTIAL ENERGY SURFACES WITH 

THE SAME PARAMETERS, 5;6;80  axV b . a) The symmetric Eckart 
barrier. b) The downhill ramp. c) The uphill ramp. 
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combinations of the symmetrical barrier and the uphill ramp can represent an 

endothermic reaction that has an activation barrier whereas a combination of the 

symmetric barrier and the downhill ramp will represent an exothermic reaction. 

Potential energy surfaces utilizing harmonic oscillators, Morse oscillators, and 

Eckart barriers are often called “model” potential energy surfaces since they are not 

directly related to a specific chemical system. The parameters of the model can be 

carefully chosen to approximate a chemical system and thus new methods, like the one 

presented in this work, are usually first demonstrated on a model surface.  

10B2.3 REALISTIC POTENTIAL ENERGY SURFACES 

More robust potential energy surfaces are necessary in order to calculate 

dynamics for specific chemical reactions. One of the most popular energy surfaces is 

representative of the H+H2 chemical reaction. In addition to the models presented earlier, 

it is also a very common test for a new numerical method. The surface used in this work 

was developed by Sato [31]. It is based on earlier works by London, Eyring and Polanyi 

so it is often abbreviated as a LEPS potential energy surface. The surface is based on the 

idea that that the minimum energy for a three atom system occurs in the collinear state. 

Examination of this surface in Figure 2.3 shows why the model potentials are frequently 

used in developing new methods. The LEPS surface is qualitatively similar to an Eckart 

barrier coupled to a Morse oscillator. The main difference is that the LEPS surface is 

“bent”, i.e. the barrier region is the apex of an angle between the reactant and product 

regions. An additional term can often be added when coupling a Morse oscillator to an 

Eckart barrier to simulate this bending. There are more complex differences between the 

two potential energy surfaces, however. The most significant difference is that the 

analytical form of the LEPS surface is much more complicated than the Eckart barrier 

coupled to a Morse oscillator. This makes analytical differentiation of the LEPS surface 

difficult. Numerical derivatives can be calculated, but their accuracy will be dependent on 

the grid spacing which can affect the stability of a numerical method. 
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FIGURE 2.3 THE LEPS COLLINEAR H+H2 REACTION POTENTIAL ENERGY SURFACE. 

Potential energy contours range form -0.17 a.u. to -0.08a.u.. 
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The most sophisticated type of potential energy surface is generated using ab 

initio quantum mechanical calculations. Surfaces of this type are created by solving the 

electronic Hamiltonian for a variety of nuclear geometries and then fitting the resulting 

energies to some type of analytical form based on the nuclear coordinate. The accuracy of 

the surface is determined by the number of geometries involved in the fitting and the type  

of calculation used to obtain the electronic energies. The number of nuclear geometries 

used is generally the minimum necessary to achieve a low rms error in the fitting. 

Usually, additional geometries not involved in the fitting procedure are then calculated 

and compared to the fitted surface to insure accuracy. There are a variety of ways for 

calculating the electronic energy values, but all involve some combination of atomic 

orbitals. By using a greater number of atomic orbitals, the accuracy of the electronic 

energies increases. Whenever possible, barrier heights from surfaces are compared to 

experimental activation energies as an additional method for evaluating the accuracy of 

the potential energy surface. 

The specific potential energy surface used in this work is based on the O(3P) 

+H2( 0;0  j ) → OH +H reaction in the 
'3 A  state originally developed by Rogers, et. 

al. [32]. The potential surface was developed by first calculating the energy of 951 

different geometries using a complete-active-space-self-consistent-field (CASSCF) 

internally contracted configuration interaction (ICCI) method. Of the 951 geometires, 112 

were selected for “high accuracy” calculations that involved a greater number of orbitals 

in the basis set. The energy of these geometries was then fitted to a surface using the 

generalized London-Eyring-Polanyi-Sato double polynomial (GLDP) method [32]. This 

method creates a surface which is extremely accurate. The rms error is only 0.0117 eV 

with a maximum error of 0.0169 eV. The error is calculated by comparing CASSCF-

ICCI calculations to GLDP values for geometries not included in the original fitting. 

Another measure of error was the comparison of several features in the surface to 

experimental data. Unfortunately, this specific reaction is very difficult to isolate 
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experimentally, so no barrier height comparisons could be made. Comparisons could be 

made between the dissociation energy of H2 and OH calculated by the surface and those 

values generated by experiment. This analysis showed that the fitted surface was within 

0.2 kcal/mole or 0.008eV.  

The surface that is generated by the procedure described above is shown in Figure 

2.4, plotted in cylindrical coordinates. In this coordinate system, R is the distance 

between the O atom and the H2 diatomic; r is the distance between the two H atoms and  

is the angle between R and r. It contains three channels; one reactant O+H2, and two 

product channels OH+H. The product region of the potential surface is defined as the 

region where the OH bond length is less then 3.5 a0 and transmission probability is the 

integration      drdRdPtrans    sin  over this region. There are two minimum 

energy paths (MEPs) corresponding to the two collinear configurations (=0 and = ) 

shown in Figures 2.4c and 2.4d. Moving along these MEPs, the maximum barrier height 

is 0.565 eV . The overall reaction is slightly endothermic, as the product channel of the 

MEPs is 0.11eV higher in energy than the reactant channel. The top down views in 

Figure 2.4(b,d) appear similar to the 2D LEPS surface shown earlier. There are some 

additional contours in the product region, but these can only be accessed by going over a 

second barrier or through the original barrier region but from a different rotational angle. 

The importance of this additional path to the product channel will be demonstrated later. 
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FIGURE 2.4. ISOSURFACES OF THE O(3P) +H2( 0;0  j ) → OH +H 
'3 A  POTENTIAL 

ENERGY SURFACE. (a) Reactant and product channels of the 0.5 eV potential 
surface. (b) Top view of (a) showing that the channels are not connected at 
this energy level. (c) Isosurfaces of the 0.5 eV (blue) and 0.75 eV (red) 
potential energy surfaces. At the angles near 0 and    , the reactant 
and product channels are connected showing the barrier. (d) Top down view 
of (c).  
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3BChapter 3: Quantum Hydrodynamic Equations of Motion 

11B3.1 BOHMIAN MECHANICS 

The most popular interpretation of quantum mechanics comes from the 

Copenhagen doctrine. In this interpretation, the wave function contains all possible 

information about a system. Operators are applied to the wave function in order to 

determine the probability of observing a particular physical quantity. The wave function, 

the Schrödinger equation, and all operators are purely statistical in nature. They do not 

describe physical processes of particles in a system; they simply describe the probability 

of measuring a particular physical quantity of the system. 

While this interpretation is mathematically sound and can produce useful 

information, many scientists over the years, including Einstein, yearned for a 

deterministic approach to quantum mechanics. There are a variety of interpretations of 

quantum mechanics in the world of physics that attempt to produce the same results as 

the statistical Copenhagen approach while still connecting to physical processes. One 

such approach was first considered by de Broglie and further developed by Bohm 

[10,11]. It is referred to as the deBroglie-Bohm interpretation of quantum mechanics or 

simply Bohmian mechanics. 

In Bohmian mechanics, a casual interpretation of the Schrödinger equation is 

made so that more commonly understood principles such as force can be described. The 

fundamental difference between Bohmian mechanics and the Copenhagen interpretation 

is the importance of particles on the system. In Bohmian mechanics, the system exists as 

a collection of particles whose motion can be describe by a wave whereas in the 

Copenhagen interpretation the wave function is the complete description of the system. 

The mathematical form of the wave is the complex valued function ),( tr
  and 

),( tr
 must be a solution to the Schrödinger equation. The particles move according to 

the gradient of the phase of the wave function. This guidance condition classifies 
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Bohmian mechanics as a pilot wave theory. The fact that the particles are introduced also 

makes Bohmian mechanics a “hidden variable” theory. In fact, the particles are the 

hidden variables! 

A common misconception about Bohmian mechanics is that it violates the 

Heisenberg uncertainty principle. The Heisenberg uncertainty principle states that both 

the position and momentum of a particle can only be known within a finite precision. 

Bohmian mechanics appears to violate this principle because individual particles with 

known positions are following trajectories based on the guidance condition with known 

velocities. While individual trajectories do exist, the uncertainty principle is conserved 

because the starting position is unknown. In Bohmian mechanics, as in classical 

mechanics, an ensemble of particles is evolved, each according to its individual guidance 

condition. The initial ensemble of particles has a distribution of )0,()0,( rr
   . Since 

),( tr
 is a solution to the Schrödinger equation, the initial distribution of particles obeys 

the uncertainty principle and the propagation of the ensemble also follows the uncertainty 

principle. 

Bohmian mechanics can be described mathematically by using the polar form of 

the wave function 


 ),(

),(),(
triS

etrRtr   , where R and S are real functions representing 

the amplitude and phase. Inserting this polar form into the TDSE and separating the real 

and imaginary parts yields the quantum hydrodynamic equations of motion (QHEM): 

  ),(),(
2

1
),(

),(

1

2

),(
  part) (real 

),(),(
2

1
),(),(

1),(
   part) (imaginary 

),(),(),(
2

),(

22
2

2

),(),(
2

2),(

trVtrS
m

trR
trRmt

trS

trStrR
m

trStrR
mt

trR

etrRtrVetrR
m

etrR
t

i
triStriStriS











 







































          (3.1) 

The quantity, ),(
),(

1

2
2

2

trR
trRm





 , is often called the quantum potential, Q, because it 

is the only term that explicitly involves   and is the source of all quantum effects. If the 

partial time derivatives in Equation 3.1 are replaced with total time derivatives 
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( f
dt

rd

t

f

dt

df
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
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) by taking the viewpoint of moving along the trajectory with its 

velocity, ),(
1

trS
mdt

rd 


 , known as the Lagrangian frame, then the equations become:   
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The first equation in Equation 3.2 is the continuity equation. It is similar to the 

continuity equation from fluid dynamics. This equation insures that probability is 

conserved by the wave function. The second equation is the Quantum Hamilton-Jacobi 

equation. It is very similar to the Hamilton-Jacobi equation except that it contains the 

quantum potential. One can see from this equation that the quantum potential is aptly 

named for two reasons. First, it has units of energy like a standard potential. Second, if 

the gradient operator is applied, then after manipulation a dispersion force term arises. If 

this term is absent, the dynamics of the wave function are completely the same as in 

classical mechanics.  

 These two equations show how Bohmian mechanics can be considered attractive 

from an interpretation standpoint. The equations can be directly related to classical 

mechanics. The additional quantum potential term “converts” a system into quantum 

mechanics. If   approaches zero or mass approaches infinity, popularly termed the 

“classical limit”, the quantum potential vanishes and classical mechanics are recovered. 

While the Copenhagen interpretation can yield the classical limit, the derivation is quite 

lengthy. Second, the continuity equation allows probability to be viewed as a fluid 

moving through the classical potential surfaces while constantly being dispersed by the 

quantum potential.  

12B3.2 THE QUANTUM TRAJECTORY METHOD 

Although Bohmian mechanics generates equations which may be more attractive 

from an interpretation standpoint, numerical solutions can be more difficult to obtain. The 
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two main reasons are that instead of one equation, there are two and the equations are 

also nonlinear. There have been many attempts recently to perform calculations on 

physical systems using Bohmian mechanics. The first major numerical approach was 

developed by Wyatt and co-workers called the quantum trajectory method (QTM) [5-7]. 

This approach sought to take advantage of the classical analogs in Bohmian mechanics. 

The basic premise is to launch an ensemble of trajectories that follow paths dictated by 

quantum mechanics using the QHEM formulated earlier. These trajectories are pieces of 

the probability distribution and the ensemble carries all of the information about the 

system. At any point, the wave function can be reconstructed from the trajectories and 

operators can be applied as in the Copenhagen interpretation. 

The first step in QTM is to recast the QHEM into the Lagrangian frame as shown 

in Equation 3.2. Next, an initial ensemble of trajectories is chosen. Each trajectory carries 

a certain amount of probability with it according to the size of its volume element and the 

initial distribution of the wave function )0,()0,( rr
   . The trajectories are propagated 

in a series of time steps. At each time step, the velocity of a trajectory is updated as well 

as the amplitude and phase of the wave function carried by that trajectory. The 

trajectories do need to be evenly spaced initially, and even if they are, they usually form 

an unstructured grid very quickly. In order to calculate the necessary derivatives for 

updating the velocity, amplitude and phase along a trajectory, QTM uses a moving 

weighted least squares (MWLS) method. The MWLS method works in a similar fashion 

to other numerical methods for calculating derivatives. First a stencil is drawn around the 

trajectory being calculated. The size of the stencil is set either so that all trajectories 

within a fixed distance are included in the fitting, or a fixed number of trajectories closest 

to the trajectory of interest are used. Once the stencil is set, the amplitude and phase are 

locally fit to a basis set. Generally, polynomials are used as a basis set, but other basis 

functions, such as a radial basis set [33], have been successfully used. After fitting, local 
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derivatives are calculated so that velocity, amplitude and phase can all be updated. The 

process is repeated at each time step for every trajectory in the ensemble. 

The QTM propagation scheme has been very successful in calculating 

transmission probabilities for a variety of barrier scattering problems and in many 

degrees of freedom. There are some drawbacks that can occur while using QTM, 

however. The first involves spacing of the trajectories. By allowing each trajectory to 

move at its Lagrangian velocity, the ensemble may spread in such a way that certain areas 

of the potential become under sampled. The wave function is only known at points where 

trajectories exist, so if the trajectories spread, the wave function will not be known in 

between the trajectories. If the trajectories spread too far, the MWLS can become 

unstable. In a similar fashion, if the trajectories coalesce towards a common location, 

compression occurs. In compression, there are too many trajectories in a given element of 

space. Numerical errors can develop and the propagation can break down. 

The second drawback in the QTM procedure is inherent to Bohmian mechanics. 

Examining the quantum potential, one can see that the phase of the wave function 

propagates in time proportionally to the inverse of the amplitude. As the amplitude 

approaches zero, the quantum potential becomes infinite. This is known as the “node 

problem” since it occurs at nodes in the wave function where density has gone to or is 

approaching zero. Fortunately, quantum trajectories never enter nodes. They do, 

however, accelerate rapidly as they approach and ultimately avoid a node. This rapid 

change in velocity can cause instability in the MWLS fitting procedure. It also inherently 

results in an undersampling condition in areas around the node. Nodes can be of 

particular interest since they represent areas of interference. Resolving nodes is a 

continuing challenge in the numerical implementation of Bohmian mechanics. 

There are a variety of methods for dealing with the propagation difficulties 

presented quantum trajectories such approximate quantum forces [14-16], covering 

functions [17,18], the derivative propagation method (DPM) [12,13], aribitrary 
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Lagrangian-Eulerian (ALE) grids [19-22], and hybrid methods [23,24]. A detailed 

description of approximate quantum force methods and covering functions along with 

detailed results can be found in the literature. In brief, approximate quantum force 

methods change the quantum potential so that it is no longer related to the exact 

amplitude. Rather, it is fit either to a linear or exponential basis set. This prevents nodes 

from causing numerical inaccuracies, but also makes the method generate approximate 

solutions rather than exact calculations of quantum dynamics. In covering functions, the 

superposition principle is exploited to stabilize the numerically solutions to the QHEM. 

The superposition principle states that wave functions which satisfy the constraints of the 

Schrödinger equation can be added and subtracted from each other to form new wave 

functions that also are acceptable to the Schrödinger equation. When implementing a 

covering function method, a new wave function is added to the wave function of interest 

in order to cover up the nodes and create a new total wave function for propagation, i.e. 

the areas of nodes in the wave function are now non zero and thus the quantum potential 

is not infinite. The original wave function can always be recalculated by subtracting the 

known covering function. This has been successfully applied to barrier scattering, but a 

careful choice must be in determining the covering function and it may not necessarily 

stabilize the gradient of the amplitude and phase near a node. The last three methods of 

the list (DPM, ALE and hybrid methods) were the impetus for the novel method 

presented in this work. Each will be considered in detail below. 

13B3.3 THE DERIVATIVE PROPAGATION METHOD 

In the derivative propagation method, trajectories are propagated independently of 

the rest of the ensemble. This is accomplished by carrying all the necessary information 

along the trajectory path. In the DPM, analytical equations of motion are derived for the 

spatial derivatives, thus trajectories can be propagated with only the information carried 

by them. The higher order derivatives carry the necessary non-local information to 

preserve quantum effects such as tunneling. The equations are derived by applying the 
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spatial derivative operator to Eqs. 3.2 and then changing the order of differentiation on 

the left-hand side:  
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                       (3.3)                 

The result is an infinite hierarchy of equations for both the functions and their 

derivatives. The hierarchy can be terminated when the solution can be approximated by a 

low-order polynomial, since all spatial derivatives of higher order than the polynomial 

will be zero. When DPM is used with the QHEM, the amplitude of the wave function 

),( trR


 is represented by ),( trCe


, where ),( trC


 is a low order polynomial. This 

substitution allows the hierarchy of derivatives to be truncated at a reasonably low order, 

usually between second and fourth. DPM has been successfully applied to a variety of 

barrier scattering problems, other equations of motion in phase space such as the Wigner 

and Klein Kramers equations and a relatively new approach based on representing the 

QHEM in the complex plane.  

DPM is not a perfect solution to the node problem, however, as the method has 

some unique issues that arise during a calculation. The trajectories can still spread and 

compress creating areas of over and under sampling. This can be circumvented by 

altering the velocities of the trajectories, but adjusting trajectory velocity in order to fully 

sample a region eliminates the advantage of propagating the trajectories independently. 

Perhaps a more serious disadvantage is that the low order polynomial approximation is 

not always valid, particularly near nodes. Also, as will be shown later in this work, 

trajectories may not be stable on potential energy surfaces that do not have analytical 

derivatives. 
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14B3.4 ARBITRARY LANGRANGIAN-EULERIAN METHODS 

The arbitrary Langrangian-Eulerian (ALE) methods are based on the idea that the 

velocity of a trajectory does not need to be the Lagrangian velocity. Although the 

Lagrangian velocity is the “natural” velocity at which a trajectory will move in response 

to the forces acting on it, any velocity can be used. In ALE, trajectories define the 

boundary of a grid and move at their Lagrangian velocities. This insures that the grid will 

capture the entire wave packet. Each interior grid point has a unique velocity at each time 

step that must be factored into the QHEM:        
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When Trahan and Wyatt [22] implemented ALE, they used a series of “smart springs” in 

between the grid points in order to maintain proper spacing but allow for capturing the 

dynamics of the system. The springs were based on a monitor function, ),( trM


, and the 

grid points were set such that the monitor function was equally distributed among 

them: constant ),(
1




drtrM
i

i


. The velocity of each grid point was determined by how 

far it had to move in order to maintain this equidistribution of the monitor function. The 

monitor function was chosen based on the curvature of the amplitude. In addition, a 

minimum grid spacing was enforced so that grid points never became so close as to 

become unstable. 

This technique was successful under conditions which caused traditional QTM 

methods to fail. The monitor function coupled with the minimum grid spacing insured 

that compression of grid points did not cause numerical errors while also ensuring that 

the regions of interference in the wave function were properly sampled. The method did 

not address the inherent instabilities of nodal regions caused by the QHEM. It also 

required additional computational effort to maintain the equidistribution of the monitor 

function and maintain its minimum grid spacing. 
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A different implementation of ALE was developed by Kendrick [19-21]. In this 

approach, the interior grid points maintain a constant spacing. Grid points are added or 

deleted as necessary in order to maintain this constant spacing. There are several 

advantages of this form of ALE. First, by maintaining fixed grid spacing between the 

interior grid points, any numerical method can be used to determine the derivatives of the 

amplitude and phase. Second, under sampling and over sampling will never occur 

because the grid points are forced to remain a fixed distance from each other. One 

disadvantage of ALE is that since the grid points are no longer moving at their 

Lagrangian velocities, they may move into the vicinity of a node in the amplitude. When 

this happens, the derivatives can be very difficult to accurately evaluate numerically. 

Kendrick dealt with these instabilities by introducing an “artificial viscosity” to stabilize 

the velocity equations. The artificial viscosity acts like a potential and is based on the 

curvature of the local velocity. Since the velocity of a trajectory will increase near a node, 

this helps to alleviate the numerical instabilities. Kendrick [21] successfully applied this 

method to a variety of scattering potentials in multiple dimensions. The generalized 

method, while successful, requires a significant amount of computational cost to calculate 

the artificial viscosity and re-grid when adding or deleting grid points. 

15B3.5 HYBRID METHODS 

Other attempts at resolving the problems with numerical implementation of 

Bohmian mechanics involve mixing the polar form of the wave function and the 

associated QHEM with more traditional methods of solving the Schrödinger equation. 

These “hybrid methods” blend the two interpretations of quantum mechanics and 

numerical techniques for solving the Schrödinger equation in order to create a single 

method that has the advantages of both interpretations. The motivation is based on the 

idea that moving grids can be more efficient in calculations while techniques based on the 

traditional form of the Schrödinger equation are more stable in regions of interference 

where nodes can form. 
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The first attempt at a hybrid method was developed by Hughes and Wyatt [23]. 

They took the ALE approach developed earlier by Trahan and Wyatt and adapted it to a 

traditional, non-Bohmian viewpoint. It was not a full moving grid because the end points 

were held fixed. It was an adaptive grid technique based on the moving path transform of 

the Schrödinger equation. The end points of the grid were held fixed and the 

equidistribution principle was used to distribute the grid points as in the earlier ALE 

approach. The monitor function used was based on the curvature of the wave function.  

This hybrid method was successfully applied to an Eckart barrier scattering 

calculation and a double well. One of the disadvantages of the method was the use of an 

interpolation grid. A Chebyshev pseudospectrals propagation technique was used for the 

kinetic energy operator. This technique requires that the grid points correspond to nodes 

in the polynomials. Since the grid points were moving according to the equidistribution 

principle, a second set of grid points located at the Chebyshev nodes are necessary. 

Interpolation was performed between the two grids to generate the overall solution and 

propagate it in time. A smoothing function was used in addition to the monitor function 

to determine grid point velocity. This was necessary to prevent oscillations in the paths of 

the grid points that would cause instabilities.  

A second hybrid method was developed by Babyuk and Wyatt [24]. In this 

method, the propagation of the wave packet on a scattering potential was divided into 

stages. The initial stage consisted of the wave packet approaching the barrier. The QHEM 

using QTM advanced the calculation in time. The second stage began when the wave 

packet neared the barrier and parts of it began to reflect. At this point, a combination of 

traditional methods on a fixed grid and QHEM on an ALE grid was used to continue the 

calculation. The fixed grid, traditional methods were utilized on the reflected side of the 

barrier where as the QHEM-ALE approach was used to calculate the transmitted portion 

of the wave packet. The third stage involved separating the transmitted and reflected 

wave packets and propagating them independently. Since the third stage did not begin 



 -     - 29

until all nodes vanished, the QHEM on an ALE grid could be used to propagate the 

independent pieces of the wave packet. 

The method was extremely successful for calculating the scattering of a wave 

packet on an Eckart barrier. The main disadvantage to this approach is the stages of the 

propagation must be clearly identified. Even after identifying the stages of propagation, 

the various grids and representations of the wave function must be reconciled. This 

requires overlap of the two grids during the second stage. Also, during the second stage 

an absorbing potential is required to eliminate artificial oscillations in the wave function. 

In the third stage, the leading edge of the reflected packet required a constant velocity 

rather than its Lagrangian velocity for stability and grid points on the leading edge were 

eliminated when their density became lower than a threshold value. Using these 

constraints, the calculation was stable for over 1 ns of propagation. 

16B3.5 A NEW ALE-HYBRID METHOD 

Another type of hybrid ALE method not yet presented in the literature was tested 

before the new technique described in this work was developed. In this formulation, 

quantum trajectories were used at the boundaries and the interior grid points moved with 

velocities that insured spacing was equal, similar to the approach of Kendrick. The main 

difference is that the interior points are not propagated using the QHEM. They are 

propagated using the moving path transform as presented by Hughes and Wyatt [23]: 
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In order to propagate the quantum trajectories without the overlap problems encountered 

in the approach of Babyuk and Wyatt, DPM is used for the trajectories at the end points. 

DPM allows the trajectories at the boundaries to be moved independently since all of the 

necessary information is carried along with the trajectory. Since the interior grid points 

retain uniform spacing, any traditional method of calculating derivatives can be used for 

propagation without interpolation.  
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The first test of this new approach was wave packet scattering against an Eckart 

barrier. The calculation was stable and efficient. The results were extremely accurate 

compared to a fixed Eulerian calculation. Unfortunately, this method is not applicable to 

all potential energy surfaces. In fact, the simple uphill and downhill ramp calculations 

cannot be performed with this hybrid ALE approach.  The reason for the failure may lie 

in the advective term added to the to the Schrödinger equation in its moving path 

transform. In order for a moving grid to be stable, it is important for the grid velocity to 

closely match the natural velocity at that point. If it does not, this advective term can 

become unstable and cause the solution to fail. In both the uphill and downhill ramps, the 

area of the ramp has a dispersive velocity. In the downhill ramp, a classical trajectory 

would move along the ramp. In the uphill ramp, the trajectory would move along the 

ramp until it either got to the top and continued forward or ran out of energy and then 

moved backwards. Quantum trajectories would not act much differently, although some 

of the downhill ramp quantum trajectories would also reflect backwards. In the ALE 

calculation, however, both edges of the gird are expanding. In order to maintain fixed 

grid spacing, the points in the middle have a very low velocity. This means that the points 

are moving much slower and possibly in the wrong direction compared to their 

Lagrangian velocities. The difference in grid velocity and Lagrangian velocity is 

probably the main reason this approach was unsuccessful for these simple potentials, as 

various time steps and grid spacings were attempted to eliminate propagation errors 

without any success. 

The fact that this ALE approach was unsuccessful on simple potentials is 

unfortunate, but it raises an important question. If the advective term can become 

unstable when the grid point velocity is not close to the Lagrangian velocity, how can 

fixed grid spacing be used while maintaining the advantages of a moving grid? The 

answer is to not move the interior grid points at all. The remainder of this work will be 

dedicated to describing how a fixed, Eulerian grid can be used to propagate a wave 
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packet while maintaining the advantages of a moving grid by letting quantum trajectories 

guide the boundaries of the grid. 
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4BChapter 4: The Moving Boundary Truncation Method using the 
Derivative Propagation Method 

17B4.1 ONE DIMENSIONAL FORMULATION 

We begin with a wave function ),( tx  and discretize it as in Eq. (1.3). The 

boundaries are set to capture the significant portions of the initial density and represent 

the locations from which the quantum trajectories will be launched. In practice, )0,(x  is 

decaying towards zero at the boundaries, so the trajectories are usually launched from 

points where the density has decayed to <0.0001. This grid will have the structure shown 

in Fig. 4.1(a). The spatial derivatives are calculated for the solid dots, and the open 

circles represent grid points where ),( tx  is set to zero. Although ),( tx  is set to zero at 

these points, they may be included in the calculation of the derivatives at non-zero points, 

for example, in center differences. However, only the nonzero parts of ),( tx  (at the 

solid points) are advanced in time. Quantum trajectories are launched from the 

boundaries represented by the asterisks in Fig. 4.1(a). They are moved according to their 

Lagrangian velocity  xtxSmx  ),(1  and their dynamics are governed by Eqs. (3.3). 

The trajectories do not need to coincide with the fixed grid points; however that is usually 

a convenient starting point. If the boundary trajectories move a distance larger than x , 

the grid adapts so that new fixed grid points are defined, xxx  01 or xxx NN 1 ,  

as necessary. This is demonstrated in Fig. 4.1(b). The value of ),( tx  at the new grid 

point is interpolated from the value of the boundary trajectory as it passes the newly 

acquired fixed grid point. Now the grid is defined for 1t  and values are in place to 

advance the solution from 1t  to 2t . The process is repeated at each time step until the final 

solution is reached. 
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FIGURE 4.1 GRID POINT ACTIVATION BY TRAJECTORIES. a) Initial set of fixed grid points 

selected to represent the wave function are shown as filled circles. Open 
circles are grid points not included in the dynamics at this time step. 
Trajectories (asterisks) are launched from the boundaries in the direction of 
the arrows. b) After the boundary trajectories move past fixed grid points, they 
pass function and derivative information to the new fixed grid points to be 
included in the dynamics. 



 -     - 34

 

 If the solution fractures into segments separated by large x  regions where  

),( tx  is very small, the internal grid can also be split and multiple boundary trajectories 

would then exist. The grid will adapt to the significant portions of ),( tx  without any 

advance knowledge of the dynamics. Once the boundaries have highlighted the fixed grid 

points relevant to the wave packet at a given time step, the solution is propagated on the 

fixed grid.  

Wave packet dynamics on three different one dimensional model potentials were 

the first calculations made to evaluate the method described above. Scattering from an 

Eckart barrier was examined to determine how well the method calculated transmission 

probabilities and preserved both the oscillatory structure and the nodes in the wave 

function. The barrier is the same as used by Lopreore and Wyatt in their first quantum 

trajectory studies [5]. The other two potentials were the uphill and downhill ramps. They 

were chosen because of the breakdown of fixed grid ALE approaches.  

The first example involves scattering from the Eckart potential: 

 )(sec)( 2
bo xxahVxV  , where oV  is the barrier height, a  measures the barrier width, 

and bx  is the position of the barrier maximum. The parameters for this study are 8000 

cm-1, 0.5 a.u., and 6 a.u., respectively. The initial condition is a Gaussian wave packet 

centered at the origin: )exp()2()0,( 241 ikxxx   , where =10 a.u. and the 

initial energy is mkE 2/22 .  A range of initial energies were used, from 10 to 12000 

cm-1. Both a full fixed grid and a moving boundary truncated grid were compared using 

the same grid spacing (0.05a.u.). The boundary trajectories were moved according to 

their Lagrangian velocity. Figure 4.2 shows the energy dependence of the transmission 

probability at 75 fs, calculated by integrating the wavefunction for all 6x  at each time 

step. The truncated grid (markers) generates nearly identical results as the full grid (solid 

line), with less than 1% difference in transmission probability between the two methods. 

The advantage of the truncated grid is shown in Figure 4.3. Part (a) shows the probability 
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density for the wave packet with initial energy of 8000 cm-1 at time zero. The truncated 

grid only requires 36 points to represent the initial density, but the full fixed grid required 

1012 grid points since it must account for future changes in the density. Part (b) shows 

the density at 37.5 fs. The truncated and full grid results are in excellent agreement, but 

the truncated grid has adapted to cover the significant portions of the density by growing 

to 504 points. At 75 fs, shown in Fig. 3(c), the truncated grid has grown to match the full 

grid and correctly identifies the necessary grid points to capture more than 99.99% of the 

density. The average time needed for the truncated grid calculations was 12.23 s while 

the full grid required nearly twice as long, with an average of 24.01 s on an Athlon 

2.19GHz processor with 1.00 GB of RAM. 

The next example concerns wave packet scattering on an uphill ramp. This 

potential has the form )1()( )( bxxa
o eVxV   as described in Chapter 2. The uphill 

ramp studies utilized a potential with parameters oV =1500 cm-1, a =2.5 a.u., and bx =1 

a.u.  Initial wave packets with energies of 500, 1500, 3000, 4500, and 6000 cm-1 and 

centered at the origin were studied. These packets all showed bifurcation even if the 

initial energy was larger than that of the ramp. Figure 4.5 shows convergence of the 

transmission probability for various initial energies. The truncated and full grid results 

are in agreement within 0.2% at 100 fs. Figure 4.4(a) shows the initial density for a wave 

packet with an energy of 3000 cm-1. The initial truncated grid contains 31 points and the 

grid expands to 952 points at 100 fs of propagation, as shown in Fig. 4.4(c). The full 

fixed grid utilized 952 grid points for all time steps and required an average of 19.44 s to 

perform the calculation. The truncated grid required an average time of 11.60 s, finishing 

40% faster. In the truncated grid results, small oscillations occur that are not present in 

the full fixed grid. They can be seen in Fig. 4.4(b), which shows the wave packet at 50 fs 

and also in Fig. 4.4(c). These oscillations are present after approximately 5 fs of 

propagation, but they do not affect the qualitative shape of the wave packet or the  
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FIGURE 4.2 CONVERGED TRANSMISSION PROBABILITY AS AFUNCTION OF INITIAL 
KINETIC ENERGY FOR A WAVE PACKET SCATTERING OFF OF AN ECKART BARRIER. The 
solid line displays the full grid results while the markers indicate the results of the MBT 
calculations. 
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FIGURE 4.3: SCATTERING OF A WAVE PACKET WITH INITIAL WAVE PACKET WITH 8000 
CM-1 ENERGY ON AN ECKART BARRIER. Points represent the truncated grid and the solid 
line represents the full grid a). Initially, the truncated grid used only 36 points and the 
boundaries are indicated with arrows. The vertical line at 6x marks the position of the 
barrier maximum. b) Wave packet at 37.5 fs. The truncated grid has expanded to 504 
points but still uses fewer points than the full grid. c) Wave packet at 75 fs. The truncated 
grid has expanded the same number of points (1012) as the full grid. 
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stability of the calculation. Transmission probabilities are also largely unaffected, 

although minor oscillations can be seen in Fig. 4.5 in the plateau regions of the curves.   

The downhill ramp potential that was studied had the same features as the uphill 

ramp except that the barrier height was negative, e.g. oV =-1500 cm-1, a =2.5 a.u., and 

bx =1 a.u. The initial energies of the wave packets were 0, 375, 750, 1125, and 1500 cm-

1. In classical dynamics, the density would simply roll down the hill. In a quantum 

setting, the wave packet bifurcates, even though perfect transmission might be expected. 

This is not the case as can be seen in the exploded view of the transmission probabilities 

in Figure 4.6a. The low energy wave packets have a converged transmission probability 

less than one. A small portion stays above the hill. Also, a portion of the zero energy 

wave packet actually rolls down the hill although in classical mechanics the packet 

should remain stationary atop the barrier. Excellent agreement with the full grid results 

were obtained, just as for the uphill ramp studies. Pictures of the wave packet are not 

presented because these fragments that remain atop of the barrier are visually 

undetectable. 

18B4.2 MULTIDIMENSIONAL MOVING BOUNDARY GRID TRUNCATION 

The extension to multidimensional grids is straightforward in theory, but can have 

complications in practice. If the trajectories are moved at their Lagrangian speeds, they 

will very quickly become unstructured and some method must be devised to determine 

which fixed grid points are significant at a given time step. Another option is to restrict 

the trajectories to move in a single degree of freedom. Unfortunately, the trajectories are 

no longer moving in a purely Lagrangian fashion and thus can cross. This may cause 

problems near regions of interference where these approximate quantum trajectories may 

cross and prematurely truncate the fixed grid. A third option is to take the minimum and 

maximum trajectory positions in each degree of freedom as the boundaries of the fixed 

grid. This may mean that extra grid points which are outside the trajectories are included 

in the MBT calculation. Each of these methods has its advantages and disadvantages. The  
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22BFIGURE 4.4: A WAVE PACKET WITH 3000 CM-1 ENERGY ON THE UPHILL RAMP POTENTIAL 
a) Initial packet.  The truncated grid used only 31 points and the boundaries 
are indicated with arrows.  b) Wave packet at 50 fs. The truncated grid has 
expanded to 491 points, while the full grid uses 953. Some deviation of the 
truncated grid results (points) can be observed relative to those on the full grid 
(solid line). c) Wave packet at 100 fs. The truncated grid has expanded to the 
same number of points as the full grid.  
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FIGURE 4.5: TRANSMISSION PROBABILITIES OF WAVE PACKETS WITH VARIOUS INITIAL 
KINETIC ENERGIES SCATTERING OFF OF THE UPHILL RAMP. Makers are calculated by the 
MBT method, while the solid lines are calculated using a full fixed Eulerian grid. 
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FIGURE 4.6: TRANSMISSION PROBABILITIES OF WAVE PACKETS WITH VARIOUS INITIAL 
KINETIC ENERGIES SCATTERING OFF OF THE DOWNHILL RAMP. Makers are calculated by 
the MBT method, while the solid lines are calculated using a full fixed Eulerian grid. a) 
Full scale transmission probabilities. b) Exploded view of the converged transmission 
probabilities showing the low energy packets do not completely converge to 1. 
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multidimensional examples presented below utilize various combinations of the three 

options in order to create the most efficient calculation. 

The potential surfaces for the multidimensional examples are based on the 

reaction path Hamiltonian for collinear collisions of the type A + BC. The surfaces are 

obtained by transforming from Jacobi coordinates to natural collision coordinates 

 nqqqs ,...,, 21 . In these coordinates, the surface is more linear with s representing the 

distance along the reaction path and nq is a vibrational degree of freedom perpendicular 

to the reaction path. For the 2D system the potential is of the form: 
2

2
12

0 )()(sec),( qskashVqsV  . The s -dependent force constant for the vibrational 

degree of freedom introduces coupling in the form of  )exp(1)( 2
0 sksk   . The 

potential parameters are similar to those used by Wyatt [7], Kendrick [20], and Trahan, 

et. al. [13], namely 1
0 8000  cmV , 1

04.  aa , ..1909.00 uak  , 15.0 , and 

2
025.0  a . The initial wave function is the product of the ground state for the 

vibrational degree of freedom and a Gaussian wave packet in the reaction path 

coordinate. This wavefunction is then multiplied by a plane wave in the positive s  

direction and has the general form: 

])()(exp[
4

),( 2
0

2
0

21

2
iksqqssqs qs

qs 







 




  

The initial widths of the Gaussian wavepackets are ..8 uaqs   . The reduced 

mass is 1837.152 and the initial wave packet energy,    222kE  , varied from 500 to 

12000 cm-1. In both the 2D and 3D cases, the trajectories are placed at points where the 

density of the initial wave packet has decayed to 0.0001. The trajectories are propagated 

using a fourth order DPM scheme. 

The 2-D MBT results are in excellent agreement with the full fixed grid. The 

transmission probability as shown in Fig. 4.6(a) was calculated as  
 

0

* dqds  at 46 f.s.. 

The error in transmission probability is 0.7-2.3%. The MBT calculations took on average 

70% of the time that the full fixed grid required. Figure 4.7 shows how the MBT gains 
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this time advantage in a contour plot of the density at various times for the case where the 

initial energy was 10,000 cm-1. Figure 4.7(a) shows the initial density and only 378 grid 

points are used for the wave packet on the truncated grid whereas the full grid used 

11,394 points. 24 trajectories were used to guide the boundary conditions; however fewer 

might have been possible. After 22.7 f.s. of propagation, the truncated grid has grown to 

3740 points as shown in Fig. 4.7(b). The trajectories have correctly spread to incorporate 

99.99% of the density on the truncated grid. By the time transmission probability has 

converged at 45.4 f.s. in Fig 4.7(c), the truncated grid has expanded to 11,394 points, the 

size of the full grid. Small variations in the contours for the full grid and the truncated 

grid can be observed in Figs. 4.7(b) and 4.7(c). These differences appear to be similar to 

the oscillations seen in the one-dimensional study.  Just as seen earlier, the minor 

variations do not significantly affect the qualitative shape of the wave packet or the 

transmission probability. Further propagation results in the trajectories continuing to 

expand. The boundary trajectories will never form two elliptical shapes representing 

transmitted and reflected packets. In order to form two independent elliptical shapes 

rather than one large spread ellipse, trajectories from the interior of the initial wave 

packet would need to be launched. These could then form the trailing edge of the 

transmitted and reflected packets.  

In the 3D example, a second harmonic oscillator is coupled to the reaction path 

identical to the one already present in the 2D potential. The vibrational degrees of 

freedom are not coupled to one another, they are only coupled to the reaction path and 

they have the same force constant. The initial 3D wavepacket is the 2D wave packet 

multiplied by the ground state of the second oscillator with initial conditions 

..821 uaqqs   . Seventy trajectories were used to define the boundaries of the 

initial truncated grid at points where the initial density had decayed to <0.0001.  

Once again, the MBT performs extremely well compared to the full fixed grid as 

shown in Figure 4.6b. The error in transmission probability was 0.13-4.7%. The MBT 
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was more efficient than the full fixed grid, finishing on average in 47% of the time 

required for the full grid. For the wave packet with an initial energy of 10,000 cm-1 as 

shown in Fig 4.9(a), the truncated grid started with 11,132 points compared to 427,194 

points of the full fixed grid. After 29 fs, the truncated grid has expanded to 105,600 

points and by the time transmission probability has converged at 58 fs, the truncated grid 

has grown to the size of the full grid. The isosurfaces in Figs. 4.9(b) and 4.9(c) show that 

the truncated grid maintains the correct shape of the wavefunction as well as converging 

to the correct transmission probability. Even under extremely close examination, it is 

difficult to pick out differences between the truncated grid and full grid isosurfaces. 
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FIGURE 4.6 TRANSMISSION PROBABILITIES FOR MULTIDIMENSIONAL WAVE PACKETS. a) 
An Eckart barrier coupled to one harmonic oscillator. b) An Eckart barrier coupled to two 
harmonic oscillators.
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FIGURE 4.7: CONTOUR PLOTS OF THE WAVEPACKET WITH 10000 CM-1 INITIAL ENERGY 
IN THE TWO-DIMENSIONAL STUDY AT VARIOUS TIMES. The dotted contours represent the 
truncated grid results, while the solid contours correspond to the full grid. The trajectories 
that define the truncated grid are indicated by markers and the vertical line at 0s  
represents the position of the barrier maximum. a) Initial wave packet. b) Wave packet at 
22.7 fs. The truncated grid has expanded as shown by the new positions of the 
trajectories, but still uses fewer points than the full grid. c) Wave packet at 45.4 fs. The 
truncated grid has expanded the same number of points as the full grid. 
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FIGURE 4.9: ISOSURFACES OF THE WAVEPACKET WITH 10000 CM-1 INITIAL ENERGY IN 
THE THREE-DIMENSIONAL STUDY AT VARIOUS TIMES. The isosurfaces are at densities of 
.001, .1, and .3 for the full grid. The wireframe surface is the truncated grid at a density of 
.001. The plane at  0s  represents the position of the barrier maximum. a) Initial wave 
packet. b) Wave packet at 29 fs. The truncated grid has expanded, but still uses fewer 
points than the full grid. c) Wave packet at 58 fs. The truncated grid has expanded the 
same number of points as the full grid. 
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Chapter 5: The Generalized Moving Boundary Truncation Method 
 

19B5.1 FAILURE OF THE DERIVATIVE PROPAGATION METHOD 

Using DPM to propagate the boundary trajectories in MBT has been shown to be 

successful for model potential surfaces. Unfortunately, DPM is not applicable to all 

potential energy surfaces. For example, an attempt was made to propagate boundary 

trajectories on the collinear H+H2 LEPS surface by Sato[31]. The trajectories are initially 

placed at the points where the density of a wave packet centered at [6.2, 1.4] has decayed 

to a value of 10-4. In less than 1 f.s. of propagation, the DPM trajectories begin to cross 

and do not follow the contours of the potential surface or the motion of the wave packet 

being propagated on the fixed grid as shown in Figure 5.1. This leads to the question: 

why use trajectories at all? 

If trajectories are not used, then some method must be used to adapt the 

boundaries in time. A natural choice is to activate grid points when the density is above a 

threshold and deactivate grid points when the density decreases below a threshold. In fact 

this approach has been pursued independently developed by McCormack [30] and Hartke 

[31]. In these methods, localized basis sets are added or eliminated based on fixed density 

parameters [30,31] or time dependent density parameters relative to the current maximum 

density [30].  Unfortunately, there are two main drawbacks to only monitoring density. 

First, an algorithm must be in place to prevent interior points near nodes from being 

eliminated. Second, density is not necessarily conserved. McCormack showed in 

scattering calculations that the density parameter for grid point activation needed to be 

lower than 10-8 in order for the transmission probability not to decay exponential away 

from the correct value. In fact, total density also decays exponentially. 
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FIGURE 5.1 TRAJECTORY PATHS ON THE LEPS H+H2 SURFACE AFTER 1.21 F.S. OF TIME 
PROPAGATION. The dotted lines represent contours of the potential surface. The blue 
lines are trajectories propagated with DPM, whose initial position was at density values 
of 10-4. 
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FIGURE 5.2 TOTAL DENSITY OF A WAVE PACKET SCATTERING ON THE H+H2 LEPS 
SURFACE. The solid black line is the full fixed grid, the blue line has the density inclusion 
parameter set to 10-8 and the red line has the parameter set to 10-4. a) Full view. b) 
zoomed view. 
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Figure 5.2 displays the total density of a wave packet scattering on the H+H2 

LEPS surface using fourth order finite differencing for spatial derivatives and a second 

order leap frog for the time propagator where the solid black line is the full fixed grid, the 

blue line has the density inclusion parameter set to 10-8 and the red line has the parameter 

set to 10-4. From Figure 5.2a, it obvious that the latter is not a conservative method with 

respect to density. Setting the inclusion parameter to 10-8 appears to produce only minor 

errors. Close inspection in Figure 5.2b, however, shows the same exponential decay as in 

the 10-4 case with a different slope. If the calculation were continued for long times, using 

10-8 as the density parameter would prove unsuccessful. Quantum trajectories are better 

at adapting the boundaries of a fixed grid because density is not necessarily conserved 

along a trajectory. In effect, the trajectories act as time adaptive density parameters. Since 

quantum trajectories do not cross, the portion of the wave packet contained in the 

trajectories (generally 99.99%) will always be contained within the trajectories. A new 

method for propagating the boundary trajectories has been developed in this work so that 

the MBT with quantum trajectories can be applied to an arbitrary potential energy 

surface.  

20B5.2 THE MOVING BOUNDARY TRUNCATION METHOD ON ARBITRARY SURFACES 

In order to apply the MBT to arbitrary surfaces, a propagation scheme similar to 

the QTM [11-14] is introduced for the trajectories. In QTM, a moving weighted least 

squares (MWLS) fitting procedure is used to determine S  and as such the Lagrangian 

velocity for the trajectories. In MBT, the trajectories may be too far apart to apply a 

MWLS fit using only the information carried by the trajectories. They are, however, 

always near underlying fixed grid points that carry the necessary information. Indeed, in 

MBT, the trajectories do not need to carry any information other than their position at 

each time step as all of the information needed to propagate both the wave packet and the 
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trajectories is embedded on the fixed grid. The new generalization of the MBT presented 

below exploits this advantage. 

In order to calculate the velocity for a trajectory, the nearest fixed grid point is 

determined. Then all of the grid points within a predetermined distance will be included 

in a least-squares fit of S  in a similar fashion to QTM. The main difference is that the 

fixed grid points carry the wave function in the Cartesian form, iBA  , rather than the 

polar form, )exp(iSR , as is the case in QTM.  The S  function is calculated by taking 

)/(tan 1 AB at the fixed grid points that will be used in the moving weighted least squares 

(MWLS) fitting. This leads to the relative S , which may contain “saw tooth” features, 

due to the periodic nature of the )/(tan 1 AB function. Since only the gradient, S , is 

needed for the trajectory velocity, a constant can arbitrarily be added to pieces of S  

without affecting the derivative. Specifically, each time the S  function “jumps”, /2 is 

added or subtracted so that continuity is preserved. Detecting the jumps is straightforward 

at the edges of the wave packet since S is generally smooth. The smooth S that is 

generated differs from the absolute S only by a constant; the slope of S  is preserved 

which is the only quantity of interest for calculating the gradient, S . The MWLS fitting 

procedure is applied to the new smooth S as outlined in the QTM. The S  determined by 

MWLS is used to generate the Lagrangian velocity of the trajectories and the trajectories 

can then be propagated in time. 

One issue that can occur using the previous scheme is spreading or compression 

of the trajectories. When spreading occurs, the edges of the grid may not be correctly 

chosen. When compression occurs, more trajectories than are necessary to determine the 

edges of the fixed grid are being propagated. As a solution, the trajectories are 

periodically checked to insure they are within a minimum and maximum distance of each 
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other. Trajectories can be discarded and created as desired because all the information 

needed for propagation is being carried by the fixed grid. 

The first application of the generalized MBT is the collinear HA+HBHC reaction 

on the LEPS surface [31]. The wave function dynamics are solved in the Jacobian 

coordinate system where R is the distance between the incoming HA atom and the center 

of mass of the reactant diatomic and r is the separation of the diatomic. The initial wave 

packet is the product of a Gaussian wave packet in R and the ground state of a Morse 

oscillator in r : 

             )()()(
2

exp)0,,( 00
2

0 rRRipRRtrR 

 



                    (5.1) 

The initial parameters for the wave packet are 

0.8 , 5.40 R , ]375.0,875.4[ p  and 0  represents the ground state of the H2 

Morse oscillator centered at a.u.r  40083.1 . The wave function is propagated on a fixed 

grid with spacing ..05.0 uarR   and the trajectories are started at points where 

density of the initial wave packet has decayed to 10-4. The numerical methods used to 

propagate the wave function are similar to earlier examples: fourth-order finite 

differencing is used to calculate the kinetic energy operator and a second order leap frog 

method is used to advance the wave function in time with a time step of ..25.0 uat  . 

The transmission region for this example is all [ rR, ] where the distance from HA to HB is 

less than the distance from HB to HC. The transmission probability is calculated by: 





CBBA HHHH

trans dRdrP  .  

Wave packets with various initial kinetic energies were propagated for 90.75 fs 

and the results are summarized in Figure 5.3. The transmission probabilities of the MBT  
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FIGURE 5.3. TRANSMISSION PROBABILITIES FOR THE COLLINEAR H+H2 REACTIONS FOR 
VARIOUS INITIAL KINETIC ENERGIES. The Markers indicate the MBT calculation while 
solid lines indicate the full grid solutions. The difference in results can be reduced by 
moving the initial trajectory positions further from the center of the initial wave packet. 
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propagation are compared to those using grid whose boundaries are fixed at the minimum 

and maximum values achieved in each degree of freedom, [ rR, ], by the MBT solution. 

The two methods are in excellent agreement. The MBT produces transmission 

probabilities that differ by only 1.13% for the top three initial kinetic energies.  The MBT 

results for the lowest kinetic energy (0.0019 eV) differ by 32%. If the trajectories are 

started at density values of 10-6 rather than 10-4, the error difference is reduced to 10.21% 

and if the initial trajectories are moved to density values of 10-8, the error is reduced even 

further to 1.59%. Not only is the MBT extremely accurate in the converged transmission 

probability, but it captures the resonance patterns in transmission probabilities as seen in 

the 0.3233 eV and 0.1550 eV calculations.  

While maintaining accuracy, the MBT is much more efficient than the full grid 

calculations. The full grid averaged 121 minutes and uses 1,074,316 grid points at each 

time step. The MBT calculations averaged only 15 minutes on the same computer; an 

87.6% reduction in computational time. The reason for the MBT efficiency is shown in 

Figure 5.4. Although extra resources are necessary to propagate the trajectories, only 60 

trajectories are needed initially as HA approaches the diatomic (Fig. 5.4a) moving 

towards 0R  while the wave packet remains essentially a Gaussian in r . The 60 

trajectories determine the boundaries of a fixed grid containing only 1514 grid points. A 

more detailed view of the initial wave packet is displayed in Figure 5.4b. This figure 

shows how the trajectories are initially started at equally spaced points corresponding to 

fixed grid points. Some of the trajectories are close together while others, particularly at 

the edges of r  are farther apart. Immediately after propagation begins, the algorithm will 

adaptively eliminate trajectories that are too close (<0.07a.u.) or add trajectories if the 

distance between existing trajectories is too large (>0.5a.u.). As the wave packet spreads 

into the product channel, more trajectories are added (Fig. 5.4c) increasing the number to  
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FIGURE 5.4. CONTOURS OF THE MBT H+H2 COLLINEAR REACTION CALCULATION FOR A 
WAVE PACKET WITH AN INITIAL KINETIC ENERGY OF 0.3233 EV. Filled contours 
represent the wave packet density ranging from 0.0001 in dark blue to 0.1 in red. Green 
points represent trajectory locations. Dashed contours represent the LEPS potential 
energy surface. Solid red lines indicate the boundary of the fixed grid used to propagate 
the wave packet. (a) Initial wave packet with 60 trajectories set at the edges of the 0.0001 
contour. (b) Close up oh the initial wave packet and trajectories. (c) Wave packet after 45 
fs of propagation. The trajectories have spread and their number has increased to 234 in 
order to correctly cover the points needed to advance the calculation. (d) Final wave 
packet after transmission probability has converged. The number of trajectories has 
increased to 512. 
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234. The boundaries of the fixed grid are adapted according to the motion of the 

trajectories, increasing the grid size to 34,906 points halfway through the propagation. 

Once the transmission probability is converged (Fig. 5.4d) and the propagation is 

complete, the wave packet has nearly bifurcated. The calculation finishes with 512 

trajectories and 76,382 fixed grid points. The increase in the number of trajectories and 

grid points is nearly linear throughout the propagation of the wave packet. The 

trajectories define the reactant and product channel with no advance information about 

the potential energy surface. This means that no unnecessary grid points in the 

dissociative region are added into the calculations. Also, by calculating the wave function 

in the Jacobi frame, interference effects are resolved without numerical difficulties. If 

further propagation were desired, the trajectories could be used to create two separate 

wave packets as described in the previous chapter. 

21B5.3 OTHER NUMERICAL PROPAGATORS AND THE MOVING BOUNDARY 
TRUNCATION METHOD  

The next example extends the MBT method to other numerical methods besides 

finite differences. Specifically, a nonrotating atom+diatomic reactive system in three 

Jacobi coordinates },,{ rR  is solved, where once again R is the distance between the 

incoming atom and the center of mass of the reactant diatomic, r  is the reactant diatomic 

bond length, and  is the angle between R  and r . The total angular momentum is set to 

zero and the motion of the center of mass is eliminated so that the Hamiltonian becomes: 
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with the moment of inertia: 
22

111

mrMR



.  

The specific reactive system is  O(3P) +H2( 0;0  j ) → OH +H on the 
'3 A  

potential energy surface presented earlier. The initial wave packet used for all 

calculations is a product of Gaussians in },{ rR : 

 )()()(exp)0,,( 0
2

0
2

0 RRiprrRRNtrR                         (5.3) 

With initial values of  4.0,  9.06, 0R 6.0, 0r 1.444, ]6,18[ p .  

In order to efficiently propagate the wave packet, the split operator method is 

applied to the Hamiltonian as follows: 
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A fast Fourier transform (FFT) is used to calculate the kinetic energy operator ),( rRT


 

and the discrete variable representation (DVR) is used for the rotational operator )(


J . 

The grid for the FFT calculations is 256x256 with grid spacing 08.0 rR  Sixty 

divisions of   were used in the DVR calculations. Complete explanations of these two 

methods are widely available in literature, but summaries are provided here to emphasize 

how MBT can enhance their performance. The FFT transforms position space, ],[ rR , to 

momentum space, ],[ pP , thus simplifying the derivative operator to a multiplication. 

The transform is accomplished numerically by changing the integral to a discrete sum: 
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In Equation 5.5, ),(, pPkj is the representation of the wave function in 

momentum space at point ],[ kj pP . It is the weighted sum of the representation of the 

wave function in position space, rRml NmNlrR ,...1,,...1),,(,  , where RN  and rN  are 

the total number of points used in position space. At first glance, this would seem to be 

an ideal candidate for MBT, as the sum could be limited to only points within the 

boundary defined by the trajectories. As numerical algorithms for Fourier transforms 

have been developed over the years, however, symmetry properties of the transform have 

been exploited to reduce the overall number of terms that are actually calculated. For all 

of the available algorithms for FFT, the vector lengths in position space and momentum 

space must remain equal. This means that when MBT is applied to an FFT, either the 

number of points in momentum space is reduced to match the number of points in the 

truncated grid, or the truncated grid can be padded with zeroes in order to maintain the 

appropriate number of momentum points required for a stable propagation. In the former 

case, the propagation quickly becomes unstable and inaccurate because the spacing in 

momentum is either too large or the minimum and maximum of the momentum space is 

limited. In the latter case, there is no efficiency gained by placing zeroes around the 

truncated grid. If an FFT algorithm was developed that could maintain the speed of 

symmetry based methods while allow vectors of different lengths in position and 

momentum spaces, then MBT may be applicable to an FFT propagation. 

The ideal application of MBT is in the rotational operator. The discrete variable 

representation (DVR) takes the wave function represented by a point basis and transforms 

it to a function basis. The reason that the DVR is preferred over an FFT for the rotational 

operator is the 






cot  term. Unlike the second derivative term in the kinetic energy 

operator, this term does not translate to a simple multiplication in momentum space. In 

DVR, a unique transformation matrix, Y, is used to transform the wave function from a 
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number of points in  to a basis set, usually that of a harmonic oscillator. In addition to 

being able to transform the wave function, any operator can also be transformed, 




 YAYA HODVR . In this application of DVR only points along   are required and the 

transform is independent of },{ rR . When MBT is applied to the mixed FFT-DVR 

calculation, trajectories move along },{ rR in discrete divisions of theta that will be used 

as DVR points. The minimum and maximum locations of the trajectories define a box in 

},{ rR . Only the points inside the box are used as DVR points in the transformation and 

thus only these points have the rotational operator applied to them. Initially, there are 

2,760 trajectories divided evenly among the 60   divisions and placed in },{ rR  where 

the density of the wave packet has decayed to 10-4 (Figure 5.5a). This creates a box of 

73,800 grid points in which the rotational operator is applied. As the trajectories move, 

the box of grid points moves with them, selectively applying the rotational operator only 

to the points where the density of the wave packet is significant. The number of 

trajectories and grid points used in the DVR stays relatively constant until the wave 

packet enters the transition state at approximately 21 fs (Figure 5.5b). At this time, the 

trajectories have properly adapted the boundaries of the grid used in the DVR calculation 

so that the rotational operator is applied to produce the correct dynamics. After the wave 

packet has begun to enter the product tubes, both the number of trajectories and the 

number of grid points in the DVR calculation increase linearly until their final values, 

6,544 and 697,080 respectively, at the end of the propagation.  

The advantages of MBT are visualized in Figure 5.5. In this figure, the axis are 

cylindrical in that R lies along the x axis, r is the absolute distance from the x axis, and 

positive  is counter-clockwise rotation around the x axis. Examination of the potential 

isosurface 75.0V  eV, best seen in Figure 2.3c in Chapter 2, shows that the rotational 

operator is not critical in the initial stages as the potential is evenly distributed around   
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in a tube shape. In the transition region at approximately ..3 uaR  , rotation is critical as 

the potential develops minima near 0 and   . The product tubes then quickly 

redistribute to encompass the entire range of  . If rotation is neglected from the 

Hamiltonian, this important feature of the potential energy surface would be lost and 

calculated values for the transmission probability are significantly lower than the correct 

values. With MBT, the rotational effects are preserved, but limited to the points inside the 

boundaries defined by the trajectories. As the packet enters the transition state region 

(Fig. 5.5b), the effect of the rotational operator allows the packet to correctly spread 

through the 0 and    regions. The trajectories continue to guide the MBT grid 

down the two product tubes until the transmission probability is full converged, shown in 

Figure 4c. Comparing Figures 4c and 4d, reveals that the wave packet on the MBT grid 

has a small amount of numerical artifacts on the leading edges of the transmitted portions 

that are not present in the full grid wave packet. This difference in the wave packets is 

only evident after transmission probability has converged and does not appear to affect 

the stability or accuracy of the MBT calculation.   

The performance of MBT is displayed in Figure 5.6. The transmission probability 

of both the MBT and the full fixed grid are nearly in exact agreement for the O(3P) 

+H2( 0;0  j ) reaction (Fig 5.6a). The error ranges from 0.15% to 2.03% with the 

largest error being at the lowest kinetic energy. Figures 5.6b and 5.6c show the two 

transmission probabilities for the O(3P) +HD( 0;0  j )  reaction. The dramatic 

influence of the rotational operator is demonstrated here by the large difference in 

transmission probability between the OH and OD products. Once again the MBT is just 

as accurate as the full grid calculation with a maximum difference in OH transmission 

probability of 0.49% and OD transmission probability of 8.99% and capturing resonance 

patterns as transmission probability develops over time. The maximum errors are at the 
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lowest energies. The OD transmission probability at the lowest initial energy is only 

0.0128. The error at higher energies drops to 1% or less. The reason for the increased 

error at the lowest kinetic energy is that the trajectories have eliminated the low density 

edges (<10-4) of the wave packet. These low density edges are responsible for tunneling 

effects. In a similar fashion to the collinear H+H2, the initial trajectories could be 

extended outward to capture more of the initial wave packet and thus capture more of the 

tunneling. These excellent results are obtained much more efficiently than the full grid 

calculations. An average full grid calculation takes an average of 212 minutes. The MBT 

only takes 75 minutes, a reduction of 65%.  
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FIGURE 5.5. WAVE PACKET PROPAGATION OF THE O(3P) +H2( 0;0  j ) → OH +H 

REACTION ON THE 
'3 A  POTENTIAL ENERGY SURFACE. Red isosurfaces indicate the 

potential energy surface at eVV 75.0 . Isosurfaces of the wave packet a t a density of 
0.0001 are colored blue. (a) Initial wave packet. The points used in the rotational operator 
are only contained in the blue wave packet isosurface. The potential surface breaks into 
two tubes along  0  and   at approximately ..5.2 uaR  .(b) Wave packet after 
21.78 fs. The MBT has guided the wave packet correctly into the two product tubes. (c) 
Wave packet after transmission probability has converged (60.5 fs). The wave packet has 
fractured into three distinct parts and MBT restricts the rotational operator to only these 
areas. The leading edge of the transmitted packets shows some numerical artifacts not 
present in the full grid. (d) Full grid wave packet after 60.5 fs. 
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FIGURE 5.6. (A) TRANSMISSION PROBABILITIES FOR THE O(3P) +H2( 0;0  j ) 

REACTION FOR VARIOUS INITIAL KINETIC ENERGIES. The markers indicate the MBT 
calculation while solid lines indicate the full grid solutions. Transmission probability (y 
axis) is on a logarithmic scale for clarity. (b) The OH transmission probabilities of the 
O(3P) +HD( 0;0  j ). (c) The OD transmission probabilities of the O(3P) 
+HD( 0;0  j ). 
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5BChapter 6: Conclusion 

In this work, a new method for numerically integrating the time dependent 

Schrödinger equation was presented. The moving boundary truncation (MBT) method 

works on the principle that during a quantum transport calculation, only certain grid 

points are important to the dynamics of the system. The boundaries of the grid are moved 

according to the positions of quantum trajectories whose motion is governed by the 

quantum hydrodynamic equations of motion (QHEM). The various methods for 

numerically integrating of these equations were the inspiration for this work. The details 

of their implementation and their advantages and disadvantages were discussed. 

The initial formulation of the method relied on using the derivative propagation 

method (DPM) for moving the boundary trajectories. DPM was chosen because this 

method allows trajectories to be propagated independently of each other and eliminates 

any errors from spatial fitting. The method was successful when using DPM to propagate 

the boundary trajectories on a variety of model potential energy surfaces and up to three 

degrees of freedom. Unfortunately, DPM is not a stable propagator for all potential 

energy surfaces so a generalized variation of MBT was required.  

The generalized method relies on reconstructing a relative quantum action 

function S  from the Cartesian wave function through )/(tan 1 AB  and smoothing the 

periodic nature of the inverse tangent function. After smoothing, a moving weighted least 

squares (MWLS) fit is applied to determine S  and move the trajectories. This new 

variation was first successfully applied to the H+H2 collinear reaction (using a LEPS 

potential surface) finite differencing used to determine spatial derivatives. The MBT was 

then extended to more complex surfaces and numerical methods by calculating the O(3P) 

+H2( 0;0  j ) → OH +H reaction on the '3 A  potential energy surface. This example 
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showed that MBT can be selectively applied to certain degrees of freedom in a multi-

dimensional calculation using any grid based numerical method. This could prove useful 

in problems with a large number of degrees of freedom where certain degrees of freedom 

are calculated in total and others are truncated. The MBT method is not only efficient, but 

very accurate. The highest errors are always in low energy calculations. To increase 

accuracy for these situations, the initial trajectories can be set further from the center of 

the wave packet.  

The moving boundary truncation method presented in this work is a robust 

numerical method for integrating the time dependent Schrödinger equation. The method 

is nearly as accurate as methods that use many more grid points. A variety of numerical 

methods for generating spatial derivatives were demonstrated to be compatible with 

MBT. The method was also applicable to a variety of potential energy surfaces not 

previously solved by traditional trajectory methods such as QTM, DPM, or ALE. The 

MBT method is an efficient, accurate choice for calculating chemical quantum dynamics. 

Although the advantages of MBT have clearly been presented in this work, the 

disadvantages have not been fully explored. A difference, although small, in transmission 

probability was observed between the MBT grids and full grids. Future developments in 

the method could study correlation between the initial placement of trajectories and the 

difference in transmission probability between the MBT and full grid. If this could be 

related to initial wave packet energy, barrier height, or a combination of the two, then a 

selection criteria could be developed based on desired accuracy.  

Another difference between the MBT calculations and full grid calculations were 

the oscillations in density near the edges of the wave packet. This is probably a purely 

numerical artifact since all numerical methods can develop errors if the boundaries are 

not carefully chosen. This should be studied in detail, however, to insure that there are no 
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stability issues associated with the oscillations. Multiple barrier surfaces would provide 

excellent insight into this issue. 

Aside from deeper examination of the method itself, there are two other main 

areas of future research concerning the MBT method. The first would be a continuation 

of this work by applying MBT to various numerical propagators. Each numerical 

technique has unique issues with boundary conditions. Some, such as the FFT discussed 

in Chapter 5, are not well suited to boundary truncation. Others, such as the Chebyshev 

pseudospectral techniques used by Hughes and Wyatt [23], rely on fixed grid points and 

may benefit from having the boundaries truncated. A natural first step in this direction 

would be to use quantum trajectories in the methods developed by McCormack [34] and 

Hartke [35]. These methods rely on a density parameter for boundary truncation and thus 

suffer from accuracy and conservation issues as discussed earlier. If quantum trajectories 

were used at the boundaries as in MBT, the conservation of density should be insured and 

the accuracy should increase. 

A second direction of future research would be expanding the application of 

MBT. There are a variety of quantum mechanical problems that may benefit from MBT. 

A typical example not yet studied would be a reaction in which two electronic states are 

close in energy. In these problems, transitions can occur between the two electronic 

states. The MBT method could be used to keep the higher energy electronic state 

completely deactivated until the trajectories reach areas of the lower energy state where 

crossing can occur. The MBT could also be extended to other partial differential 

equations besides the Schrödinger equations. There are a variety of transport equations 

which may benefit from adaptive boundaries such as those in the moving boundary 

truncation method. 
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