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Abstract 

 

Hydraulic Fracture Modeling with Finite Volumes and Areas 

 

Eric Cushman Bryant, M.S.E. 

The University of Texas at Austin, 2016 

 

Supervisor:  Mukul M. Sharma 

 

In Chapter 1, a finite volume-based arbitrary fracture propagation model is used 

to simulate fracture growth and geomechanical stresses during hydraulic fracture 

treatments. Single-phase flow, poroelastic displacement, and in situ stress tensor 

equations are coupled within a poroelastic reservoir domain. Stress analysis is used to 

identify failure initiation that proceeds by failure along Finite Volume (FV) cell faces in 

excess of a threshold effective stress. Fracture propagation proceeds by the cohesive zone 

(CZ) model, to simulate propagation of non-planar fractures in heterogeneous porous 

media under anisotropic far-field stress.  

In Chapter 2, we are concerned with stress analysis of both elastic and poroelastic 

solids on the same domain, using a FV-based numerical discretization. As such our main 

purposes are twofold: introduce a hydromechanical coupling term into the linear elastic 

displacement field equation, using the standard model of linearized poroelasticity; and, 

maintain the continuity of total traction over any multi-material interfaces (meaning an 

interface over which residual stresses, Biot’s coefficient, Young’s modulus, or Poisson’s 

ratio vary). 
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In Chapter 3, we are concerned with modeling fluid flow in cracks bounded by 

deforming rock, and specifically, inside those initial discontinuities, softening regions 

and failed zones which constitute the solid interfaces of propagating hydraulic fractures. 

To accomplish this task the Finite Area (FA) method is an ideal candidate, given its 

proven facility for the discretization and solution of 2D coupled partial differential 

equations along the boundaries of 3D domains.  

In Chapter 4, rock formations’ response to a propagating, pressurized hydraulic 

fracture is examined. In order to initiate CZ applied traction-separation processes, an 

effective stress tensor is constructed by additively combining the total stress with pore 

pressures multiplied into a scalar factor. In effect, this scalar factor constitutes the Biot’s 

coefficient as acts inside the CZ. Integral analysis at the cohesive tip is used to show that 

this factor must be equal to the Biot’s coefficient in the bounding solid (for a small-strain 

constitutive relation). Also, effects of an initial residual stress state are accounted for.  
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Chapter 1:  Arbitrary fracture propagation in heterogeneous 

poroelastic formations using a finite volume-based cohesive zone model 

One of the big challenges of modern fracture modeling is to develop engineering 

tools that allow for analysis of fracture trajectory response to poromechanical constitutive 

parameters. These include variations in Lamé’s parameters, far-field stresses deviated 

with respect to the wellbore axis, and geological planes-of-weakness such as natural 

fractures. Fracturing models in the past have been designed to model the propagation of 

single, planar fractures in homogeneous porous media [1, 2]. These limitations stem from 

the underlying assumptions made, the numerical techniques used and the fact that these 

models are extended to solve the fluid flow and proppant transport problem inside the 

fracture. The rock matrix is represented only through boundary conditions for leak-off, 

elastic properties and normal far-field stress. This usually implies that the direction of 

fracture propagation is per-determined and specified in the model and the effect of rock 

heterogeneities (poroelastic layers, bedding planes, etc.) is difficult to account for. 

Poroelastic mixed mode CZ models have been used to model the fracturing 

process, while also accounting for poroelastic effects in the solid domain. This model has 

been used in a variety of oil industry applications, including: combined vertical and 

horizontal fracture growth in quasi-brittle reservoirs [3], competing fracture growth [4], 

and to account for effects of plasticity [5]. Moreover numerical CZ implementations are 

becoming increasingly useful as efforts to reduce mesh bias mature – both in terms of 

propagation path and optimization of mesh refinement within the cohesive softening 

region [6, 7]. E.g., emergent meshing technology allows for random seeding of cell 

centers and construction of cell-centered continuum material meshes, after which Monte 

Carlo-based simulation runs are prescribed to conduct fracture trajectory analysis [8]. 
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Yet near universally, computational CZ implementations have predicated use of 

the finite element (FE) method for stress analysis – often reliant on core features from 

licensed commercial solvers such as Abaqus. For instance, dependence on distinct 

element or FE methods for simulating discrete flow networks and coupled geomechanics 

is commonly assumed (c.f. [9]; for an extensive review article see [10]). However, a 

dependency on the FE method for stress analysis and fracture growth is no longer a 

necessity: associated with recent developments in FV computational solid mechanics, the 

FV discretization is now capable of stress analysis along multi-material interfaces. This 

method is sufficiently accurate to assess softening behaviors along those interfaces [11]. 

As inherently conservative, FV method-based techniques are well suited both for flow as 

well as for Biot’s momentum balance equation for displacement within fractured porous 

media. FV advantages include: shared discretization of solid body mesh and similarity 

data structures for both displacement and flow field variables; use of a single software for 

solution of both equations; and, in-built co-location of boundary conditions for 

hydromechanical pressures and fracturing pressure leak-off along boundary cell faces 

[12]. 

This work combines FV method-based stress analysis for CZ-based fracture 

propagation in a poroelastic medium, for the first time. Coupling of displacement and 

Darcy flow equations is by fixed-strain split assumption. Heterogeneity is introduced in 

terms of both material toughness properties (e.g., [13]) and rock layers. FV method-based 

displacement values are corrected to account for discontinuity in gradient of 

displacement, along poroelastic material boundaries; a brief overview of this procedure is 

presented. A CZ model is used to calculate the cohesive tractions applied at the tips of 

propagating fractures, using a critical effective stress-based traction-separation law. 

Because of the bimaterial stress analysis – plus the initialization of spatially variable 



 21 

fracture initiation criteria and toughnesses – the simulation of heterogeneities like 

bedding planes or natural fracture networks is naturally accommodated. Numerical 

solvers for field equations are modified from open source C++ library OpenFOAM solid 

mechanics extension [14, 15]. Mode I/II effective traction-based cohesive laws are 

modified from the same [16]. This open source project is further benefited by continuing 

contributions useful to model contact stresses during crack closure [17]. Both boundary 

cell non-orthogonality correction and relation of boundary gradients to applied stresses 

follow the scheme for orthotropic elasticity [18]. 

2D numerical examples are presented in order to show arbitrary, non-planar 

fractures in a porous medium. The effects of poroelasticity in the rock matrix are fully 

accounted for in the computations. This allows the fracture trajectory to be determined by 

the stress distribution around the tip (rather than prescribing a set orientation of the 

fracture) and the mechanical properties of the rock both in the vicinity of the tip and away 

from the tip. Variations in stress and pore pressure induced by heterogeneity are, 

therefore, accounted for as the fracture propagates. Both shear failure and tensile failure 

events in the rock matrix can be computed allowing us to track the shear events that occur 

as the fracture propagates. In our model, connected fractures are considered hydraulic in 

that fracture boundaries discharge leak-off, with pressure valued at injection pressure for 

fractures connected to the wellbore boundary. Connected fracture pressures are applied as 

a time-varying uniform boundary condition to both pressure and displacement field 

equations. Pressurized fractures removed by any distance from the propagating tip are not 

allowed. Hydraulic connectivity was assessed by examination of boundary cell face 

adjacency.  
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FIELD EQUATIONS 

Biot’s model of linear poroelasticity is employed where pores are assumed to be 

saturated by fluid. The strain tensor is constrained to be isotropic, and skeleton 

transformations constrained to be infinitesimal within the solid domain, with small 

variations of Lagrangian porosity. The linear elastic constitutive relations for the small 

strain tensor field and the volumetric strain scalar field are: 

𝛆 =
1

2
[𝛻𝐮 + (𝛻𝐮)T], (1)

𝜀𝑣 = tr(𝛆) = tr(𝛻𝐮) = 𝛻 ⋅ 𝐮. (2)

 

where 𝐮 is defined with respect to a reference configuration. The constitutive relation of 

poroelasticity relates the “increment of Biot’s effective” (𝛔 − 𝛔0), Biot’s effective (𝛔), 

and total stress (𝐒) tensors to the strain and hence displacement gradient tensor fields. The 

poroelastic constitutive relation is expressed under a TENSION POSITIVE convention 

[19]. The expression includes a residual effective stress tensor coupled at initialization as 

𝛔0 = 𝐒0 + 𝑏𝑝0𝐈, and which may obviously be zero-valued. The initial residual stress 

tensor usefully defines the far-field stress values and orientations, as well as the pore 

pressures in the undisturbed, in-situ state:  

𝛔 − 𝛔0 = 2𝜇𝛆 + 𝜆𝜀𝑣𝐈, (3)

𝐒 = 𝛔 − 𝑏𝑝𝐈 = 𝜇[𝛻𝐮 + (𝛻𝐮)T] + 𝜆tr(𝛻𝐮)𝐈 + 𝛔0 − 𝑏𝑝𝐈. (4)
 

In Eq. (4) as a function of Young’s modulus 𝐸 and Poisson’s ratio 𝜈, Lamé’s first and 

second parameters are, 
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𝜇 =
𝐸

2(1 + 𝜈)
, (5)

𝜆 = {

𝜈𝐸

1 − 𝜈2
for plane stress,

𝜈𝐸

(1 − 2𝜈)(1 + 𝜈)
for plane strain and 3D.

(6)

 

The above means that practically, the identity of 𝜆 may change for 2D simulations based 

upon the enforcement of compatibility conditions (e.g. plane stress compatibility). The 

poroelastic equation for quasi-static mechanical equilibrium can be expressed, in the 

absence of body forces, as:  

∮ 𝐧 ⋅ (𝐒 = 𝛔 − 𝑏𝑝𝐈)d𝑆

𝑆

= 𝟎. (7) 

Additionally, to solve Eq. (7), the currently predominant FV method-based 

solution methodology discretizes the implicit component of the displacement field with a 

dominant vector Laplacian term, labeled “Implicit,” 

∫ 𝛻 ⋅ (𝑏𝑝𝐈)d𝑉

𝑉

Pore Pressure Coupling

= ∫ 𝛻 ⋅ 𝛔0d𝑉

𝑉

+  ∮ 𝐧 ⋅ (2𝜇 + 𝜆)𝛻𝐮d𝑆

𝑆

Implicit Component

+ ∮ 𝐧 ⋅ [𝜇(𝛻𝐮)T + 𝜆tr(𝛻𝐮)𝐈 − (𝜇 + 𝜆)𝛻𝐮]d𝑆

𝑆

Explicit Component

. (8)

 

The accuracy of Eq. (8)’s solution is driven by the displacement field’s explicit 

component, which not only lumps non-linear terms but also terms related to the 

numerical correction applied at bi-material interfaces. To arrive at the quasi-static 𝑝 − 𝐮 

coupling of linearized poroelasticity, small variations in fluid mass density are assumed. 
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Here to solve the pore fluid flow equations, horizontal Darcy flow without gravity effects 

is assumed (for summary see [21]),  

∫ 𝑏
𝜕(𝛻 ⋅ 𝐮)

𝜕𝑡
d𝑉

𝑉

Displacement Coupling

+ ∫
1

𝑀

𝜕𝑝

𝜕𝑡
d𝑉

𝑉

= ∮ 𝐧 ⋅ (
𝐊𝑝

𝜇𝑝
𝛻𝑝)d𝑆

𝑆

Implicit Components

. (9) 

In order to simultaneously converge a solution to the coupled problem of Eq. (8) and Eq. 

(9), the numerical solution methodology is to perform a series of Picard iterations. Dry 

bulk modulus as well as Biot’s coefficient and modulus are defined in the usual manner:  

𝐾𝑑 =
2

3
𝜇 + 𝜆, (10)

𝑏 = 1 −
𝐾𝑑

𝐾𝑠
, (11)

1

𝑀
=

𝑏 − 𝜙0

𝐾𝑠
+

𝜙0

𝐾𝑝
= (1 − 𝑏)

𝑏 − 𝜙0

𝐾𝑑
+

𝜙0

𝐾𝑝
. (12)

 

Eq. (8) and Eq. (9) are coupled by a fixed-strain split assumption (for coupling 

alternatives and descriptions, see [22, 23]). This approximation has been found to be 

useful for coupling with multi-phase flow equations [24]. 

Verification of geomechanical model 

With respect to the validation case presented, it is helpful to define the undrained 

bulk modulus 𝐾𝑢, and secondarily diffusion coefficient 𝑐 with respect to the eigenvalue 

𝑘𝑝 of the isotropic permeability tensor: 



 25 

 

Figure 1: Terzaghi’s problem test case, (a) phase 1 loading and (b) phase 2 loading. 

 

𝐵 =
𝑏𝑀

𝐾𝑢
=

𝑏𝑀

𝐾𝑑 + 𝑏2𝑀
, (13)

𝑐 =
𝑘𝑝𝑀

𝜇𝑝
(
𝐾𝑑 +

4
3 𝜇

𝐾𝑢 +
4
3 𝜇

) =
𝑘𝑝

𝜇𝑝
(

1

𝑀
+

𝑏2

2𝜇 + 𝜆
)−1, (14)

𝜈𝑢 = (𝜈 +
𝑏𝐵(1 − 2𝜈)

3
)(1 −

𝑏𝐵(1 − 2𝜈)

3
)−1. (15)

 

The poroelastic coupling is validated against Terzaghi/Biot’s one-dimensional 

consolidation problem [25], with material properties listed in Table 1. A rectangular 
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column with height  2ℎ of 40 m was held at an initial uniform pressure of 0 Pa. During 

phase 1, a downward normal traction 𝑆0 of 1E+5 Pa was applied on to the column. The 

symmetric half-volume was simulated, with no displacement allowed at the middle. Zero 

outward displacement conditions were applied on other boundaries. No flow was allowed 

through any boundary. The final phase 1 pressure inside the column was computed to be 

36,448 Pa, and matches the linearized analytic solution. Phase 2 entailed relieving the no-

flow boundary condition at the top and bottom boundaries by application of a zero 

pressure condition. The loading conditions are shown Fig. 1. 

For our reference solution, the top of the column is located at 𝑥2 = h where the 

load is applied. Results for pressure during phase 2 are as presented in Fig. 2, and 

displacement in Fig. 3. The initial pore pressure, and the time-varying pore pressures are 

[26]: 

𝑝0 = 𝑏𝑀(
1 − 2𝜈𝑢

2𝜇(1 − 𝜈𝑢)
)𝑆0, (16)

𝑝(𝑥2, 𝑡) =
4

𝜋
𝑝0 ∑[

1

2𝑚 + 1
exp(−(

(2𝑚 + 1)𝜋

2ℎ
)2𝑐𝑡)sin(

(2𝑚 + 1)𝜋

2ℎ
(ℎ − 𝑥2))]

∞

𝑚=0

. (17)

 

The analytic solution for displacements in the 𝑥2-axis direction is: 

𝑢2,0(𝑥2) = −(
1 − 2𝜈𝑢

2𝜇(1 − 𝜈𝑢)
)𝑆0𝑥2, (18)

𝑢2(𝑥2, 𝑡) = 𝑢2(𝑥2)0 − (
𝜈𝑢 − 𝜈

2𝜇(1 − 𝜈𝑢)(1 − 𝜈)
)𝑆0 × {

8ℎ

𝜋2
∑

1

(2𝑛 + 1)2

∞

𝑚=0

× [1 − exp(−(
(2𝑚 + 1)𝜋

2ℎ
)2𝑐𝑡)]cos(

(2𝑚 + 1)𝜋

2ℎ
(ℎ − 𝑥2))}. (19)

 

The results for the numerical model overlay the analytical results.  
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Figure 2: Terzaghi’s problem test case, recovered pore pressures. 

 

 

Figure 3: Terzaghi’s problem test case, recovered displacements. 
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Bimaterial interfaces mark the location of a jump in the skeletal Lamé’s 

parameters. Because of the cell-centered discretization, they are located along internal FV 

cell faces. Because it assumes a continuous cell-to-cell displacement gradient, such 

interfaces are not accounted for by solution of the continuum-internal displacement 

equation Eq. (8). Tractions are continuous. Thus simple application of Hooke’s law 

shows a strain change across an interface between materials with different Young’s 

moduli. Fortuitously a means to correct for these effects has previously been developed 

for elasticity. The approach improves stress analysis within bimaterial domains at the 

interface where Lamé’s parameters jump. The approach is to enforce continuity of the 

resolved traction along each side of the interface, and so prevent unphysical stress 

peaking [11].  

For a constant Biot’s coefficient and “open pore” continuity conditions, Tuković’s 

interface correction methodology can straightforwardly be extended to linearized 

poroelasticity and use of a residual stress tensor. Note the resemblance of Eq. (8) to the 

linear elastic equation [15]:  

∫
𝜕2𝐮

𝜕𝑡2
d𝑉

𝑉

Dynamic Implicit Component

= ∮ 𝐧 ⋅ (2𝜇 + 𝜆)𝛻𝐮d𝑆

𝑆

Implicit Component

+ ∮ 𝐧 ⋅ [𝜇(𝛻𝐮)T + 𝜆tr(𝛻𝐮)𝐈 − (𝜇 + 𝜆)𝛻𝐮]d𝑆

𝑆

Explicit Displacement Term

(20)
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Figure 4: Closed pore continuity conditions along multi-material interface (dotted 

line) discretized as perpendicular to vector connecting cell center locations 

across interface, and continuum cell boundaries (dashed lines), (after [11]). 

 

 

Figure 5: Reduced set of apt continuity conditions along open-pore multi-material 

interface, where a homogeneous Biot’s coefficient implies continuity of 

resolved effective stress. 
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Clearly the second and third terms of Eq. (20) are identical to third and fourth term of Eq. 

(8): both equations utilize a dominant implicit vector Laplacian (having internal 

coefficient 2𝜇 + 𝜆), and contain an identical explicit function of the displacement 

gradient. The dynamic term is simply eliminated for quasi-static couplings. 

Without complex and lengthy derivation, we easily demonstrate the validity of 

our approach. We write the traction, “effective traction” (resolved Biot’s effective stress), 

and current increment of effective traction for the poroelasticity relation of Eq. (4):  

𝐭𝐒 = 𝐧 ⋅ 𝐒 = 𝐭𝛔 − 𝑏𝑝𝐧 = 𝐭𝛔−𝛔0 + 𝐧 ⋅ 𝛔0 − 𝑏𝑝𝐧, (21)

𝐭𝛔 = 𝐭𝛔−𝛔0 + 𝐧 ⋅ 𝛔0, (22)

𝐭𝛔−𝛔0 = 𝐧 ⋅ (𝛔 − 𝛔0) = 𝜇𝐧 ⋅ 𝛻𝑢 + 𝜇𝛻𝐮 ⋅ 𝐧 + 𝜆tr(𝛻𝐮)𝐧. (23)

 

Different properties on the two sides of a poroelastic bimaterial interface are designated 

with subscripts 𝑖𝑎 and 𝑖𝑏, and the value at the interface is subscripted with 𝑖. The sign 

convention of 𝐧𝑖 is outward positive from the current interface cell’s center. Fig. 4 

presents the schematic, representing a closed pore interface where pressures are 

discontinuous (as well as Biot’s coefficient). The closed pore scenario would imply no-

flow, because one or more of the interface materials is impermeable.  

For this work, we assume that a representative pore pressure is obtainable at the 

interface – and further, the pressure is known to be identical on both sides of the 

interface. As such, the open pore continuity of both traction and pore pressure are 

assumed [27]. Relevant continuity assumptions are: 

𝐭𝑖𝑎
𝐒 = 𝐧𝑖 ⋅ 𝐒𝑖𝑎 = 𝐧𝑖 ⋅ 𝐒𝑖𝑏 = 𝐭𝑖𝑏

𝐒 , (24)

𝑝𝑖𝑎 = 𝑝𝑖𝑏. (25)
 

Variations in Biot’s coefficient or resolved component of the initial stress tensor over the 

interface are not considered, and these fields are required to be invariant. Fig. 5 shows the 
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open-pore, homogeneous Biot’s coefficient scenario. In the absence of body forces, 

reasonable scenarios used to properly initialize the residual stress tensor will maintain the 

continuity of initial traction over the interface. Such that:  

𝐧𝑖 ⋅ 𝛔𝑖𝑎
0 = 𝐧𝑖 ⋅ 𝛔𝑖𝑏

0 , 𝑏𝑖𝑎 = 𝑏𝑖𝑏 . (26) 

The substitution of Eq. (25) and Eq. (26) into Eq. (24) obtains the equality of the 

increment of effective tractions. Usefully with respect to poroelasticity, only the traction 

normal component −𝑏𝑖𝑝𝑖𝐧𝑖 need be considered. As such, the traction continuity Eq. (25) 

reduces upon those assumptions to continuity of incremental effective traction: 

𝐭𝑖𝑎
𝛔−𝛔0

= 𝐭𝑖𝑏
𝛔−𝛔0

. (27) 

In that Tuković’s analysis relies only on the continuity of vectors numerically identical to 

the normal and tangential components of the increment of effective traction – thus, it has 

just been shown that the same analysis is equally applicable for poroelastic domains 

where Eq. (26) holds. (Parenthetically, the continuity of interface displacements, also a 

condition of the analysis, is de facto enforced by natural collocation of cell boundaries at 

the interface FV cell faces.) The bimaterial correction by enforcing said continuity, 

therefore captures an accurate: displacement gradient, thus strain, and hence stress state 

along material interfaces.  

The bimaterial correction allows FV-based numerics to accurately model fracture 

propagation either through or along rock layer boundaries. Moreover, the procedure 

enhances stability of growth models. Failure to implement such a correction (combined 

with the domain-wide evaluation of softening behavior as with the CZ model) may result 

in a sudden, massive, and physically unwarranted de-bonding at strongly discontinuous 

interfaces. Lastly as to the numerical mesh quality required, increasing mesh skewness in 
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general worsens convergence. The bimaterial procedure can account for skewness of 

interface faces. But skewness-handling requires: decomposition of the displacement 

gradient, plus vertex-based schemes [28, 29].  

Fractures and failure criteria 

Fractures are modeled as a discontinuity – viz. having width −𝐧𝑏 ⋅ 𝐮𝑏 where 

subscripting 𝑏 marks a boundary value. The width is computed from the resolved 

displacements at the boundary of the numerical mesh, that represents the formation. 

Arbitrary crack growth has been implemented using a FV cell-face detachment method in 

foam-extend [16]; the model was extended with use of Tuković’s interface correction to 

analysis of material interfaces [30]; numerically, softening behavior is applied using 

dynamic meshing with face detachment methods. The library incorporates the same core 

numerical implementation of the CZ model, but with an extended feature set which 

includes the capacity to simulate pressure-driven cracks, and implements the poroelastic 

failure model by use of the effective stress tensor.  

Hence, the hydraulic fractures are propagated using essentially a standard CZ 

model. Accordingly, in order to determine failure along FV cell-faces, the components of 

effective tractions are resolved onto all cell faces within the cohesive volume: 

𝛔𝑓 = 𝐒 + 𝑏𝑓𝑝𝐈 = 𝛔 + (𝑏𝑓 − 𝑏)𝑝𝐈, (28)

𝐭𝑛
𝑓

= 𝐧𝐧 ⋅ (𝐧 ⋅ 𝛔𝑓), (29)

𝐭𝑡
𝑓

= (𝐈 − 𝐧𝐧) ⋅ (𝐧 ⋅ 𝛔𝑓). (30)

 

The coefficient 𝑏𝑓 lies within the physical range 𝑏 ≤ 𝑏𝑓 ≤ 1 and for 𝑏𝑓 = 1 reduces 𝛔𝑓 

to the Terzaghi effective stress; for a purely elastic material 𝑏𝑓 = 0, 𝛔𝑓 reduces to the 

total stress. For fracturing models presented here, 𝑏 = 𝑏𝑓. Basic J-integral analysis of 
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loading at in the CZ evidences that 𝑏 = 𝑏𝑓most mimetically re-produces the linear elastic 

fracture mechanics (LEFM) analogue. 

The norms of effective traction components 𝐭𝑛
𝑓
 and 𝐭𝑡

𝑓
 are then compared using 

the effective normal and tangential critical stresses (𝜎𝑛)𝑐, and (𝜎𝑡)𝑐, respectively, which 

are material properties bearing a loose relation to the effective tensile and shear material 

strengths. Additionally, the set of normal components of the effective traction field (𝐭𝑛
𝑓
) is 

filtered to include only tensile traction components. After filtering, failure initiation is 

then determined by computing the Mode I/II norm:  

(
‖𝐭𝑛

𝑓
‖

(𝜎𝑛)𝑐
)2 + (

‖𝐭𝑡
𝑓

‖

(𝜎𝑡)𝑐
)2 

≥ 12 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑙𝑦 a broken face, if 𝐧 ⋅ 𝐭𝑛
𝑓

≥ 0,

< 12 not yet failed.
(31) 

To create discrete fractures discretized by the volume of the fracture-boundary 

displacements, the implementation of FV cell-face failure is by release methods: crack-tip 

faces which fail based upon this criterion are said to “break”; those mesh points 

topologically conjoining the newly detached faces must “split”. Failed, detached faces 

within the cohesive volume either have, or have not, depleted the fracture energy 

associated with their surface area (Fig. 6). If they are in excess of the fracture energy, the 

faces are not subject to tensional traction. Otherwise these faces fall inside the CZ or 

“softening region”, and the coupled faces are subject to an inward traction resisting 

further outward displacement.  
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Figure 6: Fracture tip and CZ in time (after [31]). 

 

 

Figure 7: Cohesive (a) linear and (b) Dugdale models. 
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Table 1: Terzaghi’s Problem 

 

During the face-breaking process, the normal and shear components of resolved 

effective stress at failure (𝐭𝑛
𝑓
 and 𝐭𝑡

𝑓
) are stored as initial “initiation tractions”. Cohesive 

tractions imposed within the CZ discount the initiation tractions based upon separation 

distance during the current solver iteration. Traction-separation laws relate maximum 

tensile and shear effective tractions to fracture energy, Fig. 7. For example, for a linear 

Mode I traction-separation law the cohesive tractions are approximated as: 

𝛿𝑐 = 2
𝐺𝐼𝑐

(𝜎𝑛)𝑐
, (32)

(𝐭𝑛
𝑓

)𝑏 = { 
(𝐭𝑛

𝑓
)0(1 −

𝛿

𝛿𝑐
) for 𝛿 < 𝛿𝑐,

0 otherwise.

(33)

 

Hence, the opening of failed faces toward a critical separation distance 𝛿𝑐 is used to 

discount the applied cohesive tractions (as long as the face remains within the CZ). The 

relationship between the current separation distance 𝛿 and the cohesive tractions is, 

therefore, a function of the traction-separation law employed: for instance in the case of a 

single-mode linear traction-separation law, this relationship is 𝐺𝐼𝑐 =
1

2
(𝜎𝑛)𝑐𝛿𝑐 as above. 
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(Here, the 1/2 factor is used to associate surface energy with the area of each half-surface 

of new fracture. The convention is repeated in the KGD model comparison.)  

In the general case however, it may be desirable to consider mode mixity of 

surface energy depletion in order to model both tensional and shear-induced fracture 

growth. In that instance, the current surface energy release rates 𝐺𝐼𝑐 and 𝐺𝐼𝐼𝑐 are 

numerically integrated by multiplication of directional displacement and applied cohesive 

tractions. Where mode mixity of release rates during the cohesive softening is considered, 

the following metric is computed and compared to unity: 

𝐺𝐼

𝐺𝐼𝑐
+

𝐺𝐼𝐼

𝐺𝐼𝐼𝑐

≥ 1 face leaves CZ,

< 1 face remains inside CZ.
(34) 

Fracture energies 𝐺𝐼𝑐 and 𝐺𝐼𝐼𝑐 are model inputs.  

Comparing external stress to fracture pressure at the boundary cell face (for a 

tension positive sign convention, and with fracture pressure acting as a compressive 

external force), the cohesive tractions reduce to an effective stress boundary condition 

[32, 33]: 

𝐭𝑏
𝑓

= (𝐭𝑛
𝑓

)𝑏 + (𝐭𝑡
𝑓

)𝑏, (35)

(𝐭𝐒)𝑏 = { 
𝐭𝑏

𝑓
− 𝑏𝑓𝑝𝑓𝐧𝑏 inside CZ,

−𝑝𝑓𝐧𝑏 otherwise as 𝐭𝑏
𝑓

= 𝟎.
(36)

 

The incremental formulation of Hooke’s law, Eq. (4), describes the tractions for a 

small surface area along the fracture boundary. Conversion of prescribed boundary 

tractions to gradients of displacement is discussed elsewhere. Nevertheless it is 

interesting to note the following fact. Along the physical fracture, let the boundary 

condition to the displacement field Eq. (8) be: 
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(𝐭𝛔−𝛔0)𝑏 = −𝑝𝑓𝐧𝑏 + { 
−𝐧𝑏 ⋅ 𝐒𝑏

0 adequate for stress shadow only,

−𝐧𝑏 ⋅ 𝛔𝑏
0 + 𝑏𝑏𝑝𝑏𝐧𝑏  accounts for poroelasticity.

. (37) 

Eq. (37)a is adequate to consider stress shadow effects, as between competing fractures. 

However, Eq. (37)b additionally accounts for poroelastic effects in the near-fracture 

region. This is also referred to as “back-pressure” or “back-stress” resulting from 

pressure continuity during leak-off. Alternatively simulations are initialized with traction 

boundary conditions. In this instance, stress concentrations in the far-field do not initiate 

Mode I/II failures, enforced by elimination of far-field cells from the cohesive zone 

volume. (Here, the “arbitrary” propagation criterion is that fractures may “nucleate” at 

any cell-cell interface within the subset of a discretized reservoir domain described by 

limits of an initialized cohesive zone volume.) As above, leak-off into the formation was 

modeled using fracture pressure as a pore pressure boundary condition:  

𝑝𝑏 = 𝑝𝑓 . (38) 

The volumetric rate of leak-off was computed by solving Eq. (9). 

Benchmarking 

Benchmarking of the failure criteria and traction-separation curves was achieved 

for proscribed fixed outward displacements of a body in tension, until failure at the 

vertical half-mark (Table 2). For benchmarking, mixed Mode I/II bonding behavior was 

held as isotropic for both energy release rate and failure behavior; conditions for isotropic 

fracture energy and isotropic material failure were, respectively, 𝐺𝑐 = 𝐺𝐼𝑐 = 𝐺𝐼𝐼𝑐 and 

(𝜎𝑛)𝑐 = (𝜎𝑡)𝑐.. The strain energy stored within the upper and lower half of this body, 

immediately before failure, is: 
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Table 2: CZ Benchmarking Parameters 

 

 

Figure 8: CZ benchmarking test case, recovered force-displacement curves. 
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𝑈𝑐 =
ℎ

2

(𝜎𝑛)𝑐
2

𝐸
𝐴. (39) 

A force-displacement history for variously sized bodies (heights, ℎ) was recorded 

(Fig. 8). The elastic strain energy 𝑈𝑐 stored prior to failure was measured by integration 

of force-displacement curve from zero displacement (undeformed configuration) until the 

curve’s peak. Cohesive traction boundary conditions are applied to each boundary cell 

face during softening; for the benchmarking simulations, 𝑏 = 0.  

The numerical error associated with strain energy accumulation prior to failure 

initiation (at peak) was 0.16%, for both Dugdale and linear laws. The Dugdale law CZ 

model implementation recovered normalized fracture energy per unit area with 1.07% 

error, by integration of the force-displacement curve during cohesive traction-separation 

process only. The linear traction-displacement law curve was integrated from initial 

displacement (area under the entire curve), recovering fracture energy within 0.04% error 

in Fig. 8. Results were independent of the number or configuration of cells discretized 

within the body. Fracture faces leave the active cohesive zone after achieving a critical 

separation distance, e.g. 0.02 mm in Fig. 8.  

Cohesive material parameters 

Our simple approach to CZ model implementation distinguishes elastic from 

poroelastic cohesive zone loading. This approach entails: allowing the fracture fluid flow 

to penetrate within the CZ; setting surface permeability in the zone to vary with fracture 

width; and, an effective stress-based cohesive traction-separation law. This 

conceptualization has been used with a cohesive zone length with magnitude of order 1 

m, in order to match a Khristianovich-Geertsma-de Klerk-type reference solution using a 

cubic law transmissivity (c.f. [31]). Following Carrier’s idea, fracture transmissivity 
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within the fracture is dominated by localized porosity enhancements induced by a more 

tensile stress state. Flow within the cohesive zone operates at positive net pressures, and 

is a function of the induced permeability. (Dry tip phenomena are not considered here.) 

At critical stresses of order 1E+6 Pa, the CZ model/FV method implementation is 

numerically less likely to operate within a regime where distended traction-separation 

curves are recovered (unlike Fig. 8).  

This approach admits a physical interpretation of the CZ model critical effective 

normal stress (under certain conditions): the effective tension at which cohesive 

processes initiate, and therefore cause a small volumetric increase in the pore space of the 

tensile CZ region. Although minute, this slight increase in pore volume is nonetheless 

potentially sufficient to convey fracture fluids (as and if present). The pressure gradient in 

this zone is better approximated by a fracture than the reservoir permeability. That said, 

numerically, the fluid-filled CZ also exhibits more monotonic recovery in fracture 

dimensions such as aperture. Physically, the effective normal critical stress is bounded at 

its upper limit by the reservoir rock’s effective tensile strength. Numerically, the critical 

normal stress is sufficiently low to ensure no detached cell face enters and immediately 

exits the CZ.  
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Table 3: Geomechanical Parameters 

 

 

Table 4: Energy Parameters. 
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Figure 9: Fractures propagated along boundaries of original discretization (in blue): 

(a) no heterogeneity of parameters; (b) with anisotropic and varying 

parameters of toughness and critical stress; (c) heterogeneity with increased 

magnitude of far-field stress contrast; and, (d) with isotropic critical stresses 

and original stress contrast, magnified at 100x displacement. 

 

NUMERICAL RESULTS 

A fracture was considered to be propagating when a mixture of cohesive zone and 

completely failed faces were present along the fracture boundary (decided by Eq. (34)). 

For all simulations small starter fractures are discretized, with lengths on the order of 

∼0.01-0.5 m. Pressure pulses of high normal traction are applied to starter fractures, in 
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order to initiate propagation, with a fixed number of failed faces allowed per time step. 

During mature propagation net pressures would resolve a tip stress exceeding CZ model 

critical stresses; at this point, fracture boundary tractions were diminished, reducing to a 

net pressure ∼0.5-3E+6 Pa (depending on critical stress values, permeabilities, and 

discretization). Default parameters and formation initial total stresses are as given in 

Table 3.  

Fractures are shown as white discontinuities in the formation. Fractures are 

constrained to propagate along existing faces of original discretization, connected 

fractures are infinitely conductive, and material boundaries must follow original cell 

boundaries [34, 12]. Cell boundaries are shown occasionally to indicate the total set of 

available fracture paths. Stable fracture propagation is feasible using: (a) fixed 

displacement and symmetry far-field boundary conditions; or, (b) an initial stress tensor 

𝐒0 . combined with the resolved tractions along the far boundaries 𝐧𝑏 ⋅ 𝐒𝑏
0. This 

initialization method is practically useful for oil industry applications – and in particular 

for simulations utilizing a multi-material interface – in order to avoid shearing during 

initialization via application of compressive tractions.  

Planes-of-weakness 

Our first model (Fig. 9) shows the capability to simulate natural fracture 

networks, bedding planes, or other planes-of-weakness. Under this model, the results 

show that variations in induced fracture propagation path are controlled by the stress 

contrast and the critical effective normal and tangential stresses, (𝜎𝑛)𝑐, and (𝜎𝑡)𝑐. These 

critical stresses are reduced along natural fractures, causing the fractures to turn along 

planes-of-weakness. Toughness and fracture energy properties have secondary effects on 

propagation direction. Energy release rates dominate fracture widths in the cohesive zone 
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region, per the traction-displacement curve. In contrast, fracture trajectories in 

homogeneous reservoirs are aggregately straight.  

Fractures in Fig. 9a through 9d initiate from the right-hand-side boundary and 

propagate left, with fracture critical stresses and toughness reduced only for cell-cell 

boundaries between lighter-colored cells. The base-case simulation Fig. 9a shows 

aggregately straight path of propagation up to a length of 24 m. The fracture toughness 

and critical stress properties for both the formation and the planes-of-weakness are 

identical, and valued as formation properties given in Table 4. Straightness of the base-

case trajectory is facilitated by anisotropy in the imposed far-field stresses and by the 

symmetry boundary condition at the boundary along which the fracture was initiated 

(Fig. 9, right boundary). This condition forces zero perpendicular displacement along the 

boundary, effectively resisting any torque developed along that boundary imposed by 

fracture path deviation from a plane. Notably, this reservoir is discretized using a 

Delaunay-triangulated mesh ([35]). Uniformity of cell-face length and hence cohesive 

zone length are not considered in all simulations, though are recognized as engineering 

choices for CZ modeling ([36]). Instead, natural-fracture-adjacent cell sizes have been 

increased to show cell-face network pattern while evidencing fracture propagation of 

meaningful length.  

In Fig. 9b the fracture toughness of the planes-of-weakness are changed and are 

given in Table 4. Simulations with formation Mode II tangential critical stress varying 

from 0.5E+6 to 5E+6 Pa were conducted, but without causing a significant variation in 

the fracture trajectory – propagation was dominantly Mode I. In Fig. 9c the fracture 

toughness values were kept the same as for Fig. 9b. However, the maximum far-field 

horizontal stress was increased to a value of 19.0E+6 Pa. The resultant fracture 

propagates aggregately along a straight path, while exhibiting occasional forward de-
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bonding along weaker interfaces of low critical effective stress. Fig. 9 shows fractures 

while net pressure is maintained at 1.1E+06 Pa, although all fractures are stably 

propagated to an ultimate net pressure of 0.5E+06 Pa and aperture of 1.8 mm. 

In Fig. 9d the tangential and normal critical effective stresses were decreased to 

0.2E+6 Pa for the planes-of- weakness. Shearing occurs near the hydraulic source, 

increasing near-wellbore complexity. Fig. 9b and Fig. 9d simulations were run with low 

stress contrast and share a characteristic propagation path pattern: opening of fractures 

disconnected from the main fracture, or forward-lateral de-bonding, causing subsequent 

fracture turning to join with de-bonded regions (observable in Fig. 9b). Regarding the 

orientation of failed faces in Fig. 9, the jaggedness of the configuration of failed faces 

produced (as the boundary of a simulated propagating fracture) poses problems 

unaddressed by [12]. Pressures are applied as scalar values multiplied by the face normal 

of any particular face within the connected fracture. The component of the resultant 

traction vector which acts in the same direction as the face normals of adjacent boundary 

faces, counteracts pressures applied on those adjacent faces. Clearly, this effect has no 

impact on planar hydraulic fractures modeled using orthogonal Cartesian meshes.  

Reversal of in-situ stress direction 

Our second model (Fig. 10) shows differing fracture trajectories based upon 

arbitrarily directed maximum and minimum principal stresses. Where the direction of 

horizontal maximum and minimum principal stresses is swapped, the direction of fraction 

propagation is reversed. Simultaneous fracture propagation is simulated. No material 

parameter or other aspect of the discretization is altered between the two simulations – 

otherwise geometry, meshes, and physical properties are identical.  
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Figure 10: Fractures propagating from wellbore with reversed horizontal minimum 

stress direction, with stresses according to a compression positive 

convention: (a) in top-down direction; and, (b) in right-left direction, run on 

identically generated trigonal mesh, magnified at 50x displacement. 

 

 

Figure 11: Vertical fracture response to Young’s modulus: (a) high modulus contrast; 

and, (b) low contrast, magnified at 7000x displacement. 
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Figure 12: Vertical fracture encountering barriers: (a) schematic with barriers in 

yellow; (b) recorded effective shear initiation tractions; and (c) zoom view 

of tractions, magnified at 500x displacement. 

 

 

Figure 13: Fracture propagating horizontally towards a conformally meshed plane-of-

weakness: (a) schematic; (b) forced-path development of cohesive zone 

along preexisting plane, in shear failure; and, (c) arbitrary fracture path 

through fracture showing pressure diffusion, magnified at 100x 

displacement. 
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This simulation describes fracture propagation from an open-hole wellbore with 

the net pressure (reducing to 0.2E+6 Pa), applied uniformly around the wellbore and the 

fracture. Slight discontinuities representing flaws are introduced around the 1.08 cm 

(0.425 in.) wellbore, otherwise a fracture initiates but propagates singly. The fracture 

propagation path for Fig. 10 is dominated by fracture face opening against the direction 

of the minimum principal stress for all steps simulated (Mode I), with propagation 

displayed to about 0.05 m length 80 um aperture. Fig. 10a shows fractures propagating 

out of flaws along the axis of minimum horizontal stress, in this case laterally. For the 

simulation shown in Fig. 10b, the direction of minimum horizontal stress is reversed.  

In both simulations, as expected, increased compression develops in a region of 

wellbore and normal to the fracture, with a small tensile region ahead of fracture tips. 

Clearly the fracture path is primarily the result of the initial stress contrast, while the 

meshing regime produces local fracture path deviations. Mesh fining is employed to 

produce straighter trajectories, less impacted by mesh structure. Our results were similar 

to seeded random or otherwise polygonal meshes: symmetric dual fracture propagation 

from wellbore, and reduced local deviations along the fracture path (see similar results in 

[8]).  

Vertical propagation 

Our third model (Fig. 11 and 12) shows vertical fracture propagation, through 

layers with differing rock elastic properties, and fracture propagation towards a barrier 

layer. The fracture widths decrease during propagation through the higher elastic 

modulus rock. Shear failure events while encountering a barrier or otherwise failing in 

shear are recorded, allowing us to investigate potential microseismic events as the 

fracture propagates. The vertical fracture simulations shown here assume plane strain 
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behavior, and as such vertical propagation and fracture turning in the horizontal plane 

cannot be simultaneously modeled. It should be noted that the formulation and 

implementation of the model is in 3D and so is extensible to model the propagation of 

fractures in 3D.  

The Young’s modulus for the yellow (lighter colored) layers was held at 90E+9 

Pa for all simulations run. The blue/green layers were assigned a modulus of 20E+9 Pa 

for Fig. 11a and of 70E+9 Pa for Fig. 11b. The rock permeability for all layers is 1E-12 

m2. A fracture propagating in front of the hydraulically connected fracture was 

observable during the simulation that produced Fig. 11a. The difference in soft layer 

modulus produces a strong contrast in terms of aperture and fracture shape. Fractures in 

Fig. 11 have propagated to a length of 34 m, at an aperture of 1 mm and 0.4 mm for Fig. 

11a and Fig. 11b respectively.  

In Fig. 12 a fracture barrier case was run in order to showcase the impact of the 

failure mode. The fracture advances in Mode I failure until encountering a barrier. The 

barrier layer is characterized by a much higher normal critical stress and is, therefore, not 

penetrable, given fracture the propagation length, history, and net pressure distribution. A 

shear failure indicator field was recorded as: ‖𝐭𝑡
𝑓

‖ for ‖𝐭𝑡
𝑓

‖ > ‖𝐭𝑛
𝑓

‖, or otherwise zero. 

The fracture propagates to a length of 14 m and an end-time aperture of 0.250 mm, 

through rock with a critical normal effective stress of 0.1E+6 Pa and a permeability of 

1E-12 m2, with end-time net pressure reducing to 0.2E+6 Pa. No tracking values were 

recorded during Mode I propagation (Fig. 12, up-down boundaries). As the fracture 

encounters a second layer with a critical normal effective stress of 6.7E+6 Pa or above, it 

is unable to penetrate the layer. The fracture is then diverted along the interface with 

fractures nucleating both in and out of hydraulic connection with the main fracture. The 

fracture tip remains in the cohesive zone, with extension out of Mode I/II regime 
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controlled by rock Young’s modulus i.e. the extent of the available lateral compression. 

Similar shear traction events (as and if they occur) are recorded during all our 

simulations, e.g. for the isotropic critical stress simulation shown in Fig. 9d.  

High angle intersection 

The ability to capture slight kinking is a distinguishing feature of field-scale 

fracture modeling. Fig. 13 shows this type of complex fracture propagation. In particular 

the model exhibits responsiveness to: variations in tangential critical stresses (e.g., Fig. 

9); development of shear failure at a barrier (Fig. 12); and, reductions in normal critical 

stress. To illustrate this effect, we model a high-angle intersection between an induced 

hydraulic and a preexisting natural fracture. The surface of the natural and induced 

fractures are both modeled as physically smooth. For this simulation, the parameters are 

as given in Table 5. The traction boundary condition was required to be per Eq. (37)a, in 

order to reduce the net pressure to the near minimum horizontal stress at the fracture tip.  

This fracture in Fig. 13 propagates normally in Mode I failure for 7 m, until the 

cohesive tip intersects the natural fracture at a net pressure of 0.1E+06 Pa and an aperture 

of 0.4 mm. When intersection occurs, the connected fracture will propagate through, turn 

along the natural fracture path in Mode II failure (Fig. 13b), or kink and return to opening 

against the far-field minimum principal stress direction. This simulation shows that 

fracture paths depend upon several parameters. Given fixed material parameters and 

stress contrast, activation of the natural fracture in tensile failure becomes less likely as 

the intersection angle decreases from 90 to 0°. In Fig. 13c, the critical effective normal 

stress has been reduced to 1.25E+6 Pa and the fracture kinks to resume opening against 

the far-field minimum direction (c.f. [37]).  
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Figure 14: Fractures turning in response to stress interference effects, and propagating 

in direction of horizontal maximum stress (grayed line glyphs), magnified at 

500x displacement. 

 

 

Figure 15: Parabolic near-fracture pore pressure distribution evolving with fracture 

pressure curve: (a) isotropic permeability; and, (b) reduced up-down 

directional permeability, magnified at 200x displacement. 
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Figure 16: KGD geometry case for (𝜎𝑛)𝑐  = 1E+7 Pa, recovered fracturing pressures. 

 

 

Figure 17: KGD geometry case for (𝜎𝑛)𝑐 = 1E+7 Pa, recovered length. 
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Figure 18: KGD geometry case for (𝜎𝑛)𝑐  = 1E+6 Pa, recovered fracturing pressures. 

 

 

Figure 19: KGD geometry case for (𝜎𝑛)𝑐 = 1E+6 Pa, recovered length. 
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Stress shadow and poroelastic effects 

Fig. 14 and 15 show models indicating stress interference effects during multiple 

fracture propagation, as well as pore pressure diffusion from the fracture based upon 

arbitrary fracture-interior pressure distributions. Stress interference effects typically occur 

when multiple, non-intersecting, competing fractures grow. Rival fractures incur stress 

interference effects within the fractures’ stress shadow region. Simultaneous propagation 

of the rival fractures causes a distinctive propagation pattern: fractures curving away 

from the centerline as the fracture tip follows local changes in the maximum horizontal 

stress direction.  

The width of fractures simulated (Fig. 14) is 0.3 mm at the aperture, with the 

perforations spaced 10 m apart, and normal and tangential critical the effective stresses of 

0.5 and 1E+6 Pa respectively, at a fracture net pressure of 3.1E+6 Pa. Fig. 14 shows 

effective stress regions in tension in the vicinity of fracture tips, indicating that this 

region is experiencing tensile failure (by critical effective stress criterion, with stresses 

post-processed into a compression positive sign convention). A small disturbance in the 

stress field is noticeable near the perforation locations. This is associated with 

initialization of the residual stress tensor near discontinuities in the original discretization 

(unlike Fig. 10).  

Fig. 15 shows a characteristic parabolic near-fracture pore pressure distribution, 

indicating intensification of leak-off pressures in the wake of the numerical fracture tip. 

Critical effective stresses are isotropic and increased to 1.25E+6 Pa, with an ultimate tip 

net pressure of 3.1E+6 Pa. Simulations differ in one respect only: permeability in the 

direction of far-field minimum stress is reduced from 1E-14 m2 in Fig. 15a to 1E-15 m2 

in Fig. 15b. Fracture in Fig. 15a propagates to 1.5 mm width and 21 m length while the 
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fracture in Fig. 15a propagates to 2.0 mm width and 21 m length, and width reduction is 

associated with poroelastic effects (i.e. pressure continuity during leak-off).  

Meshing-related error 

Let us suppose a Mode I fracture, for which the assigned 𝐺𝐼𝑐 = 0 and (𝜎𝑛)𝑐 ≈ 0. 

The model uses the above described CZ model. In this scenario, we expect unconstrained 

length growth with increasing mesh refinement at the fracture tip. To summarize, a zero 

toughness CZ model does not approach a mesh independent solution with regard to 

numerically recovered fracture dimensions. For an incompressible fluid with no leak-off, 

the fracture will maintain some non-zero width. Given that positive width, the fracture 

growth will simply be dictated by the elastic response of the material: hence, a stress 

singularity exists at the tip. If the mesh at the fracture tip is sufficiently fine, the resolved 

effects of the stress singularity will overcome the trivial tensile limit stress, plus any 

resolved far-field stress, resolve to the tip-adjacent FV cell face. Therefore an increase in 

fracture-tip mesh refinement decreases the size of the cell face, and hence radius from the 

singularity. As the radius diminishes, the net resolved effective stresses become more 

tensile. Thus refinement simply acts to extend the fracture tip, because the stress-effect of 

the singularity overcomes the (constant) far-field compression. As a corollary, for a fixed 

value of (𝜎𝑛)𝑐 under our methods, the near tip mesh refinement must increase with 

decreasing but non-zero 𝐺𝐼𝑐 in order to maintain a cohesive zone; thus, the practical use 

of the CZ model is to limit fracture extension.  

Therefore, to compare the fracture mechanics implementation to an analytic 

solution: toughness is assumed to be non-zero, and unaffected by in situ stress state. For 

this model, the fracture fluid is assumed to be inviscid and slightly compressible (small 

variations in fluid density), with a fixed injection rate at the inlet. Fig. 16 presents the 
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non-trivial toughness comparison for pressure; Fig. 17 presents the result for length, and 

as for above benchmarking simulations 𝑏 = 0. Also, here 𝑘𝑝 ≈ 0 to induce no leak-off. A 

comparison is shown to the analytic solution of both LEFM and Barenblatt’s CZ models 

[38]. For this case, the comparison to the LEFM solution is favorable. However, this 

result DOES NOT verify the correctness of surface energies during fracture turning. In 

fact, it has been attempted to highlight the numerical surface roughness of fractures 

during such re-orientation. Because the exposed rough surface is larger than a straight 

path along the center of the fracture, the recovered surface energy may change. Improved 

accommodation for small-angle turning (large radius of path curvature) is a second 

important consideration. These are known issues for numerical implementations using 

face/nodal release methods, and can be mitigated via near-tip dynamic remeshing 

methods [7, 39].  

Near-tip fining requirements are quite restrictive; however, the mesh density 

requirements appear in-line with other field-scale models, in which a fracture surface is 

resolved (and the correct fracture energy recovered). E.g., such models include be 

peridynamics and phase-field crack growth models. Here the limit fining required for 

converging the stress-dependent, zero-toughness case to the analytic solution is a 

reasonable proxy. For instance, the required fining in the notation of peridynamics is 

2𝑎(𝛿/2𝑎)/𝑚, for: 2𝑎 the domain length dimension in the 𝑥1-direction, 𝛿/2𝑎 the horizon 

size per unit length, and 𝑚 the neighbors in the horizon. In the case of peridynamics 

using a 2D KGD geometry, the matching fining is 0.1 m for a zero toughness simulation 

[40]. This compares to 0.018 m, for the Fig. 16 comparison where 𝐺𝐼𝑐 is 120 J/m2.  

For the CZ model, required fining reduces where (𝜎𝑛)𝑐 is reduced, see Fig. 18 for 

pressures and Fig. 19 for displacements. In these results, mesh refinement at the tip is 

limited to 0.07 m. However, the (𝜎𝑛)𝑐 reduction moves: (a) recovered “real fracture 
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length” (𝑅) curve away from the brittle limit, and in the direction of Mokryakov’s 

Barenblatt solution; and (b), total length (𝐿, including the CZ) curve away from the brittle 

limit, and away from the direction of Mokryakov’s solution. Therefore, the modeled 

location of the fracture tip becomes increasingly diffuse with decreasing (𝜎𝑛)𝑐; thus, 

where in situ stress effects are removed from the model, this effect indicates the physical 

interpretation of the stress parameters.  

CONCLUSIONS 

This work describes the development of a finite volume, cohesive zone, fracture 

propagation model. The method uses an iteratively coupled linearized poromechanics 

formulation. Our methods for solution of the displacement equation are adapted from the 

proven numerical solid mechanics suite developed and made available by Jasak, Tuković, 

and co-workers. This paper describes the appropriate means for coupling such a 

poroelastic-based model with fracture propagation methods based on a cohesive zone 

formulation. To the best of our knowledge, this paper details a poroelastic CZ model/FV 

method fracture growth model for the first time. The simulation model has been shown to 

be capable of simulating the propagation of multiple, non-planar fractures in 

heterogeneous porous media.  

Fracture propagation in heterogeneous media can lead to complex fracture 

patterns and propagation behavior. To demonstrate the capabilities of the model some 

interesting cases are simulated, with an emphasis on presenting behaviors important to 

various applications in the oil industry. It is shown that fracture paths varied 

systematically. The fracture paths varied in response to changes in rock energy model 

characteristics such as normal and tangential critical effective stresses. The simulated 

fracture paths responded to heterogeneity by turning along the direction of planes-of-
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weakness. Fracture propagation has been shown to depend on the local stress state, both 

in terms of degree and principal direction of anisotropy of the initialized stress tensor. 

Shear failure events can be mapped as the fracture propagates. Propagation through 

vertical layers was modeled, as was pressure diffusion into the formation. Our fracturing 

simulation can accept an arbitrarily variable fracture fluid pressure distribution.  

In addition to the examples detailed, this model offers an opportunity to 

implement other important features. While not discussed here, the method is amenable to: 

(a) extensibility to model truly 3D problems, as the dominant finite volume-based solid 

mechanics libraries are inherently fully 3D; (b) feasible domain decomposition for 

processor-based parallelization of simulations, which is enabled by the use of shared FV 

data structures when solving displacement and pressure field equations; and, (c) adaptive 

mesh refinement using these shared data structures, in order to model 3D problems with 

reasonable run times.  
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Chapter 2:  Application of finite volume-based bimaterial method to 

variously coupled poroelasticity 

The development of hydromechanically-coupled displacement and flow 

equations, for the modeling of homogeneous poroelastic “bi-continuum” domains, is 

extensively covered in classic literature [19]. However, the domains we are now 

interested in modeling may include: a pore fluid flow continuum, with different initial 

pore pressures in various rock layers; several solid skeletal material, with spatially 

varying elastic material and softening parameters, as well as Biot’s coefficient, porosity, 

and intrinsic permeability; a vertically varying residual stress state, often referred to in 

the completions literature as the “far-field” stress; and, impermeable barriers. The result 

of the enhanced stress analysis can provide a basis for: 3D modeling of the stress state at 

horizontal interfaces of vertically stacked, heterogeneous rock layers; or, evaluation of 

the rock stress state within near-wellbore region in the vicinity of a perforated steel 

casing with cement.  

For instance, modeling of cased, cemented wellbores is necessarily a multi-

material problem, as the steel casing is impermeable and has a much higher Young’s 

modulus than the surrounding cement and rock formation. Hence, our motivation is to 

describe correctly the gradient of displacement and hence stress state along such 

interfaces. Any such efforts require accurate FV method-based stress analysis, such that 

all geomechanical parameters (including Biot’s coefficient) can be varied across a multi-

material interface (and hence model steel and rock on the same numerical mesh). 

Relevant practical applications for this work would include simulation of hydraulic 

fractures in the near-wellbore region, using the displacement-driven crack propagation 

previously applied to elastic materials [30].  
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In essence, this work presents methods that purely superimpose hydromechanical 

coupling terms with FV-based bimaterial stress analysis. Examples of the fixed-strain and 

fixed-stress iterative poroelastic couplings are presented [22, 41]. The over-relaxed 

solution approach to FV-discretized elasticity [15], as well as coupled poroelasticity [20], 

is utilized; numerical handling of multi-material domains (cf. [11]) is extended to 

poroelasticity and use of an initialized, residual stress tensor. Some extra attention is 

given to stress state initialization as well as boundary conditions – being useful in the 

application of multi-material geomechanical models. Verification of the numerical 

models is presented, firstly by standard Terzaghi’s and Mandel’s problems. Secondly the 

plane-strain analysis of an Eshelby’s inclusion is extended slightly, to include effects of 

poroelasticity using a spatially varying initialized residual stress tensor [42, 43]. 

In essence, this work presents methods that purely superimpose hydromechanical 

coupling terms with FV-based bimaterial stress analysis. Examples of the fixed-strain and 

fixed-stress iterative poroelastic couplings are presented [22, 41]. The over-relaxed 

solution approach to FV-discretized elasticity [15], as well as coupled poroelasticity [20], 

is utilized; numerical handling of multi-material domains (cf. [11]) is extended to 

poroelasticity and use of an initialized, residual stress tensor. Some extra attention is 

given to stress state initialization as well as boundary conditions – being useful in the 

application of multi-material geomechanical models. Verification of the numerical 

models is presented, firstly by standard Terzaghi’s and Mandel’s problems. Secondly the 

plane-strain analysis of an Eshelby’s inclusion is extended slightly, to include effects of 

poroelasticity using a spatially varying initialized residual stress tensor [42, 43].  
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INTERFACES 

Methods are outlined that solve the momentum equation of linearized 

poroelasticity. Special treatment is provided at bimaterial interfaces, e.g. where the 

Young’s modulus jumps across a steel/concrete interface. Continuity of the displacement 

gradient is not assumed, in order to resolve a more accurate stress state. Instead, the 

continuity of traction and solid skeletal displacement is enforced. Where both materials 

are permeable, the continuity of pore pressure and pore fluid relative velocities is also 

enforced.  

Open pore interfaces 

At permeable bimaterial poroelastic interfaces, we assume open pore continuity of 

both total traction and pore pressure, as per [27]. The notation is that the interface 𝑖 exists 

between any two (including two identical) materials 𝑎 and 𝑏. Normal vector 𝐧𝑖 describes 

the orientation of the interface. Subscripts 𝑖𝑎 indicates the current side of the interface. 

Subscript 𝑖𝑏 indicates the far side of the interface. The continuity conditions are 

expressed as by [47], 

𝐭𝑖𝑎
𝐒 = 𝐧𝑖 ⋅ 𝐒𝑖𝑎 = 𝐧𝑖 ⋅ 𝐒𝑖𝑏 = 𝐭𝑖𝑏

𝐒 , (40)

𝐯𝑖𝑎 =
𝜕(𝐮𝑖𝑎)

𝜕𝑡
=

𝜕(𝐮𝑖𝑏)

𝜕𝑡
= 𝐯𝑖𝑏 , (41)

𝑝𝑖𝑎 = 𝑝𝑖𝑏 , (42)

𝐧𝑖 ⋅ 𝐰𝑖𝑎 = 𝐧𝑖 ⋅ 𝐰𝑖𝑏, (43)

 

where traction is 𝐭𝐒, pore pressure pressure 𝑝, solid skeletal velocity 𝐯 (as the temporal 

derivative of rock skeleton’s displacement, 𝐮), and pore fluid relative velocity 𝐰. Eq. 

(40) is usefully re-stated as the continuity conditions for normal (𝐭𝑛
𝐒 ) and tangential (𝐭𝑡

𝐒) 

components of traction,  
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(𝐭𝑛
𝐒 )𝑖𝑎 = 𝐧𝑖𝐧𝑖 ⋅ (𝐧𝑖 ⋅ 𝐒𝑖𝑎) = 𝐧𝑖𝐧𝑖 ⋅ (𝐧𝑖 ⋅ 𝐒𝑖𝑏) = (𝐭𝑛

𝐒 )𝑖𝑏, (44)

(𝐭𝑡
𝐒)𝑖𝑎 = (𝐈 − 𝐧𝑖𝐧𝑖) ⋅ (𝐧𝑖 ⋅ 𝐒𝑖𝑎) = (𝐈 − 𝐧𝑖𝐧𝑖) ⋅ (𝐧𝑖 ⋅ 𝐒𝑖𝑏) = (𝐭𝑡

𝐒)𝑖𝑏 , (45)
 

where consistently subscript 𝑛 is used to refer to the normal component of a vector; 

subscript 𝑡 represents the tangential component. 

The time-integrated effect of Eq. (41) is to impose the continuity of skeletal 

interface displacements from any reference configuration wherein the initial 

displacements are equal at an internal boundary. The exceptional case would be where an 

explicit discontinuity is introduced into a domain, such as within softening regions during 

fracture propagation. Various methods for enforcing Eq. (43) are important but not 

considered here. Overall, distance-weighed harmonic averaging of permeability is 

considered sufficient for geomechanical analysis at open pore interfaces.  

Closed pore and impermeable interfaces 

For the numerical treatment presented, the classes of closed pore and 

impermeable interfaces are lumped together. Closed pore interfaces are such that the pore 

spaces of materials 𝑎 and 𝑏 are disconnected along the interface. Impermeable interfaces 

are considered be an interface where one or both of the materials is impermeable. 

Continuity conditions are restated for closed pore and impermeable interfaces as:  

𝐭𝑖𝑎
𝐒 = 𝐧𝑖 ⋅ 𝐒𝑖𝑎 = 𝐧𝑖 ⋅ 𝐒𝑖𝑏 = 𝐭𝑖𝑏

𝐒 , (46)

𝐯𝑖𝑎 =
𝜕(𝐮𝑖𝑎)

𝜕𝑡
=

𝜕(𝐮𝑖𝑏)

𝜕𝑡
= 𝐯𝑖𝑏 , (47)

𝑝𝑖𝑎 = 𝑝𝑖𝑏 ↔ 𝑝𝑎 = 𝑝𝑏 , (48)

𝐧𝑖 ⋅ 𝐰𝑖𝑎 = 0 and 𝐧𝑖 ⋅ 𝐰𝑖𝑏 = 0, (49)

 

where: 𝑝𝑎 = 0, if material 𝑎 is not poroelastic; and, 𝑝𝑏 = 0 if material 𝑏 is not 

poroelastic (i.e. 𝑏 is elastic). Eq. (48) indicates that, at both closed pore and impermeable 
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interfaces, the pressure is properly discontinuous across the interface. Eq. (49) indicates 

that the interface is a no-flow internal boundary. 

PORE FLUID FLOW 

The poroelastic coupling known as the “𝐮 − 𝑝 approximation” reduced for quasi-

static phenomena is in essence employed.  We thus omit from the coupled equations 

terms related to fluid relative acceleration, as well as a dynamic term representing the 

acceleration of the bulk solid. For an arbitrary volume 𝑉 with surface 𝑆, the isothermal 

hydromechanically-coupled single phase flow equation is:  

∫[
1

𝑀

𝜕𝑝

𝜕𝑡
+ 𝑏

𝜕(𝛻 ⋅ 𝐮)

𝜕𝑡
]d𝑉

𝑉

= ∮ 𝐧 ⋅ (
𝑘𝑝

𝜇𝑝
𝛻𝑝)d𝑆

𝑆

, (50) 

where gravitational effects have been omitted and the Darcy constitutive relation 

substituted to adduce flux from gradient. Although the above equation is a single-phase 

poroelastic equation, a representative coupling pressure field may also be developed from 

a hydromechanically-coupled multi-phase flow formulation. Biot’s modulus 𝑀 and Biot-

Willis coefficient 𝑏 are constantly valued under the (small strain) linearized poroelastic 

coupling, and defined as:  

1

𝑀
=

1

𝑁
+

𝜙0

𝐾𝑝
=

𝑏 − 𝜙0

𝐾𝑠
+

𝜙0

𝐾𝑝
, (51)

𝑏 = 1 −
𝐾𝑑

𝐾𝑠
. (52)

 

The pore fluid flow equation is linearized by the assumption, 

|
𝜌𝑝 − 𝜌𝑝

0

𝜌𝑝
0 | ≪ 1, (53) 
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where the above equation indicates small variations in pore fluid density, 𝜌𝑝. 

LINEARIZED POROELASTICITY 

From first principles, at quasi-static equilibrium alterations in the current state of 

total stress are unaffected by changes in the bulk acceleration term. The isothermal 

inertial balance is combined with the effective stress definition of linearized 

poroelasticity to describe the divergence of total stress, without gravity or other body 

forces. Thus the quasi-static balance 𝟎 = 𝛻 ⋅ 𝐒 using the poroelastic definition of total 

stress 𝐒 = 𝛔 − 𝑏𝑝𝐈 (TENSION POSITIVE) is developed into:  

𝟎 = ∮ 𝐧 ⋅ (𝛔 − 𝑏𝑝𝐈)d𝑆

𝑆

. (54) 

A small strain constitutive relation is employed and returns the strain as: 

𝛆 =
1

2
[𝛻𝐮 + (𝛻𝐮)T], (55) 

where 𝐮 is defined with respect to a reference configuration. In order to account for the 

far-field stress state (𝐒0) and pore pressures before any treatment or depletion (𝑝0), the 

concept of a residual effective stress state is employed. Viz., the residual effective stress 

𝛔0 is calculated from values read-in during initialization – and may vary e.g. with depth. 

Thus the above equation is combined with Hooke’s law to obtain the current increment of 

effective stress 𝛔 − 𝛔0 from the displacement field. Hence:  

𝛔0 = 𝐒0 + 𝑏𝑝0𝐈, (56)

𝛔 − 𝛔0 = 𝜇[𝛻𝐮 + (𝛻𝐮)T] + 𝜆tr(𝛻𝐮)𝐈, (57)
 

and hence 𝛔0 captures the stress state for a uniformly zero displacement field. The 

poroelastic total stress is then, 
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𝐒 = 𝛔 − 𝑏𝑝𝐈 = (𝛔 − 𝛔0) + 𝛔0 − 𝑏𝑝𝐈,

= 𝜇[𝛻𝐮 + (𝛻𝐮)T] + 𝜆tr(𝛻𝐮)𝐈 + 𝛔0 − 𝑏𝑝𝐈. (58)
 

Restating our momentum balance of Eq. (54) - with substitution of constitutive relation 

Eq. (58) and use of the divergence theorem - obtains: 

∫[𝛻 ⋅ (𝑏𝑝𝐈) − 𝛻 ⋅ 𝛔0]d𝑉

𝑉

= ∮ 𝐧 ⋅ (𝜇[𝛻𝐮 + (𝛻𝐮)T] + 𝜆tr(𝛻𝐮)𝐈)d𝑆

𝑆

. (59) 

Our linearization is small strain and considers only an isotropic strain tensor, as 

per Eq. (55). Therefore as a limit on applicability, the volumes of any discretized cells 

and their surface normals are subject to: 

|
𝑉 − 𝑉0

𝑉0
| ≪ 1, 𝐧 ⋅ 𝐧0 ≈ 1. (60) 

where these assumptions are encoded into the semi-discretized equations, e.g. later Eq. 

(76).  

Traction decompositions 

The right-hand side term of Eq. (59) is the incremental component of resolved 

effective stress vector (𝐭𝛔−𝛔0), across surface defined by unit vector 𝐧. This reduced 

decomposition of the traction is defined for convenience and depends only on the 

parameters and the current gradient of displacement. The resolved effective stress (𝐭𝛔) 

additionally contains the contribution of the stored residual stress state at initialization. 

The traction vector is defined as the product of the unit normal vector 𝐧 and the total 

stress tensor. These are, 



 66 

𝐭𝛔−𝛔0 = 𝐧 ⋅ (𝛔 − 𝛔0) = 𝜇𝐧 ⋅ 𝛻𝑢 + 𝜇𝛻𝐮 ⋅ 𝐧 + 𝜆tr(𝛻𝐮)𝐧, (61)

𝐭𝛔 = 𝐭𝛔−𝛔0 + 𝐧 ⋅ 𝛔0, (62)

𝐭𝐒 = 𝐧 ⋅ 𝐒 = 𝐭𝛔 − 𝑏𝑝𝐧 = 𝐭𝛔−𝛔0 + 𝐧 ⋅ 𝛔0 − 𝑏𝑝𝐧, (63)

 

where Eq. (61) define the incremental component of the resolved effective stress vector, 

with respect to an initial reference state.  

Use of a tangential gradient operator decomposes the displacement gradient, by 

removing the component of that tensor normal to unit vector n. The normal component of 

traction is vector 𝐭𝑛
𝐒 ; and, the tangential component is 𝐭𝑡

𝐒: 

𝐭𝑛
𝐒 = (2𝜇 + 𝜆)𝐧 ⋅ 𝛻𝐮𝑛 + 𝜆𝐧tr(𝛻𝑡𝐮𝑡) + 𝐧𝐧 ⋅ (𝐧 ⋅ 𝛔0) − 𝑏𝑝𝐧, (64)

𝐭𝑡
𝐒 = 𝜇𝐧 ⋅ 𝛻𝐮𝑡 + 𝜇𝛻𝑡𝑢𝑛 + (𝐈 − 𝑛𝑛) ⋅ (𝐧 ⋅ 𝜎0), (65)

𝛻𝑡 = (𝐈 − 𝐧𝐧) ⋅ 𝛻 (66)

 

where the tangential gradient operator 𝛻𝑡 is introduced [11] for FV-discretized solid 

mechanics, but appears with applications explained in [48]. Eq. (64) contains the 

observation that pore pressure acts entirely in the direction normal to surfaces. 

Accordingly, the tangential components of all traction decompositions exclude any pore 

pressure field term. By summation of Eqs. (64) and (65), the traction vector may be 

recovered,  

𝐭𝐒 = (2𝜇 + 𝜆)𝐧 ⋅ 𝛻𝐮 − (𝜇 + 𝜆)𝐧 ⋅ 𝛻𝐮𝑡

+𝜇𝛻𝑡𝑢𝑛 + 𝜆𝐧tr(𝛻𝑡𝐮𝑡) + 𝐧 ⋅ 𝛔0 − 𝑏𝑝𝐧. (67)
 

This vector is the internal interface condition provided to the numerical implementation 

of Eq. (59), in order to enforce above listed continuity of the resolved stress. 
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Figure 20: Control volume representing a polyhedral FV cell with cell center located at 

centroid 𝑃 having volume 𝑉𝑃, showing in gray face with center located at 

point 𝑓 having surface area 𝑆𝑓 and face normal 𝐧𝑓. Cell center located at 𝑃 

joined to centroid of cross-face neighbor 𝑁 by vector 𝐝𝑓 (from [11]). 

 

 

Figure 21: Open-pore interface of two finite volume cells on either side of the internal 

boundary of materials 𝑎 and 𝑏. Cell under current consideration is centered 

at point 𝑃, and properties at current cell-side interface labeled with subscript 

𝑖𝑎. Neighboring cell is centered at point 𝑁𝑖, and properties at neighbor-side 

interface labeled with subscript 𝑖𝑏 (after [47, 11]). 
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Resolved effective stress 

Various decompositions of the resolved effective stresses may be desirable as a 

post-processing step of the poroelastic coupling – i.e. to model fracture growth. If 

desired, the effective traction vector field (𝐭𝛔) is evaluated using a modified version of 

Eqs. (61) and (62) within material parameter-constant subdomains to produce the failure 

traction field. The failure field of tractions is therefore:  

𝐭𝑓 = 𝐧 ⋅ (𝐒 + 𝑏𝑓𝑝𝐈) = 𝐭𝛔−𝛔0 + 𝐧 ⋅ 𝛔0 + (𝑏𝑓 − 𝑏)𝑝𝐧, (68) 

where 𝐭𝑓 is the field of e.g. cohesive zone initiation tractions, and as above 𝑏𝑓 is not 

necessarily 𝑏; further the values of 𝑝 must be appropriately interpolated or extrapolated to 

surfaces. Therefore, while coefficient 𝑏 is spatially variable, 𝑏𝑓 is considered to be 

selectable to implement the desired physics for all cases considered; for 𝑏𝑓 = 1 the field 

𝐭𝑓 reduces to the resolved Terzaghi effective stress.  

Interface resolved effective stress 

While total traction across the interface will be well defined by Eq. (67) and is 

continuous, in a poroelastic medium the failure behavior is dictated by the effective stress 

state – which is often discontinuous. Thus to evaluate interface softening behavior, a 

representative resolved effective stress is defined as,  

𝐭𝑖
𝑓

= 𝐭𝑖
𝐒 + 𝑏̅𝑖

𝑓
𝑝𝑖𝐧𝑖. (69) 

In forming 𝐭𝑖
𝑓
, 𝐭𝑖

𝐒 is simply over-written using the result of Eq. (67) – parenthetically, to 

be expressed in semi-discretized form as Eq. (100). So, in order to determine softening 

initiation, we provide the interface effective traction 𝐭𝑖
𝑓
 with the most positive pore 

pressure contribution. The most positive contribution 𝑏̅𝑖
𝑓

𝑝𝑖 is:  
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𝑏̅𝑖
𝑓

𝑝𝑖 = { 
max(𝑏𝑖𝑎

𝑓
𝑝𝑖𝑎, 𝑏𝑖𝑏

𝑓
𝑝𝑖𝑏) if 𝑎, 𝑏, or interface is impermable,

max(𝑏𝑖𝑎
𝑓

, 𝑏𝑖𝑏
𝑓

)𝑝𝑖 if 𝑎 and 𝑏 and interface are peremable.
(70) 

(Alternate variants of Eq. (70) may be feasible, as representing continuity assumptions 

applied at the boundary. However here, such equations are written as prove workably 

consistent with effective stress-based cohesive initiation tractions and traction-separation 

laws.) Thus the above equation contains the following two observations. First, for any 

non-zero pore pressure field, the continuity of total traction over an interface with 

variable Biot’s coefficient on either side, implies a discontinuity in the resolved effective 

stresses 𝐭𝑖𝑎
𝑓

 and 𝐭𝑖𝑏
𝑓

. Second, maximization of the resolved effective stresses at internal 

cell-to-cell faces is our criterion for the initiation of softening behaviors and hence to 

model fractures.  

Porosity 

Coupled Eq. (50) and (59) do not indicate that porosity or fluid density values are 

considered invariant under this model. As such, the porosity is not fixed, nor is the fluid 

incompressible; rather, a set of substitutions made during the coupling’s formulation 

eliminate the requirement for explicit porosity or density updates. As such, the model 

does not require explicit computation of porosity change 𝜙 − 𝜙0 to solve the linearized 

poroelastic system.  

In general, the current increment of porosity may anytime be recovered by 

recourse to: 

𝜙 − 𝜙0 = 𝑏(𝛻 ⋅ 𝐮) − (
1

𝑀
−

𝜙0

𝐾𝑝
)(𝑝 − 𝑝0). (71) 
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The incremental porosity expression follows directly from the definition of 𝑏 and 1/𝑁 as 

poroelastic tangent properties [19]. Nevertheless, it is also useful to define the quantity 

𝜙∗, such that 

𝜙∗ = 𝜙 −
𝜙0

𝐾𝑝
(𝑝 − 𝑝0), (72) 

where 𝜙∗ is the variation in fluid mass content normalized by density. Per coupling 

assumptions, the model assumes the hypotheses of small variations in Lagrangian 

porosity,  

|
𝜙 − 𝜙0

𝜙0
| ≪ 1. (73) 

Specifically the initialized porosity 𝜙0 is the reservoir porosity at which current pressures 

are invariant from initial pressure field 𝑝0, for an initial state of zero displacement with 

respect to reference stress and configuration (𝐮 = 𝟎 and thus 𝛻 ⋅ 𝐮 = 0). Zero 

displacement is presumed to be the in situ state, being that geological strains are 

converted to residual stresses during initialization step.  

PORE FLOW DISCRETIZATION 

See Fig. 20 for a full description of properties associated with the arbitrary polyhedral 

FV-method cell of size 𝑉𝑃. The total surface 𝑆𝑃 of any such control volume may be 

discretized according to the summation of all continuum-material internal faces 𝑆𝑓, 

heterogeneous material interface faces 𝑆𝑖, and boundary faces 𝑆𝑏, 

𝑆𝑃 = 𝜕𝑉𝑃 = ∑ 𝑆𝑓

𝑓

+ ∑ 𝑆𝑖

𝑖

+ ∑ 𝑆𝑏 ,

𝑏

(74) 
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Figure 22: Flow chart of fixed-strain solver logic. 
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Figure 23: Flow chart of fixed-stress solver logic. 
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where the subscript 𝑓 represents a material-continuum internal face, 𝑖 is an interface face, 

and 𝑏 a boundary face. The discretized interface for open pore continuity with a 

discontinuous Biot’s coefficient is presented in Fig. 21.  

Coupling splits 

In this work, the interface-corrective method to enforce open pore continuity Eqs. 

(40 - 43) or closed pore Eqs. (46 - 49) is indifferent to the form of the iterative 𝐮 − 𝑝 

coupling employed. We assume only: (a) an iterative coupling of the pressure and 

displacement partial differential equations, converged to a residual or residuals using the 

FV method; and, (b) that consequently, the pressure field equation is correctly solved 

within the coupling iteration, and prior to the displacement field equation. To define the 

implicit component of the pore fluid spatial equation discretization, let us define the term:  

ℒ(𝑝) ≡ ∑(𝐧 ⋅
𝑘𝑝

𝜇𝑝
𝛻𝑝)𝑓𝑆𝑓

𝑓

+ ∑(𝐧 ⋅
𝑘̅𝑝

𝜇𝑝
𝛻𝑝)𝑖𝑆𝑖

𝑖

+ ∑(𝐧 ⋅
𝑘𝑝

𝜇𝑝
𝛻𝑝)𝑏𝑆𝑏

𝑏

, (75) 

where ℒ(𝑝) is a convenience term. The permeability 𝑘̅𝑝 is an averaged value which may 

be zero for closed and impermeable interfaces, as below. The permeability may also be 

expressed by replacing 𝑘𝑝 with 𝐊𝑝, where the latter is a symmetric positive definite 

tensor.  

Fixed-strain split 

For a fixed-strain split poroelastic coupling, the discretization of the pore pressure 

inside our flow equation is: 

ℒ(𝑝𝑛) = [
1

𝑀

𝑝𝑃
𝑛 − 𝑝𝑃

𝑜

𝛥𝑡
+ 𝑏

(𝛻 ⋅ 𝐮)𝑃
𝑛 − (𝛻 ⋅ 𝐮)𝑃

𝑜

𝛥𝑡
]𝑉𝑃. (76) 
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where subscript 𝑃 represents cell-center values. Superscripts 𝑛, 𝑜, and 𝑜𝑜 represent the 

current 𝑡𝑛, previous 𝑡𝑜, and previous to previous 𝑡𝑜𝑜 time instances. The fixed-strain split 

has previously been extended to poro-elasto-plasticity [20]. Convergence of the pressure 

equation (including linear solver iterations and non-orthogonality correction) is measured 

by residual 𝑅𝑝. A flow chart presenting tightly iteratively coupled convergence is 

presented in Fig. 22.  

Fixed-stress split 

For a fixed-stress split poroelastic coupling, stability and convergence properties 

have been investigated previously [22, 41]. In essence, the mean stress is held constant 

during the coupling half-step. The discretization of the pore pressure inside our flow 

equation is:  

ℒ(𝑝𝑃
𝑛) = [(

1

𝑀
+

𝑏2

𝜆
)(

𝑝𝑃
𝑛 − 𝑝𝑃

𝑜

𝛥𝑡
) + 𝑏

(𝛻 ⋅ 𝐮)𝑃
𝑛 − (𝛻 ⋅ 𝐮)𝑃

𝑜

𝛥𝑡
]𝑉𝑃

−[
𝑏2

𝜆
(
𝑝𝑃

𝑖𝐮 − 𝑝𝑃
𝑜

𝛥𝑡
)]𝑉𝑃, (77)

 

where 𝑏2/𝜆 is a constant related to the domain properties. This method improves the 

approximation within the pressure equation of poroelastic effects, and as such that 

constant may vary based upon constraints and compatibility of the problem. For all 

examples presented where a fixed-stress split is used, then exactly 𝑏2/𝜆 = 𝑏2/𝜆  was 

used in our results. Superscript 𝑖𝐮 indicates the immediately prior coupling iteration 

within the same time step, in which the displacement was fully converged.  

Convergence of the pressure equation is measured by residual 𝑅𝑝. However, as 

momentum and flow equations are not simultaneously converged, a residual describing 

the coupling must be formed. This residual is, 
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𝑅𝜙∗ = max|
[𝑏(𝛻 ⋅ 𝐮)]𝑛 − [

𝑏2

𝜆
]([𝑝]𝑛 − [𝑝]0)

[𝜙∗]𝑛
|, (78) 

where the residual definition follows the approach of [46], and where “[]” brackets 

indicate terms arranged in the solution vector order. A flow chart presenting convergence 

to 𝑅𝜙∗ is presented in Fig. 23.  

Explicit fixed-stress 

The solution approach for a fixed-stress-split, explicit-in-time coupling has been 

discussed previously e.g. [49]. The time derivative of volumetric strain (as divergence of 

displacement relative to reference configuration) is resolved as an explicit term plus a 

function of the pore pressure in the present iteration,  

𝜕(𝛻 ⋅ 𝐮)𝑛

𝜕𝑡
≈

𝜕(𝛻 ⋅ 𝐮)𝑜

𝜕𝑡
+

𝑏

𝐾𝑑
∗

𝜕(𝑝𝑛 − 𝑝𝑜)

𝜕𝑡
,

=
(𝛻 ⋅ 𝐮)𝑃

𝑜 − (𝛻 ⋅ 𝐮)𝑃
𝑜𝑜

𝛥𝑡
+

𝑏

𝜆
[(

𝑝𝑃
𝑛 − 𝑝𝑃

𝑜

𝛥𝑡
) − (

𝑝𝑃
𝑜 − 𝑝𝑃

𝑜𝑜

𝛥𝑡
)]. (79)

 

For a fixed-strain split, single-phase poroelastic coupling, the discretization of the flow 

equation returns, 

ℒ(𝑝𝑛) = [
1

𝑀

𝑝𝑃
𝑛 − 𝑝𝑃

𝑜

𝛥𝑡
+ 𝑏

(𝛻 ⋅ 𝐮)𝑃
𝑜 − (𝛻 ⋅ 𝐮)𝑃

𝑜𝑜

𝛥𝑡
] 𝑉𝑃

+ [
𝑏2𝛥𝑡

𝜆
(

𝑝𝑃
𝑛 − 2𝑝𝑃

𝑜 + 𝑝𝑃
𝑜𝑜

(𝛥𝑡)2
)] 𝑉𝑃 (80)

 

Under this iterative strategy, given sufficiently small time steps, the field equations can 

be uncoupled excepting evaluation of fracturing behaviors. Displacements are computed 

in order to estimate softening behavior at the end of the first softening iteration – i.e. to 

extend a propagating fracture. If fracturing processes initiate, then further fracturing may 
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occur within the same time step. Thus, still within the explicit time-marching 

formulation, but subsequent to fracture growth the approximation becomes: 

𝜕(𝛻 ⋅ 𝐮)𝑛

𝜕𝑡
≈

𝜕(𝛻 ⋅ 𝐮)𝑛

𝜕𝑡
+

𝑏

𝜆

𝜕(𝑝𝑛 − 𝑝𝑖𝐮)

𝜕𝑡
,

=
(𝛻 ⋅ 𝐮)𝑃

𝑛 − (𝛻 ⋅ 𝐮)𝑃
𝑜

𝛥𝑡
+

𝑏

𝜆
[(

𝑝𝑃
𝑛 − 𝑝𝑃

𝑜

𝛥𝑡
) − (

𝑝𝑃
𝑖𝐮 − 𝑝𝑃

𝑜

𝛥𝑡
)]. (81)

 

Discretization of the pore flow equation returns, 

ℒ(𝑝𝑛) = [
1

𝑀

𝑝𝑃
𝑛 − 𝑝𝑃

𝑜

𝛥𝑡
+ 𝑏

(𝛻 ⋅ 𝐮)𝑃
𝑛 − (𝛻 ⋅ 𝐮)𝑃

𝑜

𝛥𝑡
]𝑉𝑃

+[
𝑏2

𝜆
(
𝑝𝑃

𝑛 − 𝑝𝑃
𝑜

𝛥𝑡
) −

𝑏2

𝜆
(
𝑝𝑃

𝑖𝐮 − 𝑝𝑃
𝑜

𝛥𝑡
)]𝑉𝑃, (82)

 

where 𝑛 is the post-fracture iteration of the 𝐮 − 𝑝 system, whereas 𝑖𝐮 represents the pre-

fracture coupling iteration. Thus the result of Eq. (77) is recovered, here with effect for 

explicit time-marching. Eq. (82) can be iterated over within the same time step, until 

softening processes no longer initiate.  

Interface pressures 

Consider five types of interfaces: (a) interfaces discretizing the boundary of a 

porous medium adhered to an impermeable medium; (b) the interface of two 

impermeable media; (c) interfaces over which the porosity and permeability of the porous 

medium change, or “permeable medium interface”; (d) those interfaces over which 

Lamé’s parameters vary, implying therefore a sharp discontinuity in the gradient of 

displacement, and consequently the requirement for an extensive method by which to 

ensure the continuity of total tractions, and which are called “material interfaces”; and, 

(e) interfaces over which the Lamé’s parameters, permeability, residual stress state, and 
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Biot’s coefficient may vary, and which constitute interfaces of both the material and the 

pore fluid flow continua, as well as coupling characteristics.  

Yet the numerical handling is general, and requires only disparate treatment for 

two lumped groups of interfaces. These are: first, “closed interfaces” which groups 

interface types (a) and (b), from above; and second, “open interfaces”, which groups 

interface types (c) - (e) – viz. where a representative interface 𝑝𝑖 is obtainable, i.e. 

indicating ongoing cross-interface flow. Extrapolation of pressures at impermeable 

interfaces is presented in Table 5.  

Open pore interfaces 

Along a multi-material interface, the current cell 𝑃’s properties are represented 

with the subscript 𝑖𝑎. The interface-neighboring cell 𝑁𝑖’s properties are represented with 

subscript 𝑖𝑏. For a description of interface geometry, see Fig. 21. A representative 

pressure at these interfaces 𝑝𝑖  is determinable (for both single- and multi-phase flows): it 

follows from the continuity assumption that 𝑝𝑖 = 𝑝𝑖𝑎 = 𝑝𝑖𝑏.  

For example, a single-phase interface pressure can be approximated as follows. It 

is assumed that the interface permeability can be estimated from interface 𝑘𝑖𝑎 and 𝑘𝑖𝑏 

alone; hence, averaging of adjacent permeabilities is used at the open pore interface. In 

the instance of Darcy flow, the flow equation’s implicit spatial discretization as a Laplace 

equation argues for weighed harmonic averaging of the diffusivity constant. The 

interpolation to the polyhedral interface face (represented with the subscript 𝑖) is,  

(𝑘𝑝)̅̅ ̅̅ ̅̅
𝑖 =

𝑘𝑖𝑎𝑘𝑖𝑏

𝛿𝑏𝑛

𝛿𝑖𝑛
𝑘𝑖𝑎 +

𝛿𝑎𝑛

𝛿𝑖𝑛
𝑘𝑖𝑏

, 𝑝𝑖 =
(𝑘𝑝)̅̅ ̅̅ ̅̅

𝑖𝛿𝑎𝑛

(𝑘𝑝)𝑖𝑎𝛿𝑖𝑛
(𝑝𝑁𝑖 − 𝑝𝑃) + 𝑝𝑃, (83) 
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where: 𝑘𝑝
̅̅ ̅ is the averaged permeability; 𝑝𝑃 and 𝑝𝑁𝑖 represent cell-center values of pore 

pressure in current and interface neighbor cells, respectively; and, 𝛿𝑖𝑛 = 𝛿𝑎𝑛 + 𝛿𝑏𝑛 where 

𝛿𝑎𝑛 is the distance from cell center to the interface. The effect of the interpolated 

interface pressure is linearly super-imposed to ascertain interface tractions.  

Closed pore and impermeable interfaces 

Our motivation to attempt to discretize impermeable media is driven by the use of 

steel casings to line wellbores during the completion of hydraulic fractures. Such 

impermeable media without disconnected porosity (such as steel) are numerically 

characterized by an exactly zero-valued Biot’s coefficient (𝑏 = 0). These regions are 

assigned negligible porosities and permeabilities, in order to allow for solution of the 

pore pressure fluid flow over the entire numerical domain. However there is no coupled 

hydromechanical response to flow in these regions (𝑏 = 0).  

Boundaries of impermeable media are zero-gradient boundaries with respect to 

pore fluid flow, such that 𝐧 ⋅ (𝑘̅𝑝/𝜇𝑝)𝛻𝑝 = 0. Along internal interfaces between 

permeable and impermeable media, the permeability is set to 𝑘̅𝑝 = 0. In the case of a 

tensorial permeability, setting for closed pore interfaces 𝐊̅𝑝 = (𝐈 − 𝐧𝑖𝐧𝑖) ⋅ 𝐊𝑝, where 𝐊𝑝 

is the material-interior permeability was found to be insufficient to completely halt flow. 

This may be associated with using meshes that are not K-orthogonal. As such, the entire 

face-interpolated permeability is set to the zero tensor at the closed pore/impermeable 

interface. Lastly, the representative pressure at interfaces of impermeable media with 

connected porous media is set to the pore pressures of the adjacent cell-centers, when 

computing interface traction per Eq. (69).  
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MOMENTUM BALANCE DISCRETIZATION 

The general approach to linearization of the momentum balance follows the 

“over-relaxed” solution approach [15]. Specifically, the coefficient of the vector 

Laplacian contributing implicitly evaluated matrix off-diagonal coefficients is (2𝜇 + 𝜆) 

(cognizable as the uniaxial bulk modulus). The semi-discretized form of momentum 

balance Eq. (59) equates hydromechanical terms as against the increment of effective 

tractions acting against the cell’s surface. 

In the case that Biot’s coefficient is discontinuous over bimaterial interfaces, it is 

desirable to write: 

𝟎 = ∑(𝐭𝛔−𝛔0 +⋅ 𝜎0 − 𝑏𝑝𝐧)𝑓
𝑛𝑆𝑓

𝑓

+ ∑(𝐭𝐒)𝑖
𝑛𝑆𝑖

𝑖

+ ∑(𝐭𝛔−𝛔0 +⋅ 𝜎0 − 𝑏𝑝𝐧)𝑏
𝑛𝑆𝑏

𝑏

. (84)

 

In the instance of am invariant Biot’s coefficient, we may reduce Eq. (84) to: 

[𝛻 ⋅ (𝑏𝑝𝐈)𝑃
𝑛 − 𝛻 ⋅ 𝛔𝑃

0 ]𝑉𝑃 = ∑(𝐭𝛔−𝛔0)𝑓
𝑛𝑆𝑓

𝑓

+ ∑(𝐭𝛔−𝛔0)𝑖
𝑛𝑆𝑖

𝑖

+ ∑(𝐭𝛔−𝛔0)𝑏
𝑛𝑆𝑏 .

𝑏

(85)

 

Above, we presume all cell face tractions to have been converted to the increment of 

effective form, e.g. see later Eq. (103). Other linear operators are as follows. When 

applied to pore pressure gradient, representative cell-face center values of pressure are 

first obtained e.g. by weighted interpolation, 

𝛻 ⋅ (𝑏𝑝𝐈)𝑃 = 𝛻(𝑏𝑝)𝑃 =
1

𝑉𝑃
∑ 𝐧𝑓𝑏𝑓𝑝𝑓𝑆𝑓

𝑓

. (86) 
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For numerical simulation of homogeneous domains, the hydromechanical 

coupling term is predominately evaluated as a simple pressure gradient term. The residual 

stress consideration, here expressed as a divergence, is here evaluated as (without 

discussion of adjustment for mesh non-orthogonality or skewness):  

(𝛻𝑝)𝑃 =
1

𝑉𝑃
∑ 𝐧𝑓𝑝𝑓𝑆𝑓

𝑓

, (𝛻 ⋅ 𝛔0)𝑃 =
1

𝑉𝑃
∑ 𝐧𝑓 ⋅ 𝛔𝑃

0 𝑆𝑓

𝑓

, (87) 

where reciprocal 𝑉𝑃 is consistently a normalization term. The divergence operator also 

follows from Gauss-Green cell-based gradient evaluation. Convergence of the 

displacement equation is measured by a residual 𝑅𝐮.  

Bimaterial interfaces 

The simultaneous decomposition of the traction into normal and tangential 

components, paired with the description of tractions as a combination of normal and 

tangential components of the gradient of displacement presented in Eqs. (64) and (65), 

which constituted Tuković’s fungible and generative insight [11]. This presently allows 

for the method’s extension to poroelastic and other coupled problems. Thus, it is shown 

that enforcing the continuity conditions of poroelasticity can be achieved as an extension 

of the linear algebraic system describing multi-material elasticity.  

Normal traction 

The normal component of traction vectors are defined along the current interface 

side (as (𝐭𝑛
𝐒 )𝑖𝑎), and on the other side of the interface (as (𝐭𝑛

𝐒 )𝑖𝑏). These equations are 

formed by discretizing Eq. (64):  
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(𝐭𝑛
𝐒 )𝑖𝑎 = (2𝜇𝑖𝑎 + 𝜆𝑖𝑎)

(𝐮𝑛)𝑖 − (𝐮𝑛)𝑃

𝛿𝑎𝑛

+𝜆𝑖𝑎𝐧𝑖tr(𝛻𝑡𝐮𝑡)𝑖𝑎 + 𝐧𝑖𝐧𝑖 ⋅ (𝐧𝑖 ⋅ 𝛔𝑖𝑎
0 ) − 𝑏𝑖𝑎𝑝𝑖𝐧𝑖, (88)

(𝐭𝑛
𝐒 )𝑖𝑏 = (2𝜇𝑖𝑏 + 𝜆𝑖𝑏)

(𝐮𝑛)𝑁𝑖 − (𝐮𝑛)𝑖

𝛿𝑏𝑛

+𝜆𝑖𝑏𝐧𝑖tr(𝛻𝑡𝐮𝑡)𝑖𝑏 + 𝐧𝑖𝐧𝑖 ⋅ (𝐧𝑖 ⋅ 𝛔𝑖𝑏
0 ) − 𝑏𝑖𝑏𝑝𝑖𝐧𝑖. (89)

 

The sign associated with the unit normal applied to pressure, in Eqs. (88) and 

(89), follows from the physical continuity of traction outward from the interface. In 

essence, the substitution 𝐧𝑖 = 𝐧𝑖𝑎 = −𝐧𝑖𝑏 is made. This substitution is also used where 

the component is decomposed from a cell-centered tensor field (as in the case of the 

stored initial effective stress tensor). Along the current and the distant sides of the 

interface, the component of normal traction excluding the normal component of 

displacement dependency can be written as:  

(𝐭𝑛
−𝐮𝑛)𝑖𝑎 = 𝜆𝑖𝑎𝐧𝑖tr(𝛻𝑡𝐮𝑡)𝑖𝑎 + 𝐧𝑖𝐧𝑖 ⋅ (𝐧𝑖 ⋅ 𝛔𝑖𝑎

0 ) − 𝑏𝑖𝑎𝑝𝑖𝐧𝑖, (90)

(𝐭𝑛
−𝐮𝑛)𝑖𝑏 = 𝜆𝑖𝑏𝐧𝑖tr(𝛻𝑡𝐮𝑡)𝑖𝑏 + 𝐧𝑖𝐧𝑖 ⋅ (𝐧𝑖 ⋅ 𝛔𝑖𝑏

0 ) − 𝑏𝑖𝑏𝑝𝑖𝐧𝑖, (91)
 

which are substituted into Eqs. (88) and (89), respectively, as a convenience. The 

continuity assumption of total normal traction at the interface Eq. (44) is used to equate 

Eqs. (88) and (89), with substitution of Eq. (90) and Eq. (91). This obtains the normal 

component of interface displacement (with respect to the interface face unit normal 

vector 𝐧𝑖):  

(𝐮𝑛)𝑖 =
(2𝜇𝑖𝑎 + 𝜆𝑖𝑎)𝛿𝑏𝑛(𝐮𝑛)𝑃 + (2𝜇𝑖𝑏 + 𝜆𝑖𝑏)𝛿𝑎𝑛(𝐮𝑛)𝑁𝑖

(2𝜇𝑖𝑎 + 𝜆𝑖𝑎)𝛿𝑏𝑛 + (2𝜇𝑖𝑏 + 𝜆𝑖𝑏)𝛿𝑎𝑛

+
𝛿𝑎𝑛𝛿𝑏𝑛 [(𝐭𝑛

𝑁𝑜−𝐮𝑛)
𝑖𝑏

− (𝐭𝑛
𝑁𝑜−𝐮𝑛)

𝑖𝑎
]

(2𝜇𝑖𝑎 + 𝜆𝑖𝑎)𝛿𝑏𝑛 + (2𝜇𝑖𝑏 + 𝜆𝑖𝑏)𝛿𝑎𝑛
. (92)
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Table 5: Pressure Extrapolation 

 

Substituting the normal component of displacement of Eq. (92) into the normal 

component of traction definition of Eq. (88), we find the traction’s normal component, 

(𝐭𝑛
𝐒 )𝑖 = (2𝜇 + 𝜆)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑖

(𝐮𝑛)𝑁𝑖 − (𝐮𝑛)𝑃

𝛿𝑖𝑛

+
(2𝜇𝑖𝑎 + 𝜆𝑖𝑎)𝛿𝑏𝑛(𝐭𝑛

−𝐮𝑛)𝑖𝑏 + (2𝜇𝑖𝑏 + 𝜆𝑖𝑏)𝛿𝑎𝑛(𝐭𝑛
−𝐮𝑛)

(2𝜇𝑖𝑎 + 𝜆𝑖𝑎)𝛿𝑏𝑛 + (2𝜇𝑖𝑏 + 𝜆𝑖𝑏)𝛿𝑎𝑛
, (93)

 

where weighed harmonic averaging obtains a representative elastic material coefficient 

over the interface.  

Tangential traction 

The tangential component of traction vectors are formed in the same manner as 

Eqs. (88) and (89). The discretized form of Eq. (65) is, 

(𝐭𝑡
𝐒)𝑖𝑎 = 𝜇𝑖𝑎

(𝐮𝑡)𝑖 − (𝐮𝑡)𝑃

𝛿𝑎𝑛

+𝜇𝑖𝑎(𝛻𝑡𝑢𝑛)𝑖𝑎 + (𝐈 − 𝐧𝑖𝐧𝑖) ⋅ (𝐧𝑖 ⋅ 𝛔𝑖𝑎
0 ), (94)

(𝐭𝑡
𝐒)𝑖𝑏 = 𝜇𝑖𝑏

(𝐮𝑡)𝑁𝑖 − (𝐮𝑡)𝑖

𝛿𝑏𝑛

+𝜇𝑖𝑏(𝛻𝑡𝑢𝑛)𝑖𝑏 + (𝐈 − 𝐧𝑖𝐧𝑖) ⋅ (𝐧𝑖 ⋅ 𝛔𝑖𝑏
0 ), (95)

 

where the pore pressure exerts no tangential stresses along the interface. Along the 

interface, the components of tangential total and effective traction excluding the normal 

component of displacement dependency can be written as: 
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(𝐭𝑡
−𝐮𝑡)𝑖𝑎 = 𝜇𝑖𝑎(𝛻𝑡𝑢𝑛)𝑖𝑎 + (𝐈 − 𝐧𝑖𝐧𝑖) ⋅ (𝐧𝑖 ⋅ 𝛔𝑖𝑎

0 ), (96)

(𝐭𝑡
−𝐮𝑡)𝑖𝑏 = 𝜇𝑖𝑏(𝛻𝑡𝑢𝑛)𝑖𝑏 + (𝐈 − 𝐧𝑖𝐧𝑖) ⋅ (𝐧𝑖 ⋅ 𝛔𝑖𝑏

0 ), (97)
 

which are substituted into Eqs. (94) and (95), respectively. Enforcing continuity of 

tangential tractions Eq. (45), and therefore equating Eqs. (94) and (95), the tangential 

displacement at the interface becomes: 

(𝐮𝑡)𝑖 =
𝜇𝑖𝑎𝛿𝑏𝑛(𝐮𝑡)𝑃 + 𝜇𝑖𝑏𝛿𝑎𝑛(𝐮𝑡)𝑁𝑖

𝜇𝑖𝑎𝛿𝑏𝑛 + 𝜇𝑖𝑏𝛿𝑎𝑛

+
𝛿𝑎𝑛𝛿𝑏𝑛[(𝐭𝑡

−𝐮𝑡)𝑖𝑏 − (𝐭𝑡
−𝐮𝑡)𝑖𝑎]

𝜇𝑖𝑎𝛿𝑏𝑛 + 𝜇𝑖𝑏𝛿𝑎𝑛
. (98)

 

The result of above is then substituted into Eq. (94), the traction’s tangential 

component is: 

(𝐭𝑡
𝐒)𝑖 = 𝜇̅𝑖

(𝐮𝑡)𝑁𝑖 − (𝐮𝑡)𝑃

𝛿𝑖𝑛
+

𝜇𝑖𝑎𝛿𝑏𝑛(𝐭𝑡
−𝐮𝑡)𝑖𝑏 + 𝜇𝑖𝑏𝛿𝑎𝑛(𝐭𝑡

−𝐮𝑡)𝑖𝑎

𝜇𝑖𝑎𝛿𝑏𝑛 + 𝜇𝑖𝑏𝛿𝑎𝑛
, (99) 

where weighted harmonic averaging again obtains a representative shear modulus over 

the interface. By summation of Eq. (93) and Eq. (99), the traction vector at the interface 

is recovered, 

𝐭𝑖
𝐒 = (2𝜇 + 𝜆)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑖

𝐮𝑁𝑖 − 𝐮𝑃

𝛿𝑖𝑛
− [(2𝜇 + 𝜆)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑖 − 𝜇̅𝑖]
(𝐮𝑡)𝑁𝑖 − (𝐮𝑡)𝑃

𝛿𝑖𝑛

+
(2𝜇𝑖𝑎 + 𝜆𝑖𝑎)𝛿𝑏𝑛(𝐭𝑛

−𝐮𝑛)𝑖𝑏 + (2𝜇𝑖𝑏 + 𝜆𝑖𝑏)𝛿𝑎𝑛(𝐭𝑛
−𝐮𝑛)𝑖𝑎

(2𝜇𝑖𝑎 + 𝜆𝑖𝑎)𝛿𝑏𝑛 + (2𝜇𝑖𝑏 + 𝜆𝑖𝑏)𝛿𝑎𝑛

+
𝜇𝑖𝑎𝛿𝑏𝑛(𝐭𝑡

−𝐮𝑡)𝑖𝑏 + 𝜇𝑖𝑏𝛿𝑎𝑛(𝐭𝑡
−𝐮𝑡)𝑖𝑎

𝜇𝑖𝑎𝛿𝑏𝑛 + 𝜇𝑖𝑏𝛿𝑎𝑛
. (100)

 

Matrix assembly is by extension of Tuković with linear super-position of 

poroelastic and residual traction components. In order to numerically obtain displacement 
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gradient tangential components, various means for the approximation of the tangential 

component of displacement have been investigated [11]. In general these operations are 

resolved using separate linear operators.  

Skeletal tractions and boundary gradients 

Effective stress boundary tractions (Eq. (62)) must by the application of those 

identities be converted into their incremental counterpart 𝐭𝛔−𝛔0, in order to set a fixed 

gradient on the displacement equation. Likewise, total stress boundary tractions (Eq. 

(63)) must be converted to 𝐭𝛔−𝛔0. Hence when Eq. (67) is discretized, the effective 

traction vector for boundary faces becomes: 

(𝐭𝐒)𝑏
𝑛 = (𝐭𝛔−𝛔0)𝑏

𝑛 + 𝐧 ⋅ 𝛔𝑏
0 − (𝑏𝑝)𝑏

𝑛𝐧𝑏 , (101)

(𝐭𝛔−𝛔0)𝑏
𝑛 = (2𝜇𝑏 + 𝜆𝑏)𝐧𝑏 ⋅ (𝛻𝐮)𝑏

𝑛 − (𝜇𝑏 + 𝜆𝑏)𝐧𝑏 ⋅ (𝛻𝐮𝑡)𝑏
𝑛

+𝜇𝑏(𝛻𝑡𝑢𝑛)𝑏
𝑛 + 𝜆𝑏𝐧𝑏tr(𝛻𝑡𝐮𝑡)𝑏

𝑛[(𝛻𝐮𝑡)𝑏
𝑛],

= (2𝜇𝑏 + 𝜆𝑏)𝐧𝑏 ⋅ (𝛻𝐮)𝑏
𝑛 − (𝜇𝑏 + 𝜆𝑏)𝐧𝑏 ⋅ (𝛻𝐮)𝑏

𝑛

+𝜇𝑏𝐧𝑏 ⋅ [(𝛻𝐮)𝑏
T]

𝑛
+ 𝜆𝑏𝐧𝑏tr(𝛻𝐮)𝑏

𝑛[(𝛻𝐮𝑡)𝑏
𝑛]. (102)

 

Above Eq. (102) is provided to Eqs. (84) and (85) for the full discretization of 

stress boundary conditions (without discussion of boundary-cell skewness). In the case of 

specified displacement, no special adjustment for the residual stress state or poroelasticity 

is required. Therefore, by equating an imposed boundary traction 𝐭𝐒 with Eq. (102), a 

fixed traction boundary condition is applied: 

𝐧𝑏 ⋅ (𝛻𝐮)𝑏
𝑛 =

(𝐭𝐒 −⋅ 𝜎𝑏
0 + 𝑏𝑝𝐧)𝑏

𝑛

𝐭
𝛔−𝛔0

(2𝜇𝑏 + 𝜆𝑏)

+
𝐧𝑏 ⋅ [(𝜇𝑏 + 𝜆𝑏)(𝛻𝐮)𝑏

𝑛 − 𝜇𝑏[(𝛻𝐮)𝑏
T]𝑛]

(2𝜇𝑏 + 𝜆𝑏)

−
𝜆𝑏𝐧𝑏tr(𝛻𝐮)𝑏

𝑛

(2𝜇𝑏 + 𝜆𝑏)
. (103)
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Frequently in geomechanics modeling, far-field stresses are specified as a fixed in 

situ total stress tensor (𝐒0) which may be spatially variable, i.e. between rock layers and 

with depth. To run simulations more easily and with lesser opportunity for unintended 

error, it is sometimes attractive to set fixed displacements at domain boundaries. 

Alternately, the tractions applied at far-field boundaries can automatically be specified as 

the resolved residual stress tensor by setting:  

(𝐭𝐒)𝑏
𝑛 = 𝐧𝑏 ⋅ 𝐒𝑏

0. (104) 

Specifically if all boundary conditions are applied as tractions per Eq. (104) for boundary 

pressures specified at value 𝑝0, this implies a continuity of the resolved total stress tensor 

over every boundary and hence an equilibrium state near the far boundary. The surface-

normal gradient Eq. (103) with substitution of Eq. (104) is then: 

𝐧𝑏 ⋅ (𝛻𝐮)𝑏
𝑛 =

(𝑏𝑝𝐧 − 𝑏𝑝0𝐧)𝑏
𝑛

(2𝜇𝑏 + 𝜆𝑏)

+
𝐧𝑏 ⋅ [(𝜇𝑏 + 𝜆𝑏)(𝛻𝐮)𝑏

𝑛 − 𝜇𝑏[(𝛻𝐮)𝑏
T]𝑛]

(2𝜇𝑏 + 𝜆𝑏)

−
𝜆𝑏𝐧𝑏tr(𝛻𝐮)𝑏

𝑛

(2𝜇𝑏 + 𝜆𝑏)
, (105)

 

where 𝑝𝑏 may also be fixed.  

Skeletal tractions and boundary gradients 

It may be desirable to introduce a vertical gradient in the initial total stress tensor 

𝐒0 or pore pressures 𝑝0, corresponding to the effect of gravity. In this instance, the 

introduction of body force term should be carefully coordinated, in order that the system 

not be initialized to disequilibrium in the reference configuration. Therefore, in order to 

linearly decrease the vertical component of the initial stress with depth, as well as prevent 
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rapid fluid loss from overpressured pay layers, initial stress state, body forces, and even 

permeabilities within shale barriers must be jointly coordinated.  

This concern is independent of the use of a multi-material correction procedure, 

and applies to all coupling splits presented. For this reason, we have indicated that the 

vertical stresses must be specified as a “constant value”. Yet, if and where the normal 

components of initialized effective stresses do indeed vary over an interface, it is shown 

that the interface correction term enables accurate stress analysis – by comparison to 

Eshelby’s inclusion, below.  

NUMERICAL RESULTS 

Verification cases are presented for: (a) Biot’s consolidation with regard to a 

fixed-stress split case, (b) Mandel’s problem and (c) stress-state evaluation with a fixed 

(numerically unsolved) pore pressure distribution, for which there exists an analytic 

solution.  

Terzaghi’s problem 

All poroelastic couplings are validated against Terzaghi’s 1D consolidation 

problem ([25]), with material properties listed in Table 6. A rectangular column with 

height 2ℎ of 40 m was held at an initial uniform pressure of 0 Pa. During phase 1, a 

downward normal traction 𝑆0 of 1E+5 Pa was applied on the top and bottom of the 

column. Zero outward displacement conditions were applied on other boundaries. No 

flow was allowed through any boundary. The final phase 1 pressure inside the column 

was computed to be 36,448 Pa, and matches the linearized analytic solution.  

Phase 2 entailed relieving the no-flow boundary condition at the top and bottom 

boundaries by application of a zero pressure condition. Loading conditions during phase 



 87 

2 are presented in Fig. 24. Only the 𝑥1-symmetric half-space was discretized and solved 

(length ℎ), with a zero-displacement boundary condition at along the symmetric axis.  

Results for pressure and displacement during Phase 2 are as presented in Fig. 25 

for pressures and in Fig. 26 for displacements, with curves labeled by time [s]. Unusually, 

the multi-material solution procedure was used to recover the solution; each material was 

allocated to an equivalent extent (length ℎ/2). Thus the full bimaterial treatment was 

utilized in order to converge the displacements during ongoing flow. Error was greatest 

during early-time flow (𝑡 = 20 s curve), and error reduces with decreased time-step size.  

Mandel’s problem 

All poroelastic couplings are validated against Mandel’s 2D problem [19], with 

the same material properties listed in Table 6. A slab of infinite out-of-plane length with 

in-plane extent 2𝑎 of 40 m was held at an initial uniform pressure of 0 Pa. A downward 

normal traction 𝑆0 of 1E+5 Pa is applied on top of the impermeable confining plates, and 

no displacement allowed at the bottom. Zero traction and pressure conditions were 

applied on other boundaries, at which outflow was allowed. Loading conditions are 

presented in Fig. 27.  

Results for pressure are presented in Fig. 28, with curves labeled by time [s]. The 

results overlay the analytic solution. Only the 𝑥1- and 𝑥2-symmetric quarter-space was 

discretized and solved (length 𝑎); the analytic solution at the plate is applied and is 

presented as recovered, Fig. 29. Error was greatest during early-time flow (𝑡 = 20 s 

curve), and error reduces with decreased time-step size.  
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Table 6: Terzaghi and Mandel’s Problems 

 

Inhomogeneous inclusion 

With regard to verification of poroelastic stress analysis, a case is presented 

describing an elliptical inclusion in 2D plane strain. The extent of the enclosing matrix is 

presumed to be infinite, whereas the inclusion is both spatially finite and materially 

inhomogeneous. The ellipse’s major and minor axes coincide with axes 𝑥1 and 𝑥2, with 

horizontal and vertical semi-axes of length 𝑎1
∗ and 𝑎2

∗ , Fig. 30. The Lamé’s parameters of 

the inclusion with respect to the matrix are discontinuous, and are marked by 

superscripting ∗.  

The solution is Eshelby’s inclusion method for plane-strain poroelasticity [42]. It 

describes stresses induced by a dilational stress change within the inhomogeneity. These 

changes can be caused either by a pore pressure 𝛥𝑝, or a dilational change in the residual 

stresses 𝛥𝜎0. The result of the analysis is to recover non-dimensional and tensorial stress 

arching ratios 𝛄𝛼
∗  and 𝛄𝛼. Together, these arching ratios describe the field-wide stress 

state: as such, 𝛄𝛼
∗  is spatially invariant but applies only within the inclusion; in contrast, 

the components of 𝛄𝛼 decline in absolute value with increasing distance from the 

inclusion. 
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Figure 24: Terzaghi’s problem test case during phase 2 loading, with homogeneous 

materials 𝑎 and 𝑏 receiving full bimaterial treatment.. 

 

 

Figure 25: Terzaghi’s problem test case, recovered pore pressures. 
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Figure 26: Flow chart of fixed-stress solver logic. 

 

 

Figure 27: Mandel’s problem test case, dimensions and loading. 
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Figure 28: Mandel’s problem test case, recovered pore pressures. 

 

 

Figure 29: Mandel’s problem test case, enforced/recovered stresses. 
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Table 7: Matrix and Inclusion 

 

 

Figure 30: Inhomogeneous inclusion test case, (a) dimensions and (b) loading. 
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Figure 31: Inhomogeneous inclusion test case, showing 𝛄𝛼
∗  and 𝛄𝛼 (after [42]). 
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Figure 32: Inhomogeneous inclusion test case, showing 𝛥𝛔∗ and 𝛥𝛔 for change 𝛥𝑝. 
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Figure 33: Inhomogeneous inclusion test case, showing 𝛥𝛔∗ and 𝛥𝛔 for change 𝛥𝜎0. 
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Table 8: Rock and Steel 

 

 

Figure 34: Rock and steel case (formation in darker color, steel in lighter). 
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Figure 35: Rock and steel case, showing at 𝑡 = 60 s: (a) pressure; (b) displacement; (c) 

effective stress magnitude; and, (d) total stress magnitude. 
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Figure 36: Rock and steel case showing displacement at 𝑡 = 60 s, parametrically 

increasing perforation extension by 0.4 𝑅 from 0.2 𝑅 with rotation 10°. 
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Figure 37: Rock and steel case showing stress at 𝑡 = 60 s, parametrically increasing 

perforation extension by 0.4 𝑅 from 0.2 𝑅 with rotation 10°. 
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The nature of the dimensionless solution is independent of the included area. It 

requires non-dimensional parameters, 

𝑒 =
𝑎2

∗

𝑎1
∗ , 𝑅𝜇 =

𝜇∗

𝜇
(106) 

where 𝑒 is the elliptical dimension ratio, and 𝑅𝜇 is the ratio of the inclusion over the 

matrix’s shear modulus. The solution is also sensitive to differences in Poisson’s ratios 𝜈∗ 

versus 𝜈. 

Open pore continuity conditions corresponding to Eqs. (40-43) cannot be used to 

match the solution. A sharp pressure contrast must be employed at the interface. 

Specifically, the pressure change occurs uniformly, within the heterogeneity. As such, a 

discontinuous pressure field was used for matching the analytic stress field. Substituting 

closed pore continuity conditions recovers the analytic solution for 𝛄𝛼
∗  and 𝛄𝛼, as plotted 

in Fig. 31 – which presents recovery of the example calculations provided [42]. Finally 

while infinite in theory, our numerical model was run within a matrix of finite extent. The 

matrix dimensions of the finite matrix domain are also elliptical and dimensioned 𝑎1 and 

𝑎2,. At the far-field boundaries, the condition of zero displacement is specified. Model 

parameters are in Table 7.  

Pore pressure 

The inclusion test case can be used to verify the mathematical model and 

implementation of methods to superimpose additional poroelastic components of the 

traction. A pore pressure change 𝛥𝑝 is initialized in the inclusion, and the resulting 

numerically computed stress analyzed. For a zero initial effective stress, the change in 

effective stress becomes the converged effective stress state. A good match to the analytic 
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solution is presented in Fig. 32. Error is greatest along the 𝑥1 axis inside the inclusion 

near the interface, and error reduces with increased local mesh refinement.  

Residual stress 

The semi-analytic description of the same inclusion test case can be augmented to 

verify cross-interface resolved residual stress application. The diagonal tensor 𝐒0∗ =

𝛥𝜎0𝐈 is initialized in the inclusion, and also pore pressure change 𝛥𝑝 = 0. The created 

eigenstrain is therefore dilational, and hence conforms to the solution’s requirement. A 

good match to the analytic solution is presented in Fig. 33; the change in effective stress 

shown is 𝛥𝛔∗ = 𝛔∗ − 𝛥𝜎0𝐈 in the inclusion and 𝛥𝛔 = 𝛔 in the matrix.  

Metal casing 

A multi-material interface case is run in 2D plane-strain. The outer radius of the 

steel wellbore is 𝑅 = 3" with an inner radius of 0.9 𝑅. The width of each perforation is 

0.1 𝑅, and there are five perforations. Each perforation extends 2 𝑅 into the poroelastic 

formation. Material parameters are displayed in Table 8. Results of the multi-material 

stress analysis are presented in Fig. 35. The exposed perforation surface has been 

pressurized to 13.0E+6. Pore fluid diffusion occurs in the formation but not in the steel, 

where the pressure field is initialized to and remains 0. As such, the interface between 

steel and rock acts as a no-flow boundary.  

The key result is the contrast of Fig. 35c versus Fig. 35d. Poroelastic effects are 

strongly evident in the vicinity of the perforations. Effective stresses are strongly 

discontinuous at the rock/steel interface, varying with the step change in pore pressure. 

Yet the stress field remains completely continuous as traveling across the bimaterial 

interface. Stress concentrations form at: locations along the casing-interior steel surface, 
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consonant with the fixed displacement boundary condition; and, within the near-tip 

region of the perforation locations.  

The FV discretization provides for immediate parametrization of model geometry, 

even for multi-material cases. A parameterization of both induced displacements and 

stresses is presented, Fig. 36 and Fig. 37. The parametrization varies the perforation 

length dimension, as well as simultaneously their rotation with respect to in situ stress 

anisotropy. With all models maintaining the same boundary pressurization, the increase 

in induced displacements with perforation length is highly apparent. Those stress 

concentrations at the peroration tips exhibit a more subtle trend, though would indicate 

softening initiation in the maximum far-field stress direction.  

CONCLUSION 

FV-based bimaterial interface methods have been extended to quasi-static 

linearized poroelasticity. As interfaces of practical interest which involve sharp contrasts 

in the Young’s modulus, sharp step changes in the displacement gradient are accounted 

for. Both impermeable and permeable interfaces are accounted for. The application of 

this method is compatible with the various coupling methods presented, which utilize 

both fixed-stress and fixed-strain assumptions on the coupling half-step. The entailed 

stress analysis is useful for various means of softening and fracturing evaluation, 

inclusive of phase-field approximation and cohesive-type models.  

The numerical results presented also suggest appropriate best practices with 

respect to modeling fracture growth. It is important to note that the type and location of 

stress concentrations apparent in the parametric case-study presented – which do not 

necessarily collocate exactly with the perforation tip locations – indicates strongly a 

requirement for the softening model. To capture near-wellbore effects it may be desirable 
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to: (a) initialize damage in near-perforation regions corresponding to the physical damage 

from shape charges; and (b) employ a softening model independent of the numerical 

mesh, in order to capture breakdown in the most favorable direction and hence at the 

correct wellbore pressures.  
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Chapter 3:  A finite area method for the solution of variously coupled 

hydraulic fracture continuity equations 

The Finite Volume (FV) method is a spatial discretization for volumes (3D 

domains), and in the same sense the Finite Area (FA) method is a spatial discretization 

for surfaces (2D domains). We propose use of the FA method in order to discretize the 

continuity equation describing fluid flow inside hydraulic fractures. Without loss of 

generality, fracture growth is modeled using a CZ model and presumes use of FV-based 

methods to discretize the deforming and fracturing rock matrix. The constitutive relation 

for the rock matrix is linearized poroelasticity, with coupled Darcy-type pore fluid flow. 

Consequently, fracture geometry is extracted from discontinuities that evolve inside the 

rock, as enforced by CZ-based softening. An evolving fracture surface, fracture fluid 

injection, flow, and leak-off is modeled. The proposed framework is immediately 

extensible to small-strain poro-plasticity (having been implemented in a modular and 

object-oriented framework).  

The FA method is a spatial discretization for 2D domains, which accounts for the 

effects of surface curvature on the numerical modeling of surface transport processes. FA 

numerics solve differential equations along surfaces discretized by arbitrary polygons. 

Hence, FA-modeled domains require only the positional surface data along FV domain 

boundaries for their discretization. Without exception, FA domain can be entirely 

initialized by the collection of FV cell-faces which compose a specified boundary of an 

arbitrary FV mesh [50, 51, 52]. Consequently for our purposes, use of the FA 

discretization offers a parsimonious data structure; use of FA numerics eliminates the 

requirement for a secondary FV mesh to compute fracture flow. Moreover, these 

fractures can be modeled dynamically. Dynamic growth is based upon evaluation of 

fracturing or softening behavior in the solid, Fig. 38. Except for dynamic growth and 
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geomechanical couplings, the solution of the fluid transport equation is to be considered 

as an extension of prior work on FA-discretized Reynolds flow [53, 54].  

A significant fraction of this work deals with fracture flow solution within the CZ 

tip region. If not utilizing a CZ model, these sections can be disregarded. Yet in that 

exclusive context, separate considerations of two spatially non-overlapping fracture 

conservation equations is important. In particular, the conservation equation within the 

CZ proves critical for both physical and also numerical reasons. Firstly as to its 

physicality, this measure provides a description of pore fluid conservation – as the main 

fracture advances to encompass new boundary surface previously contained within the 

CZ (see [31]). Thus, it vitiates the sudden appearance of nontrivial, zero-pressure 

volumes during main fracture extension. Secondly as to the numerical consequences, CZ 

conservation encourages smooth recovery of fracture statistics like aperture (the opening 

width at injection location). When using a fluid-filled CZ tip, the changes in solid-

boundary displacements are more monotonic during softening; because of the monotonic 

changes, the optimization of the linear algebraic matrix solution is more straightforward. 

(Less obviously, fluid-filled tip systems are additionally less dependent on mesh 

refinement at the fracture tip – a deciding consideration. On this point, compare [31] 

against [55] – the latter exhibiting jagged, mesh-dependent aperture reductions 

engendered by every instance of real fracture extension.) This aspect of our model 

follows de Borst and co-workers, where additional CZ tip physics are more 

comprehensively considered [56]. For a detailed description of differences between the 

real fracture and CZ tip region, see [38].  

Essentially two leak-off models are described in this work: the gradient-based 

method, and the Carter model. Gradient-based methods assume continuity of flux in each 

iteration, and converge continuity of the pore fluid boundary and fracturing pressures in 
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each iteration. Gradient methods are more naturally amenable to block-coupled matrix 

inversion of fracturing fluid and pore pressure equations (meaning via block combination 

of the implicit scalar Laplacian operators for both domains). In contrast, Carter model-

type leak-off decouples fracturing and pore fluid conservation equations [57]. Thus 

Carter models are useful in the following scenarios: (a) simulation of fracture growth in a 

fast, forward-marching manner; (b) capturing effects of rapidly dispersed leak-off into the 

far-field, in order to explain high rates of leak-off in a naturally fractured formation; (c) 

where pore fluid average versus fracture compressibilities differ significantly – such as 

during energized fracturing completion – such that an additional sub-cycling method is 

desirable when solving the fracture conservation equation; and, (d) where proppant 

models couple highly non-linear density and bridging effects. However, the Carter model 

implementation is natively crude, because not enforcing mass conservation into the 

reservoir. (Alternate mass-conserving implementations are feasible. As implemented in 

this work, continuity of the pore and fracturing pressures is instead preferred.)  

Proppant concentrations are modeled as uncoupled scalar transport equations. 

Here the focus is on verification of advective transport inside the fracture. The proppant 

model may be extended based upon empirical and/or derived correlations based upon 

particle simulation [58]. For other treatment for effects of the fracture-transverse pressure 

gradient and where slurry effects are considered, see recent developments in [59, 60].  

In the way of background, coupled fracture fluid flow and deforming solid 

mechanics has been solved using Reynolds flow utilizing the Finite Element (FE) method 

[61], showing convergence to the relevant asymptotic solutions [31]. Real-world fractures 

exhibit the type of complexity we are attempting to capture [62]. This document assumes 

a failure process within a poroelastic or poroplastic solid domain as outlined in Fig. 39.  
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MATHEMATICAL MODELS 

The continuity equation for fluid flow inside a fracture is stated as a surface 

integral formulation. A separate equation of continuity is stated for fluid flow inside a 

CZ. The latter equation accounts for porosity effects within the softening zone. Pressures 

across the width of the fractured and fracturing discontinuity can be assumed constant for 

the purpose of modeling slit flow.  

Fracture continuity equation 

Consider flow within a fracture assuming small variations in fluid density. A 

cubic law flow can be considered as an integral of fluid volume change in response to 

change in pressure, change in a volume 𝑉, and volumetric fluxes in and out. With the 

assumption of small changes in fluid density, the strong integral form of the isothermal 

flow equation becomes:  

∫[
1

𝐾𝑓

𝜕𝑝𝑓

𝜕𝑡
+

1

𝑉

𝜕𝑉

𝜕𝑡
]d𝑉

𝑉

= − ∮ 𝐧 ⋅ 𝐪d𝑆

𝑆

+ 𝑄 (107) 

where 𝐾 is the bulk modulus, 𝑝 the pressure, 𝑡 time, 𝐧 the surface normal vector, 𝐪 the 

flux, 𝑉 the volume, 𝑆 the surface, and 𝑄 the volumetric rate of production; superscripting 

𝑓 indicates a variable or property of the fracturing fluid.  

In order to apply FA-based numerics, the fracture fluid flow must be considered 

as though along a surface - and hence not within a series of control volumes. Therefore 

the volume is decomposed: 𝑉 = 𝑆𝑤 for 𝑆 the invariant surface area and 𝑤 the fracture 

width. (The nature of the control surface 𝑆 is a discontinuity in the rock or other solid 

domain, and we suppose that the location of the solid’s boundary is known. In this work 

the bounding solid is assumed to deform under a small-strain assumption. Therefore all 
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discretized 𝑆 are constant in time and hence “invariant.”) In this manner, we can define 

the evolved fracture surface as the discontinuity exposed by deformation and failure of a 

bounding solid. But, the fracture surface is inherently dual – in that each fracture face has 

an opposite or “shadow” surface from which it was detached during deformation. The 

current and shadow faces are “twins”, in that they possess exactly the same shape and lie 

in the same plane, and at a state of zero deformation would be co-located. (As later 

discretized, the twin surface is marked by subscripting 𝑠𝑃).  

Thus, the current fracture width w is defined between any face and its shadow 

face. The associated substitutions for 𝑉 = 𝑆𝑤 return:  

∫[
1

𝐾𝑓

𝜕𝑝𝑓

𝜕𝑡
+

1

𝑆𝑤
𝑆

𝜕𝑤

𝜕𝑡
]𝑤d𝑆

𝑆

= − ∮ 𝐦 ⋅ (∫ 𝐪

𝑤

0

)d𝐿

𝜕𝑆

+ 𝑄 (108) 

where 𝐦 is the edge bi-normal vector. A tensorial fracture transmissivity 𝐊𝑓 associated 

with flow down the fracture is assumed. However, in the direction transverse to flow – 

approximately 𝐧𝑃 with as numerical mesh fining increases – it is 𝐧𝑃 ⋅ (𝐧𝑃 ⋅ 𝐊𝑓) → ∞. 

Consequently when modeling axial flow, 𝐊𝑓 is replaced by scalar 𝑘𝑓. In this sense axial 

flux is:  

𝐪 = −
𝑘𝑓

12𝜇 𝑓
𝛻𝑠𝑝𝑓 (109) 

where the physical units of 𝑘𝑓 are in squared length. The above Darcy-type constitutive 

relation is substituted in Eq. (108). Further, we assume uniformity of pressure gradient 

over the width of the fracture control surface’s edges. Also, the substitution is made that 

𝑤 → 𝑤/2, in order to represent the constraint that each half-side of the fracture only 

captures half of the width,  
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Figure 38: Coupled, dynamically grown fracture (a) at early time, and (b) bigger at 

later time. 

 

∫[
𝑤

𝐾𝑓

𝜕𝑝𝑓

𝜕𝑡
+

𝜕𝑤

𝜕𝑡
]d𝑆

𝑆

= ∮ 𝐦 ⋅ (𝑤
𝑘𝑓

12𝜇 𝑓
𝛻𝑠𝑝𝑓)d𝐿

𝜕𝑆

+ 2𝑄. (110) 

In the above continuity equation, the strain can be recognized by normalization of all 

terms by width coefficient-𝑤 – such that the equation’s terms possess units of reciprocal 

time. For that normalization, the appearance of term (1/𝑤)(𝜕𝑤/𝜕𝑡) would represent the 

approximate temporal derivative of engineering strain. Clearly then, all appearances of 

the coefficient-𝑤 in Eq. (110) must be all identically valued (at any particular time), to 

promote consistency. 

Tip continuity equation 

With the assumption of small changes in fluid density, the strong integral form of 

the isothermal CZ flow equation becomes: 

∫[
1

𝑀𝑐

𝜕𝑝𝑓

𝜕𝑡
+

𝑏𝑐

𝑉

𝜕𝑉

𝜕𝑡
]d𝑉

𝑉

= − ∮ 𝐧 ⋅ 𝐪d𝑆

𝑆

+ 𝑄, (111) 
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where 𝑀 is the Biot’s modulus, and 𝑏 the Biot’s coefficient – as computed for the 

deforming poroelastic solid. The above conservation equation recognizes the 

compatibility relating deformation of the skeletal pores to the volume occupied by pore 

fluid within a softening region. Making identical substitutions as produce Eq. (110): 

∫[
𝑤

𝑀𝑐

𝜕𝑝𝑓

𝜕𝑡
+ 𝑏𝑐

𝜕𝑤

𝜕𝑡
]d𝑆

𝑆

= ∮ 𝐦 ⋅ (𝑤
𝑘𝑓

12𝜇 𝑓
𝛻𝑠𝑝𝑓)d𝐿

𝜕𝑆

+ 2𝑄. (112) 

In regard to (solid) boundary displacements and values, the deforming poroelastic solid is 

solved using the “over-relaxed” approach for linear elasticity [15] as extended to 

poroelasticity [20], with softening behavior evaluated as in [16] and extended to multi-

material elasticity with softening in [11, 30]. The approach to enforcing boundary 

gradients of strain is the same as in [18].  

Proppant advection 

After normalization by density, the proppant mass balance inside the fracture can 

be simplified as an advection equation with use of semi-empirically determined internal 

coefficients of the divergence. The identical change in fracture volume approximation 

(with respect to the temporal derivative) is applied as in Eq. (107): 

∫[
𝜕𝑐

𝜕𝑡
+

𝑐

𝑉

𝜕𝑉

𝜕𝑡
]d𝑉

𝑉

= − ∮ 𝐧 ⋅ (𝑐𝐪p)d𝑆

𝑆

+ 𝐶p, (113) 

where 𝑐 is concentration, and source term 𝐶p. (The complete advection-diffusion 

equation is straightforward to implement; however, our concentration equation is 

constrained to follow the reduced system in [58].) It is anticipated that the condition for 

proppant concentration injection is: fixed-value at boundary inlets, and zero-gradient at 
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any outlets. According to the Darcy constitutive relation as above, the proppant velocity 

is:  

𝐪p = 𝐀p𝐪 + 𝐛p (114) 

where both coefficients are empirical relations, 𝐀p(𝑤) and 𝐛p(𝑤, 𝜌) for 𝜌 indicating the 

set of density effects. As above, substitutions are made for the invariant surface, and 

letting 𝑤 → 𝑤/2: 

∫[
𝜕𝑐

𝜕𝑡
+

𝑐𝑆

𝑆(𝑤/2)

𝜕(𝑤/2)

𝜕𝑡
](

𝑤

2
)d𝑆

𝑆

= − ∮ 𝐦 ⋅ (𝑐 ∫ 𝐪p

𝑤 2⁄

0

)d𝐿

𝜕𝑆

+ 𝐶p. (115) 

Again, the flow velocities 𝐪p of proppant transport containing empirical relations are 

considered to be invariant across the width. Then cancellation returns simply 

∫[𝑤
𝜕𝑐

𝜕𝑡
+ 𝑐

𝜕𝑤

𝜕𝑡
]d𝑆

𝑆

= − ∮ 𝐦 ⋅ (𝑤𝑐𝐪p)d𝐿

𝜕𝑆

+ 2𝐶p. (116) 

Clearly density effects of the slurry as effects the flow model are neglected (as relates to 

Eq. (110)).  

NUMERICAL DISCRETIZATION 

Volumetric domains presented in this work are discretized using the FV method. 

Temporally, the total simulation time is split into a finite number of time steps 𝛥𝑡 not 

necessarily of uniform period. Spatially, the domain is decomposed into a finite number 

of non-overlapping polyhedral control volumes (cells), bounded by flat polygons (faces) 

here also assumed to be convex. A representative numeric control volume 𝑉𝑃 is presented 

in Fig. 20, showing: the location of centroid 𝑃 located in the global coordinate system by 
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vector 𝐫𝑃; and, the location of the centroid 𝑁 of a neighboring control volume located at a 

distance from 𝑃 described by vector 𝐝𝑓. The cell boundary associated with centroid-to-

centroid vector 𝐝𝑓 is face 𝑓 is of area 𝑆𝑓, the plane of which is described by surface 

normal 𝐧𝑓 as originates from the centroid of the face. 

Surface domains presented in this work are discretized using the FA method. For 

this work, the same time step 𝛥𝑡 is used on surface domains (although not required). A 

representative numeric control area 𝑆𝑃 is presented in Fig. 40, showing: the location of 

area centroid 𝑃, with surface normal 𝐧𝑃 extending from that centroid; similarly for a 

neighboring control area centered 𝑁 and surface normal 𝐧𝑁; edge vector 𝐞 connecting 

vertices of the control area 𝑖 to 𝑗; vertex normal 𝐧𝑖 of vertex 𝑖; the edge normal 𝐧𝑒 

originating from the center of the associated edge. Fig. 40 also indicates identities of the 

spatial discretization, showing: edge length 𝐿𝑒; distance vector 𝐝𝑒 with magnitude of the 

euclidean distance between 𝑃 and 𝑁, utilized in interpolation functions; and, the bi-

normal me perpendicular to 𝐧𝑒 and 𝐞, depicted as originating from the center of edge 𝑒.  

Construction of the bi-normals at fracture tips provides for a limiting case of the FA 

discretization. Every bi-normal is defined as a vector perpendicular to both (a) the 

averaged point normals of points along the edge, and (b) the edge. Each vertex normal 𝐧𝑖 

is computed using a weighted average of the cross product vectors constructed using the 

edges connected to the point. By geometric argument for each fracture tip vertex, the 

summation to compute 𝐧𝑖 will contain an equal number of opposite cross-product 

vectors. This observation follows from: (a) symmetric connectivity of edges around tip 

vertices; and, (b) the small-strain assumption which does not permit computational mesh 

deformation during fracture opening. In this event, the summation of those equal and 

opposite vectors is not normalized, such that 𝐧𝑖 = 𝟎 for any vertex along the fracture tip. 

By eventual geometric arguments, it follows that the net effect is the imposition of zero-
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gradient boundary conditions at the fracture tip – in the bi-normal direction (the product 

with 𝐦𝑒 = 𝟎 is also 0 for all spatial operators). The consequence that the Neumann 

condition at the tip is imposed purely by the procedure of discretization, was one of the 

most surprising and interesting aspects of executing this work.  

Fracture coupling splits 

To define the implicit component of the pore fluid spatial equation discretization 

– a Laplacian operator with spatially variable internal coefficients – let us define: 

ℒ𝑠(𝑝𝑓) ≡ ∑(𝐦 ⋅ (𝑤𝑛∗
(𝑘𝑓)𝜃

12𝜇 𝑓
𝛻𝑠(𝑝𝑓)𝑛))𝑒𝐿𝑒

𝑒

+ ∑(𝐦 ⋅ (𝑤𝑛∗
(𝑘𝑓)𝜃

12𝜇 𝑓
𝛻𝑠(𝑝𝑓)𝑛))𝑏𝐿𝑏

𝑏

, (117)

 

where ℒ𝑠(𝑝𝑓) is a convenience term; subscripting 𝑒 and 𝑏 represents internal edge-center 

values. The coefficient-𝑤 width term in above will may be taken as 𝑤𝑛∗; superscript 𝑛 ∗ 

indicates a value which may be derived from prior time step – consonant with the 

engineering definition of strain.  

Fixed-strain width 

For a fixed-strain split poroelastic coupling, the discretization of the fracture 

pressure flow equation is, 

ℒ𝑠(𝑝𝑓) + 2𝑄𝑃 = [
𝑤𝑃

𝑛∗

𝐾𝑓
(
(𝑝𝑓)𝑃

𝑛 − (𝑝𝑓)𝑃
𝑜

𝛥𝑡
) +

𝑤𝑃
𝑛 − 𝑤𝑃

𝑜

𝛥𝑡
]𝑆𝑃. (118) 

Here, subscript 𝑃 represents face-center values. Superscripts 𝑛, 𝑜, and 𝑜𝑜 represent the 

current 𝑡𝑛, previous 𝑡𝑜, and previous to previous 𝑡𝑜𝑜 time instances. For 𝑄𝑃 = 0 this 

discretized equation: (a) would not handle intersections; (b) assumes flow to proceed 
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entirely along one fracture surface; and, (c) cannot provide for leak-off. The opening 

width between current face 𝑆𝑃 and twin shadow face 𝑆𝑠𝑃 is recovered as: 

𝑤𝑃 = 𝐧𝑏 ⋅ (𝐮𝑠𝑏 − 𝐮𝑏), (119) 

where subscript 𝑏 indicates a boundary value of the FV domain at face-center 𝑃, and 𝑠𝑏 a 

boundary value at shadow face-center 𝑠𝑃. Thus the above indicates that width is defined 

as the magnitude of normal displacement between the centroids of the twin faces, in the 

direction normal to the face.  

Fixed-stress width 

For a fixed-stress split poroelastic width coupling, the appropriate pressure-

response coefficient has been investigated previously [45]. In essence, the mean stress is 

held constant during the coupling half-step. The discretization of the fracturing pressure 

inside our flow equation is: 

ℒ𝑠(𝑝𝑓) + 2𝑄𝑃 = [𝑤𝑃
𝑛∗(

1

𝐾𝑓
+ 𝛾𝑓)(

(𝑝𝑓)𝑃
𝑛 − (𝑝𝑓)𝑃

𝑜

𝛥𝑡
) +

𝑤𝑃
𝑛 − 𝑤𝑃

𝑜

𝛥𝑡
]𝑆𝑃

−[𝑤𝑃
𝑛∗𝛾𝑓(

(𝑝𝑓)𝑃
𝑖𝐮 − (𝑝𝑓)𝑃

𝑜

𝛥𝑡
)]𝑆𝑃, (120)

 

where 𝛾𝑓 is a constant related to the domain properties. This method improves the 

approximation within the pressure equation of poroelastic effects, and as such that 

constant may vary based upon constraints and compatibility of the modeled problem. For 

all examples presented where a fixed-stress width-split is used, then exactly: 

𝛾𝑓 =
1

𝐾𝑓(𝛽𝜆 − 1)
, (121)

𝛽 =
1

𝑀𝑏2
+

1

𝑏2
(
𝑏2

𝜆
). (122)
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Superscript 𝑖𝐮 indicates the immediately prior coupling iteration within the same time 

step, in which the displacement was fully converged. The last parameter (𝑏2/𝜆) is an 

independent parameter derived from compatibility analysis of the poroelastic loading. It 

is to be as used in fixed-stress split 𝐮 − 𝑝 coupling – i.e. valued as within the solid.  

Explicit fixed-stress 

The solution approach taken below is by analogy to a fixed-stress split explicit-in-

time poroelastic 𝐮 − 𝑝 coupling of quasi-static poroelasticity. The time derivative of 

width is resolved as an explicit term plus a function of the fracturing pressure in the 

present iteration,  

𝜕(𝑤)𝑛

𝜕𝑡
≈

𝜕(𝑤)𝑜

𝜕𝑡
+ 𝑤𝑃

𝑜𝛾𝑓
𝜕((𝑝𝑓)𝑛 − (𝑝𝑓)𝑜)

𝜕𝑡
,

=
𝑤𝑃

𝑜 − 𝑤𝑃
𝑜𝑜

𝛥𝑡
+ 𝑤𝑃

𝑜𝛾𝑓[(
(𝑝𝑓)𝑃

𝑛 − (𝑝𝑓)𝑃
𝑜

𝛥𝑡
) − (

(𝑝𝑓)𝑃
𝑜 − (𝑝𝑓)𝑃

𝑜𝑜

𝛥𝑡
)]. (123)

 

For a fixed-strain width-split, discretization of the continuity equation returns, 

ℒ𝑠(𝑝𝑓) + 2𝑄𝑃 = [
𝑤𝑃

𝑜

𝐾𝑓
(
(𝑝𝑓)𝑃

𝑛 − (𝑝𝑓)𝑃
𝑜

𝛥𝑡
) +

𝑤𝑃
𝑜 − 𝑤𝑃

𝑜𝑜

𝛥𝑡
]𝑆𝑃

+[𝑤𝑃
𝑜𝛾𝑓𝛥𝑡(

(𝑝𝑓)𝑃
𝑛 − 2(𝑝𝑓)𝑃

𝑜 + (𝑝𝑓)𝑃
𝑜𝑜

(𝛥𝑡)2
)]𝑆𝑃. (124)

 

Under this iterative strategy, given sufficiently small time steps, the displacement field 

and fracture continuity equations can be decoupled excepting evaluation of fracture 

growth and consequent permeability enhancement. If fracturing processes initiate, then 

further fracturing may occur within the same time step. Thus, still within the explicit 

time-marching formulation, but subsequent to fracture to fracture growth the 

approximation becomes: 
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Figure 39: Flow chart of coupling logic: relating pore pressure and fracture flow 

systems, after [63]. 

 

 

Figure 40: Polygonal control area with (a) area and  point normals, and (b) bi-normal, 

after [50]. 



 117 

𝜕(𝑤)𝑛

𝜕𝑡
≈

𝜕(𝑤)𝑛

𝜕𝑡
+ 𝑤𝑃

𝑛∗𝛾𝑓
𝜕((𝑝𝑓)𝑛 − (𝑝𝑓)𝑖𝐮)

𝜕𝑡
,

=
𝑤𝑃

𝑛 − 𝑤𝑃
𝑜

𝛥𝑡
+ 𝑤𝑃

𝑛∗𝛾𝑓[(
(𝑝𝑓)𝑃

𝑛 − (𝑝𝑓)𝑃
𝑜

𝛥𝑡
) − (

(𝑝𝑓)𝑃
𝑖𝐮 − (𝑝𝑓)𝑃

𝑜

𝛥𝑡
)]. (125)

 

Discretization of the flow equation returns, 

ℒ𝑠(𝑝𝑓) + 2𝑄𝑃 = [
𝑤𝑃

𝑛∗

𝐾𝑓

(𝑝𝑓)𝑃
𝑛 − (𝑝𝑓)𝑃

𝑜

𝛥𝑡
+

𝑤𝑃
𝑛 − 𝑤𝑃

𝑜

𝛥𝑡
]𝑆𝑃

+[𝑤𝑃
𝑛∗𝛾𝑓(

(𝑝𝑓)𝑃
𝑛 − (𝑝𝑓)𝑃

𝑜

𝛥𝑡
) − 𝑤𝑃

𝑛∗𝛾𝑓(
(𝑝𝑓)𝑃

𝑖𝐮 − (𝑝𝑓)𝑃
𝑜

𝛥𝑡
)]𝑆𝑃. (126)

 

Thus the result of Eq. (120) is recovered, here with effect for explicit time-marching. Eq. 

(126) can be iterated over within the same time step, until softening processes no longer 

initiate.  

TIP COUPLING SPLITS 

The discretized form of the tip continuity equation differs from the one used 

inside the fracture – but not by the form of the implicit Laplacian linear operator 

(although its internal coefficients may spatially vary). Simply put, the continuity equation 

varies to recognize that CZ-tip flow occurs through debonding pore space. This result can 

be adduced by stress analysis – and hence only effects face-center value coefficients 

utilized like the porelastically-coupled modulus of compressibility or tangent modulus of 

strain with respect to porosity.  

Fixed-strain width 

For a fixed-strain split poroelastic coupling, the discretization of the tip flow 

equation is: 
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ℒ𝑠(𝑝𝑓) + 2𝑄𝑃 = [
𝑤𝑃

𝑛∗

𝑀𝑃
𝑐 (

(𝑝𝑓)𝑃
𝑛 − (𝑝𝑓)𝑃

𝑜

𝛥𝑡
) + 𝑏𝑃

𝑐
𝑤𝑃

𝑛 − 𝑤𝑃
𝑜

𝛥𝑡
]𝑆𝑃. (127) 

where the result that Biot’s modulus in the cohesive region 𝑀𝑐 is 𝑀𝑐(𝐾𝑓), e.g., cannot be 

extracted from J-integral analysis of the fracture tip. 

Fixed-stress width 

The pressure-response coefficient appropriate inside the cohesive zone is obtained 

by (easy) visual inspection of the previous investigation [45]. While the mean stress is 

constant during the half-step, simple adjustment is made for multiplication into the strain 

derivative of the Biot’s coefficient. The discretization of the pore pressure inside our flow 

equation is: 

ℒ𝑠(𝑝𝑓) + 2𝑄𝑃 = [𝑤𝑃
𝑛∗(

1

𝑀𝑃
𝑐 + 𝛾𝑃

𝑐𝑓
)(

(𝑝𝑓)𝑃
𝑛 − (𝑝𝑓)𝑃

𝑜

𝛥𝑡
) + 𝑏𝑃

𝑐
𝑤𝑃

𝑛 − 𝑤𝑃
𝑜

𝛥𝑡
]𝑆𝑃

−[𝑤𝑃
𝑛∗𝛾𝑃

𝑐𝑓
(
(𝑝𝑓)𝑃

𝑖𝐮 − (𝑝𝑓)𝑃
𝑜

𝛥𝑡
)]𝑆𝑃, (128)

 

where the CZ coefficient is: 

𝛾𝑐𝑓 =
1

𝑀𝑐(𝛽(𝜆/𝑏𝑐) − 1)
, (129) 

where 𝜆/𝑏𝑐 is a physical parameter and unrelated to the poroelastic fixed-stress 

coefficient 𝑏2/𝜆. In fact hhe effects of 𝑏2/𝜆 are contained in 𝛽. Other methods for fully 

explicit, time-marching schemes can be straightforwardly adduced from Eq. (124) and 

Eq. (126). 
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VOLUMETRIC FLOWS AND BOUNDARY GRADIENTS 

Injection rates applied as fluid fluxes in the longitudinal direction of the fracture 

are applied as Neumann conditions along the FA mesh edges. However, both leak-off and 

correction terms are not naturally discretized by FA spatial operators. Hence, they are 

both applied as source terms within the discretized equation (meaning the terms 

contribute to 𝑄𝑃, the face-centered discretization of volumetric production).  

Leak-off term 

The FA method offers no discretized boundary in the direction normal to a 

fracture face, by which to convey leak-off from the fracture into the formation. 

Fortunately none is required. Also, our definition of leak-off as a volumetric source term 

maintains the assumption of a zero pressure gradient over the width of the fracture 

(infinite transverse fracture permeability). This source term is applied to the volume 

discretized by the control surface of the fracture.  

Gradient discharge 

To couple the fracture and pore fluid systems, it is assumed that the total 

discharge (of leak-off) leaving the fracture is equal to the rate of fluid entering the porous 

material. Hence by Darcy’s law, the normal flux 𝑞𝑏𝑛 of fluid entering the porous 

boundary is a function of the gradient of pressure along the fracture boundary, 

𝑞𝑏𝑛 = −(𝐧 ⋅
𝑘𝑝𝑏𝑛

𝜇𝑝
𝛻𝑝)𝑏 (130) 

where subscript 𝑏 indicates a boundary value on the solid. So, the volumetric leak-off is 

applied to the discretized equation as: 



 120 

𝑄𝑙𝑒𝑎𝑘
𝑛 = 𝑞𝑏𝑛

𝑛 𝑆𝑃 = −(𝐧 ⋅
𝑘𝑝𝑏𝑛

𝜇𝑝
𝛻𝑝)𝑏

𝑛𝑆𝑃 (131) 

emphasizing that 𝐧𝑏 has the opposite orientation as 𝐧𝑃. (So that 𝐧𝑏 = −𝐧𝑃, where the 

surface normal 𝐧𝑃 is a fictitious outward normal of area 𝑆𝑃.)  

Carter discharge 

Use of the Carter model represents application of the analytic solution for 1D, 

single-phase isothermal diffusion from the fracture into the formation. All material 

properties are assumed to be homogeneous; effects of poroelasticity are not accounted 

for. Factors such as fracture wall build-up of plugging fines may be included (for an 

overview of production estimations, c.f. [64]). The model presented here differs from the 

classical application on one or two manners. First, to make some accommodation for 

coupled poroelasticity the Biot’s modulus rather than the single-phase compressibility is 

substituted (c.f. [65]),  

𝐶𝑙𝑒𝑎𝑘 = √
𝜙𝑏

0𝑘𝑝𝑏𝑛

𝜋𝑀𝑏𝜇𝑝
(132) 

where 𝜙0 is the porosity. Furthermore, accuracy of the classical Carter model is enhanced 

by the presence of high far-field stresses (above in situ pore pressures in the formation). 

This is because the volume of leak-off is taken to depend upon a known, time-invariant 

pressure inside the fracture. For small apertures, this value would be approximately the 

resolved stress component: 𝑆𝑏𝑛
0 = 𝐧𝑏 ⋅ (𝐧𝑏 ⋅ 𝐒𝑏

0) < 0 (TENSION POSITIVE), neglecting 

poroelastic back-stress on the fracture boundary. The Carter leak-off term would then be:  
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𝑄𝑙𝑒𝑎𝑘
𝑛 = 𝑞𝑏𝑛

𝑛 𝑆𝑃 = 𝐶𝑙𝑒𝑎𝑘(
𝑆𝑏𝑛

0 + 𝑝𝑏
0

√𝑡∗ − 𝑡0𝑐∗
)𝑆𝑃 = −(

𝐶𝑙𝑒𝑎𝑘
∗

√𝑡∗ − 𝑡0𝑐∗
)𝑆𝑃 (133) 

where 𝑝0 represents the undisturbed in situ pore pressure at exactly the fracture 

boundary, and superscripting 0𝑐 ∗ marks when cohesive processes completed. For the 

discretized time step, this is approximated as 𝑡0𝑐∗ = 𝑡 − 𝛥𝑡  in order to provide 

consistency with surfaces initialized at zero-time for which 𝑡0𝑐∗ = 0. In order to apply a 

central approximation, in Eq. (133) and later Eq. (134) the time term is then 𝑡∗ = 𝑡 −

(𝛥𝑡/2). If including CZ tip leak-off, then let 𝑡0𝑐∗ → 𝑡0𝑐, where superscripting 0𝑐 marks 

when cohesive processes initiated. Finally we note, term 𝐶𝑙𝑒𝑎𝑘
∗ > 0 represents the 

classical Carter coefficient of production engineering practice.  

Implicit Carter discharge 

Second instead of the analytic approximation – which relies on a time-invariant 

pressure drop from the fracture to the far-field – the current fracturing pressure is used (at 

all times). Altogether contributing both implicit and explicit terms, the Carter discharge is 

then: 

𝑄𝑙𝑒𝑎𝑘
𝑛 = 𝑞𝑏𝑛

𝑛 𝑆𝑃 = −𝐶𝑙𝑒𝑎𝑘(
(𝑝𝑓)𝑃

𝑛 − 𝑝𝑏
0

√𝑡∗ − 𝑡0𝑐∗
)𝑆𝑃. (134) 

It may be preferable to exclude leak-off effects from the CZ tip, or a mix of 

methods such that the gradient method or zero-gradients are locally applied within that 

zone. (In other words, differing leak-off models in the real fracture and in the CZ are 

viable, even where the CZ is solved as fluid-filled.) Further, neither the fixed-stress nor 

the fixed-strain coupling split discussed predicate a leak-off model – or even the 



 122 

continuity of flux. Thus all leak-off models presented may be applied in conjunction with 

any combination of reservoir and fracture coupling splits.  

Permeabilities 

The fracture width for any control surface is defined as above to be 𝑤𝑒
𝜃, which 

may differ from the Eulerian distance 𝐿𝑃𝑠𝑃̅̅ ̅̅ ̅̅ ̅ between centroid of control surface area 𝑆𝑃 

and shadow control surface area 𝑆𝑠𝑃. Fracture transmissivity is based on the width 𝑤𝑒
𝜃; 

however, differing from the mass-conserving fracture width, for numerical stability some 

limiting positive value may be applied to the permeability-coupling width, such that, 

(𝑘𝑓)𝑒
𝜃 = (𝑤𝑒

𝜃)2 (135) 

where superscripting 𝜃 indicates use of the theta method. The purpose is to eliminate 

non-linearity during the converging time-step. However, as stated above, the Laplacian 

term of Eq. (117) acts only along each side of the fracture. In that we correct for this 

effect: the axial-directional permeability is utilized to scale transverse fluxes, as below. 

Edge boundary gradients 

Fixed injection rate boundaries provide axial inlet fluxes for injection of fluid into 

the fracture. As describing the entry flux, the fixed volumetric rates constitute a Neumann 

boundary condition. The edge normal gradient of fracture pressure 𝐦𝑏 ⋅ (𝛻𝑠𝑝𝑓)𝑏 is set as 

a function of rate, total area of current aperture, and the constitutive relation describing 

flux. For a set volumetric injection rate 𝑄𝑖𝑛𝑗, it is assumed that boundary flux 𝑞𝑏𝑚 is 

equal for each edge along the inlet. Hence by continuity: 

𝑞𝑏𝑚 = −
𝑄𝑖𝑛𝑗

∑ (
𝑤
2)𝑏

𝑛∗𝐿𝑏
𝑏

= 𝐦𝑏 ⋅ (−
𝑘𝑓

12𝜇 𝑓
𝛻𝑠𝑝𝑓)𝑏 (136)
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Re-arranging the Darcy constitutive equation: 

𝐦𝑏 ⋅ (𝛻𝑠𝑝𝑓)𝑏
𝑛 = (−

12𝜇 𝑓

𝑘𝑓
𝑞)𝑏𝑚

𝑛 = (
12𝜇 𝑓

𝑘𝑓
)𝑏

𝜃[∑(
𝑤

2
)𝑏

𝑛∗𝐿𝑏

𝑏

]−1𝑄𝑖𝑛𝑗
𝑛 (137) 

where subscripting 𝑏𝑚 indicates an edge-boundary value in the edge bi-normal direction. 

Above, as with Eq. (110), it is assumed that fracture pressure gradient is constant across 

the transverse width. This method for setting boundary gradients has been described for a 

FV-discretized fracture in [39].  

MATRIX ASSEMBLY 

The details of the discretized equation may vary based upon the coupling split 

chosen. For example, the field equation inside the fracture is assembled: 

ℒ𝑠(𝑝𝑓) + 2𝑄𝑐𝑜𝑟𝑟 + 2𝑄𝑙𝑒𝑎𝑘 = [
𝑤𝑃

𝑛∗

𝐾𝑓
(
(𝑝𝑓)𝑃

𝑛 − (𝑝𝑓)𝑃
𝑜

𝛥𝑡
) +

𝑤𝑃
𝑛 − 𝑤𝑃

𝑜

𝛥𝑡
]𝑆𝑃 (138) 

where the example of fixed-strain width split is provided, and the substitution 𝑄𝑃 =

𝑄𝑐𝑜𝑟𝑟 + 𝑄𝑙𝑒𝑎𝑘 is made. In the above equation, coefficient 2 in 2𝑄𝑐𝑜𝑟𝑟 is arbitrary but 

included for consistency. 

Gradient model/fixed-strain width 

Presume that no fracturing/pore pressure continuity is enforced at the fracture tip, 

and that a gradient-based leak-off method is utilized. The fully discretized form of the 

fixed-strain fracture pressure equation is: 
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0 = −(𝐻𝑠
𝑛)[

𝑤𝑃
𝑛∗

𝐾𝑓
(
(𝑝𝑓)𝑃

𝑛 − (𝑝𝑓)𝑃
𝑜

𝛥𝑡
) +

𝑤𝑃
𝑛 − 𝑤𝑃

𝑜

𝛥𝑡
]𝑆𝑃

−(1 − 𝐻𝑠
𝑛)[

𝑤𝑃
𝑛∗

𝑀𝑃
𝑐 (

(𝑝𝑓)𝑃
𝑛 − (𝑝𝑓)𝑃

𝑜

𝛥𝑡
) + 𝑏𝑃

𝑐
𝑤𝑃

𝑛 − 𝑤𝑃
𝑜

𝛥𝑡
]𝑆𝑃

+ ∑(𝐦 ⋅ (𝑤𝑛∗
(𝑘𝑓)𝜃

12𝜇 𝑓
𝛻𝑠(𝑝𝑓)𝑛))𝑒𝐿𝑒

𝑒

+ ∑(𝐦 ⋅ (𝑤𝑛∗
(𝑘𝑓)𝜃

12𝜇 𝑓
𝛻𝑠(𝑝𝑓)𝑛))𝑏𝐿𝑏

𝑏

+2𝛼𝑐𝑜𝑟 ∑[𝑤𝑃
𝑛∗

(𝑘𝑓)𝑃
𝜃

12𝜇 𝑓
((𝑝𝑓)𝑠𝑃

𝑖
𝑝𝑓

− (𝑝𝑓)𝑃

𝑖
𝑝𝑓

)]

𝑖
𝑝𝑓

−2(𝐻𝑠
𝑛)[(𝐧 ⋅

𝑘𝑝𝑏𝑛

𝜇𝑝
𝛻𝑝)𝑏

𝑛]𝑆𝑃, (139)

 

where 𝐻𝑠 is a unit step function of fracture surface (𝑠) that is 1 in the fracture and 0 in the 

CZ. Note when comparing with above, 𝑄𝑙𝑒𝑎𝑘 < 0 expresses outflow from the fracture 

into the formation. 

Carter model/fixed-stress width 

Presume that no pore pressure continuity is enforced at the fracture tip, and that 

the explicit Carter model leak-off is utilized. The fixed-stress split equation is cleaned 

into: 
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0 = −(𝐻𝑠
𝑛)[𝑤𝑃

𝑛∗(
1

𝐾𝑓
+ 𝛾𝑓)(

(𝑝𝑓)𝑃
𝑛 − (𝑝𝑓)𝑃

𝑜

𝛥𝑡
)]𝑆𝑃

−(𝐻𝑠
𝑛)[

𝑤𝑃
𝑛 − 𝑤𝑃

𝑜

𝛥𝑡
− 𝑤𝑃

𝑛∗𝛾𝑓(
(𝑝𝑓)𝑃

𝑖𝐮 − (𝑝𝑓)𝑃
𝑜

𝛥𝑡
)]𝑆𝑃

−(1 − 𝐻𝑠
𝑛)[𝑤𝑃

𝑛∗(
1

𝑀𝑃
𝑐 + 𝛾𝑃

𝑐𝑓
)(

(𝑝𝑓)𝑃
𝑛 − (𝑝𝑓)𝑃

𝑜

𝛥𝑡
)]𝑆𝑃

−(1 − 𝐻𝑠
𝑛)[𝑏𝑃

𝑐
𝑤𝑃

𝑛 − 𝑤𝑃
𝑜

𝛥𝑡
− 𝑤𝑃

𝑛∗𝛾𝑃
𝑐𝑓

(
(𝑝𝑓)𝑃

𝑖𝐮 − (𝑝𝑓)𝑃
𝑜

𝛥𝑡
)]𝑆𝑃

+ ∑(𝐦 ⋅ (𝑤𝑛∗
(𝑘𝑓)𝜃

12𝜇 𝑓
𝛻𝑠(𝑝𝑓)𝑛))𝑒𝐿𝑒

𝑒

+ ∑(𝐦 ⋅ (𝑤𝑛∗
(𝑘𝑓)𝜃

12𝜇 𝑓
𝛻𝑠(𝑝𝑓)𝑛))𝑏𝐿𝑏

𝑏

+2𝛼𝑐𝑜𝑟 ∑[𝑤𝑃
𝑛∗

(𝑘𝑓)𝑃
𝜃

12𝜇 𝑓
((𝑝𝑓)𝑠𝑃

𝑖
𝑝𝑓

− (𝑝𝑓)𝑃

𝑖
𝑝𝑓

)]

𝑖
𝑝𝑓

−2(𝐻𝑠
𝑛)[

𝐶𝑙𝑒𝑎𝑘
∗

√𝑡 − (𝛥𝑡/2) − 𝑡0𝑐∗
]𝑆𝑃 (140)

 

where 𝐶𝑙𝑒𝑎𝑘
∗ > 0 is a time-invariant leak-off coefficient.  

Proppant concentration 

The cell center flux quantity 𝐪𝑃
p

 is written as: 

(𝐪𝑃
p

)𝑛 = −(𝐀𝑃
p

)𝑛(
(𝑘𝑓)𝜃

12𝜇 𝑓
𝛻𝑠(𝑝𝑓)𝑛) + (𝐛𝑃

p
)𝑛. (141) 

In numerical practice, the interpolation scheme for the internal coefficient of the 

Laplacian in Eq. (117) is to be consistent as applies to the Darcy constitutive relation in 

above equation. The proppant concentration is discretized, with the second right-hand-

side term accounting for volumetric deformation: 
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[𝑤𝑃
𝑛∗(

𝑐𝑃
𝑛 − 𝑐𝑃

𝑜

𝛥𝑡
) + 𝑐𝑃

𝑛∗(
𝑤𝑃

𝑛 − 𝑤𝑃
𝑜

𝛥𝑡
)]𝑆𝑃 = − ∑(𝐦 ⋅ (𝑤𝑛∗𝑐𝑛(𝐻𝑠

𝑛)(𝐪p)𝑛))𝑒𝐿𝑒

𝑒

. (142) 

The slurry’s coupling, density and fracture permeability effects are neglected, as relates 

to Eq. (110). The above left-hand-side, second term may be made explicit by neglecting 

of small terms (indicated by superscripting 𝑛 ∗ on 𝑐𝑃
𝑛∗). The coefficient-𝑤 width term in 

above (𝑤𝑛∗) is identically that of Eq. (117). The numerical scheme associated with the 

divergence term (right-hand-side) is upwinded on term (𝐦 ⋅ (𝐪p)𝑛)𝑒. The proppant 

transport equation can be corrected for the identity of fracture-transverse concentrations, 

and by using nearly identical numerical methods used to establish continuity of pressure 

across the width (see appendix).  

System residual 

In general, the residual definitions used to assess convergence of field equations 

converged inside the bounding porous domain are inherited from the OpenFOAM variant 

foam-extend linear solvers [14, 44]. In general, the solution residual of fracturing 

pressures is assessed by perturbation of the pore pressure solution and hence by its 

residual. (Exceptional cases are explicit, forward-marching strategies.) But, the 

description of residuals is complex, because four types of residuals are employed in this 

work.  

The first type of residual is associated with the (presumed iterative) linear solver. 

Generally the unknowns correspond to cell-center values, marked by subscript 𝑃. Let us 

suppose the pore pressure p is the unknown being converged. This field is considered as 

the vector [𝑝] containing the set of 𝑝𝑃. For the system [𝐴][𝑝] = [𝑟], the linear algebraic 

solution matrix is [𝐴]. Matrix [𝐴] contains diagonal cell-centered implicit coefficients 𝑎𝑃 
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and off-diagonal coefficients 𝑎𝑁. The source vector is [𝑟], containing source terms 𝑟𝑃 . 

For the linear system as below, the residual (𝑅𝑝)𝑖𝑙 is defined as:  

[𝐴][𝑝] = [𝑟], (𝑅𝑝)𝑖𝑙 = [
∑ ‖[𝑟] − [𝐴][𝑝]‖

𝑃

∑ (‖[𝐴][𝑝] − [𝐴][𝑝̅]‖ + ‖[𝑟] − [𝐴][𝑝̅]‖)
𝑃

]𝑖𝑙 . (143) 

where [𝑝̅] indicates averaging over the domain, and superscripting 𝑖𝑙 indicates the linear 

solver iteration. In contrast, superscripting 𝑖𝑝 marks the previous converged linear solver 

solution of the [𝑝] unknowns; superscripting 𝑛 marks the current converged linear solver 

solution. In above equation, vector [𝑟] is a source term and unrelated to the position in 

the global coordinate system. 

The second type of residual is the so-called “initial residual,” which simply 

captures 𝑅𝑝 as satisfies [𝐴][𝑝] = [𝑟], before beginning to converge the linear solver, such 

that: 

𝑅𝑝 = (𝑅𝑝)𝑖𝑙=0. (144) 

Thus 𝑅𝑝 measures convergence of previously converged [𝑝]𝑖𝑝 = [𝑝]𝑖𝑙=0, with respect to 

updates of matrix [𝐴]𝑖𝑙 and source term [𝑟]𝑖𝑙. [𝐴]𝑖𝑙 and [𝑟]𝑖𝑙 can vary from the values 

used in ip, e.g. because of inlet boundary conditions (or, within the fracture, because of 

width changes). Hence 𝑅𝑝 measures converge of non-linear or coupling terms, and hence 

all terms not implicit in [𝐴]. The third type of residual or “relative residual” test for slow 

change in the solution variable:  

𝑅𝑟𝑒𝑙
𝑝 =

max|[𝑝]𝑛 − [𝑝]𝑖𝑝|

max|[𝑝]𝑛 − [𝑝]𝑜|
, (145) 
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where superscripting 𝑛 and 𝑜 indicates current converged and previous time step values. 

The relative residual is therefore a test of small perturbations of current vs. previous time 

step solution, with respect to the currently converged unknown. 

In the general sense, our systems of coupled partial differential equations (such as 

pore fluid and skeletal displacement) are simultaneously converged using fixed-point 

Picard iterations (with consecutively executed linear solver iterations). Hence, thus the 

coupled system converges as both 𝑅𝑝 and 𝑅𝐮 converge, or both 𝑅𝑟𝑒𝑙
𝑝

 and 𝑅𝑟𝑒𝑙
𝐮  converge. 

But in the exceptional case, the fourth type of residual considers coupled systems that are 

not simultaneously converged. In this last case, a coupling loop must be defined in terms 

of the unknowns’ compatibility relation. For hydromechanically coupled simulations – 

i.e. where using an iteratively-coupled, fixed-stress split – this last residual will be of type 

𝑅𝜙∗. Here the compatibility relation is expressed in terms of 𝜙∗, for 𝜙∗ the density-

normalized variation in fluid mass content [46]. Under this scenario, the coupling residual 

𝑅𝜙∗ is absolutely required: both 𝑅𝑝 and 𝑅𝐮 are ipso facto converged at the end of any 

field-coupling loop, and do not signify as to the mutual compatibility of the 𝑝 and 𝐮 field 

solutions.  

Specifically in this work, the FA solution is converged as it effects the boundary 

values of pore pressure 𝑝, as follows [63]. Therefore the residual used for 𝑝𝑓 in 𝑝-

coupled models is 𝑅𝑝. For a fixed-strain formulation, the convergence criteria is 

simultaneous 𝑅𝑝 and 𝑅𝐮 below tolerances. For a fixed-stress formulation, the 

convergence criteria is 𝑅𝜙∗ below the tolerance.  
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Figure 41: Finite slab fixed-value test case with (a) loading, and (b) pressure results. 
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Figure 42: Finite slab fixed-rate test case with (a) loading, and (b) pressure results. 
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Figure 43: Finite slab advection test case with (a) loading, and (b) concentration results. 
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Figure 44: Application of corrective fluxes, to apply a gradient towards physical 

fracture tips. 
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Figure 45: Meter-scale fracture case, showing at 𝑡 = 3 s (left) and 𝑡 = 12 s (right): (a) 

and (b) displacement; (c) and (d) effective stress; and, (e) and (f) stress. 
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NUMERICAL RESULTS 

Verification cases are presented regarding fluid flow and proppant transport. 

Example cases show the fracture bifurcation result, as well as a meter-scale dynamically 

grown fracture. Material properties for fracture fluids are as listed in Table 9. 

Slab fixed-value problem 

Extraction of the boundary width, the conversion of width to a time-invariant 

fracture permeability, and solution of the surface differential equation are verified against 

the fixed-value finite slab problem [66]. This would be the discretized solution of Eq. 

(110). Material properties are as listed in Table 9. A slab of finite out-of-plane length 

with in-plane extent 2𝑎 of 30 m was initialized at a uniform fracture pressure 𝑝0
𝑓
 of 0.5 

Pa. At zero-time along the far 𝑥1-direction boundaries, the pressure is raised to pressure 

𝑝1
𝑓
 of 1E+5 Pa. No displacement is allowed at the impermeable top and bottom confining 

plates. Loading conditions are presented in Fig. 41a. The numerical results overlay the 

analytic solution, Fig. 41b with curves labeled by time [s]. Error was greatest during 

early-time flow (𝑡 = 20 s curve), and error reduces with decreased time-step size.  

Finite slab fixed-rate problem 

Enforcement of fracturing pressure boundary gradients based upon a set inflow 

rate is verified against the fixed-rate finite slab problem [66]. The domain’s out-of-plane 

height ℎ is 1 m. Again, the domain was initialized at a uniform fracture pressure 𝑝0
𝑓
 of 0.5 

Pa, and no transverse outflow is allowed. However the injection rate is fixed at 𝑄0 of 

2.3E-9 m3/s. (A low injection rate is used to scale the presented 𝑡 = 2000 s curve into the 

0.1E+6 Pa range, with orders-of-magnitude higher inflow rates essayed successfully.) 

Loading conditions are presented in Fig. 42a. The numerical results overlay the analytic 

solution, Fig. 42b. Similarly error was greatest during early-time flow (𝑡 = 20 s curve), 
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and error reduces with decreased time-step size. Reductions with time step size (𝛥𝑡) 

indicate error arising from the Euler, implicit differencing scheme employed. This 

scheme is used to approximate temporal derivative terms, and is first-order accurate.  

Finite slab advection problem 

A finite slab fixed-value problem is modeled as incompressible with coupled 

advection. At zero-time along the negative 𝑥1-direction boundary, the pressure is set to 

pressure 𝑝1
𝑓
 of 1E+5 Pa. At the positive 𝑥1-direction boundary, the pressure is 𝑝0

𝑓
 of 

0.5E+5 Pa. For this problem, the flow velocity is a time- and spatially-invariant 𝐪. 

Coefficients are set so that the empirical proppant 𝐪p reduces to the fracture 𝐪: 𝐀p is the 

identity tensor and 𝐛p the zero vector. The boundary conditions for proppant 

concentration are 𝑐1 of 0.5 [-] and zero-gradient, respectively (Fig. 43a). The initial 

conditions is 𝑐0 of 0.1 [-]. The numerical results vary from the analytic solution as an 

artifact of numerical dispersion, Fig. 43b. Error was greatest during late-time flow (𝑡 = 

7.2E+8 s curve), and the dispersion increases over simulation time. 

Fracture bifurcation 

The FA approach has been successfully utilized to solve fluid flow for a 

bifurcating fracture, Fig. 44. In a word, the proposed correction procedure results in an 

Picard-iteratively evolved field-wide source term, the ultimate values and distribution of 

which we remain always agnostic and ideally ignorant: in as much as this term applies no 

aggregate subtraction or addition of pressure-volumes to the system as a whole (such that 

fluid mass is conserved); nor, does the correction result in violations of the divergence 

operator discretized locally along either side of the fracture’s surface. The method may be 

complimented by augmenting the implicit Laplacian with off-diagonal coefficients 

representing transverse discharge. Fig. 44 shows the consequent flow distribution during 
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end pressurization of the fracture tips, and is not geomechanically coupled. Also, we can 

readily speed the convergence of our coupled fracture fluid flow and correction system. 

The converged correction at the end of the prior “outer iteration” or coupling loop makes 

for a natural guess as to the correction field during the current iteration (for instance, 

immediately antecedent to topological changes consequent of enforced softening 

behavior). This observation holds true for models without sharp discontinuities in their 

fracture fluid injection time series.  

Fracture bifurcation 

Those test cases describing above analytical solutions were modified to include a 

geomechanical coupling with the bounding poroelastic solid. These cases represent 

hydromehanical couplings where the fracture geometry is fixed. These cases evidence a 

reduced level of stability with respect to homogeneous, single-phase flow coupled 

mechanical models, for the same time step. The explicit time marching of Eq. (120) 

provided for sufficient convergence in static fracture cases. However for modeling of 

propagating fractures on the meter-scale, iteration to the fixed-stress residual 𝑅𝜙∗ was 

required with significant numerical relation of the computed mass-conserving width. 

Time steps used were in the order of microseconds.  

Results are presented for a growing, planar, and bi-wing fracture with a KGD 

geometry. Half the geometry is modeled with central symmetry boundary conditions, 

such that the boundary condition at the central inlet is 𝑄0/2. The leak-off term is 

computed using an explicit Carter model, while other cases were run with implicit Carter 

and fixed-gradient models; all results presented exclude leak-off from the CZ tip for the 

fracture pressure solution (numerically) but include leak-off. To achieve numerical 

stability, it is important to end simulation prior to significant effects from the boundary in 
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the direction of fracture growth (here 𝑥1). This accords with experience in matching the 

KGD solution for a purely elastic, inviscid fracture model. (Parenthetically, sensitivity to 

far-field location argues for development of implicit “infinite volume” boundary 

conditions along the poroelastic domain boundary. Being that, both FA and inviscid 

fracture growth evidence a similar instability with respect to boundary effects.) 

For both models presented, initialization of the starter fracture length was at a 

pressure according to the far-field stress. A fixed-stress model is used inside the 

poroelastic solid as well as the fracture, however: no differentiation is made between real 

fracture vs. cohesive coefficients; the explicit fixed-stress formulation is used as a 

preconditioning step of both pore and fracturing pressures. The near-fracture mesh 

refinement is sufficient to capture a pressure profile away from the fracture, however are 

insufficient to capture a length-limiting CZ tip and energy depletion effects. Results in 

Fig. 45 show this effect, with respect to the recovered stress.  

Parallelism considerations 

The proposed method for fracture-transverse flow curtails concerns as pertains 

scalability for parallel, clustered modeling of fracture flow on the surface of spatially 

decomposed solid domains. In the event that so-called “zero-halo” domain-based 

decomposition is utilized – viz. a non-overlapping split of the volumetric mesh into 

subdomains solved on individual processors – the procedure co-locates the control areas 

which discretize fracture flow, alongside the surrounding volumetric mesh. The 

fundamentals of the zero-halo layer approach are by extension preserved. The current 

implementation has been successfully tested for fracture growth on multiple separate 

processors, and growth across inter-processor boundaries. However, the behavior when 
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fractures propagate along inter-processor boundaries does not exhibit independence of 

the domain decomposition, as present. 

CONCLUSION 

We have applied the FA method to the problem of fluid flow in fractures for the 

first time. A novel scheme has been proposed to enforce the continuity of pressure across 

the width of evolving fractures, whilst conserving mass, within complex fracture 

networks. Although we have described use of the FA method to solve along surfaces 

defined by FV-discretized solid boundaries, this procedure is clearly generally applicable 

to all solid domain discretization (e.g. FE) from which a discrete fracture surface can be 

derived by enforcement of softening/failure behaviors.  

As the default behavior of a FA-based 2D surface discretization, the fracture fluid 

flow must inevitably proceed in halves and along the half-width of each half of the 3D 

softening domain. So, the focus of this work is to produce a FA-discretized solution of 

fracturing pressures written directly in terms of the boundary values of 3D linearized 

poroelastic unknowns. A numerical scheme is proposed. The scheme couples with the 

numerical solution of the FA-discretized fracture network. The scheme both ensures 

continuity of fluid pressure across the width of hydraulic fractures, and also enables 

solution of fracture fluid flow inside more complex networks. The scheme ensures that 

the converged solution is correct with respect to the mathematical model describing intra-

fracture transverse fluid flow.  
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Chapter 4:  Admissible stress analysis for loaded and decreasingly 

poroelastic cohesive zones 

The CZ model is useful with respect to the modeling of hydraulic fractures used 

in oilfield completions. Unlike traditional linear elastic fracture mechanics (LEFM) tools, 

the CZ model offers the combined opportunity to intuitively discretize preexisting planes 

of weakness like oriented natural fractures, and to examine effects of rock layer 

heterogeneity, as well as plasticity. However, one feature of the model is commonly 

perceived as disadvantageous. Viz. the results of CZ-based modeling tend to vary based 

upon the absolute value of the imposed in situ stress state (as initialized at the beginning 

of a simulation, to capture far-field geological loading). Any variability based upon in 

situ stresses contradicts a large set of legacy modeling tools. The latter softwares 

discretize and solve fluid flow equations within the propagating fracture, then supply the 

net pressure – pumped fluid pressures minus resolved normal far-field stresses – in order 

to determine local fracture widths and extension.  

This work examines the result of such assumptions as applied to CZ-based 

modeling, as relates to poroelastic domains. Previous efforts have shown the ability of 

CZ model-type numerics to model hydraulic fractures within poroelastic solids [61], 

however do not consider the full range of admissible stress analysis. Where the model 

implementation has been discussed as a continuity condition, the traction-separation law 

has been indicated as determining the Terzaghi’s effective stress state across the CZ [31]; 

the validity of that assumption is discussed, using Rice’s approach to the J-integral taken 

about the vanishing volume surrounding CZ boundary.  
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BACKGROUND 

The CZ model distributes a mainly tensile load upon a proscribed surface at the 

fracture tip [67]. As the fracture extends, the CZ travels with the tip as surface energy 

depletes: a certain traction-separation law is utilized in order to discount cohesive 

tractions, or to remove cohesive tractions from surfaces where the fracture energy is fully 

depleted. Rice introduced and first analyzed cohesive zone tractions using the Mode I J-

integral [68]. The scalar J-integral is a counterclockwise line integral which was shown to 

be path independent for linear elasticity by Rice, when taken around an unloaded straight 

crack:  

𝐽1 = ∫[𝑈d𝑥2 − 𝐭𝐒 ⋅
𝜕𝐮

𝜕𝑥1
d𝛤]

𝛤

, (146) 

where U is the strain energy density, 𝐭𝐒 the traction, 𝐮 the displacement, and 𝛤 the 

surface contour. To compute 𝐽1, the contour must include the crack tip. 

The above integral has several important properties. The Mode I 𝐽1 can be shown 

to equal to the fracture energy 𝐺𝐼𝑐, for small CZ lengths relative to the overall fracture 

length immediately as the crack start to grow [68]. J-integral analysis is extensible to 

thermally loaded materials, and hence poroelastic materials. In this regard, the coupled 

thermo/poroelastic CZ boundary tractions are to be linearly superimposed during 

numerical analysis [70]. A similar idea is used here with respect to poroelastic stresses on 

both sides of the CZ/solid boundary, as well as to account for the residual stress state 

implied by adoption of the “net pressure” approach.  

Unfortunately, the geomechanics literature is relatively scant as to in situ 

(residual) stress effects on fracture growth. The starting-off point for our investigation is 

prior discussion of confining-stress-related toughness variability [71]. Sato and Hashida 
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describe similar conclusions. Specifically, toughnesses are shown to increase with degree 

of far-field compressive stress; a CZ model is applied where the applied cohesive 

tractions are held constant, such that numerically recovered toughness increases as a 

linear function of the confining stresses. In contrast, we consider the toughness to be 

invariant (a downhole matching parameter), so as to recover the opening-mode analytic 

solution regardless of the in situ stress state. Following from that goal, it is requisite to 

introduce the incremental J-integral at the fracture tip. Therefore alternate 

decompositions of the resolved tractions are considered as the traction-separation 

initiation condition, our overarching aims being to maintain the effect of far-field stress 

anisotropy (on fracture growth) and to maintain the effect of shale stress barriers.  

Fictitious tip J-integral 

A domain is at a residual stress state 𝐒0 (where superscripting 0 marks a value in 

the reference configuration). The domain is loaded statically at far-field as well as crack 

boundaries by 𝐭𝐒0 = 𝐧 ⋅ 𝐒0, for 𝐧 the surface normal. We define an incremental form of 

the J-integral that remains invariant with respect to the residual stress state, under the 

loading described – i.e. as to reproduce the LEFM result. First define the strain energy 

density 𝑈 as a partition of functionals:  

𝑈𝐒0 = ∫ 𝐒0:d𝛆

𝛆

0

, 𝑈 = ∫(𝐒 − 𝐒0):d𝛆

𝛆

0

+ 𝑈𝐒0 , (147) 

where strain 𝛆 is with respect to a reference configuration (displacement 𝐮 = 𝟎 at 𝐒0). 

We then introduce an incremental J-integral independent of the far-field stress, under the 

described loading conditions. This would be: 
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𝐽1
∗ = ∫[𝑈𝐒−𝐒0d𝑥2 − 𝐭𝐒−𝐒0 ⋅

𝜕𝐮

𝜕𝑥1
d𝛤]

𝛤

, (148) 

where 𝑈𝐒−𝐒0 is the change in strain energy density associated with traction perturbation 

𝐭𝐒−𝐒0. Intuitively if the line integral is taken to include only the bounding solid directly 

adjacent to the CZ, the strain energy term vanishes – as there exists no 𝑥2 increment (Fig. 

46). When considering loaded or curved cracks, shrinking contour 𝛤 to enclose the 

infinitesimal volume around the CZ tip recovers “path dependence” (a comprehensive 

reference is [69]). The summed traction integrand taken directly adjacent to the CZ is 

often referred to as 𝐽𝑡𝑖𝑝 in literature; subsequently, the utility of Rice’s observation has 

been extended e.g. to the determination of traction-separation laws based upon J-integral 

analysis [72, 73]. Clearly the tip integral reduces as per Fig. 46, for no d𝑥2 of integration, 

and latterly for any set of applied tractions 𝐭𝐒−𝐒0 = 𝐭𝐒 − 𝐧 ⋅ 𝐒0 above the resolved 

residual stresses:  

𝐽𝑡𝑖𝑝
∗ = − ∫ [𝐭𝐒−𝐒0 ⋅

𝜕𝐮

𝜕𝑥1
] d𝛤

𝛤

. (149) 

The additional effect of poroelastic boundary tractions are now superimposed. 

The consequence is to resolve the far-field effective stresses when describing tractions 

the CZ tip region. Combining these concepts, the integrand considered here is only the 

surface traction component:  

𝐽𝑡𝑖𝑝
∗ = − ∫[𝐭𝛔−𝛔0 ⋅

𝜕𝐮

𝜕𝑥1
]d𝛤

𝛤

, (150) 
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where 𝛔 is the Biot’s effective stress, and thus 𝐭𝛔−𝛔0 a decomposition of 𝐭𝐒 which relates 

applied boundary stresses directly to the displacement gradient. Displacement 𝐮 is 

considered with respect to a reference configuration at the residual state of stress 𝐒0 and 

pressure 𝑝0. So 𝛔0 = 𝐒0 + 𝑏𝑝0𝐈, where 𝑏 is the Biot’s coefficient. We use the notation 

and poroelastic formulation of Hooke’s law in incremental form [19]. 

Finally the following is noted. The point in stating Eq. (150) is not to recover 

additional poroelastic or stress-dependent physics. Instead we remove by parsing-out tip 

additional physics as deviations, in order to numerically recover the fracture energy 

associated with simulation of an unstressed elastic domain. The use of fictitious tip 

integral 𝐽𝑡𝑖𝑝
∗  as an explanatory measure is considered important. This is in order to 

compare work integrated via the traction-separation law established per CZ strategy, vs. 

work actually performed by prescribed boundary tractions. The comparison is further 

expanded in the below section on error analysis.  

COHESIVE CONTINUITY CONDITIONS 

First, whereas effective stresses within the poroelastic domain are resolved to 

determine CZ initiation tractions, that consideration constitutes a continuity condition. 

Second, whereas cohesive traction-separation laws dictate the exact amount of effective 

stress applied across the softening discontinuity, this is also a continuity condition (as an 

absolute statement of the decreasingly tensile total stress state, i.e. during traction-

separation, see [31]). Should the CZ model be idealized as a “spring”: the former 

condition ensures continuity of the resolved total stress during initiation. The latter 

condition dictates exactly the total stress for any state of fracture energy depletion (per 

integrated surface traction-displacements).  
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Figure 46: Integral contour (after [68, 69]). 

 

 

Figure 40: Reference configuration with linear strain-stress curve representing Hooke’s 

law. 
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In this section, the continuity condition at initiation is expressed in simple terms. 

In the next section, these definitions of the cohesive tractions (𝐭𝑓) are substituted into the 

tip integral (𝐽𝑡𝑖𝑝
∗ ). Hence in the way of warning, the equations presented in this section 

consecutively re-derive the approximately same result. The result is the effect of cohesive 

continuity conditions is dictated by a resolved effective stress decomposition. These 

statements appear as mere repetition – until the presentation of Eq. (167) as combines 

with Eq. (172) – which constitutes the nub of this work.  

Initiation tractions 

Let us suppose that the cohesive traction-separation processes initiates based upon 

achieving some critical effective stress state, within a poroelastic solid domain. Let this 

critical stress state be dictated by any combination of the components of the vector, 

(𝐭𝑓)0𝑐 = 𝐭𝐒 + 𝑏𝑓𝑝𝐧, (151) 

which is an effective stress as resolved on a surface oriented by surface normal n; 

superscript 𝑓 dually indicates cohesive tractions 𝐭𝑓, and values inside the fracture; 𝑝 is 

pressure and when not superscripted by 𝑓 indicates a pore pressure, otherwise the 

fracturing pressure. Let the effective traction used for softening evaluation be some 

combination of the resolved total stress and the pore pressure acting on the surface, such 

that coefficient 𝑏𝑓 has an arbitrary value. Further, superscript 0𝑐 is used to demarcate the 

value of a field instantaneously when the softening processes initiate. The total stress at 

this time is then a known value:  

(𝐭𝐒)0𝑐 = (𝐭𝑓)0𝑐 − 𝑏𝑓(𝑝𝑓)0𝑐𝐧, (152) 
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where the fracturing pressure acting inside the cohesive zone 𝑝𝑓 is the pore pressure on 

that surface. This assumption maintains the continuity of pressure assumption for a 

cohesive zone evolving within a poroelastic medium. The initiation total stress may then 

be re-expressed as the function of the Biot’s coefficient 𝑏 acting within the adjacent 

poroelastic material, such that: 

(𝐭𝐒)0𝑐 = (𝐭𝑓)0𝑐 − 𝑏𝑏(𝑝𝑓)0𝑐𝐧𝑏 − (𝑏𝑓 − 𝑏𝑏)(𝑝𝑓)0𝑐𝐧𝑏, (153) 

where subscript 𝑏 indicates a “boundary” value of the poroelastic solid. 

For generality, let us define a unit vector 𝐟 by which to decompose the resolved 

effective tractions, and understood in relation to the surface normal 𝐧. For example if 

resolving stresses relating to a purely Mode I-type CZ initiation criteria, then let 𝐟 = 𝐧. In 

this instance softening processes would begin at the threshold resolved stress defined as: 

𝐟 ⋅ 𝐭𝑓

(𝜎𝑓)𝑐
=

𝐧 ⋅ 𝐭𝑓

(𝜎𝑛)𝑐

≥ 1 softening initiation,
< 1 no softening,

(154) 

where (𝜎𝑛)𝑐 represents the Mode I CZ model critical effective normal stress. In a similar 

manner, the critical effective stress for an arbitrarily oriented unit vector 𝐟 can be defined 

as (𝜎𝑓)𝑐. That said however, it is straightforward that use of a 𝐟-resolved cohesive 

traction-separation law (pure Mode I, e.g.) risks initiation of the cohesive traction-

separation in dynamic disequilibrium. In the example, this would be where: (a) shear 

components of traction are resolved in the debonding region, prior to CZ process 

initiation; then (b) no shear traction component is re-supplied by the Mode I law (because 

otherwise requiring numeric traction-separation integration).  
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Softening tractions 

Let us consider the definition of the mainly tensile cohesive tractions applied 

along the CZ inside a homogeneous and poroelastic material. For this analysis, we make 

a continuity assumption about pore pressure on the bounding solid 𝑝𝑏 with respect to 

fracture pressure 𝑝𝑓. Further, we equate the cohesive tractions by definition. The tensile 

tractions applied as per the particular cohesive model will be (𝐭𝑓)𝑏. The effect that the 

applied cohesive tractions induces on the opposite side of the CZ boundary (i.e. within 

the softening solid) will be 𝐭𝑓. Therefore, at anytime:  

𝑝𝑓 = 𝑝𝑏 , (𝐭𝑓)𝑏 = 𝐭𝑓 , (155) 

where the above second equation holds only within the CZ (where applied cohesive 

tractions are non-zero). Additionally as aid to our analysis, let us define in a poroelastic 

solid three different decompositions of the resolved stress. These are: 

𝐭𝛔−𝛔0 = 𝐧 ⋅ (𝛔 − 𝛔0), (156)

𝐭𝛔 = 𝐭𝛔−𝛔0 + 𝐧 ⋅ 𝛔0, (𝛔 − 𝛔0) (157)

𝐭𝐒 = 𝐧 ⋅ 𝐒 = 𝐭𝛔 − 𝑏𝑝𝐧 = 𝐭𝛔−𝛔0 + 𝐧 ⋅ 𝛔0 − 𝑏𝑝𝐧, (𝛔 − 𝛔0) (158)

 

where 𝛔0 is the residual effective stress tensor, e.g. as defined for an initial state of zero 

relative strain (𝐮 = 𝟎). Further once subtracting poroelastic and residual effects, the 

resolved stresses 𝐭𝛔−𝛔0 are only a function of: displacement gradient; material (Lamé’s) 

parameters; and, orientation of the resolving plane as dictated by its normal 𝐧.  

Biot’s effective stress 

Initially, let us suppose that the cohesive traction-separation law relates only the 

effective stresses acting alongside the boundary of the solid to the opening displacement. 

Thus we assume that within the CZ at any moment the applied cohesive traction is 𝐭𝑓 – a 
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function of the Biot’s effective stress. Therefore the resolved stress 𝐭𝐒 acting along the 

CZ boundary is defined:  

𝐭𝑓 = 𝐭𝛔, 𝐭𝐒 = 𝐭𝑓 − 𝑏𝑏𝑝𝑏𝐧𝑏. (159) 

This is true at any time, including instantaneously when the softening processes begins. 

Therefore and by substitution of Eq. (153), 

(𝐭𝐒)0𝑐 = (𝐭𝑓)0𝑐 − 𝑏𝑏𝑝𝑏
0𝑐𝐧𝑏 ,

= (𝐭𝑓)𝑏
0𝑐 − 𝑏𝑏(𝑝𝑓)0𝑐𝐧𝑏 − (𝑏𝑓 − 𝑏𝑏)(𝑝𝑓)0𝑐𝐧𝑏. (160)

 

As above by continuity, and with equality of cohesive tractions by definition: 

(𝐭𝐒)0𝑐 = (𝐭𝑓)0𝑐 − 𝑏𝑏𝑝𝑏
0𝑐𝐧𝑏 ,

= (𝐭𝑓)𝑏
0𝑐 − 𝑏𝑏(𝑝𝑓)0𝑐𝐧𝑏 − (𝑏𝑓 − 𝑏𝑏)(𝑝𝑓)0𝑐𝐧𝑏. (161)

 

After canceling, the result of substitution is that 𝑏𝑓 = 𝑏𝑏. 

For completeness, consider a simpler model which evaluates stresses as act on a 

plane with a specific orientation to the normal (resolved by 𝐟 ⋅ 𝐭𝑓, for 𝐟 also a unit vector). 

As at the moment of softening initiation point it is known that the stress is (𝜎𝑓)𝑐. Hence 

for a known stress state: 

(𝜎𝑓)𝑐 = 𝐟 ⋅ [(𝐭𝐒)0𝑐 + 𝑏𝑏𝑝𝑏
0𝑐𝐧] ↔

𝐟 ⋅ [(𝐭𝑓)0𝑐 − 𝑏𝑏𝑝𝑏
0𝑐𝐧𝑏] = 𝐟 ⋅ [(𝐭𝑓)0𝑐 − 𝑏𝑏(𝑝𝑓)0𝑐𝐧𝑏 − (𝑏𝑓 − 𝑏𝑏)(𝑝𝑓)0𝑐𝐧𝑏]. (162)

 

Using pressure continuity and assuming 𝐟 ⋅ 𝐧 ≠ 0, again the result is: 

𝑏𝑓 = 𝑏𝑏 . (163) 

The consequence of this analysis is quite limiting. In essence, the definition of the 

effective stress state for softening evaluation is dictated by the choice of Biot’s 
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coefficient within the poroelastic solid. (We note that 𝑏𝑏 need not be the small-strain, 

thus invariant coefficient. Only simultaneous variation of the effecting coefficient 𝑏𝑏 on 

either side of the CZ boundary is required.) However, shear terms where 𝐟 ⋅ 𝐧 = 0 are 

unaffected by the choice of 𝑏𝑓. The last result is logical given that poroelastic like 

thermoelastic boundary tractions act in the boundary-normal direction.  

Effective stress 

Now let us suppose we desire to design a system such that by choice 𝑏𝑓 ≠ 𝑏𝑏. 

Unfortunately, Eq. (151) cannot be changed. Instead let us define an additional resolved 

effective stress 𝐭𝛔𝑓 , 

𝐭𝛔𝑓 = 𝐧 ⋅ 𝐒 + 𝑏𝑓𝑝𝐧 =  𝐭𝛔−𝛔0 + 𝐧 ⋅ 𝛔0 + (𝑏𝑓 − 𝑏)𝑝𝐧. (164) 

It is worth noting that the definition of 𝐭𝛔𝑓 holds at any boundary within a cohesive zone, 

because of the presumption of pressure continuity 𝑝𝑓 = 𝑝𝑏. Changing the assumption of 

Eq. (159), we re-write the cohesive definition and the total stress at the boundary: 

𝐭𝑓 = 𝐭𝛔𝑓 , 𝐭𝐒 = 𝐭𝑓 − 𝑏𝑏
𝑓

𝑝𝑏𝐧𝑏. (165) 

Once again this is true at any time, including instantaneously when the softening 

processes begins. Therefore and by substitution of Eq. (152), 

(𝐭𝐒)0𝑐 = (𝐭𝑓)0𝑐 − 𝑏𝑏
𝑓

𝑝𝑏
0𝑐𝐧𝑏 ,

= (𝐭𝑓)𝑏
0𝑐 − 𝑏𝑓(𝑝𝑓)0𝑐𝐧𝑏 , (166)

 

where the result is 𝑏𝑓 = 𝑏𝑏
𝑓
. As a consequential effect, the definition of the effective 

stress state for softening evaluation can be decided by any choice of 𝑏𝑓. However, an 
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open question is: whether assumption 𝐭𝑓 = 𝐭𝛔𝑓 reproduces a computational fracture 

mechanics that exhibits convergence numerically to a LEFM-comparable solution.  

Generalized net pressure approach 

Finally, let us suppose the result Eq. (163). However, we will instead consider a 

system where initiation tractions anticipate the application of the residual stress state 

everywhere in the solid, and particular within the CZ. The system is then: 

(𝐭𝑓)0𝑐 = 𝐭𝐒 + 𝑏𝑓𝑝𝐧 − 𝐧 ⋅ 𝛔0𝑐, 𝐭𝑓 = 𝐭𝛔−𝛔0𝑐 , (167) 

where 𝛔0𝑐 is a arbitrary tensor representing the net pressure discount. Using the net 

pressure approach, a dilatational 𝛔0𝑐 may be selected so that 𝛔0 − 𝛔0𝑐 resolves shear 

components of traction, and hence direct CZ initiation towards the in situ minimum 

(tension positive)/maximum principal (compression positive) stress direction. The same 

analysis as in above section can be used to show continuity, as above. The option 

𝛔0𝑐 = 𝛔0 also maintains dynamic compatibility during initiation, with the effect of 

encouraging CZ development in shearing zones; in that event shear CZ initiation will 

occur without any prohibitory effect of the far-field stress.  

TIP J-INTEGRAL 

The J-integral can be used to evolve the relationship between loading applied 

(numerically) within the CZ, and the fracture toughness of the material. However, we 

only consider that component of traction applied in computation of 𝐽𝑡𝑖𝑝
∗  that contributes to 

a change in gradient of displacement (strain and hence stress). The contour hence 

encompasses poroelastic tractions applied along the interior of the boundary. For 

purposes of exposition, let us define the cohesive tractions to be acting in Mode I, such 

that there exists only a normal cohesive stress,  
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(𝜎𝑛)𝑓 = 𝐧 ⋅ 𝐭𝑓 , 𝜎0 = 𝐧 ⋅ (𝐧 ⋅ 𝛔0), (168) 

which stress (𝜎𝑛)𝑓is a (step) function of separation distance 𝛿. For this analysis, the J-

integral will be taken with respect to all tractions along the CZ boundary, as per Eq. 

(150).  

Biot’s effective stress 

Initially, let us suppose the result of Eq. (163). Now, let us integrate all tractions 

applied at the boundary of the CZ. Then we have 

𝐽𝑡𝑖𝑝
∗ = − ∫[(𝜎𝑛)𝑓 − 𝜎0 + 𝑏𝑏𝑝𝑏 − 𝑏𝑓𝑝𝑓]

d

d𝑥1
[𝛤+ − 𝛤−]

𝛤

d𝑥1. (169) 

Since Eq. (163) holds, and by continuity the pressures equate. Further 𝛿(𝑥1) = 𝛤+(𝑥1) −

𝛤−(𝑥1), so then the above reduces to: 

𝐽𝑡𝑖𝑝
∗ = − ∫[(𝜎𝑛)𝑓 − 𝜎0]

d

d𝑥1
[𝛤+ − 𝛤−]d𝑥1

𝛤

,

= ∫ [(𝜎𝑛)𝑓 − 𝜎0]d𝛿

𝛿𝑐

0

, (170)

 

where 𝐽𝑡𝑖𝑝
∗  depends on (𝜎𝑛)𝑓, a function of separation distance 𝛿; Jtip also depends on 𝜎0 

which may vary with 𝑥1. The selection of 𝐭𝑓 = 𝐭𝛔 produces an integrated 𝐽𝑡𝑖𝑝
∗  that relates 

to the material’s fracture energy (𝐺𝐼𝑐), without dependence on the pressure of the 

fracturing fluid.  
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Effective stress 

Now suppose 𝑏𝑓 is arbitrarily chosen, yet continuity of fracture and boundary pressure 

holds. 𝐽𝑡𝑖𝑝
∗  does not reduce as before, but instead, 

𝐽𝑡𝑖𝑝
∗ = − ∫[(𝜎𝑛)𝑓 − 𝜎0 + (𝑏𝑏 − 𝑏𝑓)𝑝𝑓]

d

d𝑥1
[𝛤+ − 𝛤−]d𝑥1

𝛤

,

= ∫ [(𝜎𝑛)𝑓 − 𝜎0 + (𝑏𝑏 − 𝑏𝑓)𝑝𝑓]d𝛿.

𝛿𝑐

0

(171)

 

The crack faces are in fact OVERLOADED by stress perturbations from term (𝑏𝑏 −

𝑏𝑓)𝑝𝑓. Resultantly, 𝐽𝑡𝑖𝑝
∗  is dependent on varying fracturing pressure 𝑝𝑓. It is shown 

therefore that selecting cohesive tractions 𝐭𝑓 = 𝐭𝛔𝑓 for arbitrary 𝑏𝑓 engenders 

overloading at the CZ tip – at least, with respect to the desired LEFM analogue (and with 

static 𝑏𝑏). Notably however, the stress state maintains dynamic admissibility during 

initiation.  

Generalized net pressure approach 

When writing the J-integral still Eq. (163) holds; and by continuity 𝑝𝑓 = 𝑝𝑏. We will 

assume that 𝛔0𝑐 has been initialized to the local maximum principal (tension positive) 

residual stress, so 𝜎0𝑐 = 𝜎0. For Mode I opening we have, 

𝐽𝑡𝑖𝑝
∗ = − ∫[(𝜎𝑛)𝑓 − 𝜎0 + 𝑏𝑏𝑝𝑏 + 𝜎0𝑐 − 𝑏𝑓𝑝𝑓]

d

d𝑥1
[𝛤+ − 𝛤−]d𝑥1

𝛤

,

= ∫ [(𝜎𝑛)𝑓]d𝛿

𝛿𝑐

0

, (172)

 

where 𝐽𝑡𝑖𝑝
∗  depends only on (𝜎𝑛)𝑓, a function of separation distance 𝛿. Being 𝜎0𝑐 = 𝜎0, 

the residual stress terms cancel as applied equally and oppositely – as if the contour 
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integrates entirely within the bounds of the softening solid. Hence, the CZ-boundary 

deformation produced is insensitive to both: (a) fracturing fluid pressure inside the CZ; 

and, (b) the initial stress state. As and if 𝜎0𝑐(𝑥1) varies with 𝜎0𝑐(𝑥1), the result is general 

along the entirety of the CZ; the contribution of residual stresses is therefore removed 

regardless of encountering stress barriers such as shale layers. In effect, Eq. (172) is a 

statement that the net pressure approach most mimetically re-capitulates the results of 

LEFM-based fracture modeling – mimicking an unstressed domain.  

However, the effect of stress barriers may be re-incorporated into the net pressure 

approach by choice of a spatially invariant 𝛔0𝑐, e.g. as the spherical tensor with diagonal 

entries the maximum principal effective stress within the domain. That choice would be 

most consistent with the basic theme of this analysis: to remove the effect of residual 

stresses by linear superpositioning – with respect to both fracture loading and applied 

cohesive tractions. Finally, dynamic compatibility is still maintained during softening, 

under the net pressure approach. 

MATHEMATICAL MODEL 

The deforming poroelastic solid is solved using the “over-relaxed” approach for 

linear elasticity [15] as extended to poroelasticity [20], with softening behavior evaluated 

as in [16] and extended to multi-material elasticity with softening in [11, 30]. The 

approach to enforcing boundary gradients of displacement is the same as in [18]. 

Fracture continuity 

Flow into and out of a unit volume can be considered as an integral of fluid 

volume change in response to change in pressure, change in the volume, and volumetric 

fluxes in and out. The isothermal 𝐾 bulk modulus (inverse compressibility) defines: 
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1

𝐾
=

1

𝜌

d𝜌

d𝑝
|𝑇 = −

1

𝑉

d𝑉

d𝑝
|𝑇 , (173) 

where 𝜌 is the density, 𝑝 the pressure, and 𝑉 the volume. With the assumption of small 

changes in fluid density, the isothermal strong integral form of the conservation equation 

is: 

∫[
1

𝐾𝑓

𝜕𝑝𝑓

𝜕𝑡
+

1

𝑉

𝜕𝑉

𝜕𝑡
]d𝑉

𝑉

= − ∮ 𝐧 ⋅ 𝐪d𝑆

𝑆

+ 𝑄, (174) 

where 𝑡 is time, 𝑆 the surface, 𝐧 the surface normal vector, 𝐪 the flux, and 𝑄 the 

volumetric rate of production. Frequently, for cubic law flow e.g., the Reynolds 

constitutive relation is substituted to adduce gradient from flux. However the constitutive 

relation for conductivity is not consequential of traction continuity across the fracture, 

and the fluid is modeled as inviscid.  

Tip continuity 

The constitutive relation for flux into, within, or from the CZ is not demanded by 

continuity of traction. It is feasible that a zero-gradient boundary condition could be 

imposed on fluid flux entering the CZ from the fracture, or from the CZ with respect to 

boundary internal pressures. I.e. this analysis provides no insight on the appropriate 

relation for flux in the tip, 𝐪. From that perspective, any method for computing CZ 

boundary pore pressures is admissible.  

Net pressure coupling 

In order to maintain continuity of pore fluid flow and displacement, the fracturing 

pressures are applied as: 
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𝑝𝑏
𝑛 = (𝑝𝑓)𝑛, (175)

(𝐭𝐒)𝑏
𝑛 = (𝐭𝑓)𝑛 − 𝑝𝑏

𝑛[𝐻𝑠
𝑛 + 𝑏𝑓(1 − 𝐻𝑠

𝑛)]𝐧𝑏 + 𝐧𝑏 ⋅ 𝛔0𝑐(1 − 𝐻𝑠
𝑛), (176)

 

where 𝐻𝑠 is a unit step function of fracture surface (𝑠) that is 1 in the fracture and 0 in the 

CZ. Cancellation of the resolved stress state (𝐧 ⋅ 𝛔0𝑐) can often be assumed, as operating 

against residual stresses within the CZ (−𝐧 ⋅ 𝛔0).  

Leak-off 

Consider the leak-off sink 𝑄𝑙𝑒𝑎𝑘 term as applied to boundary 𝑆𝑏. Specifically 

leak-off is a function of the gradient between the center of the fracture-boundary volume 

𝑉𝑏𝑃, and its boundary surface 𝑆𝑏. The normal flux across 𝑆𝑏 is then 𝑞𝑏𝑛 = 𝐧 ⋅ 𝐪𝑏. By 

Darcy’s law, the normal flux of fluid entering the porous boundary is a function of the 

gradient of pressure along the fracture boundary, 

𝑞𝑏𝑛 = −(𝐧 ⋅
𝑘𝑝

𝜇𝑝
𝛻𝑝)𝑏, (177) 

where subscripting 𝑝 refers to pore fluid values. 

NUMERICAL RESULTS 

The limit case of a poroelastic case for which 𝑏𝑏 = 0 is presented (however 

continuity of pressures is maintained, such that 𝑝𝑏 = 𝑝𝑓). The formation intrinsic 

permeability is set such that 𝑘𝑝 ≈ 0, in order to induce no leak-off. Following the 

generalized net pressure approach, then inside the cohesive zone 𝑏𝑓 = 𝑏𝑏 = 0 . Hence, 

hydraulic pressures are applied inside the CZ as −𝑏𝑓𝑝𝑓𝐧𝑏 = 𝟎. Indeed, the recovered 

fracture energy is recovered EXACTLY as per Eq. (172). Because the incremental J-

integral effectively eliminates in situ stress effects, two LEFM-mimetic results are 

recovered. On the one hand, the fracturing pressures increase by the same increment as 
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the decrease in far-field minimum stress (TENSION POSITIVE, Fig. 48). On the other, 

the fracture lengths for a given inflow rate are identical (Fig. 49) – invariant of the in situ 

stress state.  

In both Fig. 48 and Fig. 49, comparison is made to the analytic solution for a 

KGD-geometry, inviscid fracturing fluid [38]. Following Mokryakov’s notation, 𝐿 is the 

total fracture length, and includes the CZ. In contrast, length 𝑅 is the length of the fully 

depleted fracture – and hence 𝑅 excludes the CZ. The analytic L curve is based upon 

LEFM, and compares favorably to the numerically recovered 𝐿. However, care should be 

taken when comparing the analytic against numerical 𝑅 curves as: (a) the analytic 𝑅 

curve’s closed form expression neglects terms; and (b) the analytic curve is based on a 

Barenblatt CZ model. That being noted, the Barenblatt curve provides a lower bound for 

the numerical 𝑅.  

ERROR ANALYSIS 

The net pressure CZ strategy proposed implies significant limitations and 

contradiction. To be specific, the approach’s re-application e.g. of the resolved spherical 

residual stress tensor along the debonding CZ represents unaccounted-for work. That is to 

say: the applied residual tractions enter into no traction-separation law by which a surface 

energy is summed. Thus these applied stresses are ignored as contributing to the total 

energy of the system. Given the tremendous in situ stress magnitude anticipated in 

everyday oilfield practice, this term is likely to exceed the recovered surface energy. To 

estimate, simply reduce Eq. (172) to elasticity for 𝑏𝑏 = 𝑏𝑓 = 0. For Mode I Dugdale-

type models, then we have: 
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Figure 48: KGD geometry case, recovered fracturing pressures vary with far-field 

stress. 

 

 

Figure 49: KGD geometry case, recovered length invariant with far-field stress (same 

initial net pressure). 
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𝐽𝑡𝑖𝑝
∗ = ∫ [(𝑆𝑛)𝑓]d𝛿 = (𝑆𝑛)𝑓𝛿𝑐

𝛿𝑐

0

, 𝐸𝐽𝑡𝑖𝑝
∗ = − ∫ [𝑆0𝑐]d𝛿

𝛿𝑐

0

= −𝑆0𝑐𝛿𝑐, (1) 

for (𝑆𝑛)𝑓 the applied normal tractions, 𝑆0𝑐 the resolved discounting tensor, and 𝐸 the 

energy error term per unit area. The error thus increases linearly with far-field stresses, 

were rock properties are assumed to be fixed. For example for far-field stresses of -1E+7 

Pa and cohesive traction of 1E+6 Pa, the ratio of error over fracture energy is 𝐸𝐽𝑡𝑖𝑝
∗ /𝐽𝑡𝑖𝑝

∗ = 

10 [-].  

Nevertheless at minimum, the net pressure framework: (a) admits by clear 

statement its source of associated error; and, (b) provides for quantification of the error. 

The error is inherent in any numerical fracture mechanics which is possessed of the 

following characteristic. Specifically, that the boundary displacements in the near-tip 

zone are used to calculate a fracture energy or toughness, i.e. in order to assess 

propagation. Thus ratios of errors over fracture energy are in compliance with legacy 

softwares. On the other hand, the fracture energy may be physically understood as a 

downhole matching parameter not relatable to the rock’s unconfined toughness; such a 

presumption would disagree with e.g. [71]. However in this case, the recovery of the 

specified fracture energy is exact under the net pressure approach. 

CONCLUSION 

This coupling strategy will retain the responsiveness of the cohesive 

implementation to the fracture energy. In short, our claims are: by removal of the 

resolved residual stresses and re-addition during cohesive softening, the generalized net 

pressure approach most mimetically recapitulates LEFM analysis; the Biot’s effective 

stress is the most acceptable tensor for softening evaluation in a poroelastic material, 
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given a small-strain constitutive relation; no conclusion as to flux constitutive relation or 

as to a uniquely correct fluid modulus in the CZ (either Biot’s modulus or fracture fluid 

compressibility) is allowable from the limited investigation.  

It is further noted that this CZ strategy captures the idea of Camacho and Ortiz-

type formulations [34], in that sensibly no boundary deformation is permissible at the 

initiation of the softening regime. In this regard, kinematic compatibility with the opening 

mode is maintained by dint of using the same numerical width; dynamic compatibility by 

the instantaneous identity of the stress state. Finally, the most interesting (and 

unexplored) component of the analysis pertains to the Biot’s coefficient for failure 

evaluation. The suggestion is that the Biot’s coefficient used for failure evaluation may 

indeed vary from the in situ coefficient in the bounding solid. But in this scenario, some 

additional constitutive relation is required to determine the failure coefficient – jointly 

coordinated with its simultaneous application within the CZ (to the fracturing pressures).  
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Appendix 

Initialization steps 

Special initialization conditions are contemplated regarding loading at the 

interface of reservoir layers. Firstly in the way of a warning, a discontinuity in normal 

component of resolved initial EFFECTIVE stress tensor along the interface will be 

produced inevitably by numerous, realistic multi-material initialization scenarios. For 

instance, with a variable Biot’s coefficient, such a discontinuity will be produced by use 

of an initialized continuous total stress tensor and initialized uniform pore pressure field. 

In these cases, additional analysis to enforce the continuity of interface tractions must be 

applied. However, if the Biot’s coefficient is homogeneous within the domain, we expect 

the normal component of the residual effective stress tensor to be continuous over multi-

material interfaces. (For a simulation initialized at equilibrium we expect the tangential 

component of residual stress/effective stresses tensor resolved over the interface, to be 

continuous.) 

In the case of a homogeneous Biot’s coefficient, the assertion of continuity of 

resolved total stress in Eqs. (24) by (26) reduces to the assertion of the continuity of 

resolved effective tractions over each bimaterial interface. In these instances, the 

simplified (and quasi-static) numerics do apply. Nevertheless: the initial VERTICAL 

(total) stresses are to be specified as a CONSTANT VALUE; variable horizontal total 

stresses may be initialized arbitrarily in different layers, given that the multi-material 

interface layers are modeled to coincide with the horizontal axis. Specification of an 

initial stress tensor enables use of fixed-displacement boundary conditions along far-field 

reservoir boundaries. Geological multi-material interfaces may often be considered to be 

horizontal and to coincide with locally flat bedding planes. Further vertical stress is 

supposed to be a continuous principal stress with depth. Hence no shear tractions are to 
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develop along these interfaces prior to the stress-state’s initialization, as they would be 

acting in a plane described by a principal stress direction. In particular, for each interface 

unit normal vector 𝐧𝑖:  

(𝐈 − 𝐧𝑖𝐧𝑖) ⋅ (𝐧𝑖 ⋅ 𝛔0) = 𝟎. (179) 

The assumption is that geological multi-material interfaces are layered to 

correspond to the horizontal plane. This assumption may make initialization of the stress 

state (i.e. the residual effective stress state 𝛔0) more straightforward. 

Mandel’s problem 

For an applied load 𝑆0, fluid pressures and stresses are then: 

𝑝(𝑥1, 𝑡 = 0) = 𝑝0 =
1

3
𝐵(1 + 𝜈𝑢)𝑆0 (180)

𝑝(𝑥1, 𝑡) = 2𝑝0 ∑ {[(cos(
𝛼𝑚𝑥1

𝑎
) − cos𝛼𝑚)],

∞

𝑚=1

(181)

× (
sin𝛼𝑚

𝛼𝑚 − sin𝛼𝑚cos𝛼𝑚
)exp(−

𝛼𝑚
2 𝑐𝑡

𝑎2
)},

𝑆22(𝑥1, 𝑡) = 𝑆0𝐴0 + 𝑆0(
𝜈𝑢 − 𝜈

1 − 𝜈𝑢
)

× ∑ 𝐴𝑚[(
1 − 𝜈

𝜈𝑢 − 𝜈
)cos𝛼𝑚 − cos(

𝛼𝑚𝑥1

𝑎
)]exp(−

𝛼𝑚
2 𝑐𝑡

𝑎2
)

∞

𝑚=1

. (182)

 

The equation coefficients are: 

tan𝛼𝑚

𝛼𝑚
=

1 − 𝜈

𝜈𝑢 − 𝜈
, (183)

𝐴𝑚 = 2(
1 − 𝜈𝑢

1 − 𝜈
)(

sin𝛼𝑚

𝛼𝑚 − sin𝛼𝑚cos𝛼𝑚
), (184)
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and 𝐴𝑚 = −1. 

Eshelby’s inclusion 

The plane-strain method of Eshelby’s inclusion for an elliptical inhomogeneity 

within a poroelastic domain produces a closed form solution for stresses within the 

inclusion, and a semi-analytic expression for stresses within the matrix. The solution is 

predicated on the concept of computed eigenstrains within the inclusion. The eigenstrain 

is the fictitious strain experienced by the inclusion if unbounded by the surrounding 

matrix. For a uniform poroelastic loading or dilational residual stress state, these strains 

are easy to compute using Hooke’s Law and uniform throughout the inhomogeneity. 

Further details are omitted here for brevity, however are covered in micromechanics 

literature [74].   

With regard to the plane-strain solution at hand, as indicated previously the 

solution is sensitive to aspect ratio of the ellipse 𝑒, ratio of inclusion over matrix shear 

modulus 𝑅𝜇, and Poisson’s ratio in the inclusion 𝜈∗ versus in the matrix 𝜈. Inclusion 

properties are superscripted by ∗. For the system, the normalized eigenstrains are:  

(𝛆𝑁
∗∗)11 =

𝐴

𝐶
, (𝛆𝑁

∗∗)22 =
𝐵

𝐶
, (185) 

where: 

𝐴 = [𝑅𝜇[(1 + 𝑒)2(1 − 𝜈) − 𝑒2] + 𝑒2](1 − 2𝜈∗)(1 − 𝜈), (186)

𝐵 = [𝑅𝜇[(1 + 𝑒)2(1 − 𝜈) − 1] + 1](1 − 2𝜈∗)(1 − 𝜈), (187)

𝐶 = 𝑅𝜇[2(1 + 𝑒2)(1 − 𝜈)(1 − 𝜈∗)

−2e𝜈∗(1 − 2𝜈) + 𝑅𝜇𝑒(3 − 4𝜈∗)] + 𝑒(1 − 2𝜈∗). (188)

 

The normalized stress arching ratios are defined as: 
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𝛄𝛼
∗ =

𝛥𝐒 + 𝛥𝜎0𝐈

𝛥𝜎0 − 𝑏𝛥𝑝
, 𝛄𝛼 =

𝛥𝐒 − 𝑏𝛥𝑝𝐈

𝛥𝜎0 − 𝑏𝛥𝑝
, (189) 

where 𝛥𝑝 is a change in pore pressures and 𝛥𝜎0 a change in the residual stress tensor. 

Therefore 𝛥𝑝 is a pressure change with respect to in-situ pressure such that 𝛥𝑝 = 𝑝∗; and, 

it is assumed that pore pressures within the matrix remain at the initial pressure 𝑝. Here 

the residual effective stress state within the inclusion is diagonal tensor 𝜎0∗𝐈 for scalar 

𝜎0∗ = 𝑆0∗ + 𝑏𝑝0∗, where is assumed that residual stress state in the matrix remains 

unperturbed and valued at 𝜎0𝐈. So, the change in imposed residual stresses is 𝛥𝜎0 =

𝜎0∗ − 𝜎0.  

Within the inclusion, the components of normalized stress arching ratio $⇤↵ are 

simply, 

(𝛄𝛼
∗ )11 =

𝐷

𝐶
, (𝛄𝛼

∗ )22 =
𝐸

𝐶
, (190) 

where: 

𝐷 = (1 − 2𝜈∗)[𝑅𝜇[𝑒(1 − 2𝜈) + 2(1 − 𝜈)] + 𝑒], (191)

𝐸 = (1 − 2𝜈∗)[𝑅𝜇[2e(1 − 𝜈) + 1 − 2𝜈] + 1]𝑒. (192)
 

Within the matrix, the components of normalized stress arching ratio 𝛄𝛼 are: 

(𝛄𝛼)11 = 𝑁1111(𝛆𝑁
∗∗)11 + 𝑁1122(𝛆𝑁

∗∗)22, (193)

(𝛄𝛼)22 = 𝑁2211(𝛆𝑁
∗∗)11 + 𝑁2222(𝛆𝑁

∗∗)22, (194)
 

where: 
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𝑁1111 = ∬ [8
(𝑥1 − 𝑥1

′ )4

𝑅6
− 4

(𝑥1 − 𝑥1
′ )2

𝑅4
−

1

𝑅2
]d𝑥2

′ d𝑥1
′

                1      𝑒√1−(𝑥1
′ )2

                   −1   −𝑒√1−(𝑥1
′ )2

, (195)

𝑁2222 = ∬ [8
(𝑥2 − 𝑥2

′ )4

𝑅6
− 4

(𝑥2 − 𝑥2
′ )2

𝑅4
−

1

𝑅2
]d𝑥2

′ d𝑥1
′

                1      𝑒√1−(𝑥1
′ )2

                   −1   −𝑒√1−(𝑥1
′ )2

, (196)

𝑁1122 = ∬ [8
(𝑥1 − 𝑥1

′ )2(𝑥2 − 𝑥2
′ )2

𝑅6
−

1

𝑅2
]d𝑥2

′

                1      𝑒√1−(𝑥1
′ )2

                   −1   −𝑒√1−(𝑥1
′ )2

d𝑥1
′ , (197)

𝑁2211 = 𝑁1122. (198)

 

and denominator 𝑅 is a function of evaluated coordinate (𝑥1, 𝑥2) and dummy coordinate 

(𝑥1
′ , 𝑥2

′ ),  

𝑅 = √(𝑥1 − 𝑥1
′ )2 + (𝑥2 − 𝑥2

′ )2. (199) 

The associated change in effective stress state can be recovered by substation into 

Eq. (189) of the tension-positive total stress definition Eq. (58). The change in effective 

stress in the inclusion (𝛥𝛔∗) and in the matrix (𝛥𝛔) are, 

𝛥𝛔∗ = [𝛥𝜎0 − 𝑏𝛥𝑝]𝛄𝛼
∗ − [𝛥𝜎0 − 𝑏𝛥𝑝]𝐈, (200)

𝛥𝛔 = [𝛥𝜎0 − 𝑏𝛥𝑝]𝛄𝛼, (201)
 

for 𝛥𝛔 = 𝛥𝐒 + 𝑏𝛥𝑝𝐈.  

Finite slab fixed-value problem 

Coefficient 𝛼𝑓 is useful in the solution of compressible finite slab problems, 
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𝑘𝑓 = 𝑤2, 𝛼𝑓 =
𝐾𝑓

(𝑘𝑓/12𝜇𝑓)
. (2002) 

For an applied fixed-value boundary pressure 𝑝1
𝑓
 and initial pressure 𝑝𝑓(𝑥1, 𝑡 = 0) = 𝑝0

𝑓
, 

fluid pressures are then: 

𝑝𝑓(𝑥1, 𝑡) = 𝑝1
𝑓

+ 4(𝑝0
𝑓

− 𝑝1
𝑓

)

× ∑[(
sin𝜆𝑚

2𝜆𝑚 − sin2𝜆𝑚
)cos(

𝜆𝑚𝑥1

𝑎
)exp(−

𝜆𝑚
2 𝛼𝑓𝑡

𝑎2
)]

∞

𝑚=0

. (203)
 

The equation eigenvalues are: 

𝜆𝑚 = 𝜋(𝑚 +
1

2
). (204) 

Finite slab fixed-rate problem 

For an applied volumetric inflow rate 𝑄0, the boundary-normal velocity is: 

𝑞0 =
𝑄0

𝑤ℎ
. (205) 

For initial pressure 𝑝𝑓(𝑥1, 𝑡 = 0) = 𝑝0
𝑓
, the time-varying fluid pressures are then: 

𝑝𝑓(𝑥1, 𝑡) = 𝑝0
𝑓

+
𝑞0𝑎

𝑘𝑓
(
𝛼𝑓𝑡

𝑎2
) + ∑[𝐴𝑚cos(

𝜆𝑚(𝑥1 − 𝑎)

𝑎
)]

∞

𝑚=1

. (206) 

The equation coefficients are: 

𝐴𝑚 =
2

𝜆𝑚
2

[1 − exp(−
𝜆𝑚

2 𝛼𝑓𝑡

𝑎2
)], 𝜆𝑚 = 𝜋𝑚. (207) 
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Finite slab advection problem 

The negative-𝑥1 and positive-𝑥1 boundaries have fixed value conditions 𝑝0
𝑓
 and 

𝑝1
𝑓
, respectively. For incompressible flow in a finite slab, with fixed pressure conditions 

at the boundaries, the fluid velocity is constant across the domain. The concentration 

transport problem reduces to a first-order hyperbolic partial differential equation, with 

constant coefficient 𝑞0
p
: 

0 =
𝜕𝑐

𝜕𝑡
+ 𝑞0

p 𝜕𝑐

𝜕𝑥1
, 𝑞0

p
=

𝑘𝑓(𝑝1
𝑓

− 𝑝0
𝑓

)

24𝜇𝑓𝑎
. (208) 

The negative-𝑥1 and positive-𝑥1 boundaries have fixed value conditions 𝑝0
𝑓
 and 

𝑝1
𝑓
, respectively. For incompressible flow in a finite slab, with fixed pressure conditions 

at the boundaries, the fluid velocity is constant across the domain. The concentration 

transport problem reduces to a first-order hyperbolic partial differential equation, with 

constant coefficient 𝑞0
p
: 

For initial pressure 𝑐(𝑥1, 𝑡 = 0) = 𝑐0 and boundary condition 𝑐(𝑥1 = −𝑎, 𝑡) =

𝑐1, the concentration unknown is advected through the domain until 𝜕𝑐(𝑥1 = 𝑎, 𝑡)/𝜕𝑥1 =

0. The position of the traveling front is 𝑞0
p
𝑡 − 𝑎, and solution: 

𝑐(𝑥1, 𝑡) = (𝑐0 − 𝑐1)𝐻(𝑥1 − 𝑞0
p
𝑡 + 𝑎) + 𝑐1, (209) 

for 𝐻 the Heaviside step function.  

Area-transverse fluxes 

The requirement for use of the transverse-flux scheme results from a simple 

cause. Thus far FA methods have never previously been applied to discretize fluid flow 

along branched or branching surfaces. Resultantly any vanilla FA implementation used in 

order to solve the flow equations, would fail for network topologies containing fractures 
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that intersect, bifurcate or evidence asymmetric patterns of leak-off. Consequently the 

“vanilla” FA surface discretization would restrict modeling to non-intersecting, non-

branching surfaces – and moreover, without asymmetric variation of fracture leak-off: in 

a word, the Laplacian term of Eq. (117) acts only along each side of the fracture. To 

address this issue, we moot a correction that allows for fluid flow across complex fracture 

networks, by providing for flow between control and so-called “shadow” control surfaces 

using an strongly iteratively coupled explicit correction term. In line with the penalty 

method, any discrepancy in the pressure evolved at control and shadow control surfaces 

is minimized during convergence of the fracture fluid flow. In this system, the 

fundamental quantum of the correction is the competition with other Darcy-type fluxes 

resolved on the control surfaces’ regularly FA-discretized edges: hence, the penalty 

volumetric fluxes are scaled by that quantum – and for no other reason than to ensure that 

penalty fluxes accumulate in increments of baseline the same order as the implicitly 

discretized fluxes occurring between adjacent control surfaces. Hence for any current 

time step 𝑛, an appropriately normalized volumetric rate correction term hence links 

current and shadow face with the penalty represented as:  

𝑄𝑐𝑜𝑟 = 𝛼𝑐𝑜𝑟 ∑[𝑤𝑃
𝑛∗

(𝑘𝑓)𝑃
𝜃

12𝜇 𝑓
(
(𝑝𝑓)𝑠𝑃

𝑖
𝑝𝑓

− (𝑝𝑓)𝑃

𝑖
𝑝𝑓

𝐿̅𝑃𝑁

)]𝐿̅𝑒

𝑖𝑛

, (210) 

for 1 to 𝑖𝑛 the series of converged iterations for fracture fluid flow solution, 𝛼𝑐𝑜𝑟 a 

penalty factor of order less than unity, and 𝐿̅𝑃𝑁 and 𝐿̅𝑒 approximations of terms used in 

the discretization of gradient and divergence operators, respectively. Their ratio was 

approximated here as: 
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𝐿̅𝑒

𝐿̅𝑃𝑁

≈
[
1
2 (𝑆𝑃 + 𝑆𝑠𝑃)]

1
2

[
1
2 (𝑆𝑃 + 𝑆𝑠𝑃)]

1
2

= 1. (211) 

Substitution considerably cleans the correction: 

𝑄𝑐𝑜𝑟 = 𝛼𝑐𝑜𝑟 ∑[𝑤𝑃
𝑛∗

(𝑘𝑓)𝑃
𝜃

12𝜇 𝑓
((𝑝𝑓)𝑠𝑃

𝑖
𝑝𝑓

− (𝑝𝑓)𝑃

𝑖
𝑝𝑓

)]

𝑖
𝑝𝑓

. (212)
 

The convergence of the fracture fluid flow equation implies convergence of the 

penalty term, and so being the penalty difference (𝑝𝑓)𝑠𝑃

𝑖
𝑝𝑓

− (𝑝𝑓)𝑃

𝑖
𝑝𝑓

 reduces to (𝑝𝑓)𝑠𝑃
𝑛 −

(𝑝𝑓)𝑃
𝑛 = 0. Hence, clearly as the pressure equation converges, our correction accepts a 

zero discrepancy between converged values of face and shadow face. Thus the continuity 

of fracture pressure across the width of the fracture is imposed. The generalized argument 

for the specific form of the correction used in Eq. (212) is that, for an elliptic problem, 

the correction should emerge over convergence relative to the flux associated with the 

implicit spatial discretization. Such that, for the general equation, the implicit 

discretization and penalty term would be evolved as:  

0 = ∑(𝐦 ⋅ 𝛻𝑠𝛷𝑓)𝑒
𝑛𝐿𝑒

𝑒

+ 𝛼𝑐𝑜𝑟 ∑[((𝛷𝑓)𝑠𝑃

𝑖
𝛷𝑓

− (𝛷𝑓)𝑃

𝑖
𝛷𝑓

)]

𝑖
𝛷𝑓

, (213)
 

where 𝛷𝑓 is a potential normalized by the coefficient of the Laplacian, and 𝑤 has been 

canceled. This coupling (whilst implemented as a source term) essentially permits direct 

volumetric fluxes between disparate control surfaces, which are otherwise not 

immediately attached along a manifold. Therefore, this term is defined and discretized as 

contributing to flow. Lastly the correction 𝑄𝑐𝑜𝑟 implies no net fluid loss from the system. 
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Conservation is imposed by the symmetry of the scheme. Each fracture face is the 

shadow face of its twin face, and as such fluid lost by any of twin faces is only gained by 

its shadow: 

(𝑄𝑐𝑜𝑟)𝑃 = −(𝑄𝑐𝑜𝑟)𝑠𝑃. (214) 

Thus, in as much as the FA method provides for flow in the longitudinal direction of the 

fractures, a correction allows for fluid to pass transversely between each side of the 

fractures’ surface. 
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