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Understanding how individual grains and populations of grains move through 

alluvial systems is important for predicting how landscapes adjust to changes in climate, 

tectonics and watershed management.  Mountainous terrain covers over 20% of Earth’s 

landscape and channels running through these steep slopes deliver significant volumes of 

sediment to lowland systems.  However, most historic sediment transport studies were 

conducted in lowland rivers and laboratory experiments.  Recently, upland stream studies 

have had limited success in monitoring the bedload fraction of sediment transported 

during floods exceeding bankfull flows.  To address the scarcity of bedload observations 

in natural streams, I characterized bedload displacement and entrainment behavior in a 

mountain stream over a range of temporal and spatial scales.  I designed and developed 

new fluvial geomorphology tools, including active tracers that were clasts embedded with 

accelerometers to record the timing of motion relative to discharge.  I also deployed 

passive tracers which were bedload clasts embedded with radio frequency identification 

(RFID) tags. The passive tracers were used to determined flood-scale displacement 

lengths.  Additionally, I installed RFID antennas on the channel bed to record the times 

that tracers passed through a reach.  Flow strength during flood events was estimated 

using discharge records and numerical modeling.  Datasets collected by the active and 
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passive tracers demonstrated that probabilities of transport, average step lengths and 

cumulative displacement distances scale with discharge.  The heavy-tailed measurements 

of rest times from the active tracers suggested that bedload transport is superdiffusive in 

mountain streams.  Transport, deposition and re-entrainment records showed that 

thresholds of motion are best represented by a distribution rather than a constant value, 

are influenced by channel width and bed slope, and can be lower at re-entrainment than 

deposition.  Historic discharge records and field-modified transport formulas predicted 

that a broad range of discharges contribute significant fractions of the total bedload 

volumes, and that magnitude-frequency analyses are highly sensitive to common scaling 

and extrapolation techniques.  The rare field-based observations from this research 

provide new insights into the complex mechanisms that drive bedload dispersion in 

mountain streams. 
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CHAPTER 1: INTRODUCTION 

1.1 Motivation 

Understanding how mountain streams transport bedload is important for predicting the 

extent to which these channels and their sediment budgets may shift due to changes in tectonics, 

climate, and management.  Such knowledge is crucial for predicting the degree that these 

changes may affect rivers downstream.  Implications regarding how, when and where sediment 

is entrained, deposited and re-entrained are relevant to river management, watershed sediment 

budget and landscape modeling efforts.   

Much of the previous work characterizing bedload transport in natural streams and 

thresholds required to entrain grains have focused on observations from lowland rivers or flume 

experiments [e.g., Shields, 1936; Einstein, 1950; Leopold and Wolman, 1960; Wolman and 

Miller, 1960].  Bedload transport relations and concepts developed in lowland rivers are often 

applied to streams in steep mountainous terrains due to the scarcity of datasets that measure 

transport conditions in coarse and steep alluvial channels, [e.g., Dietrich and Dunne, 1978; 

Andrews and Nankervis, 1995; Whipple and Tucker, 1999; Doyle et al., 2007; USDA-NRCS, 

2007].  However, relations generated from these lowland studies may not be fully applicable in 

steeper, upland channels due to the differences in grain size distributions, slopes, hydrologic 

regimes and sediment supply [e.g., Montgomery and Buffington, 1997; Yager et al., 2007; Wohl, 

2010].  Additionally, uncertainties in bedload transport thresholds that are estimated for 

mountain streams can cause predictions of bedload transport to vary by orders of magnitude 

[e.g., Buffington and Montgomery, 1997; Barry et al., 2008].   

The objective of this dissertation is to improve the characterization of bedload transport 

in mountain streams.  I combine field monitoring studies with numerical modeling to evaluate 

the complex roles that channel morphology and stochastic hydrologic forcing have in driving the 
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transport of individual bedload clasts as well as the collective transport of populations of clasts 

over time.  The overall research questions addressed in this work were: 

 
• How do the probabilities of transport, average step lengths and rest times of bedload 

clasts vary with discharges? 

• How do transport thresholds vary with grain size, deposition locations vary with 

hydrologic forcing and channel morphology and re-entrainment conditions vary with 

deposition conditions? 

• How do total bedload volumes vary with discharge magnitude and frequency in mountain 

streams? 

1.2 Dissertation organization 

In Chapter 2, I characterized total clast displacement distances as a function of hydrologic 

forcing as well as the individual clast steps that total displacements reflect.  I also quantified the 

probabilities that a given clast was transported as a function of discharge and, once transported, 

how average step lengths increased as a function of discharge.  Measurements of clast rest time 

during eleven snowmelt floods provided new insights into the superdiffusive behavior of bedload 

transport in mountain streams.  I included details of the new bedload monitoring technologies 

that I developed as part of this dissertation research.  The design of in-stream Radio Frequency 

Identification (RFID) antennas and active tracers (accelerometer-tagged cobbles) enabled the 

collection of rare measurements of bedload mobility during flood events using both Lagrangian 

and Eulerian perspectives. 

In Chapter 3, I combined field observations with flow modeling to further explore 

thresholds associated with the transport, deposition and re-entrainment of bedload clasts in 

mountain streams.  Transport thresholds were constrained in one of the study reaches using the 
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RFID-embedded tracers and in-stream RFID antennas to build a hiding function that shows 

initiation of motion as a function of grain size.  The resulting hiding function showed that equal 

entrainment mobility conditions existed in the reach for a range of tracer sizes, indicating that the 

initiation of motion of the coarser tracers coincided with that of the finer portion.  The deposition 

records from active tracers demonstrated that mobility thresholds can vary with channel width 

and bed slope.  Combining these results with those of previous studies indicated that transport 

thresholds in steeper channels are more sensitive to changes in slope than those in channels 

having gradients that are orders of magnitude lower.  Comparing deposition and re-entrainment 

conditions, I found that discharges when clasts are re-entrained can be less than when they were 

deposited.  This observation diverges from the classic theory that re-entrainment conditions are 

similar to or larger than those of deposition [e.g., Hjulström, 1935; Shields, 1936].   

The temporal scope of the dissertation was expanded in Chapter 4 to examine the 

cumulative effects that transport thresholds and hydrologic forcing can have on bedload transport 

over decadal timescales.  Predictions of the discharges most effective at transporting over a time 

period of 48 years demonstrated that bedload transport in mountain streams is most affected by 

low magnitude and high frequency events, and that the discharges that most contribute to total 

bedload volumes are best considered as a broad range rather than a single value.  The results also 

showed that magnitude-frequency results are sensitive to transport threshold assumptions and 

extrapolation of bedload discharge-water discharge relations, particularly at the higher 

discharges that rarely are constrained by field measurements. 

Chapter 5 summarizes the key findings from the presented dissertation research.  

Implications of the conclusions are discussed in terms of their potential to improve the accuracy 

of sediment budgets, success of river restoration projects and predictions of landscape models.  

Remaining questions to motivate future fluvial geomorphology studies are also listed.    
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CHAPTER 2: USING RFID AND ACCELEROMETER TRACERS TO 

MEASURE PROBABILITIES OF TRANSPORT, STEP LENGTHS AND 

REST TIMES IN A MOUNTAIN STREAM 

This chapter is presently in peer-review for publication in the journal of Water Resources 

Research. 

2.1 INTRODUCTION 

Bedload transport is commonly quantified by measuring flux—the mass or volume of 

sediment moving through a given cross-sectional area of flow per unit time.  Most bedload 

transport equations are empirical predictions of this flux [e.g., Parker, 1990a; Wilcock and 

Crowe, 2003].  While sufficient for many applications, bedload flux alone is an incomplete 

description of transport because flux does not constrain downstream migration or dispersion rates 

of grain populations.  Additionally, bedload flux does not account for the intermittent and 

probabilistic nature of individual grain movement that has also long been recognized as inherent 

to bedload transport [e.g., Einstein, 1937].  Recently, a resurgence of interest has focused on 

incorporating stochastic factors into unified theories of transport that can explain individual grain 

motions, dispersion of clast populations and mass fluxes [e.g., Schumer et al., 2009; Furbish et 

al., 2012; Martin et al., 2014]. 

The cumulative distance that an individual bedload clast travels will depend on the 

number of discrete movements (steps) taken, the distances traveled downstream in each 

movement (step lengths) and the durations of immobility between movements (rest times).  The 

scaling of step length and rest time distributions is important because the combination of these 

variables controls how particles migrate and disperse and, in particular, whether their spread 

exhibits normal or anomalous dispersion.  For a given clast population, dispersion can be 

described by how the variance of particle displacements (𝜎𝑋2) changes with time as 𝜎𝑋2 =

〈(𝑋𝑖 − 〈𝑋〉)2〉 ∝ 𝑡𝛾, where 𝑋𝑖 is the cumulative displacement distance of a given grain (i), and 
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brackets “〈 〉” denotes the ensemble average for all bedload grains in a given population such 

that 〈𝑋〉 represents the average displacement of grains over a given time.  A scaling exponent 𝛾 

equal to 1 indicates normal dispersion, while 𝛾 ≠ 1 indicates anomalous dispersion.  

Subdiffusion occurs when 𝛾 < 1 and superdiffusion when 𝛾 > 1.  If both step lengths and rest 

times follow thin-tailed distributions (such as exponential or gamma), then normal diffusion 

prevails [e.g., Einstein, 1937; Yang and Sayre, 1971].  Conversely, heavy-tailed step length or 

rest time distributions can lead to anomalous diffusion [e.g., Schumer et al., 2009; Ganti et al., 

2010; Voepel et al., 2013].  Hassan et al.  [2013] reviewed over 60 field-based bedload tracer 

studies and concluded that constraints of probabilistic transport models that were based solely on 

the distributions of cumulative displacements measured before and after transporting events 

remain somewhat “speculative” due to the limited temporal and spatial measurements collected 

during the events.  More complete field measurements of step lengths and rest durations during 

transporting events remain needed to understand and predict how bedload disperses downstream.   

Due to the difficulty of measuring steps and rests of clasts in field settings, much of the 

understanding of dispersion has come from well-constrained but idealized laboratory 

experiments.  Previous works estimating these variables have come to different conclusions.  

Tracking clast displacements over relatively short times (several seconds) showed superdiffusive 

behavior in steady-state flume experiments (𝛾 = 1.6) [Martin et al., 2012], and in a constant 

flow irrigation canal (𝛾 = 1.7) [Nikora et al., 2002].  Conversely, field videos of clasts tracked 

for several tens of seconds demonstrated subdiffusive dispersion (𝛾 ≈ 0.7) [Nikora et al., 2002].  

Measurements of rest time distributions during equilibrium-state flume experiments with run 

times up to 2 hours also suggested superdiffusive behavior (𝛾 = 2 𝑡𝑡 2.3) [Martin et al., 2012, 

2014].  Over longer time scales of a series of flash floods, Phillips et al.  [2013] found bedload 

exhibiting superdiffusive behaviors (γ =1.9) from measurements of variances in cumulative 

displacements over time.  In other field studies however, motion data collected during 

transporting events using active tracers (clasts embedded with various motion sensor 

technologies) found thin-tailed rest times and step length distributions [Schmidt and Ergenzinger, 
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1992; Habersack, 2001], suggesting normal diffusion rather than anomalous diffusive; 𝛾 

exponents were not explicitly evaluated.  Results from these and several other pioneering active 

tracer studies are summarized in Table 2.1.   

The dependence of transport probabilities, step lengths and rest times on variable 

discharge are currently difficult to predict with confidence.  For example, step lengths measured 

in steady-state flume experiments have shown both decreases [Wong et al., 2007] and increases 

[Lajeunesse et al., 2010] with higher shear stress, the latter finding being consistent with 

qualitative descriptions based on active tracers in natural channels [Schmidt and Ergenzinger, 

1992; Chacho et al., 1996].  During a transporting event, the duration over which measurements 

are made may also affect results— rest time distributions measured in previous flume studies 

have spanned seconds to hours in steady-state flow [e.g., Martin et al., 2012], while cumulative 

displacement distributions measured by passive tracers in natural channels have spanned 

multiple transporting events to several years [e.g., Hassan et al., 1992; Haschenburger and 

Church, 1998; Bradley and Tucker, 2012; Phillips et al., 2013].  The scarcity of bedload datasets 

that quantify transport statistics with respect to hydrologic forcing has required that rest and step 

length parameters in transport models be fit empirically for each unique hydrograph period [e.g., 

Schmidt and Ergenzinger, 1992; Bradley and Tucker, 2012].   

The above summary highlights how the current ability to predict and understand bedload 

dispersion is limited in part by a lack of quantitative field measurements during transporting 

events.  With this motivation, the study had three related objectives.  First, probabilities of 

transport, average step lengths and rest times are quantified for bedload particles during a series 

of snowmelt events to better understand stochastic bedload transport in natural channels.  

Second, these parameters are evaluated with respect to varying discharge.  Third, detailed 

descriptions of the methods that were used to deploy radio frequency identification (RFID) and 

accelerometer tracer technologies are presented because data collection was challenging but 

ultimately successful.  These technologies have great potential for quantifying and improving 

predictions of bedload transport in field settings.   
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The chapter is organized as follows.  First, the study area and its snowmelt hydrology are 

described, then methods to produce the tracers and install stationary RFID antennas are 

summarized.  In the subsequent results section, transport probabilities and average step lengths 

as functions of discharge as well as the scaling of rest time distributions are presented.  Then, the 

discussion section explores the significance of the hydrologic dependent transport relations, 

shows that scaling exponents for the heavy-tailed rest time distributions appear consistent with 

previous lab measurements, examine the implications of the thin-tailed displacement 

distributions and heavy-tailed rest times on superdiffusive dispersion and highlight several 

recommendations for future field efforts.  The study’s findings are summarized in the conclusion 

section. 

2.2 Study Site:  Reynolds Creek, Idaho, USA 

Reynolds Creek is a coarse alluvial channel located in the Owyhee Mountains, Idaho, 

USA (Figure 2.1a).  The stream is in the Reynolds Creek Experimental Watershed (RCEW) and 

managed by the USDA-Agricultural Research Service (ARS).  The tracer recovery field 

campaigns covered 11 km of Reynolds Creek, beginning approximately 0.7 km upstream from 

the Tollgate gauging station (USDA-ARS Station 116b) and ending 10.3 km downstream of the 

gauging station.  The study’s upstream boundary coincided with the location of the most 

upstream tracer deployment site, at a drainage area of 55 km2.  The downstream boundary 

corresponded to the location where field surveys ceased, several kilometers after the most 

downstream bedload tracer was found.   

Over the study length, the channel bed consisted of coarse clasts (gravels to boulders) 

with occasional short bedrock reaches.  Channel bed morphology was generally planar with 

some pool-riffle and step-pool reaches (Figure 2.1b).  Most of the natural clasts represented 

Miocene basalt bedrock [Ross and Forrester, 1958; Seyfried et al., 2001], and many clasts were 

vesicular.  Field surveys and analysis of airborne LiDAR data [Northwest Watershed Research 
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Center, 2009] indicated that channel widths range from 3 to 18 m with an average of 

approximately 5 m.  Over 100 m reach lengths, bed slope varied from 0.01 to 0.07 m/m.  

Wolman pebble counts [Wolman, 1954] were performed along 11 reaches, using 150 to 500 

particles for each evaluation.  The surface D16 and D50 among these reaches were similar, with 

respective means of 25 and 60 mm.  The surface D84 varied more significantly over the pebble 

counts, ranging from 70 to 300 mm with a mean of 150 mm.  Grain size distributions are further 

presented in Section 2.3. 

Discharge has been calculated at several watershed gauging stations since the 1960s 

[Pierson et al., 2001].  Flow is snowmelt-dominated and the highest discharges occur between 

March and May.  Occasional high flows also occur during the winter months due to flashy rain-

on-snow events.  Much of the stream runs nearly dry during the late summer.  The study area 

was downstream of the major tributaries that convey most snowmelt runoff from higher 

watershed elevations.  Discharges calculated at Tollgate gauging station and a gauge 18 km 

downstream (USDA-ARS Station 36) indicated that discharges were similar along the study 

length [Northwest Watershed Research Center, 2015].  Based on the 1966 to 2014 record at the 

Tollgate gauge, annual peak discharges ranged from 0.5 m3s-1 to 20.6 m3s-1 (flood frequency 

analysis shown in Figure 2.1c).   

Effective runoff (𝑉𝑒) represents the volume of water discharge over some time span 

exceeding a discharge threshold for bedload transport [e.g., Lenzi et al., 2004].  Figure 2.1d 

shows a magnitude-frequency analysis for annual effective runoff using a discharge threshold of 

2 m3s-1 (justified in Section 2.4.1).  The variable morphology over the multiple kilometer study 

length precluded reporting discharge in terms of fraction of bankfull.  Although beyond the 

scope of work presented here, HEC-RAS flow modeling along the study length indicates that 

transport stage (τ/τcr, where τ is basal shear stress and τcr is the threshold of motion for D50 grains) 

generally remained below 2 for the historic record of relevant discharges [Ch. 4]. 

During this study, bedload transport was monitored over three snowmelt intervals: April 

to July 2011, October 2011 to March 2012 and March to June 2012 (Figure 2,1e).  The spring 
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periods had longer durations and higher discharge magnitudes than the winter season, which was 

marked by several short rain-on-snow events.  Comparing the flows from the monitored seasons 

with the 49 year record [Northwest Watershed Research Center, 2015], maximum discharges 

during the April to July  2011, October 2011 to March 2012, and March to June 2012 monitoring 

periods corresponded to annual records equivalent years having recurrence intervals of 5.0, 1.9 

and 4.5 years, respectively (Figure 2.1c).  In terms of effective runoff, differences in durations 

and discharge caused recurrence intervals to shift slightly to 5.4, 1.3 and 2.2 years, respectively 

(Figure 2.1d).  The approximately diurnal series of bedload transporting periods that occurred in 

spring 2012 are further identified numerically (total of eleven) in subsequent analyses, and 

referred to simply as individual hydrograph events or transporting events. 

2.3 Methods 

2.3.1 RFID TRACER TECHNOLOGY AND PRODUCTION 

RFID technologies are summarized briefly here because previous studies provide 

thorough explanations [e.g., Nichols, 2004; Allan et al., 2006; Lamarre and Roy, 2008; 

Schneider et al., 2010; Bradley and Tucker, 2012].  Capacitors inside of passive RFID tags are 

charged inductively when a nearby antenna briefly creates a magnetic field.  Powered by the 

discharging capacitor, the tag immediately broadcasts its unique identification number, which is 

read by the antenna and recorded to a data logger.  An antenna’s ability to read RFID tags 

depends on its inductance, which is sensitive antenna size, shape and proximity to metal.  

Antennas are “tuned” through adjustable capacitors to balance read distance, sampling rate and 

power consumption.  For conciseness, additional information is in the appendix regarding the 

production of the passive tracers and limitations of the applied RFID technologies that 

influenced the study’s implementation. 

Coarse gravels and cobbles were embedded with RFID tags that were 32 mm or 23 mm 

long by 3.65 mm in diameter (Figure 2.2a).  The passive tracer clasts were made using two 
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techniques.  First, a rotary hammer drill was used to bore holes in natural clasts, and tags were 

sealed inside with marine epoxy.  The intermediate axis (D) for these clasts ranged from 50 mm 

to 160 mm, with a mean of 90 mm.  However, roughly one fifth of the grains that was attempted 

to drill fractured, and the smaller particles fractured at a higher rate.  The fracturing resulted in 

less than 5% of the successfully drilled rocks having intermediate axes smaller than 60 mm.   

Similar to Schmidt and Ergenzinger [1992] and Nichols [2004], artificial clasts were also 

molded from concrete to more efficiently make smaller tracers.  Fifty-five rubber molds were 

produced from natural river particles with intermediate axes ranging from 45 to 110 mm; the 

median grain size of the passive tracers approximating the channel’s surface D50 (60 mm; Figure 

2.2b).  The densities of the artificial tracers (mean of 2300 kg m-3) most closely corresponded to 

vesicular basalt clasts in Reynolds Creek, which had an average density using the ASTM C127-

07 method [2007] of 2400 kg m-3 (range of 2100 to 2650 kg m-3).  The non-vesicular basalt and 

granite clasts had an average density of 2700 kg m-3 (2350 to 2950 kg m-3).   

2.3.2 ACTIVE TRACER TECHNOLOGY & PRODUCTION  

Active tracers were molded out of concrete using methods similar to those applied to 

produce the artificial passive tracers.  Active tracers were also embedded with an accelerometer 

and lead weights, in addition to an RFID tag (Figure 2.2c).  Like Tremblay et al.  [2010], 

relatively small (58x33x23 mm) HOBO Pendant G Data Logger accelerometers were used.  The 

accelerometers measured ±3 g along three orthogonal axes (x, y and z) at an essentially 

instantaneous moment in time.  Because of the accelerometers’ limited memory (64 kb), 

accelerations could only be recorded once every 10 minutes throughout the spring 2012 season 

(two additional sensors instead recorded at 15 minute intervals).  A change in the orientation of 

an axis relative to gravity changed the measured acceleration, allowing the devices to serve as 

motion sensors.  Movement was interpreted to have occurred between two sequential 

measurements (i.e.  sometime in the previous 10 minutes) if the accelerations on any axis 

differed by more than the device accuracy (±0.105 g) [Onset Computer Corporation, 2011].  
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Similar to devices used in other active tracer bedload studies [e.g., Ergenzinger and Schmidt, 

1994; McNamara and Borden, 2004], the accelerometers could not distinguish between 

downstream transport and particle rocking in place.  Additional images of the active tracers and 

the steps of their production are provided in the appendix. 

Due to the size of the accelerometers, the intermediate diameters of the active tracers 

ranged from 100 to 150 mm (Figure 2.2b), such that their mean of 125 mm that approximated the 

D80 of the channel over the 2 km area where the active tracers were recovered.  Average 

accelerometer tracer densities were 2300 kg m-3, comparable to the RFID-only clasts and local 

vesicular basalt clasts (Section 2.3.1).  After recovering the tracers following the spring 2012 

season, the clasts were broken open to retrieve the accelerometers and download the data.  An 

additional 93 accelerometers were produced and deployed in December 2012, but subsequent 

snowmelt discharges were too low to transport the tracers (peak of only 1.4 m3s-1 between 

December 2012 and July 2013).   

2.3.3 TRACER DEPLOYMENT 

A total of 1400 passive tracers were deployed at several cross sections upstream of the 

Tollgate gauge (Figure 2.2d) at three different times (April 2011, October 2011 and March 2012; 

Figure 2.1e).  The numbers of clasts in each deployment are outlined in Table 2.2.  Similar to 

other studies [e.g., Ferguson and Wathen, 1998; Habersack, 2001; McNamara and Borden, 

2004; Phillips et al., 2013], particles were deployed by distributing the tracers on existing 

surface grains.  With this deployment method, the tracers begin in highly mobile positions, 

similar to the most mobile surface grains of similar sizes (~channel D50 for the passive tracers 

and ~channel D80 for the active tracers).  Section 2.5.3 further discusses how the initial tracer 

deployment may have affected transport behavior. 
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2.3.4 RFID ANTENNAS 

2.3.4.1 Surveying tracer positions with mobile RFID antennas 

Using a mobile antenna and battery-operated backpack data logger (Figure 2.1b), tracer 

locations were surveyed in July 2011, March 2012 and June 2012.  Passive tracers were left 

undisturbed where found to allow future monitoring of displacements.  The 0.5 m diameter 

antenna was tuned to give a read range of approximately 1 m for the 32 mm tags.  In 2011, a 

Garmin GPS unit with an accuracy of ±4 m was used to measure tracer locations.  In 2012, a 

Trimble XT GPS was used, which provided ±1 m accuracies after post-processing.  The July 

2011 and June 2012 field campaigns each covered the 11 km length of the channel.  Due to 

unsafe wading conditions, the March 2012 survey only covered the 700 m reach from the study’s 

upstream boundary to the Tollgate gauge.  The mobile antenna unit provided reasonable recovery 

rates over significant distances (e.g., recovered 83% of the tracers traveling up to 8 km; Table 

2.2).  Recovery rates decreased to 50% for several of the tracer groups in the July 2012 field 

campaign because a high density of the tracers deposited in an excavated pool, causing 

significant radio interference for the mobile data logger.  The pool that had been excavated by 

the USDA-ARS in September 2011 and filled during the subsequent transporting events; thus, 

the total displacement lengths presented herein exclude these tracers. 

The mobile RFID antenna was also used to recover 34 active tracers in July 2012.  The 

recovered active tracers moved 8 to 2130 m downstream from their deployment sites.  Unlike the 

passive tracers, the active tracers had to be removed from the bed to download data.  While 11 

active tracers were recovered in the filled pool, I suspect that many of the unrecovered active 

tracers remain deposited in the filled pool because other active tracers were read in the fill, but 

could not be recovered due to deep burial depths and limited field time.  Seven of the recovered 

accelerometers stopped logging prematurely, and the final logged times for these faulty sensors 

corresponded to high flow discharges, suggesting that the sensor failures were likely due to large 
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impacts that occurred shortly after their last measurements (Onset Computer Corporation, pers.  

comm.).  Two other accelerometers had several days of systematic noise even during extremely 

low flow conditions, but subsequently began working again.  Significant damage during the 

removal from the accelerometer housings prevented data retrieval from three sensors.   

2.3.4.2 Tracking passing tracers with stationary RFID antennas 

Three stationary RFID antennas were mounted directly onto the bed to record the timing 

and identification numbers of passing active and passive tracers.  The antennas were made into 

channel bed-spanning rectangles and installed just below the most downstream deployment site 

with a spacing of 15 m (Figures 2.2d,e).  Although individual antennas missed some tags as 

tracers passed by during the transporting events, the redundancy of having three antennas 

increased the probability that a given tag would be read by at least one antenna (percentages 

provided below).  The antenna loops minimally protruded into the flow and were installed 

directly onto the mobile gravel and cobble bed by attaching the antennas onto 0.9 m steel stakes 

that were hammered into the bed (Figure 2.2f).  The close proximity of the antennas to the metal 

stakes reduced read distances to approximately 0.25 m.  Antennas remained in place during the 

spring 2012 snowmelt pulses, until the most downstream antenna dislodged during the final peak 

event due to significant local bed scour.   

The signals from multiple tags passing an antenna at the same time can cause 

interference, resulting in some or all passing tags not being recorded.  The likelihood of tags 

passing at exactly the same time was reduced by staggering tracer deployments at several cross 

sections 20 to 650 m upstream of the stationary antennas (Figure 2.2d).  These staggered 

deployment locations allowed particles to be less clustered when passing through the 

instrumented reach.  Some of the tracers placed at the deployment site nearest the antenna reach 

(only 20 m upstream) likely crossed antennas at similar times during the first transporting event, 

causing interference and some tags to pass unread by the antennas.  Despite these technological 
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restrictions, 53% of the RFID tracers that passed the antenna reach were recorded by at least one 

antenna.  Further, when only considering those tracers that were deployed 300 and 650 m 

upstream from the antenna reach, the read success increased to 88%.  The closely spaced 

antennas were expected to also permit particle velocity estimates; however, non-systematic time 

drifts among the antennas’ data loggers precluded these calculations.  Additional antenna design 

considerations are summarized in the electronic supplement. 

2.3.5 CHARACTERIZATION OF HYDROLOGIC FORCING 

The bedload analyses presented below uses discharge (measured at the gauging station) 

as a direct measure of hydrologic forcing, rather than location-dependent shear stress, stream 

power or shear velocities [e.g., Hassan et al., 1992; Haschenburger and Church, 1998; Phillips 

et al., 2013].  Over the spatial extents that the tracers traveled, local channel morphology varied 

significantly (local bed slopes ranged from 0.005 to 0.07 m/m), giving high uncertainty to 

spatially averaged calculations of shear stress or related variables.  Tracer positions were 

unknown during most of their transport history.  Tracer locations were only known where they 

were deployed, if/when they crossed the stationary antenna reach, and where they were last 

deposited (i.e.  where I found them during stream surveys).  Because of the high degree of spatial 

heterogeneity within mountain channels, previous work has demonstrated that discharge-based 

transport relations are also appropriate for steep channels [e.g., Rickenmann, 2001; Lenzi et al., 

2006a].   

2.4 Results 

The results section is organized as follows.  First, probabilities of transport from the 

active tracers are evaluated (Section 2.4.1).  Then, average step lengths and rest distributions are 

calculated (Sections 2.4.2, 2.4.3).  Finally, the transport probability and step length constraints 

from the active tracers are combined into an empirical function of discharge to predict mean 

transport distances for different groups of passive tracers (Section 2.4.4).   
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2.4.1 PROBABILITIES OF TRANSPORT  

The motion records of the active tracers were used to calculate probabilities of transport 

over time and as a function of discharge (Figures 2.3a,b,c).  Probabilities of transport (pt) were 

evaluated for every sampling interval (ti; i.e., every 10 minutes) over the spring 2012 hydrograph 

as 

𝑝𝑡,𝑡𝑖 =
𝑛𝑚,𝑡𝑖

𝑛𝑡𝑡𝑡𝑡𝑡,𝑡𝑖
            (2.1) 

where 𝑛𝑚,𝑡𝑖 represents the number of active tracers that moved within each sampling interval,  

and 𝑛𝑡𝑡𝑡𝑡𝑡,𝑡𝑖 represents the total number of moving and stationary tracers within each interval.  

Similarly, constraints on transport as a function of hydrologic forcing were made by calculating 

probabilities of transport for given discharge intervals (Qi) [e.g., May and Pryor, 2013] as 
𝑝𝑡,𝑄𝑖 =

𝑛𝑚,𝑄𝑖
𝑛𝑡𝑡𝑡𝑡𝑡,𝑄𝑖

           (2.2) 

where 𝑛𝑚,𝑄𝑖  represents the number of accelerometer tracers that moved within each discharge 

interval and 𝑛𝑡𝑡𝑡𝑡𝑡,𝑄𝑖 represents the total number of moving and stationary tracers within each 

interval.  Equation 2.2 was evaluated for discharge intervals binned every 0.25 m3s-1; for 

example, the 5m3s-1 bin corresponded to when discharges were between 4.875 and 5.125 m3s-1.   

The probabilities of transport showed that mobility varied systematically with water 

discharge over time (Figures 2.3a,b,c).  Probabilities of transporting for hydrograph events 4 

through 11 are shown in Figure 2.3, while events 1 to 3 are presented later in this section 

(omitted here to minimize effects of increased mobility at initial deployment; discussed below).  

Full tracer mobility did not occur in any sampling period (i.e., 𝑝𝑡,𝑡𝑖<1; Figure 2.3b).  Even when 

discharges exceeded 6 m3s-1 during the peak flow event, the maximum probability of transport 

was limited to only 0.30.  This finding indicates that, for each sampling interval, the majority of 

tracers were resting.  Because tracer transport was negligible when discharge was less than 2 

m3s-1 (i.e., 𝑝𝑡,𝑄𝑖<0.005; Figure 2.3c), 2 m3s-1 was applied as a discharge threshold of motion in 

subsequent analyses.  The transport probabilities are predicted reasonably well by a linear 

function of discharge (R2=0.66; Figure 2.3c; Table 2.3) as 
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𝑝𝑡,𝑄𝑖 = 0.036𝑄𝑖 − 0.06    for 𝑄𝑖>2 m3s-1        (2.3) 

The scatter in the probability of transport results over the peak flows may reflect the 

relatively short sampling intervals over the discharge intervals (each 𝑄𝑖 bin exceeding 6 m3s-1 

had durations of less than half an hour), and hysteresis with discharge (presented below).   

The stationary antenna records also showed that the passive tracers were transported past 

the monitored reach at times similar to when the active tracers moved (Figure 2.3d).  However, 

the frequency that the passive tracers passed over the antennas did not demonstrate an apparent 

trend with water discharge (Figure 2.3e).  This result is presented to demonstrate an important 

methodological point: the difference between Figures 2.3c,e was due to a decreasing upstream 

supply of passive tracers to the antenna reach over time.  The supply of passive tracers to the 

antenna reach dwindled as the season progressed because additional tracers were not added to the 

stream after each transporting event, causing the majority of passive tracers logged by the 

stationary antennas to move past the antennas prior to the peak event. 

The degree of hysteresis in transport probability between rising and falling limbs varied 

among different event hydrographs (Figure 2.4).  Events 3, 4 and 9 showed little hysteresis, 

while events 5, 6, 7, 8 and 10 showed moderate amounts of clockwise hysteresis.  Hysteresis was 

more pronounced during events 1, 2 and 11.  During events 1 and 2, some of the tracers moved 

when water discharges were below 2 m3s-1; however, after event 2, motion rarely occurred when 

water discharge fell below 2 m3s-1.  Event 11 exhibited the most complex hysteresis pattern, 

showing clockwise hysteresis when water discharge was below 6.5 m3s-1 and counter-clockwise 

hysteresis when discharge exceeded 6.5 m3s-1.  The similar hydrographs of events 4 through 10 

coincided with similar transport probabilities and degrees of hysteresis, especially compared the 

hysteresis of events 1 and 2.   

2.4.2 INDIVIDUAL STEPS AND STEP LENGTHS 

The records of motion from the active tracers during spring 2012 also constrained on the 

total number of discrete movements (steps) each clast experienced (Nt,i; Figure 2.5a).  The 
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average number of steps each tracer took ranged from 3 to 18 during the individual hydrograph 

events, and from 6 to 190 during the entire season.  The tracers with fewer steps corresponded to 

shorter cumulative displacement distances (Figure 2.5a), suggesting that the sampling intervals 

of the accelerometers were sufficiently short to meaningfully constrain the transport.  The 

number of detected motion periods represented a minimum bound on the total number of steps 

each tracer actually took because the accelerometers could not resolve whether more than one 

step was taken within a given 10 minute accelerometer sampling interval (the appropriateness of 

this assumption is discussed in Section 2.5.1).   

The cumulative displacements of the active tracers follow a thin-tailed distribution and 

are well fit by a statistically-significant gamma function (Figures 2.5b,c; Table 2.3).  Average 

step lengths for the active tracers were calculated using the minimum constraints on total motion 

periods as  

〈𝐿𝑖∗〉=Xi/Nt,i             (2.4) 

where Xi represented each tracer’s cumulative displacement over the season.  Resulting average 

step length values ranged from 1.1 m to 25.5 m with a mean of 12.4 m (from 9 to 252 diameters 

with a mean of 98 diameters).  Like the cumulative distances, average step lengths also followed 

a thin-tailed distribution that was well described by a gamma function (Figure 2.5b,c,d; Table 

2.3).   

The accelerometer records supported the use of each tracer’s total number of detected 

motion periods to estimate a maximum constraint on its average step lengths (Equation 2.4) as a 

reasonable assumption.  Only a small fraction of the accelerometers’ transport records 

corresponded to tracers that were in motion and accelerating at a given time of measurement.  

When an accelerometer was resting on the bed and not in motion at the moment of measurement, 

the vector sum was 1 g ±0.18 g (where the uncertainty of 0.18 g is calculated from the device 

accuracy as �(0.105 𝑔)2 + (0.105 𝑔)2 + (0.105 𝑔)2  ); conversely, when a clast was in motion 

and accelerating at the moment of measurement, the vector sum deviated from 1 g ±0.18 g.  Only 

5.01 percent of the 10-minute accelerometer records and 3.06 percent of the 15-minute records 
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indicated that the tracers were moving when accelerations were measured.  These numbers 

suggest that tracers were transported on average for approximately 30 seconds within each 

detected motion interval (10 min × 0.0501 and 15 min × 0.0306).  This 30-second transport 

estimate is consistent with previous works showing that bedload transport consisted of short 

duration, intermittent particle movements [Drake et al., 1988; Chacho et al., 1994; Emmett et al., 

1996] and long particle rest times [e.g., Drake et al., 1988; Chacho et al., 1994; Singh et al., 

2009; Martin et al., 2012].   

Average step lengths also systematically increased with discharge during motion (Figure 

2.5e).  Because each tracer took steps at different times, the water discharges corresponding to 

times when each tracer moved were averaged over the season (〈𝑄𝑚,𝑖〉) and compared to each 

tracer’s respective step length results.  A linear relation between average step length and average 

discharge for each tracer (R2=0.71; Table 2.3) was found as 

〈𝐿𝑖∗〉 = 5.6〈𝑄𝑚,𝑖〉 − 8.8         (2.5) 

2.4.3 REST TIME SCALING 

Along with step lengths, rest time distributions are of key interest because the 

combination of these variables may control particle translation and dispersion [e.g., Ganti et al., 

2010; Martin et al., 2012, 2014].  The active tracers enabled rest times (tr) to be calculated using 

the durations of rest between periods of motion.  The minimum rest time that could be measured 

was 10 minutes (i.e.  the accelerometer’s sampling interval).  It is important to understand how 

the discrete sampling interval may influence the measurements of rest.  To illustrate, consider an 

active tracer that recorded accelerations at a time of 0, 10, 20 and 30 minutes.  Consider also that 

the clast moved at least once in the first interval (i.e., acceleration records indicated that particle 

orientation changed at unknown times between 0 and 10 minutes) and in the second interval (i.e., 

orientation changed again at unknown times between 10 and 20 minutes).  If this occurred, then 

the accelerometer data would indicate that movement occurred at the 10 and 20 minute intervals 

respectively, giving a measured rest time of 10 minutes.  However, a range of actual rest times 
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could give this simplified 10 minute result.  For example, if the movements occurred at 0.1 

minute and 19.9 minutes, then the actual rest time was 19.8 minutes.  In another scenario, if the 

movements occurred at 9.9 minutes and 10.1 minutes, then the actual rest time was 0.2 minutes.  

In both of these cases, the rest time would be still be calculated with the accelerometers as 10 

minutes.  Hence, the rest times measured by the accelerometers (i.e., 10 minutes in the above 

example) represent an average, with the minimum and maximum possible values bounded by ± 

the sampling interval.  The minimum sampling interval used in the scaling analysis below is thus 

20 minutes.   

Rest time distributions were analyzed for all eleven transporting events during spring 

2012 (Figure 2.6).  Additionally, rest times were also calculated from the beginning of event 4 

through event 11 (325 hrs of Q≥2 m3s-1).  The durations that a clast rested while discharge was 

below the 2 m3s-1 threshold were not included in the event 4 through 11 analysis.  The 

calculations of the exceedance probabilities of the rest times (𝑃(𝑡𝑟 > 𝑡)) and power laws fit to 

the distributions to constrain  the 𝛼 scaling exponents (𝑃(𝑡𝑟 > 𝑡)~𝑡−𝛼) were performed using 

the methods employed in laboratory experiments of Martin et al.  [2012, 2014].  Distributions 

are considered heavy-tailed when the scaling exponent 𝛼 was less than 2 [e.g., Hassan et al., 

2013]. 

Rest time distributions were heavy-tailed, with power law scaling exponents that varied 

with the series of hydrograph events (Figure 2.6).  Rest times varied from 10 minutes (the 

accelerometers’ sampling rate limit) up to 20 hours among the individual events, and up to 187.5 

hours when events 4 through 11 were evaluated as one time series.  Power law regressions were 

done for rest times longer than 0.3 hours because of sampling issues described above and also 

due to slope breaks near this duration for most of the distributions.  The heavy-tailed rest time 

distributions gave 𝛼 from 0.24 to 0.72 (Table 2.3 includes confidence bounds and goodness of fit 

metrics).  Events 1 and 2 had higher 𝛼 scaling exponents than events 3 to 8 because their rest 

time distributions were more dominated by shorter periods of rest than longer periods of rest 
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(Figure 2.6a).  The subsequent events 3 through 8 had lower𝛼, corresponding to heavier tails 

(Figures 2.6a,b,c).  The peak discharges during event 11 coincided with the most tracer transport 

(Figure 2.4o), which again steepened the tail of the rest time distribution (Figure 2.6d).  The 

combined analysis of events 4 through 11 spanned nearly 3 orders of magnitude in rest time 

(from 20 minutes to 187 hours), and resulted in an 𝛼 rest exponent of 0.67±0.02 (95% 

confidence interval) (Figure 2.6e; Table 2.3).  The longest rest times in the combined analysis 

(Figure 2.6e) represented tracers that been immobile from event 4 until event 11.   

2.4.4 CUMULATIVE DISPLACEMENTS 

2.4.4.1 Passive tracers 

Like the active tracers, the cumulative displacements of the passive tracers also showed 

thin-tailed distributions (Figures 2.7a,b).  Following methods of other passive tracer studies 

[Phillips et al., 2013; Phillips and Jerolmack, 2014], cumulative displacement distances were 

calculated from all permutations of the tracer deployments and surveys due to the limited number 

of field campaigns (Groups A through G; Figure 2.1e; Table 2.2).  The cumulative displacements 

of the passive tracers were not correlated to tracer size due to the tracers’ relatively narrowly 

range around the study area’s D50 (mean diameter of 60 mm, Figure 2.2b).  However, the 

displacement distribution of Group C had mean transport lengths that were 1.4 times longer than 

the larger active tracers (larger mean diameter of 125 mm) that were deployed and transported 

with Group C in spring 2012 (Table 2.2).  Among the passive tracer groups, mean displacements 

increased linearly with effective runoff (R2=0.98; Figure 2.7c; Table 2.3) as 

〈𝑋〉 = 0.0009𝑉𝑒 − 64          (2.6) 

2.4.4.2 Predictions of cumulative displacements passed on individual step statistics 

In addition to using effective runoff volumes to predict mean cumulative displacements 

(Equation 2.6), the mean cumulative displacements of the passive tracer groups were also 
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employed to evaluate whether they could be reasonably predicted from discharge records (Figure 

2.1e) by using the discharge-dependent probabilities of transport and mean step lengths that were 

recorded by the active tracers (Sections 2.4.1, 2.4.2).  The mean cumulative displacement for 

each passive tracer group was predicted as a summation over time: 

〈𝑋〉 = ∑ 〈𝑋𝑄𝑝〉
𝑑=𝑑1
𝑑=𝑑0            (2.7) 

where Qp represents the discharge in each gauge interval (15 minutes gauging station data),  

〈𝑋𝑄𝑝〉 is the mean displacement estimated for each discharge interval, and d0 and d1 are a tracer 

group’s respective start and end dates (times).  For a given discharge interval, the mean 

displacements were calculated as 
〈𝑋𝑄𝑝〉 =

𝑛𝑡,𝑄𝑝〈𝐿𝑡,𝑄𝑝〉+𝑛𝑟,𝑄𝑝〈𝐿𝑟,𝑄𝑝〉

𝑛𝑡𝑡𝑡𝑡𝑡
         (2.8) 

where 𝑛𝑡,𝑄𝑝represents the number of tracers that were transported with mean step lengths of 

〈𝐿𝑡,𝑄𝑝〉 in each discharge interval; 𝑛𝑟,𝑄𝑝 represents the number of tracers that were resting with 

mean step lengths (〈𝐿𝑟,𝑄𝑝〉) of 0 m; and 𝑛𝑡𝑡𝑡𝑡𝑡 represents the total number of tracers.  The number 

of transported tracers in Equation 2.8 was calculated with the probability of transport as 

𝑛𝑡,𝑄𝑝 = 𝑝𝑡,𝑄𝑝 × 𝑛𝑡𝑡𝑡𝑡𝑡           (2.9) 

Combining Equations 2.7, 2.8 and 2.9 gives  

〈𝑋〉 = ∑ 𝑝𝑡,𝑄𝑝 〈𝐿𝑡,𝑄𝑝〉
𝑑=𝑑1
𝑑=𝑑0             (2.10) 

Combining Equations 2.3, 2.5 and 2.10 gives the final empirical relation:  

〈𝑋〉 = ∑ �0.2𝑄𝑝2 − 0.65𝑄𝑝 + 0.52�𝑑=𝑑1
𝑑=𝑑0   for Qp>2 m3s-1     (2.11) 

Because Equation 2.11 is based on transport relations from the larger active tracers, the 

〈𝑋〉 prediction was then crudely adjusted to the smaller passive tracers by simply multiplying 

predictions from Equation 2.11 by 1.4, which is the ratio of the mean cumulative displacement 

observed in the passive tracer Group C to the mean displacement of the active tracers over the 

same time interval (Section 2.4.4.1).   

Applying the step-scale model to the discharge records predicted cumulative 

displacements for passive (and active) tracer groups reasonably well (Figure 2.7d).  Excluding 
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passive tracer Groups B and G, the predicted 〈𝑋〉 results were on average only 15% lower than 

the observations.  The mean prediction for Group B was 65% higher than its corresponding 

measurement, while the mean prediction for Group G was 48% lower than its measurement.  

Discussion regarding the deviations between the predictions and observations are presented in 

Section 5.2.1.2. 

2.5 Discussion 

 The combination of active and passive tracers enabled the collection of new bedload 

transport data during transporting events in a snowmelt-dominated mountain stream.  To our 

knowledge, the study’s active tracer data span longer cumulative distances, times, and more 

sequential events than previous studies that directly measured transport probabilities and rest 

times [e.g., Schmidt and Ergenzinger, 1992; McNamara and Borden, 2004; May and Pryor, 

2013] (Table 2.1).  The following sections explore implications of the calculated transport 

statistics in the context of hydrologic forcing (Section 2.5.1), anomalous dispersion (Section 

2.5.2) and field techniques (Section 2.5.3).   

2.5.1 HYDROLOGIC FORCING 

2.5.1.1 Transport likelihoods and length scales 

The quantitative relations found between discharge and probabilities of transport and step 

lengths (Figures 2.3c and 2.5e; Equations 2.3 and 2.5) expand on the previous active tracer 

studies that were performed in mountain streams but were unable to quantify hydrologic trends 

in the bedload transport records [Schmidt and Ergenzinger, 1992; McNamara and Borden, 

2004].  To our knowledge, the only previous probabilities of transport calculations in relation to 

hydrologic forcing also showed a clockwise hysteresis pattern, and was based on the transport 

records of active tracers that were deployed before a dam release in a larger, flatter river [May 

and Pryor, 2013].  The observed increase in step lengths with discharge (Figure 2.5e) is also 



 
 

23 

supported by similar finding from previous flume experiments using steady flow and uniform 

grain size [e.g., Lee and Hsu, 1994; Niño et al., 1994; Lajeunesse et al., 2010], and described 

qualitatively in active tracer studies [Schmidt and Ergenzinger, 1992; Chacho et al., 1996].   

Hysteresis is often observed in coarse bedload transport [e.g., Moog and Whiting, 1998; 

Hassan and Church, 2001; Gaeuman, 2010], but underlying mechanisms remain poorly 

understood.  In a different study that also took place in Reynolds Creek, McNamara and Borden 

[2004] tracked four radio-embedded tracers and similarly noted differences in transport 

probabilities between rising and falling hydrograph limbs.  Based on the active tracers deployed 

in the present study (Figure 2.4), the largest difference between rising and falling limb transport 

probabilities occurs where tracers are starting from unstable positions and being worked into the 

bed (events 1 and 2).  The complex hysteresis measured for event 11 defies easy explanation 

with the current dataset, but hysteresis over discharges of 2 to approximately 4 m3s-1 is broadly 

similar to the same discharge range during events 5, 6, 7 and 8.  In a series of equilibrium flume 

experiments, Wong et al.  [2007] found that variation in bed elevations increased with Shields 

stress.  In Reynolds Creek, bed fluctuations may have also increased with discharge such that 

there was more scour on the rising limb (i.e., increased in mobility) and preferential burial on the 

falling limb (i.e.  decreased mobility). 

2.5.1.2 Predicting mean transport distances 

The incorporation of hydrologic forcing into a step-scale model (Figure 2.7d; Equation 

2.11) illustrates the use of active tracers as predictive tools for transport [e.g., Chacho et al., 

1994; Habersack, 2001; McNamara and Borden, 2004].  The similarities between the observed 

mean cumulative displacements of the passive tracers with the predictions from the step-based 

model using the active tracer relations (Figure 2.7d) demonstrates that the hydrologic-dependent 

transport relations captured by the active tracers (Equations 2.3 and 2.5) reasonably 

approximated the mean behavior of the other tracer populations during their unique hydrographs 
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(Figure 2.1e).  The close but often under prediction may be due to i) the probability of transport 

relation represented by Equation 2.3 did not take into account the initially enhanced mobility due 

to deployment (Figures 2.4 and 2.6a), and ii) Equation 2.3 did not differentiate between slight 

differences in transport over the hydrographs’ rising and falling limbs (Figure 2.4).  The  initial 

enhanced mobility due to deployment may also in part explain why the predicted 〈𝑋〉 for Group 

B was 65% lower than the observed; the winter 2011 season only had three short rain-on-snow 

bedload transporting events (each <6.5 hrs) compared to the spring seasons which had series of 

diurnal snowmelt events.   

In contrast, Equation 2.11 predicted a mean cumulative displacement for Group G that 

was 50% larger than observed.  This over prediction may in part be due to the starting positions 

of the Group G tracers in spring 2012 being significantly downstream of the spatial extent of the 

other tracer groups (by several kilometers).  These downstream reaches tended to have modestly 

lower gradients and wider widths compared the upstream reaches where active tracers were 

transported.  As a result, the dependence of transport probability and average step length on 

discharge that is represented in Equations 2.3 and 2.5 may be less appropriate for approximating 

Group G’s mean behavior.   

2.5.1.3 Rest time distributions 

A significant finding from the present work is that rest times measured continuously over 

multiple days and transporting events in a natural mountain channel followed a heavy-tailed 

power law distribution (Figure 2.6; Table 2.3).  When discharge exceeded the 2 m3s-1 threshold 

during event 4 through 11 (total of 325 hours), the rest times ranged from 20 minutes to 187.5 

hours and resulted in a rest time scaling exponent was α=0.67.  This scaling is in good agreement 

with the α exponents of 0.85 and 0.68 that were found respectively in 130 minute and 90 minute 

laboratory experiments that measured rest times from approximately 10 seconds to 15 minutes 

[Martin et al., 2012].  These somewhat idealized flume runs used a narrow grain size 
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distributions of fine gravels and constant water discharge and sediment feed rate to drive scour, 

transport and deposition.   

The Reynolds Creek data showed a similar scaling heavy-tailed exponent to Martin et al.  

[2012]  in a natural field settings with spatial heterogeneity, broad channel bed grain size 

distributions, and timescales spanning multiple transporting events over days to weeks.  This is 

an important result because previous field studies have reported rest times fit by thin-tailed 

exponential or gamma distributions [Schmidt and Ergenzinger, 1992; Chacho et al., 1994; 

Habersack, 2001; McNamara and Borden, 2004].  In contrast, neither exponential nor gamma 

distributions provide statistically acceptable fits for the Reynolds Creek rest time distributions, 

which is seen in Figure 2.6 with the indication that thin-tailed distributions (which would occur 

for α≥2 and the t-2 slope scale bar) are not consistent with the data.   

Thin-tailed rest time distributions may have been found in previous active tracer field 

studies due to methodological and technological limitations (Table 2.1).  For example, several 

previous studies used embedded radio transmitters that recorded motion and rest with antennas 

mounted along the banks of a river reach.  This configuration limited the duration of 

measurements and the distances over which clasts were allowed to travel (approximately a 

couple hundred meters) before needing to be redeployed at the beginning of the monitoring reach 

again [Schmidt and Ergenzinger, 1992; Habersack, 2001].  Another field study that found thin-

tailed rest time distributions collected rest times from a single tracer that was tracked for a couple 

hours [Chacho et al., 1994]; the authors followed the tracer downstream by walking along stream 

banks with a mobile antenna.  Enhanced mobility right after redeployment and before particles 

were worked into the bed may have led to a larger amount of short rest times in these data.   

While most rest times reported in the previous active tracer studies were less than two 

hours, the four tracers monitored by McNamara and Borden [2004] in Reynolds Creek had 

longer rest durations of up to 19 hours that were also fit by a thin-tailed gamma distribution.  

While McNamara and Borden [2004] did not redeploy tracers, snowmelt runoff in the year of 

their study was minor (brief peak Q=3.6 m3s-1), which resulted in the tracers having relatively 
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short cumulative displacements (between 7 m and 55 m).  These few tracers also showed 

thresholds of motion to be between 1.9 m3s-1 and 2.2 m3s-1, which is consistent with the 

constraint of 2 m3s-1 based on the presented study’s active tracer records.  The relatively low 

number of tracers deployed and gaps caused by radio noise may have also affected the 

distributions of rest time reported by McNamara and Borden [2004].  Due to the season’s low 

flows, the tracers may also have never been sufficiently incorporated into the active transport 

layer of the bed, which could have also influenced the distributions of rest times.  In present 

study, only the hydrograph events 4 through 11 were used in the rest time scaling analysis 

(Figure 2.6) so that the clasts were worked into the bed at least to some extent (effects of 

deployment are further explored in Section 2.5.3).   

Variable discharge as well as particle stability on the bed influenced the scaling 

exponents for the individual event hydrographs (Figures 2.4 and 2.6).  At low discharges (less 

than approximately 3 m3s-1), the active tracers were far more mobile in hydrograph events 1 and 

2 than in subsequent events (Figure 2.4).  While an empirical discharge threshold of motion of 2 

m3s-1 was found for events 4 through 11 (Figures 2.3c and 2.4), events 1 and 2 had significant 

movement when discharge was larger than 1 m3s-1 (Figure 2.4).  Scaling exponents for these two 

initial events with higher tracer mobility were α=0.55 and α=0.64, respectively (Figure 2.6a; 

Table 2.3).  In contrast, hydrograph events 3 to 8 and event 10 had statistically lower values of α 

ranging from 0.24 to 0.43.  Relatively higher (i.e.  less heavy-tailed) α values indicate that a 

systematically greater proportion of rest times were shorter rather than longer, consistent with 

more mobile grains.  The comparatively higher α rest exponents and larger hysteresis associated 

with hydrograph events 1 and 2 are interpreted to have been caused by the enhanced initial 

mobility of the active tracers as they were gradually worked into progressively more stable 

locations in the bed.  Conversely, rest time distributions were heavier-tailed for hydrograph 

events 3 to 10 with the comparable discharge ranges likely due to being in more stable positions.   

More fundamentally, variable discharge can influence rest time scaling, both among and 

within transporting events.  Event 2 had a peak discharge of approximately 4 m3s-1, which was as 
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high as event 4 and exceeded the peak discharges of events 3 and 5 through 10 (Figure 2.4).  

While clasts no doubt continued to be incorporated into more stable positions by these 

subsequent flows, the peak flow of event 2 peak flow was likely sufficient to move most clasts 

into relatively stable positions for flows of equal or lesser magnitude (i.e., events 3 to 10).  As 

such, the heavier-tailed scaling for events 3 to 10 (mean α=0.35±0.04, where the uncertainty in 

this case is standard error; Figure 2.6) may reflect the rest time distributions of relatively stable 

particles at comparatively low transport probabilities (Figure 2.4). 

Event 11 had a much higher peak discharge than the previous events (peak Q=7.9 m3s-1), 

during which the rest time distribution became somewhat less heavy-tailed with α=0.72 (Figure 

2.6d; Table 2.3).  This higher discharge also coincided with higher transport probability 

magnitudes (Figure 2.4o), and the 2 m3s-1 discharge threshold of motion was more greatly 

exceeded than in previous events.  Additionally, event 11 probably had on average more scour 

and fill and thicker active layers than the earlier events.  These factors likely contributed to the 

distributions of rest times during event 11 to be less heavy-tailed than the previous lower flow 

events, which suggests that rest time scaling exponents can vary with discharge.  Nonetheless, 

the rest scaling exponent α=0.67 from events 4 through 11 (Figure 2.6e) is interpreted as the 

study’s most appropriate measure of rest time scaling exponents because the measurement period 

spanned multiple events over a range of discharges, and excluded the first three events with 

enhanced mobility immediately following deployment. 

While all of the regressions used to constrain α rest exponents are statistically robust 

(R2>0.9 and p-values less than 0.05; Table 2.3), the log-log plots in Figure 2.6 also show 

deviations in scaling from straight-line (i.e., power law) scaling.  Factors related to the timing of 

the snowmelt hydrographs may have influenced the variability in local scaling.  For example, the 

rest distribution from event 4 through 11 (Figure 2.6e) includes a clustering of rest times at 

approximately 20 to 25 hours.  Further examination of these individual data points indicate that 

they correspond to several clasts that moved near the peak discharge during an event, then 

remained at rest until being re-entrained near a similar peak discharge during the subsequent 
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event.  Hence, the grouping of these data points can be explained by the diurnal cycle of peak 

snowmelt discharges approximately every 20 to 25 hours. 

2.5.2 ANOMALOUS DISPERSION 

A fundamental motivation for constraining step lengths, cumulative displacements and 

rest times (Figures 2.5 and 2.6) is to better understand particle dispersion in mountain streams 

like Reynolds Creek.  Previously, field and flume bedload studies have measured or assumed 

thin-tailed step length or cumulative displacement distributions with heavy-tailed rest times to 

constrain either γ dispersion scaling exponents (𝜎𝑋2 ∝ 𝑡𝛾) or α rest time scaling exponents 

(𝑃(𝑡𝑤 > 𝑡)~𝑡−𝛼)  [Martin et al., 2012, 2014; Phillips et al., 2013].  These studies employed an 

hypothesis proposed by Weeks et al.  [1996] that clasts being transported in one direction 

(downstream) with thin-tailed step lengths and heavy-tailed rest times should have a γ dispersion 

exponent and α rest exponent that are related as γ=3-α.  The finding of thin-tailed cumulative 

displacements in this study (Figures 2.5b, 2.7a,b) were similar to previous passive tracer studies 

[e.g., Hassan et al., 2013; Phillips et al., 2013].  If the Weeks et al.  [1996] hypothesis is valid 

when applied to the Reynolds Creek data, then the active tracer’s thin-tailed displacements 

(Figures 2.5c,d) with heavy-tailed 𝛼 (Figure 2.6; Table 2.3) suggest that γ should be larger than 

1, predicting superdiffusive dispersion.  For the best estimate α =0.67 (Figure 2.6e; Section 

2.5.1.3), the corresponding γ is predicted to be 2.33.  To our knowledge, the only other studies 

that evaluated exceedance probabilities of rest time distributions as a means of constraining 

dispersive scaling exponents used equilibrium flume experiments lasting approximately two 

hours, which also showed similar heavy-tailed rest time scaling to the Reynolds Creek datasets 

[Martin et al., 2012, 2014] (Section 2.5.1.3).  Although Martin et al.  [2012, 2014] were not able 

to directly measure grain dispersion over durations longer than a couple seconds, the γ=3-α 

relation applied with their rest time scaling results also suggested superdiffusive γ values 

(ranging from approximately 2 to 2.32).  In a tropical flash-flood river, Phillips et al.  [2013] also 
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found superdiffusive scaling with a γ exponent of 1.9 by measuring the displacements of passive 

bedload tracers over time.   

Repeat surveys of the tracer’s positions in Reynolds Creek were not sufficient for the 

direct calculation of γ from the cumulative transport distributions over time.  Unlike Phillips et 

al.  [2013], the active tracers could not be surveyed several times during the spring 2012 flood 

events, and only two of the passive tracer populations could be resurveyed twice, i.e., not enough 

for reliable 𝜎𝑋2 ∝ 𝑡𝛾 analyses.  However, rather than an increase in displacement variances over 

time as observed by Phillips et al.  [2013], the displacements of the same passive tracer 

population during spring 2011 (Group A) and during spring 2011 through spring 2012 (Group F) 

showed a slight decrease (Table 2.2).  This decrease coincided with the spring 2011 flows 

moving these passive tracers into flatter and wider channel areas that were multiple kilometers 

downstream from the other groups.  In the Reynolds Creek study length and perhaps others, it is 

possible that downstream changes in channel morphology to lower gradient reaches could cause 

particle migration rates to decrease, which could influence dispersion measurements.  For the 

particular 2 km reach where active tracers were transported, morphological control seems 

unlikely as the D50 did not change significantly and the plane bed morphology was fairly 

consistent.  Nonetheless, spatial changes in grain size and reach morphology over the study 

length may complicate the ability to compare dispersion results over time within a channel and 

among channels.  An example of a more complicated field setting is the Allt Dubhaig, where the 

dispersion of passive tracers were tracked over a 3.5 km section to examine effects of significant 

morphological changes on transport; over the study length, bed gradients decreased from 0.02 to 

0.0002 m/m and surface D50 decreased from 100 mm to 20 mm  [Ferguson and Wathen, 1998; 

Ferguson et al., 2002].  Resulting cumulative displacements of passive tracers in the Allt 

Dubhaig indicated a slow-down of tracer displacements over time, though explicit γ calculations 

were not made. 
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2.5.3 FIELD METHODS 

In addition to representing new field-based transport statistics, the results from the active 

tracers also motivate several recommendations related to methods for future tracer studies.  The 

first point relates to the use of stationary RFID antennas and the deployment of tracers in 

upstream of the antennas.  This study is one of the first to successfully use RFID antennas 

mounted directly onto the bed of a mountain channel to record the timing and identification 

numbers of passing RFID tracers.  Previously efforts include floating RFID antennas to estimate 

bridge scour [Moustakidis et al., 2010], and stationary antennas installed onto dams in torrents in 

Switzerland to constrain bedload transport (Schneider, pers.  comm.).  The observed 

improvement in antenna read efficiency to 88% by allowing the tracers to disperse over several 

hundreds of meters upstream of the antennas (Section 2.3.4.2) illustrates how staggering tracer 

deployment locations can significantly decrease tag interference and improve antenna 

performance.   

Tracer mobility was also observed to decrease rapidly after deployment, particularly after 

the somewhat larger event 2 hydrograph (Figures 2.4b,c).  These findings support previous 

bedload tracer studies that assumed tracers deployed loosely on a bed were moved into more 

stable positions after the first few transporting events [e.g., Habersack, 2001; Liedermann et al., 

2013; Phillips et al., 2013].  If the first few events following tracer deployment are short in 

duration and relatively low in magnitude, then the stable positions that clasts achieve shortly 

after deployment are likely on the surface or near the surface.   

Additionally, the tracer records also provide insights into interpretations of cumulative 

displacements depending on the characteristics of the first few hydrographs following tracer 

deployment.  The Reynolds Creek results suggest that, if the initial transporting events following 

deployment are relatively low and not extremely long, then displacements that occur during this 

initial period can be relatively minimal compared to the cumulative displacements over longer 

times.  For example, the effective runoff volumes during transporting events 1 and 2 in spring 
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2012 (using 1 m3s-1 as a threshold; Figure 2.4b) were comparable to that of the short rain-on-

snow events that moved passive tracer Group B (Figure 2.1e), which had a corresponding mean 

displacement of only 70 m (i.e., less than a tenth the active tracers’ mean displacement during all 

of spring 2012; Table 2.2).  Conversely, the effective runoff for the peak event in spring 2012 

(Figure 2.4l) was over ten times larger than Group B’s.  Hence, if event 11 had occurred 

immediately following the deployment of the active tracers, then the initial, deployment-based 

instabilities affecting cumulative displacement may have been more pronounced.   

The importance of the Event 11 observation  is i) field studies with objectives related to 

the transport of active tracers would ideally monitor the movement and rest of active tracers over 

a series of events, rather than only over the first event following deployment, and ii) 

interpretations of cumulative displacements from active or passive tracers deployed loosely 

should be approached cautiously when the first few flood events following deployment are 

extremely large and have long durations.  The latter implication also applies to the deployment 

method of replacing local grains with tracers as this disturbs the stability of the bed to an 

unknown degree [e.g., Bradley and Tucker, 2012].  Monitoring over multiple events could help 

decrease reporting artificially low transport thresholds, artificially high magnitudes of 

probabilities of transport, and artificially disparate hysteresis trends between rising and falling 

limbs (e.g., Figures 2.4b,c versus Figures 2.4d through 4o). 

2.6 Conclusions 

Accelerometer and RFID-embedded tracer clasts were used to collect rare data of coarse 

bedload transport statistics in a mountain stream.  Increases in discharge were observed to 

correspond to increases in probabilities of transport, step lengths and cumulative displacement 

lengths.  Average step lengths and cumulative displacement distributions were well fit by thin-

tailed gamma distributions.  Mean transport distances of the passive RFID tracers were well 

predicted using hydrograph records and accelerometer-based relations of step lengths and 

probabilities of transport with respect to discharge.  Rest times measured over individual and 
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multiple bedload transporting events were described by heavy-tailed power law distributions, 

with scaling exponents that varied somewhat with event magnitude.  The combination of heavy-

tailed rest times with thin-tailed displacements also suggests that dispersion was superdiffusive.  

Monitoring particle motion in natural fluvial systems remains a crucial component in validating 

stochastic transport models that are based on theoretical or laboratory experiments.  Expansion of 

similar tracking efforts in other channels remain warranted to further advance field datasets that 

can, ultimately, be used together to evaluate the universality of bedload transport dynamics 

among differing channel regimes.  
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Tables 

Table 2.1: Comparison of several previous active tracer studies 

Channel Lainbach, 
Germany Phelan Creek, Alaska Waimakariri River, 

New Zealand 
Reynolds Creek, 
Idaho 

Trinity River, 
California 

 Type Single thread Single thread Braided Single thread Single thread 

 Discharge regime monitored Rain storms Snowmelt Rain storms Snowmelt Rain-on-snow and 
dam releases 

 Slope (m/m) 0.006-0.057 0.05 0.004 0.026 0.002 
 D50 (mm) 290-805 66 52 84 47 

  Study [Schmidt and 
Ergenzinger, 1992] [Chacho et al., 1994] [Habersack, 2001] [McNamara and 

Borden, 2004] 
[May and Pryor, 
2013] 

Study scope 

 Tracer type Single-frequency 
radio-tracers 

Motion-sensing radio 
transmitters 

Motion-sensing radio 
transmitters 

Motion-sensing radio 
transmitters 

Motion-sensing radio 
transmitters 

 Monitored length (m) 120 400 NR 55 800 

 Number of transporting 
events studied 

6 transporting 
events 

One 2 hr period & one 
4.5 hr period 5 transporting events 2 months of 

monitoringa 3 transporting events 

 Number of  
monitored tracers 

Up to 7 depending 
on event 1 per event Up to 16 depending on 

event 4 Between 13 and 26 

 Tracer sampling interval 10 sec 1 sec <30 sec 30 sec 15 min 
Rest periods 

 
Number of  
observed rest intervals 47b 18 b NR NR NA 

 
Distribution, including rest 
between events NR NR Exponential Gamma NA 

  Distribution, excluding rest 
between events Exponential Exponential NR Exponential NA 

Step length 

 
Number of observed motion 
intervals 63b 29b NR NR NA 

 Distribution Exponential NR Gamma NR NA 

 Mean step length 19.3 m b 77 to 181 diameters 
Reported for only 2 
tracers during 1 event,  
150 & 120 diameters 

NR NA 

  
Probability of transport as a 
function of hydrologic 
forcing 

NA NA NA NA 
Clockwise hysteresis 
for one of the dam 
releases 

NR: Not reported 
NA: Component not part of the study 
a: Conducted in spring 1999, an extremely low snowmelt season for the watershed’s record [Northwest Watershed Research Center, 2015]. 
b.  Represents the total number of measurements compiled from all of the individual events monitored 
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Table 2.2: Summary of tracer deployments and displacement lengths 

Parameters include peak discharges (Qpeak), excess runoff volumes (Ve), time exceeding a 
threshold of 2 m3s-1 (te) and the number of tracers deployed (n). 

 
 
  

Monitoring 
period 

Qpeak 
(m3s-1) 

Ve  
(m3) 

te 
(days) Group n 

Recovery 
rates 

Displacement distancesa 
Mean± 

stand.  errorb 
(m) 

Median 
(m) 

Maximum 
(m) 

Variance 
(m2) 

Coeff.  of 
variationc 

April to July 
2011 8.2 3.55x106 43.1 A 204 75% 3560±123 3760 6440 2.31x106 0.43 

October 2011 to 
March 2012 4.5 3.19x104 0.5 B 98 83% 71±7 52.1 210 3.81x103 0.88 

March to June 
2012 7.9 1.07x106 15.5 

C 1024 51% 1020±41 885 3350 5.24x105 0.71 
Dd 154 90% 554±46 431 2570 2.89x105 0.98 
Ee 81 83 % 989±102 1030 2180 3.56x105 0.61 

Active 
tracers 73 47% 728±111 678 2140 3.09x105 0.76 

April 2011 to 
June 2012 8.2 4.66x106 59.1 Ff 204 83 % 4160±115 4330 7840 2.20x106 0.36 

October 2011 to 
June 2012 7.9 1.10x106 16.0 Gg 98 52% 1025±97 904 2710 4.40x105 0.64 
a.  Excluding filled Tollgate pool area (Section 2.3.4.1).  b.  standard error=standard deviation/(sample number)0.5.  c.  Coefficient 
of variation=standard deviation/mean.  d.  Initial locations were where Group A tracers were found in the previous survey; many 
of which were several kilometers downstream the other Spring 2012 tracers.  e.  Initial locations were where Group B tracers 
were found in the previous survey, near the deployment sites of Group C.  f.  Same population of tracers deployed in Group A, 
but displacements accrued over Spring 2011 through Spring 2012.  g.  Same population as the tracers deployed in Group B, but 
displacements accrued over Winter 2011 through Spring 2012. 
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Table 2.3: Regression fitting results 

The resulting equations and their respective 95% confidence bounds of regression parameters 
(indicated by ±) and goodness of fit parameters of R2 and p-values.  The reported p-values in the 
regression analyses represent the result of testing the null hypothesis of no correlation at the 
significance of 0.05; a  p-value less than 0.05 rejects the null hypothesis, suggesting that 
correlation between observations and regression is statistically significant.  All regression 
evaluations were performed in Matlab. 
Section Relation Regression results 

2.4.1 Probability of transport as a 
function of water discharge 
(Figure 2.3c) 

• Equation 2.3: pt=0.036Q-0.06 for Q≥2m3s-1; R2= 0.66; 95% confidence bounds: 
a=0.036±0.01; b=-0.06±0.06 

2.4.2 

 

Cumulative displacements of 
active tracers versus total 
periods of motion (Figure 2.5a) 

• Xi/Di=55Ntotal,i+1275; R2= 0.61; 95% confidence bounds: a=55±20; b=1275±1550 
• Xi (m)=6.9Ntotal,i+160; R2= 0.61; 95% confidence bounds: a=6.9±2.5; b=160±195 

Probability density functions 
for cumulative distances of 
active tracers (Figure 2.5c) 
 

• 𝒇(𝑿𝒊/𝑫𝒊) = (𝑿𝒊/𝑫𝒊)𝟏.𝟑−𝟏𝒆−�𝑿𝒊/𝑫𝒊� 𝟒𝟒𝟒𝟒⁄

𝟒𝟒𝟒𝟒𝟏.𝟑𝜞(𝟏.𝟑)
; p-value=0.0004<0.05; standard error bounds: α 

=1.3±0.32; β=4550±1410 

• 𝒇(𝑿𝒊) = 𝑿𝒊𝟏.𝟑−𝟏𝒆−𝑿𝒊 𝟓𝟓𝟓⁄

𝟓𝟓𝟓𝟏.𝟑𝜞(𝟏.𝟑)
; p-value=0.004<0.05; standard error bounds: α =1.3±0.33; 

β=565±175 

Probability density function of 
active tracer step lengths 
(Figure 2.5d) 

• 𝒇(〈𝑳𝒊∗〉/𝑫𝒊) = (〈𝑳𝒊
∗〉/𝑫𝒊)𝟐.𝟕−𝟏𝒆−�〈𝑳𝒊

∗〉/𝑫𝒊� 𝟑𝟑⁄

𝟑𝟑𝟐.𝟕𝜞(𝟐.𝟕)
; p-value=0.002<0.05; standard error bounds: α 

=2.7±0.76; β=36±11 

• 𝒇(〈𝑳𝒊∗〉) = 〈𝑳𝒊
∗〉𝟐.𝟕−𝟏𝒆−〈𝑳𝒊

∗〉 𝟒.𝟔⁄

𝟒.𝟔𝟐.𝟕𝜞(𝟐.𝟕)
; p-value=1.8x10-5<0.05; standard error bounds: α =2.7±0.76; 

β=4.6±1.4 

Step lengths as a function of 
discharge (Figure 2.5e) 

• 〈𝑳𝒊∗〉/𝑫𝒊 = 𝟑𝟑〈𝑸𝒎,𝒊〉 − 𝟒𝟒; R2= 0.63; 95% confidence bounds: a=36±2.1; b=41±7 
• Equation 2.5: 〈𝑳𝒊∗〉 = 𝟓.𝟔〈𝑸𝒎,𝒊〉 − 𝟖.𝟖; R2= 0.71; 95% confidence bounds: a=5.6±16; 

b=8.8±61 

2.4.3 

 

Rest times distribution scaling 
(t- α) for rest exceeding 0.3 
hours.  (Figure 2.6)  

• E1: α=0.55±0.04; 
R2=0.96; p-value= 2E-26 

• E2: α=0.64±0.05; 
R2=0.96; p-value= 1E-29 

• E3: α=0.24±0.02; 
R2=0.95; p-value= 1E-19 

• E4: α=0.31±0.02; 
R2=0.97; p-value= 2E-22 

• E5: α=0.25±0.04; R2=0.92; 
p-value= 3E-13 

• E6: α=0.29±0.04; R2=0.91; 
p-value= 4E-12 

• E7: α=0.40±0.04; R2=0.94; 
p-value= 2E-21 

• E8: α=0.43±0.05; R2=0.94; 
p-value= 5E-20 

• E9: α=0.56±0.04; R2=0.96; 
p-value= 1E-28 

• E10: α=0.31±0.05; R2=0.94; 
p-value= 4E-11 

• E11: α=0.72±0.04; R2=0.96; 
p-value= 1E-63 

• E4 to E11: α=0.67±0.02; 
R2=0.97; p-value= 1E-161 

2.4.4 

 

Mean cumulative RFID 
displacements as a function of 
excess runoff (Figure 2.7c) 

• Equation 2.6: 〈𝑿〉 = 𝟎.𝟎𝟎𝟎𝟎𝑽𝒆 − 𝟔𝟔; R2= 0.98; 95% confidence bounds: 
a=0.0009±0.00015; b=64±350 

• 〈𝑿/𝑫〉 = 𝟎.𝟎𝟎𝟎𝑽𝒆 − 𝟏𝟏𝟏; R2= 0.98; 95% confidence bounds: a=0.013±0.002; 
b=187±5518 
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Figures 

Figure 2.1: Study site and hydrographs 

(a) Reynolds Creek study area with tracer deployment and recovery locations indicated on 1 m 
airborne LiDAR [Northwest Watershed Research Center, 2009].  The most downstream 
deployment site is approximately 70 m upstream of the Tollgate gauging station (USDA-ARS 
Station 116b).   
(b) Several reach images along the study length; mobile RFID antennas also shown.   
(c) Flood frequency plot based on the water year’s maximum annual water discharges (Qmax) 
from daily records at the USDA-ARS Tollgate gauge (1966 to 2014; [Northwest Watershed 
Research Center, 2015]).  Over the 49 year record, discharges were evaluated at Tollgate every 
0.1 to 24 hrs before 1994, and every 15-minutes starting in 1994.   
(d) Effective runoff (Ve) representing the hydrograph volume exceeding the 2 m3s-1 discharge 
threshold (Section 2.4.1) for each water year on record versus recurrence interval.   
(e) Hydrograph during the study period with corresponding tracer groups indicated in chart 
below (see Table 2.2 for tracer group descriptions).  Light vertical lines on hydrograph indicate 
when tracer groups were deployed and dark lines indicate when groups were surveyed.  The 
discharges are calculated every 15-minutes and the 2 m3s-1 discharge threshold is also indicated 
(discussed in Section 2.4.1). 
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Figure 2.2: Method images of active and passive tracers and stationary antennas 

(a) Coarse gravel, RFID tag (specs: 32 mm, HDX and 134.5 kHz) and protective silicon sleeve.   
(b) Distribution of the b-axes, or intermediate grain diameters (D) for local and tracer clasts.   
(c) Left: HOBO Pendant G data logger (58x33x23 mm).  Right: plastic RFID disk (specs: 30 
mm, HDX and 134.5 kHz).   
(d) Sites of tracer deployment locations.  The monitored stationary antenna reach was 
immediately downstream the most downstream deployment location. 
(e) Site schematic of the stationary RFID antenna reach with antennas spaced 15 m apart.  
Antennas are submerged in image but locations indicated by the red rectangles. 
(f) Portion of an installed antenna in plastic tubing that was staked directly onto the bed.  The 
antennas consisted of insulated 10 AWG stranded copper wire that was housed in ½-inch 
diameter tubing to protect the wire. 
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Figure 2.3: Transport statistics over time and discharge 

(a) Water discharge (Q) of Reynolds Creek during spring 2012 season with events indicated 
above the respective diurnal peaks [Northwest Watershed Research Center, 2015].  Results from 
the first few events following deployment (events 1 through 3) are presented in Figure 2.4.   
(b) Probabilities of transport (pt) with time (Equation 2.1) over events 4 through 11.   
(c) Probabilities of transport evaluated per 0.25 m3s-1 discharge bin (Equation 2.2) from events 4 
through 11.  Linear regression results of Equation 2.3 (R2=0.66) are presented in Table 2.3.  The 
durations of each discharge bin (tQ) less than 4 m3s-1 exceeded 4 hours while the durations of 
each discharge bin larger than 6 m3s-1 were less than 0.5 hours; these durations are indicated by 
vertical lines in the right subplots. 
(d) Count of the passing passive tracers recorded by the stationary antennas during events 4 
through 11. 
(e) Relative frequency of the passive tracers recorded by the antennas versus discharge.  Relative 
frequency was calculated as the number of tracers recorded per discharge bin divided by the total 
number of tracers read. 
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Figure 2.4: Transport probabilities over individual events 

Hydrographs of the individual events are presented in the first column [Northwest Watershed 
Research Center, 2015], the active tracers’ probabilities of transport (pt) versus discharge in the 
subsequent columns.  In event 11 (Figure 2.4o), the extents of previous subpanels are indicated 
by the dashed boundaries. 
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Figure 2.5: Periods of motion, cumulative displacements and step lengths 

(a) Cumulative displacement distances (Xi) of the active tracers over spring 2012 normalized by 
tracer diameters (Di) versus total number of motion periods detected (Nt,i).  Inset: Xi versus Nt,i.  
Linear regression equations for plots are presented in Table 2.3 (both result in R2=0.61). 
(b) Exceedance probability plots of active tracers’ Xi/Di (open square) and mean step lengths 
(〈𝐿𝑖∗〉) normalized by Di (filled circles).  Average step lengths could only be calculated using 
Equation 2.4 for tracers with complete season-long records.  Inset:  Exceedance probability plots 
of Xi (open square) and mean step lengths (〈𝐿𝑖∗〉) (filled circles). 
(c) Probability density function (PDF) of active tracers’ Xi/Di and Xi (inset) with gamma fits 
(p<0.05; equations and goodness of fit metrics presented in Table 2.3). 
(d) PDF for results for 〈𝐿𝑖∗〉/D and 〈𝐿𝑖∗〉 (inset) with gamma fits (p<0.05; equations and goodness 
of fit metrics presented in Table 2.3). 
(e) Average discharge when each tracer was mobile (<Qm,i>) versus 〈𝐿𝑖∗〉/D (R2=0.63; Table 2.3) 
and 〈𝐿𝑖∗〉 (inset; R2=0.71; Table 2.3).  Tracers shown were transported at least once after event 2.   
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Figure 2.6: Rest times of accelerometer tracers over individual transporting events 

The distributions of the active tracers’ rest times (tr) during spring 2012.  Exceedance 
probabilities of the rest times were calculated using the methods employed in laboratory 
experiments of Martin et al.  [2012, 2014] whereby the total sample number used in the 
exceedance probability calculations included counts of immobile clasts.  The hydrograph event 
IDs correspond to those shown in Figure 2.4.  Scaling exponents are fit for each subplot for tr 
larger than 0.3 hour and goodness of fit metrics are included in Table 2.3. 

  



 
 

42 

Figure 2.7: Cumulative displacements of passive tracers 

(a, b) Exceedance probabilities of the RFID tracer groups’ cumulative displacement distances 
(Xi) for the passive tracers.  Groups are separated for clarity due to the similarity of groups C, D 
and G. 
(c) Tracer group’s mean cumulative displacements (〈𝑋〉) versus effective runoff (Ve).  Here, 
effective runoff represents the flow volume when 2 m3s-1 was exceeded (discussed in Section 
4.1).   
(d) Observed mean displacements versus predicted mean displacements from applying Equation 
2.11 to the 15-minute hydrographs of each tracer groups.  The theoretical line of observations 
equal to predictions is also shown. 
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CHAPTER 3: FIELD-BASED INSIGHTS INTO THE TRANSPORT, DEPOSITION AND 

RE-ENTRAINMENT OF BEDLOAD CLASTS 

3.1 Introduction 

Understanding bedload transport, deposition and re-entrainment is necessary to predict 

stability and adjustments of coarse alluvial channels.  Knowledge of when clast transport begins, 

when and where transport ceases, and when transport begins again can provide constraints on 

estimates of the extents to which channels are affected by flood events.  However, field 

challenges associated with monitoring bedload have made characterizing the transport, 

deposition and re-entrainment of particles difficult, particularly in steep, alluvial channels.  This 

study aims to address existing observational gaps by employing new bedload monitoring 

techniques. 

A common means of estimating bedload transport rates is to apply empirical transport 

formulas [e.g., Torizzo and Pitlick, 2004; Thompson and Croke, 2008; Wilcock et al., 2009].  

These formulas are typically framed with transport being dependent on a given flow strength 

compared to the critical flow strength compared to a threshold flow strength assumed to be 

capable of initiation bedload motion.  If all sizes of bedload clasts are capable of being entrained, 

then conditions of equal entrainment mobility prevail [e.g., Ashworth and Ferguson, 1989; 

Wilcock and Crowe, 2003; Yager et al., 2012a].  If transport is more size selective, i.e., more 

dependent on grain size, then the thresholds increase with increasing grain size.  The choice of 

the thresholds employed in empirical formulas is important in predicting bedload rates because 

nonlinear relations of flow strength and bedload cause predictions to be sensitive to errors related 

to threshold assumptions [e.g., Church et al., 1991; Lenzi et al., 2006b].  Such errors can in turn 

cause predictions to differ by orders of magnitude from field constraints [e.g., Gomez and 

Church, 1989; Barry et al., 2008]. 

Constraining transport thresholds is challenging in mountain streams because field data 

are often unavailable and, when available, can vary depending on the methods employed.  When 
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field data are unavailable, a critical flow value is commonly assumed for the channel’s median 

grain size clasts [e.g., Howard et al., 1994; Andrews and Nankervis, 1995; Torizzo and Pitlick, 

2004].  However, these assumed values are typically not adjusted for morphological factors that 

influence threshold conditions, such as local bed slope [e.g., Mueller et al., 2005; Lamb et al., 

2008; Scheingross et al., 2013].  When field data are available for a reach, thresholds are 

frequently inferred from bedload grab samples, bedload deposited in bedload traps over a range 

of discharges or a posteriori, by measuring the largest caliber of bedload clasts that moved [e.g., 

Church and Hassan, 2002; King et al., 2004; Lenzi et al., 2006a; Mao et al., 2008].  Limitations 

of these techniques include small sampler size compared to the coarse bedload transported and 

data only being collected during relatively low stages [e.g., Buffington and Montgomery, 1997; 

Ashiq and Bathurst, 1999; Bunte et al., 2004]. 

Once a bedload particle begins to be entrained, it can roll, saltate or slide over a channel 

bed for short or extremely long distances before coming to rest [Ch. 2; Drake et al.  1988; 

Schmidt and Ergenzinger, 1992; Habersack, 2001].  Stochastic dispersion models interpret these 

displacements as a reflection of bedload grains moving and depositing in a random nature due to 

the multitude of compounding probabilistic channel factors affecting particle transport, such as 

local turbulence, varied hydrographs and burial and exposure sequences [e.g., Einstein, 1937; 

Ganti et al., 2010; Hill et al., 2010].  However, studies have shown that motion and deposition of 

bedload clasts are not entirely stochastic and can be affected by the morphologies the clasts 

move through.  As indicated above, entrainment thresholds can be influenced by local bed slopes 

[e.g., Mueller et al., 2005; Lamb et al., 2008; Scheingross et al., 2013].  The deposition of a 

small population of painted tracers qualitatively suggested that the deposition may preferentially 

correspond to lower sloped reaches [Laronne and Carson, 1976].  Bedload deposition has also 

been linked to the spacing of morphological features such as pools and bars [e.g., Emmett et al., 

1983; Kondolf and Matthews, 1986; Pyrce and Ashmore, 2003].  Despite these indications that 

morphologies influence deposition, more quantitative examinations of channel features with 
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respect to transport and deposition are still needed to confirm their relevance for dispersion 

models.   

Following deposition, it is expected that for a particle to be re-entrained, the flow strength 

must be equal to or exceed the conditions of when the clast came to rest.  This expectation is 

largely based on the pioneering work of Hjulström [1935], who performed flume experiments 

with uniform grains.  He found that the velocities required to entrain a particle from rest were 

higher than those required to keep transporting the particle, and that velocities that allowed for 

deposition were lower than those required to entrain and transport a particle.  Factors that may 

contribute to this also being observed in mixed-grain settings may include the structure of the 

bed surface adjusting after deposition, becoming stronger due to imbrication or clustering and 

thus requiring larger forces to subsequently remove a clast from the bed.  [e.g., Hassan and 

Church, 2000; Papanicolaou et al., 2003; Strom et al., 2004].  Another factor may be related to 

burial after deposition, because scour at larger thresholds may ultimately re-entrain the particle 

[Wong et al., 2007].  Turowski and Rickenmann [2011] used bedload impact sensors in steep 

alluvial streams and found that the discharge corresponding to the end of nominal transport for 

an event was equal to or exceeded the discharge corresponding to the initiation of transport in a 

subsequent event.  Due to the scarcity of field-based datasets, additional testing is needed to 

evaluate the universality of Hjulström’s [1935] theory. 

New datasets are presented here that characterize the transport, deposition and re-

entrainment of bedload clasts in a mountain stream.  The fundamental questions that motivate the 

analyses are i) To what extent are transport thresholds dependent on bedload grain size? ii) How 

well does the utilization of single thresholds predict transport conditions? iii) Are transport and 

deposition correlated with particular stream morphologies and hydraulic conditions? and iv) Are 

flow conditions when a clast is re-entrained always equal to or larger than at deposition? These 

questions are evaluated by analyzing records of particle mobility that were collected over length 

scales spanning from several clast diameters to multiple kilometers, and over time scales 

spanning from less than a second to multiple seasons.  Applied technologies included passive 
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tracers that were gravels and cobbles embedded with Radio Frequency Identification (RFID) 

tags, active tracers that were cobbles embedded with accelerometers, in-stream RFID antennas 

and numerical flow modeling using the Hydrologic Engineering Centers River Analysis System 

(HEC-RAS) [U.S. Army Corps of Engineers, 2010].  Airborne digital elevation models (DEMs) 

and HEC-RAS computations were used to characterize channel morphologies and hydrologic 

conditions such as bed slopes, widths, flow depths, shear stresses stream power and flow 

velocity. 

This chapter is organized as follows.  First, the study area and methods of tracer 

deployment, stationary antennas, and flow modeling are described.  Then, results show the flow 

conditions corresponding to when tracers were transported past the RFID antenna reach, flow 

conditions and channel morphologies when and where the tracers deposited, and comparisons of 

discharges when tracer deposition and re-entrainment occurred.  The subsequent discussion 

section explores the significance of identifying thresholds of motion over time and compares the 

finding with to more traditional field techniques, and examines the implications of the findings 

that width and slope influence transport and that thresholds covered a range of conditions. 

3.2 Methods 

3.2.1 FIELD SITE 

Reynolds Creek is a snowmelt dominated tributary to the Snake River and is located in 

the Owyhee Mountains in southwest Idaho.  The USDA-Agricultural Research Service (USDA-

ARS) manages Reynold Creek and the surrounding land as part of the Reynolds Creek 

Experimental Watershed.  Reynolds Creek cuts through granitic and basaltic formations [Ross 

and Forrester, 1958; Seyfried et al., 2001].  The 11 km study area was located downstream of 

the tributaries that deliver the snowmelt discharge to the channel (Figure 3.1a).  Over the study 

area, channel morphologies were mostly plane-bedded interspersed with pool-riffle, step-pool 

and unorganized sections of large boulders (Figures 3.1b-d). 
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Pebble counts collected at 11 reaches along the study length [Wolman, 1954] were used 

to calculate grain size distributions (Figures 3.1a,f).  Median diameters (D50) over the sites 

ranging from 42 mm to 90 mm.  The beds consisted predominantly of gravels and cobbles, many 

of which were composed of vesicular basalt.  Samples of local vesicular surface grains had mean 

densities of 2400 kg m-3 [Ch. 2].  Samples of local non-vesicular clasts had mean densities of 

2700 kg m-3. 

Channel geometries were constrained with measurements from the field and DEMs.  

Bankfull widths measured during the field campaigns had a median of 5.10 m, mean of 5.42 m, 

standard deviation of 1.73 m and standard error of 0.12 m (among 208 cross sections across the 

study area).  The extents of bankfull widths were estimated based on the stream-to-floodplain 

transition when floodplains were present [e.g., Nolan et al., 1987].  At cross sections with one 

bank consisting of bedrock cliffs, widths were measured based on the elevation of the estimated 

floodplain on the opposing bank.  Cross sections of channel elevation were extracted every 2 m 

over the study area using a 1-m DEM based on airborne LiDAR over the watershed  [Northwest 

Watershed Research Center, 2009].  The 2009 LiDAR was acquired in November when stream 

flow was low or absent (shown as background of Figure 3.1a).  Longitudinal profiles extracted 

from the DEM indicated that channel slopes averaged over moving windows of approximately 

two channel widths (i.e., 10 m) varied from approximately 0.005 to 0.07 m/m (mean 0.026 m/m; 

median 0.022 m/m; Figure 3.1g).   

Discharges were calculated every 15 minutes at the “Tollgate” gauging station (USDA-

ARTS gauge ID 116b) (Figure 3.2) [Northwest Watershed Research Center, 2015].  Bedload 

transport was monitored over the spring 2011, winter 2011 and spring 2012 snowmelt seasons.  

The spring 2011 snowmelt lasted the longest of the monitored seasons, with high flows spanning 

several months.  The winter 2011 season consisted of several short, rain-on-snow floods.  The 

discharges at Tollgate gauging station were similar to the gauge that was 18 km downstream 

(USDA-ARS gauge ID 36), indicating that the discharge along the entire study length could be 

modeled with the Tollgate records.   
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3.2.2 BEDLOAD TRACERS 

The bedload-tracer technologies utilized in the study are only briefly summarized here 

because they have been detailed previously [Ch. 2].  Passive tracers consisted of natural and 

artificial gravel and cobble particles that were embedded with RFID tags, similar to other 

bedload tracer studies [e.g., Nichols, 2004; Bradley and Tucker, 2012; Phillips et al., 2013].  The 

intermediate diameters of the passive tracers ranged from 45 mm to 160 mm, with a mean of 60 

mm.  The artificial clasts consisted of concrete with mean densities of 2300 kg m-3, comparable 

to local vesicular basalt clasts (Section 3.2.1).  The tracers were deployed in April 2011, October 

2011 and March 2012 (Figure 3.2).  Tracer positions were later located using mobile RFID 

antennas in low flows during July 2011, March 2012 and June 2012 and locations were recorded 

with GPS units (accuracies of ±1 m to ±4 m).  Flows were unsafe for wading when the 

discharges exceeded approximately 0.3 m3s-1. 

Active tracers made of artificial cobbles embedded with Hobo 3G accelerometers and 

RFID tags were also deployed in March 2012 and recovered in July 2012.  Comparable to the 

artificial RFID tracers and local vesicular clasts, the mean densities of the accelerometer clasts 

were also 2300 kg m-3.  The study conducted by Tremblay et al.  [2010] assisted in the design of 

the active tracers.  The accelerometers performed as motion sensors during diurnal transporting 

events, logging accelerations every 10 or 15 minutes throughout the season (example shown in 

Figure 3.3).  The sampling intervals of the accelerometers were prescribed by their limited 64 kb 

memory and the necessity to record motion over several months of potential snowmelt flows. 

The passive and active tracers that were deposited in an excavated pool were excluded 

from the channel morphology analyses presented below.  In September 2011, the USDA-ARS 

excavated and area just upstream of the Tollgate gauge to improve the gauge’s performance.  

The excavation removed approximately 230 m3 of bulk sediment and vegetation (mostly 

willows) that had accumulated in the gauge pool and adjacent point bars just upstream of the 

Tollgate gauge (Zane Cram, personal communication).  After the excavation, the pool continued 
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to create a backwater effect and the area adjusted significantly during subsequent flood events.  

The DEM used to build the HEC-RAS models (Section 3.2.4) no longer represented the pool 

area. 

3.2.3 STATIONARY RFID ANTENNAS  

In addition to the active tracers, three in-stream RFID antennas also collected bedload 

transport data during the spring 2012 flood events (Figure 3.4).  Stationary antennas were 

installed directly onto the channel bed at a reach that was approximately 70 m upstream from the 

Tollgate gauging station.  Multiple antennas were installed to minimize the risk of missing a 

passing tracer [Ch. 2].  The slope over the 30 m reach was 0.018 m/m.  Bankfull discharge was 

estimated as 2.5 m3s-1 at the reach using a series of time lapse pictures over a range of discharges.  

It is expected that this approximates bankfull discharge at most sites along the stream [discussed 

further in Ch. 4]. 

Each of the antennas recorded the time that passive tracers passed through the reach, at a 

resolution of 0.2 seconds.  Antennas spanned the channel width and were spaced 15 m apart from 

each other.  Due to non-systematic drifts in the time settings of the antenna data loggers (< 

5min), tracer velocities through the reach could not be calculated.  One antenna dislodged during 

the final and peak event of April 26, 2012 due to local bed and bank scour.  The flume 

experiments of Schneider et al. [2010] assisted in the design of the stationary RFID antenna 

system used in this study.   

3.2.4 HEC-RAS FLOW MODELING 

3.2.4.1 Model description and computations 

In order to complement the field datasets, HEC-RAS was employed to better understand 

the hydraulic conditions when tracers were transported and deposited.  HEC-RAS is a flow 

modeling tool developed by the U.S. Army Corps of Engineers.  Cross-sectional geometries over 



 
 

50 

a 14 km length of channel were extracted from the 1-m DEM every 2 m using HEC-GeoRAS, an 

add-in extension for ArcGIS, and then imported into HEC-RAS [e.g., Snyder, 2010].  The 11 km 

study area was located in the middle of the 14 km model, such that there were additional 1.5 km 

lengths of channel modeled in HEC-RAS at both the upstream and downstream boundaries of the 

study area.   

Steady-state flow conditions were modeled with discharges from 0.3 to 21 m3s-1 in 0.1 

m3s-1 intervals (208 models).  For each modeled discharge (Qm), HEC-RAS computed the 

energy-balanced water surface elevations at each cross section by using a step backwater method 

based on energy losses (determined by contraction and expansion coefficients) and resistance 

(determined by Manning’s n) [e.g., Goode and Wohl, 2010].  The upstream and downstream 

boundary conditions were based on critical depths (discussed further in Section 3.2.4.2), and 

expansion and contraction coefficients were kept to their respective default values of 0.3 and 0.1, 

similar to other mountain stream models that have utilized HEC-RAS modeling [e.g., Chin, 

2003; Thompson and Croke, 2008; Scheingross et al., 2013].   

Form drag was specified with a Manning’s n of 0.05 over the upland section based on a 

previous bedload study in the section [McNamara and Borden, 2004]. A Manning’s n  of 0.04 

was used over the slightly flatter and finer-textured section downstream, based on comparisons 

to other natural streams [Chow, 1959].  The Manning’s n values were kept constant with 

discharge due to a lack of water surface measurements for calibrations.  In any case, the results 

were fairly similar whether the constant Manning’s n was set as 0.04, 0.05 or 0.06.  For example, 

when the model was run with n=0.04 versus n=0.06 over the upland section, the computed flow 

depths only differed on average by 0.04 m when Qm=2 m3s-1 and by 0.05 m when Qm=4 m3s-1.  

Additionally, computed widths differed only by 0.75 m when Qm=2 m3s-1 and by 0.79 m at 4 

m3s-1 when Qm=4 m3s-1. 

Flow strength was characterized for each modeled discharge based on shear stress (𝜏𝑄𝑚), 

unit discharge (𝑞𝑄𝑚), stream power (Ω𝑄𝑚) and flow velocity (𝑈𝑄𝑚) calculations in HEC-RAS 
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[Brunner, 2010].  The HEC-RAS solution of the water surface elevations determined the cross 

section’s hydraulic radius (𝑅𝑄𝑚), which was then used to calculate cross-sectional averaged shear 

stress as 

𝜏𝑄𝑚 = 𝜌𝜌𝑅𝑄𝑚𝑆𝑄𝑚,𝐸𝐸𝐸           (3.1) 

where 𝜌 is the density of water (assumed to be 1000 kg m-3), 𝑔 is acceleration due to gravity 

(9.81 m s-2) and 𝑆𝑄𝑚,𝐸𝐸𝐸  is the HEC-RAS calculated slope of the energy grade line.  Unit 

discharge was computed with wetted width (𝑤𝑄𝑚) as 
𝑞𝑄𝑚 = 𝑄𝑚

𝑤𝑄𝑚
,            (3.2) 

Stream power was calculated in HEC-RAS as 

Ω𝑄𝑚 = 𝜏𝑄𝑚𝑈𝑄𝑚           (3.3) 

3.2.4.2 Performance based on field constraints 

The HEC-RAS computed Froude numbers (Fr) suggested that the models approximated 

natural flow conditions.  The non-dimensional Froude number represents the ratio of inertial to 

gravitational forces as 

𝐹𝐹 = 𝑈𝑄𝑚
�𝑔ℎ

           (3.4) 

where h is average cross-sectional flow depth.  In agreement with expectations for steep and 

rough channels [e.g., Jarrett, 1984; Grant, 1997], the HEC-RAS models indicated that 

subcritical flow conditions (Fr<1) dominated the study area during the floods.  HEC-RAS 

predicted supercritical flow only at a few, short lengths.  For example, at the highest discharges 

modeled, supercritical conditions persisted only over an average of three consecutive cross 

sections (i.e., 6 m).  The 1.5 km model buffers both upstream and downstream of the study area 

caused model flow conditions over the study area to be unaffected by any boundary conditions 

chosen for the models, such as forcing a critical depth at the boundaries (Fr=1), normal depths 

from local bed slope (i.e.  uniform flow) or a range of water surface elevations.   



 
 

52 

Water surface elevations were unavailable to calibrate the model’s Manning n roughness 

coefficients.  However, comparisons of 208 measured and modeled flow widths at the lower 

discharges indicated that the roughness values chosen approximated field conditions.  For 

example, the widths estimated during field surveys and from the model at Qm=1 m3s-1 differed on 

average by only 0.58 m with a standard error of 0.15 m (median was 0.42 m).  The average 

measured width was 5.42 m (Section 3.2.1). 

3.2.4.3 Application in transport and deposition analyses 

This study employed HEC-RAS computations for three sets of analyses.  First, HEC-

RAS was used to simulate transport conditions for the times when the tracers passed the 

stationary antennas.  The discharges corresponding to the antenna records were used to calculate 

corresponding shear stresses and unit discharges.  Since the antennas also recorded the unique 

identification numbers of each RFID tag and the tracer diameters (𝐷𝑖) were known, shear stresses 

were normalized with grain weight per area to calculate Shields numbers (𝜏𝑖,𝑄𝑚
∗ ) corresponding 

to transport: 

𝜏𝑖,𝑄𝑚
∗ = 𝜏𝑄𝑚

(𝜌𝑠−𝜌)𝑔𝐷𝑖
           (3.5) 

where 𝜌𝑠 represents the density of sediment.  The densities of passive and active artificial tracers 

were approximated as 2300 kg/m-3 and the densities of the natural passive tracers were 

approximated as 2650 kg/m-3 (Section 3.2.2).   

The second analysis that utilized the HEC-RAS computations characterized the channel 

sections where passive tracers deposited, compared to sections without tracer deposition.  The 

deposition locations were based on the tracer locations observed during the three field surveys.  

Due to the variation in channel morphology over the study area and the accuracy of the GPS 

units (± 1 m to ±4 m; Section 3.2.2), the channel was discretized into 10 m sections 

(approximately two average channel widths).  HEC-RAS calculations were averaged over each 

10 m section to compare areas with and without tracers.  Flow was modeled at stages of 2 m3s-1 



 
 

53 

and 4 m3s-1 because the times and flows when the tracers deposited were unknown.  The 2 m3s-1 

and 4 m3s-1 discharge conditions were chosen as constraints because critical entrainment 

threshold at one reach was estimated as 3 m3s-1 (detailed below in Section 3.3.1). 

The third use of HEC-RAS models involved the deposition conditions of the active 

tracers.  Unlike the passive tracers, the times when the active tracers were last deposited were 

well constrained by the last record of movement for each accelerometer.  Deposition positions 

and discharges when deposition occurred (Qdep) were used to constrain the shear stresses in 

HEC-RAS at the deposition place and time, and to calculate corresponding Shields numbers 

(𝜏𝑑𝑑𝑑,𝑖
∗ ).  Similar to the deposition analyses for the passive tracers, the shear stresses were 

averaged over 10 m. 

3.3 Results 

In the following section, thresholds of motion are first shown based on records of 

transport from the passive tracers crossing the stationary antenna reach.  Results related to 

channel morphology and hydrologic conditions during deposition are subsequently presented 

based on passive and active tracers datasets.  Comparisons of discharges during re-entrainment 

are then compared to those of deposition using the active tracers. 

3.3.1 TRANSPORT AND HIDING FUNCTIONS 

The times when the passive tracers crossed the stationary antennas were recorded during 

eleven diurnal snowmelt events (Figure 3.5a).  The peak discharges during events 2 through 11 

exceeded the 2.5 m3s-1 bankfull estimate.  The first event had a peak discharge of 2.5 m3s-1, the 

second through tenth events had peak discharges ranging from 3.2 m3s-1 to 3.9 m3s-1 and the 

eleventh event had a peak discharge of 7.9 m3s-1.  The HEC-RAS computed Shields numbers and 

unit discharges associated with tracers passing the antennas were compared to relative grain size 

(Di/D50) by fitting hiding functions to the datasets (Figures 3.5b-e; discussed further below).  The 

relative grain sizes of the antenna recorded tracers ranged from 0.75 to 2.4 for the artificial 
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tracers and 1.62 and 2.73 for the natural tracers.  Fewer records exist for the natural tracers 

because most of the tracers deployed prior to the spring 2012 season were artificial [Ch. 2].  For 

the artificial tracers, the Shields numbers and unit discharges corresponding to the initial three 

events included values that were slightly lower than the subsequent events (Figures 3.5 b,c). 

Hiding functions were constrained by fitting power law regressions to the minimum 

Shields numbers (𝜏𝑐,𝑖
∗ ) and unit discharges (𝑞𝑐,𝑖) for each tracer size (Figures 3.5b-e; Table 3.1) 

[e.g., Buffington and Montgomery, 1997].  Hiding functions can have the form of   

𝜏𝑐,𝑖
∗ = 𝜏𝑐,50

∗ � 𝐷𝑖
𝐷50
�
𝑏
           (3.6) 

and 
𝑞𝑐,𝑖 = 𝑞𝑐,50 �

𝐷𝑖
𝐷50
�
𝑐
          (3.7) 

where 𝜏𝑐,50
∗  and 𝑞𝑐,50 are the critical Shields number and unit discharge for the D50 sized grains, 

respectively.  Values of b=-1 and c=0 indicates equal entrainment mobility. Events 4 through 11 

were used for these calculations to minimize effects of initial deployment [detailed in Ch. 2].   

The hiding functions were fit separately for the artificial and natural tracers due to the 

different densities.  Despite the differences in densities, the regressions for the hiding functions 

of the two tracer groups were within the uncertainty of each other.  The hiding functions for the 

artificial tracers resulted in 𝜏𝑐,50
∗ =0.072±0.002 and b= -0.965±0.061 (correlation p-value<0.05; 

R2=0.97) and 𝑞𝑐,50=0.184±0.012 and c=0.109±0.156 (correlation p-value>0.05; R2=0.06; RMSE: 

0.025).  Uncertainty here represents 95% confidence bounds around the parameters, and 

correlation p-value<0.05 indicates that the correlation between the observations and the 

regression fits were statistically significant at the 95% confidence level.  The 𝜏𝑐,𝑖
∗  function was 

significant, but the 𝑞𝑐,𝑖 function was not. The discharges corresponding to the 𝜏𝑐,50
∗  and 𝑞𝑐,50 for 

the artificial tracers are 3.1 m3s-1 and 3.0 m3s-1, respectively.  The hiding functions for the natural 

tracers resulted in 𝜏𝑐,50
∗ =0.064±0.007 and b= -1.130±0.160 (correlation p-value<0.05, R2=0.95) 

and 𝑞𝑐,50=0.250±0.074and c= -0.312±0.440 (correlation p-value>0.05; R2=0.17; RMSE: 0.11).  

Again, the 𝜏𝑐,𝑖
∗  function was significant, but the 𝑞𝑐,𝑖 function was not. The discharges 
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corresponding to the 𝜏𝑐,50
∗  and 𝑞𝑐,50 for the natural tracers are 4.8 m3s-1 and 5.9 m3s-1, 

respectively.  Combining the minimum records from the artificial and natural records, the hiding 

functions resulted in 𝜏𝑐,50
∗ =0.072±0.003 and b= -1.175±0.081 (correlation p-value<0.05; 

R2=0.95) and 𝑞𝑐,50=0.100±0.117and c=0.184±0.010 (correlation p-value>0.05, R2=0.06; RMSE: 

0.14). 

3.3.2 DEPOSITION 

3.3.2.1 Channel morphologies and flow conditions at deposition locations 

Sections with and without tracer deposition were compared based on local bed slope and 

HEC-RAS computed wetted width, flow depth, shear stress, stream power and flow velocity.  

While these parameters clearly are inter-related, they were chosen for comparison in case the 

combination of values (e.g., stream power, Equation 3.3) or separation (e.g., shear stress and 

velocity) affected results.  Due to the variability in distributions of tracers along the channel and 

in average bed slopes over hundreds of meters (e.g., the flatter section upstream from the 

Tollgate gauge and the steeper section just downstream the Tollgate gauge, Figure 3.1g), the 

study area was delineated into seven zones denoted A through G (Figure 3.6a; Table 3.2).  The 

zones were delineated so that each zone contained more than 30 deposited tracers and had 

lengths of less than 1 km.  The criteria of mean tracer concentrations caused the analysis to cover 

approximately 6 km of channel and led to a few sections between zones not to being evaluated.   

The average slope of each zone was calculated with linear regression using the bed 

elevations over the entire zone.  Within each zone, local bed slopes (i.e.  not the whole-zone 

averages) were then calculated with linear regression over 10 m moving windows to better 

capture smaller features such as pools, steps and plane-bedded reaches that were not resolved in 

the zonal slope calculations.  Within each zone, channel slopes were relatively uniform.  Zone C 

had the steepest overall slope (0.060 m/m), and zones A and G had the flattest slopes (0.02 m/m).   
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Each 10 m section within the seven zones was evaluated as either having or not having 

tracer deposition.  Within each zone, the corresponding bed slope, wetted widths, flow depths, 

shear stresses, stream powers and flow velocities were compared between the sections with and 

without tracers.  Changes in these six parameters with respect to the upstream section were also 

compared to assess whether deposition was affected by longitudinal differences, e.g., assessing if 

the downstream sections of expansion corresponded to deposition (dw/dx, where dx=10 m).  

Additionally, changes in the parameter with respect to the discharge at each section were 

calculated to determine whether deposition was influenced by differences in how the hydraulic 

conditions varied, e.g., determining if the sections where the wetted widths receded more rapidly 

as discharge fell corresponded to deposition (dw/d𝑄𝑚, where d𝑄𝑚=4m3s-1 – 2 m3s-1).  The 17 

parameters explored in the deposition analysis are listed in Table 3.3 and Table 3.4. 

Of the parameters evaluated, channel width was the only one that showed statistically 

significant differences between the sections with and without tracer deposition for the majority 

of zones (Table 3.3; Figures 3.6b,c).  Table 3.3 lists all resulting p-values basef on 

nonparameteric Wilcoxon Rank-Sum tests.  Table 3.4 summarizes the percent differences 

between in the medians of each parameter, comparing sections without tracers to sections with 

tracers.  Both the 2 m3s-1 and 4 m3s-1 models indicated that tracers deposited at wider sections 

within zones A, B, C and G (Rank-Sum p-value<0.05, where p-value <0.05 indicates a rejection 

at the 95% confidence of the null hypothesis that the samples were from the same population).  

Rank-sum comparisons within zones A, B and G also showed that tracers deposited in sections 

where the wetted widths receded more rapidly as discharge fell (i.e., dw/ d𝑄𝑚 results).  While 

not statistically different from the sections without tracers (i.e., Rank-Sum p-value >0.05), zones 

A, B, C and G also had median slopes, shear stresses, stream powers and velocities that were 

lower than the medians of sections without tracers.  This results was generally the case for the 

other zones as well.   
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3.3.2.2 Flow conditions at time of deposition 

The spring 2012 flows transported the active tracers 10 m to 2140 m downstream of their 

deployment sites.  The last record of motion for these tracers constrained the timing of deposition 

and corresponded to discharges ranging from 3.0 m3s-1 to 6.9 m3s-1.  The modeled shear stresses 

for these deposition discharges and locations ranged from 30 N m-2 to 270 N m-2.  Respective 

Shields numbers (𝜏𝑑𝑑𝑑,𝑖
∗ ) were between 0.016 and 0.12 (median of 0.060) (Figures 3.7a,b).  The 

hiding function based on the stationary antenna records (Section 3.3.1) did not predict the 

deposition of the active tracers well (Figure 3.7c; correlation not significant, p-value>0.05).  The 

D50 values used in comparing active tracers with the hiding function were approximated by the 

grain size distribution of the nearest point count (Figure 3.1f).  The active tracers analyzed were 

those not deposited in the excavated pool area (discussed in Section 3.2.2).  Tracers were only 

used in this analysis that had full records of motion throughout the season, to be certain that the 

last motion recorded corresponded to its final location.   

3.3.3 RE-ENTRAINMENT 

The records from the active tracers also enabled comparisons of flow conditions at re-

entrainment to those at deposition.  While the locations of the tracers were not known throughout 

the season, the timing of deposition and re-entrainment were known from the indications of 

motion and rest from the accelerometers.  Hence, discharges rather than location-dependent shear 

stresses were employed for this analysis.  The discharge when each tracer came to rest during 

one flood event (Qdep) was compared to the discharge when the tracer was next re-entrained by a 

subsequent event (Qre).  In this manner, a series of re-entrainment to deposition discharges ratios 

(Qre/Qdep) were calculated for each tracer over the spring 2012 season.  A Qre/Qdep ratio exceeded 

one when a tracer was re-entrained from a resting position at a discharge that was higher than the 

discharge when the tracer previously deposited into the position. 
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Over the season, the re-entrainment discharges varied from 0.5 to 2.5 times the respective 

deposition discharges (Figures 3.8a,b).  The median of the Qre/Qdep ratios for the 30 records 

corresponding to the first three, mid-March events was 1.13 (mean ± standard error of 

1.22±0.06).  The median of the Qre/Qdep ratios for Events 4 to 11 (70 records) was 1.04 (mean ± 

standard error of 1.14±0.05).  The distributions of the Qre/Qdep ratios during Events 1-3 were not 

statistically different from Events 4-11 (Wilcoxon Rank-Sum p-value>0.05).  However, the 

distribution of the deposition discharges during Events 1-3 were significantly lower than during 

Events 4-11 (Wilcoxon Rank-Sum p-value<0.05).  The deposition discharges were likely lower 

during Events 1-3 due to the initial movements of the tracers into more natural positions from the 

deployment positions [Ch. 2].  For Events 4 through 11, deposition discharges varied from 1.2 

m3s-1 to 3.9 m3s-1 and re-entrainment discharges varied from 1.6 m3s-1 to 7.9 m3s-1 (Figure 3.8c).   

3.4 Discussion 

3.4.1 HIDING FUNCTIONS 

The hiding functions based on the Shields numbers of the antenna records had b-

exponents near -1 (Equation 3.6; Figures 3.5b,d; Table 3.1), indicating near equal entrainment 

mobility conditions.  This finding suggests that the thresholds capable of entraining the range of 

tracer sizes (0.75 to 2.74 times the D50 of the reach) were similar, i.e.  not significantly grain size 

dependent over this clast size range.  It is important to note that the near equal entrainment 

mobility results are restricted to bedload clasts of similar sizes to the tracers recorded.  With the 

advent of RFID tags now as small as 8 mm (e.g., a Di/D50 ≈=0.1 for the antenna reach) instead 

of the 23 mm smallest tags used in this study, future studies can employ stationary antennas and 

passive tracers to investigate hiding functions over a wider range of grain sizes.   

Due to the unique method of the tracers and antenna system employed to compute the 

hiding functions, the hiding functions are calculated again with the method of flow competence 

to compare results to previous efforts.  The flow competence technique is typically performed by 
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collecting grab samples over a range of shear stresses, and for each shear stress measured, 

comparing the maximum grain size in the grab samples with their respective Shields number 

[e.g., Ashworth and Ferguson, 1989; Marion and Weirich, 2003; Lenzi et al., 2006a].  Like the 

records of the tracers crossing the antennas, the grab samples also represent clasts that have 

already been entrained and, thus, approximates critical conditions.  Yager et al.  [2012a] also 

applied the flow competence concept to constrain hiding functions by evaluating the D84 of 

passive tracers that became mobile during an event (D84-m, determined by surveys before and 

after floods), and comparing the D84-m /D50 values to the respective Shields numbers using each 

event’s peak shear stress.  Due to the lack of grab samples available from Reynolds Creek, this 

latter method used by Yager et al.  [2012a] is applied to the tracer-antenna dataset to compare 

flow competence results.  Only the artificial tracers are examined with this method due to the 

limited number of the natural tracers.  The events compared occurred after the initial mid-March 

events and each included records of at least 10 tracers (i.e., events 4, 5, 6, 7, 8, 9 and 11; Figure 

3.5a).   

The hiding function based on the tracer flow competence method showed 𝜏𝑐,50
∗  and b-

exponent values that were within the uncertainty range of those found with by fitting minimum 

Shields numbers for each tracer grain size (Figure 3.9).  The flow competence values of 𝜏𝑐,50
∗  and 

b were 0.075±0.022 and -0.88±1.02, respectively (where uncertainty represents 95% confidence 

bounds; R2=0.50; not significant correlation p-value=0.11).  The 𝜏𝑐,50
∗ - D84-m /D50 point for event 

11 plotted well above the others and contributed to the large uncertainties.  This discrepancy of 

the event 11 point was likely due to the D84-m not being representative of the largest bedload 

clasts that moved during the highest flows, the peak of which was approximately twice those of 

the previous events.  Excluding event 11, the flow competence hiding function values were 

similar but have lower uncertainty (𝜏𝑐,50
∗ =0.073±0.005 and b=-0.90±0.19; R2=0.98; significant 

correlation p-value<0.05).  This new analysis demonstrates that the tracer-based flow 

competence method employed by Yager et al.  [2012a] can reasonably approximate the threshold 

of motion conditions.  However, as evident by the outlier from event 11, careful consideration 
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into choice of tracer sizes should be exercised to avoid under estimating the largest mobile grain 

sizes, which is a common concern with flow competence-based methods [e.g., Ashworth and 

Ferguson, 1989; Ferguson et al., 1989; Wilcock, 1992]. 

The near equal entrainment threshold results, supported by both the antenna and flow 

competence techniques that calculated b and c exponents (Equations 3.6 and 3.7), were also 

generally consistent with the previous studies that collected bedload samples in similar sloped 

channels (resulting in b-exponent values closer to -1 than 0, i.e., -1<b<-0.75; Table 3.5) [e.g., 

Andrews, 1983; Ferguson et al., 1989; Parker, 2008].  Most of these previous studies used the 

flow competence method based on grab samples.  Some of these b-exponents in previous studies 

may be even closer to -1 than reported because flow competence methods potentially 

underestimate maximum grain sizes due to small sampler sizes and short sample durations.  For 

example, Ferguson [2005] found that both b and c exponents based on flow competence methods 

falsely indicated that bed behavior was more size selective than actual conditions.  Values of b- 

and c-exponents estimated for reaches having steeper gradients (S≥0.08 m/m) with immobile 

boulders showed more size selective behavior than that observed in the antenna reach (b-

exponents between -0.78 and -0.62; Table 3.5) [e.g., Marion and Weirich, 2003; Mao et al., 

2008].  This difference in the steeper channels is due in part to the wider range of grain sizes and 

tendency for the coarser beds to rarely become fully mobile [e.g., Yager et al., 2012a].  While 

there were some sections in Reynolds Creek with large, immobile boulders, most reaches in the 

study area had plane beds consisting predominantly of gravels and cobbles.  Thus, it is expected 

that near equal entrainment mobility approximated many of the areas across the study area for 

the coarse bedload grains (i.e., similar to the tracers). 

3.4.2 CHANNEL MORPHOLOGY 

The results from combining tracer positions with flow modeling over multiple kilometers 

(Section 3.3.2.1; Tables 3.3 and 3.4) represent a new approach in quantifying the effects of 

channel morphology on transport.  Previously, field studies have concluded that channel 
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morphology plays a role in determining particle displacements [e.g., Kondolf and Matthews, 

1986; Hassan et al., 1992; Pyrce and Ashmore, 2003], but technological limitations have 

restricted these efforts from being able to systematically address this hypothesis.  Differences in 

the results amongst the seven delineated channel zones suggest that the degree to which bedload 

grains are influenced by local channel morphology can vary spatially.  The demonstrated 

influence of width on the majority of zones further indicates that transport may not be solely 

stochastic process in natural channels [e.g., Einstein, 1950].   

Field observations collected during the stream surveys support the interpretation that 

channel width can affect bedload transport in steep channels.  I observed that the plane-bed 

sections confined by bedrock sidewalls or thick willow stands typically had alluvial beds with 

few sediment accumulation features such as point bars (e.g., Figures 1b,c).  It is expected that the 

confined channel conditions in steep streams can cause increases in water velocities that in turn 

decrease the prevalence for depositional areas compared to the flatter morphologies of lowland 

rivers, which often have extensive depositional features such as large scale-point bars 

[Montgomery and Buffington, 1997].  The median velocities in zones A, B, C and G were 

calculated as slightly lower at the sections with tracers than without (6% to 15% depending on 

zone; Table 3.4).  The slightly less confined, wider sections of the study area still had plane-bed 

morphology; however, these sections also had notably more sediment patches.  The deposition 

patches in these wider sections consisted of gravel and cobble deposits on the order of 1 to 2 m2 

and small point bars ranging from approximately 5 to 15 m in length (e.g., Figures 3.1d,e).   

The lack of statistical significance being found for the majority of parameters (except 

width) in the majority of zones does not preclude the potential that these parameters play a role 

in transport.  The statistical results were influenced in part by the lower sample sizes available 

for the sections without tracers (Table 3.2).  Although statistically not significant in the model-

based analysis of flow parameters, prior study qualitatively suggested that clasts may show 

preferential deposition in lower-sloped reaches [Laronne and Carson, 1976].  
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The influence of slope was also investigated in this study using the active tracers and 

previous datasets because the hiding function from the antenna records failed to predict the 

deposition conditions of the active tracers at other reaches having differing slopes (Figure 3.7c).  

Values of 𝜏𝑐,50
∗  must first be estimated for the active tracers for comparison to previous field 

interpretations.  The Qre≈Qdep portion of the Qre/Qdep results from the accelerometer records 

(Section 3.3.3) are employed to approximate the threshold conditions such that 𝜏𝑐,𝑖
∗ =𝜏𝑑𝑑𝑑,𝑖

∗ .  The 

b-exponent of -0.965 from the hiding function for the artificial tracers (Section 3.3.1) is then 

used for the conversion from 𝜏𝑐,𝑖
∗  to 𝜏𝑐,50

∗ .  While b-exponents may vary spatially, the -0.965 

value is utilized due to the lack of other field constraints from the field datasets over the study 

area and its broad consistency with previous studies (Table 3.5). 

The calculated 𝜏𝑐,50
∗  results from the active tracers overlap with the results of previous 

studies from similar sloped reaches (Figure 3.10) [compiled in Buffington and Montgomery, 

1997; compiled in Mueller et al., 2005; Scheingross et al., 2013].  The 𝜏𝑐,50
∗  from the active 

tracers increased with slope as  

𝜏𝑐,50
∗ = 0.51𝑆0.46  (p<0.05, R2=0.67)        (3.8) 

The constraints around the 0.51 coefficient and 0.46 exponent are large (95% confidence bounds 

are ±0.42 and ±0.26, respectively).  However, the combination of the active tracer records with 

the previous field studies shows a fairly similar relation with improved uncertainty  

𝜏𝑐,50
∗ = 0.52𝑆0.51  (p<0.05, R2=0.61)        (3.9) 

where the 95% confidence bounds are 0.52±0.19 and 0.51±0.10 (Figure 3.10). 

The demonstrated change in the thresholds with slope highlights the inadequacy of 

assuming a single 𝜏𝑐,50
∗  value to characterize bedload transport across the study area [e.g., 

Andrews, 1980; Torizzo and Pitlick, 2004; USDA-NRCS, 2007].  The slope-threshold relations of 

Equations 3.8 and 3.9 provide further evidence that channel morphology influences transport as 

well as deposition since the entrainment and deposition thresholds were near symmetric in the 

Qdep/Qre rations (Figure 3.8b).  Further, these relations suggest that the degree to which 

thresholds increase with slope is somewhat higher than the relation presented by Lamb et al.  
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[2008] (𝜏𝑐,50
∗ ∝ 0.15𝑆0.25) (also plotted in Figure 3.10).  This relation presented by Lamb et al.  

[2008] had  an R2=0.4, and was based on compiling field and flume data from slopes of 0.0002 

m/m to 0.37 m/m (including the previous studies used in Equation 3.9).  This distinction of slope 

sensitivity is significant for fluvial studies and projects that model bed stability and bedload 

transport in channels in steep reaches based on empirical relations of 𝜏𝑐,50
∗   [e.g., Torizzo and 

Pitlick, 2004; Niezgoda et al., 2014].  The consideration of threshold sensitivity to slope could 

also improve landscape models that commonly apply a single threshold values [e.g., Howard et 

al., 1994; Whipple and Tucker, 1999].   

3.4.3 DISTRIBUTION OF TRANSPORT THRESHOLDS 

The findings of re-entrainment discharges approximating deposition discharges 

(Qre≈Qdep; Section 3.4.3; Figure 3.8) are in line with the use of a single Shields number as a 

transport threshold (e.g., 𝜏𝑐,𝑖
∗ ) values based on field-derived hiding functions.  However, the 

range of Qre/Qdep ratios from 0.5 to 2.5 indicates that 𝜏𝑐,𝑖
∗  thresholds are a distribution rather than 

a single value.  Given that the median of the Qre/Qdep ratio was near 1, predicting that re-

entrainment thresholds equaled or exceeded those of deposition would have failed to predict 

almost half the observations [e.g., Hjulström, 1935; Turowski et al., 2011].  The Qre/Qdep results 

suggest that river management projects with objectives of estimating bedload budgets and bed 

stability would better plan for possible project outcomes by evaluating transport using a range of 

thresholds.  The threshold distribution also suggests that larger uncertainties are likely associated 

with paleohydrologic studies that have constrained the magnitudes of peak flood events based on 

assuming a single critical Shields numbers for the largest found in grains deposits  [e.g., Baker, 

1974; Sugai, 1993; Grossman, 2001].   

3.5 Conclusions 

This study examined whether conceptual and numerical bedload models could be 

improved by characterizing bedload transport, deposition and re-entrainment behavior in terms 
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of stochastic hydrologic forcing and channel morphology.  Bedload was monitored in a mountain 

stream using RFID and accelerometer embedded tracers and stationary RFID-antennas over a 

series of snowmelt floods.  Hydrologic forcing and channel morphologies relating to transport, 

deposition and re-entrainment were compared in terms of relative grain size, bed slope, channel 

width, flow depth, shear stress, stream power and flow velocities.  Tracers tended to deposit in 

wider channel sections, and transport thresholds were higher in steeper sloped reaches.  In the 

reach with the RFID antennas, grain size was not shown to influence the threshold conditions for 

deposition and re-entrainment of the coarse bedload particles, i.e., tracers showed near equal 

entrainment mobility.  A distribution of thresholds was observed, and almost half of the 

observations contrasted with the classic theory of Hjulström [1935] by demonstrating that 

deposition occurred at flow strengths lower than re-entrainment.    
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Tables 

Table 3.1: Hiding functions from stationary antenna records   

Hiding functions based on the minimum Shields numbers and unit discharges recorded for each grain size in the 0.018 m/m stationary 
antenna reach (Equations 3.6 and 3.7). The Shields number regressions were significant but the unit discharge regressions were not 
significant (95% confidence). 
 
Shields numbers    
 

tracer type Event IDs 𝜏𝑐,50
∗  ± 95% confidence bounds 

b-exponent 
± 95% confidence bounds 

Goodness of power fit 
 sum of squares due to 

error 
root mean square 

error R2 
 

artificial 
1 to 11 0.066±0.001 -0.932±0.070 0.0004 0.003 0.96 

 4 to 11 0.072±0.002 -0.965±0.061 0.083 0.050 0.97 
 natural 4 to 10 0.064±0.007 -1.13±0.16 0.019 0.039 0.95 
Unit discharges    
   Goodness of power fit 
 

tracer type Event IDs 𝑞𝑐,𝑖 ± 95% confidence bounds c-exponent ± 95% confidence 
bounds 

sum of squares due to 
error 

root mean square 
error R2 

 artificial 4 to 11 0.184±0.012 0.109±0.156 0.021 0.025 0.06 
 natural 4 to 10 0.250±0.074 -0.312±0.44 0.006 0.021 0.17 
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Table 3.2: Summary of channel zones evaluated for sections with and without tracer deposition 

Zone L (m) S (m/m) 

number of 
tracers deposited 

in section 

tracer 
concentration over 

zone (tracer/m) 

number of 10 m sections 
with 

tracers 
without 
tracers 

A 660 0.022 121 0.18 42 24 

B 260 0.039 37 0.14 17 9 

C 270 0.060 60 0.22 20 7 

D 480 0.037 76 0.16 39 9 

E 740 0.037 100 0.14 46 28 

F 360 0.026 41 0.11 21 15 

G 350 0.021 32 0.09 18 17 
Notation) L: Length; S: average slope over zone 
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Table 3.3: Results of Wilcoxon Rank-Sum p-values between sections with and without tracer deposition 

The results with Rank-Sum p-value<0.05 indicated a rejection of the null hypothesis at a 95% confidence level that the samples were 
from the same population, i.e.  areas with and without tracers were statistically different.  Zones with p<0.05 are indicated in bold and 
underlined. 
Rank-Sum p-value for main parameters 

  𝑄𝑚 = 2𝑚3𝑠−1  𝑄𝑚 = 4 𝑚3𝑠−1 
Zone S 𝜏  w Ω h U 𝜏 w Ω h U 

A 0.65 0.09 0.01 0.08 0.04 0.04 0.03 0.01 0.03 0.02 0.01 
B 0.11 0.11 0.01 0.11 0.94 0.11 0.00 0.01 0.01 0.19 0.00 
C 0.10 0.80 0.04 0.98 0.07 0.98 0.18 0.03 0.11 0.11 0.14 
D 0.60 0.67 0.94 0.58 0.62 0.72 0.71 1.00 0.58 0.79 0.71 
E 0.02 0.01 0.61 0.01 0.14 0.02 0.08 0.92 0.07 0.22 0.09 
F 0.48 0.95 0.70 0.95 0.53 0.81 0.87 0.36 0.90 0.30 0.83 
G 0.19 0.16 0.03 0.14 0.82 0.16 0.48 0.02 0.35 0.39 0.36 

Rank-Sum p-value for change in parameters with respect to the 10 m section upstream, where dx=10 m 
  𝑄𝑚 = 2 𝑚3𝑠−1  𝑄𝑚 = 4 𝑚3𝑠−1 

Zone dS/dx  d𝜏/dx  dw/dx  dΩ/dx dh/dx  dU/dx d𝜏/dx  dw/dx  dΩ/dx dh/dx  dU/dx 
A 0.95 0.65 0.85 0.66 0.88 0.79 0.45 0.34 0.39 0.97 0.49 
B 0.16 0.09 0.02 0.07 0.67 0.11 0.08 0.01 0.04 0.52 0.06 
C 0.07 0.52 0.04 0.49 0.20 0.68 0.06 0.03 0.03 0.49 0.19 
D 0.21 0.71 0.65 0.49 0.94 0.98 1.00 0.34 1.00 0.87 0.84 
E 0.83 0.62 0.15 0.51 0.18 0.73 0.58 0.28 0.44 0.26 0.73 
F 0.35 0.92 0.85 0.85 0.70 0.97 0.77 0.44 0.72 0.64 0.37 
G 0.17 0.61 0.07 0.70 0.88 0.46 0.78 0.07 0.80 0.47 0.56 

Rank-Sum p-value for change in parameters within a 10 m section with respect to discharge, where d𝑄𝑚=2 m3s-1 (4m3s-1 – 2 m3s-1) 

 Zone d𝜏/d𝑄𝑚 dw/ d𝑄𝑚  dΩ/ d𝑄𝑚 dh/ d𝑄𝑚  dU/ d𝑄𝑚      
 A 0.02 0.02 0.01 0.07 0.02      
 B 0.00 0.02 0.00 0.06 0.00      
 C 0.16 0.42 0.08 0.74 0.23      
 D 0.14 0.96 0.14 0.67 0.22      
 E 0.99 0.45 0.52 0.51 0.46      
 F 0.59 0.10 0.87 0.24 0.56      
 G 0.80 0.03 0.52 0.06 0.61      Notation) 𝑄𝑚: modeled discharge; S: averaged 10  m bed slope; 𝜏: averaged shear stress over 10 m sections; w: averaged wetted widths over 10 m sections; Ω: 

averaged stream power over 10 m sections; h: averaged flow depths over 10 m sections; U: averaged flow velocity over 10 m sections. 
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Table 3.4: Comparison of median results between sections with and without tracer deposition 

The percent differences represent the median values from sections without tracers (ND) compared to those with tracers (D) within 
each zone (i.e., (𝐷 − 𝑁𝑁) 𝑁𝑁⁄ ).  A negative result indicates the median of that parameter was lower in the sections with tracers than 
those without tracers (highlighted in blue).  A positive result are highlighted in red.  The results that correspond to statistically 
significant differences at a 95% confidence level are also underlined (i.e., Rank-Sum p-value<0.05 per Table 3.3).  Results 
corresponding to p>0.05 are indicated as “NS” for not significant at a 95% confidence level (i.e., Rank-Sum p-value>0.05 per Table 
3.3).  
Percent differences for the main parameters 

   𝑄𝑚 = 2𝑚3𝑠−1  𝑄𝑚 = 4 𝑚3𝑠−1 
Zone S 𝜏  w Ω h U 𝜏 w Ω h U 

A NS (-24%) NS (-27%) 17% NS (-43%) -14% -15% -25% 18% -36% -14% -13% 

B NS (-27%) NS (-22%) 5% NS (-28%) NS (1%) NS (-13%) -25% 8% -27% NS 
(12%) -15% 

C NS (-32%) NS (-16%) 16% NS (-16%) NS (-
20%) NS (-9%) NS (-25%) 12% NS (-35%) NS (-

14%) NS (-12%) 

D NS (-4%) NS (4%) NS (3%) NS (6%) NS (-
12%) NS (2%) NS (-7%) NS (0%) NS (-10%) NS (-

7%) NS (-2%) 

E -26% -27% NS (2%) -38% NS (4%) -12% NS (-17%) NS (0%) NS (-28%) NS (7%) NS (-8%) 

F NS (-22%) NS (10%) NS (-1%) NS (5%) NS (-
5%) NS (2%) NS (3%) NS (12%) NS (7%) NS (-

10%) NS (0%) 

G NS (-25%) NS (-17%) 23% NS (-28%) NS (-
6%) NS (-7%) NS (2%) 21% NS (-5%) NS (-

4%) NS (-6%) 

Percent differences for the change in parameters with respect to the 10 m section upstream, where dx=10 m 
   𝑄𝑚 = 2 𝑚3𝑠−1  𝑄𝑚 = 4 𝑚3𝑠−1 

Zone dS/dx  d𝜏/dx  dw/dx  dΩ/dx dh/dx  dU/dx d𝜏/dx  dw/dx  dΩ/dx dh/dx  dU/dx 

A NS (-173%) NS (-1249%) NS (225%) NS (-192%) NS 
(100%) NS (600%) NS (-130%) NS (-95%) NS (-130%) NS 

(81%) NS (-51%) 

B NS (-187%) NS (-185%) -249% NS (-226%) NS (-
267%) NS (-174%) NS (-76%) -229% -93% NS (-

450%) NS (-82%) 

C NS (-97%) NS (-98%) -148% NS (-121%) NA NS (-40%) NS (-111%) -112% -105% NS (-
50%) NS (-112%) 

Notation) 𝑄𝑚: modeled discharge; S: averaged 10  m bed slope; 𝜏: averaged shear stress over 10 m sections; w: averaged wetted widths over 10 m sections; Ω: 
averaged stream power over 10 m sections; h: averaged flow depths over 10 m sections; and NA: not applicable due to dh/dx medians being equal to 0. 
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Table 3.4 (continued): Comparison of median results between sections with and without tracer deposition 
 
Percent differences for the change in parameters with respect to the 10 m section upstream, where dx=10 m 

  𝑄𝑚 = 2 𝑚3𝑠−1 𝑄𝑚 = 4 𝑚3𝑠−1 
Zone dS/dx d𝜏/dx dw/dx dΩ/dx dh/dx dU/dx d𝜏/dx dw/dx dΩ/dx dh/dx dU/dx 

D NS (56%) NS (-124%) NS (-70%) NS (-119%) NA NS (-663%) NS (-321%) NS (-76%) NS (-274%) NS (-
200%) NA 

E NS (-91%) NS (-57%) NS (-155%) NS (-61%) NS (-
383%) NS (-51%) NS (-65%) NS (-142%) NS (-62%) NS (-

142%) NS (-57%) 

F NA NS (88%) NS (-66%) NS (-1132%) NS 
(25%) NA NS (431%) NS (-154%) NS (-3010%) NS (-

143%) NS (563%) 

G NS (-436%) NS (-305%) NS (-813%) NS (-260%) NS 
(0%) NS (-395%) NS (14%) NS (-482%) NS (17%) -110% NA 

Percent differences for the change in parameters within a 10 m section with respect to discharge, where d𝑄𝑚=2 m3s-1 (4m3s-1 – 2 m3s-1) 

 Zone d𝜏/d𝑄𝑚 dw/ d𝑄𝑚  dΩ/ d𝑄𝑚 
dh/ 

d𝑄𝑚  dU/ d𝑄𝑚    
 

 

 A -25% 27% -37% NS (-
10%) -17%    

 
 

 B -36% 15% -48% NS 
(14%) -23%    

 
 

 C NS (-33%) NS (7%) NS (-50%) NS (-
9%) NS (-10%)    

 
 

 D NS (-24%) NS (-3%) NS (-30%) NS (-
2%) NS (-10%)    

 
 

 E NS (-7%) NS (-9%) NS (-20%) NS 
(8%) NS (2%)    

 
 

 F NS (-19%) NS (19%) NS (-28%) NS (-
5%) NS (-12%)    

 
 

 G NS (15%) 25% NS (22%) NS (-
8%) NS (6%)    

 
 

Notation) 𝑄𝑚: modeled discharge; S: averaged 10  m bed slope; 𝜏: averaged shear stress over 10 m sections; w: averaged wetted widths over 10 m sections; Ω: 
averaged stream power over 10 m sections; h: averaged flow depths over 10 m sections; and NA: not applicable due to dh/dx medians being equal to 0. 
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Table 3.5: Summary of hiding function exponents from previous studies for comparison to those from the 0.018 m/m antenna reach 

Study Channel Stream type 
S 

(m/m) 
D50 

(mm) Threshold method 
sampler 

size (mm) 
duration 

of samples 
Di/D50 
range 

b- 
exponent 

c- 
exponent 

 [Andrews, 1983] 

Snake River Sinuous river 0.001 54 flow competence (Dmax 
with Helley Smith) 76 NR 

0.3-6 -0.872** NA 
Clearwater 

River Sinuous river 0.0001 74 flow competence (Dmax 
with Helley Smith) 76 NR 

East Fork 
River sinuous river 0.007 1.3* 

flow competence- Dmax 
in slot-style bedload 

trap 
NA NA 

[Parker, 1990a] Oak Creek plane-bed reach 0.01 54 
reference values (low 
transport rates using 

bedload trap) 
NA NR NR -0.905 NA 

[Whitaker and Potts, 
2007] Dupuyer Creek riffle reach 0.01 56 

flow competence (Dmax 
with larger bedload 

sampler) 
450 

1 min at 
peak flow 
to 60 min 

at low flow 

1.57-3 -0.59 0.84 

[Andrews and Erman, 
1986] Sagehen Creek plane-bed reach 0.014 60 flow competence (Dmax 

with Helley Smith) 150 4 min 1-3 -0.87** NA 

[Parker, 2008] Compilation of 
datasets varied 0.01-0.015  varied NR NR NR -0.79 (95% conf.   

-0.63 to -0.95) NA 

[Ferguson et al., 1989] White River braided river 0.017 73 flow competence (Dmax 
with Helley Smith) 76 15 s to 

2 min 0.05-1 -0.88 NA 

[Ashworth and 
Ferguson, 1989] 

Dubhaig riffle-pool 0.004-0.021 23-98 
flow competence (Dmax 

with Helley Smith) 76 
30 s to 10 
min at low 

flow 

0.1-
1.5 

-0.74 (95% conf.   
-0.5 to -1) NA Feshie riffle-pool 0.009 52-63 

Lyngsdalselva braided 
proglacial stream 0.020-0.028 69 

[Marion and Weirich, 
2003] Toots Creek step-pool 0.08 80 flow competence (D95 

with Helley Smith) 73 60 s 0.01-
0.6 -0.73 NA 

[Yager et al., 2012a] Erlenbach boulder- bedded 
torrent 0.098 141 flow competence (D84 

of moved tracers) NA NA 0.2-
0.7 -0.62 NA 

[Mao et al., 2008] 
Rio Cordon boulder- bedded 

step pool 0.17 119 flow competence (Dmax 
with Helley Smith) 

flow competence (Dmax 
with Helley Smith) 

NA NA 1-9 -0.639 0.619 

Tres Arroyos step-pool 0.21 67 152 60 s 0.01-
0.2 -0.787 0.372 

Notation) S: slope; D50: median grain size; Di/D50: Relative grain size; b-exponent: Shields number hiding function (Equation 3.6); c-exponent: unit discharge 
hiding function (Equation 3.7); NA: Not applicable to study; NR: not reported; *: mostly sand bedded river with some gravels.  **: used D50 subsurface 
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Figures 

Figure 3.1: Study area, slope and grain size distribution study area 

(a) Map of the study area and 1 m airborne LiDAR DEM [Northwest Watershed Research 
Center, 2009].  Locations of grain size point counts are indicated by triangles. 
(b-e) Stream images across study area. 
(f) Grain sizes determined by pebble counts [Wolman, 1954] [Ch. 2].  X-axis distance is the 
length downstream from the study’s upstream boundary, which was a wooden bridge 
approximately 700 m upstream from the USDA-ARS Tollgate gauge (Station 116b) [Ch. 2]. 
(g) Slope averaged over 10 m moving windows over the study area.  Slopes were based on the 1 
m airborne LiDAR.  The Tollgate gauge is located at where slope becomes 0.2 m/m. 
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Figure 3.2:  Hydrograph over monitored study period 

Discharge (Q) over study period with vertical lines indicating deployment of passive tracers 
[Northwest Watershed Research Center, 2015].  Active tracers were also deployed in March 
2012 with the passive tracers. 

 

Figure 3.3: Example of motion and rest records from the active tracers 

Spring 2012 discharge overlaid with the motion of one of the active tracers.  Tracer motion is 
indicated by vertical line; no line indicates that the tracer was at rest.  Triangle point corresponds 
to when the tracer was identified as passing stationary antennas. 
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Figure 3.4:  In-stream stationary RFID antennas 

One of the 7 m by 0.5 m in-stream stationary RFID antennas.   
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Figure 3.5: Shields numbers and unit discharges corresponding to stationary antenna records 

(a) Spring 2012 discharge (Q) from the Tollgate gauge [Northwest Watershed Research Center, 
2015] with filled points indicating instances when at least one RFID-tracer was recorded in the 
stationary antenna reach.  Event IDs are identified above peak discharges. 
 (b) For artificial tracers: Reach averaged Shields numbers (𝜏𝑖∗) (y-axis) versus the relative grain 
size of the tracer (Di) to the reach’s D50 (60 mm) (x-axis).  The hiding function (solid line) is 
over the minimum Shields numbers recorded during events 4 through 11.   
(c) For artificial tracers: Reach averaged unit discharges (𝑞𝑖) versus the relative grain size.  The 
hiding function (solid line) is over the minimum records from events 4 through 11. 
(d) For natural tracers: Reach averaged Shields numbers versus the relative grain size.  The 
hiding function (solid line) is over the minimum records from events 4 through 11. 
(e) For natural tracers: Reach averaged unit discharges versus the relative grain size.  The hiding 
function (solid line) is over the minimum records from events 4 through 11. 
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Figure 3.6: Comparison of channel widths in areas with and without tracer deposition   

(a) Stream profile indicating the seven zones used for comparisons between the section with and 
without tracer deposition.  The distance shown on the x-axis refers to the upstream study 
boundary that was approximately 700 m upstream the USDA-ARS Tollgate gauging station. 
 (b) Comparison of median widths between sections with and without tracer deposition over the 
seven zones.  Zones A, B, C and G show preferential deposition in wider sections (Wilcoxon 
Rank-Sum p-value<0.05).  The dashed line indicates the unity condition.  Plotting above the 1:1 
indicates that the areas with tracer deposition had larger widths than those without tracer 
deposition. 
(c)  Mean widths ± their respective standard errors for the sections with and without tracer 
deposition.  Line colors correspond to the legend in Figure 6a.  The dashed line indicates the 
unity condition.  Plotting above the 1:1 indicates that the areas with tracer deposition had larger 
widths than those without tracer deposition. 
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Figure 3.7: Deposition conditions of the active tracers  

(a) Box plot of the shear stresses when and where the active tracers last deposited in spring 2012 
(𝜏𝑑𝑑𝑑,𝑖).  The red horizontal line represents median (101 N m-2), the box represents the 25th and 
75th percentile (44 N m-2 and 153 N m-2, respectively) and the whiskers represent the minimum 
and maximum values (33 N m-2 and 211 N m-2, respectively). 
(b) Box plot of the Shields numbers when and where the active tracers deposited last in spring 
2012 (𝜏𝑑𝑑𝑑,𝑖

∗ ).  The red horizontal line represents median (0.060 N m-2), the box represents the 
25th and 75th percentile (0.027 N m-2 and 0.095 N m-2, respectively) and the whiskers represent 
the minimum and maximum values (0.020 N m-2 and 0.121 N m-2, respectively). 
(c) Shields stresses associated with the deposition of the active tracers versus relative grain size 
(Di/D50).  The hiding function shown (solid line) is based on the stationary-antenna records of the 
artificial tracers (Figure 3.5b).   
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Figure 3.8: Comparisons of re-entrainment  to deposition conditions from the records of the 
active tracers 

(a) The Qre/Qdep ratios when clasts were re-entrained (primary y-axis) overlaid with spring 2012 
discharge (Q) from the Tollgate gauge [Northwest Watershed Research Center, 2015] (secondary 
y-axis).  Qdep represents the discharge when each tracer deposited into a resting position and Qre 
represents the discharge that re-entrained the tracer in a subsequent event.  The open symbols 
correspond to the first three mid-March event that were not considered in further Qre/Qdep 
analyses to minimize potential influence of initial instabilities due to deployment.  The dashed 
grey lines are at Qre/Qdep of 0.9 and 1.1.  The Qre/Qdep ratios during Events 4 through 11 were as 
follows: 17% were Qre/Qdep≤0.9; 51% percent were 0.9<Qre/Qdep≤1.1; and 31% percent were 
Qre/Qdep>1.1. 
(b) Probability density function (PDF) of Qre/Qdep values associated with when clasts were re-
entrained during events 4 to 11.  The vertical line indicates the median (1.04). 
(c) Comparison of each re-entrainment discharge with the respective previous deposition 
discharge.  Points above the dashed 1:1 line correspond to when clasts were re-entrained at 
discharges larger than previous disentrainment conditions and points below the 1:1 line 
correspond to when clasts were re-entrained at discharges smaller than previous disentrainment 
conditions.   
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Figure 3.9: Hiding function using stationary antenna records and alternative flow competence 
method 

The hiding function based on the minimum Shields numbers (𝜏𝑖∗) for each grain size based on the 
RFID antenna system during events 4 through 9 (blue line; as in Figure 3.5) is plotted with the 
hiding functions using the alternative flow competence method for each event.  The flow 
competence points corresponding to events 4 and 5 closely overlap in the figure.   
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Figure 3.10: Threshold-slope evaluations using the active tracers 

Critical Shields numbers (𝜏𝑐,50
∗ ) versus bed slope (S) from active tracers, stationary antenna and 

previous studies. 
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CHAPTER 4: MAGNITUDE-FREQUENCY ANALSYSIS OF BEDLOAD 

TRANSPORT IN A STEEP, COARSE CHANNEL 

4.1 Introduction 

The form of a channel in equilibrium is adjusted to the flows that are capable of 

conveying sediment supplied from upstream [e.g., Mackin, 1948].  Constraining the bedload that 

a given discharge (Q) conveys is central to river and reservoir management projects and 

landscape evolution models that estimate bedload budgets [e.g., Howard et al., 1994; Trush et 

al., 2000; Ziegler et al., 2014].  In considering sediment budgets, Wolman and Miller [1960] 

identified the discharge most efficient at conveying a channel’s sediment load, the effective 

discharge (Qe), as the maximum product of flow frequencies and sediment transport rates.  To 

apply this theory, Wolman and Miller [1960] used suspended sediment data from humid, 

lowland rivers that were near steady-state and capable of adjusting their boundaries. 

While effective discharge has been commonly calculated based on the Wolman and 

Miller [1960] method [e.g., Andrews and Nankervis, 1995; Emmett and Wolman, 2001; Sholtes 

et al., 2014], the original study also emphasized the importance of cumulative percentages of 

sediment transported over a range of discharges.  In particular, they focused on the discharges in 

which 50 percent of the load was transported below (i.e., half-load discharge; Q0.5) and 90 

percent of the load transported below.  Examining sediment magnitudes and flood event 

frequencies, Wolman and Miller [1960] found that transport occurring during the largest floods 

did not balance the rarity of the events.  Instead, they found that the most cumulative transport 

was performed by flows associated with low to moderate frequency events (e.g., having 

recurrence intervals less than five to ten years).  Beyond the interest of channel form 

maintenance, Wolman and Miller [1960] also proposed that flows responsible for rapid changes 

in channel shape may be associated with the rarer, extreme events, which has since been 
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supported by other studies in coarser alluvial systems [e.g., Carling, 1988; Phillips, 2002; Lenzi 

et al., 2006b]. 

Regarding channel form, Wolman and Miller [1960] suggested that the most effective 

discharges at maintaining form corresponded to bankfull discharges (Qbf).  This conclusion was 

based on the maximum elevations of the aggrading inner banks being dependent on bankfull 

discharges.  Since this work, effective discharges have since been commonly associated with 

bankfull conditions, which have frequent recurrence intervals of 1 to 2 years.  Despite Wolman 

and Miller [1960] evaluating discharges effectiveness in terms of cumulative sediment 

transported, river management projects have mostly incorporated the concept of a single 

effective discharge comparable to bankfull discharge into channel design in an attempt to impose 

equilibrium conditions [e.g., Shields et al., 2003; Niezgoda and West, 2007; USDA-NRCS, 2007].   

The recurrence intervals of effective discharge in mountain stream settings remain 

unresolved.  Magnitude-frequency analyses in these settings transitioned from suspended 

sediment to bedload due to the role that bedload has in channel form.  The majority of studies in 

steep alluvial channels have inferred that effective discharges are comparable to bankfull floods 

[e.g., Carling, 1988; Andrews and Nankervis, 1995; Emmett and Wolman, 2001] (summarized in 

Table 4.1).  However, recent a recent study by Bunte et al.  [2014] concluded that the effective 

discharges in mountain streams corresponded to the rarest, most extreme events.  Additionally, at 

some sites, the majority of a channel’s bedload budget was found to be contributed by flows 

exceeding the identified effective discharges or bankfull discharges (e.g., Qe or Qbf <Q0.5) 

[Andrews and Nankervis, 1995; Emmett and Wolman, 2001],  whereas other sites have shown the 

opposite (Qe or Qbf >Q0.5) [Whiting et al., 1999; Torizzo and Pitlick, 2004] or that the discharges 

are the same (Qe or Qbf ~Q0.5) [Emmett and Wolman, 2001]. 

Variations in the previously described studies (Table 4.1) may be due to the sensitivity of 

results to the scaling of the bedload rates and flow distributions applied [e.g., Bunte et al., 2014].  

In the previous studies, some sites had neither bedload nor discharge records [Whiting et al., 

1999; Torizzo and Pitlick, 2004].  If locations had gauged discharges, then bedload 
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measurements were often unavailable, requiring the use of empirical transport formulas or 

regional scaling to sites with measurements [e.g., Andrews and Nankervis, 1995; Torizzo and 

Pitlick, 2004; Bunte et al., 2014].  Due to the lack of field measurements, employing empirical 

formulas typically required assumptions of spatially constant entrainment thresholds.  Recently, 

work has found that entrainment thresholds vary with bed slope [e.g., Ch. 3; Lamb et al., 2008; 

Scheingross et al., 2013].   

If bedload measurements in these previous studies were available, then the streams were 

often ungauged or only a few years of gauged discharges were evaluated [e.g., Carling, 1988; 

Whiting et al., 1999; Bunte et al., 2014].  For these ungauged streams, regional flow duration 

curves were typically employed to establish the frequency of discharges.  Available bedload 

measurements were typically collected using 7.6 cm Helley Smith samplers [e.g., Whiting et al., 

1999; Emmett and Wolman, 2001].  However, this bedload technique is frequently limited in 

coarse streams due to device capacity and size [e.g., Johnson et al., 1977; Vericat et al., 2006].  

Additionally, bedload rates were typically measured for discharges up to only 1 to 2 times that of 

bankfull discharge, then were extrapolated to examine the significance of rarer flows that were 

much larger than those measured [Carling, 1988; Whiting et al., 1999; Emmett and Wolman, 

2001].  In using measurements from bedload traps at ungauged streams, Bunte et al.  [2014] 

showed that scaling relations for the bedload discharge-water discharge were steeper than those 

than based on Helley Smith measurements.  However, like Helley Smith measurements in some 

other studies, bedload data in Bunte et al.  [2014] were also limited to low discharges (most were 

between only 0.1 and 1 times bankfull discharge).  Over these lower discharges when bedload 

was measured, coarse alluvial streams are typically more supply limited than during the larger 

discharges when more of the bed is mobilized, which may have affected the bedload scaling over 

these lower, measured flows [e.g., Carling, 1988]. 

As summarized above, the current ability to predict effective discharges and bedload 

budgets in mountain streams is limited in part due to the lack of field constraints.  With this 

motivation, the objective of this study is to address i) how sensitive are effective discharge 
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calculations to the scaling of bedload relations? ii) how does transport at effective discharge 

compare to the overall bedload budget of a mountain stream? iii) Can empirical transport 

formulas predict bedload volumes in mountain streams that approximate field constraints? A 

unique combination of field records, numerical flow modeling and empirical transport formulas 

were employed for these analyses.  Flow modeling provided rare constraints on shear stress-

discharge relations for a range of discharges, from low flows up to over six times bankfull.  

Empirical bedload formulas were modified to incorporate entrainment thresholds that were 

slope-dependent and validated at the field site, rather than assuming spatially constant values.  

The revised formulas predicted bedload volumes near a field constraint while the original 

formulas predicted volumes an order of magnitude larger than the field constraint.  The bedload 

predictions indicate that effective discharges in the study stream correspond to moderate, high 

frequency flows.  Predictions also demonstrate that the majority of bedload is transported by 

flows exceeding the effective discharge and that a broad range of flows transport significant 

fractions of the bedload budget.  The findings highlight the importance of considering changes in 

bedload discharge scaling relations with discharge (particularly over higher discharges) and 

effects of channel morphology on entrainment thresholds when quantifying bedload budgets. 

The chapter is organized as follows.  First, the study area and its hydrology are described.  

Then, bedload models using tracer displacements and the empirical transport formulas are 

detailed.  In the subsequent results section, effective discharges and bedload budgets predicted 

by the models are presented.  The effective discharge and bedload predictions are then compared, 

and the significance of considering bedload scaling and channel morphology in magnitude-

frequency analyses for mountain streams are examined. 
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4.2 Methods 

4.2.1 STUDY SITE 

4.2.2.1 Channel and watershed 

Reynolds Creek is a snowmelt-dominated tributary to the Snake River and is located in 

the Owyhee Mountains in southwest Idaho.  The USDA-Agricultural Research Service (USDA-

ARS) manages Reynolds Creek and the surrounding land as part of the Reynolds Creek 

Experimental Watershed.  The land around the stream is typical of semi-arid rangeland in the 

Western United States with vegetation mostly consisting of sagebrush and some junipers.  

Wolman point counts [1954] were performed at sites A through G within a 3 km section of this 

study (Figure 4.1a) and the resulting grain size distributions applied in the empirical transport 

models (further detailed in Section 4.2.2.3).  The channel morphologies fluctuated between 

plane-bed, pool-riffle and step-pool reaches as well as some reaches with large unorganized 

boulders lined by heavy willow vegetation or bedrock sidewalls (Figures 4.1b,c,d).   

4.2.2.2 Hydrology 

Approximately 70 m downstream of location A was the USDA-ARS “Tollgate” gauging 

station (USDA-ARS station 116b).  Discharges have been recorded at the Tollgate gauge since 

1966 [Northwest Watershed Research Center, 2015].  Discharge in Reynolds Creek is snowmelt-

dominated and the highest discharges occur between March and May.  Much of the stream runs 

nearly dry during the late summer.  The study area was downstream of the major tributaries that 

conveyed most snowmelt runoff from higher watershed elevations.  Similar discharges measured 

at Tollgate gauging station and at a gauge 18 km downstream (USDA-ARS Station 36) 

suggested that discharges were similar along the 3 km study length [Northwest Watershed 

Research Center, 2015].  Discharges were collected from 1966 through 1993 over variable 
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intervals ranging from every 4.5 minutes to daily.  Beginning in 1994, discharges were measured 

every 15 minutes. 

A frequency distribution was fit to the mean daily flows over the 48 water years from 

1966 to 2014 using similar methods that were previously applied to other snowmelt-dominated 

mountain streams in the western United States [e.g., Segura and Pitlick, 2010; Bunte et al., 2014] 

(Figure 4.2a).  The probability density function (PDF; units of days per yr per m3s-1) is well 

described by two power law fits: 

𝑃𝑃𝑃 = �𝛼1𝑄
𝑘1  𝑓𝑓𝑓 𝑄 < 𝑄𝑏𝑏𝑏

𝛼2𝑄𝑘2  𝑓𝑓𝑓 𝑄 ≥ 𝑄𝑏𝑏𝑏
        (4.1) 

where 𝛼1 was 44.1±4.1, 𝑘1 was -1.11±0.14, 𝑄𝑏𝑏𝑏 represented the discharge at the slope break 

between the power fits and was found to be 2.44 m3s-1, 𝛼2 was 831±414.34 and 𝑘2 was 

−4.39±0.44.  Here, the ± uncertainty represents 95% confidence bounds.  The flow frequency 

distribution calculated from the mean daily discharges from 1966 to 2014 were similar to 

distributions fit using the 15-minute records from 1994-2014 and the mean daily records from 

1994-2014 (Figure 4.2a). 

The slope-break discharge of 2.44 m3s-1 had a recurrence interval of 1.45 yr and 

represented near bankfull conditions.  Flood recurrence intervals using the maximum mean daily 

discharges recorded each year from 1966 to 2014 were also calculated (Figure 4.2b).  The slope-

break discharge was similar to estimates of bankfull discharge at location A, which was just 

upstream from the Tollgate gauge (Figure 4.1a).  Bankfull discharge was independently 

estimated at Location A using several time lapse pictures (average of 2.49 m3s-1).  Given that 

slope breaks in flow frequency distributions for snowmelt-dominated mountain streams typically 

are bankfull [e.g., Dodov and Foufoula-Georgiou, 2005; Segura and Pitlick, 2010; Bunte et al., 

2014] and that all the sites experienced similar discharges due to their locations being 

downstream of snowmelt tributaries (Section 4.2.2.2), it is expected that 2.49 m3s-1 approximates 

bankfull discharges at the other locations.  Thus, 𝑄𝑏𝑏𝑏 appears to be a good measure of bankfull 



86 
 

discharge in this channel.  The power law exponents 𝑘1= -1.11 and 𝑘2= -4.39 in Equation 4.1 are 

similar to those calculated in other snowmelt dominated mountain streams [Bunte et al., 2014].   

4.2.2 PREDICTIONS OF BEDLOAD TRANSPORT 

4.2.2.1 Previous bedload tracer study in Reynolds Creek 

Passive and active tracers were monitored in Reynolds Creek between 2011 and 2012 

[Ch.2, Ch.3].  The passive RFID-embedded clasts were deployed in Reynolds Creek to quantify 

bedload displacement distances over several snowmelt periods.  Stationary RFID antennas also 

installed at location A constrained bedload entrainment thresholds by recording when tracers 

passed through the reach.  The passive tracers approximated the mean D50 of the channel (60 

mm).  The active tracers (artificial cobbles embedded with accelerometers) recorded motion and 

rest intervals for each tracer during spring 2012.  The active tracers approximated the mean D80 

of the channel (125 mm).  Further descriptions of these tracer and antenna technologies have 

been previously detailed [Ch.2, Ch.3].  Entrainment thresholds constrained from the tracer 

datasets were used in the bedload prediction models described below. 

4.2.2.2 Bedload model I: Mean tracer displacements 

The displacement distances of the bedload tracers were found to correlate well with 

effective runoff volume (Ve) [Ch. 2].  Effective runoff volume is the  hydrograph volume 

exceeding a discharge threshold for coarse bedload transport (Qt) [e.g., Lenzi et al., 2004].  

Discharge was used as a proxy for shear stress by calculating effective runoff volumes over 

periods of interest.  The discharge thresholds applied were i) 2 m3s-1 based on the mobility 

records of the active tracers across the study area and ii) 1.4 m3s-1 based on the mobility of the 

passive tracers recorded by the stationary antennas [Ch. 2].  Mean displacements of the bedload 

tracers (〈𝑋〉) were shown to increase linearly with effective runoff, where 

〈𝑋〉 = 0.0009 × 𝑉𝑒 for Qt=2 m3s-1        (4.2) 
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and 

〈𝑋〉 = 0.0005 × 𝑉𝑒 for Qt=1.4 m3s-1        (4.3) 

The use of Equations 4.2 and 4.3 in the bedload predictions are designated herein as 

model I.  For model I, the effective runoff (units of m3) were estimated for each discharge 

interval (Qi) up to the maximum mean daily value of 14.9 m3s-1, over the 1966-2014 period 

[Northwest Watershed Research Center, 2015].  Effective runoff volumes were calculated each 

discharge interval in model I as  

𝑉𝑒 = (𝑄𝑖 − 𝑄𝑡)𝑡𝑄𝑖  𝑓𝑓𝑓 𝑄𝑖 > 𝑄𝑡        (4.4) 

where 𝑡𝑄𝑖 represents the duration in seconds of each discharge interval.  The discharge intervals 

(∆Q) were 0.1 m3s-1 and duration for each discharge interval were calculated over the 48 years as 
𝑡𝑄𝑖 = 𝑓𝑡𝑄𝑖 × �48 𝑦𝑦𝑦 × 365.25 𝑑𝑑𝑑𝑑

1 𝑦𝑦
× 24 ℎ𝑟𝑟

1 𝑑𝑑𝑑
× 60 𝑚𝑚𝑚

1 ℎ𝑟
× 60 𝑠𝑠𝑠

1 𝑚𝑚𝑚
�    (4.5) 

where 𝑓𝑡𝑄𝑖  represents the frequency, or fraction of time, at each discharge interval.  The 

frequency of each discharge was constrained with the mean daily flow frequency distribution 

(Equation 4.1; Figure 4.2a) as  

𝑓𝑡𝑄𝑖 = �
44.1𝑄−1.11∆𝑄 � 1 𝑦𝑦

365.25 𝑑𝑑𝑑𝑑
�  𝑓𝑓𝑓 𝑄 < 2.44 𝑚3𝑠−1

831𝑄−4.39∆𝑄 � 1 𝑦𝑦
365.25 𝑑𝑑𝑑𝑑

�   𝑓𝑓𝑓 𝑄 ≥ 2.44 𝑚3𝑠−1
      (4.6) 

4.2.2.3 Bedload models II and III: Empirical transport formulas 

4.2.2.3.1 Shear stress modeling 

The channel’s hydraulic conditions were modeled over a range of discharges using HEC-

RAS, a flow modeling tool developed by the US Army Corps of Engineers.  For each modeled 

discharge (𝑄𝑚), shear stresses (𝜏𝑄𝑚) were calculated at channel cross sections using steady and 

uniform flows assumptions as 

𝜏𝑄𝑚 = 𝜌𝜌𝜌𝑆𝐸𝐸𝐸            (4.7) 

where 𝜌 is the density of water (assumed to be 1000 kg m-3), 𝑔 is gravity, 𝑅 is the hydraulic 

radius at a given cross section and 𝑆𝐸𝐸𝐸 is the calculated slope of the energy grade line at a given 
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cross section.  The cross-sectional channel geometries were imported into the HEC-RAS models 

by extracting cross sections from a 1 m airborne LiDAR digital elevation model s[Northwest 

Watershed Research Center, 2009] (detailed in Ch. 3).  Shear stress results were averaged using 

a moving window of 10 m.   

Shear stress calculations were performed for each 0.1 m3s-1 discharge interval modeled 

from 0.3 to 14.9 m3s-1.  Discharges below 0.3 m3s-1 magnitudes were not modeled due to HEC-

RAS instabilities at extremely low flows.  These low flows were not expected to be associated 

with significant bedload transport based on minimum discharges recorded by the passive tracers 

and stationary antennas (Section 4.2.2.2).  HEC-RAS calculated widths and Froude numbers (Fr) 

over the discharges suggested that the models approximated natural flow conditions [Ch. 3]. 

4.2.2.3.2 Sites of interest 

Bedload transport was predicted at seven specific sites, locations A through G, where 

surface grain size distributions were measured (Figure 4.1a).  The reach at location A and the 

700 km section upstream of Location A were in a flatter, wider valley compared to the narrower, 

canyon setting that locations B to G were in.  Among the sites, the local bed slopes that were 

calculated over the length of pebble counts [Wolman, 1954]  (approximately two channel widths, 

10 m) varied between 0.011 and 0.042 m/m (Figure 4.3a; Table 4.2).  The pebble counts 

provided grain size distributions of the bed surface.  The D50 among the sites ranged from 51 mm 

to 90 mm (Figure 4.3b; Table 4.2).  Location B had the steepest bed slope and the coarsest grain 

size distribution, while locations E and F had the flattest bed slopes and the finest grain size 

distributions.   

The HEC-RAS models provided shear stress constraints over the discharges on record 

(Figure 4.3.c).  Shear stresses were the highest at location B.  Shear stresses scaled with 

discharge as 𝜏~Qj, over the seven sites with the mean ± standard error being j=0.44±0.05 (j-

values for each location given in Figure 4.3c caption).  Using the grain size distributions of each 
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site (Figure 4.3b), the modeled shear stresses for each discharge (Figure 4.3c) were normalized 

with grain weight per area to calculate a dimensionless shear stress, or Shields number (𝜏𝑖,𝑄𝑚
∗ ).  

For each clast diameter (D) of each ith size class and shear stress result, Shields numbers were 

calculated as 
𝜏𝑖,𝑄𝑚
∗ = 𝜏𝑄𝑚

(𝜌𝑠−𝜌)𝑔𝐷𝑖
           (4.8) 

where 𝜌𝑠 represents the density of sediment, assumed to be 2650 kg/m-3.   

The transport stages of the median grain size (∅50,𝑄𝑚) at each site were next calculated as  

∅50,𝑄𝑚 =
𝜏50,𝑄𝑚
∗

𝜏𝑐,50
∗            (4.9) 

where 𝜏𝑐,50
∗  is the critical Shields number corresponding to the entrainment threshold of the D50 

sized clasts.  For location A, the 𝜏𝑐,50
∗  was constrained by the records of the stationary antennas 

as 0.061 [Ch. 3].  Because stationary antennas were only installed at Location A, the 𝜏𝑐,50
∗  values 

at the other six sites were constrained with the bed slope relation presented in Chapter 3 as 

𝜏𝑐,50
∗ = 0.52𝑆0.51           (4.10) 

This slope-dependent relation was based on transport thresholds gleaned from the active 

tracers deployed in Reynolds Creek and bedload measurements from other studies [compiled in 

Buffington and Montgomery, 1997; compiled in Mueller et al., 2005; Scheingross et al., 2013].   

For most sites, the transport stage-discharge trends were comparable (Figure 4.3d).  The 

unique morphological conditions of locations E and F caused the transport stage-discharge trends 

modeled for the two sites to not collapse well with the other sites.  While Locations E and F have 

the lowest local bed slopes (Figure 4.3a; Table 4.2) and finest grain size distributions (Figure 

4.3b; Table 4.2), the predicted 𝑆𝐸𝐸𝐸 results calculated in HEC-RAS were steeper than the local 

bed slopes (e.g., at Q=2.4 m3s-1, 𝑆𝐸𝐸𝐸 was 0.03 m/m at both sites).  Transport capacities at these 

locations were elevated because bank confinement from dense willows over narrow banks and 

the overall canyon settings did not allow for channel widening to balance the higher 𝑆𝐸𝐸𝐸 results 

(Equation 4.7). 
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4.2.2.3.3 Parker [1990a] transport function 

A modified version of the transport function proposed by Parker [1990a] was applied to 

estimate bedload transport rates in Reynolds Creek.  The Parker [1990a] function was derived 

from vortex bedload trough in Oak Creek, Oregon.  Comparable to Reynolds Creek, Oak Creek 

was a 6 m wide gravel channel with a surface D50 of 54 mm [Milhous, 1973].  Transport stages 

for the D50 clasts modeled in HEC-RAS (Equation 4.9) were first used to calculate a straining 

coefficient (𝜔𝑄𝑚).  The straining coefficient characterized the degree of armoring that a bed may 

experience, decreasing from 1 as transport stages increase, thus reducing the effects of armoring.  

The straining coefficients were calculated for each modeled discharge at each site as 

𝜔𝑄𝑚 = 1 + 𝜎∅
𝜎0(∅50,𝑄𝑚)

�𝜔0�∅50,𝑄𝑚� − 1�        (4.12) 

where the 𝜎0(∅50,𝑄𝑚) and 𝜔0�∅50,𝑄𝑚� were graphical functions based on the ∅50,𝑄𝑚 values  

[tabulated results available from Parker, 1990b], and 𝜎∅ is the arithmetic standard deviation of 

the bed’s grain size distribution.  In the original Parker [1990a], 𝜏𝑐,50
∗ =0.039 was applied to 

calculate ∅50,𝑄𝑚 (Equation 4.9).  However, in this study, 𝜏𝑐,50
∗  modified to field constrained 

values based on bed-slope (Equation 4.10).  The use of the original 0.039 value at all sites is 

further explored in Section 4.4.3.2.  Using the sediment phi scale, the arithmetic standard 

deviations were calculated using  

𝜎∅ = �∑ �ln(𝐷𝑖 𝐷50⁄ )
𝑙𝑙2

�
2

𝑁
𝑖=1 𝐹𝑖,          (4.13) 

where Fi is the fraction of bed sediment in the ith grain size class based on the pebble counts.   

The calculated straining coefficients (Equation 4.12) were then applied to quantify the 

transport stage for the other grain sizes (∅𝑖,𝑄𝑚) at each discharge.  Transport stages were 

calculated as 

∅𝑖,𝑄𝑚 = 𝜔∅50,𝑄𝑚 �
𝐷𝑖
𝐷50
�
−(1+𝑏)

         (4.14) 

where the b-exponent in the Parker [1990a] model was -0.905, indicating near equal mobility 

conditions.  The b-exponent applied in the original Parker [1990a] formula was kept in the model 
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because it was similar to the uncertainty bounds on the b-exponent constrained by the stationary 

antennas (95% confidence bounds of -0.94 to -1.19 [Ch. 3]).   

Based on the transport stage calculations in Equation 4.14, the bedload function 𝐺�∅𝑖,𝑄𝑚� 

was then evaluated depending on three transport stage conditions as 

𝐺�∅𝑖,𝑄𝑚� =

⎩
⎪
⎨

⎪
⎧ 5474 �1 − 0.853

∅𝑖,𝑄𝑚
�
4.5
𝑓𝑓𝑓 ∅𝑖,𝑄𝑚 > 1.59

exp �14.2�∅𝑖,𝑄𝑚 − 1� − 9.28�∅𝑖,𝑄𝑚 − 1�2�  𝑓𝑓𝑓 1 ≤ ∅𝑖,𝑄𝑚 ≤ 1.59
∅𝑖,𝑄𝑚  𝑓𝑓𝑓 ∅𝑖,𝑄𝑚 < 1

   (4.15) 

Transport predicted from Equation 4.15 is designated herein as “model II”.   

This original form of 𝐺�∅𝑖,𝑄𝑚� (Equation 4.15) permits nominal transport even when 

transport stages for a given grain sizes is below 1 (i.e., ∅𝑖,𝑄𝑚 < 1).  The snowmelt regime of 

Reynolds Creek causes the stream to be at low flow conditions for the majority of time (Figure 

4.2a).  To evaluate the effect of nominal transport accumulating over these low stages, the 

original Equation 4.15 was also modified in “model III” whereby nominal transport was 

prevented at low stages.  Models II and III are also used to compare the effects that predictions 

of nominal transport at low stages have on the scaling of water discharge-bedload rate relations.  

From the stationary antenna results [Ch. 3], the minimum recorded transport stage was 0.57 and 

corresponded to clast that was 2.7 times larger than the reach’s 𝐷50.  Thus, the alternative 

bedload function in model III depended on four transport stage conditions as 

𝐺�∅𝑖,𝑄𝑚� =

⎩
⎪
⎨

⎪
⎧ 5474 �1 − 0.853

∅𝑖,𝑄𝑚
�
4.5
𝑓𝑓𝑓 ∅𝑖,𝑄𝑚 > 1.59

exp �14.2�∅𝑖,𝑄𝑚 − 1� − 9.28�∅𝑖,𝑄𝑚 − 1�2�  𝑓𝑓𝑓 1 ≤ ∅𝑖,𝑄𝑚 ≤ 1.59
∅𝑖,𝑄𝑚  𝑓𝑓𝑓 0.57 ≤ ∅𝑖,𝑄𝑚 < 1

0 𝑓𝑓𝑓 ∅𝑖,𝑄𝑚 < 0.57

   (4.16) 

The dimensionless transport rates for each discharge (𝑊𝑠𝑠,𝑄𝑚
∗ ) were subsequently calculated for 

models II and III at each location as 

𝑊𝑠𝑠,𝑄𝑚
∗ = 0.00218 × 𝐺�∅𝑖,𝑄𝑚�        (4.17) 

Being a surface size-based empirical formula, Equation 4.17 applied in both models II 

and III assumes that supply was limited by the proportion of grains of a given size class that are 
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found on the bed (determined here by point counts).  However, when Equation 4.17 was used 

with 𝐺�∅𝑖,𝑄𝑚� from model II (Equation 4.15), the model assumed that sediment supply was not 

limited by factors affecting bed stability, such as clast packing and imbrication.  Conversely, the 

𝐺�∅𝑖,𝑄𝑚� calculations from model III (Equation 4.16) assumed that sediment supply was limited 

by imposing conditions of no transport at low stages.  The differences between these models 

were subsequently examined because sediment supply is often limited in mountain streams [e.g., 

Yager et al., 2007; Hassan et al., 2008; Wohl, 2010].   

The dimensionless transport rates enabled the calculations of volumetric bedload 

transport rates per unit width (qi) for each discharge and ith grain size class as  

𝑞𝑖,𝑄𝑚 =
𝑊𝑠𝑠,𝑄𝑚

∗ �
𝜏𝑄𝑚
𝜌 �

1.5
𝐹𝑖

�𝜌𝑠−𝜌𝜌 �𝑔
          (4.18) 

At each site, the HEC-RAS modeled channel widths for each flow (𝑤𝑄𝑚) were combined with 

Equation 4.18 to estimate bedload transport rates for each ith size class (𝑄𝐵,𝑖) as 

𝑄𝐵,𝑖,𝑄𝑚 = 𝑞𝑖,𝑄𝑚 × 𝑤𝑄𝑚          (4.19) 

The total bedload discharge (𝑄𝐵,𝑡𝑡𝑡𝑡𝑡; units m3s-1) over all N number of coarse grains sizes were 

then calculated as 

𝑄𝐵,𝑡𝑡𝑡𝑡𝑡,𝑄𝑚 = ∑ 𝑄𝐵,𝑖,𝑄𝑚
𝑁
𝑖=1           (4.20) 

Predicted bedload volumes contributed by each modeled discharge (𝑉𝐵,𝑡𝑡𝑡𝑡𝑡,𝑄𝑚; units m3) 

were calculated over the discharge intervals as 

𝑉𝐵,𝑄𝑚 = 𝑄𝑏,𝑡𝑡𝑡𝑡𝑡,𝑄𝑚 × 𝑡𝑄𝑚.          (4.21) 

where duration at each discharge interval (𝑡𝑄𝑚; units of seconds) was determined by applying the 

flow frequency distribution (Figure 4.2a; Equations 4.5 and 4.6).  Total predicted bedload 

volumes (𝑉𝐵,𝑡𝑡𝑡𝑡𝑡) and bulk bedload volumes (𝑉𝐵,𝑏𝑏𝑏𝑏) were predicted across all discharges over 

the 48-year record as 

𝑉𝐵,𝑡𝑡𝑡𝑡𝑡 = ∑ 𝑉𝐵,𝑄𝑚
𝑄𝑚=14.9 𝑚3𝑠−1
𝑄𝑚=0.3 𝑚3𝑠−1𝑄𝑚𝑚𝑚

        (4.22) 

and 
𝑉𝐵,𝑏𝑏𝑏𝑏 = 𝑉𝐵,𝑡𝑡𝑡𝑡𝑡

(1−𝜀)
,           (4.23) 
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where 𝜀 is porosity.  Porosity was assumed to be 0.35 for unconsolidated, coarse alluvial 

sediment [Yolcubal et al., 2004].   

4.3 Results 

4.3.1 MODEL I:  TRACER DISPLACEMENT DISTANCES 

The effective runoff relations from the passive tracers (Equations 4.2 and 4.3) were used 

with the frequency distribution (Equation 4.1; Figure 4.2a) to predict the fraction of displacement 

that each discharge interval contributed toward total displacements (i.e., 〈𝑋〉/〈𝑋〉𝑡𝑡𝑡𝑡𝑡) (Figure 

4.4a).  When applying the discharge threshold of 1.4 m3s-1 for the effective runoff calculations 

(Equation 4.2), the discharge with the maximum 〈𝑋〉/〈𝑋〉𝑡𝑡𝑡𝑡𝑡, i.e., the effective discharge, was 

2.4 m3s-1.  The effective discharge increased slightly to 2.6 m3s-1 when the discharge threshold 

was raised to 2 m3s-1 (Equation 4.3).  Both these effective discharges approximated the 2.44 m3s-

1 discharge that corresponded to the break in the power scaling of the flow frequency 

distribution.   

The same data are also presented as a cumulative distribution to emphasize that much of 

the transport actually occurs at discharges higher than the calculated effective discharges (Figure 

4.3b; Table 4.2).  For the discharge threshold of 1.4 m3s-1, effective discharge of 2.4 m3s-1 had a 

cumulative fraction of total transported displacements (CFT) of 0.31 and the half-load discharge 

was 2.9 m3s-1.  For the discharge threshold of 2 m3s-1, effective discharge of the 2.6 m3s-1 had a 

lower CFT (0.18) and a higher half-load discharge (3.6 m3s-1).  The ratios of effective discharge 

to half-load discharges (Qe/Q0.5) for the 1.4 m3s-1 and 2 m3s-1 thresholds were 0.83 and 0.72, 

respectively.   
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4.3.2 MODELS II AND III:  MODIFIED PARKER [1990A] TRANSPORT FORMULAS 

4.3.2.1 Transport rates 

Models II (transport permitted at low stage) and III (all transport prevented below 

transport stage ∅𝑖,𝑄𝑚 < 0.57) predicted generally comparable bedload transport rates among the 

seven sites (Figures 4.5a,b).  When transport was permitted at low transport stages, all sites 

predicted nominal transport to occur at the lowest modeled discharge (0.3 m3s-1; Figure 4.5a).  

For model III, only locations A and C showed nominal transport at the lowest modeled discharge 

interval (Figure 4.5b).  Model III predicted nominal transport to begin for the smallest clast bin 

(2 to 7 mm grains) when discharge was 0.4 m3s-1 at locations E and G, and near 1 m3s-1 at 

locations B, D and F (Figure 4.5b).  Transport rates at locations E and F were predicted to be 

higher at higher discharges than the other sties due to differences in their discharge-transport 

stage scaling (e.g., Figure 4.3d). 

4.3.2.2 Bedload volumes and effective discharges 

While the models unsurprisingly predicted that locations with higher bedload rates also 

had higher bedload volumes (Figures 4.5c,d), the objective of the analyses presented below is to 

compare overall trends rather than volumetric magnitudes because constraints on bedload 

volumes were not known over the 48-year period.  Similar to normalizing the displacements 

predicted in model I (Section 4.3.1), the bedload volumes estimated for each discharge interval 

were normalized by the total volume predicted (i.e., volumetric bedload fractions, VB,Qm/VB,total).  

Overall trends in the volumetric bedload fractions with discharge were similar between models II 

and III over the larger discharges, but varied over the smaller discharges (Figures 4.5e,f).  As 

expected, within the individual sites, the volumetric fractions predicted from model II (which 

permitted transport at all transport stages) were larger at lower discharges than those predicted 

with model III.   
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The discharges with the maximum VB,Qm/VB,total values, i.e., the effective discharge, were 

generally similar among the locations for models II and III (Figures 4.5e,f; Table 4.2).  The 

magnitudes of the effective discharges ranged from 2.4 m3s-1 and 2.5 m3s-1 for sites B-D and G, 

which corresponded to a 1.45 yr recurrence intervals.  This range was comparable to the 2.44 

m3s-1 break in slope of the flow frequency distribution (Figure 4.2a) and the bankfull discharge 

(detailed in Section 4.2.2.2).  Due to the scaling of bedload discharge-water discharge relations at 

location A, models II and III predicted a lower effective discharge at location A (Qe=1.1 m3s-1) 

and 1.2 m3s-1, respectively), but the corresponding broader VB,Qm/VB,total curves for location A fell 

similarly to the other locations (i.e., at 2.4 m3s-1).  Due to the higher magnitude and steeper 

bedload discharge-water discharge relations predicted at locations E and F for the larger 

discharges (Figures 4.5e,f), the effective discharges at locations E and F were also larger than the 

other sites, respectively 3.4 m3s-1 and 5.5 m3s-1.  While these effective discharges were larger, the 

recurrence intervals for these discharges remained less than 5 years (respectively 2.12 and 4.3 

years).   

4.3.2.3 Cumulative fractions transported and half-load discharges 

Similar to the tracer displacement predictions (model I; Section 4.3.1), models II and III 

also showed that the majority of transport was contributed from flows that exceeded the 

predicted effective discharges at all sites (Figures 4.5g,h; Table 4.2).  While the effective 

discharges did not change within each site between models II and III, the results showed that, 

within each site, the cumulative fractions transported below the effective discharges associated 

were up to a factor of two larger for model II than model III.  This trend of the effective 

discharge CFT results being larger for model II was expected given that model II permitted 

smaller flows to contribute more sediment than model III.   

All predicted half-load discharges exceeded the effective discharges, and varied from 2.5 

to 7.4 m3s-1 among the sites (Figures 4.5g,h; Table 4.2).  The recurrence interval for the half-load 
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discharges varied from 1.46 to 10.44 years.  The mean ratios of Qe/Q0.5 ± standard errors across 

the sites were 0.31±0.05 for model II and 0.24±0.03 for model III.  Model II predicted total 

bedload volumes at locations A, E, F and G that were less than 3% larger than volumes predicted 

by model III, and the respective half-load discharges at these sites also differed by less than 3% 

between models II and III.  Conversely, model II predicted total bedload volumes at locations B, 

C and D that were 7% to 25% than volumes predicted by model III, and the respective half-load 

discharges at these sites for models II and III differed by 11% to 74%. 

4.4 Discussion 

In the following section, effective discharge and the effects of bedload scaling are first 

explored (Sections 4.4.1).  Then, the relative contribution of effective discharge to bedload 

budgets are discussed (Sections 4.4.2).  The applicability of the Parker [1990a] is also explored 

in the context of predicted volumes versus volumes constrained in the field, and the revision 

𝜏𝑐,50
∗  based on local channel morphology (Section 4.4.3).  Model limitations are also examined 

(Section 4.4.4) and the study’s approach reviewed (Section 4.4.5).   

4.4.1 EFFECTIVE DISCHARGE AND BEDLOAD SCALING 

The predictions of effective discharge from the displacement-effective runoff method 

(model I) and the transport formulas derived from field revised Parker [1990a] formulas (models 

II and III) were generally similar.  Most values ranged between 2.4 and 2.6 m3s-1 (Figures 4.4 

and 4.5; Table 2).  The recurrence interval of the effective discharges between 2.4 and 2.6 m3s-1 

were between 1.5 and 2.4 years, indicating that both methods predict effective discharge in 

Reynolds Creek to be associated with moderate, high frequency flows rather than rarer, more 

extreme events.  Models II and III only predicted higher effective discharges at locations E and F 

(3.4 m3s-1 and 5.5 m3s-1, respectively) but, the recurrence intervals for the higher effective 

discharges at locations E and F remained moderate (2.1 and 4.3 years, respectively). 



97 
 

The computed effective discharges contradict the unique conclusions by Bunte et al.  

[2014] that motivated this study.  Bunte et al.  [2014] suggested that effective discharges in 

mountain streams were associated with the highest, rarest events.  Instead, the results are 

consistent with the other studies showing that effective discharges in mountain streams 

correspond to moderate, high frequency flows (outlined in Table 4.1) [Andrews and Nankervis, 

1995; Whiting et al., 1999; Emmett and Wolman, 2001; Torizzo and Pitlick, 2004; Lenzi et al., 

2006b].  The correlation of the predicted effective discharge with bankfull discharge (Qbf 

detailed in Section 4.2.2.2) is also consistent with several previous studies of coarse alluvial 

channels [Andrews and Nankervis, 1995; Emmett and Wolman, 2001; Torizzo and Pitlick, 2004; 

Lenzi et al., 2006b].  To explore the difference between the Reynolds Creek results and those 

presented by Bunte et al.  [2014], similarities and differences of the two studies is further 

explored below. 

The scaling of the flow frequency distributions and bedload discharges directly determine 

the magnitude of the effective discharges because effective discharges are determined as the 

maximum product of flow frequency distributions and bedload discharges-water discharge 

relations.  The scaling of the flow frequency distribution for Reynolds Creek with 𝑎1 as -

1.11±0.14 and 𝑎2 as −4.39±0.44 (Equation 4.1) overlaps with the scaling from the 41 gauged 

mountain streams that Bunte et al.  [2014] studied.  Bunte et al.  [2014] found that 𝑎1ranged from 

-2.40 to -0.65 and 𝑎2 ranged from -7.45 to -3.23.  These gauged streams did not have bedload 

measurements, so Bunte et al.  [2014] applied bedload relations from comparable streams based 

on bedload measurements collected over discharges up to 1.5 times bankfull discharge and 

extrapolated to larger discharges.  The bedload discharge (𝑄𝐵) relations applied to those 41 

streams had the form of  

𝑄𝐵 = 𝛽𝑄𝑏1           (4.24) 

where the 𝑏1-exponents ranged from 2 to 20 (most were between 3 and 10).   

With these flow frequency and bedload scaling results, Bunte et al.  [2014] found that i) 

all streams showed that 𝑎1 + 𝑏1 > 0, indicating that product of the flow frequency and bedload 
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relations were positive for discharges less than Qbrk, and ii) that most streams also showed that 

𝑎2 + 𝑏1 > 0, indicating that product of the flow frequency and bedload relations remained 

positive for discharges exceeding Qbrk.  The positive product for both flows below and above 

Qbrk for most streams caused the effective discharges of those streams to correspond to the 

maximum discharges evaluated.  Should instead 𝑎2 + 𝑏1 had been negative, then Bunte et al.  

[2014] would have found the effective discharge to be less than the maximum discharges on 

record. 

For comparison to the bedload scaling that Bunte et al.  [2014] employed, power-law 

regression is also performed on the predicted bedload discharges by models II and III (shown in 

Figures 4.5 a,b) for discharges between 0.5and 3.8 m3s-1 (i.e., 0.2Qbf and 1.5Qbf ; fitting 

exponent 𝑏1 in Equation 4.24).  Scaling was also performed for discharges exceeding the range 

measured by Bunte et al.  [2014]  (i.e.  Q>1.5Qbf, and the scaling exponent designated as 𝑏2).  

For the discharges less than 1.5Qbf, Model III indicated higher 𝑏1 scaling exponents (i.e.  more 

steep bedload discharge-water discharge relations) than Model II (Figures 4.6a,b; Table 4.3).  

The 𝑏1 scaling at all sites using model III were in the range calculated by Bunte et al.  [2014], 

and had a mean ± standard error of 4.91±0.82.  The standard errors are represented by error bars 

in Figures 4.6a,b.  Conversely, Model II 𝑏1 exponents were all less than 2 and had a mean ± 

standard error of 1.73±0.23.  The 𝑏1 scaling predicted by model III overlap with the Bunte et al.  

[2014] findings for discharges up to 1.5Qbf.  The overlap suggests that prevention of transport at 

low stages in model III better approximates bedload transport at low stages in mountain streams 

than model II (point further discussed in Section 4.4.4).  However, the Reynolds Creek results 

overlapping in the lower end of the Bunte et al.  [2014] may be due to most of the Bunte et al.  

[2014] measurements having been collected from 0.1 Qbf  to Qbf, which may have slightly steeper 

scaling than if measurements up to 1.5 Qbf had been available (discussed below). 

Due to 𝑏1 from model III being generally comparable to the calculated b-exponents by 

Bunte et al.  [2014], the remaining discussion on scaling focuses on model III.  Should the 

effective discharge analyses had been based on the 𝑏1 bedload scaling across all the discharges 
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along with the 𝑘1 and 𝑘2 scaling from the flow duration curve (Equation 4.1), the majority of the 

Reynolds Creek sites would have demonstrated similar findings to most of the streams analyzed 

by Bunte et al.  [2014].  The scaling showed that 𝑘1 + 𝑏1 > 0 for all sites, and rather than 

becoming 𝑘2 + 𝑏1 < 0  for discharges exceeding Qbrk, locations B, D, E and F continued to show 

that 𝑘2 + 𝑏1 > 0 like Bunte et al.  [2014].  However, the scaling exponents decreased when 

flows exceeded 1.5Qbf, i.e.  𝑏2<𝑏1 for all sites except for locations A and C, which remained 

relatively low (Figure 4.6b; Table 4.3).  The 𝑏2 values ranged from 2.45 to 3.57, with a mean ± 

standard error of 2.95± 0.14.  These differences in 𝑏1 and 𝑏2 depending on discharge show that, 

for all sites, 𝑘1 + 𝑏1 > 0 and 𝑘2 + 𝑏1 < 0, which is indicative of effective discharges 

corresponding to more moderate, high frequency events.  This trend suggests that the limitations 

in the bedload measurements available to Bunte et al.  [2014] may have been too high to be 

extrapolated to discharges exceeding 1.5Qbf , and subsequently affected their magnitude-

frequency results. 

4.4.2 EFFECTIVE DISCHARGE RELATIVE TO TOTAL BEDLOAD BUDGETS 

If the cumulative distributions of bedload predictions had shown sharp changes in slope 

around each effective discharge (Figures 4.4b and 4.5g,h), then effective discharge would have 

signified that effective discharges are related to significant changes in bedload budgets.  

However, the lack of notable slope differences at the effective discharges caused by the generally 

smooth 〈𝑋〉/〈𝑋〉𝑡𝑡𝑡𝑡𝑡 and VB,Qm/VB,total curves suggests that a broader range of discharges beyond 

a single value of effective discharge significantly contributes to the bedload budget of Reynolds 

Creek.  As channels adjust to convey the sediment supplied from upstream [e.g., Mackin, 1948], 

the consistent finding that the majority of the bedload volumes predicted by models I, II and III 

were contributed by flows that the exceeded effective discharges further demonstrates that a 

single discharge, such as effective discharge, cannot account for the maintenance of channel 

form of a mountain stream.  Despite differing methods, Andrews and Nankervis [1995] also 

found that the majority of transported bedload was attributed to flows exceeding effective 
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discharges.  Additionally, location A had characteristics most comparable to the steepest channel 

studied with bedload measurements in the Emmett and Wolman [2001] study, and both sites 

predicted similar Qe/Q0.5 (models II and III respectively having 0.83 and 0.8, and Emmett and 

Wolman [2001] showing 0.83).  The previous study that reported the majority of transport 

occurring over flows less than effective discharges had to scale ungauged streams to regional 

flow frequency distributions and used the Parker [1982] formula with a spatially constant 

𝜏𝑐,50
∗ =0.033 [Torizzo and Pitlick, 2004].  The methods may have contributed to the divergent 

findings since effective discharge is sensitive to the scaling of flow frequency distributions and 

bedload discharge relations (e.g., Section 4.4.1). 

4.4.3 APPLICABILITY OF PARKER [1990A] MODEL 

4.3.3.1 Field constraint 

A crude estimate of the sediment deposit that filled the Tollgate station gauging pool 

during the spring 2012 snowmelt (Figure 4.1e) was compared to bedload volumes predicted by 

models II and III at location A to evaluate the appropriateness of the two models for the channel.  

Location A was approximately 70 m upstream from the pool and time lapse photos of location A 

and the pool area constrained the timing of when the pool was filled.  The pool’s bedload trap 

efficiency was estimated to be twenty-five percent during spring 2012 based on the percentage of 

passive RFID tracers that were found in the pool following the Spring 2012 season versus those 

that passed through the pool. 

Comparison of total station surveys suggested that the deposit from the spring 2012 flows 

was more than 18.5 m3 of sediment and less than 58.5 m3.  The minimum accumulated bulk 

volume was based on differencing 0.1 m x 0.1 m surface grids created in Matlab from i) a March 

2012 survey where the channel thalweg on each side of the pool deposit was surveyed every 0.1 

m and the pool deposit was surveyed every few square meters and ii) a June 2012 survey where 

the channel thalweg on each side of the pool deposit was surveyed every 0.1 m.  Because the 
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June 2012 survey was only of the thalwegs flowing into the two Tollgate station inlets, the June 

2012 surface included the lower elevations of the pool deposit from the March 2012 survey to 

constrain the 18.5 m3 minimum estimate.  The maximum accumulated bulk volume of 58.5 m3 

was based on differencing the March 2012 surface grid from a June 2012 grid that assigned the 

elevation of the pool points to the elevation of a control point that was higher than the entire 

deposit. 

With the trap efficiency and survey constraints, the transported bulk volume at location A 

during the spring 2012 flow was estimated to be larger than 74 m3 and less than 234 m3 (i.e., 

18.5 m3/0.25 and 58.5 m3/0.25).  The transport formula using models II and III both predicted a 

bulk volume of approximately 95 m3 during spring 2012 (93.1 m3 and 94.5 m3, respectively).  

This cumulative transport calculated with the modified Parker [1990a] models is broadly 

consistent with the deposit estimate, suggesting that the revised application of the Parker [1990a] 

formula was reasonable for the site.   

The general alignment contrasts with previous indications that empirical transport 

formula models could be several orders of magnitude larger than bedload rating curves suggested 

[e.g., Bathurst, 1987; Gomez and Church, 1989; Yager et al., 2007; Barry et al., 2008].  Several 

factors may have contributed to models II and III generally predicting the pool deposit 

reasonably well.  First, the continuous, during-flood antenna records provided field measured 

transport thresholds that could be incorporated into the models.  Due to technological limitations, 

many previous field efforts relied on inferring transport thresholds from examining field 

conditions after floods, such as assuming that thresholds of the largest tracer clasts mobilized 

correspond to the peak discharge of the previous flood [e.g., Andrews, 1983; Lenzi et al., 2006a; 

Mao et al., 2008; Yager et al., 2012a; Scheingross et al., 2013].  Depending on the methods 

employed, interpreted thresholds could vary greatly [e.g.  Buffington and Montgomery, 1997] 

and uncertainties in threshold values can significantly impact bedload predictions [e.g., Barry et 

al., 2004; Recking et al., 2012].  Thus, the consistency of the 𝜏𝑐,50
∗  provided by the antenna 
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records throughout the spring 2012 season [Ch. 3] likely represented the transport conditions at 

the reach fairly well.   

4.4.3.2 Model revision based on channel morphology 

Due to the scarcity of bedload measurements in steep channels, assuming a spatially 

constant 𝜏𝑐,50
∗  value ranging from 0.03 to 0.04 was practiced in previous magnitude-frequency  

analyses for mountain watersheds (Table 4.1) [e.g., Andrews and Nankervis, 1995; Torizzo and 

Pitlick, 2004; Thompson and Croke, 2008].  However, evidence exists that 𝜏𝑐,50
∗  is higher for 

steeper channels [e.g., Ch.3; Mueller et al., 2005; Yager et al., 2012; Scheingross et al., 2013], 

and at the sites investigated in this study, the slope-dependent 𝜏𝑐,50
∗  values ranged from 0.051 to 

0.102 (Table 4.2).  Additional calculations of bedload transport rates are presented again using 

the constant 𝜏𝑐,50
∗  value of 0.039 in the original Parker [1990a] formula (Section 4.2.2.3.3) to 

explore how excluding the effect of channel morphology on 𝜏𝑐,50
∗  may change bedload budgets.   

As expected, the use of the lower 𝜏𝑐,50
∗  caused transport rates and volumes to be higher 

than when the slope-dependent 𝜏𝑐,50
∗  were used, sometimes up to several orders of magnitude 

higher (e.g., location B in Figure 4.7b).  The higher transport rates also diminished the 

differences between the model II and III bedload volumes; thus, for conciseness, only model II is 

plotted in Figures 4.7a,b.  The increased volume predicted by the lower  𝜏𝑐,50
∗  value also predicts 

an extensive increase in bulk bedload estimate for the spring 2012 season.  The lower  𝜏𝑐,50
∗  value 

predicted sediment at location A over spring 2012 to be 2,064 m3 for both models II and III, 

significantly exceeding the 80 m3 field constraint.   

Despite the lower 𝜏𝑐,50
∗  value increasing the transport stages, rates and volumes (Figures 

4.7a,b), the higher transport rates over the largest discharges remained insufficient to balance the 

rarity of their occurrence (Figure 4.7c).  Thus, like the slope-dependent 𝜏𝑐,50
∗  results, the relative 

bedload volumes predicted using the spatially lower 𝜏𝑐,50
∗  value still caused the predicted 

effective discharges to correspond to moderate, high frequency flows at all locations.  This 
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agreement of the magnitude-frequency trends with slope-dependent 𝜏𝑐,50
∗  results suggests that the 

previous studies that employed similar spatially constant 𝜏𝑐,50
∗  values over comparable channel 

gradients likely correctly identified the trend of effective discharges being moderate, high 

frequency magnitudes.  However, channels steeper than Reynolds Creek can have significantly 

higher 𝜏𝑐,50
∗ values [e.g., Scheingross et al., 2013]; thus, such an assumption of a lower, spatially 

constant 𝜏𝑐,50
∗  may not demonstrate comparable trends for steeper streams. 

The degree of change in the effective discharges predicted using the lower  𝜏𝑐,50
∗  versus 

those applied in models II and III varied slightly among the sites (Figure 4.7d).  At location D, 

the higher transport stages at the higher discharges increased the effective discharge from 2.4 

m3s-1 to 2.8 m3s-1.  Conversely, at locations E and F, the shift in higher and steeper bedload rates 

over smaller discharges caused the magnitudes of the respective effective discharges at the two 

sites to decrease from 3.4 m3s-1 and 5.5 m3s-1 to 2.5 m3s-1 and 3 m3s-1.  At locations A, B, C and 

G, the higher bedload rates over the larger discharges were not sufficient to significantly change 

the magnitudes of the effective discharge. 

The observed variations in effective discharges with the lower  𝜏𝑐,50
∗  compared to the 

slope-dependent 𝜏𝑐,50
∗  highlight potential uncertainties in channel-engineering designs that 

identify effective discharges without consideration of local morphologies.  For river management 

projects that engineer channel forms based on effective discharges calculations [e.g., Andrews 

and Nankervis, 1995; Shields et al., 2003], an underestimated effective discharge could result in 

the channel being too small.  Should effective discharge control channel form (which is a topic 

that data from this study do not directly address), then an under design of effective discharge 

could cause subsequent bed and bank instabilities as the channel adjusts to a larger effective 

discharge to efficiently convey sediment delivered from upstream reaches [e.g., Mackin, 1948; 

Leopold et al., 1964; Mao and Surian, 2010].   

The increase in transport rates with the use of the lower  𝜏𝑐,50
∗  value caused more 

significant changes in the predicted bedload budget than the effective discharges.  The half-load 

discharges changed at most sites (Figure 4.7e).  The higher transport stages predicted by the 
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lower  𝜏𝑐,50
∗  decreased the volumetric differences in models II and III, causing both models to 

predict the same half-load discharge for each site.  The lower 𝜏𝑐,50
∗  value predicted larger half-

load discharges at location D and smaller half-load discharges at locations E and F, G (model II 

and III) and B (model III only).  Despite the shift to having more sediment transported over the 

lower discharges under the lower 𝜏𝑐,50
∗  conditions, the majority of sediment was still contributed 

by flows exceeding the effective discharges at all sites (Figures 4.7c and 4.7).  The significant 

differences in the sediment volumes and volumetric contributions over the discharges illustrates 

that consideration of local channel morphology is needed when applying 𝜏𝑐,50
∗  to constrain 

bedload budgets in mountain streams. 

4.4.4 MODEL LIMITATIONS 

Limitations of model I include clast size and constant, linear scaling of bedload with 

excess discharge volumes.  Given that model I is based on a previous passive tracer study [Ch. 2, 

Ch. 3], the relations used in model I are explicitly from clasts that approximate the mean D50 of 

the channel rather than significantly finer or coarser clasts.  With the recent advent of smaller 

RFID tags (now as small as 8 mm), future magnitude-frequency models using tracer 

displacements can further examine whether the linear scaling reflected in Equations 4.2 and 4.3 

approximates the displacement trends over a range of bedload sizes.  Additionally, future studies 

with tracer surveys that are more frequent (specifically after longer, smaller floods and after 

shorter, larger floods that have similar effective runoff volumes) could also examine if the linear 

scaling of mean displacements with effective runoff varies with the discharge magnitude. 

The three models evaluated cannot explicitly account for changes in bedload supply over 

time, which is often the case for steep channels [e.g., Moog and Whiting, 1998; Yager et al., 

2012b].  Whether the tracer clasts that model I was derived represented supply limitations 

observed in mountain streams cannot be determined with this dataset.  However, the overall 

magnitude-frequency results are similar to the other models, whose approximation to mountain 
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streams is better constrained.  By permitting bedload transport at low transport stages in model 

II, more transport was permitted in model II than model III.  This difference reflects model II 

approximating a scenario where bedload was less supply limited than model III, particularly at 

the lower discharges (Figures 4.5c,d,e,f).  For model II, the larger bedload supply at lower 

discharges caused bedload discharges to increase at a slower rate with water discharge than in 

model III (e.g., comparison of b1 values in Figure 4.6 and Table 4.3).   

Conversely, the delay in transport for model III caused model III bedload discharge-water 

discharge relation to have steeper scaling relations over the lower discharges and generally less 

steep relations over the higher discharges (e.g., b1 versus b2 in Figure 4.6 and Table 4.3).  These 

trends in the b1 and b2 scaling for model III better represent the partial transport scenario of 

coarse alluvial streams, where the coarser bedload clasts tend to remain immobile over low 

discharges and enable the bed to relatively quickly develop some degree of surface armoring 

[e.g., Carling, 1988].  This armoring causes sediment supply to be more limited at lower flows 

when the armoring decreases as coarser clasts are entrained by higher discharges.  Additionally, 

the relatively low values of b2 values over the larger discharges in model III compared to those 

extrapolated by Bunte et al.  [2014] (particularly those on the order of 10 and 20) suggests that 

the higher b1-values extrapolated to larger discharges by Bunte et al.  [2014] represented supply 

limited scenarios that were too high for those larger discharges that moved coarser clasts.   

While the 𝜏𝑐,50
∗  values in model II and III were adjusted spatially according to local bed 

slopes (discussed in Section 4.4.3.2), another limitation of the transport formulas was that the b 

value in Equation 4.14 remained spatially constant.  The b value of -0.905 was used because it 

was similar to the value found at location A with the passive tracers and stationary antennas [Ch. 

3].  Constraints at the other sites were unavailable but may have varied from the Parker [1990a] 

value.  For example, work in a significantly steeper channel with larger, immobile boulders 

(S=0.098 m/m) has suggested that b values could be as high as -0.16 [Yager et al., 2012a].  

However, the sites examined in this study were less steep and had generally comparable grain 

size distributions, so it is expected that the b-value approximation of -0.905 was fairly 
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reasonable.  If the b value at these sites was larger than -0.905, then the bedload predictions from 

models II and III represented a maximum estimate because a value closer to 0 would indicate 

that transport exhibited more size selectivity.  Future work is needed to evaluate the trends in 

effective discharges and bedload budgets over time for mountain channels with slopes steeper 

than 0.05 m/m, larger immobile structures and more size selective, field constrained b values. 

4.4.5 METHOD EXPANSION 

 The integration of the displacement and entrainment datasets from Reynolds 

Creek tracer with numerical flow modeling and empirical transport functions represents a unique 

approach to estimate the bedload budget of a mountain watershed.  The use of displacements 

from passive tracers and numerical flow modeling from HEC-RAS permitted bedload transport 

to be evaluated over a range of discharges and shear stress conditions.  The tracer displacement 

and flow modeling methods provide constraints on bedload transport that are often unavailable, 

because bedload measurements in mountain streams rarely covering discharges that exceed two 

times that of bankfull discharge [e.g., Whiting et al., 1999; Emmett and Wolman, 2001; Barry et 

al., 2008].  This new use of HEC-RAS modeled shear stresses showed that bedload discharge-

water discharge scaling measured at low discharges [e.g., Bunte et al., 2014] could be too steep 

for extrapolation to higher discharges (Section 4.4.1).  The significance of this finding is that the 

methods applied in this study demonstrate how conflicting conclusions from magnitude-

frequency analyses in mountain streams can be affected by extrapolated bedload measurements 

(e.g., Table 4.1). 

4.5 Conclusions 

New analyses of effective discharge and relative bedload volumes were performed in a 

mountain stream using tracer displacements and flow modeling with empirical transport 

formulas that were revised based on local bed slopes (up to 0.042 m/m).  All the bedload models 

evaluated predicted that effective discharges correspond to moderate, high frequency flows 
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rather than larger, rarer events as previously concluded [Bunte et al., 2014].  Models also 

predicted that the majority of bedload transported was contributed by discharges exceeding the 

identified effective discharges, which indicates the significance of a broad range of discharges 

rather than the single discharge to total bedload transport of mountain streams.  The 

demonstrated sensitivity in the scaling of bedload discharge over lower water discharges versus 

higher discharges highlights the need for careful consideration of scaling and extrapolation 

methods used in magnitude-frequency analyses, landscape evolution and river and reservoir 

management that estimate bedload budgets [e.g., Howard et al., 1994; Bunte et al., 2014; Ziegler 

et al., 2014]. 
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Tables 

Table 4.1: Summary of magnitude-frequency analyses from previously reported coarse alluvial studies and presented study 

Summary of studies using discharge and bedload relations to compare effective discharges (Qe), bankfull discharges (Qbf), and half-
load discharges (Q0.5).  For the last two columns, the majority of the bedload was contributed by discharges larger than the effective or 
bankfull discharge when Qe< Q0.5 or Qbf < Q0.5 was found. 

Study Number 
of sites 

S 
(m/m) 

drainage 
area 
(km2) 

D50 
(mm) Flow regime Bedload transport 

Qe  
magnitude-
frequency 

conclusions  

RI of Qe 
Qe vs.  

Qbf 
Qe vs.  
Q0.5 

Qbf vs.  
Q0.5 

[Carling, 
1988] 2 

0.01 
and 
0.04 

11 and 2 
20 
and 
50 

Binned 
frequency of 
peak 
discharges for 
over 6 years 

Power scaling 
based on local 
bedload rating 
curves from on 7.6 
cm Helley Smith 
samples  

moderate 
magnitude-
high 
frequency 

0.9 yr for 
S=0.01; 
NR for 
S=0.04 

Qe~Qbf; 
NR for 
S=0.04 

NR NR 

[Andrews 
and 

Nankervis, 
1995] 

17 
0.001 

to 
0.26* 

3- 3700 24-91 
Binned mean 
daily 
discharges 

Parker [1982] 
formula, with 
entrainment 
thresholds held 
constant for most 
sites (𝜏𝑐,50

∗  assumed 
0.038) 

moderate 
magnitude-
high 
frequency 

NR 
Average: 
Qe~Qbf  
 

Qe<Q0.5 Qbf<Q0.5 

[Whiting et 
al., 1999] 23 0.004-

0.075 1.3-381 4-207 

Scaled 
ungauged 
streams to 
regional 
relations 

Power scaling 
based on local 
bedload rating 
curves from on 7.6 
cm Helley Smith 
samples 

moderate 
magnitude-
high 
frequency 

1-2.8 Qe<Qbf NR Qbf 
>Q0.5 

[Emmett 
and 

Wolman, 
2001] 

5 0.005- 
0.019 55-4950 60-

173 
Binned mean 
discharges 

Power scaling 
based on local 
bedload rating 
curves from on 7.6 
cm Helley Smith 
samples 

moderate 
magnitude-
high 
frequency 

1.6 Qe~Qbf  Qe~Q0.5  Qbf~Q0.5 
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Table 4.1 (continued): Summary of magnitude-frequency analyses from previously reported coarse alluvial studies and presented 
study 

[Torizzo 
and Pitlick, 

2004] 
12 0.004-

0.043 
31-
231 

23-
80 

Scaled to ungauged 
streams based on 
regional flow 
frequency 
distributions 

Parker [1982] formula, 
with entrainment 
thresholds held constant 
for most sites (𝜏𝑐,50

∗  
assumed 0.033) 

moderate 
magnitude-
high 
frequency   

NR Qe~Qbf Qe>Q0.5 Qbf>Q0.5 

[Lenzi et 
al., 2006b] 1 0.13-

0.17 5 90 

Fit log-normal 
frequency 
distribution to 5-min 
discharge data 
 

I) Fit power scaling 
relation between 
measured bedload rates 
II) Averaged sediment 
rates 

moderate 
magnitude-
high 
frequency   
 

NR Qe~Qbf NR NR 

[Bunte et 
al., 2014] 41 0.007-

0.193 
4-

239 NR 

Fit two-part power 
law, flow frequency 
distributions to mean 
daily flows  

Unmeasured at sites, 
assumed power scaling 
relations based on each 
site’s watershed and 
channel characteristics 

High 
magnitude-
low 
frequency 

NR Qe>Qbf NR NR 

[Sholtes et 
al., 2014] 

NA (theoretical 
investigation) NA NA NA 

Explored several 
two-parameter 
lognormal 
distributions 

Several power scaling 
relations.  Evaluated one 
sediment size per 
analysis (𝜏𝑐,50

∗  assumed 
0.047) 

NA NA NA NA NA 

Presented 
study 7 0.01-

0.04 55 51-
90 

Fit two-part power 
law, flow frequency 
distributions to mean 
daily discharges over 
48 years 

I) Field-based bedload 
displacement-hydrologic 
forcing relations 
II) Parker [1990a] 
formula, revised with 
field-based transport 
thresholds 

moderate 
magnitude-
high 
frequency 

1.2-
3.5 Qe~Qbf Qe<Q0.5 Qbf<Q0.5 

S: Slope; D50: Median grain size; 𝜏𝑐,50
∗ =critical Shields stress for entrainment of D50 clasts; *: Only water surface slopes reported.     
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Table 4.2: Summary of predicted effective discharges (Qe) and half loads (Q0.5) from models I, II and III 

Model I) Displacement-effective runoff relations (Section 4.3.1)            
  Qt 

(m3s-1) 

Qe Q0.5        
 

 (m3s-1) CFT RI (yr) (m3s-1) RI (yr)         
 

 1.4 2.4 0.314 1.44 2.9 1.54         
 

 2 2.6 0.175 1.48 3.6 2.43         
Models II and III) Empirical transport formulas (Section 4.3.2)    
  

Site S (m/m) 
D50 

(mm) 

Model II) Transport permitted at low stage Model III) Transport prevented at low stage 
  Qe Q0.5 Qe Q0.5 
 

 (m3s-1) CFT RI (yr) (m3s-1) RI (yr) (m3s-1) CFT RI (yr) (m3s-1) RI (yr) 
 

 A 0.018 61 1.1 0.166 1.16 3.4 2.12 1.2 0.146 1.16 6.0 4.79 
 

 B 0.042 90 2.4 0.363 1.44 3.5 2.36 2.4 0.171 1.44 6.1 4.89 
 

 C 0.016 75 2.4 0.441 1.44 2.7 1.51 2.4 0.396 1.44 3 1.56 
 

 D 0.014 68 2.4 0.479 1.44 2.5 1.46 2.4 0.305 1.44 3.3 2.07 
 

 E 0.010 51 3.4 0.205 2.12 5.5 4.30 3.4 0.204 2.12 5.5 4.30 
 

 F 0.013 55 5.5 0.312 4.30 7.3 9.69 5.5 0.300 4.30 7.4 10.44 
   G 0.012 71 2.5 0.206 1.46 5.1 3.72 2.5 0.186 1.46 5.2 3.80 
Notation) Qt: Threshold discharge for Equations 4.2 and 4.3; Qe: Effective discharge; Q0.5: Half-load discharge; RI: Recurrence interval; S: local bed slope; CFT: 
Cumulative fraction transported for a given discharge of interest 
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Table 4.3: Summary of power-scaling exponents for the bedload discharge-water discharge 
relations 

Table lists the power-scaling exponents for the various models over discharges up to 1.5 times 
bankfull (𝑏1) and exceeding 1.5 times bankfull (𝑏2).  The 95% confidence bounds around the 
exponents are indicated by the symbol ±.  The regression analyses was performed in Matlab and 
the corresponding R2 are presented.  All correlation p-values are less than 0.05, which is 
indicative of the correlation between the observations and the regression fit being statistically 
significant at the 95% confidence level.  Figure 4.6 also shows the exponents. 

 Model II: 0.5 m3s-1<Q<3.8 m3s-1 Model II: Q>3.8 m3s-1 
Location 𝒃𝟏 ± R2 𝒃𝟐 ± R2 

A 1.460 0.130 0.9703 2.937 0.014 0.9997 
B 1.462 0.013 0.9997 3.566 0.040 0.9987 
C 1.188 0.254 0.8816 2.452 0.024 0.9988 
D 1.335 0.007 0.9999 3.266 0.057 0.9967 
E 2.988 0.502 0.9404 2.606 0.024 0.9989 
F 1.982 0.876 0.7124 3.044 0.033 0.9986 
G 1.666 0.528 0.8117 2.875 0.018 0.9995 

 Model III: 0.5 m3s-1<Q<3.8 m3s-1 Model III: Q>3.8 m3s-1 
Location 𝒃𝟏 ± R2 𝒃𝟐 ± R2 

A 2.445 0.380 0.893 2.937 0.014 0.9997 
B 6.779 3.154 0.4013 3.566 0.040 0.9987 
C 2.097 0.160 0.9797 2.452 0.024 0.9988 
D 5.939 2.786 0.2982 3.266 0.057 0.9967 
E 6.727 0.933 0.9522 2.606 0.024 0.9989 
F 6.952 0.391 0.9923 3.044 0.033 0.9986 
G 3.551 0.193 0.9920 2.875 0.018 0.9995 
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Figures 

Figure 4.1: Study area 

(a) Site map of the Reynolds Creek study area.  The triangles indicate Locations A through G.  
The stationary antenna reach (location A) was just upstream of the Tollgate discharge gauge 
(USDA-ARS gauge 116b), and has a drainage area of approximately 55 km2.   
(b) Riffle reach at location A.   
(c) Plane-bed reach with bedrock sidewall on river left, approximately 100 m downstream of 
location B.   
(d) Reach just upstream location E having unorganized boulders and narrow channel widths due 
to banks of dense willows and canyon setting.  Image is representative of upstream and 
downstream sections of Location F as well.   
(e) Deposit at the pool upstream of USDA-ARS Tollgate station.  Circled person to the right of 
center wall in background provides scale.   
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Figure 4.2: Flow frequency distribution 

(a) Probability density functions (PDF) of the discharges (Q) calculated at the Tollgate station 
(USDA-ARS gauge 116b, data from Northwest Watershed Research Center [2015]).  PDFs 
shown correspond to the 15-minute discharge records over the water years from 1994 through 
2014 (grey circles), mean daily discharges based on 15-minute records from 1994 through 2014 
(blue triangles), and the mean daily records from 1966 through 2014 records (magenta squares).  
Due to the consistency among the PDFs, the flow frequency curve is fit to the mean daily 
records from 1966 to 2014, similar to methods performed in other mountain streams in the 
western United States [e.g., Segura and Pitlick, 2010; Bunte et al., 2014].   
(b) Flood frequency plot based on the maximum mean daily discharges recorded each year at the 
USDA-ARS Tollgate gauge from 1966 through 2014.   
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Figure 4.3: Site characteristics at locations A through G 

(a) Local bed slope averaged over moving 10 m windows shown in light grey.  Locations A 
through G are identified by the symbols corresponding to the legend above. 
(b) Grain size distribution at sites of interest.  Clasts were aggregated at bins of 2 to 7 mm, >7 to 
15 mm, >15mm to 25 mm, and so on at increments of 10 mm until 765 mm.  Inset:  D16, D50 and 
D84 lines correspond to the size in which 16, 50 and 84% of the coarse surface grains were finer. 
(c) HEC-RAS calculated shear stress (τ) versus water discharge (Q).  Shear stress scaling for 
locations were as follows: A was 𝜏~Q0.33; B was 𝜏~Q0.48; C was 𝜏~Q0.28; D was 𝜏~Q0.40; E was 
𝜏~Q0.62; F was 𝜏~Q0.63 and G was 𝜏~Q0.36. 
(d) The transport stages (𝜏50∗ 𝜏𝑐,50

∗⁄ ; Equation 4.9) versus water discharge.   
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Figure 4.4: Effective discharges and half load discharges predicted by model I  

(a) Fraction of mean displacement to total mean displacement (<X>/<X>total) with respect to 
water discharge (Q) using the tracer displacement relations that had a transport threshold (Qt) of 
1.4 m3s-1 (Equation 4.2) and 2 m3s-1 (Equation 4.3).  Effective discharges corresponded to the 
peak fractions. 
(b) Cumulative fractions of total displacements from subplot a with respect to discharge.  The 
effective discharges (Qe) and half-load discharges (Q0.5) are also indicated. 
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Figure 4.5: Bedload transport rates, fraction transported, effective discharge and half-load 
discharges predicted by models II and III 

(a, b) Bedload rates (QB,total,Qm) versus water discharge (Q) for Model II and Model III  
(Equations 4.15 and 4.16). 
(c, d) Resulting bedload volumes (𝑉𝐵,𝑄𝑚) versus water discharge (Q) predicted over 1966-2014.  
Results are the product of bedload rates and flow frequency distribution (Equation 4.21). 
(e,f) The fraction of sediment volume to total bedload volume (VB/VB,total) with respect to 
discharge.  Effective discharges corresponded to the peak fractions. 
(g,h) Cumulative fraction of transported bedload versus water discharge.  The effective 
discharges (from subplots c and d) are indicated with open symbols, and half-load discharges are 
indicated with filled symbols (due to the overlap, see also Table 4.2). 
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Figure 4.6: Power-scaling exponents for bedload discharge-water discharge relations 
from Model II, Model III, and the spatially constant shear stress   

(a,b) Open symbols correspond to the b1 exponents calculated from the bedload 
discharge-water discharge (QB-Q) power scaling relations for discharges between 0.5 
m3s-1 and 3.8 m3s-1 (i.e., up to 1.5 times that of bankfull discharge).  Filled symbols 
correspond to the b2 exponents calculated from the bedload discharge-water discharge 
power scaling relations for discharges exceeding 1.5 times bankfull.   
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Figure 4.7: Comparison of bedload transport rates, fraction transported, effective 
discharges and half-load discharges predicted assuming a lower, spatially 
constant entrainment threshold versus slope-dependent thresholds 

(a) Bedload discharge (QB,total,Qm) predicted by assuming a constant critical Shields 
number for the median sized clasts (𝜏𝑐,50

∗ ) of 0.039 at all sites. 
(b) Total bedload volumes for a given discharge (VB,Qm) using 𝜏𝑐,50

∗ =0.039 versus the 
volumes from slope-dependent 𝜏𝑐,50

∗ .  Grey line represents 1:1 line. 
(c) The fraction of sediment volume to total bedload volume (VB/VB,total) with respect to 
discharge.  Effective discharges corresponds to the peak fractions. 
(d) Effective discharge (Qe) found for 𝜏𝑐,50

∗ =0.039 predictions versus that found with the 
slope-dependent 𝜏𝑐,50

∗  predictions.  Open symbols represent model II; closed symbols 
represent model III.  Grey line represents 1:1 line. 
(e) Half-load discharges (Q0.5) found for 𝜏𝑐,50

∗ =0.039 predictions versus that found with 
the slope-dependent 𝜏𝑐,50

∗  predictions.  Open symbols represent model II; closed symbols 
represent model III.  Grey line represents 1:1 line. 
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CHAPTER 5: SUMMARY 

The work presented in this dissertation aimed to address gaps in understanding the 

displacement and entrainment behavior of bedload clasts in mountain streams.  The rare, 

field-based datasets from active and passive tracers and numerical flow modeling enabled 

the characterization of morphologic and stochastic hydrologic influences that drive 

bedload dispersion.  Key findings in the presented studies include the following: 

 
• Probabilities of transport for coarse bedload particles increase with increases in 

discharge [Ch. 2] 

• Step lengths and cumulative displacements also increase with increases in 

hydrologic forcing [Ch. 2] 

• Heavy-tailed rest time distributions suggest superdiffusive dispersion in mountain 

streams [Ch. 2] 

• Bedload exhibits equal entrainment mobility in plan-bedded coarse alluvial 

reaches [Ch. 3] 

• Thresholds of motion are more appropriately represented by a distribution rather 

than a single, spatially constant value [Ch. 3] 

• Thresholds of motion increase with increases in local bed slope [Ch. 3] 

• Deposition can frequently occur at flow strengths lower than re-entrainment [Ch. 

3] 

• Preferential bedload deposition can occur at slightly wider reaches in mountain 

streams [Ch. 3] 
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• Effective discharges in mountain streams correspond to moderate, high frequency 

flows [Ch. 4] 

• A broad range of discharges rather than a single effective discharge contributes 

the most significantly to total bedload transport [Ch. 4] 

• Sensitivity in the scaling of bedload discharge-water discharge relations can cause 

significant extrapolation errors for flow conditions outside those measured [Ch. 4] 

The presented findings reveal several new distinctions applicable to conceptual 

and prediction models of bedload transport.  The indication of superdiffusive dispersion 

signifies that the hypothesis of subdiffusive transport persisting over timescales longer 

than tens of seconds, i.e.  over a “global range”, does not apply in coarse alluvial 

channels [Nikora et al., 2002].  The distributions of thresholds of motion suggest that 

river management projects and fluvial prediction studies with objectives of estimating 

bedload budgets and bed stability would better predict the range of possible project 

outcomes by evaluating transport using a range of thresholds [e.g., Andrews and 

Nankervis, 1995; Torizzo and Pitlick, 2004; USDA-NRCS, 2007]. These distributions also  

suggest that larger uncertainties are likely associated with paleohydrologic studies that 

have constrained the magnitudes of peak flood events based on assuming a single critical 

Shields numbers for the largest grains found in deposits  [e.g., Baker, 1974; Sugai, 1993; 

Grossman, 2001].  Additionally, observing almost half of deposition occurrences 

corresponding to flow strengths that were lower than those of re-entrainment showed that 

the classic theory proposed by Hjulström [1935] does not fully describe transport 

behavior in natural streams.  The observed sensitivity in the scaling of bedload discharge-

water discharge relations highlights the need for careful consideration in the choice of 
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scaling and extrapolation methods used in magnitude-frequency analyses, landscape 

evolution and river and reservoir management that estimate bedload budgets [e.g., 

Howard et al., 1994; Bunte et al., 2014; Ziegler et al., 2014].  Finally, the demonstrated 

influence of hydrologic forcing and channel morphology on bedload transport highlight 

the need for their incorporation into dispersion models to better approximate natural 

settings [e.g., Ganti et al., 2010; Hill et al., 2010; Bradley and Tucker, 2012].   

Future work remains warranted to determine how hydrologic and morphologic 

parameters can be included in bedload models to adequately reflect a range of conditions.  

For example, direct measurements of bedload transport are needed throughout low to 

high discharges in step-pool and boulder-bedded reaches to quantify the extent to which 

transport in these steeper settings deviate from the near equal entrainment mobility 

observed in plane-bedded reaches.  Such measurements in both plane-bedded and steeper 

reaches should also include a broad grain size distribution that represents the range of 

fine to coarse bedload clasts.  Field constraints are also needed to estimate the degree that 

particle mobility and bed stability varies after floods that have significantly differing peak 

discharges.  Despite progress made by this study and others like it, considerable technical 

challenges remain in being able to relate such bedload measurements to during-flood 

variations in the structure of channel beds over time. 
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APPENDIX: RFID AND ACCELEROMETER TECHNOLOGIES 

Below provides additional details to the RFID and accelerometer technologies described 

in Chapter 2. 

 

Table A1: Design considerations related to the RFID and accelerometer technologies 
applied to Reynolds Creek 

 Technological limitation Design approach & considerations 

RFID tags 

 • Smaller RFID tags have shorter read 
ranges. 

• Used largest RFID tag possible for each tracer clast. 

 • Likelihood of a RFID tag being read 
depends on its orientation relative to 
an antenna.  Tags are often not read at 
all when oriented parallel to an 
antenna plane. 

• Embedded tracers with tags parallel to the clasts’ 
intermediate axes.  Presumably it is more likely that a 
clast rotates parallel to its longest axis as it passes an 
antenna, so aligning tags parallel to the shortest or 
intermediate axes could be helpful.  However, choosing 
the shortest increases risk of rock fracturing. 

 • Antennas cannot read RFIDs that are 
immediately adjacent to metal. 

• Having no metal in the active tracers was not feasible 
because of accelerometer batteries and lead weights.  
However, separating tags ~1 cm away from these 
components was sufficient for antenna readings. 

Mobile antennas   

 • If more than one particle is within the 
antenna read range, signals interfere 
and typically no tags are read. 

• If one finds an area with a large number of particles, 
change to a smaller mobile antenna.  However, a smaller 
antenna may not be sufficient if tracers are very closely 
spaced as data logger corruption due to radio interference 
may occur. 

• By decreasing the read range in high tracer deposition 
areas, one can decrease the likelihood that more than one 
tracer is read at one time.  However, decreasing antenna 
read distance also decreases vertical read depth into the 
bed. 
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Table A1 (continued): Design considerations related to the RFID and accelerometer 
technologies applied to Reynolds Creek 
 Technological limitation Design approach & considerations 
Stationary antennas 
 • Antenna read distances decrease when 

immediately adjacent to metal. 
• Used as little metal as possible when securing antennas 

on streambed. 
• Used largest RFID tag possible for each clast because, 

when some metal was present, antennas read larger tags 
better than smaller ones. 

 • If more than one particle is within an 
antenna read range, typically no tags 
are read. 

• Staggered tracer deployment locations so that dispersion 
with distance decreases likelihood of being read within a 
given antenna scan. 

• Configured antennas widths to be fairly narrow (0.5 m) 
and tuned their read distances (0.25 m) to decrease the 
likelihood of multiple tagged rocks passing through an 
antenna field at a given time.   

• Placed several antennas in same reach to minimize tracers 
passing through reach unread. 

 • Antennas must be individually tuned 
for each shape to optimize tag 
reading.  Retuning may be required if 
antenna shape changes. 

• After large transport events, checked antenna read ranges 
and made adjustments as needed.  If logistically feasible, 
strongly recommend to reassess the shape of antennas 
after large floods. 

 • If a reader is powered but not 
connected to an antenna, the reader 
can overheat causing permanent 
damage to the circuit board. 

• Staked antennas to bed to prevent antennas from being 
entirely eroded away from the site while the reader was 
still powered on. 

 • If data logger scanning rate is too 
slow, tracers moving very fast may 
pass over an antenna without being 
read. 

• Set antenna read rate settings to ~5-10 scans per second.  
Monitored power consumption and read range when 
setting scan rate.  Increasing number of scans per second 
could increase probability of recording a tracer within 
antenna read distance; however, increasing scan rates can 
also increase the required antenna power. 

 • Single antenna data loggers can be 
located up to 130 m from its antenna.  
Multiple antenna data loggers (MUX) 
perform best when located within 20 
m from their antennas (Leach, pers.  
comm.). 

• Positioned the solar panels, the MUX readers, batteries 
and power regulators 50 m from the antennas to keep the 
equipment above the floodplain.  While this slightly 
decreased antenna performance, data loggers were 
required to stay dry. 

  
 • Between the fall installation and the 

spring events, the data loggers 
experienced non-systematic time 
drifts of ±5 min and thus prevented 
calculation of particle velocity. 

• Recommend resetting data logger time every couple of 
weeks when transport is expected. 

Active tracers 
 • Accelerometer memory limited to 

64kb. 
• To collect data over several months, before embedding in 

tracer, set device sampling times to 10-minutes, and 
delayed sample start until date of expected deployment  
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Table A2: Procedure for the preparation of artificial tracers.   

Using the procedure outlined below, one batch has approximately 30 min of workability.  
This short duration required mixing several batches a day to fill all accelerometer and 
RFID molds.  The coarse aggregate in the concrete mixture consisted of pea gravel from 
hardware stores, but density could be increased by using denser aggregate such as 
crushed basalt or garnet sand.  None of the recovered accelerometer particles cracked 
during transport, suggesting that these concrete casting methods produce sufficiently 
strong cobbles to withstand energetic transport.  Mixture was developed by collaborating 
with students in the structural materials department at the University of Texas. 
1. Mix cementitious material in a dry container.   

• White Portland Type 1 Cement: 1815 g (4 lbs) 
• Silica Fume: 140 g (0.3 lbs).  Increases concrete 

and durability. 
• Powdered concrete pigment: 50 g (0.1 lbs) 

2. Mix liquids in a separate container. 
• Water: 680 g (1.5 lbs).  Maximum cement to 

water ratio should be less than 0.4 by weight to 
maintain high strength. 

• Sika 2100 ViscoCrete plasticizer: 9 ml.  
Plasticizer increased workability without 
additional water, allowing to transfer concrete 
into molds while keeping water-to-cement ratios 
low. 

3. Mix aggregates in a separate container. 
• Coarse aggregate (pea pebbles): 4355 g (9.6 lbs) 
• Fine aggregate (sand): 2720 g (6 lbs) 

4. Add liquids to cementitious material and mix.   
5. Add aggregates to liquid/cementitious material and 

mix.   
6. Pour concrete into the two-piece rubber molds.  Fill 

the bottom halves; then, place the top mold onto the 
bottom.  Finish filling mold from small hole in the top 
(Figure 4b).   

7. Tag casts while concrete is still wet (Figure 4c).  See 
Table 1 for tag orientation considerations. 

8. After at least 12 hours, remove tracers from molds and 
submerge in water for a couple weeks to improve 
strength as concrete fully cures.   
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Figure A1: Shape diagram of local clasts and the deployed passive and active tracers  

Shape measurements based on longest (a), intermediate (b) and shortest axes (c).  Plot 
created with the Graham and Midgley [2000] program. 
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Figure A2: Shape Additional images of passive and active tracer production.   

(a) 32 mm RFID tag, coarse gravel and protective silicon sleeve.  (b) As part of the 
artificial clast production, filled the two part molds from the top with wet concrete.  (c) 
RFID tags in silicon sleeves were inserted into wet concrete casts from the top molds.  
Tags were maneuvered to be perpendicular to the mold’s intermediate axis (Table S1).  
(d) A recovered artificial passive tracer (red) on bed surface.  (e) Hobo 3G accelerometer 
with 30 mm RFID disc.  (f) Cobbles suspended in containers to produce two part rubber 
molds.  (g) Top and bottom half of one rubber mold-set; cured active tracers is shown in 
bottom half.  (h) An active tracer after extraction from a mold.  (i) Example acceleration 
readings over an accelerometer’s x, y and z axes at different static configurations.  (j) An 
accelerometer tracer broken opened after recovery in Reynolds Creek. 
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