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Abstract 

 Membrane proteins are involved in many critical biological processes and mutations are 

linked to various diseases. We examined how the properties of the location of an amino acid 

residue within the protein structure dictates the rate at which it evolves. We tested 3 structural 

metrics: WCNSC, WCNCA and RSA for their effectiveness at predicting evolutionary rates 

within membrane proteins. WCNSC performed better than WCNCA in almost all cases and 

better than RSA in the majority. However, for some classes of proteins, especially those where 

the pore is a major feature, the effectiveness of WCN greatly diminished while that of RSA 

decreased by a lesser degree. 
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Introduction 

 Rates of evolution among the genes encoding proteins can vary widely. Within the 

protein, individual residues evolve at different rates as well. A residue evolves when one amino 

acid is replaced by another at a site. The location of a site in the protein structure greatly 

influences its evolutionary rate (Echave et al. 2016). Two common structural metrics used to 

predict evolutionary rates are packing density and relative solvent accessibility.  

 Relative solvent accessibility has been the most commonly used structural metric 

although recent research suggests that it may not have the best predictive power. The amount of 

exposure to solvent is linearly correlated with the mutation rate of a site (Ramsay et al. 2011). 

More solvent-exposed sites evolve faster than less exposed sites. Less exposed sites are buried in 

the protein and are more sterically hindered. Mutations in these sites tend to be more disruptive 

to the structure of the protein. 

 Packing density measures how tightly packed the site is within the protein (Echave et al. 

2016). Mutations in tightly packed sites are expected to be more destabilizing to the proteins, and 

thus we expect sites with higher packing density to be more conserved. Packing density is 

correlated with weighted contact number. Contact number is the number of atoms around the site. 

Weighted contact number takes all of the residues in the proteins and weights them by taking 

sum of inverse square distances from the site considered to other sites. Amino acids are 

composed of a main chain forming the backbone of the polypeptide and a side chain which 

protrudes out from the backbone. Weighted contact number can be calculated using the alpha 

carbon of the main chain WCNCA or the side chain (WCNSC) at each site. WCNSC has been 

shown to be a better predictor than the backbone WCNCA.  



 Studies on enzymes have shown that WCN is a better predictor of mutation rates than 

RSA. We were interested to see if this trend also applied to membrane bound proteins. 

Membrane bound proteins make up 30% of the proteins in eukaryotes, and have a variety of 

functions such as molecular transport and cell signaling (Moraes et al. 2014). Mutations in 

membrane proteins are involved in diseases including cystic fibrosis, obesity, and cancer. 

Membrane bound proteins differ from unbound proteins in several respects. Most unbound 

proteins are roughly globular while membrane bound proteins have a range of shapes. Alpha-

helical proteins are composed of several helical transmembrane domains stacked together, 

whereas beta-barrel proteins form by coiling of anti-parallel beta-sheets (von Heijne 1997). Also, 

whereas the surface of unbound proteins are exposed to the aqueous environment, membrane 

bound proteins have transmembrane regions which are exposed to a hydrophobic environment. It 

is possible that different environments have different constraints on evolution rates.  

 We have several goals in this study. We test whether the patterns we observed in 

enzymes hold true to other classes of proteins. We also seek to determine how the membrane and 

different structures affects the predictive power of RSA and WCN. 

Methodology  

Sequence collection and pre-processing 

 We used a dataset of 654 membrane-bound protein structures collected from the 

Membrane proteins of known 3D structure database 

(http://blanco.biomol.uci.edu/mpstruc/exp/list, Stephen White Lab at UC Irvine). We made an 

effort to select non-enzymatic proteins in order to better contrast with results from globular 

enzymes. However, this selection was cursory as it was difficult to determine whether a protein 



had enzymatic properties and it is likely that a portion of the dataset is enzymatic. The proteins 

were primarily beta-barrel and alpha-helical transmembrane proteins. 

 We recoded whether each protein was monomeric and multimeric. To calculate rates, it 

was necessary to select a single chain. In this case, the chain chosen was the first labeled chain in 

the pdb structure. The amino acid sequence of the chain was extracted from the protein structure. 

Calculation of evolutionary rates 

 We used PSI-BLAST (Altschul et al. 1997) to collect homologous sequences. PSI-

BLAST was run using the Uniref 90 database for two iterations with a e-value of  1e-10, percent 

identity threshold of 30% and length error of 20%. We used Mafft (Katoh et al.2013) to align 

these sequences. A sample of 300 sequences from each alignment to calculate evolutionary rates. 

A phylogenic tree was constructed from each alignment using RAXML (Stamatakis 2014). 

Using these trees, we calculated raw and normalized rates of evolution at each site using 

Rate4Site (Pupko et al.2002).  

Structural metrics  

 We calculated the weighted contact number (WCN) and residue solvent accessibility 

(RSA) for both the monomer and the multimer. RSA is based on exposure to solvent at a site. 

WCN is calculated by taking the sum of inverse square distances from the residue to all other 

residues in the protein. We used both the main chain and side-chain as reference points on the 

protein. Correlations were calculated between side-chain WCN (WCNSC), C-atom WCN 

(WCNCA) and RSA and evolutionary rate at each site for each protein. WCN and rate are 

inversely correlated whereas RSA and rate are directed correlated. To account for this 

discrepancy, we used 1/WCN instead of WCN in our linear model so that we could direct 



compare rate correlations between RSA and WCN. When we say WCN in this context, we are 

referring to 1/WCN. At this point, 1 protein, 1M0K, was determined to have incomplete data and 

was removed from the sample.  

Construction of linear models 

 Using the data for RSA, WCNSC, WCNCA an evolutionary rate at each site, we built 

linear models in R of each of the first three variable with rate for each protein. We compared the 

coefficient of determination (R
2
) of WCNSC, WCNCA, and RSA with evolutionary rate. 

Because rate can take negative values and we were interested in the magnitude of effects of 

structural metrics on a site, we use R
2
 to describe the correlation rather than R. A negative or 

positive rate are equally indicative of the sites permissibility to evolve.  

Results 

Structural Metrics Predict Evolutionary Rate in Membrane Bound Proteins 

 RSA and WCN are two commonly used metrics used to predict evolutionary rate in 

proteins. However, both of these metrics have flaws when used on membrane bound proteins. 

We calculate RSA based on the protein structure, which assumes that residues on the surface are 

exposed to aqueous solvent. The membrane adds a wrinkle to this assumption, as residues may 

be exposed to either the solvent, a hydrophilic environment or the membrane, a hydrophobic one. 

These different environments likely have different influences on evolutionary. Many membrane 

proteins are transporters which complicates the use of WCN. These proteins tend to have 

exposed spaces in the interior. A residue on inside surface of a channel tends to be hydrophilic 

not hydrophobic, and is much less sterically hindered than a residue buried in the core of an 

enzyme. WCN which considers location relative to other residues in the protein, may not fully 



account for these differences. We tested how useful RSA and WCN were in predicting rates in 

membrane proteins, in light of these potential flaws. 

  We plotted the coefficient of determination (R
2
) of WCNSC and rate against that of RSA 

and rate. Our results supported the use of WCNSC over RSA. Values of R^2 ranged between 0 

and 0.7 for both metrics. For 359 out of 572 proteins analyzed, WCNSC was a better predictor of 

evolutionary rate than RSA. The coefficient of determination of WCNSC and rate was 

significantly greater than that of RSA and rate (paired t-test, p<2.2e-16) by a mean difference of 

0.0322.  It appears that, in general, WCNSC is a superior metric. However, for over a third of 

proteins RSA had greater predictive power. Additionally, neither WCNSC nor RSA had a R^2 

greater than 0.6, 

 Side-chains have Greater Predictive Power than Alpha carbons when used in calculation 

of WCN 

 Echave et al (2016) argued that WCNSC consistently outperformed WCNCA as a rate 

determinant. We examined if this relationship also existed in membrane proteins. Alpha carbons 

have traditionally been used as the reference point in calculations of WCN, but consistent 

outperformance would recommend side chains be used instead. Values were close to equal for 

both metrics, with WCNSC generally being higher (WCNSC was a better predictor of 

evolutionary rate than WCNCA for 470 out of 572 proteins analyzed)(Fig. 2).  We found that the 

correlation of WCNSC and rate was greater than that of RSA and rate (paired t-test, p<2.2e-16) 

by a mean difference of 0.0305.  Since WCNSC explained more of the variance in rate than RSA, 

we were interested to see how WCNCA compared to RSA. However, we did not find a 

significant difference in correlation with evolutionary rate between RSA and WCNCA (paired t-



test, p=0.6578) (Fig. 3). It appears that the loss in predictive power from using the alpha carbon 

rather than the side chain in WCN calculations nullified the advantage of using WCN over RSA. 

Beta-Barrel Proteins show Discrepancies from the General Trend 

 We categorized the proteins then compared the R^2 values for WCNSC and RSA with 

rate to determine if one metric outperformed the other for specific classes of proteins. First, we 

divided the set based on secondary structure into 410 alpha-helical and 130 beta-barrel proteins. 

Alpha helical proteins, the most common type of membrane proteins, are comprised of many 

transmembrane helices, held together by van der Waals forces and hydrogen bonding (Xiong 

2006). Beta-barrel proteins, which are mainly found in bacteria, are weaved from anti-parallel 

beta-sheets into a cylindrical structure. Figures 4-7 show the distribution of R^2 for WCNSC and 

RSA for alpha-helical and beta-barrel proteins. 

  For alpha-helical proteins, the distribution resembled the distribution for all membrane 

proteins.  R
2
 values ranged from 0 to 0.7 for WCN with a mean of 0.309 and standard deviation 

0.16 and 0 to 0.6 for RSA with a mean of 0.263 and standard deviation 0.133. The distributions 

appear to be approximately normally distributed except for a large amount of proteins with 

values close to zero for both metrics. The number of these proteins with extremely low 

correlations is higher for RSA.  

 For beta-barrel proteins, values for R
2
 fell between 0-0.5 for WCN with a mean of 0.169 

and standard deviation 0.125 and 0-0.4 for RSA with a mean of 0.172 and standard deviation 

0.097. The distribution for RSA appears to be normally distributed, however a large amount of 

proteins showed R^2 values close to zero with WCNSC.  



 Figure 8 compares R
2
 values for RSA and WCNSC. For 287 of 410 proteins, WCNSC 

explained more of the variance in evolutionary rate than did RSA. WCNSC had significantly 

higher R
2
 values than RSA, as predicted by previous studies (Paired t-test, p<2.2e-16). However, 

for beta-barrel proteins, RSA unexpectedly outperformed WCNSC for over half (73/130) of 

proteins, in reverse of expectations. The difference between R
2
 values was not significant (paired 

t-test, p=0.69). We also noted a cluster of proteins where WCNSC had very low R^2 values and 

was greatly outperformed by RSA. 

Comparison of WCNSC and RSA among Subsets of Beta-Barrel Proteins 

 We further divided the beta-barrel proteins to determine whether the performance of RSA 

over WCNSC was true for all beta-barrel proteins or influenced by a specific subset of outliers. 

We also wanted to examine if the previously observed cluster represented a specific group. We 

identified two major subsets of beta-barrel proteins: porins (n=35), monomeric-dimeric (n=69), 

outer membrane autotransporters (n=12), outer membrane carboxylate channels (n=12), Omp85-

TpsB outer membrane transporter superfamily proteins (n=2). Figure 9 compares the 

distributions of these subgroups. Because of their small counts, the last three groups were put 

together in an "other" category for readability.  

 The distribution of monomeric-dimeric proteins (Fig. 10) was fairly similar to the general 

distribution for membrane proteins. WCNSC explained more of the variance in evolutionary 

rates than RSA for 43 of 69 proteins. R
2
 values were significantly greater for WCNSC than RSA 

(one tailed t-test, p=0.008). R
2
 values ranged between 0 to 0.5 for both RSA and WCN and 

appeared to be fairly evenly distributed along this range. 



 The distribution of porins (Fig.11) showed most fell within a cluster for which R
2
 values 

for both RSA and WCNSC were low, around 0.1 for RSA and 0.05 for WCNSC. Outside of this 

cluster there were cases where R
2
 values were higher for both metrics. For the entire subset, RSA 

explained significantly more variance than WCNSC (one tailed t-test, p=0.008). RSA explained 

more variance than WCNSC for 8 out of 35 proteins. It is unclear if most of these proteins are 

clustered due to an intrinsic property of porins, or because of a bias due the small size of our 

subset. 

 For the outer membrane autotransporter proteins (Fig.12), WCNSC and RSA appeared to 

be fairly equal. A paired t-test did not find a difference between R
2
 values between WCNSC and 

RSA (p=0.8646), possibly because of the small sample size. RSA explained more of the 

variation for 7 of 12 proteins. The average difference was 0.003. 

 Like the porins, variance in outer membrane carboxylate channel proteins (Fig.13)  was 

significantly better explained by RSA than WCNSC (one tailed t-test, p=7.8E-5). RSA 

outperformed WCNSC for 11 out of 12 proteins, usually by a large margin. The mean difference 

between RSA and WCNSC was 0.63. Compared to the cluster seen in porins where RSA also 

greatly outperformed WCNSC, R
2
 values for both metrics were greater, falling between 0 -0.2 

for WCNSC and 0.1 -0.3 for RSA although the overall range was lower than for the porins. It is 

possible that with a larger sample size we would have seen a comparable or greater range of R
2
 

values.  

Discussion 

 Although alpha carbons have traditionally been used in calculation of WCN, WCNSC 

explained slightly more variance in evolutionary rates than WCNCA in most cases. This 



relationship held true for all subsets of membrane proteins. Discrepancies were usually small. 

This was expected as both metrics are measuring the same behavior using the same method, only 

with different reference points. From these findings, we conclude that WCNSC is a strictly better 

predictor of evolutionary rates than WCNCA and WCNCA has no discernible advantage to 

recommend its use over WCNSC. It appears that side chains better capture the structural changes 

which influence protein evolution that do the alpha carbons. Side chains likely have greater 

predictive power because they project out of the backbone. Changes in side chain conformation 

are more disruptive to the protein structure and therefore a larger effect on fitness. 

 According to Echave et al. (2016), WCNSC performed better than RSA in most proteins 

and RSA made little independent contribution to rate. In general, this was true also when looking 

at membrane proteins. However, this was not absolute as RSA outperformed WCNSC in a third 

of proteins. WCNSC performed better relatively for alpha-helical proteins than beta-barrel 

proteins. WCNSC faired especially particularly poorly as a predictor for evolutionary rates in the 

porin family, where correlations with RSA were significantly higher. While WCNSC appears to 

do fairly well as a predictor for most proteins, it's being outperformed in some classes indicates 

that RSA does make an independent contribution and better captures some attribute of these 

proteins. Alpha helical proteins had higher correlations for both WCNSC and RSA. The sample 

size for alpha-helical proteins was three times greater than for beta-barrel proteins (410 vs 130) 

so we would expect to see a larger spread. However, if this increase was to the effect of more 

outliers alone, we would expect to see only a few individuals at the maxima and similar centers 

which is not the case. We therefore conclude that both structural metrics tested are better suited 

to describe the properties of alpha-helical proteins than beta-barrel proteins. A key difference in 

the general structure of alpha-helical and beta-barrel proteins is the size of the pore. Both RSA 



and WCN were first used to study enzymes. These proteins tend to be globular without exposed 

interior. We hypothesize that deviation from the globular shape, especially cavities into the 

interior of the protein decrease the reliability of the structural metrics tested. Another factor 

which could play a role is size of the protein. Beta-barrel are larger, on average, than alpha-

helical proteins. As size increases the predictive power seems to decrease. Porins which are 

among the largest proteins had very low correlations between RSA and especially WCNSC with 

rate. However, size of the protein is correlated with size of the pore. Intuitively, it makes more 

sense for the pore to hinder the predictive power of these metrics. 

 This could result from several factors. Normally, sites with high WCN values tend to be 

hydrophobic and buried within the protein. However, the presence of a pore disrupts several of 

these assumptions. The residues lining the pore are exposed to an aqueous environment and are 

usually hydrophilic. Additionally, amino acids across the pore are close enough to contribute to 

the WCN but may not be close enough to hinder mutations at the site. As the size of the pore 

increases, the residues lining the pore makes up a greater proportion of the total residues, so the 

predictive power of WCN decreases.  Both RSA and WCN have limitations when applied to 

membrane proteins. Because we only use the protein structure in our calculations, our method of 

calculating these metrics is blind to the effects of the membrane. For WCN, the surrounding 

membrane is in contact with the protein and constrains the structure but is not included in the 

calculation. Additionally, WCN may be less applicable to sites on the surface of the pore. These 

sites would have relatively high WCN values due to being in the center of the protein but are 

exposed to solvent. This difference in external environment could lead to different rates than a 

site with similar WCN values that is embedded inside the protein and not exposed to solvent.  



 In regards to RSA, because we are ignoring the membrane, sites on surface of the protein 

are assumed to be exposed to aqueous solvent, when in reality they are in a hydrophobic 

environment. Because we are assuming an opposite environment, we would expect predictions at 

these sites to be highly inaccurate. By accounting for membrane, we can make more accurate 

models, however even these would not be completely accurate because lipid-amino acid 

interactions at the interface of the protein and the membrane have different thermodynamic 

effects then amino acid-amino acid interactions inside the protein. Although we expected 

misrepresenting exposure to solvent to lead to inaccuracies, RSA performed almost as well as 

WCN. This could suggest that hydrophobicity is not a major determinant of evolutionary rate or 

that RSA is actually correlated with some other property unrelated to the external environment. 

 Our metrics explained at best 70% of the variance evolutionary rates, and often much less. 

While they can be useful predictors, both RSA and WCN have flaws when applied to irregular 

structures. In the future, we would examine how the predictive power of these metrics vary 

among regions of the protein, for example if WCN is especially poor for residues along the pore. 

We would also compare the relationship between protein size or pore diameter and predictive 

power. We are also interested in analyzing and comparing the properties of specific cases where 

R
2
 values were extremely high or low. 

 

 

 

 



Figures 

 

Figure 1. Comparison of R
2 

values for RSA and 1/WCNSC with evolutionary rates for the entire 

sample of 540 membrane proteins. Each circle represents an individual protein. The line shows 

X=Y. WCNSC performed better than RSA for a majority of proteins 

 



Figure 2. Comparison of R
2 

values for 1/WCNCA and 1/WCNSC with evolutionary rates for the 

entire sample of of 540 membrane proteins. Each circle represents an individual protein. The line 

shows X=Y. Values are similar but mostly higher for WCNSC.  

 

 

Figure 3. Comparison of R
2 

values for 1/WCNCA and RSA with evolutionary rates for the entire 

sample of of 540 membrane proteins. Each circle represents an individual protein. The line 

shows X=Y. WCNCA and RSA performed about equally well as predictors for rate.  



 

Figure 4. Histogram of R
2
 values for RSA with rate in Beta-Barrel Proteins 

 

Figure 5. Histogram of R
2
 values for 1/WCNSC with rate in Beta-Barrel Proteins. We see a large 

number of values between 0 and 0.05 then another peak between 0.2 and 0.25.  

 



 

 

 Figure 6. Histogram of R
2
 values for RSA with rate in 410 Alpha-Helical Proteins. We see a 

mostly normal distribution with a peak around 0.3 and a secondary peak between 0 and 0.05.  

 

Figure 7. Histogram of R
2
 values for 1/WCNSC with rate in Alpha-Helical Proteins. 



 

 

Figure 8. Comparison of R
2
 values for 1/WCNSC and RSA with rate in 410 alpha-helical (green), 

and 130 beta-barrel (red) proteins.  Each circle represents an individual protein. The line shows 

X=Y.Alpha-helical proteins had a higher range and maximum correlation for both metrics.  

 



Figure 9. Comparison of R
2
 values for 1/WCNSC and RSA with rate in subcategories of beta-

barrel proteins: Porins (red, n=35), Monomeric/Dimeric (blue, n=69), and Others (green, n=26). 

Each circle represents an individual protein. The line shows X=Y. 

 

Figure 10. Distribution of  R
2
 values for 1/WCNSC and RSA with rate in 69monomeric/dimeric 

proteins. Each circle represents an individual protein. The line shows X=Y. 

 



Figure 11.  Distribution of  R
2
 values for 1/WCNSC and RSA with rate in 35 porins. We see a 

cluster of proteins around the 0.1 mark for RSA and 0.03 for 1/ WCNSC. Each circle represents 

an individual protein. The line shows X=Y. 

 

Figure 12. Distribution of  R
2
 values for 1/WCNSC and RSA with rate in 12 outer membrane 

autotransporters. Each circle represents an individual protein. The line shows X=Y. 

 



Figure 13. Distribution of  R
2
 values for 1/WCNSC and RSA  in 12 outer membrane carboxylate 

channels. Each circle represents an individual protein. The line shows X=Y. Although the sample 

size is small, RSA outperformed WCNSC in almost all of these proteins 
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