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This dissertation focuses on the investigation of human perception of 

stereoscopic 3D image quality and the development of automatic stereoscopic 3D 

image quality assessment frameworks. In order to assess human perception of visual 

quality, a human study was conducted and interactions between image quality, depth 

quality, visual comfort, and 3D viewing quality were inferred. The results indicate 

that the overall 3D viewing quality can be well predicted from only image quality and 

depth quality. Between image and depth quality, image quality seems to be the main 

factor that enables accurate prediction of overall 3D viewing quality. Two other 

human studies were conducted to study the effect of masking on stereoscopic 

distortions. Binocular suppression was observed in the stereo images which were 

distorted by blur, JPEG compression, or JPEG2K compression, however, no such 
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suppression was observed for stereo images distorted by white noise. Further, a 

facilitation effect was also observed against disparity variation for blur and JPEG2K 

distorted stereo images while no depth masking effect was observed. Based on these 

results, I proposed an automatic full-reference (FR) 3D quality assessment 

framework. In this framework, I used Gabor filterbank responses to model stimulus 

strength and then synthesize a Cyclopean image from a stereo image pair. Because the 

quality of this synthesized view is similar to that of a Cyclopean image, which the 

human visual system recreates from the stereoscopic stimuli, performing the task of 

3D quality assessment on synthesized views can deliver better performance. I verified 

the performance of this FR framework on the LIVE 3D Image Quality Database and 

the results indicate that applying the proposed framework improves the performance 

of FR 2D quality assessment algorithms when applied to stereo 3D images. Further, I 

proposed a no-reference (NR) 3D quality assessment (QA) algorithm based on natural 

scene statistics in both the spatial and the depth domain. Experiments indicate that the 

proposed NR algorithm outperforms all 2D FR QA algorithms and most 3D FR QA 

models in predicting 3D quality of stereo images. Finally, a fourth subjective study 

was conducted to understand depth quality when stereo content is free from visual 

discomfort. The result suggests that human perception of depth quality is correlated 
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with the content of the stereo image and the stereoacuity function of human visual 

system.  
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CHAPTER 1 INTRODUCTION 

1.1 Motivation 

Stereoscopic vision was first systematically studied by Wheatstone [1] in the early 

1800's and the production of 3D films can be dated back to 1903 [2]. Since then, 

numerous 3D films have been produced, culminating in the breakout success of Avatar in 

2009, which went on to become the highest-grossing film of all time. The success of 

Avatar has since greatly inspired further efforts in 3D film production and improved 

technologies and methods for 3D content capture and display. According to the Motion 

Picture Association of America (MPAA), half of the moviegoers see at least one 3D 

movie in 2011, while those under 25 years old saw more than twice that number [3]. To 

meet his demand, the number of 3D movies has been increasing by at least 50% annually 

over the past few years [4]. 

The wave of 3D has not been limited to the movie theatre. In 2011, mobile phones 

supporting 3D capture and viewing were made available, and the number of 3D films 

released on home-viewing media such as DVDs tripled since 2008. Broadcast of 3D 

content over the internet becomes commonplace [5]. With the release of 3D phones and 

3D broadcast services, it is reasonable to believe that the amount of 3D content that is 
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delivered by wireless and wireline will follow the trend of consumer video and increase 

exponentially over the next few years.  

Understanding how to monitor the integrity of 2D and 3D visual signals 

throughout computer networks has become a critical question. Being able to provide 

visual quality assurance via the ability to automatically assess the quality of visual media 

delivered to the client is both demanding and increasingly urgent. Thus, the development 

of objective visual quality assessment models of images and videos has been a busy and 

fruitful area of work [4]. However, while great advances have been mode on modeling 

regular (non-stereoscopic) image and video quality [6, 7], progress on the question of 3D 

image quality has been limited [8]. 

1.2 Contribution 

The following is an overview of the contributions presented in this dissertation. 

1.2.1 Exploring the knowledge of distorted stereo 3D images 

To understand human perception of quality of distorted stereoscopic images, 

several human studies have been conducted in the past two decades, but none of these 

studies analyzed depth masking. Further, these studies proposed a variety of binocular 

masking effects. To thoroughly analyze the effect of masking on perception of 

stereoscopic quality, I designed and conducted two human studies. These studies were 
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designed to infer possible binocular and depth masking effects when viewing 

stereoscopic 3D images.  

Different from previous human studies on distorted stereoscopic images, my 

studies were conducted on stereoscopic images which have ground truth depth 

information obtained from a high-precision laser range scanner and the stereoscopic 

images were distorted locally. Since high-resolution statistics of local contrast and depth 

are available, possible masking effects were unearthed by conducting a series of 

statistical analyses. Correlations between the visibility of local distortions and local 

statistics were studied. The results suggest that binocular masking effect is observed in 

those stereo images that are distorted by blur, JPEG compression, or JPEG2K 

compression. However, no binocular masking effect was observed for stereo images 

distorted by white noise. The results also indicated that no depth masking effect was 

observed for distorted stereo images. In contrast, a facilitation effect was observed 

against disparity variation for blur and JPEG2K distorted stereo images. The studies and 

analyses are described in Chapter 4.              

1.2.2 Quality assessment algorithms and database for stereo 3D images 
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While there has been tremendous activity in the area of 2D quality assessment, the 

field of automatically assessing the quality of 3D images remains ill-explored. Further, 

most of the existing 3D models for QA are ad-hoc in nature and lack a grounded model 

of human visual perception to support the design choices. Some of these algorithms are 

simple extensions of previously proposed 2D quality assessment approaches. Thus, it is 

not a surprise that most of these 3D quality assessment algorithms struggle to show better 

performance in predicting the 3D quality of stereoscopic 3D images compared to high 

performance 2D quality assessment algorithms.  

In this dissertation, I first propose a full reference (FR) 3D quality assessment 

framework. This framework allows for easy extension of 2D FR algorithms, providing a 

plug-and-play approach to the development of 3D FR QA algorithms. This framework 

attempts to model the fact that binocular masking alters perceived 3D quality, as 

observed from my previous study.  The proposed framework uses the linear model 

proposed by Levelt [9] to synthesize an intermediate view from a stereo image pair, 

called the cyclopean view. Levelt’s work models the binocular masking effect with local 

statistics of a stereo image. Thus, the synthesized cyclopean view is visually close to the 
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true Cyclopean image which a human subject recreates in his head while viewing a stereo 

image pair on a stereoscopic 3D display.  

To verify my framework, I conducted another human study to construct a 3D 

image quality database with both symmetrically and asymmetrically distorted stereo 

stimuli annotated with human subjective ratings on the perceived 3D quality. My 

framework was verified against the database using different 2D FR quality assessment 

algorithms. The experimental results indicate that my proposed framework when coupled 

with 2D FR algorithms predicts stereoscopic distortions with greater accuracy, especially 

for asymmetrically distorted images. For symmetrically distorted images, my proposed 

framework does not drastically improve performance. This result is a further verification 

of the observations from my human studies. Since only asymmetrically distorted images 

demonstrate binocular masking, and only binocular masking seems to have an effect on 

stereoscopically viewing 3D quality, modeling binocular masking algorithmically 

produces gains only in the case of such asymmetrically distorted stereopairs. 

Based on this proposed framework, I further developed a no-reference (NR) 

quality assessment algorithm. To the best of my knowledge, there exists only one other 

3D QA algorithm in literature, which, as we shall see, does not perform well. The 
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proposed NR algorithm utilizes natural scene statistics in both spatial and depth domains 

to extract 2D and 3D features. A support vector machine is used for training and later for 

predicting the quality of stereo images. This NR algorithm is verified against the database 

which I constructed and the phase I of LIVE Image Quality Database (only 

symmetrically distorted stereo image are available in this database). Experiments show 

that my proposed NR 3D QA algorithm outperforms all 2D quality assessment algorithms 

and most FR 3D quality assessment algorithms. Using the multi-scale structural similarity 

index (MS-SSIM) in my previously proposed 3D QA framework produces similar 

correlations as that of my proposed NR 3D QA algorithm. 

1.2.3 Depth quality of stereoscopic 3D images  

Previous studies on visual quality of stereoscopic images demonstrated that both 

image quality and depth quality affect the overall 3D quality of the presentation. 

However, each of these studies differs in their observations of the influence of spatial 

distortions on depth quality. Tam, et al [10] showed that perceived depth quality is 

correlated with spatial image quality, but the authors of [11, 12] claim that spatial 

distortion has no effect on perceived depth quality. To verify this effect, I conducted a 

human study to infer the coherence of subjective human ratings on spatial image quality, 
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depth quality, visual comfort, and perceived 3D quality. The analysis shows that ratings 

of depth quality are much more diverse than those of spatial quality and perceived 3D 

quality. The ratings of depth quality may be classified into two groups. The first of these 

groups are those ratings that correlate with spatial image quality, while those of the 

second group demonstrate no such correlation, and remain constant with varying spatial 

qualities. The results of my study demonstrate that different human populations rate 

depth quality differently, and hence, opinion on depth quality should be gauged before 

modeling the depth and/or overall 3D quality of stereoscopic presentations. Further, 

depth quality is not limited to the depth quality of the distorted stereo image.  

For a pristine stereo image, perceived depth quality may be changed due to the 

arrangement of display. In our natural 3D environment, the accommodation of our eyes 

changes with an increase/decrease of the vergent distance from our eyes to the focused 

object. However, while viewing stereoscopic 3D presentations on 2D displays, the 

accommodation of our eyes remains fixed on the display screen, while the vergence 

varies as we focus on different perceived depth planes. This is referred to as the 

accommodation-vergence conflict.  
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 To infer if depth quality is also affected by the accommodation-vergence 

conflict, I conducted another human study. The results of this study suggest that 

perceived depth quality of a distortion-free stereo image is also affected by the 

stereoacuity function of human vision system and the prior knowledge that we have about 

the natural 3D world. To the best of my knowledge, this is the first time that someone has 

studied depth quality in this fashion and demonstrated that depth quality is correlated 

with the stereoacuity function and the prior knowledge we have about the natural 3D 

world.     

1.3 Goal 

This dissertation aims at advancing our knowledge of 3D quality of distorted 

stereoscopic images and understanding the effect that depth quality has on the perception 

of otherwise distortion-free stereo images. Towards this end, a human study was first 

conducted to infer the interaction between image quality, depth quality, visual comfort, 

and 3D viewing quality. The results indicate that image quality and depth quality both 

affect overall 3D viewing quality, and that image quality is the dominant factor in 

determining overall perception of stereoscopic stimuli. Two more human studies were 

conducted to understand the effect that masking has on the perception of distorted 
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stereoscopic 3D images. My analysis indicates that binocular rivalry is an important 

effect which influences the 3D viewing quality of a distorted stereopair. Further, no depth 

masking effect was observed. Based on my discovery of the (lack of) masking effect, a 

full-reference (FR) 3D quality assessment (QA) framework and a no reference (NR) QA 

algorithm were proposed. To verify the performance of these 3D QA algorithms, a fourth 

human study was conducted on asymmetrically distorted stereo pairs which resulted in 

the construction of phase II of the LIVE 3D Image Quality Database which hitherto 

consisted only of symmetrically distorted stereo pairs. The proposed 3D QA algorithms 

were tested on this database and demonstrated to outperform present-day 2D FR QA 

algorithms and most NR 3D QA algorithms. Finally, I conducted a fifth human study to 

infer the effect that depth quality of distortion-free stereo images has on overall 3D 

perception and proposed another algorithm to automatically assess this effect. 

The rest of this dissertation is organized as follows. Chapter 2 reviews the 

literature and justifies the direction of the proposed research. Chapter 3 summarizes a 

human study which analyzes the interaction between image quality, depth quality, visual 

comfort, and 3D viewing quality. Chapter 4 describes two subjective studies which 

investigate the masking effect of distorted stereo images. Chapter 5 describes the 
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construction of a full reference 3D quality assessment model based on the findings from 

the studies described in Chapter 4 and also details another human study on 

asymmetrically distorted stereo images. Chapter 6 details a no reference quality 

assessment model based on binocular rivalry and natural scene statistics. Chapter 7 

describes a fifth human study on depth quality and details an algorithm to predict depth 

quality. Conclusion and future works of this dissertation are described in Chapter 8.   
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CHAPTER 2 BACKGROUND 

In this chapter, I first give an introduction of the human visual system and some 

background on stereoscopic 3D displays. I then review previous work on the human 

perception of distorted stereoscopic 3D images, 2D quality assessment algorithms, and 

3D quality assessment algorithms.  

2.1 Human visual system and depth perception  

Light from the visual world, when incident on the photoreceptors of our eyes is 

converted into neuron responses by these receptors, which are then processed by the 

higher level processing mechanisms within the visual cortex, to interpret and understand 

the visual stimulus [13].  

Light reflected from a scene enters each eye through the pupil; then, the image of 

the scene is focused at the retina, with the aid of an adjustable lens through a process 

called accommodation.  The spatial resolution of the incident stimulus is not equally 

distributed on the retina. The highest spatial resolution is in the central zone of the retina, 

called the fovea. Therefore, eye movements are required by our visual system to produce 

a high spatial resolution of the observed scene. This eye movement is called visual 

fixation. Saccades and vergence are two types of fixational eye movements. A saccade is 
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the process of changing fixations horizontally and vergence is the process of changing 

fixations in depth. These two eye movements are triggered by different stimuli. The 

stimulus that triggers vergence is retinal disparity information, and the stimulus that 

triggers accommodation is retinal image blur. In natural conditions, accommodation and 

vergence are intrinsically linked [14].   

The human binocular visual system receives two slightly different views of a 

visual scene, and ideally (without occlusion) the corresponding points in these two views 

are apart from each other by various horizontal distances. However, instead of two 

distinct images, the human visual system perceives a single image, called the cyclopean 

view [15], and infers stereoscopic depth from these two stimuli [16]. The distances 

between corresponding points in these two views are used by our brain to interpret depth 

information.   

Objects that are binocularly fixated are on the same relative coordinates in the left 

view and the right view and have zero retinal disparity. A curved line that connects all 

points that have zero retinal disparity is called the horopter. Human subjects have the 

same perceived distance of the fixation point with those points which are located at the 

horopter. Objects that are more distant from the point of fixation are said to produce 
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uncrossed disparities, objects that are closer than the point of fixation are said to produce 

crossed disparities. The human visual system uses these disparities to extract the relative 

depth of objects in a visual scene.   

A small region around the horopter, called Panum’s fusional area (Panum’s 

area), is a region within which objects can be fused binocularly even though these 

objects have non-zero retinal disparities. Objects that are located outside Panum’s area 

result in double images. The size of Panum’s area is not constant over the retina, and its 

size also depends on the spatial and temporal properties of the fixation target [17, 18].   

In addition, when we fixate at an object, the image of the fixated object falls on 

the retina. Theoretically, objects which are closer to or farther from the accommodation 

distance will be seen as blurry images. However, the visual system is tolerant of a small 

amount of blur. Thus, objects that lie within a small region around the accommodation 

point can be perceived with high resolution (i..e., not blurred), and the size of this region 

is known as the depth of field (DOF).   

Finally, disparity is not the only cue used by the human visual system to perceive 

depth. There are other cues that also contribute to human depth perception. For example, 

monocular cues include occlusion, relative size, texture gradient, geometry perspective, 
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lighting, shading, and motion parallax. However, it is not yet clear that how our brain 

integrates these cues and produces the final perceived depth, but recent research [19] has 

shown that depth cues may be integrated by a statistical inference model.  

 

2.2 Stereoscopic 3D viewing   

The main difference between stereoscopic 3D viewing on a display and natural 

3D viewing is that the synchronization between accommodation and vergence only exists 

in natural 3D viewing. As mentioned in the previous section, changes in accommodation 

naturally induce changes in vergence and vice versa. Stereoscopic 3D viewing on a 2D 

display, however, can produce conflicts between these two processes. Fig. 1 shows an 

example of such a conflict. In Fig. 1, the left hand-side shows that the vergence point and 

focal (accommodation) point are always at the same distance in natural viewing. 

However, inconsistencies exist in stereo 3D viewing on displays because the vergence 

distance varies depending on the image content while the accommodation distance 

remains constant (on the display). This inconsistence is called vergence-accommodation 

conflict.  
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It is known that the vergence-accommodation conflict creates visual discomfort 

and visual fatigue [20-22], but the conflict is not the only factor that produces negative 

effects. For example, crosstalk produced by the display [23, 24], the magnitude of 

disparity variations and the presence of fast motion [25] may also create visual 

discomfort. Because this dissertation focuses on the quality (spatial image quality, depth 

quality, and perceived 3D quality) of stereoscopic 3D images, I take precautions to 

minimize the visual discomfort for all human studies conducted in this dissertation. Thus,   

a comprehensive review of visual discomfort is not performed in this dissertation.    

      

 

Fig. 1 Comparison of natural viewing and stereo 3D viewing 
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2.3 Human perception of distorted stereoscopic 3D images 

Viewing stereoscopic 3D images produces a vastly different perception than that 

produced when viewing 2D images. In general, depth quality and visual comfort are the 

two extra factors that need to be considered when a human subject is asked to give ratings 

to stereoscopically viewed 3D images. Seuntiëns [16] conducted human studies to discuss 

the interactions between spatial image quality, depth quality, visual discomfort, and 

overall 3D viewing experience. He proposed the term 3D visual experience, to be a 

combination of spatial image quality, depth quality, and visual comfort, to describe the 

overall stereo 3D viewing experience. He further demonstrated that without considering 

visual comfort, 3D visual experience can be predicted from a linear combination of 

spatial image quality and depth quality, and that spatial image quality is more important 

than depth quality in predicting 3D visual experience. Because my dissertation focuses on 

the quality of stereo images with an assumption that visual discomfort is minimized, I use 

the term “perceived 3D quality” to represent the ratings given by human subjects when 

viewing a stereo image stereoscopically. While there exists research that discusses the 

reliability of human ratings [26] given to 2D images and shows that across different 
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human subjects there is a general agreement on spatial image quality, equivalent research 

is absent for ratings given to depth quality and perceived 3D quality. Moreover, research 

on the possible masking effects of distorted stereo images is very limited. The authors of 

[12, 27] claimed that the quality of JPEG compressed images is approximately the 

average of the quality of the left and the right view. They further claimed that JPEG 

encoding has no effect on depth quality. However, Tam, et al. [10] claimed that depth 

quality is correlated with spatial image quality. This dispute is discussed in Chapter 3 of 

this dissertation.  

Other than this dispute, Meegan, et al.[28] claimed that the perceived 3D quality 

of asymmetric MPEG-2 distorted stereo images is approximately the average of the 

spatial image quality of the two views, but that the perception of asymmetric blur 

distorted stereo images is dominated by the higher quality view. Similar findings are also 

mentioned in the JPEG distorted stereo images [27]. However, to the best of my 

knowledge, depth masking effects have never been considered while assessing 

stereoscopic quality. 

2.4 Quality assessment 

2.4.1 2D quality assessment  
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2D image quality assessment has seen quite a bit of research activity [6, 7]. These 

efforts can be categorized into three sets based on the availability of reference content. 

The first set is full-reference (FR) quality assessment (QA) algorithms. An algorithm is 

classified as a FR QA algorithm if the reference content is required to perform quality 

assessment. Some well-known FR QA models are widely used now, such as the peak 

signal-to-noise ratio (PSNR) and the Structural SIMilarity (SSIM) index [29, 30]. 

The second category is called reduced-reference (RR) QA algorithms. Models 

that only require reduced information, such as features or coefficients extracted from the 

reference source, are classified as RR QA models [31]. The last category is no-reference 

(NR) QA, where the reference is not needed while predicting the quality of an unknown 

image. NR QA models can be subdivided into single distortion models and 

multi-distortions models. Single distortion models can only deal with a single type of 

expected distortion such as blur [32], or compression artifacts [33]. Multi-distortions 

models [34], on the other hand, can deal with multiple pre-defined distortion types. 

Recently, research [35-38] on multi-distortions models are shown to be able to perform as 

well as FR QA models.  

2.4.2 Stereoscopic 3D quality assessment  
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Other than the existing categories (FR, RR, and NR) for 2D QA algorithms, we 

further divide 3D QA algorithms into two categories. The first class (Class 1) [39-41] are 

2D-based 3D QA models which do not utilize computed or otherwise measured 

depth/disparity information from the stereopairs. Among Class 1 models, the methods in 

[39, 40] conduct 2D FR QA on the left and right views independently, then combine (by 

various means) the two scores into predicted 3D quality scores. Gorley, et al. [41] 

compute quality scores on matched feature points delivered by SIFT [42] and RANSAC 

[43] applied to the two views. 

The second class (Class 2) of models includes some kind of disparity information 

in the overall 3D QA process. Among these 3D QA models, Benoit, et al. [44] proposed a 

FR 3D QA algorithm which computes the quality scores between the left reference and 

left distorted view, the right reference and right distorted view, and the reference and 

distorted disparity map. The quality scores are computed by C4 [45] and SSIM [29], and 

different combinations are used to produce a final predicted scores from these three 

scores. Their results show that disparity information can improve the 3D QA algorithm 

based on SSIM (called 3D-SSIM); but the 2D C4 algorithm performs better than the 

3D-SSIM algorithm. In addition, they also pointed out that the disparity estimation 
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algorithm can affect the performance of 3D QA algorithms. You, et al. [46] further 

extended the idea of predicting the 3D quality of a stereopair by applying 2D QA 

algorithms on the stereopair and its disparity map. They applied a large pool of FR 2D 

QA algorithms on stereopairs and the associated disparity maps, and concluded that 

applying SSIM on stereopairs and mean-absolute-difference (MAD) on their estimated 

disparity map can achieve the best performance in predicting the 3D quality of stereo 

images. In contrast to the results in Benoit, et al., their SSIM-based 3D QA algorithm 

significantly outperformed all 2D FR QA algorithms on their dataset. Under the same 

framework, Zhu, et al. [47] proposed a 3D QA algorithm utilizing their own 2D quality 

assessment algorithm. Similarly, Yang, et al. [48] proposed a FR 3D QA algorithm based 

on the average PSNR of the stereopair and the absolute difference between the left and 

right view. Their algorithm did not need a stereo matching algorithm. None of these 3D 

QA algorithms are supported by research in human perception, and the techniques 

described therein are ad-hoc in nature. 

Recently, some new perspectives have been explored in area of FR 3D QA. 

Maalouf, et al. [49] proposed to perform the task of 3D QA on the Cyclopean image, 

which is defined as the average of the left view and the disparity-compensated right view. 
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However, studies [9, 50] have shown that Cyclopean image is not simply the average of 

the left and the disparity-compensated right view. Bensalma, et al. [51] proposed a 3D 

QA algorithm based on measuring the difference of binocular energy between the 

reference and the tested stereopair. Their algorithm considers the potential influence of 

binocular effects on the perceived 3D quality.  

Compared to 2D QA algorithms, there are a very limited number of RR or NR 3D 

QA algorithms. A RR 3D QA algorithm was proposed by Hewage, et al. [52]. In their 

algorithm, edge information of the depth map is transmitted, and they compute the PSNR 

between the reference and tested edge maps to predict the 3D quality of the tested stereo 

videos. Akhter, et al. [53] proposed a NR 3D QA algorithm which extracted features 

from stereopairs and estimated disparity map. Then a logistic regression model is used to 

predict 3D quality scores from these features
1
.  

The above review of 3D QA algorithms demonstrates that most 3D QA 

algorithms are still full-reference in nature and struggle to justify why their design 

                                                 
1
 There are other NR 3D QA algorithms which are designed to deal with DIBR-based 3D images/videos, 

but this dissertation only discusses those algorithms which function on natural stereo content. 
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performs better than 2D FR QA algorithms in predicting the 3D quality of stereoscopic 

content.  
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CHAPTER 3 STUDY OF SUBJECTIVE AGREEMENT OF 

STEREOSCOPIC VIDEO QUALITY 

3.1 Introduction 

The objective of this chapter is to discuss the coherence of ratings given to spatial 

image quality, depth quality, visual comfort, and overall 3D viewing quality, and the 

interactions between these four ratings. To evaluate the performance of different quality 

assessment algorithms, image quality databases with human annotated subjective quality 

scores are generally used as the ground truth. The correlations between the predicted 

quality scores and the human annotated scores in the databases are the criteria used to 

evaluate the performance of the quality assessment algorithms. However, this verification 

is valid only if there is a general agreement amongst the ratings given by different 

subjects. Hence, this chapter first discusses the coherence of ratings given to these four 

measurements. In addition, Seuntiens proposed that overall 3D viewing experience can 

be predicted only from spatial image quality and depth quality for distorted stereo 

images. This chapter verifies if his model can be applied on distorted stereo videos.  

3.2 Subjective study 

3.2.1 Stimuli 
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Six uncompressed natural scene videos, including indoor and outdoor scenes, 

were chosen as source videos. Two of them (soccer, puppy) are from ETRI in Korea and 

the other four are from the EPFL stereo video database [54]. All videos were 

down-sampled to 720 x 480 resolution. Two of these videos are fifteen seconds long, 

while the rest are ten seconds long. All of the sequences have a frame rate of 25 frames 

per second.  

H.264 compression was chosen as the distortion method and both symmetric and 

asymmetric coding scenarios were included. Each pristine sequence was used to create 9 

distorted test sequences compressed with different quantization parameter (QP) values. 

The specific settings for the nine distorted videos associated with each original video are 

shown in Table 1. 
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3.2.2 Display 

An nVidia active 3D kit plus an Alienware OptX AW2310 full HD 3D monitor  

were used to display the 3D videos. The viewing distance from subjects to screen was 

fixed at 23 inches which is 3 times the screen height. 

3.2.3 Study design 

I adopted a single stimulus continuous quality scale (SSCQS) [55] protocol to 

obtain subjective quality ratings for all of the video sequences in the database. A training 

session was conducted at the beginning of the study to familiarize each of the subjects 

with the graphical user interface (GUI). The subjects were pre-screened to ensure normal 

stereovision. In addition, a pristine video and a “highly distorted” video were shown in 

Table 1 The QP values for the left view and right views of the stereoscopic video 

Left view QP Right view QP 

25 Pristine 

30 Pristine 

35 Pristine 

25 25 

30 25 

35 25 

30 30 

35 30 

35 35 
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the training session to help observers normalize their ratings. The training content was 

different from the videos used in the study and the content was impaired by the same type 

of distortion. Repeated viewing of the same 3D video was allowed, since I found that 

subjects sometimes needed time to accommodate their eye convergence to a new 3D 

video.  

The goal of this work is to understand subjects’ ratings of ‘spatial image quality’ 

(SIG), ‘depth quality’ (DQ), ‘visual comfort’ (VC), and ‘overall 3D quality (3DQ)’. 

However, in experiments preliminary to the study we found that it was difficult for 

subjects to rate these quality scores independently. Further, when being asked to give an 

overall 3D quality score for each stimulus, subjects tended to have trouble assigning 

relative ‘weights’ to SIQ, DQ, and VC.  Hence, a matched-pair experimental design was 

used to conduct the study. 

In the matched-pair study, the study is repeated using two groups of subjects to 

obtain matched measurements of subjective scores. In the first study, the subjects in 

group A were requested to give subjective scores on SIQ, DQ, and VC. In assigning SIQ, 

the subjects were requested to assign quality scores only based on the content quality they 

viewed without considering the quality of their 3D viewing experiences. In addition, the 
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subjects were asked to assign depth quality scores based only on the realism of 3D depth 

they viewed when viewing stereo 3D videos. The subjects were also asked to give a 

visual comfort score based on how comfortable they felt when viewing stereoscopic 3D 

videos. In the second study, the subjects in group B were requested to give an overall 3D 

quality score when viewing stereo 3D videos. Again, the task of rating videos was 

explained carefully in the training session prior to each subjects’ participation. 

Instructions were given to observers that the scoring is based on overall 3D viewing 

experience.  

In both study groups, 11 video sequences (a 3D pristine video, a 2D pristine video 

(right view), and nine distorted videos) were shown to the subjects for each pristine 

video. The 3D reference video was hidden to enable the calculation of DMOS scores of 

perceived spatial video quality and overall 3D video quality. 

Subjects having similar backgrounds were recruited for the two groups. In group 

A, thirteen subjects (twelve males and one female) were recruited with ages ranging from 

24 to 45. In group B, fourteen subjects (eleven males and three females) were recruited 

and their ages ranged from 24 to 50. 

3.2.4 Obtaining subjective scores 
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Differential mean opinion scores (DMOS) were calculated by subtracting the 

ratings of each 3D reference video from each associated rating. Those scores were then 

normalized to Z-scores. I followed the suggestion from [55] to perform subject screening. 

Outliers were screened by removing any ratings that fell outside two standard deviations 

from the center of a Gaussian fit to the ratings’ SROCC against the mean DMOS. Finally, 

the DMOS score for each video was computed as the mean of the rescaled Z-scores from 

the remaining subjects following subject rejection.  

After the subject rejection process, only one subject was rejected in group A. No 

outlier was found in group B.   

3.3 Data analysis and discussion 

3.3.1 Quality assessment metrics 

Following Seuntiens, et al. [27], I calculated the standard deviation of the 

normalized ratings (Z-scores scaled to 0~100) assigned to each video. Then, the average 

of these standard deviation values was calculated to show the degree of agreement of the 

ratings (see Fig. 2) shows that the ratings given to perceived spatial video quality have 

the least variation. However, it is difficult to claim any significant difference between the 

four subjective metrics from the table. Therefore, I decided to use the correlation between 

the ratings given by different subjects to discover whether their ratings were similar 
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across the four kinds of ‘qualities.’ I first calculated the correlation values between the 

mean scores and the ratings given by each subject. As shown in Fig. 3, I computed the 

correlation values between the individual ratings and the mean ratings. The average of 

these correlation values reflects the degree of agreement of ratings among the subjects. 

Fig. 4 shows the Spearman Ranked Order Correlation Coefficients (SROCC) and Fig. 5 

is the Pearson Correlation Coefficients. The ratings of SIQ show the highest agreement 

while the ratings of DQ show the least.  

 

 

 

Fig. 2 Standard deviations of subjective ratings. 
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Fig. 4 Means and standard deviations of ranked correlations  

 

 

Fig. 3 Mean ratings vs. individual ratings  
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I further analyzed the low agreement ratings for DQ. The data shows that some 

subjects assigned a lower depth quality score when the video had lower spatial video 

quality, while others subjects thought that compression distortion did not affect perceived 

depth quality. Fig. 6 is an example which shows the rating of two subjects in our study. 

Subject A assigned a variety of depth quality scores while subjects B assigned very 

similar depth quality scores. Across multiple subjects, there are diverse options for 

interpreting depth quality. Discovering why different people have different opinions is 

worthy of further exploration. 

 

Fig. 5 Means and standard deviations of Pearson correlations  
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The degree of agreement of ratings on overall 3D video quality is lower than that 

for spatial video quality and higher than that for depth quality.  This observation may 

provide an insight on how to build a 3D video quality database.  

The ratings of visual comfort assigned when viewing distorted stereoscopic 3D 

videos shows an average degree of agreement.  While the underlying 3D geometric 

setting of the distorted videos is unaltered and carefully dealt to ensure that there is 

minimized accommodation-vergence conflict and crosstalk caused by the viewing setting, 

some discomfort in viewing a stereoscopic video may result either from the intrinsic 

geometry of the videos or from the compression distortion.  Although subjects did not 

closely agree on visual comfort, my data shows that they were more comfortable when 

viewing the hidden 2D pristine video. As shown in Fig. 7, the subjective scores assigned 

when viewing 2D video were the highest comfort scores.  
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Fig. 7 Mean ratings of viewing comfort.  

 

 

Fig. 6 Ratings of depth quality from two distinct subjects  
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One possible explanation for the phenomena I have observed is that humans are 

more familiar with distortions in 2D videos than in 3D videos. After all, television was 

invented in the late 1930s and we have been living with distorted 2D videos for a long 

time. Whereas, for most people, stereoscopic 3D video viewing is still a new experience. 

Viewing stereoscopic 3D videos is more complex task than our daily stereo vision. In our 

daily stereo vision, our eyes verge and focus at the same time. However, when viewing 

stereoscopic 3D video, our eyes only change vergence while the focused point is fixed on 

the screen. So, most human subjects may simply be insufficiently experienced in viewing 

stereoscopic 3D video to reliably judge perceived depth quality. This may partly explain 

why the subjects have more diverse opinions on perceived depth quality and why they 

feel more comfortable viewing 2D videos. Lastly humans exhibit a wide range of 

stereoacuity and stereosense [56, 57], ranging from complete deficiency to better than 

normal. This ability would naturally affect a subject’s impressions of both 3D distortions 

and comfort. 

3.3.2 Inter-metric analysis 

In this section, interactions between subjective quality metrics are discussed.   

Table 2 lists the SROCC scores between these subjective quality metrics. First, for spatial 
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quality, this subjective quality metric has high correlation with visual comfort and overall 

3D quality. The results indicate that visual discomfort mainly results from coding 

artifacts since other variables are controlled in this study, and the overall 3D quality is 

more correlated to the spatial quality compared to depth quality, as was mentioned in 

previous work [58]. Second, for depth quality, this subjective measurement doesn’t have 

a high correlation with spatial quality and visual comfort, but it is correlated with the 

overall 3D quality. Finally, visual comfort is most correlated to spatial quality and overall 

3D quality is most correlated to the spatial quality.   

 

3.3.3 Discussion 

Seuntiëns [58] proposed that the 3D visual experience can be predicted from 

combining spatial quality and depth quality. From my results, since visual comfort is 

highly correlated with spatial quality, overall 3D quality should be able to be predicted 

Table 2 SROCC between subjective quality metrics 

 Spatial Image 

Quality 

Depth 

Quality 

Visual 

Comfort 

Overall 3D 

Quality 

SIQ 1 0.520 0.891 0.844 

DQ 0.520 1 0.429 0.685 

VC 0.891 0.429 1 0.765 

3DQ 0.844 0.685 0.765 1 
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only from spatial quality and depth quality. A linear regression is performed to verify this 

model with the data.  The predicting model is as follows: 

 dVCcDQbSQaY   (1)  

where Y is 3D viewing experience, SQ is spatial quality, DQ is depth quality, VC is 

visual comfort and d is a constant.  Following linear regression, the SROCC between Y

and overall 3D quality is 0.905, which is higher than using only spatial quality to predict 

overall 3D quality. The regression coefficients have value a = 0.65, b = 0.32, c = 0.35 and 

d = -17. However, a simpler model using only SQ and DQ: 

 dDQbSQaY   (2)  

can achieve the same performance : the SROCC between Y and overall 3D quality is 

0.90 and the regression coefficients are a = 0.80, b = 0.64 and d = -6.8. Fig. 8 shows the 

mean ratings of 3D quality and the predicted ratings from these two linear regression 

models. From, this figure, one can see that the predicted result from SQ, DQ, and VC is 

almost identical to the predicted result from SQ and DQ. Thus, one would conclude that 

that the 3D viewing experience can be predicted using a single linear model from spatial 

image quality and depth quality for stereoscopic videos.   
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However, the overall 3D quality has significantly lower agreement (0.643) 

amongst subjects compared to the agreement (0.864) of spatial quality and this finding 

strongly suggests that we should use two independent quality assessments metrics: spatial 

quality metric and depth quality metric, in evaluating the quality of 3D content to provide 

more reliable results across different people. For applications that require QA metrics, 

such as 3D content encoding and 3D content broadcasting, the geometry setting of the 

content won’t be altered during the encoding or transmission. Only distortions caused 

either by insufficient bit-rate or packet loss will lower the content quality. Hence, using 

 

Fig. 8 Mean ratings of 3D quality and the predicted ratings from these two linear 

regression models 
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the subjective spatial quality scores to evaluate the quality assessment metrics used in 

these applications will provide more reliable results across subjects.  

Table 3 shows the SROCC number of two quality assessment metrics, PSNR and 

MS-SSIM, evaluated by two different subjective quality scores: spatial image quality and 

overall 3D quality. The quality scores of the 3D content is simply the average of the 

predicted quality scores from both views. In Table 3, MS-SSIM has a significantly better 

performance if the QA metrics are evaluated against spatial image quality, and its 

performance is statistically indistinguishable from the performance of PSNR against 

overall 3D quality. Since previous work already pointed out that the MS-SSIM 

outperforms PSNR in evaluating the 2D quality, this result suggests that without properly 

modeling overall 3D quality, 2D quality assessment algorithm will perform poorly in 

predicting the overall 3D quality of stereoscopic videos. 

 

Table 3 SROCC of PSNR and MS-SSIM against spatial quality and overall 3D 

quality 

 PSNR MS-SSIM 

Spatial Quality 0.790 0.820 

Overall 3D 

Quality 
0.769 0.675 
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3.4 Conclusion  

The analyses in this chapter show that human subjects have coherent opinions on 

spatial image quality and diverse opinions on depth quality. In addition, compared to 

predicting overall 3D viewing quality from only spatial image quality, considering both 

spatial image quality and depth quality can more precisely predict the overall 3D viewing 

quality. From these observations, the design of a stereo 3D quality assessment algorithm 

can be divided into two parts - one is designed to predict the spatial image quality and the 

other one is designed to predict the depth quality. Because it is not clear why more 

diverse ratings are observed on depth quality, I first focus on predicting the spatial image 

quality of stereoscopic images in the next three chapters and study the depth quality of 

distortion-free stereo 3D images in the chapter 7. 

  



40 

 

CHAPTER 4 MASKING IN DISTORTED 3D STEREO IMAGES 

4.1 Introduction 

From the previous chapter, one infers that designing a 3D quality assessment 

algorithm which can precisely predict the spatial image quality of stereoscopic 3D image 

is an important step towards an ultimate 3D quality assessment algorithm. Later on, this 

quality assessment algorithm can be combined with a depth quality prediction model to 

predict the overall 3D quality. However, the spatial image quality of a stereo image-pair 

is not simply the average of the qualities of the left and right view – there may be some 

binocular masking and depth masking effects that need to be modeled.  

Towards the development of an advanced 3D quality assessment algorithm, this 

chapter describes study designs, analytic methods and observations to explore masking 

effects in distorted stereo 3D images. Two studies were conducted toward this goal. 

These two studies share the same pristine stereo image set and viewing environment, but 

have different participants, study designs, and analytic methods. After applying varied 

analytic methods, two observations were drawn from the studies. First, the spatial image 

quality of a stereo image is dominated by the high quality view for blur, JPEG, and JP2k 

distorted stereo images, which is related to binocular suppression. Second, no depth 
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masking is observed when viewing distorted stereoscopic presentations, but distortions 

located at high range variation regions are easier to find, implying a facilitation effect. 

The details of these studies are elaborated in the following sections.       

4.2 Stereo image source 

The stereo images used for the studies were captured by members of the LIVE 

lab. They captured co-registered stereo images and range data with a high-performance 

range scanner (RIEGL VZ-400) with a Nikon D700 digital camera mounted on the top. 

The stereo images pairs were shot with a 65 mm interocular distance. Off-line corrections 

were applied later to deal with translations occurring during capture. The sizes of the 

images are 640 by 360. Fig. 9 is one image pair used in the study, and Fig. 10 shows the 

ground truth depth map of that image pair. The eight pairs of stereo images to be used in 

this study were taken on the campus of The University of Texas and a park nearby. 

 

 

 

Fig. 9 Example of stereo image pair 
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4.3 Display 

A 42” Sharp HD television with a 4-mirror stereo rig was chosen as the display 

for this study, and the viewing distance was 30”. Although stereoscopic 3D televisions 

are available now, the 4-mirror stereo rig was used in order to avoid potential crosstalk or 

reduced luminance problems. No subject reported discomfort in this viewing 

environment. Fig. 11 shows the setup for a 4-mirror stereo rig and TV. 

 

Fig. 10 Range map associated with the stereo image pair in Fig. 9 
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4.4 Observers 

In both the studies in this chapter, observers were screened before the study for 

visual acuity using the Snellen test and stereo depth perception using the Randot. Their 

ages ranged from 20~35 years old. In the first study, nineteen naïve observers (four 

females and fifteen males) were recruited from The University of Texas student 

population. In the second study, eighteen naïve observers (five females and fourteen 

males) participated in the study. 

4.5 Study One 

4.5.1 Stimuli 

Eight stereo image pairs were used to create all stimuli. In order to explore the 

relationship between the statistics (texture and range) of the 3D data and the perception of 

 

Fig. 11 Illustration of 4-Mirror stereo rig (top view) 
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stereoscopic distortions, each pristine stereo pair was distorted within a local area only 

(128 x 128 square window). To create a locally distorted image, the pristine and global 

distorted images were blended together within a local patch using a 2D Gaussian 

weighting function with the standard deviation set as 34 pixels. Fig. 12 is an example of 

an image with a local blending distortion. 

The variables that were controlled to create different stimuli were the distortion 

type, severity of distortion, and the position of the distortion in each view. Four different 

distortion types were used: white noise, blur, JPEG compression distortion, and 

JPEG2000 compression distortions. The degree of severity of the distortion on each 

image was randomly chosen within a predefined range, from just noticeable to pretty 

obvious. 

Distorted image pairs having random degrees of distortion severity were created 

in this study. Varying the degree of severity allowed us to probe the distortion 

conspicuity as a function of both severity and image or range content, possibly revealing 

insights regarding masking effects under 3D stereoscopic viewing. The locations of the 

local distortions in the left view and right view were defined in two ways, both random. 

In the first case, the local distortions were inserted at the same position in both views. 
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This is defined as ‘’binocular distortion” in this report. In the second case, the distortion 

was inserted into both images randomly. This is called as “dichoptic distortion” in this 

report. In total, 136 stimuli were created for the study, including 8 pristine stereo image 

pairs.  

4.5.2 Procedure 

We followed the recommendation for a single stimulus continuous quality scale 

(SSCQS) [55] to decide the time spent by observers locating the local distortion and to 

supply a subjective quality rating for each stereo image pair. For each stimulus, the 

subject was first asked to point out the distortion using a mouse cursor. The time subjects 

spent on the task was recorded. Then the subject was requested to give a subjective 3D 

image quality rating. Each subject was tested separately. Training sessions were 

conducted individually before the beginning of each study to verify they were 

comfortable with our 3D display and to help familiarize them with the user interface used 

in the task(s) they would complete in the study. The training content was different from 

the images in the study and was impaired using the same distortion. 
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Fig. 13 When the rating bar showed up, the subject was requested to render a 

subjective 3D quality opinion on the entire image. 

 

 

 

Fig. 12 Image with local white noise distortion. The boundary was blended using a 

Gaussian blending window.  When the image was presented, the subject was 

requested to point out the distortion by clicking the mouse cursor on the 

distortion. 
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4.5.3 Binocular suppression 

This section discusses the effect of binocular suppression on the conspicuity of 

each distortion type. Fig. 14 shows the Percentage Correct (PC), DMOS and the median 

Time Spent (TS) by all subjects for both methods of randomly determining the locations 

of the distortions in both views. The blue solid lines represent the results when the 

distortions were placed at the same location in both views (binocular distortion) and the 

red dotted line shows the results when the distortions were inserted at two different 

random locations in both views (dichoptic distortion). The horizontal axis represents the 

file index. The dichoptic and binocular distorted stimuli located in the same file index 

means that the same parameters were employed to distort the two images. In the task of 

identifying a local distortion on a dichoptic distorted image, locating either one of the 

local distorted patches is considered as success. We hypothesize that the PC, the DMOS, 

the TS provide statistical clues regarding the effects of binocular suppression and content 

masking on distortion conspicuity. If fewer subjects locate a distortion, a higher DMOS is 

rated, or more time is spent completing a task. This process on average provides evidence 

that distortion was less visible due to masking or suppression.  
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As shown in Fig. 14, a significant difference between the blue lines (distortions 

were inserted into the same location in both view) and the red lines (distortions were 

inserted into two random locations) is apparent. Further, an analysis of variance 

(ANOVA) was applied to verify the significance and the results were given in Table 4. 

We can see a significant difference in behavior from the test results from the PC 

(p=0.012), the TS (p<0.001) and the DMOS (p<0.001). The results suggested that 

binocular suppression [9] plays an important role in the perception of stereoscopically 

viewed 3D distortions.  

 

Table 4 The results of ANOVA on the locations of distortions. 

Variables F ratio p 

PC 6.49 0.012 

TS 20.1 <0.001 

DMOS 16.39 <0.001 
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To further examine if binocular suppression is independent from the distortion 

types, I examined binocular suppression across distortion types.  Table 5, Table 6 and 

Table 7 show the results of ANOVA on PC, TS and DMOS of each distortion type. As 

shown in Table 5, my observers’ behavior differed significantly whilst viewing dichoptic 

and binocular blur distorted stereo images. The difference of subjects’ behaviors indicates 

that binocular suppression was observed in blur distorted stereo images. Table 6 shows 

 

Fig. 14 Plot of PC (top), DMOS (middle), and Times (bottom) in finding distortions 
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that binocular suppression was observed in the blur and JP2K distorted stereo images. 

Table 7 further indicated that blur, JP2K, and JPEG distorted stereo images induced 

binocular suppression masking.  

We did not observe any significant binocular suppression effect for white noise 

distorted stereo images, whereas binocular suppression appears to have played a 

significant role in affecting blur, JPEG and JP2K distortion conspicuity. This accords 

with [28], where the authors pointed out that binocular suppression affects blur distortion, 

but not MPEG-2 distortion. The results from this study further indicate that binocular 

suppression also occurs in JPEG and JP2K distorted images which may provide useful 

pointers for designing asymmetric codecs or quality assessment algorithms. 

 

 

Table 5 The results of ANOVA of each distortion type on percent correct. 

Distortion Type  F ratio P 

White Noise 0.02 0.882 

Blur  13.11 0.001 

JPEG 0.08 0.775 

JP2K 1.39 0.249 
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4.5.4 Contrast and depth masking 

Binocularly Distorted Images 

I used an analytic method to analyze the data that was collected without binocular 

rivalry. The flowchart is shown in Fig. 15. The first step is to divide all test stereopairs of 

each distortion type into two groups; a High percent correct group (High) and a Low 

percent correct group (Low). All stimuli were classified into these two groups according 

to a threshold on the percentage correct, which was set at 85%. Then, a Welch's t test was 

Table 7 The results of ANOVA of each distortion type on DMOS 

Distortion Type  F ratio p 

White Noise 0.42 0.520 

Blur  21.5 <0.001 

JPEG 5.15 0.031 

JP2K 7.35 0.011 

 

 

Table 6 The results of ANOVA of each distortion type on time spent to find the 

distortion. 

Distortion Type  F ratio p 

White Noise 0.65  0.428 

Blur  19.59 <0.001 

JPEG 2.2 0.149 

JP2K 5.43 0.027 
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conducted on the subjects’ PC, TS, the range activity within local patches, and the 

luminance activity within local patches inside each group. Range activity was defined as 

the weighted mean of the gradient values of the range map inside the patches in both 

views. Luminance activity was defined as the weighted mean of the gradient values of the 

image inside the patches in both views. Our assumption is that if there is a contrast 

masking or range masking effect while the subjects were viewing the stereoscopic 3D 

image, the subjects’ performance on a test should be correlated with the luminance or the 

range activity of the local patch.  

The analysis of luminance and range activity for four types of distortion are 

shown in Fig. 16 and Fig. 17, the results of Welch's t test are also shown and the 

significance tests are marked. From the results, it appears that luminance activity affects 

the visibility of white noise and JP2K distortion. For white noise (top left plot in Fig. 16, 

the result indicates that there is contrast masking when viewing stereoscopic 3D because 

significantly higher contrast values occur in the low performance group. Regarding 

luminance activity for JP2K distortion (bottom right plot in Fig. 16), distortions in lower 

contrast areas tend to be less visible. With respect to range activity, a significant effect on 

blur distortion was the only effect observed (top right plot in Fig. 17). However, from our 
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understanding of distortions, JP2K compression distortion is basically blur and ringing 

distortion. In addition, from the bottom left and the bottom right plots in Fig. 16 and Fig. 

17, both blur and JP2K distorted stereo images tend to have higher range activity and 

higher luminance activities in the high performance group. This suggests that both blur 

and JP2K distortion are correlated with contrast and range activity in stereoscopically 

viewed 3D images. To be explicit, the experimental results suggest distortions are more 

conspicuous in regions with higher luminance or range activities for blur and JP2K 

distorted stereo 3D images. 
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Fig. 15 The analysis flow of discussing contrast and depth masking on binocular 

distorted stereo images 
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Fig. 16 The results of Welch's t test of white noise (top left), blur (top right), JPEG 

(bottom left) and JP2K (bottom right) compression distortion on the local 

contrast. Red dot indicates mean and blue bar represents standard deviation. 
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Dichoptic Distorted Stereo Images 

For the data that were collected with binocular suppression, a chi-square test was 

used to verify whether luminance or range activity had a significant impact on the 

distortion conspicuity even with binocular masking. In this data, different subjects chose 

different patches in a single test and the luminance or range activity inside these two 

patches (left and right) could vary. Hence, the analysis method in the previous section to 

 

Fig. 17 The results of Welch's t test of white noise (top left), blur (top right), JPEG 

(bottom left) and JP2K (bottom right) compression distortion on the range. 

Red dot indicates mean and blue bar represents standard deviation. 
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analyze the correlation between local image statistics and subjects’ performance cannot 

be applied. A different analysis method was used.  

The null hypothesis of the chi-square test indicates that the contrast or range activity 

in left or right view is not related to the subjects’ selections. Namely, the subjects’ 

selections on left view or right view are decided by chance. The null hypothesis was 

verified by a t-test on the overall selections on left and right views. The result is shown in 

Fig. 18 and the null hypothesis (p=0.751 > 0.05) was not rejected. Therefore, one can 

conclude that the subjects’ choices on left view and right view are decided by chance.  

Next, a chi-square test was performed to see if contrast or range activity 

influences the subjects’ selections. Table 8 is an example of the chi-square test setup. 

Table 9 shows the results of all tests on contrast masking. From the table, one can see that 

the contrast value of local patches is correlated with the visibility of blur (p=0.003), JPEG 

(p=0.004), and JP2K (p=0.03) distortions. As for the influence of range activity, Table 10 

shows that the range activity of local patches is correlated with the visibility of blur 

(p<0.001) and JP2K (p=0.016) distortions. Thus, both contrast and range activities have 

significant influence on the perception of stereoscopically viewed blur and JPEG 

distortions even with binocular masking. However, it is not clear what kind of correlation 
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between contrast and range activities and the visibility of dichoptic distorted stereo 

images occurs from the data in this study.      

 

 

Table 8 An example of a Chi-square test setup. The number inside brackets is the 

expected value.   

 Subjects Selection   

Contrast on blur Left  Right Total 

Left > Right 
113 

(107.72) 
33(38.28) 146 

Left < Right 8(13.28) 10 (4.72) 18 

Total 121 43 164 

 

 

 

Fig. 18 The results of t test on subjects’ selection on left and right views. 
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4.6 Study Two 

The second study was conducted for two reasons. First, the result in the second 

study can be used to verify the findings in the first study. Second, while the first study 

provided significant observations on binocular masking effects, more observations on 

contrast and range masking of white noise and JPEG compression are needed. 

4.6.1 Stimuli 

In the first study, the position of a local distortion was randomly decided. This 

random sampling may fail to sample the area which has both high range variation and 

high luminance activity.  In addition, if there is a masking effect observed in a local 

Table 10 The results of Chi-square test on range 

Chi-square test on Range  

Distortion type WN Blur JPEG JP2K 

Chi value 1.576 18.389 1.532 5.770 

p 0.209 0.000 0.216 0.016 

 

Table 9 The results of Chi-square test on contrast 

Chi-square test on Contrast 

Distortion type WN Blur JPEG JP2K 

Chi value 2.551 8.995 8.400 4.733 

p 0.110 0.003 0.004 0.030 
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patch with high range and luminance activities, it may be difficult to decide whether the 

masking is related to luminance activity or to range activity. Therefore, a measurement 

(‘ratio’), defined as range activity divided by luminance activity, is used to create more 

specific stimuli.  Based on this ratio, stimuli where distortions are preferentially inserted 

into high ratio areas (higher range with lower luminance variation) and low ratio areas 

were created. In high ratio areas, the assumption is that the visibility of the distortion is 

more correlated with range activity than the luminance activities. On the other hand, the 

luminance activities may contribute more to the masking effect in the low ratio areas. The 

detailed procedure of creating stimuli is described below.  

Eight pristine stereo image pairs were used to create all distorted stimuli. For each 

pristine stereo pair, a distortion was created within a local area (128 x 128 square patch) 

by the same Gaussian blending method used in the first study. The variables controlled to 

create the different stimuli were distortion type, display type (binocular distorted 3D 

images, dichoptic distorted 3D images, and distorted 2D images) and the local statistics 

(high or low ratio areas). Because the blur distortion is very similar to JPEG2000 

compression distortion, only white noise, JPEG compression distortion, and JPEG2000 

compression distortions were used. This enabled us to reduce the session durations to 
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reduce subject fatigue. For each distortion type, a predefined distortion parameter was 

chosen to create all locally distorted stimuli. The severity of each distortion was fixed to 

reduce the number of variables. Finally, 48 stimuli were created for each distortion type 

yielding 144 stimuli in total.  

4.6.2 Procedure 

The same GUI and SSCQS method mentioned in the first study was used. 

However, a few modifications were made to fit the study design. First, the stimuli were 

subdivided into three groups according to distortion type. The same group of subjects 

participated in the study on three different days. They viewed one distortion type each 

day and a gap of at least one day separated two consecutive sessions. This design further 

avoided subject fatigue. With this design, all observers were able to finish each session 

within a reasonable time. The maximum time that was used by a subject to finish a 

session was 37.4 minutes and the average time to finish a session was about 20 minutes 

(the time spent in training sessions is not included). A short training session was given to 

each subject before conducting each session. The content shown in each training session 

was different than the source images used in the study. 

4.6.3 Binocular suppression 
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By analyzing the observers’ performance in finding local distortions, binocular 

suppression was again probed. Fig. 19, Fig. 20 and Fig. 21show the Percentage Correct 

(PC), the median Time Spent (TS) by all subjects for binocular distorted images (blue 

solid line) and dichoptic distorted images ( red dotted line). The p values shown in these 

figures are the ANOVA tested results. Looking Fig. 21, there is no significant difference 

for these two types of distorted images. Hence, it appears that there is no binocular 

suppression effect in white noise distorted stereo images. However, significantly different 

behavior can be observed from Fig. 20 and Fig. 21, which indicate that there is a 

binocular suppression effect that caused the subjects to behave differently, since the other 

variables were controlled.  
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Fig. 19 The PC and MS of dichoptic distorted 3D image and binocular distorted 3D 

image. The distortion type is White Noise  

 



64 

 

 

 

Fig. 20 The PC and MS of dichoptic distorted 3D image and binocular distorted 3D 

image. The distortion type is JPEG compression distortion 
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4.6.4 Contrast and depth masking 

Binocularly Distorted Images 

The distortions in the stimuli were placed according to their local statistics. Fig. 

22 shows the results for three types of distortions. In Fig. 22, the results of the high ratio 

group are plotted with blue solid lines while the results of the low ratio group are plotted 

with red dotted lines. An ANOVA analysis on the high and the low groups was done and 

the p values are shown in these figures. Based on the results shown in Fig. 22, significant 

 

Fig. 21 The PC and MS of dichoptic distorted 3D image and binocular distorted 3D 

image. The distortion type is JP2K compression distortion 
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differences were observed in JP2K and JPEG compression distortions. Hence, we 

conclude that there is actually an anti-masking, or facilitation effect for visibility of JP2K 

and JP compression distorted images. For white noise distortion, there was no significant 

result observed. It is worth noting that JP2K and JP are both nonlinear distortions, unlike 

additive noise.  

 

 

Dichoptic Distorted Images 

From our results in previous sections, we claim that there is binocular 

suppression, which reduces the visibility of a distortion, and facilitation effect, which 

 

Fig. 22 The PC and MS of binocular distorted images. The blue solid lines show 

results for stimuli where the distortion is placed at high ratio areas, and the red 

dotted lines show results when the distortion is placed at low ratio areas. 
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make a distortion more visible, for JPEG and JP2K distorted images. This section 

discusses what was observed when these two effects co-exist in dichoptic distorted 

images. 

A similar analysis as that performed for the binocular case was also conducted on 

the dichoptic distorted stereo images, and the results are shown in Fig. 23. The results of 

the high ratio group are plotted with blue solid lines and the results of the low ratio group 

are plotted with red dotted lines. As seen in Fig. 23, there is a significant difference 

observed in JP2K distorted images and there is no significant difference for JPEG 

distorted images. This result matches our findings in section 4.5.4, where our analysis 

pointed out that there is some masking or facilitation effects on dichoptic JP2K/blur 

distorted images.  Due to the design of the first study, we were not able to determine 

what kind of effects is observed in dichoptic distorted images. However, the design of the 

study two provides deeper insights into effects on dichoptic distorted images. Fig. 23 

indicates that the effect is a facilitation effect.  
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4.7 Conclusion  

I discovered that there is binocular masking for blur, JPEG, and JP2k distorted 

images. Further, there is a facilitation effect corresponding to depth activity for blur, 

JP2K and JPEG binocular distorted images. For dichoptic distorted images, a facilitation 

effect was only observed for JP2K/blur distorted images. Finally, we observed contrast 

masking for white noise distorted images in the first study; however there was no contrast 

masking observed in the second study.  

 

Fig. 23 The PC and MS of dichoptic distorted images. Blue solid lines show the 

results for stimuli where the distortion is placed at high ratio areas, and the red 

dotted lines show results when the distortion is placed at low ratio areas. 
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The observations found in this chapter strongly suggest that binocular masking 

effect (binocular rivalry) should be modeled to predict the spatial image quality for 

stereoscopically viewing. In the next chapter, a 3D quality assessment framework will be 

introduced. This framework is based on earlier work in modeling the binocular rivalry 

proposed by Levelt [9].    
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CHAPTER 5 FULL REFERENCE QUALITY ASSESSMENT OF 

STEREOPAIRS ACCOUNTING FOR RIVALRY 

5.1 Introduction 

This chapter deals with the design of a full reference (FR) stereoscopic 3D image 

quality assessment (QA) framework. As mentioned in chapter 2, research on stereo 3D 

QA algorithms has been conducted for years, but most of these 3D QA algorithms are 

still based on ad-hoc techniques. From the discussion in chapter 3 and chapter 4, one 

would conclude that the task of predicting the perceived 3D quality of a 3D stereopair 

involves predicting spatial image quality and depth quality. Between these two factors, 

spatial image quality is clearly affected by binocular masking effect, and it is not yet clear 

how spatial distortion affects the perceived quality of depth. As a first step towards the 

creation of a high performance 3D QA algorithm, I first design a 3D QA algorithm that 

accounts for the binocular masking effect.       

This chapter proposed a framework that allows for easy extension of 2D FR 

algorithms, providing a plug-and-play approach to the development of 3D FR QA 

algorithms. This framework attempts to model the fact that binocular masking alters 

perceived 3D quality, as described in chapter 4. The proposed framework uses the linear 

model proposed by Levelt [9] to synthesize an intermediate view from the stereo image 
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pair, called the cyclopean view. Levelt’s work models the binocular masking effect with 

local statistics of a stereo image pair. Thus, the synthesized cyclopean view is visually 

close to the true Cyclopean image a human subject recreates in his brain, while viewing a 

stereo image pair on a stereoscopic display. Finally, experimental results show that higher 

performance can be achieved in predicting the perceived 3D quality of stereo 3D image 

by applying existing 2D QA algorithms on the synthesized cyclopean view.  

 

5.2 Binocular rivalry/suppression 

Binocular rivalry is a perceptual effect that occurs when the two eyes view 

mismatched images at the same retinal location(s). Here, ‘mismatch’ means that the 

stimuli received by the two eyes are sufficiently different from each other to cause match 

failures or to otherwise affect stereoperception. Failures of binocular matching trigger 

binocular rivalry, which is experienced in various ways, i.e., a sense of failed fusion or a 

bi-stable alternation between the left and right eye images. Fig. 24 shows an example of 

binocular rivalry when mismatched stimuli are present. In Fig. 24, in the interval (t0, t1), 

the observer saw the stimulus from the left eye (the arrow). Then, the stimulus from the 

right eye (the star) dominated until time t2, after which the observer again saw an arrow. 
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This fluctuation continues when an observer is experiencing a binocular rivalry. The 

fluctuation period may vary from a fraction of a second to several seconds, and it may 

depend on the color, shape, and texture of the stimuli. Binocular suppression [59] is a 

special case of binocular rivalry. When binocular suppression is experienced, no rivalrous 

fluctuations occur between the two images when viewing the mismatched stereo 

stimulus. Instead, only one of the images is seen while the other is hidden from conscious 

awareness. Fig. 25 shows an example of binocular suppression.  

 

 

Fig. 24 Illustration of binocular rivalry: Two different patterns are presented to the 

left eye (an arrow) and the right eye (a star). The blue line indicates that the 

stimulus is perceived by a human observer inside that time interval.  
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Numerous studies have been conducted towards understanding binocular 

rivalry/suppression. Currently, three different models are prevalent: early suppression, 

late (high-level) suppression, and a hybrid model including both early and late processes. 

The early suppression model [9, 59-62] suggests that binocular rivalry is the result of 

competition between the eyes. This model views rivalry as an early visual process 

involving reciprocal inhibition between the monocular channels. 

Research that supports a high level suppression model [63, 64], on the other hand, 

argues that there is very little correlation between neural activity and perceptual 

alternations in area V1 of visual cortex. Moreover, there are some early cortical neurons 

 

Fig. 25 Illustration of binocular suppression: Two different patterns are presented to 

the left eye (an arrow) and the right eye (a star). An observer only sees the 

arrow when s/he experiences binocular suppression.  
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whose activity is anti-correlated with binocular perception; this means that these neurons 

fire more when acting on suppressed stimuli. Hence, it has been claimed that the rivalry 

model should be high-level. For example, Alais and Blake [65] showed that grouping 

information may contribute to binocular rivalry. Finally, since both early and late models 

are supported by some evidence, more recent research [11] suggests that a hybrid model 

may be the best explanation. However, these ideas have not previously been applied 

towards understanding how binocular rivalry might be related to distortion type.  

Another important finding of binocular rivalry/suppression is that it is a nearly 

independent local process. A series of papers [65-67] discuss whether the binocular 

rivalry zones function independently, and their findings indicate that binocular rivalry is 

composed of local processes. In addition, evidence [68, 69] supports the contention that 

the size of this local process is governed by the size of receptive fields in early visual 

cortex. The discussions in this section provide basic concepts that are used in the 3D QA 

framework which is introduced in the next section. 

5.3 A framework for stereo quality assessment 

The logical goal of a 3D stereoscopic QA model is to estimate the quality of the 

true cyclopean image formed within an observer's mind when presented with a stereo 
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image are presented with a stereopair. Of course, simulating the true cyclopean image 

[15] associated with a given stereopair is a daunting task, since it would require 

accounting for the display geometry, the presumed fixation, vergence, and 

accommodation. This task is already herculean, and is compounded by the fact that it is 

still unclear how a cyclopean image is formed! Towards a limited approximation of this 

goal, however, we seek to synthesize an internal image having a quality level that is close 

to the quality of the true cyclopean image. By way of notation, henceforth we still use the 

term "cyclopean" image to represent the synthesized image and cyclopean image to mean 

the one formed in the observer's mind. By performing 3D quality assessment on the 

"cyclopean" image we hope to produce accurate estimates of 3D quality perceived on the 

cyclopean image.  

The concept underneath the model framework is shown in Fig. 26. Given a stereo 

image, an estimated disparity map is generated by a stereo algorithm, while Gabor filter 

responses are generated on the stereo images using a bandpass filter bank. A “cyclopean” 

image is synthesized from the stereo image pair, the estimated disparity map, and the 

Gabor filter responses.  A “cyclopean” image is created from the reference stereopair 

and another "cyclopean" image is calculated from the test stereopair. Finally, full 
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reference 2D QA models are applied to the two “cyclopean” images to predict 3D quality 

scores. 

 

 

5.3.1 Stereo matching algorithms 

Research on stereo algorithm design has been a topic of intense inquiry for 

decades. However, there is no consensus on the type of stereo matching algorithm that 

should be used in 3D QA other than it be of low complexity. Further, there is scarce 

 

Fig. 26 The proposed framework for 3D QA 
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literature on the performance of stereo algorithms operating under different distortion 

regimens. Therefore, we deploy a variety of these efficient stereo depth-finding 

algorithms differing considerably in their operational constants along with the framework 

we described above to assess perceived 3D quality.  

In order gain insights into the influence of stereo algorithms on the performance 

of 3D QA models, three stereo algorithms were selected based on their complexity and 

performance. In general, better stereo algorithms (based on results on the Middlebury 

database [70]) have higher computational complexity, and we balanced this tradeoff in 

the choice of stereo matching models.  

The first algorithm has the lowest complexity. It uses a very simple 

sum-of-absolute difference (SAD) luminance matching functional without a smoothness 

constraint. The disparity value of a pixel in a stereopair is uniquely computed by 

minimizing the SAD between this pixel and its horizontal shifted pixels in the other view 

with ties broken by selecting the lower disparity solution. The second algorithm [71] has 

the highest complexity among the three models.  This segmentation-based stereo 

algorithm delivers highly competitive results on the Middlebury database [70]. The third 

is a SSIM based stereo algorithm that uses SSIM scores to choose the best matches. The 
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disparity map of a stereopair is generated by maximizing the SSIM scores between the 

stereopiar along the horizontal direction, again resolving ties by a minimum disparity 

criterion.   

5.3.2 Gabor filter bank 

As discussed earlier, when the two images of a stereopair present different 

degrees or characteristics of distortion, the subjective quality of the stereoscopically 

viewed 3D image generally cannot be predicted from the average quality of the two 

individual images. Binocular rivalry is a reasonable explanation for this observation. 

Levelt [9] conducted a series of experiments that clearly demonstrated that binocular 

rivalry/suppression was strongly governed by low-level sensory factors and the 

Cyclopean image could be modeled by a linear model from stereo stimuli. He used the 

term stimulus strength, and noted that stimuli that were higher in contrast, or had more 

contours, tend to dominate the rivalry. Inspired by his result, we use the energy of Gabor 

filter bank responses on the left and right images to model stimulus strength and to 

simulate rivalrous selection of "cyclopean" image quality.    

The Gabor filter bank extracts features from the luminance and chrominance 

channels. These filters closely model frequency-orientation decompositions in primary 
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visual cortex and capture energy in a highly localized manner in both space and 

frequency [72]. The complex 2-D Gabor filter is defined as  
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where  cossin and sincos 21 yxRyxR  , 
x and y  are the standard 

deviations of an elliptical Gaussian envelope along x and y axes, 
x and 

x are the 

spatial frequencies of the complex sinusoidal grating, and   is the orientation. The 

design of the Gabor filter was based on the work conducted by Su, et al. [73]. The local 

energy is estimated by summing Gabor filter magnitude responses over four orientations 

(horizontal, both diagonals, and vertical (90 degrees) at a spatial frequency of 3.67 

cycles/degree, under the viewing model described in Section 5.4.3.

 

Regarding the choice of the spatial center frequency, Tyler [74] pointed out that 

the depth signal in human vision is analyzed over a much smaller band-width than is the 

luminance channel. In addition, Schor, et al. [17] found that the stereoacuity of human 

vision normally falls off quickly when seeing stimuli dominated by spatial frequencies 

lower than 2.4 cycles/degree. Based on their findings, using filters having spatial center 
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frequencies in the range from 2.4 to 4 cycles/degree should produce responses to which a 

human observer would be most sensitive.  

 

5.3.3 Cyclopean image 

A linear model was proposed by Levelt [9] to explain the experience of binocular 

rivalry in perceived Cyclopean when a stereo stimulus is presented. The model he 

proposed is: 

               (4)  

where El and Er are the stimuli to the left and the right eye respectively, wl and wr are 

weighting coefficients for the left and the right eye that are used to describe the process 

of binocular rivalry, where wl + wr  = 1,and C is the Cyclopean image.  

Given that a foveally presented monocular stimulus generally does not disappear 

spontaneously, he hypothesized that the duration of a period of dominance period of an 

eye does not depend on the strength of the stimulus presented to that eye, but rather on 

the stimulus strength presented to the other eye. Therefore he concludes that the 

experience of binocular rivalry is not correlated to the absolute stimulus strength of each 

view, but is instead related to the relative stimulus strengths of two views.  He also 

proposed a model whereby the weighting coefficients are positively correlated with the 
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stimulus strengths, which we embody in a biologically plausible model whereby the local 

energies of the responses of a bank of Gabor filters are used to weight the left and right 

image stimuli. Since binocular rivalry is a local phenomena, broading Levelt’s model in 

this manner is a natural way to simulate a synthesized cyclopean image. In our model, as 

in Levelts; the stereo views used to synthesize to the cyclopean view are 

disparity-compensated. Thus the localized linear model that we use to synthesize a 

cyclopean image is: 

 )),(()),((),(),(),( ydxIydxWyxIyxWyxCI RRLL   (5)  

where CI is the simulated “cyclopean” image, IL and IR are the left and right images 

respectively, d is a disparity value which matches a local stimulus of the left view to the 

corresponding stimulus of the right view.  The weightings WL and WR are computed 

from the normalized Gabor filter magnitude responses:  
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where GEL and GER are the summation of convolution responses of the left and right 

images to filters of the from (3). Because of the normalization in (6), increasing the 

Gabor energy on the right view suppresses the dominance of the left view when there is 
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binocular rivalry. Finally, the task of 3D QA is performed by applying a full reference 2D 

QA algorithm on the reference ``cyclopean'' image and the test “cyclopean” image.   

Fig. 27 shows an example of a synthesized cyclopean image. The sterepair in Fig. 

27 are locally distorted by a white noise patch located at different location. Since the 

white noise distortion produces an elevated stimulus strength, the synthesized cyclopean 

image is dominated by white noise while approximates the experience when 

stereoscopically viewing the stereopair.    
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5.4 Experiment 

A human study was conducted to construct a subjective data set to be used in 

assessing algorithms of the proposed 3D QA framework. This section describes the 

human study and experiments performed using it. 

5.4.1 Stereoscopic image quality dataset 

 

 

Fig. 27 A stereo image distorted by white noise (free-fused) and the cyclopean 

image created by the proposed algorithm. 

 

Synthesized Cyclopean Image 
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A stereoscopic image quality dataset annotated with associated subjective quality 

ratings was constructed using the outcomes of a human study. The details of the dataset 

and human study are described in the following. 

5.4.1.1 Source image 

The stereo images used for the study were captured by members of the LIVE lab. 

They captured co-registered stereo images and range data with a high-performance range 

scanner (RIEGL VZ-400[73]) with a Nikon D700 digital camera mounted on the top. The 

stereo images pairs were shot with a 65 mm camera base distances. Off-line correction 

was later applied to deal with translations occurring during capture. The sizes of the 

images are 640 by 360 pixels. The eight pristine images are shown in Fig. 28 while Fig. 

29 shows the ground truth depth map of one of them. The eight pairs of stereo images to 

be used in this study were taken on the campus of The University of Texas at Austin and 

a nearby park. The ground truth depth map of each stereopair was transformed to a 

ground truth disparity map based on the captured model described above.  
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Fig. 28 The eight stereo images used for the database 
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5.4.1.2 Participants 

Six females and twenty-seven males participated in the experiment all aged 

between 22 and 42 years. A Randot stereo test was used to pre-screen participants for 

normal stereo vision. Each subject reported normal or corrected normal vision and no 

acuity or color test was deemed necessary. 

5.4.1.3 Display setting 

The study was conducted using a Panasonic 58'' 3D TV with active shutter 

glasses. The viewing distance was set at 116 inches, which is four times the screen 

height. 

5.4.1.4 Stimuli 

 

Fig. 29 A stereo image (free-fuse the left and right images) and the ground truth 

disparity maps. 
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Both symmetric and asymmetric distortions were generated. The distortions that 

were simulated include compression using the JPEG and JPEG2000 compression 

standards, additive white Gaussian noise, Gaussian blur and a fast-fading model based on 

the Rayleigh fading channel. The degradation of stimuli was varied by control parameters 

within pre-defined ranges; the control parameters are reported in Table 11. The ranges of 

control parameters were decided beforehand to ensure that the distortions varied from 

almost invisible to severely distort with good overall perceptual separation. For each 

distortion type, every reference stereopair was distorted to create three symmetric 

distorted stereopairs and six asymmetric distorted stereopairs. Thus, a total of 360 

distorted stereopairs were created. 

 

Table 11 Range of parameter values for distortion simulation 
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5.4.1.5 Procedure 

We followed the recommendation for a single stimulus continuous quality scale 

(SSCQS) to collect the “3D subjective image quality” of each distorted stereoscopic 

image. The instructions given to each participant was: Give an overall rating based on 

your viewing experience when viewing the stereoscopic stimuli. The obtained ratings 

were obtained on a continuous scale labelled by equally spaced adjective terms: bad, 

poor, fair, good, and excellent, i.e. a Liekart scale.  

The experiment was divided into 2 sessions; each held to less than 30 minutes to 

minimize subject fatigue. A training session using six stimuli was conducted before the 

beginning of each study to verify that the participants were comfortable with the 3D 

display and to help familiarize them with the user interface used in the task. The training 

content was different from the images in the study and was impaired using the same 

distortion. Questions about the experiment were answered during the training session and 

a short post-interview was conducted to determine whether the participant experienced 

visual discomfort during the experiment. Only two participants reported any visual 

discomfort.   

5.4.1.6 Subjective quality scores 
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Differential opinion scores (DOS) were obtaining by subtracting the ratings that 

the subject gave each reference stimuli from the ratings that the subjective gave to the 

corresponding test distorted stimuli. The remaining subjective scores were then 

normalized to Z-scores, and then averaged across subjects to produce difference mean 

opinion scores (DMOS). 

 

5.4.2 Results 

 

5.4.2.1 Performance using ground truth disparity map  

I studied four widely-used full-reference 2D QA metrics (PSNR, SSIM [29], VIF 

[33], and MS-SSIM [30]) as candidate 2D QA methods to be used in the 3D QA 

framework. We used Spearman's rank ordered correlation coefficient (SROCC), the 

linear (Pearson's) correlation coefficient (LCC) and the root-mean-squared error (RMSE) 

to measure the performance of 3D QA models. LCC and RMSE were computed after 

logistic regression through a non-linearity which is described in [75] . Higher SROCC 

and LCC values indicate good correlation with human perception, while lower values of 

RMSE indicate better performance. 

I begin the performance analysis by using ground truth depth, which minimizes 

the effects of flaws in the stereo matching algorithms. The performance numbers are 
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shown in Table 12, Table 13 and Table 14. Also included are the performance values 

arrived at using the same 2D FR QA algorithms, simply applied to the left and right 

views and the QA scores averaged, called “2D Baseline”. The cyclopean model QA 

framework does significantly better than the 2D baseline QA algorithms on the mixed 

data set containing both symmetric and asymmetric distorted data. 

 

 

Table 13 LCC scores obtained by averaging left and right QA scores (center 

column) and using the 3D “cyclopean” model (right column) 

 2D Baseline Cyclopean Model 

PSNR 0.687 0.783 

SSIM 0.804 0.867 

MS-SSIM 0.784 0.908 

VIF 0.844 0.872 

 

 

Table 12 SROCC scores obtained by averaging left and right QA scores (center 

column) and using the 3D “cyclopean” model (right column) 

 2D Baseline Cyclopean Model 

PSNR 0.672 0.762 

SSIM 0.796 0.856 

MS-SSIM 0.78 0.901 

VIF 0.822 0.864 
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It is clear from Table 12-14 that MS-SSIM delivers the best performance among 

the four 2D QA algorithms when embedded in the cyclopean model. Fig. 30 breaks down 

the performance of the cyclopean model using MS-SSIM. Clearly, the QA performance is 

improved on blur and JP2K as might be expected, since strong binocular rivalry exists in 

asymmetric blur and JP2K distorted stereo images. The improvement in QA performance 

for FF distorted images is also significant for similar reasons. For stereo images distorted 

by white noise, there is no significant difference between the performance of averaged 

2D QA and the “cyclopean” mode since binocular rivalry does not occur in white noise 

distorted stereo images [76]. For JPEG compression distorted stereo images, the 

performance numbers of the averaged 2D QA and the “cyclopean” model are very close. 

These results strongly suggest that binocular rivalry is an important ingredient in 

subjective stereoscopic QA, and our “cyclopean” framework successfully captures and 

Table 14 RMSE values obtained by averaging left and right QA scores (center 

column) and using the 3D “cyclopean” model (right column) 

 2D Baseline Cyclopean Model 

PSNR 17.67 15.09 

SSIM 14.43 12.11 

MS-SSIM 15.09 10.2 

VIF 13.03 11.89 
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utilizes binocular rivalry to predict subjective 3D quality. Fig. 31 plots the predicted 

quality scores using MS-SSIM (after logistic regression) versus DMOS. Predicted scores 

from the proposed cyclopean framework are shown on top-left, while the bottom-left plot 

shows the scores from the 2D baseline. Clearly, the predicted scores attained using the 

cyclopean framework are better than the scores predicted by the 2D baseline. Moreover, 

the prediction errors which are measured by Root Mean Square Error (RMSE) of the 

cyclopean framework are lower than the prediction errors of the 2D baseline.  

 

 

Fig. 30 SROCC values using MS-SSIM, broken down by distortion type. 
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To obtain deeper insights into how the performance of the cyclopean 3D QA 

model is improved by accounting for binocular rivalry, its performance on the separated 

symmetric and asymmetric distorted stereopairs is reported in Table 15, Table 16 and 

Table 17. The performance numbers in these three tables indicate that the cyclopean 

model did not boost performance on symmetric distorted stereoscopic images. However, 

 

Fig. 31 Plot of predicted objective scores versus DMOS and prediction errors. Top 

Left: Prediction by MS-SSIM cyclopean framework. Top Right: Prediction 

errors of MS-SSIM cyclopean framework. Bottom Left: Predictions by 

MS-SSIM 2D baseline. Bottom Right: Prediction errors of MS-SSIM 2D 

baseline 
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performance was greatly enhanced on the asymmetric distorted stereopairs. Furthermore, 

these performance numbers indicate that the task of predicting the quality of asymmetric 

distorted stereopairs is more difficult than that of predicting the quality of symmetric 

distorted data. 
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Table 15 SROCC scores relative to human subjective scores. Obtained using 

averaged left-right QA scores (2D Baseline) and the Cyclopean model on 

symmetric and asymmetric distorted stereopairs 

 Symmetric Asymmetric 

 2D Baseline Cyclopean Model 2D Baseline Cyclopean Model 

PSNR 0.781 0.819 0.596 0.698 

SSIM 0.826 0.85 0.742 0.827 

MS-SSIM 0.912 0.929 0.687 0.854 

VIF 0.916 0.902 0.737 0.804 
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Table 16 LCC scores relative to human subjective scores. Obtained using averaged 

left-right QA scores (2D Baseline) and the Cyclopean model on symmetric 

and asymmetric distorted stereopairs 

 Symmetric Asymmetric 

 2D Baseline Cyclopean Model 2D Baseline Cyclopean Model 

PSNR 0.791 0.825 0.625 0.737 

SSIM 0.845 0.882 0.767 0.850 

MS-SSIM 0.924 0.937 0.709 0.879 

VIF 0.924 0.906 0.772 0.822 
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5.4.2.2 Influence of stereo matching algorithms 

The preceding discussion describing the stereoscopic cyclopean QA model 

assumed that highly accurate ground truth depth values are available. Next, we study 

stereoscopic QA performance when estimated depth is used as computed by stereo 

algorithms.  

Currently, stereo matching algorithms are generally tested on undistorted stereo 

images and compared using a simple measure (bad-pixel rate) [70]. However, we believe 

that such metrics provide little or no information regarding perceived 3D image quality. 

Table 17 Fitting errors measured by RMSE. Obtained using averaged left-right QA 

scores (2D Baseline) and the Cyclopean model on symmetric and asymmetric 

distorted stereopairs 

 Symmetric Asymmetric 

 2D Baseline Cyclopean Model 2D Baseline Cyclopean Model 

PSNR 16.42 15.15 16.83 14.58 

SSIM 14.35 12.65 13.85 11.37 

MS-SSIM 10.23 9.37 15.20 10.29 

VIF 10.23 11.35 13.69 12.27 
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Indeed, there have been no studies conducted to determine the degree to which the 

quality of an estimated disparity map is correlated with subjective judgements of depth. It 

is likewise unclear whether distortions of stereopairs affects perceived depth quality [10, 

27] 

The bad-pixel rates of the three selected stereo algorithms against ground truth are 

reported in Table 18. Clearly, all perform equally poorly when applied to distorted 

images. This lack of robustness is not unexpected owing to the ill-posedness of the stereo 

problem, and since none of these (or any other) stereo algorithms has been designed to 

excel in the presence of distortions. In addition, the ground truth maps that we used were 

obtained using a high-resolution laser range scanner. The ground truth maps have 

relatively fine disparity resolution over both smooth and depth-textured regions.   

 

Table 18 Mean bad pixel rate value on 360 distorted stereopairs with standard 

deviation (inside the bracket) for three stereo algorithms. 

 SAD SSIM Klaus 

Bad-pixel rate 79.8% (9.24) 79.52 % (10.7) 78.04% (11.83) 
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Next, we discuss the influence of poor disparity estimation performance on 3D 

stereo QA. The performance of the cyclopean model using ground truth disparity, 

estimated disparity, and no disparity information are reported in Table 19. The table 

shows that there is no significant difference in the performance attained using the ground 

truth and estimated disparities, although the performance of the very simple SAD-based 

stereo algorithm is slightly lower than the other two stereo algorithms. All three 

significantly outperform the no-disparity case indicating that estimated disparities 

provide useful information when predicting the quality of the stereo 3D images. Based on 

 

Fig. 32 Depth estimation using SSIM-based stereo algorithm on noised distorted 

stereo pairs. Free-fuse the noisy stereo image to see a 3D image. 
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the results, it is clear that we should not use the bad-pixel rate to evaluate stereo 

algorithms when the objective is to design a 3D quality assessment algorithm. An 

explanation for this high bad-pixel rate, but decent results in performing a 3D QA task is 

that the depth signal in human vision has much lower bandwidths than the luminance 

spatial channel [77-79]. Therefore, we only need a low-resolution disparity map for the 

task of 3D quality assessment. 

 

5.4.2.3 Comparison with existing 3D QA models 

Table 19 SROCC, LCC, RMSE relative to human subjective scores attained by 

cyclopean model using different disparity maps. 

Stereo Algorithm SROCC LCC RMSE 

Ground Truth 0.901 0.907 10.2 

SAD 0.876 0.885 11.29 

SSIM 0.893 0.901 10.58 

Klaus 0.890 0.896 10.80 

No depth information 0.817 0.824 13.73 
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Gorley and Holliman [41] proposed a PSNR-based 3D stereo QA model that does 

not include depth. Benoit, et al.[44] proposed a SSIM-based stereo QA model operating 

on both stereopairs and disparity maps. You, et al.[46] applied a variety of 2D QA 

models on stereopairs and disparity map and tried a number of ways to combine the 

predicted quality scores from stereopairs and disparity maps into predicted quality scores. 

Their best result is also SSIM-based. Hewage and Martini [52] proposed a PSNR-based 

reduced-reference stereo quality model utilizing disparity. In our simulations, since some 

of these algorithms require estimated disparity maps from both reference and test 

stereopairs, we used the SSIM-based stereo algorithm to create disparity maps.  
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Table 20 shows the performances of these 3D QA algorithms as compared with 

the "cyclopean" model. The "cyclopean" model using MS-SSIM delivers the highest 

performance, followed by the model proposed by You et al. which yields no significant 

difference relative to the performance of left-right averaged 2D QA using MS-SSIM. The 

performances of the other three algorithms are lower than this 2D baseline. This is 

another powerful demonstration of the importance of accounting for binocular rivalry 

when conducting stereoscopic QA. 

Table 20 SROCC, LCC, and RMSE relative to human subjective scores attained by 

3D QA models using SSIM-based stereo algorithm. 

Algorithm SROCC LCC RMSE 

Cyclopean MS-SSIM 0.893 0.901 10.58 

2D Baseline MS-SSIM 0.780 0.784 15.09 

Benoit 0.728 0.745 16.2 

You 0.784 0.797 14.66 

Hewage 0.496 0.55 20.29 

Gorley 0.158 0.511 20.88 
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5.5 Conclusion  

We presented a new framework for conducting automatic objective 3D QA that 

delivers highly competitive performance, with a clear advantage when left-right 

distortion asymmetries are present. The design of the framework is motivated by studies 

on the perception of distorted stereoscopic images, and recent theories of binocular 

rivalry. The cyclopean 3D QA model that we derived was tested on the Phase II of LIVE 

3D Image Quality Database, and found to significantly outperform conventional 2D QA 

models and well-known 3D QA models. The impact of the stereo algorithm used to 

conduct 3D QA was also discussed. We also found that a low-complexity SSIM-based 

stereo algorithm performs quite well for estimating disparity in the "cyclopean" algorithm 

in the sense that a high level of 3D QA performance is maintained. 

An important contribution of this work is the demonstration that accounting for 

binocular rivalry can greatly improve the performance of 3D QA models. Indeed, most of 

the advantage conveyed by the cyclopean model was observed on asymmetric distorted 

stereopairs. The framework can, therefore, ostensibly be used to evaluate the quality of 

stereo content that has been compressed using a mixed resolution coding technique [76, 
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80]. Compressed stereo content that is transmitted over the wireless Internet may be 

subjected to other asymmetric distortions as well. 

To further advance the performance of current 3D QA models, we think that the 

effect of depth masking and depth quality needs to be further studied and addressed. 

Regarding depth masking, our prior work [50] revealed no depth masking effect when 

viewing distorted stereopairs. However, we do not regard the results of our prior study to 

be universal and there remain other distortions to be studied. Furthermore, while we did 

not find depth masking of distortions, we did find evidence of facilitation which may 

prove relevant to 3D QA. 

Regarding the role of computed disparity, prior models utilizing disparity maps 

derived from reference and test stereopairs have generally failed to deliver better QA 

performance than 2D QA models on the individual stereo images. Of course, the disparity 

cue is not the only one used by the human visual system to perceive depth. For example, 

monocular cues such as occlusion, relative size, texture gradient, perspective distortion, 

lighting, shading, and motion parallax [13] all affect the perception of depth. It is not yet 

clear how the brain integrates all these cues to produce an overall sensation of depth [19].  
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The influence of distortions on perceived depth quality also remains an open 

question. While Seuntiens, et al. [27] claimed that JPEG encoding has no effect on 

perceived depth, other recent research suggested that perceived depth quality is affected 

by both blur and white noise distortion, although the influence of distortion on perceived 

depth is less than the influence on perceived image quality [81]. Another recent study 

showed that, when viewing stereoscopic videos compressed by an H.264/AVC encoder 

using a range of QP values, perceived depth quality remained constant for some subjects, 

but varied with perceived image quality for others [82]. Subject agreement on perceived 

depth quality was much lower than on perceived image quality. Clearly, more research is 

merited on how perceived depth quality is affected by different distortion types, and on 

what kinds of depth cues are most strongly correlated with the reduced quality of depth 

perception when viewing distorted stereoparis.    
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CHAPTER 6 NO-REFERENCE STEREOSCOPIC QUALITY 

ASSESSMENT 

6.1 Introduction 

As mentioned in Chapter 2, the field of 3D QA has seen lesser research activity 

than that of 2D QA. Amongst these 3D QA models, there exist only a few reduced 

reference (RR) and no-reference (NR) models. Further, none of these models 

demonstrated performance competitive with FR 2D or 3D models, or with human 

perception of 3D quality.  

This chapter describes the design of a NR 3D QA model that outperforms all 2D 

FR QA models and most 3D FR QA models in predicting the perceived 3D quality of 

natural stereo images. This NR 3D IQA model deploys 2D and 3D features extracted 

from stereopairs to assess the perceptual quality. Both symmetric- and 

asymmetric-distorted stereopairs are handled by accounting for binocular rivalry using a 

classic linear rivalry model. The extracted natural scene statistics (NSS) features are used 

to train a support vector machine to predict the quality of a test stereopair. I verified the 

performance of the proposed NR IQA model on the LIVE 3D Image Quality Database, 
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which includes both symmetric- and asymmetric-distorted stereoscopic 3D images. The 

experimental results show that the proposed model significantly outperforms 

conventional 2D full-reference QA algorithms applied to stereopairs, as well as 3D 

full-reference IQA algorithms on asymmetrically distorted stereopairs.  

 

6.2 The proposed NR 3D IQA model 

 

A flowchart of the proposed model is shown in Fig. 33. Given a stereo imagepair, 

an estimated disparity map is generated by a SSIM-based stereo algorithm, while a set of 

Gabor filter responses are generated on the stereo images using a filterbank. A 

“cyclopean” image is then synthesized from the stereo image pair, the estimated disparity 

map, and the Gabor filter responses. 2D features are then extracted from the synthesized 

“cyclopean” image, while 3D features are independently extracted from the estimated 

disparity map and an uncertainty map that is also produced by the stereo matching 

algorithm. Finally, the extracted 2D and 3D features are fed into a quality estimation 

module which predicts the perceived 3D quality of each tested stereo imagepair.  

The linear model proposed by Levelt [9] is used to synthesize the “cyclopean” 

image from a stereo image pair. First, a disparity map is estimated from a test stereo pair 



108 

 

using a very simple SSIM-based stereo matching algorithm. The algorithm operates by 

search for disparities yield the best SSIM match between left and right image patches, 

where ties are broken by selecting the lower disparity solution. This estimated disparity 

map is then used to create a disparity-compensated right view image. The Gabor filter 

responses are then extracted from the left view image and the disparity-compensated right 

view image. Finally, a “cyclopean” image is synthesized from the left and 

disparity-compensated right views and their Gabor filter responses. The details of this 

process can be found in Chapter 5. Since the contribution of this chapter is the method of 

selecting and extracting features and the way they are used to perform NR 3D QA, we 

only focus on explaining these later parts. 
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6.2.1 2D feature extraction 

Research on natural scene statistics (NSS) has demonstrated that images of 

natural scenes belong to a small set of the space of all possible signals and that they obey 

predictable statistical laws [72] . Successful 2D NR QA algorithms [36-38, 83] based on 

the statistics of natural scenes (and the fact that human perception has adapted to these 

 

Fig. 33 The flowchart of the proposed 3D NR QA model 



110 

 

statistics over the eons) have achieved comparable QA prediction performance as high 

performance FR QA models [30, 33]. Although images of real-world scenes may vary 

greatly in their luminance and color distributions, by pre-processing images in 

biologically relevant way, e.g., by processes of predictive coding [84] and divisive 

normalization [85] , yields transformed images obeying a regular parametric statistical 

model [86, 87]. Ruderman [87] showed that images processed via a simple local mean 

subtraction and divisive variance normalization produces nearly decorrelated luminance 

obeying a Gaussian-like distribution. This model closely mimics the classicalcenter 

surround model with adaptive gain control. Using these kind of NSS features, Mittal, et 

al. [36]  developed a highly competitive 2D NR IQA model called BRISQUE. 

We apply similar pre-processing on the synthesized Cyclopean image: 

 
 

(7)  

 

where i, j are spatial indices, µ and σ are the local sample mean and weighted standard 

deviation computed by a local window, and C is a constant that ensures stability. In our 

implementation, we use a 11x11 Gaussian weighting matrix to compute µ and σ and set C 

= 0.01.  
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Following [36] , we model the coefficients (7) of the possibly distorted cyclopean 

image as following a generalized Gaussian distribution (GGD): 

 
 

(8)  

where µ ,  and γ are the mean, variance, and shape-parameter of the distribution,  

 
 

(9)  

 

 

(10)  

and  is the gamma function:  

 
 

(11)  

The parameters (σ and γ ) are estimated using the method used in [88]. The skewness and 

the kurtosis of these coefficients are also estimated method. 

 

6.2.2 3D feature extraction 

Features based on natural scene statistics have been shown to be effective, robust 

tools for predicting the quality of natural images. The success of NSS-based features is 

built on the fact that pristine natural scenes trend to follow certain regular statistical laws. 

Following this philosophy when modeling 3D images, we also build into our QA model 

features derived from 3D natural scene statistic models. As compared to the extensive 

body of literature on 2D natural luminance statistics, studies on the statistics of disparity 
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and depth have been quite limited. One possible explanation for this dearth is that 

acquiring accurate disparity data is a much more difficult task than capturing 2D imaging 

data. Further, there is no known method to explicitly model the 3D experience of viewing 

a natural 3D scene.  

There has also been only a small amount of work on modeling of natural 3D 

statistics. Huang [89] first studied the statistics of range images, using range data 

measured by a laser range-finder. They begin with the assumption that natural range 

maps follow the random collage model, i.e. that a range image can be partitioned into 

disjoint smooth surfaces separated by discontinuities. Yang and Purves [90] further 

studied the statistics of range data, which were acquired by a laser scanner, and found 

that their range data is quite rough and is anisotropic in nature. If a viewing model is 

defined, the range data can be transformed into a disparity data. To study the statistics of 

disparity, Hibbard [91] and Liu, et al. [92] model the fixation distance of a virtual 

subject. An essential difference between these two approaches is that ground truth range 

data (measured by a laser scanner) is analyzed in Liu's work, while Hibbard used a 

random collage sphere model to synthesize range data. Both groups found that the 



113 

 

distribution of disparity follows a Laplacian shape. In the following, we discuss how to 

incorporate 2D and 3D NSS models in the 3D QA problem. 

To conduct the task of no-reference quality assessment on a stereo image pair, it 

is assumed that only the stereopair is available, without any reference data including 

ground truth disparity. Thus, the only accessible 3D feature is estimated disparity from a 

stereo matching algorithm. Here, we use a simple SSIM-based stereo matching algorithm 

to estimate a disparity map. Therefore, it is worth discussing the difference between 

ground truth disparity and estimated disparity. Fig. 34 shows a stereopair with ground 

truth disparity and estimated disparity map. This stereopair was captured using a 

parallel-camera set-up with a laser scanner that captures ground truth range data. The 

ground truth disparity map is directly converted from the range data since the capture 

model is known. In Fig. 34, one can clearly see that there are many estimated errors, 

especially towards the bottom sections of the image. The errors are produced by the 

complex, repetitive texture of the sidewalk, which the simple low-complexity 

stereo-algorithm doesn't handle well. Moreover, the slanting foreground surface plane is 

smoothly captured in the ground truth disparity map while the estimated map shows a 

ladder-like appearance map due to the integer pixel precision of the stereo algorithm. Fig. 
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35 depicts the histogram of a ground truth and an estimated disparity map both are before 

after local mean removal and divisive normalization as in (7). The top left and top right 

of Fig. 35 suggest that no known model distribution could be used to consistently fit 

them. However, following the normalization process, the ground truth disparity 

distribution takes a Gaussian-like shape, while the estimated disparity distribution is 

much more peaky and heavily tailed. Both are zero-mean symmetric distribution and can 

be modelled as following a GGD. As before, we take the following as features: GGD 

parameters, standard deviation, skewness, and kurtosis. 

 

 

Fig. 34. A stereopair with ground truth disparity and estimated disparity. Top left: 

Right view of the stereo image. Top right: Left view of the stereo image. 

Bottom left: Ground truth disparity. Bottom right: Estimated disparity. 
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These 3D NSS features can be effectively used in the process of distinguishing a 

pristine stereo image pair from a distorted version of it. We used five common distortion 

types to impair the stereo image data: white noise, blur, JPEG compression, JPEG2000 

(JP2K) compression, and a Fast-Fading (FF) model based on the Rayleigh fading 

channel. Fig. 36 shows histograms of the estimated disparities of stereo images distorted 

by these models. It shows clear differences in the shape (kurtosis) and spread. The 

 

Fig. 35. Top left: Histogram of ground truth disparity map. Top right: Histogram of 

the estimated disparity map. Bottom left: Histogram of the local-normalized 

ground truth disparity map GGD fit overlaid. Bottom right: Histogram of the 

estimated disparity map with GGD fit overlaid. Bottom left: Ground truth 

disparity. Bottom right: Estimated disparity. 
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disparity estimated from the pristine stereopair has the highest kurtosis, while JP2K 

distortion produces the most Gaussian-like distribution. 

 

Other than the estimated disparity, the uncertainty produced by the SSIM-based 

stereo matching algorithm is a useful feature for the task of 3D NR QA. The uncertainty 

is defined as 

 
 

(12)  

where l is the left-view image and r is the disparity-compensated right-view image of a 

stereopair. The uncertainty reflects the degree of similarity (or lack thereof) between the 

 

Fig. 36. Disparity distributions of a distorted stereopair. 
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corresponding pixels of a stereopair. We have observed that the histograms of noise-free 

natural stereopairs captured using a paralleled-camera setting present a very positive 

skew distribution. This may be understood by observing that the stereo-matching 

algorithm generally finds good matches (low-uncertainty) at most places, while relatively 

rare occluded or ambiguous flat or textured areas may cause sparse errors in the results of 

the stereo matching algorithm (high-uncertainty), contributing weight to the tail of the 

uncertainty distribution. Fig. 37 demonstrates this observation. The bottom right plate of 

Fig. 37 shows that most regions of the image have a low uncertainty, while higher 

uncertainty values are observed around the sky and trees. To model this observation, we 

fit a log-normal distribution to the histogram of the uncertainty map. The probability 

density function of a log-normal distribution is defined as 

 

 

(13)  

where µ is the location parameter and σ is the scale parameter. A maximum likelihood 

method is used to estimated µ and σ for a given histogram of uncertainties. 
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The histogram of uncertainty also varies when a stereopair is distorted. Fig. 38 

shows the uncertainty distribution of stereopairs distorted by white noise, blur, FF, JPEG 

compression and JP2K compression. As depicted, in Fig. 38, the uncertainty distribution 

predictably changes with distortion type. For example, since a Gaussian blur distortion 

suppresses details in the stereopair, the uncertainties in the disparity estimation are 

reduced, yielding a more peaky distribution of uncertainties. White noise, JPEG, 

 

Fig. 37. Top left: Left view of a stereopair. Top right: Histogram of the uncertainty 

map and the best log-normal fit. Bottom left: The estimated disparity map. 

Bottom right: The uncertainty map produced by the stereo matching algorithm. 
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JPEG2K, and FF distortion increase the uncertainty of stereo matching and reduce the 

peaky-ness of the uncertainty distribution. 

 

To summarize, the 3D features used for 3D NR QA prediction are the GGD fit 

parameters (µ, σ), the standard deviation, skewness, and kurtosis of the local-normalized 

estimated disparity map, and the best-fit log-normal parameters (µ, σ), skewness, and 

kurtosis of the uncertainty map. 

 

 

 

Fig. 38. Plot of modelled uncertainty distributions of distorted stereopair. 
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6.2.3 Quality estimation 

A two-stage QA framework is used to predict the quality of a test stereopair. This 

follows the framework introduced in [34] and elaborated in the 2D IQA DIIVINE index 

[38] . In their model, a probabilistic support vector classifier is applied first to decide the 

most likely distortion type afflicting the stereopair. A support vector regressor (SVR) is 

then used to assess the perceptual distortion severity. However, unlike DIIVINE, here, 

the classifier in our 3D NR IQA model is designed to decide whether a stereo pair is 

symmetrically or asymmetrically distorted without predicting the distortion type. This is 

important since asymmetrically distorted stereopairs may create binocularly rivalrous 3D 

experiences, and may yield different extracted 3D features than symmetrically distorted 

stereopairs. In the human study on distorted stereopairs that we conducted [50], we found 

that the perceived quality of a asymmetrically distorted stereopair is not accurately 

predicted by the simple average quality of the stereo views, although the quality of 

symmetrically distorted stereopairs might be accurately predicted in this manner. The 

same feature vector is used for classification and regression. After the classification 

process is complete, the predicted quality score is computed as the dot product of the 

distortion probability vector and the vector of symmetric/asymmetric quality scores.  
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6.3 Results 

We utilized the LIVE 3D Image Quality Database to verify the performance of 

our proposed 3D NR IQA model. Although part of this database is publicly available [8] 

(Phase I consisting of symmetric distortions), a second phase has only recently been 

created. 

6.3.1 LIVE 3D Image Quality Database 

This database was constructed in two phases. Phase I contains symmetrically 

distorted stimuli while phase II has both symmetrically and asymmetrically distorted 

stimuli. Thus, phase I and phase II are actually different and complementary datasets. 

Phase I [8] has 20 pristine stereopairs and 365 distorted stereopairs, while phase II has 8 

pristine sterepairs and 360 distorted stereopairs. The details of the dataset and of the 

human studies that were conducted on them to subjectively annotate the stimuli are 

described in the following. 

6.3.1.1 Source Images 

The pristine stereo images used in both phases are stereo images co-registered 

with range data measured by a high-performance range scanner (RIEGL VZ-400) 

obtained by a Nikon D700 digital camera. The stereo image pairs were shot using a 65 
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mm baseline. The sizes of the images are 640 x 360 pixels. Fig. 39 shows a stereopair and 

its associated a ground truth depth map. For further details on the data acquisition, see 

[8]. 

 

6.3.1.2 Participants 

In both phases, each subject reported normal or corrected normal vision and no 

acuity or color test was deemed necessary. However, a Randot stereo test was used to 

pre-screen participants for normal stereo vision in phase II. Phase I utilized thirty-two 

participators with a male-majority population. In phase II, six females and twenty-seven 

males participated in the experiment, aged between 22 and 42 years. 

 

Fig. 39. A stereo image (free-fuse the left and right images) and ground truth 

disparity maps. 
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6.3.1.3 Display Setting 

Phase I was conducted with a iZ3D 22'' 3D monitor with passive polarized 3D 

glasses, while phase II was conducted using a Panasonic 58'' 3D TV with active shutter 

glasses. The viewing distance was four times the screen height in both cases. 

6.3.1.4 Stimuli 

Both phases used five types of distortions: compression using the JPEG and 

JPEG2000 compression standards, additive white Gaussian noise, Gaussian blur and a 

fast-fading model based on the Rayleigh fading channel. The degradation of stimuli was 

varied by controlling parameters within a pre-defined range, as reported in Table 21. The 

ranges of control parameters were decided beforehand to ensure that the distortions 

varied from almost invisible to severely distorted with a good overall perceptual 

separation between distortion levels throughout. Due to the different viewing 

environments, the ranges of distortions are also different in the two experimental phases. 

The phase I dataset contains only symmetrically distorted stereo images (80 each 

for JP2K, JPEG, WN, and FF; 45 for Blur) while the phase II dataset has both 

symmetrically and asymmetrically distorted stereo images (72 images for each distortion 

type). A ‘symmetrically’ distorted stereopair implies that the same ‘amount’ of distortion 

was added to the left and right image, while the ‘asymmetrically’ distorted stereopair has 
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a different ‘amount’ of distortion in the two views. In the phase II dataset, for each 

distortion type, every reference stereopair was distorted to create three symmetric 

distorted stereopairs and six asymmetric distorted stereopairs. 

 

6.3.1.5 Procedure 

A single stimulus continuous quality scale (SSCQS) [55] study with hidden 

reference was conducted in both phases. Both studies used continuous scales labelled by 

equally spaced adjective terms: bad, poor, fair, good, and excellent, i.e. a Liekart scale. 

Both studies were divided into 2 sessions; each of less than 30 minutes to minimize 

subject fatigue. A training session was also conducted before the beginning of each study 

to help familiarize participants with the GUI. 

6.3.1.6 Subjective Quality Scores 

Table 21 Range of parameter values for distortion simulation 
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Difference opinion scores (DOS) were obtaining by subtracting the ratings that 

the subject gave each reference stimuli from the ratings that the subjective gave to the 

corresponding test distorted stimuli. The remaining subjective scores were then 

normalized to Z-scores, and averaged across subjects to produce difference mean opinion 

scores (DMOS). Fig. 40 shows the distribution of DMOS of the database. The DMOS 

distributions of phase I and phase II are quite different. In the phase I dataset, the DMOS 

given to WN and FF distorted stimuli varied from -10 to 60, the DMOS given to JP2K 

and Blur distorted stimuli have a range between -10 and 40, and the DMOS given to 

JPEG have a significantly narrower range from -10 to 20 indicating less perceptual 

distortion overall and smaller differences in perceived severity. Similarly, JP2K and Blur 

was generally less visible than WN and FF in the phase I dataset. However, in the phase 

II dataset, only the JPEG distorted stimuli were less visible than other distortion types, 

while WN, JP2K, Blur, and FF distortions were generally within a similar quality range. 

The DMOS scores of both symmetric and asymmetric stimuli are plotted in Fig. 41. From 

the plot, it is apparent that the different DMOS ranges were not caused by the symmetry 

(or lack of) of the distortion. 
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6.3.2 Classification accuracy 

The first layer of our proposed 3D NR IQA model is the symmetric vs. 

asymmetric distortion classifier. We used the LIBSVM package [93] to perform 

classification. To assess the performance of the classifier, we performed 1000 iterations 

 

Fig. 41. Left: DMOS of Phase II symmetric distorted stimuli. Right: DMOS of Phase 

II asymmetric distorted stimuli 

 

 

Fig. 40. Left: DMOS of LIVE 3D Image Quality Database Phase I. Right: DMOS of 

LIVE 3D Image Quality Database Phase II. 
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of the train-test process. At each iteration, we randomly picked 80% of the dataset as 

training data and the remaining 20% to test. The mean classification was 82.07% with 

standard deviation 2.88. 

6.3.3 Performance 

6.3.3.1 Phase I dataset 

Since the proposed algorithm requires training, 1000 iterations of the train-test 

process was used. At each iteration, the phase I dataset was randomly divided into 80% 

training and 20% test across 1000 iterations. The performance was measured by the 

Spearman's Rank Ordered Correlation Coefficient (SROCC) between the predicted scores 

and the DMOS. The median performance across the 1000 iterations is reported.  

We compared the performance of our 3D NR IQA model with several 2D FR and 

NR IQA models: PSNR, SSIM [30], MS-SSIM [29], and BRISQUE [36]. SSIM and 

MS-SSIM are FR IQA algorithms, while BRISQUE is a high performance NR QA 

algorithm. For all 2D QA algorithms, the predicted quality of a stereopair is taken to be 

the average quality predicted from the left and right views. The SROCC numbers are 

shown in Table 22. Our proposed model performs as well as BRISQUE, but a little 

poorer than MS-SSIM. As we found in our prior human study, depth seems to have little 

influence on the perceived quality of distorted stereopairs, although other aspects of 
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binocular fusion, such as introduced rivalries, are important. Since there is little or no 

binocular rivalry from the distortion present in the stimuli in the Phase I dataset, we do 

not expect any significant improvement in performance under our 3D NR IQA model. In 

addition, the performance of our model is significantly lower on the JPEG distorted 

stimuli as compared to other distorted stimuli, but the same holds for all of the other QA 

algorithms. As shown in Fig. 40, the JPEG distorted stimuli represent a more difficult 

challenge because their qualities are less perceptually separated. 

 

We also studied the relative performance of other 3D IQA algorithms. The FR 3D 

IQA algorithms compared include a PSNR-based 3D stereo IQA algorithm proposed by 

Table 22 Comparison of 2D IQA algorithms: SROCC against DMOS on the LIVE 

Phase I 3D IQA dataset. Italicized algorithms are NR IQA algorithms, all 

others are FR IQA algorithms. 
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Gorley and Holliman [41], a SSIM-based stereo IQA model proposed by Benoit, et al. 

[44], Cyclopean MS-SSIM [94] which considers the influence of binocular rivalry on 

perceived 3D quality, and a 3D QA algorithm proposed by You, et al., who applied a 

variety of 2D FR IQA algorithms on steropairs and disparity maps to combine the 

predicted quality scores from stereopairs and disparity maps into predicted 3D quality 

score in a variety of ways. We report their best result (a SSIM-based algorithm) on our 

database. The RR 3D IQA algorithm proposed by Hewage, et al. [52] and the NR 3D 

IQA algorithm proposed by Akhter, et al. [53] are also included. We used a SSIM-based 

stereo-matching algorithm to generate disparity maps for these 3D IQA models. Their 

performances in terms of SROCC are reported in Table 23. This table shows that 

Cyclopean MS-SSIM has the best performance among all compared 3D IQA algorithms 

although its performance is not significantly different than the performance of 2D 

MS-SSIM. The results also show that our NR algorithm outperforms most of the 3D IQA 

algorithms, except for Cyclopean MS-SSIM and the FR models proposed by Benoit, et 

al. when dealing with symmetrically distorted stereopairs. The RR IQA model [52] 

performs slightly worse than 2D PSNR, while the NR IQA model proposed by Akhter, et 

al [53] performs significantly worse than 2D PSNR. As shown in the table, 2D MS-SSIM 



130 

 

showed the best performance on symmetrically distorted stereopairs, outperforming most 

3D QA algorithms, except for Cyclopean MS-SSIM. 

 

6.3.3.2 Phase II dataset 

Binocular rivalry is the main factor that affects the perceived 3D quality of 

asymmetrically distorted stereopairs. On the Phase II dataset, 1000 iterations of train-test 

process were again used. We report the median result of the 1000 runs. The same set of 

2D and 3D IQA algorithms was tested on the phase II dataset. The results are reported in 

Table 24 and Table 25, respectively. As shown in Table 24, the performance of our 

model is significantly better than all of the 2D IQA models. Breaking down performance 

by distortion type, the improvement relative to different 2D QA models are observed for 

Table 23 Comparison of 3D IQA models: SROCC against DMOS of the Phase I 

dataset. Italicized algorithms are NR IQA algorithms, all others are RR or FR 

IQA algorithms. 
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all distortion types, except for WN. This observation is reasonable, since there is no 

binocular suppression observed in WN distorted stereopairs. The perceived quality of a 

WN distorted stereopair is about the average of the qualities of the left and right view. 

 

Table 24 Comparison of 2D IQA algorithms: SROCC against DMOS on the LIVE 

Phase II 3D IQA dataset. Italicized algorithms are NR IQA algorithms, others 

are FR IQA algorithms. 
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Table 25 shows the results against the mixed dataset of all 3D IQA algorithms. 

Our model delivers the best performance compared to most other models. The FR 

Cyclopean MS-SSIM yields an insignificant difference in performance. However, all of 

the others delivered significantly lower performance than these two models. Among 

individual distortion types, the proposed model performs either better than or at parity 

with the best for all distortion types. Compared with the other 3D NR IQA algorithms 

[53], our model performs significantly better on the entire dataset and for each distortion 

type.  

Table 25 Comparison of 3D IQA algorithms: SROCC against DMOS on the LIVE 

Phase II 3D IQA dataset. Italicized algorithms are NR IQA algorithms, others 

are FR IQA algorithms. 
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We also studied the performance of the tested algorithms broken down by the way 

they are distorted (symmetrically or asymmetrically). Table 26 shows the performances 

of the 2D and 3D IQA algorithms. It is apparent that our model performs as well as 2D 

MS-SSIM, You's algorithm, and Cyclopean MS-SSIM on symmetrically distorted stereo 

3D images. When dealing with asymmetrically distorted stereo 3D images, our model 

significantly outperforms all other 2D and 3D IQA algorithms, except Cyclopean 

MS-SSIM, which also models binocular rivalry.  
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Comparisons across the phase I and phase II datasets indicate that, the FR 

Cyclopean MS-SSIM model and our new 3D NR IQA model perform competitively on 

the symmetric dataset and outperform all other 2D and 3D IQA algorithms on the mixed 

dataset. The 3D FR QA model proposed by You, et al. performs as well as SSIM on both 

datasets. The SSIM-based 3D FR model proposed by Benoit performs as well as SSIM 

Table 26 Break down of performance on symmetrically and asymmetrically 

distorted stimuli in the Phase II dataset. Italicized algorithms are NR IQA 

models, others are RR or FR IQA algorithms. 

 



135 

 

on the symmetric dataset, but significantly worse than SSIM on the mixed dataset. The 

others 3D IQA models perform worse than PSNR on both datasets.  

To further verify the performance of our model, we also report performance 

across datasets. Since only the phase II dataset included both symmetrically and 

asymmetrically distorted stereopairs, we trained our model on the phase II dataset and 

tested on the phase I dataset. The result is reported in Table 27. Across datasets, our 

model performs equally well on WN, JP2K, JPEG, and the blur distorted stereopairs, but 

the performance was lower on FF distorted stereopairs. The overall performance drops 

slightly due to the performance loss on the WN and FF distorted stimuli.  

 

6.4 Conclusion 

Table 27 Test across datasets: SROCC against DMOS of the Phase I dataset 

 WN JP2K JPEG Blur FF ALL 

Train with Phase II dataset 0.826 0.849 0.626 0.882 0.423 0.865 

1000 iterations on Phase I 

dataset 

0.919 0.863 0.617 0.878 0.652 0.891 
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In this chapter, I proposed a no-reference stereoscopic 3D image quality 

assessment algorithm based on 2D and 3D natural scene statistics. The resulting 

algorithm utilizes statistical features previously proposed for 2D NR algorithms and 

binocular rivalry modelled by 3D FR IQA algorithms. When there is no binocular rivalry, 

our algorithm performs as well as the state-of-the-art 2D NR IQA algorithm. Compared 

with 3D IQA algorithms, our algorithm significantly outperforms 3D NR QA algorithms 

and delivers competitive performance relative to high performance 3D FR IQA 

algorithms. 

In the future, this framework can be extended to predict the quality of 

depth-image-base-rendered (DIBR) 3D images. DIBR generated 3D images may have 

distortions caused by hole-filling algorithms, 3D warping algorithms, and errors from 

depth estimation. The challenge of IQA models for DIBR generated 3D images is not 

limited to visible distortions. Unnaturalness of synthesized 3D stereopairs may contribute 

to visual discomfort, which is more difficult to quantify than image quality.  In the next 

chapter, I will discuss the perceived depth quality related to the 3D representation of 

distortion-free stereo images.  
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CHAPTER 7 QUALITY OF DEPTH 

7.1 Introduction 

Currently, most natural 3D images and videos are captured using a dual-camera 

configuration. Generally, there are two methodologies of camera settings: the parallel 

camera configuration and the toe-in camera configuration. Both have their own strengths 

and weaknesses, but the toe-in camera configuration requires more knowledge and effort 

in capturing stereo videos since the user needs to decide the vergence point in depth, 

which change during capture. Therefore, the parallel camera configuration is often used 

to capture stereo images or videos with consumer cameras [2] or smart phones [95]. 

However, post-processing is required to enable binocular fusion of the stereo content, and 

to avoid visual discomfort when viewing these images. Because the images captured by a 

parallel camera configuration only allows uncrossed disparity values, post-processing is 

needed to create crossed disparity values and to limit all disparity values to within a 

certain range. Fig. 42 illustrates that objects in front of the screen have disparities that are 

crossed, while objects behind the screen have uncrossed disparities. Fig. 42 also shows 

the parallel camera configuration. Since the focal plane is located at the point of infinity, 

only crossed disparities exist in stereo images captured in this way.  
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As mentioned in chapter 2, several factors may affect the quality of stereo 

viewing, but I focus on the visual discomfort caused by the vergence-accommodation 

conflict [96, 97]. The vergence accommodation conflict is illustrated in Fig. 43. In this 

figure, the observers’ eyes focus on the screen, and the virtual point is the viewed object. 

Despite inconsistences between vergence and accommodation, human subjects can 

tolerate a certain degree of discrepancy and still see a fused stereo image instead of two 

overlapped images. To avoid seeing double images instead of a cyclopean image, the 

disparity values of a stereo image must fall within a certain range which depends on 

viewing distance, the depth of the object, the screen resolution, and individual factors. 

 

Fig. 42 Left : Illustration of crossed and uncrossed disparity. Right: The parallel 

camera configuration. 
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Yeh and Silverstein [98] conducted a human study and claimed that human subjects can 

fuse stereo images if 
93.4 for crossed disparity and 

57.1  for 

uncrossed disparity.  

However, observers may still feel discomfort even though they are able to view 

stereo 3D images. Hence, a theory “zone of comfortable viewing” has been proposed and 

several studies have been conducted [20-22, 99-102]. The zone of comfortable viewing is 

not tightly defined, but the concept can be understood from Fig. 43. The difference 

between the zone of comfortable viewing and the vergence-accommodation conflict is 

that the tolerable discrepancy is smaller in the forme. Wopking [103] claimed that human 

subjects will not experience any discomfort in viewing a stereo 3D image if
1  

(Fig. 43). 
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This chapter further discusses the 3D viewing experience (since there is no 

distortion, the 3D viewing experience is affected by the quality of depth) when a 3D 

image is displayed such that it is within - the “zone of comfortable viewing.”  To 

improve the stereo viewing experience, I propose post-processing techniques that not 

only cause the disparities in a 3D presentation to fall within the zone of comfortable 

viewing but also deliver an optimal 3D viewing experience. Specifically, we seek to 

compute the best 3D presentation that delivers the most pleasant 3D viewing experience. 

7.2 Presentation model 

Our approach analyzes the content of a given 3D image in order to deliver a more 

pleasant 3D presentation by avoiding conflicts in 3D viewing and optimizing 

stereoscopic depth resolution. Human depth perception is affected by both monocular 

 

Fig. 43 Zone of comfortable stereo viewing 
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cues and binocular cues [16]. Conflicts between depth cues may create viewing 

discomfort or ambiguity in perceiving depths. Although it is not yet clear how the brain 

integrates these cues and produces a final sense of depths, it is rare to experience 

conflicting depth cues when viewing natural 3D images. Avoiding conflicts of depth cues 

by post-processing of the disparity values will help produce pleasant 3D viewing 

experiences.  

In addition, when viewing a stereo 3D image on a stereo 3D display, the focused 

plane (accomodation of our eyes) is fixed on the screen. However, in our daily 3D vision, 

the accomodation of our eyes constantly changes as the vergence varies while scanning a 

3D scene. Since the focal plane is fixed and the vergence plane may vary when viewing 

stereo 3D images on a display, the disconnect between accomodation and vergence may 

reduce the quality of depth percept. 

 

7.2.1 Foreground/ background dominance  

 

The human eyes have a very wide field of view [104], and thus images that we 

see in our daily life are likely to be mostly “background dominant”. Hence, to avoid 

conflicts between depth cues, the composition of a stereo 3D image should be carefully 
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considered as an integral part of post-processing its disparity values. For example, if a 

stereo image is deemed to be “background dominant”, then it should be disparity shifted 

so that it appears to be placed farther in the depth when displayed on 3D. Conversely, the 

presentation of a “foreground dominant” 3D image should be placed closer to the viewer. 

To implement this idea, a foreground/background dominant classification process 

is needed. We have found two factors that can be used to sucessfully classify 3D images 

in this way: the skew of the disparity distribution, and Relative Dominant Depth (RDD) 

in the  3D image.  The skew is computed as 
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(14)  

where id  is the disparity value of a pixel and d  is the mean disparity of the 3D image. 

Then a 3D image is classified being “foreground dominant” if skewness > 1 

          and “background dominant” if skewness < –1         - . Images 

which have |skewness| < 1 |        |   either have a non-normal disparity 

distribution or cannot be classified by skewness. In this case, the RDD is used to force a 

classification, where  
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and the                     is the mode of the given disparity set. A 3D image is 

classified as “foreground dominant” if |RDD| < ξ and “background dominant” if |RDD| 

> ξ, where ξ = 0.25 in this work.  

 

7.2.2 Maximizing depth resolution 

 

Field, et al. [105] showed that a minimum degree of variation in disparity that is 

needed for the human vision system to perceive different depths between objects. This is 

called the stereo threshold. Studies [16, 57, 106] have shown that the lowest thresholds 

are generally obtained at a zero pedestal disparity, and the threshold increases with 

increasing crossed or uncrossed pedestal disparity. The function which provides the 

stereo threshold at different disparities is called the stereoacuity function [57]. Fig. 44 

shows the stereoacuity function of a female subject having normal stereo vision; her 

minimal threshold disparity is 24 arcsec at zero disparity. One can see clearly that human 

stereoacuity is most sensitive at the focus plane (the viewing screen in the 3D viewing of 

stereo images) and this observation indicates that human vision system has the highest 

depth resolution for objects around zero disparity. 
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Consider the case in which two objects have a relative disparity of 120 arcsec, but 

an average disparity of zero. (i.e., they have disparities of +1 and -1 arcmin, respectively) 

The subject, who has the stereoacuity function shown in Fig. 3, should see these two 

objects as laying in different depth planes. Now consider the case in which they have the 

same relative disparity, but one has a pedestal disparity of +40 arcmin and thus the other 

has a pesdestal disparity of +42 arcmin. In this case, the dispairty between them is below 

threshod, and no relative depth will be perceived. Hence, we claim that the subject can 

see depth with better resolution when the two objects are arranged around the zero 

pedestal disparity. To quantify the ability to resolve depth, we approximate the negative 

of the stereoacuity function, i.e. 1 – s(d), in terms of the pixel disparity with a Gaussian 

 

Fig. 44. Stereoacuity function, s(d) with 100 ms stimuli from [57] 
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function, and call it the “depth resolution function” here. Then we solve the problem of 

optimizing the 3D presentation of a 3D image by maximizing the perceived depth 

resolution. This operation can be expressed by 

                 
         

            (16)  

where the DRF is the depth resolution function using σ = 20 arcmin, which is chosen to 

give the best fit to the stereoacuity function. Hist(0) is the histogram of the disparity of a 

3D image without being post-processed and Hist(i) is the histogram of the disparity of a 

3D image shifted by i. Based on this operation, the shift value that yields the maximum 

product (i.e. opt shift) is deemed to provide a best 3D viewing experience in depth. The 

process of the shifting is illustrated in Fig. 45 and Fig. 46. Fig. 45 is a stereo image from 

the Middlebury stereo database. Fig. 46 illustrates the post-processing done on these 

images: a global shift of the left and right images to reduce/increase their disparity 

values. The global shift does not change the relative disparity values within a stereo pair. 

Indeed, some stereo display systems allow users to change this global shift manually to 

choose their preferred 3D effect.  
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7.2.3 Optimizing the presentation 

 

The proposed algorithm is  

 

Fig. 46 Shifting the stereo image inside zone of comfortable viewing 

 

 

Fig. 45 A stereo image 
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1. Classify an input 3D image into either foreground or background dominant image 

as described in Sec. 7.2.1. 

2. For the foreground dominant image, as described in Sec. 7.2.2, find the shift value 

that yields the maximum product of the depth resolution function and the disparity 

histogram.  

3. For the background dominant image, find the shift value that places the closest 

surface on the screen.  

4. Shift the left and right images so that the resulting 3D image has the desired depth 

according to the shift value found in Step 3 or Step 4. Then crop the undefined 

pixels on the boundary. For example, after an image is shifted to left by 3 

columns, there are three undefined columns on the right side of the image.  

The overall algorithm is described in Fig. 47.  



148 

 

 

7.3 Human Study 

 

A human study was conducted to assess the above algorithm. The study is 

described next. 

7.3.1 Study design 

A double stimulus continuous quality scale (DSCQS) protocol [55] was adopted 

to obtain subjective 3D quality ratings. During a single trial, a subject compared two 3D 

images with different depth relative to the screen and gave both of them a subjective 3D 

 

Fig. 47. Flowchart of the proposed algorithm. 
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quality score based on his/her preference. The question given to subjects is “Give a 3D 

viewing quality rating”. Since it is a forced-choice procedure, the subjects could not rate 

both images as having equal 3D quality scores. A training session was also undertaken at 

the beginning of the study to familiarize them with the Graphical User Interface (GUI) of 

our study program. The training content was different from the images used in the study. 

Repeated viewing of the same 3D image was allowed before the subject gave a rating. 

The GUI is shown in Fig. 48. 

 

7.3.2 Display 

 

Fig. 48 The GUI of DSCQS in our study 
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An nVidia active 3D kit plus an Alienware OptX AW2310 full HD 3D monitor 

were used to display the 3D images. The viewing distance from subjects to screen was 

five times the screen height to minimize potential visual discomfort caused by the 

accommodation-vergence conflict.   

7.3.3 Observers 

Seventeen naïve observers (seven females and ten males) were recruited for the 

study. The subjects were pre-screened to ensure normal stereovision by asking them to 

distinguish the depth of three colored rectangles separated from each other by 6 arcmin in 

depth. 

7.3.4 Stimuli 

Twelve stereo images with ground truth disparity were chosen as source images. 

Seven of these stereo images were captured by the parallel camera configuration and 

were taken from the Middlebury stereo database [70], and five of them were artificial 3D 

stereo images (three were from MPEG 3D coding test videos, two were created by me). 

We used an approximately equal number of “foreground dominant” and “background 

dominant” image. The original resolution of the images was equal to or larger than full 

HD size and they were resized to full HD resolution by cropping the extra part.  
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To create a baseline without ground truth depth, the reference image was created 

by placing the closest surface inside the image at the depth of the screen. Then, four 

different stimuli were created by either pulling the scene in front of screen or by pushing 

it deeper into the screen by shifting disparities. The distance of two adjacent stimuli is 

13.7 arcmin. In addition, one scene was created by maximizing the depth resolution, as 

described in Session 7.2.2. Finally, all stimuli have disparities that satisfy the “zone of 

comfort viewing” suggested by [103]. 

7.4 Results and analysis  

Differential Mean Opinion Score (DMOS) are usually used as quality scores 

annotated to the content in image quality database. However, all of the stimuli in this 

study are pristine images, so comparing depth quality among stimuli which have different 

content is meaningless. On the contrary, intra-content comparisons can provide insights 

regarding the best perceptual 3D depth range of a stereo pair. Hence, the average ranking 

given by human subjects is used as a criterion to evaluate the performance of 3D images 

displayed with different (shifted) depth ranges.  

Six different profiles were used for each source image. The ranking of each 

source image ranges from 1 (the best) to 6 (the worst). The performance achieved by a 
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3D presentation is represented by the average ranking over twelve source images. Two 

types of rankings were used. The first is “ranking DMOS (weighted ranking)” which is 

the ranking sorted by DMOS scores. The second is “ranking vote”, which only considers 

binary decisions (stimulus A gets one vote if one subject prefers stimulus A over stimulus 

B) and the ranking is sorted by the voting results. The overall ranking is the average of 

these two rankings. 

The experimental results are shown in Fig. 49. The “closer” profile is to set the 

disparity value of the closest surface at -13.7 arcmin (crossed disparity) and the disparity 

value of the closest surface for “farther” and “farthest” profiles are 13.7 arcmin and 27.4 

arcmin respectively. Four observations can be made from Fig. 49. First, the reference 

strategy, which places the closest surface on the screen, has a ranking of 3.25. This 

ranking is slightly better than the expected ranking (3.5) when the nearest surface is 

placed randomly inside the zone of comfortable viewing. Second, comparing the “closer” 

and “farther” profiles, we observe when extra computation is not allowed, the better 

strategy is to push the closest surface deeper into the screen rather than pull it out of the 

screen. Third, the strategy which maximizes the depth resolution performs better than the 

reference strategy, but worse than the “farther” profile. A plausible explanation is that 
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this strategy works for “foreground dominant” 3D images, but creates depth cue conflicts 

for “background dominant” 3D images. Finally, the proposed algorithm which applies 

both of strategies based on content gives the best performance (overall ranking is 1.83). 

Fig. 50 shows an example of the proposed algorithm. In Fig. 50, the left image is a 

foreground dominant image and we found that the best 3D presentation is to place the 

dominant depth on the screen. The right image is a background dominant image and the 

best 3D presentation is to place the closet object on the screen. 

 

 

Fig. 49 Performance of different 3D image presentation strategies. Error bars 

represent the standard errors. 
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7.5 Conclusion  

We believe that the degree of comfort in viewing a 3D image as a function of the 

depth range it is assigned is correlated with the stereoacuity function of the human visual 

system and the content of the 3D image. A human study was conducted which supports 

 

Fig. 50 Top Left: a foreground dominant image with a positively skewed disparity 

distribution.  

Top Bottom: The histogram of disparities of the rank one stereo 

representation.    

Top Right: a background dominant image with a negatively skewed disparity 

distribution.  

Top Right: The histogram of disparities of the rank one stereo representation.    

 



155 

 

our argument. The following points can be further considered. First, there should be a 

better strategy in post processing “background dominant” images. Our current strategy is 

to simply place the closest surface at the screen for the background dominant images. 

Second, other content-related factors such as object contours and the composition of a 3D 

image may affect the perception of a stereo 3D image. 
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CHAPTER 8 CONCLUSION AND FUTURE WORKS 

Assessing perceived 3D quality of stereoscopic 3D images is a much more 

complex task than predicting 2D quality and there exist very few 3D QA algorithms at 

the time of this writing. Research suggests “perceived 3D quality” is affected by “spatial 

image quality”, “depth quality”, and “visual comfort”. In this dissertation, I focused on 

the influences of “spatial image quality” and “depth quality” on “perceived 3D quality” 

and minimized potential visual discomfort in all conducted studies by following the 

suggestion of “zone of comfortable viewing”. My first study confirmed that perceived 3D 

quality is affected by both spatial image quality and depth quality, but it also found that 

different subjects tend to have different opinions on depth quality when the viewed stereo 

content is distorted. The result of the first study indicated that more research studies 

should be conducted to understand these diverse quality ratings given to depth quality 

before designing a QA model to predict depth quality of distorted stereo 3D content. 

Moreover, the spatial image quality was shown to be highly correlated to perceived 3D 

quality and the quality ratings given by different subjects were much more coherent. 

Thus, advancing the ability to predict spatial image quality should improve the 

performance of assessing overall perceived 3D quality. 
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Research suggests that spatial image quality of a stereo image is not simply the 

average of spatial qualities of the left and right views. Further, there exists no research 

which discusses depth masking effects on stereo images that are distorted by white noise, 

JPEG compression, JPEG2000 compression, blur, or fast fading. I conducted two more 

human studies to discuss possible masking effects of stereo images that are distorted by 

these five distortion types. The study results indicated that binocular rivalry affects the 

spatial image quality and there is no depth masking effect for distorted stereo images.  

Based on my observations from the human studies, I designed a FR 3D QA 

framework and a NR 3D QA model. My proposed FR 3D QA framework can be used as 

a plug-in with any 2D FR QA model and improve its performance in predicting perceived 

3D quality. The key idea of my proposed framework is to perform 3D quality assessment 

on synthesized “cyclopean” images, which models binocular rivalry using a previously 

proposed linear model. To verify this design, I conducted another large scale human 

study to create a 3D image quality database (called LIVE 3D Image Quality Database 

Phase II). The experimental results confirmed the intuition of the design and verified 

that– this framework improves the performance of 3D QA when there is binocular rivalry 
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while viewing a stereo image. For the case when there is no binocular rivalry, this 

framework performs as well as 2D QA models.  

My proposed 3D NR QA model drew inspiration from research in the area of 

natural scene statistics on 2D images and depth maps. I showed that the statistical 

features from the estimated disparity map and its estimation errors are reliable features to 

predict perceived 3D quality of distorted stereo images. The 3D NR QA model was also 

verified with LIVE 3D Image Quality Database.  

In the last part of my dissertation, I discussed depth quality of distortion-free 

stereo images, which have different 3D presentations but equal spatial resolution and 

quality. The objective of this part was to show that the task of predicting perceived 3D 

quality goes beyond modeling spatial or disparity distortions. The experimental results 

show that perceived depth quality is correlated with the human stereoacuity function and 

our high level understanding of the real world.  

In summary, the contributions of this dissertation are: 

1. Fundamental observations on binocular rivalry and depth masking effects on 

distorted stereo images. These observations demonstrate possible directions to 

improve the performance of 3D QA models; 
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2. A demonstration that modeling binocular rivalry can improve the performance 

of 3D QA models; 

3. A demonstration that statistics of estimated disparity and the estimation errors 

are reliable features to predict perceived 3D Quality, and finally 

4. A demonstration that 3D presentation of a distortion-free stereo image can be 

predicted by considering human stereoacuity function and our high-level 

understanding of the real world.  

These contributions of this dissertation expand our knowledge of perceived 3D 

quality of stereo images and enable advances in the development of high-performance 3D 

QA models. 

3D QA models to predict 3D quality of depth-image-based-rendering (DIBR) 

content would be a good extension of this dissertation. DIBR generated 3D images may 

have distortions caused by hole-filling algorithms, 3D warping algorithms, and errors 

from depth estimation, but a human subject may experience binocular rivalry while 

viewing DIBR generated 3D images. In addition, DIBR generated images have greater 

control on the 3D representation. Thus, the 3D presentation model proposed in this 

dissertation could provide a good reference to generate stereo image with depth quality.     
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