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Test and Security in a System-On-Chip Environment 

 

 

Yu-Wei Lee, Ph.D. 

The University of Texas at Austin, 2017 

 

Supervisor:  Nur A. Touba 

 

This dissertation outlines new approaches for test and security in a System-on-Chip 

(SoC) environment. A methodology is proposed for designing a single test access 

mechanism (TAM) architecture on each die with a "bandwidth adapter" that allows it to be 

efficiently used for multiple different test data bandwidths in three-dimensional integrated 

circuits (3D-IC) using through-silicon vias (TSVs).  In this way, a single test architecture 

can be re-used for pre-bond, partial stack, and post-bond testing while minimizing test time 

across all phases of test.  Unlike previous approaches, this methodology does not need 

multiple TAM architectures or reconfigurable wrappers in order to be efficient when the 

test data bandwidth changes. In industry, sequential linear decompression is widely used 

to reduce data and bandwidth requirements. A new scheme using a multiple polynomial 

linear feedback shift register (LFSR) with rotating polynomial is proposed here to increase 

encoding flexibility resulting in higher compression ratios. An algorithm is described to 

assign test cubes to polynomials in a way that enhances encoding efficiency. For hardware 

security, a new attack strategy against logic obfuscation is described here.  It is based on 

applying brute force iteratively to each logic cone one at a time and is shown to 

significantly reduce the number of brute force key combinations that need to be tried by an 

attacker. It is shown that inserting key gates based on MUXes is an effective approach to 
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increase security against this type of attack. In data security for hardware, existing 

techniques for computing with encrypted operands are either prohibitively expense (e.g., 

fully homomorphic encryption) or only work for special cases (e.g., linear circuits).  A 

lightweight scheme implemented at the gate-level is proposed for computing with noise-

obfuscated data.  By carefully selecting internal locations for noise cancellation in arbitrary 

logic circuits, the overhead can be greatly minimized.  One important application of the 

proposed scheme is for protecting data inside a computing unit obtained from a third party 

IP provider where a hidden backdoor access mechanism or hardware Trojan could be 

maliciously inserted. 
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1. Introduction 

Improvements of IC technology increase the transistor density but also bring more 

challenges for design, verification, and test. As the scale and capabilities of ICs continue 

to grow, more effort is needed to ensure logic correctness and integrity. In design-for-test 

(DFT), scan based design greatly improves circuit testability. Scan chains are formed by 

connecting storage elements in a design into shift registers in test mode to provide better 

control and observability. The IEEE 1149.x family, also called Joint Test Action Group 

(JTAG) standard [IEEE 1149.1-2001], is one of the most widely adopted standards for 

DFT. Figure 1 presents an example of the JTAG architecture. Basic elements in JTAG 

include scan cells, test access ports (TAP), TAP controller, and instruction registers for the 

JTAG controller.  

 

Figure 1. JTAG Architecture 
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A System-on-Chip (SoC) can be viewed as a collection of multiple cores 

implementing different applications.  Each core can be separately designed and integrated 

later onto a single piece of silicon. SoCs allows intellectual property (IP) cores to be easily 

reused and shortens design time for complex applications. DFT for SoCs may be 

complicated by the fact that each IP core may have different specifications for test. The 

IEEE 1500 standard was proposed to address the SoC core based test problem [Marinissen 

99]. It inherits most of the properties of IEEE 1149.1 with some additional hardware 

components such as a test wrapper for each core, a single source and sink for test access, 

and an on chip test-access mechanism (TAM) to connect wrappers to the test controller. 

Figure 2 shows an example of an IEEE 1500 system in a SoC consisting of N cores. 

Optimizing TAMs is often a challenging problem in DFT since each core in a SoC may 

have a different specification for test, and the TAM is responsible for control and 

distribution of test data for each core under test. 

 

Figure 2. IEEE 1500 in a SoC of N Cores  
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Manufacturing SoCs implemented with three-dimensional integrated circuits (3D-

ICs) have become an increasingly used approach that provides technological advantages 

over traditional 2D design. In a 3D-IC, dies are manufactured individually before stacking. 

Before stacking, pre-bond testing can be used to screen out defective die and only known-

good die (KGD) are used when constructing the stack.  Furthermore, during construction 

of the stack, additional known-good stack (KGS) testing can be done after each die is 

added. During each phase of test, the access mechanism and bandwidth requirement may 

be different. In chapter 2, a methodology is proposed for designing a single TAM 

architecture on each die with a "bandwidth adapter" that allows it to be efficiently used for 

multiple different test data bandwidths.  

As SoC designs scale, more components are being integrated. Even with more 

components, test circuitry usually does not scale as quickly as the functional part. This 

creates challenges for test data compression because each component needs a separate 

testcubes, but still must sharing the same tester bandwidth. Test data compression is widely 

used to compress the amount of data stored on the tester.  This helps to reduce tester storage 

requirements and improve test time as less data has to be transferred over the limited test 

data bandwidth between the tester and chip-under-test. Sequential linear decompression is 

a highly efficient technique used to reduce tester bandwidth requirement as well as data 

storage. This approach is based on a linear feedback shift register (LFSR) with multiple 

locations to inject variables from tester. Test cubes can be encoded by solving a system of 

linear equations where each equation corresponds to a care bit in the test vector being 

encoded [Könemann 01], [Krishna 01], [Rajski 04]. 

 One common drawback for conventional LFSR decompression, however, is the 

encoding flexibility of the test cubes is restricted by the LFSR polynomial. Some test cubes 

simply are not encodable by some polynomials, but may be encodable by a different 

polynomial. Encoding flexibility can be greatly increased with a multiple-polynomial 

LFSR [Hellebrand 95] in which multiple polynomials can be selected to encode different 

test cubes.  In chapter 3, a new data compression scheme based on a rotating multiple 
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polynomial LFSR is proposed to improve data compression in sequential linear 

decompression. The implementation eliminates the conventional control bits needed to 

switch the polynomials, and is made efficient in terms of hardware overhead through 

exploiting properties of primitive polynomials.  

Advancement in DFT improves controllability and observability, but creates 

concerns that sensitive information about an IC might be exposed. The security concerns 

for an IC are applicable to both logic and data. IP piracy has become a problem for 

designers because an unauthorized party may learn and reproduce the design without 

consent by using reverse engineering. Another problem is that a malicious party may obtain 

enough knowledge about the design to insert additional circuitry to disrupt or change 

normal functionality. This kind of malicious circuitry is known as hardware Trojans. Logic 

obfuscation has been proposed to protect ICs against these attacks [Roy 08, 10], 

[Chakraborty 09a], [Baumgarten 10], [Rajendran 12, 14]. One approach is to use 

combinational obfuscation where "key gates" are inserted in a design which have primary 

inputs that are referred to as "key inputs". The design will only function correctly if the 

correct key values are used [Roy 08, 10]. In chapter 3, a new form of attack against logic 

obfuscation through analysis of logic cones is considered. In addition, a way to counter 

such an attack with MUXes as key gates is described.  

In addition to protecting the hardware, the data stored and processed in the 

hardware also needs to be protected. This concern is becoming increasingly prominent as 

more ICs are used for processing critical and personal information.  For encryption in 

software, a groundbreaking scheme called fully homomorphic encryption (FHE) is 

proposed in [Gentry 09]. FHE allows computing with encrypted data so that an attacker 

could not obtain the plain text even with the ability to snoop information within the 

computation hardware. FHE can be implemented in software with very high performance 

overhead and implementation cost in hardware is unrealistically high. Chapter 4 proposes 

a lightweight hardware computing scheme where the computation is conducted on 

obfuscated data. The idea for protecting data in the computing unit is to insert noise in the 
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input data and cancel it out both partially internally in the computing unit as well as fully 

at the output of the computing unit.  A key idea in the proposed approach is to reduce the 

complexity of the noise cancellation logic by carefully selecting internal locations to do 

local noise cancelling.  This is done in a way that prevents more than one input per gate 

from propagating noise thereby avoiding the complexity that arises from reconvergent 

noise propagation paths. While the proposed methodology does not provide the level of 

strong encryption that fully homomorphic encryption would provide, it has the advantage 

of being lightweight, easy to implement, and can be deployed with relatively minimal 

performance impact.  One important application of this approach is for protecting data 

inside a computing unit obtained from a third party IP provider where a hidden backdoor 

access mechanism or hardware Trojan could be maliciously inserted.  Chapter 5 concludes 

the dissertation with a summary of the contributions and suggestions for future work. 

  



6 
 

2. Unified 3D Test Architecture for Variable Test Data Bandwidth 

Across Pre-Bond, Partial Stack, and Post-Bond Test1 

Three-dimensional integrated circuits (3D-IC) using through-silicon vias (TSVs) are an 

important new technology that provides a number of significant advantages including 

increased functional density, shorter interconnect, higher performance, and lower power.  

Stacking in a 3D-IC can be done wafer-to-wafer (W2W), die-to-wafer (D2W), or die-to-

die (D2D). W2W allows higher manufacturing throughput, but achieving a good compound 

yield is difficult.  In D2W and D2D, pre-bond testing can be used to screen out defective 

die and use only known-good die (KGD) when constructing the stack.  Furthermore, during 

construction of the stack, additional known-good stack (KGS) testing can be done after 

each die is added to the stack which adds additional test cost, but has been shown to payoff 

in reducing overall costs by avoid additional processing in some cases [Taouil 10].   

In order to do pre-bond testing on the non-bottom layers, it is necessary to add probe 

pads for test purposes.  This is because the TSV tips as well as the microbumps are too 

small to be probed and are sensitive to scrub marks [Marinissen 09].  These probe pads are 

a test overhead that takes up a lot of space and limits the locations where TSVs can be 

placed which puts constraints on the design and floorplan of a die.  Minimizing the probe 

pads is very important.  In post-bond test, the bottom layer is accessed through the normal 

functional pins, and test data is transported to the upper layers via test elevator TSVs. 

In 2D testing, test access mechanisms (TAMs) are used to deliver test data to core 

wrappers which interface with the scan chains in the cores.  Procedures for optimizing the 

test architecture (i.e., selecting the width of TAMs, which cores are connected to each 

TAM, and optimizing the test wrappers) to minimize test time and satisfy power constraints 

have been well studied [Iyengar 02], [Goel 02], [Xu 05], [Larsson 05].  These algorithms 

                                                 
1 The work in this chapter is published in [Lee 13]: Y.-W. Lee and N.A. Touba, "Unified 3D Test 
Architecture for Variable Test Data Bandwidth Across Pre-Bond, Partial Stack, and Post-Bond Test," 
Proceedings of IEEE Symposium on Defect and Fault Tolerance, Paper 7.5, 2013. Yu-Wei Lee is the 
author and Nur. A. Touba is the supervisor. 
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are based on having a fixed test data bandwidth available from the tester.  Based on this 

bandwidth they optimize the test architecture to minimize test time. 

For 3D testing, procedures for optimizing the test architecture for post-bond test 

under a constraint on the number of TSVs used as test elevators to bring test data from the 

bottom layer to the non-bottom layers has been proposed in [Wu 08] and [Noia 10a].  In 

[Noia 10b], an optimization procedure is described for generating a test schedule for each 

stage of KGS testing (as each die is added to the stack) followed by the final test. 

In pre-bond test, the test data bandwidth available from the tester for non-bottom 

dies is severely constrained because of the need to minimize the number of probe pads and 

thus will likely be different from the test data bandwidth used in post-bond test.  This 

creates a challenge for optimizing the test architecture to minimize the overall test time 

corresponding to the sum of the test time for pre-bond test of each die plus the time for 

post-bond test of the final stack.  In [Jiang 09], a test optimization procedure is proposed 

for this problem, but it assumed that the test elevators to the non-bottom layers could be 

probed in pre-bond test, however this would require a large number of probe pads to 

accomplish. In [Jiang 12], the problem is addressed by designing two TAM architectures, 

one optimized for the test data bandwidth available for pre-bond test and the other 

optimized for the test data bandwidth available for post-bond test.  The key idea is to try to 

share the test wires in pre-bond and post-bond test as much as possible to minimize 

overhead.  

In this chapter, a methodology is proposed for designing a single TAM architecture 

on each die with a "bandwidth adapter" that allows it to be efficiently used for multiple 

different test data bandwidths.   In this way, a single test architecture can be re-used for 

pre-bond, partial stack, and post-bond testing while minimizing test time across all phases 

of test.  Unlike previous approaches, this methodology does not need multiple TAM 

architectures or reconfigurable wrappers in order to be efficient when the test data 
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bandwidth changes.  This helps to simplify the test architecture and minimize routing and 

overhead costs. The work in this chapter is published in [Lee 13]. 

2.1. PROPOSED SCHEME 

The idea in the proposed scheme is to optimize the test architecture on a particular 

layer for the maximum test data bandwidth, n, that the layer will receive during any phase 

of test (pre-bond, partial stack, or post-bond).  Then for any phase of test where the 

bandwidth to the layer is less than n, a bandwidth adapter is used to handle the bandwidth 

mismatch.  

An input bandwidth adapter is shown in Figure 3.  It takes as an input k bits of test 

data each clock cycle where k is less than or equal to n.  It stores the k-bits received each 

clock cycle in a 2n-1 bit buffer at the location pointed to by the in_pointer and then 

increments the pointer by k mod 2n-1.  When the difference between the in_pointer and 

out_pointer indicates that n or more bits are ready in the buffer, then the bandwidth adapter 

outputs the n bits pointed to by the out_pointer and increments the out_pointer by n mod 

2n-1.  When the n bits are outputted, a pulse is generated on the layer_test_clock so that 

the internal layer TAM will transport the data.  The bandwidth adapter can be designed in 

a general fashion to handle arbitrarily different test data bandwidths.  Note that it is not 

necessary for n to be a multiple of k.  Any value of k can be handled. 
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Figure 3.  Input Bandwidth Adapter 
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clock cycle. 
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Figure 4 illustrates using a bandwidth adapter to unify the test architecture on a die 

for both pre-bond and post-bond test. The incoming bandwidth for pre-bond and post-bond 

tests are different because during pre-bond test, a smaller number of probe pads are used 

so the tester can directly probe the die, whereas during post-bond test, a larger number of 

test elevator TSVs are used to bring test data up from the pins in the bottom layer which 

are connected to the tester.  The test architecture is optimized for the larger post-bond test 

data bandwidth, and then during pre-bond test, when the dies are tested separately, test 

vectors are brought in through the probe pads to the input bandwidth adapter which allows 

it to drive the larger number of TAM lines, and the output TAM lines go through an output 

bandwidth adapter to drive a smaller number of output probe pads. 

 

 

Figure 4.  Block Diagram for Using Bandwidth Adapter 

Figure 5 illustrates all the different phases of test using the bandwidth adapter.  As 

mentioned previously, partial stack test may be optional. With the help of a bandwidth 

adapter, the insertion of a partial stack utilizes the fact that only a subset of dies from the 

final stack test is tested in this stage. With the bandwidth adapter, the underlying test 

architecture does not need to be redesigned for this additional test. That is, the partial stack 

test can be viewed as an intermediate stage of a post-bond test. The dies in these 
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intermediate stages can use any bandwidth different from the final stack test within the 

limitation on the number of test elevators and test pins.   

 

Figure 5.  Unified TAM, Bandwidth Adapter and the Corresponding Test Flow 
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2.2. SELECTING BANDWIDTH FOR EACH STAGE OF TEST 

This section describes how the test bandwidth is allocated at each stage of test to 

minimize the overall test time under the assumption of a unified test architecture with the 

proposed bandwidth adapter. There are two different scenarios considered in this section. 

The first scenario is only a pre-bond and post-bond test. The second scenario also includes 

partial stack tests, which can be viewed as a subset of the final stack test. 

If only pre-bond and post-bond test are performed, the bandwidth used for pre-bond 

test of each die is equal to whatever maximum bandwidth is available from the tester to 

that particular die.  That will depend on how many probe pads are available on the die.  For 

post-bond test, the layers are tested in parallel under the constraint that the total amount of 

bandwidth for all layers is equal to the bandwidth between the tester and the pins of the 

bottom layer which is then distributed to the non-bottom layers via test elevator TSVs.  The 

final post-bond test time is the largest test time among all layers in the design. The test data 

bandwidth that should be allocated to each layer to minimize the total test time needs to be 

selected. 

The problem of determining the optimal post-bond bandwidth allocation to each 

layer can be formulated and solved with dynamic programming. The dynamic 

programming formulation can be written as follows: 

 

⎩
⎪
⎨

⎪
⎧

  T(𝐷௜…௞ , 𝐵) = min { max[ 𝑡𝑖𝑚𝑒௜(𝑏௜), 𝑇(𝐷௜ାଵ…௞ , 𝐵 − 𝑏௜) ] }  
𝑖𝑓 𝑖 < 𝑘

T(𝐷௜…௞ , B) = 𝑡𝑖𝑚𝑒௜(𝐵)  
𝑖𝑓 𝑖 = 𝑘

 

 

Where Di…k represents set of dies from i through k. T(Di…k , B) means the test time 

for dies from i through k with bandwidth B, bi must be greater than 0 and represents the 
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bandwidth allocated to core i, and timei(B) represents the test time for die i with bandwidth 

B.  

The dynamic programming formulation above suggests that the search for an 

optimal bandwidth allocation can be divided into recursive subproblems. In addition, 

instead of examining all possible combinations exhaustively, the algorithm efficiently 

stores the results of overlapping subproblems into a table to avoid repeating unnecessary 

computation.  

Function timei(B) is a design-dependent function which queries what the test time 

for a layer would be using a given bandwidth B.  To get this number, one of the many 2D 

algorithms for optimizing the test architecture for a given test data bandwidth can be used.  

For example, the TR-Architect algorithm [Goel 03] could be used as was done in the 

experiments reported in Section 4, but there are many others in the literature [Xu 05], 

[Larsson 05].  The proposed approach is applicable regardless of how the test architecture 

is optimized on each layer.   

When determining timei(B), the existence of the bandwidth adapter needs to be 

taken into consideration.  If B is smaller than the largest bandwidth used for die i in any 

phase of test, which will be referred to as Bi,max then for bandwidth B, the bandwidth adapter 

will be used to convert bandwidth B into the larger bandwidth Bi,max.  The test time in this 

case will be equal to timei(Bi,max) scaled for the delay through the bandwidth adapter: 

max,
max,

max, )(])([)( i
i

i
iii BBwhenP

B

B
PBtimeBtime 

 

where P is the number of test patterns applied by the bottleneck TAM.  The capture 

cycles for these patterns should not be scaled, so they are subtracted out before multiplying 

by the scaling factor so that only the shift time is scaled, and then the capture cycles are 

added back in unscaled. 

The following is an illustrative example of deriving the optimal bandwidth 

allocation for a post-bond test. There are four dies in this example, D0, D1, D2 and D3 to 
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be placed at layer 0, layer 1, layer 2, and layer 3. The post-bond bandwidth is 6 in this 

example. Table 1 shows the relationship between bandwidth and test length for each die, 

namely the value of timei(B). Note that each die may come from very different designs, so 

the relationship between test time and bandwidth may not be consistent. 

Table 1.  Example of timei(B) 

Bi D0 D1 D2 D3 

1 40 8 20 5 

2 30 7 20 5 

3 20 6 10 5 

4 10 5 10 5 

 

The algorithm begins with checking T(D0…3 , 6), which creates subproblems T(D1…3 

, 5), T(D1…3 , 4), T(D1…3 , 3), T(D1…3 , 2) and T(D1…3 , 1). An example of an overlapping 

subproblem is that both T(D1…3 , 3) and T(D1…3 , 2) produce subproblem T(D2…3 , 1).  Only 

necessary computation will be performed and will only be performed once. In this example, 

the optimal allocation is {b0, b1, b2, b3} = {3, 1, 1, 1}. The post-bond test time with the 

derived bandwidth allocation is 20.  

Now consider partial stack tests.  The bandwidth allocation problem can be solved 

in the same way as it is for final stack except that there are fewer layers.  The same dynamic 

programming approach can be used.  The key is to order the processing from smallest stack 

to largest stack because the bandwidth allocation for smaller stacks will be larger than for 

larger stacks.  In this manner, Bi,max will be determined right away and then in all subsequent 

steps, the use of the bandwidth adapter will be known up front and can be factored in when 

determining timei(B). 
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So the overall procedure is to first determine the bandwidth for each die during pre-

bond test.  This is a given based on the number of probe pads available on the die.  Next, 

if partial stack testing is to be done, then the bandwidth allocation for the smallest partial 

stack is computed first (using dynamic programming) since it will use the largest 

bandwidths, followed by the next smallest partial stack, and so forth until finally doing the 

full stack.  The test architecture for each die is then designed and optimized based on the 

maximum bandwidth, Bi,max, that it receives in any phase of test.  An input and output 

bandwidth adapter is then added to handle all other bandwidths that the die will see in any 

phase of test. 

2.3. EXPERIMENTAL RESULTS 

Experiments were performed on the ITC’02 benchmarks. [Marinissen 02] provides 

detailed descriptions of the ITC’02 benchmarks. Each 3D benchmark has four layers and 

each layer contains a design from the ITC’02 benchmark set. Table 2 lists the components 

of each 3D benchmark. 

Table 2.  3D Benchmarks 

Design Layer 1 Layer 2 Layer 3 Layer 4 

1 h953 d695 u226 d281 

2 f2126 g1023 d695 u226 

3 p93791 p34392 p22810 g1023 

4 q12710 p34392 p22810 f2126 

5 p93791 q12710 p34392 p22810 

6 t512505 p93791 q12710 u226 

7 a586710 p93791 q12710 p22810 

8 a586710 t512505 p93791 p34392 
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To derive the test time for each design for different test data bandwidths, TR-

Architect [Goel 03] was used in two scenarios.  One is where the scan architecture is 

assumed fixed in the design as would be the case for hard cores (results shown in Table 3), 

and the second is where the scan architecture is assumed to be flexible as may be the case 

for soft cores (results shown in Table 4).  The pre-bond bandwidth was assumed to be 8 in 

these experiments for the non-bottom layers, and the bottom layer was assumed to have a 

test data bandwidth of 32, 48, or 64. All possible partial stack tests are tested. The first 

partial stack test, which test layer 0 and layer 1 is referred to as intermediate test 1, and the 

second partial test is referred to as intermediate test 2. The final stack test involves testing 

all dies together.  

In Table 3 and 4, results are shown for 3D designs 1 through 8 which are 

constructed with one ITC'02 benchmark circuit on each layer corresponding to what is 

shown in Table 2. The test time (in clock cycles) for each phase of test is shown comparing 

two cases.  One is where a separate test architecture is designed for each different 

bandwidth (i.e., no bandwith adapter is used), and the other is where a single unified test 

architecture is designed using a bandwidth adapter. 

As can be seen from the results in Tables 3 and 4, the overall test time of the 

proposed approach with a unified test architecture is very close to that of having separately 

optimized test architectures.  In fact, it is even better in a few cases, but that is likely due 

to variations in the efficiency of different bandwidths for a design.  The result is very good 

because it demonstrates that a unified test architecture which is simpler to design and 

requires less hardware overhead is able to do almost as well as if one custom designed a 

test architecture for each bandwidth that a layer sees.  
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Table 3.  Experimental Result for Non-Flexible Designs 

 

  
Pre-bond 

Bandwidth 

Post-Bond 

Bandwidth 

Pre-bond Intermediate Test 1 Intermediate Test 2 Final Stack Overall 

Separately 

Optimized 

Unified 

w/Adapter 

Separately 

Optimized 

Unified 

w/Adapter 

Separately 

Optimized 

Unified 

w/Adapter 

Separately 

Optimized 

Unified 

w/Adapter 

Separately 

Optimized 

Unified 

w/Adapter 
Diff. 

1 

8 32 267163 267163 132343 132343 132343 132343 132343 132343 664192 664192 100.00% 

8 48 267163 267163 132343 132343 132343 132343 132343 132343 664192 664192 100.00% 

8 64 267163 267163 132343 132343 132343 132343 132343 132343 664192 664192 100.00% 

2 

8 32 537887 537887 357757 357757 357757 357757 357757 357757 1611158 1611158 100.00% 

8 48 537887 537887 357757 357757 357757 357757 357757 357757 1611158 1611158 100.00% 

8 64 537887 537887 357757 357757 357757 357757 357757 357757 1611158 1611158 100.00% 

3 

8 32 3961050 3851545 1314769 1314769 1522806 1526525 1538204 1533345 8336829 8226184 98.67% 

8 48 3567417 3670068 921136 921136 1042640 1024827 1068036 1062649 6599229 6678680 101.20% 

8 64 3340565 3477831 695066 695066 812318 795918 833549 812143 5681498 5780958 101.75% 

4 

8 32 6763984 6763984 3466238 3466238 3466238 3466238 3466238 3466238 17162698 17162698 100.00% 

8 48 6763984 6763984 3466238 3466238 3466238 3466238 3466238 3466238 17162698 17162698 100.00% 

8 64 6763984 6763984 3466238 3466238 3466238 3466238 3466238 3466238 17162698 17162698 100.00% 

5 

8 32 9233954 9578467 3466238 3466238 3466238 3466238 3466238 3466238 19632668 19977181 101.75% 

8 48 9233954 9578467 3466238 3466238 3466238 3466238 3466238 3466238 19632668 19977181 101.75% 

8 64 9233954 9578467 3466238 3466238 3466238 3466238 3466238 3466238 19632668 19977181 101.75% 

6 

8 32 30388711 30388711 22973206 22973206 23162552 23699371 24703920 23699371 101228389 100760659 99.54% 

8 48 22627954 22627954 15212449 15212449 17126882 15808671 17229905 15883686 72197190 69532760 96.31% 

8 64 20351239 20351239 12935734 12935734 13024248 13486929 13024248 13486929 59335469 60260831 101.56% 

Avg                         100.95% 
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Table 4.  Experimental Result for Flexible Designs 

 

  
Pre-bond 

Bandwidth 

Post-Bond 

Bandwidth 

Pre-bond Intermediate Test 1 Intermediate Test 2 Final Stack Overall 

Separately 

Optimized 

Unified 

w/Adapter 

Separately 

Optimized 

Unified 

w/Adapter 

Separately 

Optimized 

Unified 

w/Adapter 

Separately 

Optimized 

Unified 

w/Adapter 

Separately 

Optimized 

Unified 

w/Adapter 
Diff. 

1 

8 32 185043 193729 58383 58383 66955 66656 68623 68512 379004 387280 102.18% 

8 48 165924 175251 39264 39264 44455 45225 47749 48264 297392 308004 103.57% 

8 64 155826 162168 29165 29165 33957 33794 35351 35554 254299 260681 102.51% 

2 

8 32 348445 348445 179417 179417 200231 197433 216881 200047 944974 925342 97.92% 

8 48 287954 287954 118926 118926 134129 134104 141317 137619 682326 678603 99.45% 

8 64 259052 259052 90024 90024 99066 99066 104303 102295 552445 550437 99.64% 

3 

8 32 3818236 3875858 1290998 1290998 1514161 1514161 1531433 1570649 8154828 8251666 101.19% 

8 48 3416782 3535277 885071 885071 1006965 1016655 1037496 1042895 6346314 6479898 102.10% 

8 64 3223401 3428306 691690 691690 777193 787404 787323 809828 5479607 5717228 104.34% 

4 

8 32 4348203 4416227 1227133 1227133 1443224 1443023 1633317 1578602 8651877 8664985 100.15% 

8 48 3940850 4129643 842227 842227 971816 982984 1068114 1082651 6823007 7037505 103.14% 

8 64 3753565 4028200 632495 632495 747585 746656 819780 831156 5953425 6238507 104.79% 

5 

8 32 7106302 7105983 1633317 1633317 2040990 2057327 2227321 2228377 13007930 13025004 100.13% 

8 48 6616992 6665707 1085050 1085050 1406248 1406248 1529900 1533397 10638190 10690402 100.49% 

8 64 6365179 6463831 833237 833237 1047365 1068134 1169749 1179100 9415530 9544302 101.37% 

6 

8 32 29922077 29922077 22973206 22973206 24263686 24437740 24333128 24477405 101492097 101810428 100.31% 

8 48 21973150 21973150 15024279 15024279 16249811 15620048 16320517 15938714 69567757 68556191 98.55% 

8 64 18695162 18695162 11746291 11746291 12532429 12138131 12553054 12138131 55526936 54717715 98.54% 

Avg                         101.13% 
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Note that even though the tester bandwidth is the same for all cases in pre-bond 

test, some cases reports different pre-bond test times.  This arises due to the bandwidth 

adapter having to convert from a smaller tester bandwidth to a larger internal TAM 

bandwidth during pre-bond tests. It can be harder to efficiently schedule cores for larger 

TAM bandwidth.  However, the test time in post-bond test is limited by the layer that takes 

the most time since post-bond test is performed in parallel. Therefore, the dynamic 

programming algorithm will try to use a larger TAM bandwidth for the bottleneck layer 

which may slightly increase pre-bond test time due to the inefficiency mentioned above. 

For non-bottleneck layers, the algorithm always try to use a bandwidth bigger than pre-

bond bandwidth to avoid conversion at pre-bond. However, the net effect is improved 

overall test time because the reduction in post-bond test time is significantly greater than 

the increase in pre-bond test time. 

2.4. CONCLUSIONS 

The proposed approach for designing a unified test architecture across all test stages 

in testing 3D-ICs allows efficient hardware utilization without significant overhead in test 

time. It is simple to design and implement, and can be used together with any of the existing 

2D test architecture optimization schemes.  
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3. Improving Test Compression with Multiple-Polynomial LFSRs 

Increasing integration density coupled with the need for more types of tests to be 

applied to achieve quality requirements has resulted in rapidly increasing test data volume.  

Test data compression is widely used to compress the amount of data stored on the tester.  

This helps to reduce tester storage requirements and improve test time as less data has to 

be transferred over the limited test data bandwidth between the tester and chip-under-test 

[Touba 06]. 

One highly efficient approach for compressing test cubes (which are test vectors in 

which the inputs unassigned by ATPG are left as don’t cares) is to use sequential linear 

decompressors to encode them.  Data from the tester are injected into a linear feedback 

shift registers (LFSR) while it loads scan chains thereby “dynamically” reseeding it.  The 

final value of each scan cell after decompressing a test cube can be written as a linear 

equation in terms of the bits coming from the tester which act as free variables that can be 

assigned any value.  Test cubes can be encoded by solving a system of linear equations 

where each equation corresponds to a care bit in the test vector being encoded [Könemann 

01], [Krishna 01], [Rajski 04]. 

The amount of test compression achieved can be increased by increasing the 

number of scan chains driven by the decompressor (i.e., increasing the “expansion ratio’).  

As the expansion ratio is increased, it becomes increasingly difficult to solve the system of 

linear equations because more care bits need to be encoded while the number of free-

variables remains the same.  At some point, the equations for two or more care bits will 

become linearly dependent and not be solvable.  The bottleneck tends to be the scan cells 

loaded the earliest because they depend on fewer free-variables as the number of free-

variables injected in the LFSR in the beginning is small. Consequently there is less 

encoding flexibility for solving the scan chains loaded the earliest and they will tend to 

limit the overall test compression that can be achieved. 



21 
 

One powerful way to increasing the encoding flexibility is to use a multiple-

polynomial LFSR [Hellebrand 95] in which there are several choices for the characteristic 

polynomial of the LFSR.  The polynomial used for encoding each test cube can be selected.  

So if the system of linear equations for one polynomial is linearly dependent and 

unsolvable, then a different polynomial can be selected to change the linear correlations 

and provide a different system of linear equations that may be solvable.  If the multiple-

polynomial LFSR can be configured with say 16 different feedback polynomials, then there 

are 16 different sets of linear equations which can be solved thereby providing a much 

higher probability of encoding a test cube.  This makes a big difference particularly for the 

scan cells loaded the earliest which depend on fewer free variables.  By adding additional 

flexibility in the selection of the polynomial, this weakness can be significantly relieved 

allowing higher expansion ratios to be used to achieve greater test compression. 

The original idea of using a multiple-polynomial LFSR to help in encoding test 

cubes was originally proposed in [Hellebrand 95] in the context of static LFSR reseeding 

in a built-in self-test (BIST) environment.  In static LFSR reseeding, only the initial seed 

of the LFSR contains free-variables.  No additional free-variables are injected during 

decompression.  Thorough analysis and results are presented in [Hellebrand 95] showing 

the effectiveness of multiple polynomials in reducing the number of bits that need to be 

stored on-chip compared with using a single polynomial LFSR for encoding test cubes with 

static reseeding in a BIST environment. 

In this chapter, the use of multiple-polynomial LFSRs for dynamic reseeding in a 

test compression environment is investigated.  The new contributions of this work include 

the following: 

 A scheme for using multiple-polynomial LFSRs without requiring any control data by 

formulating it as a matching problem 

 A way to implement a multiple-polynomial LFSRs with less overhead by exploiting 

properties of primitive polynomials 
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 A method to use multiple-polynomials to increase the effectiveness of retaining unused 

free-variables [Muthyala 12] 

 Experimental results demonstrating the improvements that can be obtained by using 

multiple-polynomials in dynamic reseeding alone and with retained free-variables. 

The chapter is organized as follows:  Section 3.1 reviews the fundamentals of 

sequential linear decompression. Section 3.2 describes the hardware implementation of the 

multiple polynomial LFSR with rotating polynomials. Section 3.3 presents the algorithm 

to assign test cubes to polynomials. Section 3.4 shows the experimental results. Section 3.5 

is a conclusion. 

3.1. SEQUENTIAL LINEAR DECOMPRESSION 

This section reviews the fundamental concepts behind sequential linear 

decomposition and techniques for reducing tester data through retaining free variables. In 

sequential linear decompression, variables are continuously injected into a LFSR 

[Mrugalski 04]. To determine the value of each injected variables, Linear equations can be 

obtained thorough symbolic simulation of the linear decompressor. This process is 

illustrated in figure Figure 6. At each cycle, new variables are injected into the 

decompressor. In Figure 6, these injected variables are represented by X. Also at each cycle, 

the content of the LFSR are being sent to the scan chains. These variables on the scan 

chains are represented by Z. At the bottom of Figure 6, a table is given for the linear 

equations of the variables after three cycles of symbolic simulations. 
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Z9  = X1  X4  X9 Z5  = X3  X7 Z1  = X2  X5 

Z10 = X1  X2  X5  X6 Z6  = X1  X4 Z2  = X3 

Z11 = X2  X3  X5  X7  X8 Z7  = X1  X2  X5  X6 Z3  = X1  X4 

Z12 = X3  X7  X10 Z8  = X2  X5  X8 Z4  = X1  X6 

Figure 6.  Symbolic Simulation of Sequential Linear Decompression 

 

Figure 7 is a Boolean matrix representation of the linear equations obtained from 

the LFSR in Figure 6. Solving these linear equations determines what value should be 

assigned to each variable. Based on the equations, some of the variables may need to be a 

certain value, whereas some variables may be freely assigned with any value. 

Z9 Z5 Z1

Z10 Z6 Z2

+

X1

X2

X3

X9 X7 X5

Z11 Z7 Z3

Z12 Z8 Z4
+

X4

X10 X8 X6

+
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Figure 7.  Matrix Representation of Linear Equations 

The process of solving the linear equations is illustrated in Figure 8. A submatrix 

which corresponds to the rows that specify Z as care bits are extracted. The submatrix is 

then solved with Gauss-Jordan elimination. After the Gauss-Jordan elimination, variables 

can be put into two different categories: pivot and non-pivot variables. The pivot variables 

represent the variables that need to be assigned to a particular value to encode the test cube 

whereas the non-pivot variables can be freely assigned with any value. Therefore, non-

pivot variables are also called free variables. It is desirable to increase the number of free 

variables to reduce amount of data required to be stored on tester. 

 

Figure 8. Solving Linear Equations 

0 1 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 1 0 0 0
1 0 0 1 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0
0 1 0 0 1 0 0 1 0 0
1 0 0 1 0 0 0 0 1 0
1 1 0 0 1 1 0 0 0 0
0 1 1 0 1 0 1 1 0 0
0 0 1 0 0 0 1 0 0 1
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Approaches to increase the number of free variables have been proposed. In 

[Muthyala 12], a FIFO is added before the sequential decompressor to retain the free 

variables. The retained free variables can then be used to encode the next test cube. It has 

been shown that using a FIFO can help to reduce amount of tester data with minimal 

performance impact. 

3.2. PROPOSED APPROACH 

The concept of the proposed scheme is instead of having a fixed LFSR structure 

with one polynomial, the LFSR can be reconfigured to implement multiple different 

polynomials.  If a test cube is not encodable by a particular polynomial, a different 

polynomial can be used instead.  

A Galois LFSR is a type of LFSR where the last bit is sent back and XORed with 

shifted values at certain tap locations. The tap locations depend on the polynomial of the 

LFSR. A multiple polynomial LFSR is implemented with reconfigurable tap locations. 

Figure 9 shows a Galois multiple-polynomial LFSR for sequential linear decompression 

with k bits. The TAPi signals in Figure 9 select which locations to feedback the last bit Bk 

from the LFSR to implement the desired polynomial. 
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Figure 9.  Multiple-polynomial LFSR 

 

If the multiple polynomial LFSR is to be used with a set of p polynomials, then 

log2p control bits are needed to select which polynomial to use.  The p polynomials could 

either be stored in a ROM with p address locations each storing k-1 bits for a k-bit LFSR 

(it is k-1 because the first tap point is always used for any polynomial), or they could be 

implemented with combinational logic having log2p  inputs. The advantage of using a 

ROM implementation is that the set of polynomials can be chosen after the test cubes are 

generated. 

In dynamic LFSR reseeding, where continuous flow decompression is used, it is 

undesirable to have to supply additional control bits to select the polynomial when 
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decompressing a test cube.  The proposed approach solves this problem by exploiting the 

fact that test cubes can be reordered.  The proposed approach uses a counter to select the 

polynomial each time a test cube is decompressed such that the polynomials are constantly 

rotating (i.e., a different polynomial is used in each subsequent test cube decompression 

until all p polynomials have been used at which point it cycles back to the first one). In this 

way, the polynomial that is used to encode a particular test cube can be selected by the way 

the test cubes are ordered.  Many test cubes can be encoded by all the polynomials, so it 

doesn’t matter which one they are matched with.  For some test cubes, only some of the 

polynomials can be used to encode them, so they must be placed in spots where they will 

be decompressed with a polynomial that can encode them.  The next section will formulate 

the problem of ordering the test cubes as a bipartite matching problem.  The advantage of 

this approach is that no control bits are needed for selecting the polynomial, so there is no 

additional data that needs to be stored and transferred from the tester to use a multiple 

polynomial LFSR compared to what is used for a conventional single polynomial LFSR. 

Figure 10 shows the proposed hardware implementation of decompression with a 

multiple polynomial LFSR with a rotating polynomial. In each new test cube 

decompression, the counter increments to switch to the next polynomial. The circuitry that 

generates the polynomial can be either a combinational decoder or a ROM. If it is desired 

to use the scheme described in [Muthyala 12] to retain the unused free variables for one 

test cube to help in encoding the next test cube, a FIFO can optionally be added.  This helps 

to increase encoding efficiency. To maximize the number of free variables retained in the 

FIFO, the process that assigns the test cubes to polynomials can be modified as will be 

described in the next section. 
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Figure 10.  Proposed decompression scheme with multiple-polynomial LFSR 

Hardware overhead for the multiple polynomial LFSR can be further reduced by 

exploiting a property of primitive polynomials which is that the reciprocal of a primitive 

polynomial is also primitive [Pless 11].  The reciprocal is formed by simply reversing the 

order of the coefficients in a polynomial.  For example, for the primitive polynomial (x4 + 

x + 1, i.e., coefficients 10011), the reciprocal polynomial is (x4 + x3 + 1, i.e, 11001) is also 

primitive.  Our experiments showed that the set of test cubes that can be encoded by a 

primitive polynomial and its reciprocal polynomial is as diverse as the polynomial with an 

arbitrary different primitive polynomial.  There is no noticeable degradation in using a 

reciprocal polynomial versus using any other arbitrary primitive polynomial.  The idea 

proposed here is to use this property to reduce the hardware costs.  If a multiple polynomial 

with p primitive polynomials is to be used, instead of storing all p polynomials in the ROM, 

only p/2 polynomials could be stored in the ROM, and then MUXes can be used to generate 

the reciprocal of these p/2 polynomials to generate another set of p/2 polynomials as shown 

in Figure 11.  This approach still generates p total primitive polynomials, but it uses a ROM 

that is half as large.  However, it also requires k-1 2-to-1 MUXes to reverse the polynomials 
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for a k-bit LFSR.  These reason why it is k-1 instead of k is that there are k+1 coefficients 

for each polynomial, but the first and last coefficients are always 1, so they do not need to 

be reversed.  Overall, the cost of the k-1 MUXes is much less than (p/2)(k-1) ROM bits for 

sufficiently large p, and it does not scale as p is increased.  For a combinational decoder 

implementation, using reciprocal polynomials also helps reduce the size of the 

combinational logic although the improvement is less than it is for a ROM implementation. 

 

 

Figure 11.  Reducing hardware overhead for primitive polynomial generation by using 
MUXes to select between a polynomial and its reciprocal 

 

With the rotating polynomials, the test cube encoding process is the following. At 

design time, based on the length of the LFSR, p/2 primitive polynomials of the correct 

length are arbitrarily selected (assuming the reciprocal polynomials will also be used). The 

decompressor is designed with a mod-p counter along with the selected polynomials 

without any assumption of a specific set of test cubes. Once the set of test cubes are 

generated after ATPG, the test cubes are ordered using the procedure described in the next 

section.  Note that multiple test cubes can be decompressed with the same polynomial since 

the counter will cycle back to the same polynomial repeatedly during decompression. 
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3.3. ASSIGNING TEST CUBES TO POLYNOMIALS THROUGH BIPARTITE MATCHING 

Section 3.2 described the decompressor hardware with continuously rotating 

polynomials. In this section, an algorithm is described for ordering the test cubes in a way 

that each test cube is decompressed using a polynomial that can encode it.  

Given the set of polynomials that are rotating in the decompressor, along with the 

test cubes that need to be encoded, the problem can be formulated as a bipartite graph: 

 For each polynomial, a vertex on the left side is created for each time the polynomial 

is repeated during decompression due to the counter cycling through it.  This total 

number of vertices on the right hand size will be equal to the total number of test cubes 

to be decoded.  The set of vertices that represent the polynomials is denoted as VL.   

 For each test cube, a vertex is created on the right side. The set of vertices that represent 

the test cubes is denoted as VR. 

 For each vertex in VL and VR, create an edge if the corresponding polynomial in VL can 

encode the corresponding test cube in VR.  

After the above procedure, the problem of assigning test cubes to polynomials is 

represented with a bipartite graph. A matching is a subset of edges such that each node 

appears exactly one time at the edges in the matching. The problem of finding the 

polynomials to encode all the test cubes is equivalent to a bipartite matching problem with 

a constraint that every node must appear in exactly one match. 

Figure 12 depicts an example of the bipartite matching problem. There are six test 

cubes, each can be encoded by a subset of the three given polynomials. To cover all test 

cubes, the polynomials are repeated twice. For example, vertex P0_0 represents the first 

appearance of polynomial 0, and P0_1 represents the second appearance of polynomial 0. 

Test cube 0, 1, and 2 are represented by vertices c0, c1 and c2 respectively. For each 

polynomial, the encodable test cubes are listed at the bottom. An example of a matching is 

shown in bold edges in Figure 12. Note that there is more than one matching possible. As 
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long as every vertex is matched, it is considered a legal solution to encode all test cubes 

with the given polynomials. 

 

Figure 12.  Example of assigning test cubes to polynomials thorough bipartite matching 

Using the Ford-Fulkerson algorithm, the bipartite matching problem can be solved 

in O(VE).  In this case, the number of vertices is O(T) where T is the total number of test 

cubes, and the number of edges is O(pT) since each test cube can have up to p edges where 

p is the number of polynomials.  Thus, the overall complexity will be O(pT2).  

In Section 3, using a FIFO to implement the scheme in [Muthyala 12] was 

mentioned as an optional unit. The purpose of the FIFO is to improve encoding efficiency 

by retaining as many unused free variables as possible. Under this objective, in addition to 

matching test cubes to polynomials that can encode it, the number of free variables that can 
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be retained should also be considered as this will vary depending on which polynomial is 

used to encode the test cube.  This is because the FIFO only stores the latter free variables, 

and some polynomials will encode with more unused free variables towards the end than 

other polynomials will for a particular test cube.  This can be considered by adding weights 

to the edges in bipartite graph corresponding to the number of free variables that get 

retained. 

 For each edge between VL and VR, label the edge with weight equal to the number of 

free variable retained by encoding the test code represented by the vertex in VR with 

polynomial represented by the vertex in VL. 

This revised scenario is equivalent to the maximum weighted bipartite matching 

problem. It has the same constraint that only one match is allowed for each vertex, but with 

additional objective that the optimal matching is the set of edges with the maximum sum 

of weights. Figure. 13 shows an example of building a maximum weighted bipartite 

matching problem and an optimal solution. The table on the left in Figure 13 describes the 

relationships between 6 test cubes and 3 polynomials. In the table, each entry shows how 

many unused free variables are retained when the polynomial is used to encode that test 

cube. If the entry is left blank, the polynomial cannot encode that test cube. On the right 

side of Figure 13, the edges between the vertices are created with the weight given in the 

table. For better readability, the weights on the edges are not shown. An optimal solution 

to the minimum-weighted matching problem is shown by bold edges in the graph. 
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Figure 13. Assigning test cubes to polynomials considering number of free variables 
retained 

The maximum weighted bipartite matching problem with non-negative edges can 

be solved in O(V2logV + VE).  So in this case, the overall complexity will be O(T2logT) 

assuming the number of testcubes is much larger than the number of polynomials. 

3.4. EXPERIMENTAL RESULTS 

A first set of experiments was performed using a 64-bit LFSR with 16 rotating 

primitive polynomials.  The results are shown in Table 5. The first four columns show 

information about each circuit:  number of test cubes, number of scan cells, and number of 

tester channels.   Results are then shown for the conventional case where each test cube is 

encoded by the same polynomial.  The number of scan chains was increased until it was 

no longer possible to encode all the test cubes with the given number of tester channels.  

The number of scan chains and the resulting amount of data that needs to be stored on the 

tester is shown for the conventional case. 
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Table 5.  Results for Using Proposed Scheme to Encode Test Data 

    Conventional 

Single Poly. 

LFSR 

Proposed 

Circuit Num. Scan Tester 16 Poly. LFSR 16 Poly. LFSR + FIFO 

 Vect. Cells Chans. Scan Tester Scan Tester Percent Scan Tester Percent Overhead 

    Chains Data Chains Data Reduction Chains Data Reduction (Cell Area)

Ckt-A 266 3,828 5 27 190,190 35 151,620 25 37 139,225 37 35 FF 

Ckt-B 540 5,020 8 88 272,160 108 224,640 21 118 207,360 31 46 FF 

Ckt-C 490 6,370 7 54 404,187 71 312,214 29 73 298,872 35 44 FF 

Ckt-D 592 7,417 10 95 485,440 110 402,560 21 130 361,120 34 47 FF 

Ckt-E 711 8,742 9 81 697,491 111 537,516 30 112 506,331 38 32 FF 

Ckt-F 615 12,225 6 60 771,210 75 619,920 24 78 597,708 29 31 FF 

 

In the next section of Table 5, results were generated using the proposed multiple 

polynomial LFSR.  The results under the major heading 16 poly. LFSR show the results 

without the optional FIFO.  The number of scan chains was increased until it was no longer 

possible to encode all the test cubes with the given number of tester channels.  As the 

number of scan chains goes up, the scan length goes down.  Consequently, less data is 

shifted in from the tester to the decompressor, so the amount of data stored on the tester is 

reduced (i.e., the amount of test compression increases).  The percentage reduction in test 

data is computed as: 

)(

)()(

DataTestOriginal

DataTestNewDataTestOriginal 
 

The results show a 21-30% improvement in compression over conventional single 

polynomial LFSR when a rotating polynomial is used.  This is because having multiple 

polynomials to choose from increases the chance of encoding a test cube, so more 

aggressive expansion to more scan chains is possible while still being able to solve the 

linear equations.  That last columns in the table show the results for using an LFSR with 

16 polynomials and including a FIFO to retain unused free variables using the method 
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described in [Muthyala 12].  As can be seen, this boosts the improvement in compression 

up to 29-39%.  The overhead for the FIFO is shown in the last column in terms of the 

number of flip-flops used. 

For the next set of experiments, the relationship between the number of polynomials 

used and the reduction in tester data was explored.  The results are shown in Figure 14.  

Each of the circuits are shown on the x-axis with a bar for 1, 4, 8, and 16 polynomials.  The 

amount of tester data used is shown on the y-axis. From the results, it can be seen that the 

more polynomials that are used, the more efficient the compression is. In some cases, the 

amount of compression stayed the same when the number of polynomials were increased 

(e.g., the results between 4 and 8 polynomials in Ckt-A), but then improved as the number 

of polynomials was increased further (i.e., the results between 8 and 16). 

 

Figure 14. Number of Polynomials versus Test Data 
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3.5. CONCLUSIONS 

Multiple polynomial LFSRs can significantly improve test data compression for 

sequential linear decompressors. This chapter proposed an efficient implementation of a 

multiple polynomial LFSR with rotating polynomials which exploits the degree of freedom 

in ordering test cubes to avoid the need for control bits. Using multiple polynomial LFSRs 

is a low cost way to boost test compression without creating any additional complexity for 

continuous-flow decompression.  The only cost is the additional area overhead for the 

multiple polynomial LFSR versus single polynomials LFSR, and running the bipartite 

matching algorithm for ordering the test cubes which runs in polynomial time. 
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4. Improving Logic Obfuscation via Logic Cone Analysis2 

Logic obfuscation has been proposed as a means to hide the functionality of a 

design to protect it from reverse engineering, hardware Trojan, and IP piracy [Roy 08, 10], 

[Chakraborty 09a], [Baumgarten 10], [Rajendran 12, 14]. One approach is to use 

combinational obfuscation where "key gates" are inserted in a design which have primary 

inputs that are referred to as "key inputs". The design will only function correctly if the 

correct key values are used. This approach was proposed in [Roy 08, 10]. The IP vendor 

activates the obfuscated design by storing the correct key values in a tamper-evident 

memory or using a physically unclonable function (PUF) [Suh 07] to generate them in a 

way that an attacker cannot access the key values. Without the key values, the design is 

unusable even if the netlist is obtained by either stealing the design or reverse engineering 

it. 

Logic obfuscation with XOR and MUXes is investigated in [Rajendran 14]. In order 

to evaluate the effectiveness of the key bits, hamming distance (HD) was used to evaluate 

the result after application of a wrong key. 50% of HD is desired to ensure the malicious 

users will not be able to obtain correct output easily without the correct key.  

In addition to raising the effectiveness of key insertion, [Rajendran 12] also pointed 

out the importance of protecting the key bits against “attacks”. If the attacker has the netlist 

and purchases a functional IC in the open market, then the attacker can try to determine the 

correct key input values to unlock the design. This is done by simulating input patterns on 

the netlist and comparing them with the correct output values obtained by running the same 

input patterns on the functional IC. It is shown in [Rajendran 12] that if an input pattern 

can be found which sensitizes a key input to a primary output without any interference 

from other key inputs, then the input pattern will propagate the correct key value to the 

primary output when running the pattern on the functional IC. The attacker can use ATPG 

                                                 
2 The work in this chapter is published in [Lee 15]: Y.-W. Lee and N.A. Touba, "Improving Logic 
Obfuscation via Logic Cone Analysis," Proceedings of IEEE Latin-American Test Symposium, 2015.Yu-
Wei Lee is the author and Nur. A. Touba is the supervisor. 
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to try to find an input pattern that sensitizes a key input to a primary output treating all 

other key inputs as X's. Each time such a pattern is found, the attacker runs it on the 

functional IC and looks at the output to resolve the key value. Whenever a key value is 

resolved, it is no longer an X when sensitizing the remaining key inputs thereby making 

the problem iteratively easier.  After as many keys are resolved as possible using this 

approach, the remaining keys can be determined through brute force.  The brute force 

procedure is to try each possible combination of values for the keys until the correct one is 

found. Checking if the candidate combination of key values is correct is done by simulating 

a set of random patterns on the netlist using the candidate key values and then comparing 

that with the output response obtained by simulating the same patterns on the functional IC 

to see if they match. 

In [Rajendran 12], a heuristic procedure is proposed for inserting key gates so as to 

increase the amount of interference between the key gates and reduce the chance of finding 

patterns that sensitize a key input to an output without interference from other key inputs. 

The goal is to maximize the number of key values for which brute force must be employed 

thereby increasing the difficulty for the attacker. The heuristic procedure is based on 

constructing a graph in which each node is a key, and weighted edges are placed between 

the nodes to indicate the amount of interference that is created. Each key gate is iteratively 

inserted in the design so as to maximize the resulting sum of the weights on all edges in 

the graph at each step. 

In this chapter, a new form of attack is considered where the attacker can reduce 

the complexity of brute-force attacks through analysis of logic cones. The ideas proposed 

here build on the concepts and overall framework introduced in [Rajendran 12]. An attack 

strategy is proposed in which the attacker considers the design one logic cone at a time. It 

is shown that in many cases, the number of brute force key combinations that need to be 

tried by the attacker can be significantly reduced. A technique for improving the strength 

of the logic obfuscation with respect to the considered attack strategy is proposed. It is 
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based on inserting key gates based of MUXes to increase the size and overlap of logic 

cones. The work in this chapter is published in [Lee 15]. 

MUXes were used in [Charkraborty 09b] to introduce additional inputs in order to 

protect hardware at system level. In the proposed idea, MUXes are used to avoid the 

situation where the attacker can take advantage of less secure logic cones to easily resolve 

key values and thereby iteratively attack the overall logic obfuscation. The MUX key gate 

insertion is done in a non-deterministic manner so that even if an attacker knows the key 

insertion algorithm, the attacker cannot exploit this knowledge to decipher the logic 

obfuscation. 

4.1. BRUTE FORCE ATTACK STRATEGY BASED ON LOGIC CONES 

The attack strategy proposed here can be applied after the key sensitization 

techniques proposed in [Rajendran 12] are applied to resolve as many keys as it can. For 

the remaining keys, the idea here is that brute force can be applied first to the logic cone 

containing the fewest number of key inputs, i.e., the least secure logic cone. All 

combinations of key inputs can be tried to identify for which combinations of values the 

simulated netlist output for that logic cone matches the functional IC output. In many cases, 

there will be only one combination that matches in which case all the key values for that 

cone are resolved. In some cases, there may be more than one combination of key values 

that matches, but it will likely be very few combinations which greatly reduces the search 

space for subsequent keys.  Brute force is then applied for the next logic cone that has the 

fewest remaining unresolved key inputs. The process iterates through all the logic cones 

from easiest to hardest in terms of number of remaining unresolved key inputs in each cone. 

For each cone, additional keys are resolved or the number of possible solutions is greatly 

reduced which helps to simply brute force for the next logic cone. 

This process is illustrated in Figure 15. The circuit has 6 key inputs and if brute 

force is used on the circuit as a whole, 26 different key combinations would have to be 

tried in the worst-case. However, output O1 only depends on two key inputs (K1 and K2). 
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So brute force could be applied on that first requiring only 22 different key combinations 

in the worst-case to resolve K1 and K2. Next, output O3 only depends on two key inputs (K5 

and K6).  Once those are resolved trying 24 combinations worst-case, then there are only 

two keys remaining (K3 and K4) for which brute force needs to be performed for O2.  So 

rather than 26 operations, only 24+24+24 operations would be required in the worst-case.  

While the difference in the number of operations is not large in this small example, it 

quickly scales up exponentially as the number of keys are increased.  

4.2. EFFECTIVE KEY SIZE FOR CONE-BASED ATTACK 

As explained in detail in [Rajendran 12], there are a number of ways that the effects 

of a key can be "muted". For example, for some input patterns the output of a key gate can 
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Figure 15.  Example of Circuit with 6 Key Gates Inserted. 
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be logically masked thereby reducing the number of keys that the circuit output depends 

on which helps to reduce the difficulty for the attacker. Different relationships between key 

gates such as dominating and convergent are studied in [Rajendran 12], and a procedure 

for constructing an interference graph is described. From the interference graph, the 

effective key size, which is the number of keys have to be solved through brute-force, can 

be computed. The number of brute force attempts required to decipher the keys is 

exponential in the effective key size.  In this chapter, the procedure described in [Rajendran 

12] for computing the effective key size from the defender's perspective (which is a 

conservative measure) is used as the basic metric for measuring security. The procedure 

for building the interference graph and computing this value is beyond the scope of this 

chapter, however, a detailed explanation of it can be found in [Rajendran 12]. 

The new aspect of this chapter is that the effective key size is computed w.r.t. each 

logic cone. Here we compute an effective key size against a cone-based attack as follows. 

It is assumed that the logic cone with the smallest effective key size is attacked first and its 

keys are resolved and removed from consideration when computing the effective key size 

for the remaining logic cones. From the remaining logic cones, it is assumed that the one 

with the smallest effective key size is attacked next and its keys are resolved. This process 

is then repeated iteratively until all keys are resolved. The logic cone with the largest 

effective key size when attacked defines the overall effective key size against a cone-based 

attack. 

  Once the attacker considered the logic cones, the computational complexity 

become much lower since the complexity is defined by the overall effective key size. 

Figure 16 presents an analysis of effective key size for a cone-based attack on four ITC99 

benchmarks. The X-axis in Figure 16 shows the iterations of performing a cone-based 

attack. Squared markers on Y-axis show overall effective key size, and rounded markers 

show number of effective keys that is actually solved at each iteration. Initially, the overall 

effective key size is very high when all keys remain unresolved. With cone analysis, 

attackers find and solve a small cone first. The keys were removed subsequently and some 
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bigger cones may now contain fewer keys. This process was iteratively repeated until all 

the keys are resolved. As shown in Figure 16, during the entire attack process, the number 

of effective keys required to be solved remains much lower than the overall effective key 

size. It can be seen that the complexity is greatly reduced because having a cone that is 

easy to attack will also make larger cones become unsafe. 

 

 

Figure 16.  Analysis of Effective Key Size for Cone Based Attack 

 

4.3. INSERTION OF KEY GATES TO COUNTER ATTACK 

In order to counter the logic cone based attack strategy and ensure sufficient 

difficulty for the attacker to obtain the key values, it is necessary to consider the structure 

: Overall Effective Key Size             : Number of Effective Keys Solved at Each Iteration 



43 
 

of the logic cones in the circuit when inserting key gates.   One way to improve the logic 

obfuscation would be to insert more key gates in a way that the number of key gates in 

each logic cone is sufficiently large.  The number of logic cones is equal to the number of 

outputs which potentially could be quite high for large designs.  Thus, it may require 

inserting a lot of key gates to get sufficiently high security for each and every logic cone. 

  The proposed approach involves inserting key gates based on MUXes.  In this 

case, a MUX is inserted on some line in the circuit and the select line for the MUX is 

controlled by a key input. One data input for the MUX comes from the original line in the 

circuit, while the other data input comes from another line in the circuit which can be 

picked arbitrarily provided it does not create a feedback loop. The advantage of using MUX 

key gates is that they can increase the logic cone size and create more overlap between 

logic cones. This tends to increase the number of keys present in each logic cone thereby 

increasing the difficulty for an attacker using a cone-based attack. In fact, as will be seen 

in the experimental results, a relatively small number of MUX key gates can create a high 

degree of overlap among the output cones greatly reducing the effectiveness of a cone-

based attack. 

Figure 17 presents an example where two additional MUX key gates, K7 and K8, 

are inserted in the example from Figure 6. Both K7 and K8 expand the logic cones for O1 

and O3 so that they include more keys. As a result, the overall effective key size is 

increased.    
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The effectiveness of each MUX key gate could be optimized by using an algorithm 

to carefully select the location of each MUX and the secondary data input for each MUX 

to maximize its impact. However, if the attacker knows the deterministic algorithm that is 

used for this, then the attacker may be able to exploit this information to decipher which 

input of the MUX is the real one and which is the artificial one. To avoid this, some 

randomness needs to be introduced.  

  Figure 18 presents pseudo code for selecting locations for MUX insertion. From 

the discussions in the previous sections, putting a MUX where the design is the most 

vulnerable as a key gate should help to reinforce the security. At the same time, the 

algorithm has to have some degree of randomness to prevent reverse-engineering of the 

algorithm. With these two goals in mind, the following is the proposed heuristic. First, 

identify the logic cone with the smallest effective key size in the design.  Randomly choose 

Figure 17.  Example of Circuit with 2 MUX Key Gates Inserted 
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a node in that cone in which to insert the MUX key gate. Finally, connect the MUX so that 

normal functional signal flow goes through one data input and the other data input (i.e., 

side input) can be connected to an arbitrarily picked node that does not create feedback.  

Different strategies for picking the side input were investigated and will be discussed 

shortly. 

 

Figure 18.  Pseudo Code for MUX Insertion 

 

Experiments were performed to compare MUX key gate insertion with the proposed 

heuristic versus just inserting it randomly in the ITC99 benchmark circuits [Corno 00] in 

which 50, 80, and 100 keys were inserted. The results are shown in Table 6.  The first group 

of results is the effective key size when the insertion was purely random. The second group 

of results is the effective key size when insertion location was randomly picked from the 

smallest logic cone in the design. Results are shown for the case where a mix of 50% MUX 

key gates and 50% XOR key gates are used, and for the case where all key gates are MUX 

Input: Design D 

Output: Design D with one additional mux inserted 

 

Function mux_insertion (design D) 

    For all logic cone in design 

        Find logic cone K with fewest effective keys  

    Generate a random location L within cone K 

    Create a new MUX gate at L 

    Connect original gate L’ with L 

    Connect L with side_input( D, L ) 

End of mux_insertion 



46 
 

key gates. The side inputs was randomly selected regardless of the way the location was 

chosen for insertion. Results show that picking the insertion location randomly from the 

smallest logic cone greatly improves the effective key size over random selection. The 

results can be further improved if the side inputs to MUXes is carefully selected. The 

heuristic is discussed next. 

Table 6. Comparison of Different MUX Input Selection Strategies in Effective Key Size 

Circuit 

Name 

Keys 

Insert 

Random 

 

Cone Size  

Based 

Key Size  

Based 

50% 

MUX 

100% 

MUX 

50% 

MUX 

100% 

MUX 

50% 

MUX 

100% 

MUX 

b07 

50 10.4 16.1 16.3 24.5 11.4 14.6 

80 21.9 29.5 31.7 42.2 19.8 30 

100 24.2 39.6 37.6 50.5 26.2 47.8 

b10 

50 8.3 13.8 11.5 13.8 11.1 13 

80 15.7 27.2 38.2 43.5 18.2 25.8 

100 19.2 34.8 44.2 58.6 30.5 58.4 

b11 

50 7.2 9.6 11.1 18.5 9.7 18.9 

80 11.9 18.7 27.8 38.2 25.3 36.4 

100 15.2 25.2 42.1 53.2 41.2 49.9 

b12 

50 3.9 3.8 4.7 7 4.8 5.5 

80 5.3 7.6 9.9 12.9 8.7 13.1 

100 6.4 8.1 13.8 20.4 11.4 19.4 

b13 

50 5.5 6.4 9.9 11.3 8.7 10.5 

80 7.7 13.3 17.2 18.8 14.3 22 

100 10.5 17.1 23.4 32.5 21.1 28.9 

 

Figure 19 presents pseudo code for picking side inputs for the MUXes inserted. 

After the location for inserting MUXes is determined, the algorithm randomly selects three 

candidate locations from all nodes circuit-wide from which to connect the secondary data 

input for the MUX (which would not create feedback). Finally, it uses a heuristic to select 
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one of the three candidates. The heuristic is implemented by the score function in Figure 

19. The following discusses the two proposed heuristics. 

 

 

Figure 19.  Pseudo Code For Selecting Side Inputs 

 

Generally speaking, it may be beneficial to select a side input coming from a large 

logic cone to effectively expand the input dependence of the logic downstream from where 

the MUX key gate is inserted. On the other hand, since the objective is to increase the 

effective keys, another strategy would be to pick a side input that itself depends on a large 

number of effective keys. Both of these heuristics were investigated. The following 

experiment implements and compares the two proposed heuristics. Similar to Table 6, 

experiments were performed for each of these heuristics on ITC99 circuits in which 50, 80, 

Input: Design D, insertion location L 

Output: Side input I for location L 

 

Function side_input (design D, location L) 

    While list C contains less than three locations 

        Generate random location R within design D 

        If (D,L) creates combinational Loop 

            Discard R 

        Else Add R to list C 

    For each location Ci 

        Calculate score (Ci) 

    Return Ci with greatest score 

End of side_input 
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and 100 keys were inserted. The results are shown in Table 7. The first set of results is for 

the case where pure random selection of the secondary data input of the MUX key gates is 

used (provided it doesn't create a feedback loop). The second set of results are for choosing 

the candidate with the largest number of gates in its cone. The last set of results are for 

choosing the candidate with the largest number of key gates in its logic cone. Results are 

shown for the case where a mix of 50% MUX key gates and 50% XOR key gates are used, 

and for the case where all key gates are MUX key gates. The results show that using the 

cone size based or key size based strategy is a significant improvement over random. In 

most cases, selecting the candidate that has the largest number of gates in its cone of logic 

proved to be more effective overall. This may be explained by the fact that because the 

number of keys is continually increasing as the key gate insertion process proceeds, the 

heuristic based on the number of keys has only partial information available at the time 

when it is used, and hence may not be as effective.  
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Table 7. Comparison of Different MUX Input Selection Strategies in Terms of Effective 

Key Size 

 

Case 

 

Keys 

 

Random 

 

Cone Size 

Based 

Key Size  

Based 

50% 

MUX 

100% 

MUX 

50% 

MUX 

100% 

MUX 

50% 

MUX 

100% 

MUX 

b07 

50 10.4 16.1 16.3 24.5 11.4 14.6 

80 21.9 29.5 31.7 42.2 19.8 30 

100 24.2 39.6 37.6 50.5 26.2 47.8 

b10 

50 8.3 13.8 11.5 13.8 11.1 13 

80 15.7 27.2 38.2 43.5 18.2 25.8 

100 19.2 34.8 44.2 58.6 30.5 58.4 

b11 

50 7.2 9.6 11.1 18.5 9.7 18.9 

80 11.9 18.7 27.8 38.2 25.3 36.4 

100 15.2 25.2 42.1 53.2 41.2 49.9 

b12 

50 3.9 3.8 4.7 7 4.8 5.5 

80 5.3 7.6 9.9 12.9 8.7 13.1 

100 6.4 8.1 13.8 20.4 11.4 19.4 

b13 

50 5.5 6.4 9.9 11.3 8.7 10.5 

80 7.7 13.3 17.2 18.8 14.3 22 

100 10.5 17.1 23.4 32.5 21.1 28.9 

 

Note that the use of MUX key gates has a little more routing complexity than XOR 

key gates because it is a three input gate versus a two input gate, so it may be advantageous 

to use a mix of XOR and MUX key gates.  This is explored in the experiments presented 

in the next section. 

4.4. EXPERIMENTAL RESULTS 

Experiments were performed on the ITC99 benchmark circuits [Corno 00]. In Table 

8, results are shown for inserting 50, 80, and 100 keys in each benchmark circuit. The first 

set of results are for computing effective key size across the whole circuit without 
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considering a cone-based attack. Area overhead was estimated with the 45nm FreePDK 

library [NCSU 11].  

Table 8. Comparison of Effective Key Size 

Name Keys 

Inserted 

Whole Circuit  Cone-Based Area 

Overhead Random Insertion Random Insertion Heuristic Insertion 

0% 

MUX 

50% 

MUX 

100% 

MUX 

0% 

MUX 

50% 

MUX 

100% 

MUX 

0% 

MUX 

50% 

MUX 

100% 

MUX 

0% 

MUX 

50% 

MUX 

100% 

MUX 

b07 50 23.2 26.7 28.3 5.7 10.4 16.1 6 34.5 45.7 20.1% 20.9% 19.0% 

80 33.7 40.5 43.9 7.6 21.9 29.5 6.9 56.1 71.1 29.3% 28.7% 27.1% 

100 37 48.6 53 7.6 24.2 39.6 8.2 70.9 88.4 34.6% 33.8% 29.9% 

b10 50 15.2 22.7 28.3 6.8 8.3 13.8 7 30.3 36.9 34.2% 33.2% 31.6% 

80 21.2 34.8 46.3 9.5 15.7 27.2 10.5 50.5 62.4 44.6% 43.8% 42.5% 

100 25 43.2 52.8 11.6 19.2 34.8 10.8 58.4 80.5 50.8% 50.7% 49.8% 

b11 50 19.4 22.7 25.5 6.5 7.2 9.6 6.4 32.9 45.7 10.5% 12.2% 13.6% 

80 28.6 36.8 39.7 8.3 11.9 18.7 8.7 52.3 67.5 15.6% 17.6% 19.6% 

100 34.5 45.7 49.8 10.6 15.2 25.2 10.4 70.4 85.2 19.4% 21.4% 22.2% 

b12 50 9.4 12.7 12 3.5 3.9 3.8 3.8 7.4 30.7 9.8% 9.6% 9.0% 

80 14.9 17.3 24.1 4.7 5.3 7.6 5 29.5 59.8 15.0% 14.7% 13.9% 

100 17 22.6 26.7 4.5 6.4 8.1 5.3 37.5 80 18.2% 17.3% 16.4% 

b13 50 8.6 13.9 16.5 4.1 5.5 6.4 4.3 13.5 28.8 28.2% 27.5% 23.7% 

80 12 21.3 29.9 5.1 7.7 13.3 4.6 29 55 37.6% 37.6% 35.0% 

100 12.2 27.5 34.8 5.4 10.5 17.1 5.4 39.1 75 42.9% 42.8% 40.8% 

b14 50 16.7 17.9 18.5 7.3 7.4 8.1 6.8 26.3 45.6 1.8% 1.8% 1.7% 

80 25.5 26.9 27.8 10.9 11.3 11.6 11 52.6 74.8 3.0% 2.8% 2.7% 

100 30.3 31.8 32.9 12.1 12.8 13.7 13.8 67.8 93.3 3.8% 3.5% 3.3% 

b15 50 19.9 19.9 21.2 4.3 6 6.3 7.1 16.8 28.3 1.2% 1.1% 1.0% 

80 32.4 33.3 33.9 5.3 8.4 12.1 7.7 52.1 74 1.9% 1.8% 1.7% 

100 41.2 43.5 43.8 6.1 14 17.7 7.7 62 90.2 2.5% 2.2% 2.1% 
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Results are shown where different percentage mixes of keys based on XOR gates 

and keys based on MUXes are randomly inserted in the design (100% XOR, 50% XOR 

and 50% MUX, and 100% XOR). Because the results vary depending on where they key 

gates are inserted, the experiment was performed many times and the average effective key 

size across all experiments are reported in the table.  In the second set of results, random 

insertion of key gates is used again, but the effective key size is computed for a cone-based 

attack (as described in Section 4.3).  

As can be seen, the effective key size is much lower when the attacker employs the 

logic cone based attack described in this chapter. It is also clear to see that using key gates 

based on MUXes helps considerably to improve the effective key size as it causes the logic 

cones to become highly overlapped. The last set of results is for using the proposed 

heuristic non-deterministic procedure for inserting key gates. As can be seen, this approach 

does not help when only inserting XOR key gates, but if MUX key gates are inserted, then 

it is very effective in increasing the effective key size in comparison to random insertion. 

This is because it guides the insertion procedure to more efficiently overlap the logic cones 

to counter a cone-based attack.  

Figure 20 shows the number effective keys when 100 key gates are inserted for 

circuit b13 under different ratios of MUX and XOR key gates. The X-axis shows the 

percentage of MUXes inserted. The Y-axis shows the number of effective keys can be 

extracted after insertion. It is clear that the number of effective keys monotonically 

increased as the ratio of MUXes increased.  
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Figure 20.  Effective Key Size for Cone-Based Attack for Insertion of 100 Keys in 
Circuit b13 

Figure 21 shows a graph measure how many total gates need to be inserted to 

achieve an effective key size of 50 for a cone-based attack for circuit b11 for different 

ratios of MUX key gates and XOR key gates.  The x-axis shows the percentage of MUX 

key gates that are inserted (with the rest being XOR key gates), and the y-axis shows the 

total number of key gates that need to be inserted to reach an effective key size of 50. As 

can be seen, as the percentage of MUX key gates is increased, fewer total key gates need 

to be inserted to achieve the same effective key size. However, the marginal improvement 

tapers off at around 40% of MUX gates. Since there is less overhead for inserting XOR 

key gates because they are 2-input gates versus MUX key gates that are 3-input gates, it 

may be cost effective to only insert 40% MUX key gates and the rest XOR key gates in 

this example to achieve a particular level of security as opposed to using all MUX key 

gates. 
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Figure 21.  Number of Keys Inserted to Reach 50 Effective Keys for Cone-Based Attack 
for Circuit b11 

 

4.5. CONCLUSIONS 

The worst-case number of operations for a brute force attack to determine key 

values can be significantly lower if each logic cone is iteratively considered going from 

easiest to hardest.  Techniques to counter this are needed to ensure strong logic obfuscation. 

It was shown that inserting MUX key gates are an effective approach for increasing the 

security against this type of attack. The most cost effective approach is to use a mix of 

XOR key gates and MUX key gates. 
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5. Computing with Obfuscated Data via Noise Insertion and 

Cancellation 

Design-for-trust is an increasingly important topic as more parts of designs are 

sourced from potentially insecure untrusted IPs. In secure computing, sensitive data must 

be kept private by protecting it from being obtained by an attacker.  The key mechanism 

for accomplishing this is to encrypt the data.  This works well for storing and transferring 

the data.  However, computing with encrypted data is a significant challenge.  Existing 

techniques are either prohibitively expensive (e.g., fully homomorphic encryption [Gentry 

09]) or only work for special cases (e.g., only for linear functions [Waksman 11]). 

Consequently, the conventional approach requires decrypting the data before computing 

and once the results are obtained, performing encryption at the output (as illustrated in 

Figure 22).  Thus, the raw data is exposed inside the computing unit and effort must be 

made to keep an attacker from obtaining it either directly or through side-channel attacks. 

 

Figure 22. Conventional Secure Computing Scheme 
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The problem of protecting raw data inside a computing unit is especially 

challenging for IP modules obtained from a third party. Not only does the third party IP 

provider know the functionality of the IP module and is aware of potential ways to access 

the data, but could even maliciously insert a hidden backdoor access mechanism or include 

a hardware Trojan in the design. Moreover, for a poorly designed third party IP, 

vulnerabilities in the IP could even be discovered after the hardware is manufactured. Once 

discovered, these vulnerabilities could be used by any attacker. For example, test mode in 

a chip might be improperly activated and used to access internal data through scan chains. 

The proposed idea for protecting data inside the computing unit is to use a data 

obfuscation technique that involves inserting noise in the input data and canceling it out 

both partially internally in the computing unit as well as fully at the output of the computing 

unit. The proposed scheme is a general technique that can be used for any arbitrary logic 

circuit.   While most conventional secure computing scheme focused on architectural level, 

the proposed work focuses on gate level security threats. Moreover, it is lightweight and 

can easily tradeoff the level of data obfuscation with the amount of overhead added to the 

design.  One application of this approach is to protect data being used in third-party IP 

modules.  If the third-party IP is provided as an RTL design, the proposed noise insertion 

and cancellation logic can be added to the RTL design during synthesis.  Since the third-

party IP provider does not know the specific design of the noise insertion and cancellation 

logic, attacks that use backdoor access or hardware Trojan insertion will only yield the 

obfuscated data. Moreover, computing with obfuscated data may prevent a particular 

internal transition from triggering a Trojan [Waksman 11]. While the proposed approach 

does not provide the level of strong encryption that fully homomorphic encryption [Gentry 

09] would provide, it has the advantage of being lightweight, easy to implement, and can 

be deployed with minimal performance impact.  

Note that a key idea in the proposed work is to reduce the complexity of the noise 

cancellation logic by carefully selecting internal locations to do local noise canceling.  This 

is done in a way that prevents more than one input per gate from propagating noise thereby 
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avoiding the complexity that arises from reconvergent noise propagation paths.  By so 

doing, the proposed methodology is able to significantly reduce the size of the noise 

cancellation logic required for a user specified level of data obfuscation. 

The chapter is organized as follows: Section 5.1. describes related work. Section 

5.2. gives an overview of the problem. Section 5.3. explains how to cancel noise within 

arbitrary computations. Section 5.4. describes a noise path selection algorithm that allows 

efficient insertion of noise cancelling gates. Section 5.5 presents the experimental results. 

Section 5.6 discusses an attacker’s scenario. Section 5.7 is a conclusion. 

5.1. RELATED WORK 

Software techniques for general computing with encrypted data based on fully 

homomorphic encryption [Gentry 09] or garbled circuits [Malkhi 04] exist, but are very 

computationally expensive and slow. Existing secure computing architectures in hardware 

(e.g., [Suh 03], [Fletcher 12], [Breuer 13], etc.) are based on decrypting before the 

computation and encrypting after the computation. Under such schemes, the internal 

computation is performed without any encryption. Computation on obfuscated data based 

on noise insertion has been proposed for non-computation logic (which does not alter the 

data) and linear circuits [Waksman 11]. For logic that does not alter the data, noise is added 

on one end and removed directly on the other end. For logic that is computing with the 

data, linear circuits (e.g., an RSA circuit) allow noise to be added and easily removed. A 

subset of input bits can be flipped with XORs to insert noise to hide the raw data, and it is 

very easy to cancel the noise at the outputs in a linear circuit because each output depends 

on the XOR of a subset of input bits. If the number of inputs (with noise inserted) that a 

particular output depends on is odd, then the output bit is flipped to cancel the noise. In this 

paper, this concept of inserting and canceling noise is applied for non-linear circuits.  In 

non-linear circuits, canceling out the noise is more complicated and can result in large 

overhead if it is not implemented in an intelligent way. A design procedure is presented 

here that partially cancels noise internally in the circuit to keep overhead down. 
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One of the motivations behind computing with obfuscated data is that third party 

IPs may not be fully trusted to be free of internal hardware Trojans. Trojans may be inserted 

at different steps in the logic design flow. At the RTL stage, data obfuscation helps to 

remove Trojan triggers. At this stage, the third party IP provider is the untrusted party. 

[Rajendran 15] proposed ways to detect corruption of registers within third party IPs. 

Trojan detection techniques at RTL level includes but is not limited to behavioral analysis 

[Salamani 13], functional analysis [Waksman 13], and verification techniques [Zhang 15]. 

Trojan insertion after synthesis is based on the assumption that the foundry is the untrusted 

party. Under this assumption, [Wu 16] proposed Trojan prevention and detection based on 

a randomized parity code and memory based switchboxes. At this level, pure detection 

techniques based on side channel analysis [Agrawal 07] and built in authentication with 

signatures [Xiao 14] have been proposed. Security threats from test instruments under a 

third party IP plug-and-play scenario have been discussed in [Baranowski 13] and [Dworak 

13].  

5.2. PROBLEM DEFINITION 

This section formally defines the problem this chapter is addressing and describes 

how it can be used to provide security in third party IPs. 

Given a computation module M which computes output O with data input I, find an 

extended module Mx where M is a subset of Mx. Mx generates the same output O with data 

input Ix which was obfuscated with random key input K through a single level of XOR gates. 

In other words, the objective is to find Mx which satisfies M(I) = O = Mx(Ix) where Ix = I 

xor K. 

Figure 23 illustrates the overall framework of the proposed scheme. Mx has the 

same number of outputs as M and has additional key inputs K on top of all the inputs of M. 

To obfuscate the input Ix to Mx, the XOR cipher C is a module where all inputs of M are 

XORed with the key K. When Mx is placed on top of the XOR cipher C, and C and Mx are 
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connected to the same key K, the combined module should be functionally equivalent to 

the original module M. 

 

Figure 23. Overview of the Proposed Scheme  
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One application of the proposed scheme is for providing security in third-party IPs. 

In this attacker’s scenario, the attacker is either the third party IP provider or whoever 

knows the vulnerability in the soft IP core (e.g. Verilog code). The attacker does not have 

access to the netlists sent to a trusted foundry for manufacturing. When the designer gets a 

soft IP core from a third party, the proposed procedure can be used to add circuitry to insert 

and cancel noise.  The noise can be propagated to particular points inside the module (e.g., 

particular flip-flops) or simply all the way to the primary outputs. The resulting design Mx 

is what will be synthesized to generate the hardware. The inputs going into Mx are 

obfuscated with a XOR cipher and the output can either come out de-obfuscated or 

obfuscated and later de-obfuscated in a separate module elsewhere. Key values are stored 

in a secured memory element such as a physically un-clonable function (PUF) [Suh 07] 

inside Mx or transferred through a secure channel so side-channel attacks on the key values 

are infeasible. If needed, to strengthen against brute force attacks, the contents of K can be 

continuously generated with a linear feedback shift register (LFSR). With an LFSR 

constantly refreshing the key value, the obfuscated value is constantly changing which 

makes brute force attacks much less effective. The correctness of the computation is not 

affected as long as both ends of the computation are synchronized to use the same key 

value.  

In sequential design, the noise can propagate to the pseudo primary outputs (at the 

inputs to the flip-flops). The state flip-flops will then store the obfuscated values. The noise 

cancelling logic is placed right after the state flip-flops to de-obfuscate the pseudo outputs. 

If needed, the de-obfuscated value can be obfuscated again by inserting an XOR cipher 

after the noise cancelling logic. Figure 24 shows the noise cancelling scheme for sequential 

circuits. In Figure 24, the noise cancellation logic stores the noise cancelling signals to be 

applied at the next cycle as the values exit the state flip-flops. The noise re-insertion logic 

obfuscates the pseudo inputs with the current key. 
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Figure 24. Noise Cancelling Scheme for Sequential Logics 
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is created to check the condition necessary to propagate the noise to F. This AND gate can 

then be used to cancel noise through XORing the output of the new AND gate with the 

output of the original gate with the noisy fanin. 

 

Figure 25. Noise Cancelling Gates for AND/OR 
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Figure 26 shows an example where the noise further propagates and the gates that 

are needed to remove the noise are shown. The top left picture shows the original module 

which contains nine gates, three PIs and three POs. On the bottom of the original module 

is an example of a XOR cipher which produces obfuscated inputs, which can be considered 

the noise source. K is the key stored in secured memory elements. The inputs to the original 

module are XORed with the key values and thus a becomes ak., b become bk. and c become 

ck.. The inputs obfuscated by the XOR cipher are fed to the module with noise cancelling 

gates inserted. The module on the right is the final module with noise cancelling gates 

inserted. In this example, the deepest point to which the noise propagates are the primary 

outputs O1 and O3. The bold path shows where the noise propagates in the module. For 

simplicity, most of the noise is cancelled at the first level and PI b is already noise-free. 

The primary input that is actually noisy is marked above the XOR used for cancelling noise.  
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Figure 26. Example of Inserting Noise Cancelling Gates with Noise Paths Shown in Bold 
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5.4. NOISE PROPAGATION PATH SELECTION IN AIGS 

The procedure described in Section 5.3 cancels noise propagating in a module with 

XOR and AND gates. The noise path needs to be chosen carefully to keep overhead from 

the additional XOR and AND gates down. This section describes the proposed algorithm 

based on and-inverter graphs (AIG) that is used to select noise propagation paths and then 

determine how many XOR and AND gates are needed to cancel the noise.  

An AIG is a directed and acyclic graph that represents the structure of a circuit. 

Figure 27 presents an AIG of the same module shown in Figure 26. In Figure 27, Shaded 

nodes represents PO and nodes with dotted outline represent PI. Each node in the AIG has 

two inputs, representing their logical conjunction. The edges between the nodes may 

contain markers which indicate logical negation. AIGs are widely used in logic synthesis 

because of their simple structure which allows efficient manipulation of large logic 

networks [Kuehlmann 02].  

 

Figure 27. AIG of the same module shown in Figure 26. 
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The inputs to the path selection algorithm are the module and the targets where the 

noise needs to be propagated to. The noise paths are constructed from the target nodes, one 

path at a time. First, the entire module is represented as an AIG. The heuristic then performs 

a search starting from the targets within the AIG in a depth first search fashion. Whenever 

a node is traversed, its fanins are examined to determine whether it is necessary to first 

traverse to its fanins before putting it into the noise path. The search always stops upon 

hitting a PI. Since the goal of the heuristic is to encourage sharing in order to lower the 

number of additional noise cancelling gates needed, the algorithm always picks the fanin 

that is either already on a noise path or the one closest to a PI.  

After paths are selected, each AIG node will be labeled with different noise levels. 

The noise level can be either clean, mixed, or full. Clean nodes are not on any noise path 

selected. Mixed nodes are on at least one noise path but not all of its fanouts are on the 

same noise path as this node. Full nodes are on at least one noise path and all of its fanouts 

are on a noise path that includes this node. The difference between a full and a mixed node 

is that a full node does not need a noise cancelling XOR for any of its fanouts. For each 

mixed node, one AND gate and one XOR gate are required, where the XOR gate becomes 

the new fanin of all fanouts that is either clean or belong to the same noise path as this 

node. The AND gate becomes the new fanin for all fanouts on the same noise path as this 

node. For each full node, an AND gate is created and becomes the new fanin for all of its 

fanouts. 

Figure 28 presents an example of noise path selection on the AIG of the original 

module in Figure 26. For simplicity, inversion markers are not shown in the example. In 

this example, the process begins from each of the targets, which in the example are the 

POs. Since sharing nodes on the path helps to reduce the number of noise cancelling nodes, 

the algorithm always chooses a node already used by another path. In this example, there 

are three paths starting from g7, g8 and g9 respectively. Node g5 is an example of a full 

node. Node g1 is an example of a mixed node. Overall, six XOR gates are needed: three 

for cancelling noise at g7, g8 and g9 because they are POs; three for cancelling noise at 
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input a, b and c because they are either clean or mixed nodes. Five AND gates are needed 

to compute the noise sensitization condition.  

 

 

Figure 28. Example of Selecting Noise Paths in AIG for Module in Figure 26.  

 

5.5. EXPERIMENTAL RESULTS 

All aforementioned algorithms have been implemented and experiments were 

performed on the ISCAS and ITC benchmark circuits [Brglez 85, Corno 00]. Construction 

and manipulation of AIGs was done using the AIG package provided by ABC [Brayton 

10].  

Results are shown in Table 9 where the noise targets used are all of the POs.  The 

table shows the circuit name followed by the number of PIs and POs that is has and the 

number of gate equivalents (GEs).  GEs are computed assuming 1 GE per two-input 

AND/OR gate with an XOR being equivalent to 1.5 GE [Martins 15]. The remainder of 

the table shows the results after the noise cancelling gates have been inserted. The number 
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of AND and XOR gates is shown followed by the corresponding gate equivalents.  

Overhead is shown with respect to the original circuit paired with a XOR decipher. The 

last column shows the “noise ratio” which is the percentage of internal gates that have a 

noisy fanin. Even though the proposed noise cancelling gates partially repeat the 

computation up until the POs to cancel noise, the results show that the overhead of adding 

noise cancelling is much lower than duplicating the entire computation. This is because the 

noise path selection algorithm encourages sharing of noise cancelling gates between 

different noise propagation paths. Regardless of the number of POs or the depth of logic, 

the more logic sharing between the primary outputs, the lower the overhead. As a result, 

the proposed noise path selection algorithm propagate noise to the POs with a relatively 

low noise ratio since the algorithm always tries to share nodes between paths. 
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Table 9. Results for Inserting Noise Cancelling Gates 

Benchmark 

Original Module with 

XOR Decipher 

Module with Noise Cancelling Gates 

AIG Combined Network 

#PI #PO GE #XOR #AND GE Overhead Noise Ratio 

C432 36 7 190 48 21 283 16% 11% 

C499 41 32 392 73 64 566 25% 16% 

C880 60 26 314 85 48 490 21% 15% 

C1355 41 32 504 141 168 884 56% 39% 

C1908 33 25 414 60 47 551 19% 12% 

C2670 233 139 717 298 77 1241 16% 13% 

C3540 50 22 1038 96 76 1258 13% 7% 

C5315 178 123 1773 313 192 2435 19% 11% 

C6288 32 32 2337 527 524 3652 53% 22% 

C7552 207 108 2074 372 248 2880 21% 16% 

b14 32 54 6115 702 590 7758 26% 10% 

b15 36 70 8454 1437 996 11606 36% 12% 

b17 37 97 27581 4598 3238 37716 36% 12% 

b20 32 22 12189 1453 1182 15551 27% 10% 

b21 32 22 12746 1514 1167 16184 26% 9% 

b22 32 22 18453 2250 1729 23557 27% 9% 

b14 32 54 6115 702 590 7758 26% 10% 
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 In Table 9, the number of noise paths selected is the same as the number of POs in 

the module. It is possible to select more noise propagation paths by adding more nodes to 

the set of noise targets. Doing so increases the noise ratio but also requires more overhead. 

Figure 29 shows the tradeoff between increasing the noise ratio versus the overhead of the 

corresponding noise cancelling network for three benchmark circuits. After the proposed 

algorithm has selected the noise paths for each POs, additional non-noisy nodes are 

selected to increase the noise ratio. The noise ratio in Figure 29 starts from 30% since in 

most cases the noise ratio does not exceed 30% after noise paths are selected for all POs. 

As can be seen in Figure 29, the amount of overhead grows nearly linearly as the noise 

ratio is increased. In practice, after noise propagated to all necessary targets, designer can 

set an arbitrary noise ratio target and select more noise paths in the module. 
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Figure 29. Overhead vs. Noise Ratio 

5.6. ANALYSIS 

This section describes a possible attacker’s scenario and how the proposed 

approach can help to defend against it. 

As discussed in the literature, Trojans inserted at the RTL level are significant 

security threat, especially when the design may be reused in a SoC environment where the 

source code may come from different sources [Waksman 13]. Various approaches have 

been proposed to detect them, but a carefully designed Trojan may still go undetected and 

get synthesized into the final hardware. Even if a Trojan is not inserted, the attacker may 

have knowledge about an existing security leak present in the RTL code. The effect of 
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having a security leak in the untrusted module includes the case where an attacker may 

have unauthorized control over the module, which gives an attacker not only the ability to 

observe the internal activity of the module, but also the ability to retrieve data generated 

from a trusted module that communicates directly with the untrusted module. For example, 

the boundary scan in the unsecured module can be a gateway for a malicious user to observe 

the output from a trusted module that the attacker wants to observe. In traditional secure 

computing, data is de-obfuscated before the computation, and the existence of scan cells in 

the untrusted module allows any malicious user to retrieve the plaintext computed by the 

trusted module that the untrusted module is communicating with. With the proposed 

scheme, the data during the computation is obfuscated even in the untrusted module. To 

retrieve the plaintext, an attacker needs to have knowledge about the obfuscation technique 

and key being used.  

The proposed obfuscation scheme with a stream cipher is based on XOR ciphers 

used in conjunction with a one-time pad (OTP). The security of a OTP based obfuscation 

depends on how the key is generated and managed [Zeng 91]. In the proposed scenario, 

key values can be stored in a tamper proof LFSR. An attacker may attempt to observe the 

value stored in the LFSR by waiting for the pattern of LFSR to repeat after a limited amount 

of clock cycles. Irregular clocking [Gollman 89] can be employed to mitigate this kind of 

attack. The design and the LFSR used for obfuscation can be paired with different clock 

source. In particular, the LFSR clock can be randomly disturbed so the attacker can not 

easily find out when the LFSR will starting repeating. 

Note that the proposed approach is not intended for prevention or detection of 

hardware Trojans. The motivation behind computing with obfuscated data is to prevent 

plain data from being retrieved easily should a security leak be present in an untrusted 

design. The security leak can be due either to a well-crafted Trojan or to a poorly designed 

module. 
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5.7. CONCLUSIONS 

The proposed methodology for computing with obfuscated data is lightweight and 

can be applied for any arbitrary logic circuit. One important application is to prevent 

vulnerabilities in a soft IP core from being exploited to gain access to sensitive data during 

computation. While most secure computing schemes are focused at the architectural level, 

the proposed work is implemented at the gate level. Results show that the overhead is much 

lower than duplicating the entire computation to propagate noise to all outputs with 

maximal sharing of noise cancelling gates between noise paths.  The noise ratio can be 

easily increased at the cost of additional overhead by adding more noise propagation targets 

and thus creating more noise paths in the module.  
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6. Summary and Future Works 

This chapter summarizes the contributions of this dissertation and suggests areas for 

future work. 

Chapter 2 describes an approach for designing a single TAM architecture with a 

"bandwidth adapter" on each die that can be used efficiently for multiple test data 

bandwidths.  Experimental results are presented which shows that this approach allows 

efficient test in all phases from pre-bond, multiple partial stack configurations, and post-

bond. 

Chapter 3 presents an improvement over conventional sequential linear decompression.  

It uses a multiple polynomial LFSR with a counter to rotate between different polynomials 

which eliminates the need for control bits to select the polynomial.  It can encode more test 

cubes than can be encoded with a fixed polynomial. Results show improvement in number 

of encodable test cubes as well as the number of free variables retained when being used 

with a FIFO.  This results in an improvement in overall compression achieved. 

Chapter 4 describes a new attack strategy against logic obfuscation.  It is based on 

applying brute force iteratively to each logic cone and is shown to significantly reduce the 

number of brute force key combinations that need to be tried by an attacker.  Different 

heuristics for key gate insertion against the new attack strategy are proposed and discussed. 

It is shown that inserting key gates based on MUXes is an effective approach to increase 

security against this type of attack.  Experimental results are presented quantifying the 

threat posed by this type of attack along with the relative effectiveness of MUX key gates 

in countering it. 

Finally, Chapter 5 presents a computation scheme with obfuscated data. Conventional 

secure computing needs decryption before the actual computation is performed which 

exposes the data to security leaks within the computing unit.  The proposed scheme avoids 

this by performing computation on noise-obfuscated data.  The proposed scheme is 

lightweight and can be applied for any arbitrary logic circuit.  One important application is 
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to prevent vulnerabilities in third party IPs from being exploited to gain access to sensitive 

data during computation. 

There are several directions for future work. The presented work in secure computing 

is based on the concept that data is obfuscated with a key which will be required for de-

obfuscation later. The computation is based on hardware redundancy which removes noise 

wherever necessary. Alternatively, time redundancy could be utilized for secure 

computing. One computation can be split into different computations, where each is 

obfuscated differently and the final results can only be retrieved by combining separate 

computations together. In combinational circuits, some input bits can be obfuscated by 

noise. When evaluating the result, only the logic cone not affected by noise is evaluated. 

The key is not required for obtaining the final results when the obfuscated bit location is 

known. While the idea is straightforward for combinational circuits, how to apply this 

concept to sequential circuits is a challenging task worthy of further research. In addition, 

the proposed work in Chapter 5 is the very first step to bridging the fully homomorphic 

encryption from the software domain to the hardware domain. The proposed work focused 

on using XORs and one time pad (OTP) as obfuscation hardware. While it has the 

advantage of being lightweight, the level of security can be much improved with more 

powerful encryption algorithms. It is worthy of further research to see if computing with 

obfuscated data is possible in techniques other than XOR with an OTP.  
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