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Effective stochastic behavior in dynamical systems with incomplete information
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Complex systems are generally analytically intractable and difficult to simulate. We introduce a method for
deriving an effective stochastic equation for a high-dimensional deterministic dynamical system for which some
portion of the configuration is not precisely specified. We use a response function path integral to construct an
equivalent distribution for the stochastic dynamics from the distribution of the incomplete information. We apply
this method to the Kuramoto model of coupled oscillators to derive an effective stochastic equation for a single
oscillator interacting with a bath of oscillators and also outline the procedure for other systems.
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I. INTRODUCTION

In complex high-dimensional dynamical systems one must
cope with many unknown degrees of freedom. One approach
to controlling this uncertainty is to construct effective low-
dimensional models by marginalizing over the statistical
distribution describing the incomplete information of the
system (e.g., [1,2]). The marginalized degrees of freedom
would be manifested as effective stochastic terms in a reduced
model. Here we provide an explicit method to carry out such
a procedure on the Kuramoto model of nonlinear coupled
oscillators and construct an effective stochastic equation. Our
method is generalizable to other systems.

Efforts to derive effective stochastic behavior from de-
terministic microscopic dynamics date back to the origins
of statistical mechanics (for a brief account, see [3]), and
in particular kinetic theory [4,5]. In this framework, the
one-particle probability density obeys a Boltzmann equation,
which is equivalent to a truncation of an infinite moment hierar-
chy (Bogoliubov-Born-Green-Kirkwood-Yvo (BBGKY) hier-
archy [4]) that encodes all of the information in the microstate
distribution. We previously applied this conceptual approach to
coupled networks [6,7], and derived a response functional field
theory for the Kuramoto model that is equivalent to a BBGKY
hierarchy where the inverse system size is a loop expansion
parameter. The existence of a small parameter obviates the
need for any assumptions regarding dynamic averaging or
“molecular chaos” for large system size and allows one to
compute effects beyond mean field theory. Here we compute
the effective stochastic dynamics of individual oscillators
embedded in an incompletely specified network, directly from
the dynamics of the fully deterministic system.

The approach of marginalizing over a background envi-
ronment in order to derive effective stochastic behavior is
not novel, and has been well explored in the literature in the
context of Brownian motion in a bath of interacting particles
with a well defined Hamiltonian for the total system [8–11].
Those studies took advantage of the exact integrability of the
harmonic oscillator in order to derive exact expressions for the
noise distribution of the particle interacting with the bath. In
the context of oscillator systems, noise has been represented
as externally added Gaussian white noise [12,13] without any
established connection to the internal dynamics of the system.
In neural applications, investigators have used a self-consistent

assumption of Poisson noise [14]. Our method does not rely
upon exact integrability, nor does it only apply to systems in
the Hamiltonian class, but to any dynamical system. Indeed,
the method we demonstrate relies only on the tractability of the
BBGKY hierarchy, or equivalently, the tractability of the loop
expansion for a density field theory defined as in Ref. [7]. Using
this formulation, we show that finite size intrinsic fluctuations
for the Kuramoto model cannot be represented using the
ad hoc tool of additive Gaussian noise.

II. ENSEMBLE AVERAGES AND FINITE
SIZE EXPANSIONS

The Kuramoto model of N coupled oscillators obeys

θ̇i(t) = ωi + K

N

∑
j

sin(θj − θi), (1)

where ωi is the driving frequency of the ith oscillator, drawn
from a fixed distribution g(ω). This model exhibits a phase
transition from incoherence to synchrony as the coupling K is
increased. Here we consider the incoherent state in which the
oscillators are approximately uniformly distributed in phase.
Strogatz and Mirollo [12] found that in the infinite system-size
mean field limit the incoherent state is marginally stable
because each individual oscillator decouples from the pop-
ulation. External additive noise stabilizes the incoherent state
by adding an explicit diffusion term to the mean field equation.
Buice and Chow [7] showed that finite size effects stabilize the
marginal modes by generating effective diffusion without addi-
tive noise suggesting that the effective dynamics of individual
oscillators is a random walk due to interactions with the bath
of oscillators in the network. Here we show how incomplete
knowledge of the initial data of the Kuramoto system yields
an effective stochastic equation for a given oscillator.

Consider a distinguished measured oscillator with phase
φ(t) within a bath of unmeasured oscillators all obeying
the Kuramoto equation (1). Determining the motion of φ(t)
is equivalent to determining which element of a statistical
ensemble from which the unmeasured oscillators are drawn is
realized. In each small time interval, the oscillator φ(t) inter-
acts with the bath of unmeasured oscillators, which provides
some small amount of knowledge about the specific phase and
driving frequency distribution for the unmeasured oscillators.

051120-11539-3755/2011/84(5)/051120(12) Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevE.84.051120


MICHAEL A. BUICE AND CARSON C. CHOW PHYSICAL REVIEW E 84, 051120 (2011)

To an external observer, the ensemble is a distribution from
which a stochastic driving term is being drawn during each
time interval. There is thus an equivalent distribution for the ob-
served stochastic evolution of φ(t) derivable from the ensemble
distribution of possible networks of oscillators. This distribu-
tion is equivalent to the information that the observer possessed
about the unmeasured oscillators prior to the experiment.

Let the N unmeasured oscillators obey Eq. (1). The distin-
guished measured oscillator is labeled by φ(t), with intrinsic
driving frequency �. The combined system dynamics obey

φ̇(t) = � + K

N

∑
j

sin(θj − θi),

θ̇i(t) = ωi + K

N

∑
j

sin(θj − θi) + K

N
sin[φ(t) − θi(t)],

where the normalization for the entire system remains N for
simplicity. We can rewrite the Kuramoto system in terms of
a continuity equation, or “Klimontovich” equation [6,7], by
defining

η(θ,ω,t) = 1

N

∑
i

δ[θ − θi(t)]δ(ω − ωi). (2)

The Kuramoto model can be written in terms of η(θ,ω,t) as

φ̇(t) = � + K

∫
dθdω sin[θ − φ(t)]η(θ,ω,t),

θ̇i(t) = ωi + K

∫
dθdω sin[θ − θi(t)]η(θ,ω,t)

+ K

N
sin[φ(t) − θi(t)].

The second equation provides a velocity field for the θi(t)
variables, which we can use to define the equation for η(θ,ω,t):

∂tη(θ,ω,t) − ω∂θη(θ,ω,t)

−∂θ

({
K

∫
dθ ′dω′ sin(θ ′ − θ )η(θ ′,ω′,t)

+K

N
sin[φ(t) − θ ]

}
η(θ,ω,t)

)
= 0.

The full set of dynamical equations is then

φ̇(t) = � + K

∫
dθdω sin[θ − φ(t)]η(θ,ω,t), (3)

∂tη(θ,ω,t)

= ω∂θη(θ,ω,t) + ∂θ

({
K

∫
dθ ′dω′ sin(θ ′ − θ )η(θ ′,ω′,t)

+ K

N
sin[φ(t) − θ ]

}
η(θ,ω,t)

)
. (4)

The density η from Eq. (2) is a distributional solution of
Eq. (4) given the equation of motion for φ(t) and (3) is the
equation of motion for oscillator φ(t) with driving frequency
� in terms of η.

We suppose that each unmeasured oscillator with initial
angle θ and driving frequency ω is drawn independently
from the distribution given by ρ0(θ,ω) = g(ω)

2π
to yield an

ensemble of similarly prepared systems. A given instance of
the Kuramoto model corresponds to a given instance of the

initial state configuration. We fix the initial condition of φ to
φ(t0) and � for every instance of the ensemble.

The distribution of population densities η over the ensemble
is represented by a probability density functional P [η], which
we use to marginalize the unmeasured oscillator dynamics
over the ensemble. We apply a response function formalism
developed in nonequilibrium statistical mechanics in which
η is transformed to the variables ϕ̃ and ϕ using a Doi-Peliti-
Jansson transformation followed by a shift by the mean 〈η〉 =
g(ω)/2π ≡ ρ0 (see [7,15–18]). The variables ϕ,ϕ̃ represent
counting processes in the sense that terms of the form ϕ̃�−1ϕ

are Poisson distributions; here the “counting process” is the
number of oscillators within a bin of width dθ . A derivation of
the generating functional from the system equations of motion
is given in the Appendix, including a derivation of the initial
condition sampling corrections. This derivation constructs a
distribution from the deterministic dynamics acting on the ini-
tial distribution. We caution those familiar with standard field
theoretic approaches that the resulting response functional
formalism has some subtle differences with field theories such
as ϕ4 which arise in equilibrium statistical mechanics. First,
the “free” theory is off-diagonal; it is of the form

∫
ϕ̃�−1ϕ.

The most important difference is that operators within a vertex
are normal ordered as a result of the assumption of the “Ito”
condition, and thus cannot contract with themselves. This is a
consequence of the limit considered when defining the func-
tional integral. The resulting effective stochastic differential
equation therefore will be of the Ito type. The logarithm of the
density functional, called the action, has the form

S = Sbulk + Sint + Sφ, (5)

where

Sbulk = N

∫
dωdθdtϕ̃

{
(∂t + ω∂θ )ϕ

+K

∫
dω′dθ ′∂θ [sin(θ ′ − θ )(ϕ′ρ0 + ρ ′

0ϕ + ϕ′ϕ)]

+K

∫
dω′dθ ′ϕ̃′∂θ [sin(θ ′ − θ )(ϕ′ + ρ ′

0)(ϕ + ρ0)]

}

−N

∞∑
k=2

(−1)k+1

k

[∫
dθdωϕ̃(θ,ω,t0)ρ0(θ,ω)

]k

(6)

is the Kuramoto system action in Ref. [7], which includes
initial condition terms representing finite size (sampling)
corrections to the moments of the initial ensemble,

Sint = K

∫
dωdθdt ϕ̃∂θ {sin[δφ(t) + �(t − t0) − θ ](ϕ + ρ0)}

(7)

is the coupling of the N unmeasured oscillators to the single
measured oscillator φ(t), where δφ(t) = φ(t) − �(t − t0) is
the deviation from the mean field value 〈φ(t)〉mf = �(t − t0),
and

Sφ =
∫

dt φ̃(t)

{
δφ̇(t) − K

∫
dθdω sin[θ − �(t − t0)

− δφ(t)](ϕ̃ϕ + ϕ + ϕ̃ρ0)

}
(8)
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FIG. 1. The vertices and propagator derived from the action Sbulk. Compare with the diagrams from Ref. [7]. The open circle vertex
represents initial condition terms which are the sampling corrections to the initial state. We label the coordinates of each vertex leg because
these connections are nonlocal. x = (θ,ω,t) and similarly for x ′.

is the action for the measured oscillator. All statistical proper-
ties of the system are contained in the action. Any dynamical
system can be described by an action in terms of densities for
high-dimensional systems (e.g., fields such as ϕ), directly in
terms of the variables themselves [e.g., δφ(t)] or with a mixture
of the two. The variable ϕ̃ is an imaginary response field.

The vertices from the Feynman rules for the action S are
shown in Figs. 1 (Sbulk), 2 (Sφ), and 3 (Sint). To facilitate
the following calculations, they include quadratic terms which
normally would be included in the propagator. We choose
the free propagator to be of the form ϕ̃�−1ϕ + φ̃δφ̇. In the
present case, the terms of Fig. 3 are O(1/N) with respect to

t

t t H(t − t )

K sin(θ − Ω(t − t0))

K sin(θ − Ω(t − t0))

K sin(θ − Ω(t − t0))ρ0(x )

. . .
. . .

...

K
(−1)n

n!
dn

dθn
sin(θ − Ω(t − t0))

K
(−1)n

n!
dn

dθn
sin(θ − Ω(t − t0))

K
(−1)n

n!
dn

dθn
sin(θ − Ω(t − t0))ρ0(x )

FIG. 2. The vertices and propagator derived from the action Sφ . These vertices are nominally O(1), but will contract with vertices from
Sbulk and Sint such that moments will have 1/N scaling.
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t

. . .
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−K∂θ [sin(Ω(t − t0) − θ) . . . ]

...

−K
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sin(Ω(t − t0) − θ) . . .

−K
(−1)n

n!
∂θ

dn
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sin(Ω(t − t0) − θ)ρ0(x)

FIG. 3. The vertices derived from Sint. These are O(1) but source the ϕ operator, which means they can be regarded as counterterms. They
will produce factors of 1/N in the overall moment for each such vertex.

those in Sbulk and thus can be regarded as “counterterms” in
the loop expansion. Because of this, it is simpler to regard all
of these terms as vertices. We use open dots to represent initial
conditions and these counterterms.

III. EFFECTIVE ACTION

We construct an effective action for the field δφ(t) (i.e.,
equivalent probability density) by marginalizing over the ϕ,ϕ̃

fields, which leaves the action

SEA =
∫

dt φ̃δφ̇ − WO{K ′ sin[θ − �(t − t0) − δφ(t)]φ̃(t)},
(9)

where WO[λ(θ,ω,t)] for λ ≡ K sin[θ − �(t − t0) − δφ(t)]
φ̃(t) is the cumulant or connected generating functional of
the operator O ≡ ϕ̃ϕ + ϕ + ϕ̃ρ0 under the bulk action from
which all cumulants or connected moments can be derived.
(O is the operator which describes deviations of the density η

from the mean field value.) This effective action represents a
stochastic process for the evolution of the measured oscillator
and is equivalent to the stochastic differential equation

φ̇(t) = � + δ�(t) + ξ (t), (10)

where δ�(t) is a frequency shift of the measured oscillator
due to interaction with the unmeasured oscillators and ξ (t) is
a zero-mean stochastic forcing term, which will be in gen-
eral non-Gaussian, nonwhite, and multiplicative [amplitude
depends on φ(t)]. To lowest order, the expression for δ�(t)
will be given by the coefficient of φ̃ in W0 and the Gaussian
contribution to ξ (t) will be given by the coefficient of φ̃2.
Non-Gaussian contributions to the noise will come from
the coefficients of higher powers of φ̃. The computation of
these coefficients will involve computing the moments of ϕ

and ϕ̃ under the action Sbulk + Sint. The tractability of this
marginalization will depend upon the tractability of computing
the moments of the bulk dynamics.

All of the fluctuations in the combined system given by
Eq. (5) stem from the terms in Sbulk and Sint. The distribution
represented by the path integral is the distribution over the
ensemble of similarly prepared N + 1 oscillator systems
by construction. Therefore, each instance of the stochastic
evolution under this equivalent equation corresponds to an
instance of the initial configuration of the Kuramoto system.

The marginalization procedure is an explicit construction of
an equivalent distribution for the possible evolutions of φ(t).
It effectively encodes the initial state of the N + 1 oscillator
network into the stochastic forcing term ξ (t). Determining
the entire exact evolution of φ(t) is equivalent to determining
the exact initial configuration of the N + 1 oscillator system
(more precisely, it determines the information about the
initial ensemble sufficient to fix the evolution of the order
parameter for all time). The connected generating functional
WO[λ(θ,ω,t)] does not have a finite closed form expression but
we can compute it perturbatively using a large N expansion.
At order 1/N ,

W 1
O[λ(θ,ω,t)] = W 1

O,1 + W 1
O,2, (11)

where

W 1
O,1[λ(θ,ω,t)] =

∫
dθdωdt λ(θ,ω,t)〈O(θ,ω,t)〉1, (12)

W 1
O,2[λ(θ,ω,t)] = 1

2

∫
dθdωdtdθ ′dω′dt ′ λ(θ,ω,t)λ(θ ′,ω′,t ′)

×〈O(θ,ω,t)O(θ ′,ω′,t ′)〉1. (13)

The moments of O(θ,ω,t) in Eq. (11) are evaluated pertur-
batively to lowest order in the fields using the full action in
Eq. (5) with the relevant diagrams depicted in Fig. 1. The first
moment is

〈O(θ,ω,t)〉1

= 〈ϕ̃(θ,ω,t)ϕ(θ,ω,t) + ϕ(θ,ω,t) + ϕ̃(θ,ω,t)ρ0(θ,ω)〉
= 〈ϕ(θ,ω,t)〉
= K

∫
dθ ′dω′dt ′P0(θ,ω,t |θ ′,ω′,t ′) cos[δφ(t ′)

+�(t ′ − t0) − θ ′]
g(ω′)
2π

, (14)

where P0(θ,ω,t |θ ′,ω′,t ′) = 〈ϕ(θ,ω,t)ϕ̃(θ ′,ω′,t ′)〉 is the tree
level propagator for the bulk action Sbulk and satisfies the
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linearized Klimontovich equation

(∂t + ω∂θ )P0(θ,ω,t |θ ′,ω′,t ′) + K
g(ω)

2π

× ∂θ

∫ ∞

−∞

∫ 2π

0
dθ1dω1 sin(θ1 − θ )P0(θ1,ω1,t |θ ′,ω′,t ′)

= 1

N
δ(θ − θ ′)δ(ω − ω′)δ(t − t ′). (15)

The mean 〈ϕ〉 under the bulk action alone is zero [7].
This symmetry is broken by the presence of the interaction
action Sint (7), which represents the fact that the presence of
the measured oscillator induces a degree of synchrony in the
unmeasured oscillators, similar to an induced magnetization.
The second moment is

〈O(θ,ω,t)O(θ ′,ω′,t ′)〉1

= 〈[ϕ̃(θ,ω,t)ϕ(θ,ω,t) + ϕ(θ,ω,t) + ϕ̃(θ,ω,t)ρ0(θ,ω)]

×[ϕ̃(θ,ω,t)ϕ(θ,ω,t) + ϕ(θ,ω,t) + ϕ̃(θ,ω,t)ρ0(θ,ω)]〉
= 〈ϕ(θ,ω,t)ϕ̃(θ ′,ω′,t ′)〉ρ0(θ ′,ω′) + 〈ϕ(θ,ω,t)ϕ(θ ′,ω′,t ′)〉
= P0(θ,ω,t |θ ′,ω′,t ′)

g(ω′)
2π

+ C(θ,ω,t ; θ ′,ω′,t ′) (16)

for t > t ′; the moment is symmetric with respect to t ↔ t ′. For
the second equality we have removed terms which are either
zero or higher order in 1/N . C = 〈ϕ(θ,ω,t)ϕ(θ ′,ω′,t ′)〉 is the
1/N connected correlation function computed previously in
Refs. [6,7]. Because the connected generating functional WO

is evaluated at λ(θ,ω,t) = K ′ sin[θ − �(t − t0) − δφ(t)]φ̃(t)
according to Eq. (9), the normal ordering of the operators δφ(t)
and φ̃(t) is not preserved across different factors of λ since
each is essentially a new vertex. When calculating moments
of δφ(t), it is important to keep this in mind as factors of
δφ(t) and φ̃(t) from different λ’s will contract with each other.
Normal ordering can be restored by using the linear response
for φ(t) term by term in the effective action. Because the
connected generating functional WO is quadratic to first order
in 1/N , the action SEA contains terms which are quadratic
in φ̃(t). These represent Gaussian noise, albeit colored noise
since the second moment of O, Eq. (16), indicates that O is
not δ correlated. The dynamics of the Kuramoto model induce
temporal correlations in the evolution of φ(t).

Inserting (14) into Eq. (12) leads to the expression

W 1
O,1 =

∫ ∞

t ′
dtφ̃(t) K2

∫
dθdω sin[θ − �(t − t0) − δφ(t)]

×
∫ t

t0

dt ′dω′dθ ′P0(θ,ω,t |θ ′,ω′,t ′)

× cos[�(t ′ − t0) + δφ(t ′) − θ ′]
g(ω′)
2π

≡
∫ ∞

t0

dtφ̃(t)δ�A(t). (17)

Inserting (16) into Eq. (13) gives W 1
O,2 = W 1

O,2C + W 1
O,2P

where

W 1
O,2C[λ(θ,ω,t)]

= K2
∫ ∞

t0

dtdθdω

×
∫ t

t0

dt ′dθ ′dω′φ̃(t)φ̃(t ′) sin[θ − �(t − t0) − δφ(t)]

× sin[θ ′ − �(t ′ − t0) − δφ(t ′)]P (θ,ω,t |θ ′,ω′,t ′)
g(ω′)
2π

,

W 1
O,2P [λ(θ,ω,t)]

= 1

2

∫
dθdωdtdθ ′dω′dt ′ λ(θ,ω,t)

× λ(θ ′,ω′,t ′)C(θ,ω,t ; θ ′,ω′,t ′)

= K2
∫ ∞

t0

dtdθdω

∫ t

t0

dt ′dθ ′dω′φ̃(t)φ̃(t ′)

× sin[θ − �(t − t0) − δφ(t)]

× sin[θ ′ − �(t ′ − t0) − δφ(t ′)]C(θ,ω,t ; θ ′,ω′,t ′).

To order 1/N we can eliminate some of the terms, although
we need to be careful of normal ordering. Factors of δφ(t)
will contract with factors of φ̃(t ′) for t > t ′ because the
marginalization does not preserve normal ordering. We use
the fact that to lowest order in 1/N we have 〈δφ(t)φ̃(t ′)〉 =
H (t − t ′) where H (t) is the step function. This yields

W 1
O,2C[λ(θ,ω,t)]

= K2
∫ ∞

t0

dtdθdω

∫ t

t0

dt ′dθ ′dω′φ̃(t)

×{φ̃(t ′) sin[θ − �(t − t0)] − cos[θ − �(t − t0)]}
× sin[θ ′ − �(t ′ − t0)]C(θ,ω,t ; θ ′,ω′,t ′)

≡
∫ ∞

t0

dt φ̃(t)

[∫ t

t0

dt ′φ̃(t ′)GB(t,t ′) + δ�B(t)

]
,

W 1
O,2P [λ(θ,ω,t)]

= K2
∫ ∞

t0

dtdθdω

∫ t

t0

dt ′dθ ′dω′φ̃(t)

×{φ̃(t ′) sin[θ − �(t − t0)] − cos[θ − �(t − t0)]}
× sin[θ ′ − �(t ′ − t0)]P (θ,ω,t |θ ′,ω′,t ′)

g(ω′)
2π

≡
∫ ∞

t0

dt φ̃(t)

[∫ t

t0

dt ′φ̃(t ′)GC(t,t ′) + δ�C(t)

]
.

Hence

W 1
O[λ(θ,ω,t)] =

∫ ∞

t0

dt φ̃(t)

[∫ t

t0

dt ′φ̃(t ′)G(t,t ′) + δ�(t)

]
,

(18)

where

δ�(t) = δ�A(t) + δ�B(t) + δ�C(t), (19)

G(t,t ′) = GB(t,t ′) + GC(t,t ′). (20)

The terms subscripted by A arise from the leftmost graph in
Fig. 1, those with subscript B arise from the middle graph, and
those with subscript C arise from the rightmost graph. The
computation of the effective action reduces to computing (19)
and (20).
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Taking the Fourier transform of (15) in θ and θ ′ gives

d�A(t) = K2π

2i

∫
dω

∫ t

t0

dt ′dω′g(ω′)

× [P−1,1(ω,t |ω′,t ′)ei[�(t ′−t)+δφ(t ′)−δφ(t)]

−P1,−1(ω,t |ω′,t ′)e−i[�(t ′−t)+δφ(t ′)−δφ(t)]], (21)

where ∫
dω P±1,∓1 = 1

2πN

1

s ± ω′
1

�±(s)
,

�±1(s) = 1 − K

2

∫
dω

g(ω)

s ± iω

are O(1/N ). Using the identity∫
dω

g(ω)

s ± iω
= 2

1 − �±(s)

K

gives

d�A(t) = − K

4πN

∫ t−t0

0
dτ

∫
C

dsesτ

[
1 − �−1(s)

�−1(s)
e−i�τ

− 1 − �1(s)

�1(s)
ei�τ

]
.

If g(ω) is even, then

�±1(s) = 1 − K

2

∫
dω

g(ω)s

s2 + ω2

which results in

d�A(t) = − K

4πN

∫ t−t0

0
dτ

×
∫

C

dsesτ

[
1 − �1(s)

�1(s)

]
(e−i�τ − ei�τ ).

To simplify the expressions, we adopt the Cauchy-Lorentz
distribution

g(ω) = 1

π

γ

ω2 + γ 2

which gives

�±1(s) = s + γ − K
2

s + γ
.

Resulting in

d�A(t) = −i
K2

4N

∫ t−t0

0
dτe−(γ− K

2 )τ (e−i�τ − ei�τ )

= −i
K2

4N

[
1

i� + γ − K
2

(
1 − e−(γ− K

2 +i�)(t−t0)
)

− 1

−i� + γ − K
2

(
1 − e−(γ− K

2 −i�)(t−t0)
)]

= − 1

N

K2

2

{[
�

�2
f + (

γ − K
2

)2

]
− e−(γ− K

2 )(t−t0)

×
[

ωf cos �(t − t0) + (
γ − K

2

)
sin �(t − t0)

�2 + (
γ − K

2

)2

]}
.

Now consider

δ�B(t) = −K2
∫

dθdω

∫ t

t0

dt ′dθ ′dω′ cos[θ − �(t − t0)]

× sin[θ ′ − �(t ′ − t0)]C(θ,ω,t ; θ ′,ω′,t ′)

= 4π2 K2

4i

∫ t

t0

dt ′
∫

dωdω′[C−1,1(ω,t ; ω′,t ′)e−i�(t−t ′)

−C1,−1(ω,t ; ω′,t ′)ei�(t−t ′)].

We can simplify this expression using∫
dωdω′C−1,1(ω,t ; ω′,t ′)

= KN

∫ t ′

t0

dt1

∫
dωdω′dω1dω′

1P1,−1(ω,ω1,t − t1)

×P−1,1(ω′,ω′
1,t

′ − t1)g(ω1)g(ω′
1)

and∫
dωdω1P±1,∓1(ω,ω1,s)g(ω1) = 1

πNK

[
1 − �±(s)

�±(s)

]
,

(22)

which is particularly simple with the Cauchy-Lorentz distri-
bution:∫

dωdω1P±1,∓1(ω,ω1,t − t1)g(ω1) = 1

2πN
e−(γ− K

2 )(t−t1)

(23)

to obtain∫
dωdω′C−1,1(ω,t ; ω′,t ′) = K

4π2N

∫ t ′

t0

dt1e
−(γ− K

2 )(t+t ′−2t) .

Thus

δ�B(t) = −K3

2N

∫ t

t0

dt ′
∫ t ′

t0

dt1e
−(γ− K

2 )(t+t ′−2t1) sin[�(t − t ′)]

= −K3

2N

({− sin[�(t − t0)]e−(γ− K
2 )(t−t0)

}
[
�2 + (

γ − K
2

)2]
+ �

2γ − K

(
1 − e−2(γ− K

2 )(t−t0)
)

[
�2 + (

γ − K
2

)2]
)

. (24)

Now

δ�C(t) = −K2
∫

dθdω

∫ t

t0

dt ′dθ ′dω′ cos[θ − �(t − t0)]

× sin[θ ′ − �(t ′ − t0)]P (θ,ω,t ; θ ′,ω′,t ′)
g(ω′)
2π

with the Cauchy-Lorentz distribution becomes

δ�C(t) = −K2

2

1

N

∫ t−t0

0
dτe−(γ− K

2 )τ sin(�τ )

which is equal to δ�A(t).

051120-6



EFFECTIVE STOCHASTIC BEHAVIOR IN DYNAMICAL . . . PHYSICAL REVIEW E 84, 051120 (2011)

Hence

δ�(t) = − 1

N

K2

2

{[
�

�2 + (
γ − K

2

)2

] (
4γ − K

2γ − K

)

− e−(γ− K
2 )(t−t0)

�2 + (
γ − K

2

)2 [2� cos �(t − t0)

+ 2γ sin �(t − t0)] − �K

2
(
γ − K

2

) [
�2 + (

γ − K
2

)2 ]
× e−2(γ− K

2 )(t−t0)

}
. (25)

As t → ∞, the initial state terms vanish and we are left with
a constant shift in the driving frequency given by

δ�∞ = − 1

N

K2

2

[
�

�2 + (
γ − K

2

)2

] (
4γ − K

2γ − K

)
. (26)

The contribution to the two-point function is given by
G(t,t ′) = GB(t,t ′) + GC(t,t ′), which is

G(t,t ′) = K2
∫

dθdωdθ ′dω′ sin[θ − �(t − t0)]

× sin[θ ′ − �(t ′ − t0)]

[
C(θ,ω,t ; θ ′,ω′,t ′)

+P (θ,ω,t ; θ ′,ω′,t ′)
g(ω′)
2π

]
. (27)

This can be computed in closed form in terms of the
dielectric function �(s) (C and P are computed in terms
of � in Refs. [6,7]). For a Cauchy-Lorentz distribution of

+ +

FIG. 4. Feynman diagrams for 〈δφ(t)〉 derived directly from the
action S from Eq. (5). Dashed lines represnt ϕ, ϕ̃ variables; solid lines
represent δφ(t), φ̃(t) variables.

frequencies, it reduces to (with t > t ′)

G(t,t ′) = K2

2N
e−(γ− K

2 )(t−t ′) cos[�(t − t ′)]

×
(

2γ

2γ − K
− K

2γ − K
e−(2γ−K)(t ′−t0)

)
. (28)

Returning to the effective stochastic equation (10), we have
derived δ�(t) and shown that ξ (t) is a noise term such that
〈ξ (t)〉 = 0 and

〈ξ (t)ξ (t ′)〉 = G(t,t ′)H+(t − t ′) + G(t ′,t)H−(t ′ − t), (29)

where H+ and H− are Heaviside step functions with H+(0) =
1 and H−(0) = 0.

A. Moments of δφ

We use the action SEA to compute the moments of δφ(t).
Under the action (5), the terms correspond to amputated
versions of the diagrams shown in Fig. 4. By definition, the
initial condition is δφ(t0) = 0 for all instances in the ensemble,
which implies that 〈δφ(t0)〉 = 0. Using the Cauchy-Lorentz
distribution, the mean evolution is given by

〈δφ(t)〉 = − 1

N

K2

2

([
�

�2 + (
γ − K

2

)2

] (
4γ − K

2γ − K

)
(t − t0)

− e−(γ− K
2 )(t−t0)[

�2 + (
γ − K

2

)2]2

{
2

[
�2 − γ

(
γ − K

2

)]
sin �(t − t0) − 2

[
�

(
γ − K

2

)
+ γ�

]
cos �(t − t0)

}

− �K

4
(
γ − K

2

)2[
�2 + (

γ − K
2

)2] (
1 − e−2(γ− K

2 )(t−t0)
) − 2

[
�

(
γ − K

2

) + γ�
]

[
�2 + (

γ − K
2

)2]2

)

and the nonequal time two-point function is given by (with t > t ′)

〈δφ(t)δφ(t ′)〉 =
∫ t

t ′
dt2

∫ t ′

t0

dt1G(t2,t1) + 2
∫ t ′

t0

dt2

∫ t2

t0

dt1G(t2,t1).

Defining γ̄ ≡ γ − K
2 yields

∫ T

t0

dt1G(t2,t1) = 1

2

(
K2

4N

2γ

2γ − K

)
1

γ̄ − i�
(e(−γ̄+i�)(t2−T ) − e(−γ̄+i�)(t2−t0)) + c.c.

−1

2

(
K2

4N

K

2γ − K

)
1

−γ̄ − i�
(e−γ̄ (t2+T )+i�(t2−T )+2γ̄ t0 − e−γ̄ (t2−t0)+i�(t2−t0)) + c.c.
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Hence∫ t

t ′
dt2

∫ t ′

t0

dt1G(t2,t1)

= −
(

K2

4N

2γ

2γ − K

)
1

γ̄ 2 + �2
[e−γ̄ (t−t ′) cos �(t − t ′) − e−γ̄ (t−t0) cos �(t − t0) − 1 + e−γ̄ (t ′−t0) cos �(t ′ − t0)]

−
(

K2

4N

K

2γ − K

)
1

γ̄ 2 + �2
[e−γ̄ (t+t ′)+2γ̄ t0 cos �(t − t ′) − e−γ̄ (t−t0) cos �(t − t0) − e−2γ̄ (t ′−t0) + e−γ̄ (t ′−t0) cos �(t ′ − t0)]

and

2
∫ t ′

t0

dt2

∫ t2

t0

dt1G(t2,t1) = K2

2N

{
γ

γ̄ 2 + �2
(t ′ − t0) + γ

γ̄

γ̄ 2 − �2

(γ̄ 2 + �2)2
[cos �(t ′ − t0)e−γ̄ (t ′−t0) − 1]

− 2γ�

(γ̄ 2 + �2)2
sin �(t ′ − t0)e−γ̄ (t ′−t0) − K

4γ̄

1

γ̄ 2 + �2
(e−2γ̄ (t ′−t0) − 1)

+ K

2γ̄

1

γ̄ 2 + �2
[e−γ̄ (t ′−t0) cos �(t ′ − t0) − 1]

}
.

As t,t ′ → ∞, the equal time variance is

〈δφ(t)δφ(t)〉 = K2

2N

[
γ

γ̄ 2 + �2
(t − t0) − γ

γ̄

γ̄ 2 − �2

(γ̄ 2 + �2)2

− K

4γ̄

1

γ̄ 2 + �2

]
(30)

which means that at large times the equal time variance obeys
〈δφ(t)δφ(t)〉 ∼ D(t − t0) with a coefficient

D = K2

2N

γ(
γ − K

2

)2 + �2
, (31)

δ�(t → ∞) from Eq. (26) and D both appear in the spectrum
shift at order 1/N for the marginal modes of the oscillator
density in a linear stability analysis of the incoherent state;
full details are in Ref. [7].

IV. COMPARISON TO NUMERICAL SIMULATIONS

Figure 5 compares the analytic computation of δ�(t)
with numerically simulated ensemble averages of the time
derivative of δφ(t), approximated by a finite difference with
time step δt . In each case, the measured oscillator was given
initial condition φ(t0) = 0 and driving frequency �. The
unmeasured oscillators’ initial phases were drawn from a
uniform distribution. The driving frequencies were drawn from
a Cauchy-Lorentz distribution of width γ . The simulation used
a simple Euler step with step length δt = 0.1 and the ensemble
averages were taken over 1 million samples. From the figure
one can see that the 1/N approximation works very well for
N near 1000 and reasonably well for N = 100. Significant
deviations appear for N = 10. Figures 6 and 7 compares the
covariance of dφ(t)/dt [i.e., G(t,t ′)] between time points t

and t ′ over 10 000 samples with the analytic prediction. Again,
one sees that the 1/N expansion works well for large N . Also,
one sees that deviations for large N become larger as one
approaches synchrony, K = 2γ . Figures 8 and 9 show the
evolution of the variance of the time derivative.

V. DISCUSSION

We have constructed an equivalent stochastic differential
equation for a single unit in a collection of coupled oscillators.
The distribution for this stochastic process is directly computed
via marginalization over the remaining oscillators in the net-
work, which we term “unmeasured” to suggest a comparison
with an experimental situation in which only some components
of a network are accessible. The distribution of the unmeasured
oscillators is induced via the deterministic dynamics on
the initial distribution. In the present example we used the
incoherent state of the Kuramoto model for the background.
In principle, this initial distribution corresponds to the state of
information the external observer has about the network. The

FIG. 5. (Color online) δ�(t)N vs t . Comparison of analytic
and simulation results for different values of K and N = 1000.
Bottom right figure shows the comparison with various values of
N ; K = 0.05. Other parameters are γ = 0.05, � = 0.05. Time step
for simulation was δt = 0.1 and the ensemble average was taken over
1 million samples. Dashed lines are the values indicated in the legend;
adjoining solid lines are the analytic prediction.
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FIG. 6. (Color online) Covariance of dφ(t)/dt at t and t0 = 0 s.
Abscissa is t . Bottom right compares simulation and analytic
prediction for different values of N at K = 0.05. All others compare
analytic and simulation results for different values of K at N = 1000.
Other parameters are γ = 0.05, � = 0.05. Time step for simulation
was δt = 0.1 and the ensemble average was taken over 10 000
samples.

equivalent stochastic equation describes the effect the initial
uncertainty in the network state has on the evolution of the
measured oscillator. The terms in the equation are necessarily
dependent upon the characteristics of the system. Because
of this, measurement of a single oscillator evolution can be
used to estimate global properties of the network. This is
potentially important for applications such as neuroscience, in
which one typically measures only a handful of neurons which
are themselves components of extremely large networks.

FIG. 7. (Color online) Covariance of dφ(t)/dt at t and t ′ = 100 s,
with t0 = 0 s. Abscissa is t . Bottom right compares simulation and
analytic prediction for different values of N at K = 0.05. All others
compare analytic and simulation results for different values of K at
N = 1000. Other parameters are γ = 0.05, � = 0.05. Time step for
simulation was δt = 0.1 and the ensemble average was taken over
10 000 samples.

FIG. 8. (Color online) Variance of δφ(t + δt) − δφ(t) for dif-
ferent values of N with a comparison of simulation and analytic
prediction (solid curve). Each curve has been normalized by N . The
curves from bottom to top correspond to N = 10, N = 100, and
N = 1000, respectively. Other parameters are γ = 0.05, � = 0.05,
K = 0.05. Deviations correspond to O(1/N2) corrections.Time step
for simulation was δt = 0.1 and the ensemble average was taken over
1 million samples.

Other authors, in particular [8–11], have used an averaging
approach for coupled systems of harmonic oscillators in order
to derive Brownian motion. They compute the distribution
imposed by the Hamiltonian dynamics on an initial state
distributed under the (Gaussian) canonical ensemble. Owing
to the stationary and linear character of the dynamics, or, put
another way, the exact integrability of the quadratic potential
or Gaussian generating functional, the resulting distributions
are Gaussian. Furthermore, [10] shows that a specific choice
of interaction matrix yields a standard memoryless stochastic

FIG. 9. (Color online) Variance of δφ(t + δt) − δφ(t) for differ-
ent values of K with a comparison of simulation (dashed lines)
and analytic prediction (solid curves). Curves from bottom to top
correspond to K = 0.01, K = 0.02, K = 0.05, K = 0.06, K = 0.08,
and K = 0.09, respectively. Each curve has been normalized by N .
Other parameters are γ = 0.05, � = 0.05, N = 1000. Time step for
simulation was δt = 0.1 and the ensemble average was taken over 1
million samples.
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differential equation with δ correlated Gaussian noise, which
holds in the limit of large N and for time scales that are long
compared to a cutoff interaction time. These computations are
facilitated by the quadratic nature of the Hamiltonian and the
corresponding Gaussian character of the canonical distribu-
tion. Our method is a generalization of these approaches in
that it does not rely on a Gaussian assumption of the bath nor
does it require the system to be Hamiltonian. In exchange,
our approach reduces the problem of deriving an effective
stochastic equation to the problem of dealing with the BBGKY
hierarchy. For example, should the hierarchy be truncatable,
our approach will yield tractable results, regardless of the other
underlying features of the model. In the present example the
global coupling provides us with a loop expansion parameter
which we can use to truncate the hierarchy, which thus
becomes a finite size expansion. However, we stress that our
model is not limited to global coupling. It could be applied
to any coupled dynamical system in which the bulk dynamics
have some ready means of approximation for the moments.
In the Kuramoto model this is supplied by the 1/N loop
expansion. In other models it could be due to the presence
of other small parameters, such as the inverse of the distance
to a critical point [19] or the inverse of the plasma param-
eter in plasma dynamics [5]. For gas dynamics, traditional
approximations to the pair-potential approximations could
possibly be utilized [4]. We aim to explore this in future
work.

The construction also readily generalizes to any arbitrary
function of the configuration variables. For example, an
effective stochastic equation for the Kuramoto order parameter
Z(t) or for a fixed subset of oscillators can be derived in a
similar manner via marginalization.
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APPENDIX

1. Generating functional for the initial configuration

Uncertainty in the initial configuration of φ(t0) = φ0 and
η(θ,ω,t0) = ρ(θ,ω) corresponds to a distribution of possible
configurations. In the case of the measured oscillator φ(t)
this is a distribution over the variables φ0 and �. For the
population of unmeasured oscillators, the initial data obeys
a distribution ρ(�θ, �ω), which induces a distribution over the
densities η(θ,ω,t). The generating functional of the moments
of the distribution in η(θ,ω,t0) is given by

Z[η̃(θ,ω,t0)] =
〈
exp

[
N

∫
dθdωη̃(θ,ω,t0)η(θ,ω,t0)

]〉

where moments of η(θ,ω,t0) are given by functional deriva-
tives with respect to η̃(θ,ω,t0):〈∏

i

η(θi,ωi,t0)

〉
=

[∏
i

1

N

δ

δη̃(θi,ωi,t0)

]
Z[η̃(θ,ω,t0)]

∣∣∣∣∣
η̃=0

In general this is given by

Z[η̃(θ,ω,t0)] =
〈
exp

[
N

∫
dθdωη̃(θ,ω,t0)η(θ,ω,t0)

]〉

=
∫ ∏

i

dθidωiρ(�θ, �ω) exp

{∫
dθdωη̃(θ,ω,t0)

×
∑

i

δ[θ − θi(t)]δ(ω − ωi)

}

=
∫ ∏

i

dθidωiρ(�θ, �ω) exp

[∑
i

η̃(θi,ωi,t0)

]

= exp W [η̃(θ,ω,t)],

where W is the connected generating functional for ρ(�θ, �ω).
In the text we assume that each oscillator’s initial position

θi(t0) is independently drawn from a distribution ρ0(θ ) and
each driving frequency is independently drawn from a distri-
bution g(ω). This means that

ρ(�θ, �ω) =
∏

i

ρ0(θi)g(ωi).

Thus

Z[η̃(θ,ω,t0)]

=
∫ ∏

i

dθidωiρ0(θi)g(ωi) exp

[∑
i

η̃(θi,ωi,t0)

]

=
[∫

dθdωρ0(θ )g(ω)eη̃(θ(t0),ω,t0)
]N

=
[

1 +
∫

dθdωρ0(θ )g(ω)
(
eη̃(θ(t0),ω,t0) − 1

)]N

= exp

{
N ln

[
1 +

∫
dθdωρ0(θ )g(ω)(eη̃(θ(t0),ω,t0) − 1)

]}
.

The variables φ0 and � are considered known and so the
generating functional is simply

Z[φ̃(t0)] = exp[φ̃(t0)φ0].

(It is not necessary to consider � because it is fixed for all time
and hence does not influence the future distribution.)

2. Time evolution of the generating functional

Before deriving the action for the Kuramoto model, we give
an example for a simple dynamical system

ẋ = f (x) (A1)

with some initial distribution in x0, P (x0) and x may be a
vector. Given the distribution at time t ′, the distribution at a
later time t can be written as

P [x(t)] =
∫

dx(t ′)δ[x(t) − X(t)]P [x(t ′)] (A2)
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where X(t) is the solution of the dynamical system (A1) with
fixed initial condition X(t ′) = x(t ′). The generating function
is the Laplace transform of the distribution:

Z[x̃(t)] =
∫

dx(t)P [x(t)]ex̃(t)x(t)

=
∫

dx(t ′)ex̃(t)X(t)P [x(t ′)]

= 1

2πi

∫
dx(t ′)dx̃(t ′)ex̃(t)X(t)−x̃(t ′)x(t ′)Z[x̃(t ′)],

where we have used (A2) and the inverse Laplace transform
for P [x(t ′)].

Consider t = t ′ + �t . Then we have, using (A1),

Z[x̃(t)] = 1

2πi

∫
dx(t ′)dx̃(t ′)

× ex̃(t ′+�t){x(t ′)+f [x(t ′)]�t}−x̃(t ′)x(t ′)Z[x̃(t ′)]

= 1

2πi

∫
dx(t ′)dx̃(t ′)

× e[ x̃(t ′+�t)−x̃(t ′ )
�t

x(t ′)+x̃(t ′+�t)f [x(t ′)]]�tZ[x̃(t ′)].

Given a time interval t ∈ [t0,T ), we can divide this interval
into M subintervals of length �t . We can use this to develop a
path integral, by computing the generating functional at time
t = T via repeated application of the above formula:

Z[x̃(T )] = 1

(2πi)M

∫ M−1∏
j=0

dx(tj )dx̃(tj )

× e
∑M−1

j=0 { x̃(tj +�t)−x̃(tj )

�t
x(tj )+x̃(tj +�t)f [x(tj )]}�tZ[x̃(t0)],

where tj = t0 + j�t . Because the initial distribution is nor-
malized we have

Z[0] =
∫

dxP (x) = 1. (A3)

The path integral thus defines a normalized measure when
x̃(T ) = 0. Taking the M → ∞ limit gives us

Z[0] =
∫

Dx̃(t)Dx(t)e−S[x̃(t),x(t)],

where the measure is defined as

Dx̃(t)Dx(t) = lim
M→∞

M−1∏
j=0

dx(tj )dx̃(tj )

2πi

with the x̃(ti) integrations following a contour parallel to the
imaginary axis and the x(tj ) following a contour parallel to the
real axis. The action S[x̃(t),x(t)] is

S[x̃(t),x(t)] =
∫ T

t0

dtx̃(t)

{
d

dt
x(t) − f [x(t)]

}
− W [x̃(t0)],

where we have integrated by parts to put the derivative on
x(t) and expressed the initial generating functional in terms
of the cumulant generating functional W [x̃(t0)] = ln Z[x̃(t0)].
Expectation values can be computed by inserting factors of
x(t) and x̃(t) at various times t .

3. The action for the Kuramoto system

Using the above construction and the equations of motion
for the Kuramoto system (4), we have the action as

S[η̃,η,φ̃(t),φ(t)] = Sbulk + Sint + Sφ,

where

Sbulk = N

∫
dωdθdtη̃(θ,ω,t)

[
(∂t + ω∂θ )η(θ,ω,t)

+ K∂θ

∫
dω′dθ ′ sin(θ ′ − θ )η(θ ′,ω′,t)η(θ,ω,t)

]

−N ln

[
1 +

∫
dθdωρ0(θ )g(ω)(eη̃(θ,ω,t0) − 1)

]
(A4)

with

Sint = K

∫
dωdθdt η̃(θ,ω,t)∂θ {sin[φ(t) − θ ]η(θ,ω,t)}

(A5)

and

Sφ =
∫

dt φ̃(t)

{
φ̇(t) − �

−K

∫
dθdω sin[θ − φ(t)]η(θ,ω,t)

}
.

To arrive at the action shown in the main text, we perform
two transformations. The first is given by

ψ(θ,ω,t) = η(θ,ω,t)e−η̃(θ,ω,t),

ψ̃(θ,ω,t) = eη̃(θ,ω,t) − 1,

which we call the Doi-Peliti-Janssen transformation [7,18]. In
particular, this implies

η(θ,ω,t) = ψ̃(θ,ω,t)ψ(θ,ω,t) + ψ(θ,ω,t).

The second transformation is to translate by the mean field
solutions:

ϕ(θ,ω,t) = ψ(θ,ω,t) − ρ0(θ,ω,t),

δφ(t) = φ(t) − �(t − t0),

where ρ0(θ,ω,t) is the solution of the mean field equation for
the unmeasured oscillators to zeroth order in 1/N , that is,

∂tρ0(θ,ω,t) − ω∂θρ0(θ,ω,t)

−∂θ

{[
K

∫
dθ ′dω′ sin(θ ′ − θ )ρ0(θ ′,ω′,t)

]
ρ0(θ,ω,t)

}
= 0

with initial condition determined by the mean field contri-
bution to W [η̃(θ,ω,t0)], that is, the linear term. In the text
we use the incoherent state of the Kuramoto model, which
implies

ρ0(θ,ω,t) = g(ω)

2π
. (A6)
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