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Medial temporal lobe epilepsy (MTLE) seizures cause
regional damage (Barron et al., 2013), detectable on imaging of
brain structure (VBM; Ashburner et al., 2000) and function (VBP;
Deng et al., 2022). Damage is mediated by aberrant neuronal
activity propagating along existing network architecture (Barron
et al., 2014). However, MTLE disease networks remain ill-
defined and are of great interest to diagnostic and therapeutic
development.

Independent component analysis (ICA; Beckmann et a,
2004) can detect neural-networks by computing multi-variate co-
occurrence patterns across a volume and is validated for
coordinate-based meta-analysis (CBMA/Meta-ICA; Fox et al,
2014; Vanasse et al., 2021). Meta-ICA is methodologically
distinct from mass-univariate meta-analytics (Activation
Likelihood Estimation (ALE); Eickhoff et al., 2016) that simply
detect robust regions/hubs of pathology. Although meta-ICA is
typically used to extract many (>20) healthy canonical networks
(Smith et al., 2009), we applied low-dimensional meta-ICA to
VBM/VBP reports of MTLE-pathology, to infer TLE-specific
network anomalies.

Canonical vs. Disease Networks

Neural networks derived from imaging have revolutionized the
field of neuroscience, a field relying increasingly on high
performance computing. (Bassett & Sporns 2017 - Nature
neuroscience). The intrinsic connectivity of the brain (Seeley et
al., 2007) presents a robust functional architecture, with
networks that are detectable both in resting-state and task-based
neuroimaging (Smith et al., 2009 — PNAS), and are consistent
across analytic modalities (Crossley et al., 2013 — PNAS).

Correspondence of the brain’s functional architecture creosy
during activation and rest

Figure 1. Canonical Networks - Reproduced from Smith et al.,
2009. Functional networks activated by tasks (right columns)
match the resting-state networks (left columns); networks were
extracted meta-analytically and from primary data, respectively.

These “canonical” networks also independently emerge from
structural imaging of diseases, as shown by a transdiagnostic
meta-analysis of coordinate data (Vanasse et al, 2021 -
Communications Biology), supporting the Network Degeneration
Hypothesis (Seeley et al., 2009 — Neuron). Canonical networks
have immensely enhanced our overall understanding of
neurophysiology and neuropathology; however, no diseases
map to just a single canonical network and no such network is
affected by only one disease (Vanasse et al., 2021).

Canonical networks are therefore inadequate to explain
the effects of individual diseases. In order to fully
understand the pathophysiology of a neurologic condition,
disease-specific networks must be defined.
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A web-based platform for meta-analysis in human brain mapping

This neuroimaging research resource aspires to make cognitive
neuroscience and disease-biomarker discovery via coordinate-based
meta-analysis (CBMA) widely accessible to the research community

The database contains >20% of structural/functional imaging literature
+ 25k+ experiments
+ 200k+ subjects
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Figure 7. BrainMap Portal Applications combine state-of-
the-art neuroimaging analytics with high-performance
computing on TACC's Stampede 2 & Maverick 2 systems.

Conclusion

1. Two non-canonical networks are specifically affected by 3. MTLE-networks are spatially distinct beyond the

2.

MTLE pathology.

MTLE Network 1
ICAd=1
MTLE-Network 1 (IC1)

MTLE Network 2
ICAd=2 ICAd=2

MTLE-Network 1 (IC1)

for dimensions of d = 1 (first spatial map — MTLE Network 1) and d = 2 (second and
third spatial maps — MTLE Networks 1 and 2, respectively).

Both MTLE networks are congruent with separate subsets
of symptoms associated with the disease, as shown by
analysis of behavioral meta-data in the BrainMap database

« Network 1 (verbal/motor/visual) explains symptoms of impaired

communication, involuntary movements, and visual hallucinosis

« Network 2 (limbic-attentional) explains symptoms of impaired

awareness, social-emotional deficits, transient amnesia
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Figure 4. Behavioral Analyses of MTLE-networks (extracted by meta-ICA at d = 2),
compared with that of the regions of spatial convergence among all imaging studies of
MTLE disease effects (computed by activati ic likelihood estimation; ALE).

main hubs of disease.

« Spatial cross correlation between Network 1 and Network

2 was minimal (R = 0.042).

« Network 1 was stable, showing congruence (R = 0.890)
between analyses performed atd =1 and d =2
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Figure 5. ICA Comparison with Activation Likelihood Estimation (ALE).
MTLE-networks (IC1 & IC2) only overlap at two MTLE-hubs: hippocampus
and medial dorsal nucleus (MDN) thalamus. Previously identified (Towne et
al., 2022) hubs of MTLE pathology are highlighted in the table in orange.

4. Spatial separation

between the two networks
is not attributable to
structural-functional effect
modification.

« The distribution of VBM
and VBP experiments to
each component network
was shown to be
homogenous by the ¥2
Test for Homogeneity

Distribution of VBM and VBP Experiments
vBP
Count | 45 29

Percent of Total | 608%

Observed Percent Contribution to Each

Network
VBM | VBP
Network 1 743% | 257%
[Network2 325%
Test for Homogeneity
p-value 00695 | >005

Figure 6. We fail to reject the null
hesis (x? test for i

Meta-ICA identified two
physiologically meaningful
networks that bear little

resemblance to canonical
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networks and are specific to MDN Thalamus |
MTLE pathology.
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These MTLE-networks likely
represent discrete seizure-
propagation routes that
originate in the two most
significant disease hubs.
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Figure 8. MTLE seizures spread
beyond the hippocampus and MDN
thalamus in two distinct networks

Meta-ICA is only one of the
many tools that will soon be
available to Big Data Neuroscience researchers on the
BrainMap Community Portal (portal.brainmap.org). This
resource will continue to enable rapid, novel discoveries and
serve as the modern encyclopedia of the brain.

Future Directions

Primary resting-state imaging in MTLE patients should be
pursued to determine the diagnostic and prognostic potential
of these MTLE networks in per-subject prediction.
« MTLE-associated brain changes in individual patients may be
biased toward one network or the other and should be correlated
with clinical markers.

Low-d meta-ICA has the potential to elucidate
neurodegenerative sub-networks
« This method should be tested in the other 100+ neurologic
diseases cataloged in the BrainMap database
(brainmap.org/taxonomy/icd.html).

No optimization statistics are established for ICA at low
dimensions; it will be critical to validate a method for
determining the optimal number of disease sub-networks.
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