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Suggesting Pitches in
Major League Baseball

by
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The University of Texas at Austin, 2019
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Pitchers in Major League Baseball need to keep batters from anticipating the
next pitch. They do this by selecting a good pitch type and zone to throw. Pitchers
often make this selection haphazardly. In this paper, we present a machine learn-
ing model using the data from the PITCHf/x system installed in Major League
stadiums to first predict good and bad pitches, and then to suggest the following
pitch type to throw that will result in good outcomes.
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Chapter 1
Selecting the Pitch to Throw

Pitch selection is an important part of the game of baseball. The pitcher
settles a pitch type and location to throw with the goal of throwing a strike and
preventing the batter from making contact with the ball. A good pitch selection
keeps batters guessing and unable to hit the ball. On the other hand, a bad pitch
selection lets batter anticipate the pitch that is thrown and hit the ball into play.

During games, pitchers make their pitch selection in real time. When mak-
ing this decision, pitchers can base their decision on many factors such as the
pitcher’s previous experiences, the current game score, the runners on base, the
batter’s skill level, the outcome of the batter’s previous appearances, and the pitcher’s
skill level. However, in general pitchers make this decision based on instinct and
gut feeling. There is no general framework on how to quantitatively take the fac-
tors mentioned above into effect and systematically find a best pitch to throw. This
is despite the abundance of available data.Since 2007, Major League Baseball sta-
diums are equipped with high speed cameras that track over 40 metrics on thrown
pitches. Ultimately, the data collected by Major League Baseball is being underuti-
lized.

The proposal for this report is to use the data to develop a model that makes
the pitch selection systematically. The model should evaluate the current game
situation, the events that led to the current situation, the pitcher’s and batter’s
previous appearances, and utilizing the available data, determine the pitch type

that provides the pitcher with the best opportunity of meeting his goal.



Chapter 2
Relevant Work

2.1 Predicting whether the Next Pitch is a Fastball

In 2012, Gartheeban Ganeshapillai and John Guttag presented their paper
Predicting the Next Pitch at MIT’s Sports Analytics Conference. In the paper, they
chose to model predicting if the next pitch is a fastball as a binary classification
problem. Ganeshapillai & Guttag used a linear support vector machine to build
a separate predictor for each pitcher and trained it using data from the 2008 sea-
son. After testing on data from the 2009 season, the model provided a mean im-
provement on predicting fastballs of 18% and a maximum improvement of 311%
in comparison to a naive classifier that always predicts the pitch most commonly
thrown pitch by that pitcher. Ganeshapillai & Guttag found the most useful fea-
tures in predicting whether the next pitch is a fastball were the pitcher and batter
from the previous pitch, the number of strikes and balls after the previous pitch,
the previous pitch’s type, result, velocity, and zone, and the score of the game.
Ganeshapillai & Guttag did not find a significant improvement in the predictor’s
accuracy by including longer pitch sequences including more than the previous
thrown pitch. Based on this observation, we decided to restrict our analysis for
this report to only use data from the previous pitch. We used some of use the same
features, in addition to others not available in the data set used by Ganeshapillai &
Guttag, to first predict the outcome of a pitch, and then suggest the pitch to throw
based on the previous pitch (Ganeshapillai and Guttag) 2012).


http://www.sloansportsconference.com/wp-content/uploads/2012/02/98-Predicting-the-Next-Pitch_updated.pdf

Chapter 3
PITCHf/x

Since 2007, MLB has tracked every single pitch thrown in games with a sys-
tem of high speed cameras names PITCHf/x. Using this system, MLB collects over
40 data points such as velocity, acceleration, and spin rate in the z, y, and z direc-
tions. The PITCHf/x coordinate system is oriented to the catcher’s perspective-
the x direction is left-right across the plate, 2 is the vertical height, and y is the
direction towards the pitching mound. Additionally, MLB measures players’ skill
levels by tracking batter’s batting average (avg), runs batted in (rb:), and home-
runs (hr), and pitcher’s earned run average (era), wins, and losses. Player data
is tracked for the season. The data isfreely available to the public through MLB'’s
Gamedayﬂ portal. All of the data used in this report came from this portal.

3.1 Pitch Types

One of the data fields included in PITCHf/x is pitch_type. This field is the
most probable pitch type according to a neural net classification algorithm devel-
oped by Ross Paul of MLB Advanced Media. The algorithm classifies the pitch
into the following classes by their abbreviation (Slowinski, STATCAST)).

|  Pitch Type Abbreviation | [ Pitch Type Abbreviation |

four-seam fastball FA split-fingered fastball SF
fastball FF slider SL
two-seam fastball FT screwball SC
cutter FC changeup CH
forkball FO curveball CU
splitter FS knuckle-curve KC
gyroball GY knuckleball KN
sinker SI eephus EP

Figure 3.1: The PITCHf/x packages classifies pitches using a neural net classification algo-
rithm developed by Ross Paul of MLB Advanced Media.

I Available at http:/ /gd2.mlb.com/components/game/mlb


http://gd2.mlb.com/components/game/mlb

3.2 Zone

Another field included in the data is zone which classifies the pitch type
according to the location of the pitch as it crossed home plate. The data also reports
the z and z values of the pitch location, where the = value is measured from the
center of the plate with distances to the right being positive and to the left being
negative. The z value is measured from ground level. Values are given in feet.
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Figure 3.2: PITCHf/x classifies pitches into 1 of 14 values of zone.



3.3 Suggesting a Pitch

As previously stated, the proposal for this report is to suggest pitches. What
this corresponds to is selecting the pitch type to throw as well as the zone to aim
for out of the 16 - 14 possible combinations.

3.4 Other Data reported by PITCHf/x

PITCHf/x also reports the following data points (Fast):

e des: a brief text description of the result of the pitch: Ball; Ball In Dirt; Called
Strike; Foul; Foul (Runner Going); Foul Tip; Hit by Pitch; In play, no out; In
play, out(s); In play, run(s); Intent Ball; Pitchout; Swinging Strike; Swinging
Strike (Blocked).

e id: a unique identification number per pitch within a game. The numbers

increment by one for each pitch but are not consecutive between at bats.

e type: a one-letter abbreviation for the result of the pitch: B, ball; S, strike
(including fouls); X, in play.

e start_speed: the pitch speed, in miles per hour and in three dimensions, mea-
sured at the initial point, y0. Of the two speeds, this one is closer to the speed

measured by a radar gun and what we are familiar with for a pitcher’s "ve-

locity".
o end_speed: the pitch speed measured as it crossed the front of home plate.

e sz_top: the distance in feet from the ground to the top of the current batter’s
rulebook strike zone as measured from the video by the PITCHf/x opera-
tor. The operator sets a line at the batter’s belt as he settles into the hitting
position, and the PITCHf/x software adds four inches up for the top of the

zone.

e sz_bot: the distance in feet from the ground to the bottom of the current bat-
ter’s rulebook strike zone. The PITCHf/x operator sets a line at the hollow
of the knee for the bottom of the zone.



pfz_z: the horizontal movement, in inches, of the pitch between the release
point and home plate, as compared to a theoretical pitch thrown at the same
speed with no spin-induced movement. This parameter is measured at y =
40 feet regardless of the y0 value.

pfr_z: the vertical movement, in inches, of the pitch between the release
point and home plate, as compared to a theoretical pitch thrown at the same
speed with no spin-induced movement. This parameter is measured at y =
40 feet regardless of the y0 value.

px: the left/right distance, in feet, of the pitch from the middle of the plate
as it crossed home plate. The PITCHf/x coordinate system is oriented to
the catcher’s/umpire’s perspective, with distances to the right being positive
and to the left being negative.

pz: the height of the pitch in feet as it crossed the front of home plate.
z0: the left/right distance, in feet, of the pitch, measured at the initial point.

y0: the distance in feet from home plate where the PITCHf/x system is set to
measure the initial parameters.

20: the height, in feet, of the pitch, measured at the initial point.

v20, vy0, v20: the velocity of the pitch, in feet per second, in three dimensions,

measured at the initial point.

ax, ay,az: the acceleration of the pitch, in feet per second per second, in three
dimensions, measured at the initial point.

break_y: the distance in feet from home plate to the point in the pitch tra-
jectory where the pitch achieved its greatest deviation from the straight line
path between the release point and the front of home plate.

break_angle: the angle, in degrees, from vertical to the straight line path from
the release point to where the pitch crossed the front of home plate, as seen

from the catcher’s/umpire’s perspective.



e break_length: the measurement of the greatest distance, in inches, between
the trajectory of the pitch at any point between the release point and the front
of home plate, and the straight line path from the release point and the front
of home plate.

e sv_id: a date/time stamp of when the PITCHf/x tracking system first de-
tected the pitch in the air, it is in the format YY MM DD_hhmmss.

o type_con fidence: the value of the weight at the classification algorithméAZs
output node corresponding to the most probable pitch type, this value is
multiplied by a factor of 1.5 if the pitch is known by MLB to be part of the

pitcher’s repertoire.



Chapter 4
Getting the Data

The data available at MLB’s Gameday portal is formatted into xml files.
There is 1 xml file per game,innings_all.xml, containing all of the innings, half
innings, at bats, and pitches occurring during the game formatted as xml elements
in sequential order. Within this file there is a game element composed of 9 inning
child elements (or more if extra innings are needed to break a tie). Each inning
element has a top and bottom child element for each half inning when teams swap
batting and fielding. The top and bottom elements have atbat child elements for
each batter appearance in the half inning. The child elements of the atbat element
is the sequence of pitches in the at bat. Additionally, there is a players.xml file per

game containing the data for the players in the game.

Listing 4.1: Section of XML file for 03/29 /2018 game between the Chicago Cubs and Miami

Marlins.

<game atBat="571506" deck="605119" hole="643265" ind="F">

<inning num="1" away_team="chn" home_team="mia" next="Y">

<top>

<atbat num="1" b="0" s="0" o0="0" start_tfs="164311" ... >

<pitch id="3" type="X" tfs_zulu="2018-03-29T16:43:11Z" x="
107.75" y="170.38".../>

<pitch id="4" type="X" tfs_zulu="2013-06—02T01:36:25Z" x="
80.69" y="137.29".../>

</atbat>

</top>

<bottom> ... </bottom>
</inning>

<inning num="2" away_team="chn" home_team="mia" next="Y">...

</inning>


http://gd2.mlb.com/components/game/mlb

<inning num="3" away_team="chn" home_team="mia" next="Y">...

</inning>

</game>

4.1 pypitchfx

As of the start of the work undergone to write this report, there are vari-
ous tools available for getting the data available through Gameday by parsing the
xml files, such as Carson Sievert’s pitchRx package written for the R programming
language [ However, we found that they did not preserve the parent-child rela-
tionships between pitches, at bats, half innings, innings, and game elements found
in the XML files, which made sequential analysis of pitches very difficult. These
tools make it simple to get all of the pitches thrown in a game, but without being
able to relate pitches to at bats, it is not simple to arrange pitches into sequences as
was necessary for our analysis. Because of this, we chose to implement a Python
library pypitchfx from scratch which not only parsed the data in the XML files, but
also preserved the relationship between the elements. The package parses the data
into Python classes in addition to a relational database as detailed in
This effort took considerable effort and time. The package is now available for free
and open use atas well as through the Python package manager pip [}

4.2 Data for the 2018 season

Our analysis used the data from the 2018 season. The available data in-
cludes 2468 games, 22800 innings, 186647 at bats, and 728669 pitches. Using the
pypitchfx library, all of the data was written to a relational database using the code

sample that follows.

! Available at https:/ /pitchrx.cpsievert.me/
2Can be installed using pip install pypitchfx

10


https://github.com/JavierPalomares90/pypitchfx

Listing 4.2: Using the pypitch fx library, the data for the 2018 season was loaded to a Post-
greSQL database running on Google Cloud Platform. The engine is a sqlalchemy engine

used to connect to the database. The library automatically creates the tables described in
and populates the tables with data.
from sqlalchemy import create_engine

from pypitchfx.scrape import scrape_games_players

engine = create_engine (’postgresql+psycopg2://postgres:
username@password : port/”)

scrape_games_players(start="2018-03-29" ,end="2018—-04-30",
engine=engine)

scrape_games_players(start="2018—-05-01" ,end="2018—-05-31",
engine=engine)

scrape_games_players(start="2018—-06-01",end="2018—-08-31",
engine=engine)

scrape_games_players(start="2018—-09—-01" ,end="2018—-10-01",
engine=engine)

11



Chapter 5
Relational Model

After parsing the xml files for data, the pypitchfx library writes the data
to a relational database using a sqlalchemy engine connection to the database [[]
For this project, the data was written to a PostgreSQL database hosted on Cloud-
SQL instance on the Google Cloud Platform. The database model preserves the
parent-child relationship of elements in the Gameday xml file. Foreign key enforce

1 parent per child, and allow parents to have 0 to many children.

Game

>

Inning Flayer

¥

Half Inning

Pitch

Figure 5.1: Hierarchy of elements in the data. Foreign key constraints enforce exactly one
parent per child.

Additionally, unique identifiers are generated at parse time to guarantee
uniqueness and to use as the tables” primary keys. The complete database model

is show on the following figure.

'Documentatation available at https:/ /www.sqlalchemy.org/

12
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Figure 5.2: Entity-Relationship diagram of the database model the pypitch fz tool writes
the Gameday data to. All of the data fields available in the xml fields are mapped to
columns of the same name. Generated UUIDs are the tables’ primary keys. Foreign key
constraints enforce parent child relationships. Entities maintain list of the parent to allow
for fast lookups of the parent entity. The DDL statements used to insert and create the
tables are available in the pypitch repository in Queries.py Batter and Pitcher are materi-
alized views to used to distinguish pitchers and batters in the Game_Player table.



https://github.com/JavierPalomares90/pypitchfx

Chapter 6
Predicting the Outcome of a Pitch

The objective proposed in the introduction of this report is to train a model
to suggest the pitch to throw following a sequence of pitches. However, rather
than beginning by developing this model, the first action taken after populating
the database was to model a simpler problem in support of the original objective.
Instead of beginning to develop a model for pitch suggestions, the first action taken
was to train a classifier for "good" and "bad" pitches. This was done to get familiar

with the data as well as to determine if we can make inferences from it.

6.1 Binary Classification

We modeled predicting good and bad pitches as a binary classification prob-
lem. The input to the model is a feature vector consisting of the data points describ-
ing the physical trajectory of the pitch such as vz0, vy0, vy0, az, ay, az, pfr_x, and
pfr_z. Any meta data such as des, id, and sv_id is not included in the vector. Note
that des contains a description of the result of the pitch. This and any fields con-
taining any textual details of the outcome were not used in the model. Categorical
data points such as zone and pitch_type were one-hot encoded. shows
the input vector in more detail.

The model’s value to predict is a binary classifier - 1 for good pitcher, 0 for
bad pitches. The pypitchfx library derives an outcome value for every pitch. The
values is set to 1.0 if the pitch resulted in a strike, including foul balls, or an out.
Any other outcome is given a value of 0.0. We used this value as the output value

to predict in the training data.

14



<class 'pandas.core.frame.DataFrame'>
Int64Index: 117868 entries, © to 11811@
Data columns (total 28 columns):

X 117868 non-null floaté4
y 117868 non-null float64
start_speed 117868 non-null float64
end_speed 117868 non-null floaté4
sz_top 117868 non-null float64
sz_bot 117868 non-null float64
pfx_x 117868 non-null float64
pfx_z 117868 non-null float64
px 117868 non-null float64
pz 117868 non-null float64
x8 117868 non-null float64
ye 117868 non-null float64
0 117868 non-null float64
VX8 117868 non-null float64
vye 117868 non-null float64
vze 117868 non-null floaté4
ax 117868 non-null float64
ay 117868 non-null float64
az 117868 non-null float64
break_y 117868 non-null float64
break_angle 117868 non-null float64
pitch_type 117868 non-null object

type_confidence 117868 non-null floaté4
zone 117868 non-null object

nasty 117868 non-null int64

spin_dir 117868 non-null float64
spin_rate 117868 non-null float64
outcome 117868 non-null inté4

dtypes: float64(24), ints4(2), object(2)
memory usage: 26.1+ MB

Figure 6.1: Data fields contained in the feature vector used for the classification model.
zone and pitch_type are categorical values that were one hot encoded.All other fields are
numerical values. outcome is used as the binary variable to predict in training data.

Listing 6.1: The pypitchfx library classifies a pitch from its value in des. The data field

contains a textual description of the outcome of the pitch.

def get_pitch_outcome(pitch):
des = pitch.des.lower ()
# good pitch if we get foul or out or strike

7 4

if "foul’ in des or ‘out’ in des or ’‘strike’ in des:
return 1.0

return 0

15



6.2 Training the Model

We trained a gradient boosting model using the XGBoost library on a data
set containing 200000 pitches thrown in the 2018 season. The data was split into
test (20%) and training (80%) data sets. The data sets were used to train and vali-

date an XGBClassifier using the parameter values given in contains
a code sample used to train and validate the classifier.

H Parameter Value H
learning_rate 1
n_estimators 1000

max_depth 5
gamma 0
subsample 0.8
colsample_bytree 0.8
scale_pos_weight 1
objective binary:logistic
metric auc
seed 1301

The data set contains 200000 pitches.

Figure 6.2: Parameter values used in XGBClassifier training.

6.3 Results

The XGBClassifier trained on the data as given above measure an accuracy
of 0.885 and AUC score of 0.934 on the test data. These results suggest there is
structure in the pitch data to use in order to make inferences on best pitches to

throw.

Listing 6.2: This model has an accuracy of 0.885 and AUC score of 0.934 on test data.

Model Report
Accuracy (Train) : 0.9036770685098597

AUC Score (Train): 0.9562583322095853
Accuracy (Test) : 0.8855458426509453
AUC Score (Test): 0.9340879039026049

16


https://xgboost.readthedocs.io/en/latest/

Given the results, we are confident that given a pitch, we can predict if it
results in a good or bad outcome with good accuracy. Given the good results, we
moved onto the more complicated problem of suggesting pitches.

17



Chapter 7
Suggesting The Next Pitch To Throw

As detailed in a binary classifier is able to predict the outcome
of a pitch and achieve good results. On the other hand, predicting the outcome
of a pitch isn’t the problem we originally proposed to solve. By itself, this model
provides the pitcher the answer to "If I throw this pitch, will it result in a good
or bad outcome?", when what we are looking for is "Given the game situation,
which pitch should I throw that will get the best outcome?" Thus, we formulated
a different model to suggest the pitch type to throw following a pitch.

7.1 The Model

We approached the problem of predicting the next pitch type to throw as a
multi class classification. Given the input, the model needs to classify to 1 of the 16
classes. The class represents the pitch type that has the best chance of producing
a good outcome given the pitch in the input. The input to the model includes the
features listed in as well as:

e wins: The number of wins the pitcher has for the season.

e [osses: The number of losses the pitcher has for the season.
e cra: The pitcher’s earned run average for the season.

e 7l: The pitcher’s handedness.

e avg: The batter’s batting average for the season.

e rbi: The batter’s runs batted in for the season.

e hr: The batter’s number of home runs for the season.

e bats: The batter’s handedness.

18



7.2 Forming the Training Data

The first step in forming the training data was to get pitch data in sequence
using the following SQL statement. The statement also joing the pitcher and batter
data.

Listing 7.1: Getting the pitch, batter, and pitcher data in sequence

SELECT pitch.x,batter.avg,batter.rbi,batter.hr, batter.bats,
pitcher.wins, pitcher.losses , pitcher.era, pitcher.rl,
pitcher.pitcher as pitcher_id

FROM pitch

JOIN batter on pitch.pitch_id = batter.pitch_id

JOIN pitcher on pitch.pitch_id = pitcher.pitch_id

order by pitch.at_bat_id, pitch.id

The SQL query produced all the pitches in the 2018 season ordered in se-
quence within an at bat. Given this, it’s simple to get the next pitch’s pitch type
that the model needs to predict. However, the model should only suggest pitch
types that resulted in a good outcome, so the training data was modified depend-
ing on the outcome of the of the next pitch. If the next pitch resulted in a good
outcome, then no modification was made. Otherwise, the next pitch type resulted
in a bad outcome and the model should not suggest that pitch type. The model
should predict another pitch type that is likely to produce a good outcome. The
model makes the assumption that any pitch type is equally likely to result in a
good outcome and for next pitches that had a bad outcome, the pitch type was
replaced by any of the other 15 pitch types with equal probability 1.

7.3 Training the Model

The data was also split into test (20%) and training (80%) data sets. Once
again, we used the XGBoost library’s XGBClassifier to model using the following

parameters.

19



Parameter Value
| |

learning_rate 1
n_estimators 1000
max_depth 5
gamma 0
subsample 0.8
colsample_bytree 0.8
scale_pos_weight 1
objective multi:softprob
metric auc
seed 1301

Figure 7.1: Parameter values used for multi-class XGBClassifier training.

7.4 Evaluating the Model

After training the classifier, we are left with a model that given a pitch,
outputs the soft probability of each pitch type resulting in a good outcome. It is
hard to evaluate this accuracy given the dataset since the model is predicting what
could happen, not what did. We found that a suitable approach for evaluating the
model is to take the test set and have the model predict the next pitch type with
the highest probability of a good outcome. Based on the prediction, we’ll form
a dummy pitch with average feature values given the pitch type and pitcher. If
the pitcher does not throw the predicted pitch then we’ll take the average feature
values across all pitchers for the given pitch type. Finally, we’ll input this pitch
into the classifier from predict if the pitch type will result in a good or
bad pitch.

7.5 Results

The classifier from predicted a mean good outcome probability of
.80 on the test data. More explicitly, the probability of the suggested pitches for the
test data had the following distribution:
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Pitch Suggestions Probability of Good outcome

D
0.0 0.2 0.4 0.6 0.8 10
Probability of Good Outcome

Figure 7.2: The probability of the suggested pitch resulting in a good outcome according
to the binary classifer detailed in The model predicts that most pitches have a
significant probability of resulting in a good outcome, so we can conclude that our model
for suggesting pitches produces the desired result.
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Chapter 8

Conclusion

The proposal for this report was to develop a model that made pitch selec-
tion systematically by evaluating the current game situation, the events that led to
the current situation, the pitcher’s and batter’s previous appearances, and using
the available data, the model should determine the pitch type that provides the
pitcher with the best likelihood of a good outcome. In this paper, we see how this
is possible with 2 neural networks, one to suggest pitches, and the other to predict
a good or bad outcome of the suggested pitch. In we trained a classi-
tier to classify pitches into good and bad outcomes that achieved good results. In
we developed a model to suggest the next pitch’s pitch type to result in
a good outcome. Using the 2 models, we were able to suggest the next pitch that
across the test data had significant probability of resulting in a good outcome. At
this point, we are satisfied with the model and imagine as a future possibility how

a more refined model can be used in live games.

8.1 Next Steps

Prior to using the model in live games, we would make the following im-
provements:

First, we would modify the outcome vector for bad pitches that we used in
our model. At the moment, we assume that any other pitch type would do equally
as good. Determining which pitch types can do better instead of the bad pitch will
improve the performance of the model.

Additionally, we can improve by introducing the pitch zone to the model so
that the model also suggests where to throw the pitch. This will introduce a cross
product to the set of possible pitches by giving the choice of 1 of 16 pitch types and
1 of 12 zones.

Another enhancement to the model is to refine the good/bad classification
of pitches. We gave each pitch a binary good or bad label for simplicity- pitches
that result in a strike, foul, or out are good, pitches that result in a ball, or hit are

bad. What is more practical is to give a scalar value measuring how good or bad
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the pitch since, for example, outs are better than strikes or fouls, and balls are less
bad than hits. Similarly, not all hits are equally bad. A homerun is worse than a
single with no runners on base. By giving a scalar value to the outcome, we would

train the model to avoid the worst possible outcome.
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Appendices

Appendix A
Code to Train a Binary Classifier using XGBoost Library

Python code used to train the XGBClassifier. The objective function is logis-
tic regression, and the output is the probability that a pitch is classified as good.
The evaluation metric is the area under the curve

Listing A.1: Training a classification using XGBClassifier
from sklearn import metrics
import xgboost as xgb
from xgboost import XGBClassifier
from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

def modelfit(alg, x_train, y_train,6 x_test,b y_test,
useTrainCV=True, cv_folds=5, early_stopping_rounds=50):

if useTrainCV:

xgb_param = alg.get_xgb_params ()

xgtrain = xgb.DMatrix(x_train.values, label=y_train)

cvresult = xgb.cv(xgb_param, xgtrain,
num_boost_round=
alg .get_params () [ 'n_estimators’],
nfold=cv_folds,
metrics="auc’,
early_stopping_rounds=
early_stopping_rounds)

alg .set_params(n_estimators=cvresult.shape[0])

#Fit the algorithm on the data

alg . fit(x_train, y_train ,h eval_metric="auc’)
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#Predict training set:
dtrain_predictions = alg.predict(x_train)
dtrain_predprob = alg.predict_proba(x_train)[:,1]

# Predict testing set:
dtrain_predictions_test = alg.predict(x_test)
dtrain_predprob_test = alg.predict_proba(x_test)[:,1]

#Print model report:
print ("\nModel Report")
print ("Accuracy (Train) : {}"
.format(metrics.accuracy_score(y_train,
dtrain_predictions)))
print ("AUC Score (Train): {}"
.format(metrics.roc_auc_score(y_train,
dtrain_predprob)))
print ("Accuracy (Test) : {}"
.format(metrics.accuracy_score(y_test,
dtrain_predictions_test
)))
print ("AUC Score (Test): {}"
.format(metrics.roc_auc_score(y_test,
dtrain_predprob_test)))

learning_rate=.1
n_estimators=1000
max_depth=5
min_child_weight =1
gamma = 0

subsample = 0.8

Il
o
o)

colsample_bytree

Il
[

scale_pos_weight
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objective = ’‘binary:logistic’

metric = "auc’
seed = 1301
xgbl = XGBClassifier (learning_rate=learning_rate,

n_estimators=n_estimators,
max_depth=max_depth,
min_child_weight=min_child_weight,
gamma = gamma,
subsample = subsample,
colsample_bytree = colsample_bytree,
objective = objective,
eval_metric = metric,
nthread =4,
scale_pos_weight = scale_pos_weight)
X_train, X_test, y_train, y_test = train_test_split(X, vy,
test_size
=0.2,
random_state
=42)
modelfit(xgbl, X_train ,y_train , X_test ,y_test)
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Appendix B

Code Repositories

All code written for this report is available on github. The pypitchfx library
is open source and found at https://github.com/JavierPalomares90/pypitchfx.
The code used to train is available at https:/ /github.com /JavierPalomares90/masters_report.
The code in this repository differs from what was used only by the login informa-

tion from the PostgreSQL database which was removed for security.
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