
Copyright

by

Jubin Jose

2011



The Dissertation Committee for Jubin Jose
certifies that this is the approved version of the following dissertation:

Source and Channel Aware Resource Allocation for

Wireless Networks

Committee:

Sriram Vishwanath, Supervisor

Jeffrey G. Andrews

Sanjay Shakkottai

Gustavo de Veciana

David Morton



Source and Channel Aware Resource Allocation for

Wireless Networks

by

Jubin Jose, B. Tech.; M. S. E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2011



To my parents, sister

and Rangu



Acknowledgments

My PhD has been an exciting, challenging, rewarding and enjoyable

expedition. Throughout this journey, my advisor, Sriram Vishwanath, has

been the primary source of encouragement and support. He introduced me to

a wide range of areas, provided me with research directions, and supported

me in pursuing the topics of my interest. While pursuing my interests, I

greatly benefited from his profound knowledge, creative thinking, constructive

criticism and most importantly optimism. Moreover, he created wonderful

collaboration opportunities, encouraged me to participate in many professional

activities, and thus, has been pivotal in my overall development as a researcher.

I am extremely thankful to him for being such a brilliant mentor.

I also thank the rest of my PhD committee members: Jeff Andrews,

Sanjay Shakkottai, Gustavo de Veciana and Dave Morton. Their willingness

to help made them easily approachable. In this regard, I thank Jeff Andrews

for always finding time for me even with the busy schedule of a WNCG direc-

tor and for giving me insightful comments. I am grateful to Sanjay Shakkottai

for providing constructive criticism on my research; Gustavo de Veciana for

motivating me to think about intuitive explanations for even highly compli-

cated problems and Dave Morton for his insightful questions during my pre-

sentations. I appreciate their willingness to serve on my PhD committee and

v



provide valuable feedback that improved the quality of my work. While taking

graduate courses with them, I not only gained knowledge about the subject

but also got inspired by their teaching skills. I would like to extend my grati-

tude to all my professors who have instilled in me a passion for learning and

teaching.

As part of my dissertation work, I was fortunate to collaborate with

some of the finest researchers in the field. In this regard, I would like to

express my sincere gratitude to Lei Ying at Iowa State University, Narayan

Prasad at NEC Labs America, and Alexei Ashikhmin and Tom Marzetta at

Bell Labs. Working with them broadened my knowledge and provided me

different perspectives towards solving a problem.

It goes without saying that my journey as a graduate student became

more enjoyable by the company of my fellow group members. They have been

very friendly and supportive throughout. I learnt a lot through the weekly

group meetings, occasional study sessions and impromptu research discussions.

Brian Smith, Caleb Lo, Sriram Sridharan and Shreeshankar Bodas aided me

in improving my presentation skills. I greatly benefited from the company of

Rajiv Soundararajan, Amin Jafarian and Goochul Chung both at UT and at

conferences. I thoroughly enjoyed the numerous conversations, both technical

and non-technical, I had with Kumar Appaiah, Ioannis Mitliagkas, Abhik

Das, Shweta Agrawal, Sharayu Moharir, Sang Hyun Lee, Ahmed Abdel-Hadi,

Fabio Fernandes, Vidur Bhargava, Ankit Singh Rawat, Deepjyoti Deka, O.

Ozan Koyluoglu, Kannan Srinivasan, Yongseok Yoo, Hongbo Si, Cong Li and

vi



others in my group. I would like to take this opportunity to thank each one

of them.

WNCG is literally the place where I spent majority of my time doing

research. I consider myself lucky to be part of this premier research facility

that made my graduate life both productive and fun at the same time. Re-

search discussions and assistance were never limited by group boundaries in

WNCG. I am thankful to Sundar Subramanian, Aneesh Reddy, Siddhartha

Banerjee, Harish Ganapathy, Aditya Gopalan and all my colleagues for creat-

ing an environment that is conducive to learning. Without the valuable service

of the WNCG staff - Janet Preuss, Julie Levy, Jennifer Graham and Adrian

Duran - life at WNCG would not have been so smooth. Janet and Jennifer

deserve my special thanks for being exceedingly helpful. I also appreciate the

assistance from ECE staff especially Melanie Gulick who was always ready to

help with a smile.

I thank JP’s Java and Mozart’s Coffee Roasters where I spent quite

a bit of time writing portions of my dissertation while sipping their freshly

brewed coffee.

My life in Austin was made wonderful by all my friends - Aneesh,

Hari, Ramya, Priyamvada, Yagna, Ashwini, Dharma, Reeja, Aji, Chinmayi

and many more including those outside Austin. My family - parents, sister

and brother-in-law - has been very supportive throughout my PhD. My parents

have done everything to provide me the best education possible and have

always encouraged me to pursue my interests. I am indebted to my parents

vii



and my sister for their unconditional support and love.

Last, but not the least, I have been fortunate to be in the company

of someone special who has inspired me to a better person. For this, I am

extremely grateful to Rangu for her encouragement, support and love.

viii



Source and Channel Aware Resource Allocation for

Wireless Networks

Publication No.

Jubin Jose, Ph.D.

The University of Texas at Austin, 2011

Supervisor: Sriram Vishwanath

Wireless networks promise ubiquitous communication, and thus facili-

tate an array of applications that positively impact human life. At a funda-

mental level, these networks deal with compression and transmission of sources

over channels. Thus, accomplishing this task efficiently is the primary chal-

lenge shared by these applications. In practice, sources include data and video

while channels include interference and relay networks. Hence, effective source

and channel aware resource allocation for these scenarios would result in a

comprehensive solution applicable to real-world networks.

This dissertation studies the problem of source and channel aware re-

source allocation in certain scenarios. A framework for network resource allo-

cation that stems from rate-distortion theory is presented. Then, an optimal

decomposition into an application-layer compression control, a transport-layer

congestion control and a network-layer scheduling is obtained. After deducing
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insights into compression and congestion control, the scheduling problem is

explored in two cross-layer scenarios. First, appropriate queue architecture for

cooperative relay networks is presented, and throughput-optimality of network

algorithms that do not assume channel-fading and input-queue distributions

are established. Second, decentralized algorithms that perform rate alloca-

tion, which achieve the same overall throughput region as optimal centralized

algorithms, are derived.

In network optimization, an underlying throughput region is assumed.

Hence, improving this throughput region is the next logical step. This dis-

sertation addresses this problem in the context of three significant classes of

interference networks. First, degraded networks that capture highly corre-

lated channels are explored, and the exact sum capacity of these networks is

established. Next, multiple antenna networks in the presence of channel uncer-

tainty are considered. For these networks, robust optimization problems that

result from linear precoding are investigated, and efficient iterative algorithms

are derived. Last, multi-cell time-division-duplex systems are studied in the

context of corrupted channel estimates, and an efficient linear precoding to

manage interference is developed.
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Chapter 1

Introduction

Communication networks are highly complex systems that are designed

and developed through multi-disciplinary work ranging from device-physics to

application-software. The salient engineering principle behind the synergetic

coexistence of all these disciplines is the layered architecture leading to in-

creasing levels of abstractions. For instance, the physical-layer interprets the

communication medium as a point-to-point memoryless channel to transmit

information. The network-layer simplifies the network as a graph consisting

of bit-pipes to route packets, while the transport-layer uses the notion of flows

to control rate or congestion in the network. All these abstractions are con-

ceptually simple and moderately effective for wired data networks.

Today’s networks, both wired and wireless, despite the fact that these

are primarily designed for data and voice, transfer massive amounts of video

traffic including real-time streaming. Traffic forecasts predict that the fraction

of video content being transferred is steadily growing along with the tremen-

dous growth of overall traffic. For example, Cisco Visual Networking Index:

Forecast and Methodology, 2009-2014 [2] reports the following in its global

video highlights:
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“Internet video is now over one-third of all consumer Internet traf-

fic, and will approach 40 percent of consumer Internet traffic by the

end of 2010, not including the amount of video exchanged through

P2P file sharing.

The sum of all forms of video (TV, video on demand, Internet, and

P2P) will continue to exceed 91 percent of global consumer traffic

by 2014. Internet video alone will account for 57 percent of all

consumer Internet traffic in 2014.”

Since video traffic is fundamentally different from data and voice, these fore-

casts necessitate the development of rich-enough abstractions suited for de-

signing networks that carry video. This will enable the re-design of network

architectures and protocols to account for and exploit the properties of the

source (video). We call such an approach source-aware resource allocation.

While zooming in on wireless networks, the inherent distinction from

wired networks is the underlying shared wireless medium for communication.

Due to extensive research in wireless over the past few decades, researchers

have somewhat mastered the art of reliably communicating over a point-to-

point wireless channel. Despite all the research efforts, there is limited knowl-

edge about the fundamental limits of wireless networks. This is due to the fact

that the wireless medium is shared, which invalidates the simple abstraction

of a graph consisting of bit-pipes. In other words, these wireless links inter-

act (or interfere) in potentially complex ways through the wireless medium,

which is typically captured through physical-layer models that involve all (if
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not subsets of) nodes in the network. The maximum achievable data-rates

under such sophisticated physical-layer models are studied in network infor-

mation theory literature. While moderate advances have been made in this

area, a complete characterization as in the point-to-point case [113] does not

exist to date. Thus, understanding the maximum achievable data-rates of dif-

ferent channels, especially interference networks, is one of the crucial steps to

design more efficient wireless communication systems. In real-world networks,

the interference issue is worsening as a result of decreasing cell-sizes1 along

with aggressive frequency reuse. In parallel with studying optimal communi-

cation schemes, for immediate applicability in these real-world networks, it is

beneficial to have low-complexity schemes that require limited channel state

information (CSI). We call such an approach channel-aware resource alloca-

tion.

Source and channel aware resource allocation, like traditional2 resource

allocation, (adaptively) operates a network at different operating points based

on the network state (e.g., channel conditions) and the load (i.e., backlog)

in the network. There are well-established methodologies for designing such

algorithms, but, in general, these techniques are not successful in two sepa-

rate aspects. First, very little is known about applying existing techniques

to cooperative networks. The main challenge in addressing this is the cou-

1In cellular networks, smaller cell-sizes result from increasing macro cell density and/or
deployment of pico and femto cells.

2By traditional resource allocation, we refer to allocation of orthogonal resources such as
time-slots and frequency-bands.
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pling between cooperative achievable schemes and queueing, which are often

studied separately. Next, there is limited knowledge in designing completely

decentralized (or distributed) algorithms without compromising throughput,

i.e., without reducing data-rates. Such algorithms are applicable in wireless

local area networks (WLANs) and ad hoc networks that lack centralized in-

frastructure. Thus, overcoming these limitations, along with being source and

channel aware, would result in a powerful end-to-end solution for addressing

a majority of the challenges in ad hoc, cellular and relay (wireless) networks.

This forms the underlying theme of this dissertation.

Next, we provide an overview of the specific problems studied in this

dissertation. This can be logically subdivided into two (related) topics: (i)

network architecture, and (ii) interference management.

1.1 Network Architecture: Overview

Majority of existing network architectures and protocols are optimized

assuming pre-compressed and packetized data [110]. For video, this assump-

tion of data packets abstracts out one of the key aspects - the lossy compres-

sion problem. Hence, in addition to source-rate, an abstraction of sources like

video would at least require (average) distortion resulting from compression

of sources. For such source abstractions, we develop a new framework for net-

work resource allocation that stems from rate-distortion theory [10]. One of

the main results obtained using this framework is the decomposition of the

resource allocation problem into an application-layer compression control, a
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transport-layer congestion control and a network-layer scheduling. We show

that this decomposition is provably optimal for the class of concave objective

functions. Then, we derive new insights from the developed rate-distortion

framework by focusing on special cases, in particular, congestion control for

binary sources and optimal resource allocation for multiple access channels.

In the above decomposition into layers, the component that is heavily

dependent on network-type (e.g., infrastructure-less, centralized, cooperative)

is the network-layer scheduling. The backpressure algorithm introduced in

the context of stable operation of networks in [119] can be viewed as a dy-

namic solution to this problem. This algorithm and its extensions apply to a

wide-range of networks including multi-hop networks and perform throughput-

optimal scheduling (and routing). However, very little is known in applying

this in the context of cooperative networks. The main challenge is that an

abstraction of the physical layer coding using coupled data-rates is insufficient

to capture notions such as node cooperation in cooperative relay networks.

Consequently, network-stability analyses based on such abstractions are valid

for non-cooperative schemes alone and meaningless for cooperative schemes.

Motivated from this, we develop cooperative queueing architectures

that bring the information-theoretic (cooperative) coding scheme together with

network-stability analysis. Our cooperative queueing framework does not con-

strain the system to any particular achievable scheme, i.e., the relays can use

any cooperative coding strategy of its choice such as amplify, compress, quan-

tize or any alter-and-forward scheme. We consider the demanding scenario
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when coherence duration is of the same order of the packet/codeword dura-

tion, the channel distribution is unknown and the fading state is only known

causally. For this scenario, our main contributions are two-fold: first, we

develop a low-complexity queue-architecture to enable stable operation of co-

operative relay networks, and, second, we establish the throughput optimality

of a simple network algorithm that utilizes this queue-architecture.

So far, we have a network architecture with distributed3 algorithms

at the application-layer and the transport-layer. However, the network-layer

scheduling is a centralized and often hard optimization problem. There is a

lot of interest (and literature) in developing decentralized algorithms. Very

recently, for networks with carrier sensing, a fully decentralized algorithm has

been proposed in [59]. This decentralized queue-length based scheduling and

its variants have been shown to be throughput-optimal in [57,58,81]. However,

these results are limited to on-off scheduling. To optimally utilize physical-

layer schemes for wireless networks (including WLANs and ad hoc networks),

we need decentralized cross-layer algorithms that jointly perform medium ac-

cess control (on-off scheduling) and physical-layer rate adaptation. Hence,

we generalize the existing on-off framework to multi-state framework. As the

main result, we provide a distributed rate allocation algorithm for wireless net-

works and establish that this algorithm is throughput-optimal for general rate

regions. The algorithm requires that each link can determine the global feasi-

3Note that the different layers resulting from the decomposition are coupled through dual
variables.
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bility of increasing its current data-rate. We provide insights on approximately

achieving this in practice.

In network resource allocation, an underlying throughput region for the

network is assumed. Hence, improving this throughput region is part of the

resource allocation problem itself. This is a highly non-trivial problem, and

has to be addressed on a case-by-case basis. Next, we study this problem for

important classes of interference networks.

1.2 Interference Management: Overview

The interest in the interference channel (IFC) and its fundamental lim-

its stems from the wide range of applications that will benefit from such

an analysis. However, large gaps exist in our understanding of interference

channels. Since the introduction of interference channels [4], the class of two-

transmitter two-receiver interference channels has been studied in great detail.

Indeed, a majority of exact or approximate capacity results are known only

for such two-user interference channels [7,22,29,41,88,101,103,112]. However,

real-world applications such as cellular networks involve many users. In con-

trast to two-user IFCs, three-or-more user IFCs are fundamentally different

due to the presence of multiple interferes. The interfering signals present in

the network can be managed in multiple ways, for example, by treating inter-

ference as noise, through interference cancellation and interference avoidance.

However, the optimal scheme is an open problem even after four decades of

research. Given the difficulty of finding the capacity region of interference
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networks, it is logical to make progress by focusing on a class of channels or a

class of achievable schemes.

We develop a family of genie-MAC (multiple access channel) outer

bounds for Gaussian K-user interference channels. This family is based on ex-

isting genie-aided bounding mechanisms, but differs from current approaches in

its optimization problem formulation and application. The genie-aided bound

(based on [76]) creates a group of genie receivers that form MACs that can

decode a subset of the original IFC’s messages. The MAC sum-capacity of

each of the genie receivers provides an outer bound on the sum of rates for

this subset. Thus, the genie-aided MAC bound is formulated as an optimiza-

tion problem. We show that this outer bound is tight in sum-capacity for the

degraded Gaussian K-user IFC. Degraded networks is the class of interest to

study extremely correlated channels. Thus, we establish4 the sum-capacity of

degraded Gaussian interference networks. This result holds true for any num-

ber of users and any signal-to-noise ratios (SNRs). The scheme that achieves

sum-capacity is successive interference cancellation. We generalize this frame-

work to unit-rank interference channels where each user is equipped with mul-

tiple antennas. Again, the sum-capacity of the MIMO (multiple input multiple

output) unit-rank Gaussian IFC is characterized using a combination of a op-

timization problem resulting from a genie-aided outer bound and successive

interference cancellation as the achievable scheme. The proof in the MIMO

4An alternate proof based on entropy power inequality (EPI) is possible. Our proof is
interesting as it shows the tightness of genie-MAC outer bound for degraded channels.
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case establishes a simple equivalence between the MIMO unit-rankK-user IFC

and a corresponding SISO degraded K-user IFC.

There are very few exact capacity results known in literature for K-

user Gaussian IFCs. However, significant progress has been made in recent

literature by limiting results to asymptotic optimality, in particular, degrees-

of-freedom optimality. Interference alignment has been shown to be degrees-

of-freedom optimal for time varying (or frequency selective) interference chan-

nels including MIMO [18, 47]. These results motivate linear precoding used

for alignment as a reasonable scheme for interference networks with multiple

antennas. Additionally, such achievable schemes are greatly motivated from

an implementation perspective in cellular standards such as LTE-A - CoMP:

Coordinated Multi-Point TX/RX and 802.16m - Multi-BS MIMO. Further,

these standards require distributed schemes based on limited (imperfect) chan-

nel state information (CSI) at the transmitters. Even though good5 iterative

linear precoding schemes have been developed under perfect CSI [45, 98, 105],

there is limited knowledge with imperfect CSI.

Therefore, we study a robust weighted-sum rate optimization problem

in the presence of channel uncertainty for multiple antenna Gaussian inter-

ference networks. In this robust formulation, receivers have perfect CSI while

transmitters have imperfect CSI, and the resulting precoder choice will work

for any channel realization within the uncertainty region. Unfortunately, due

5Linear precoding in its existing formulations are hard non-convex problems. Hence,
many iterative schemes have been developed.
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to the hardness of this problem, optimal solution cannot be efficiently obtained.

Instead of resorting to ad-hoc algorithms, we show that it is possible to de-

sign algorithms using a systematic approach. Towards this end, we develop

new provably convergent iterative algorithms for precoder design through in-

genious sub-problem formulations such that each of these sub-problems can

be solved optimally. The sub-problems are solved in closed-form for certain

cases and formulated as standard convex problems for the rest. Next, this ap-

proach is extended to robust max-min rate optimization. Finally, to comple-

ment these contributions on achievable schemes, we generalize the genie-MAC

outer bounding technique to incorporate channel uncertainty using notions of

compound-MAC capacity and then obtain computable outer bounds using an

alternating optimization approach.

The robust formulation above assumes perfect CSI at the receivers.6

We relax this assumption and jointly study channel estimation and linear

precoding in time-division-duplex (TDD) systems. We consider a multi-cell

multiple antenna system with precoding used at the base stations for down-

link transmission. A popular technique for obtaining CSI in TDD systems is

uplink training by utilizing the reciprocity of the wireless medium. We mathe-

matically characterize the impact that uplink training has on the performance

of such multi-cell TDD systems. When non-orthogonal training sequences

are used for uplink training, we show that the precoding matrix used by the

6This is a widely used assumption in studying frequency-division-duplex (FDD) downlink
systems. It helps to focus on the more crucial limited CSI aspect at the base-stations.
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base station in one cell becomes corrupted by the channel between that base

station and the users in other cells in an undesirable manner. We analyze

this fundamental problem of pilot contamination in multi-cell systems. Next,

we develop a new multi-cell MMSE-based precoding method that mitigates

this problem. In addition to being linear, this precoding method has a sim-

ple closed-form expression that results from an intuitive optimization problem

formulation. Numerical results show significant performance gains compared

to certain popular single-cell precoding methods.

1.3 Organization

The rest of this dissertation has three chapters on network architecture,

three chapters on interference management, and a concluding chapter.

In Chapter 2, we develop a rate-distortion framework for network re-

source allocation. In Chapter 3, we present a queueing architecture for co-

operative networks, and perform stability analysis. In Chapter 4, we pro-

vide distributed rate allocation algorithms for wireless networks, and establish

throughput-optimality results. The proof of lemmas in Chapter 3 are given in

Appendix A and in Chapter 4 are given in Appendix B.

In Chapter 5, we present the genie-MAC outer bound for Gaussian

interference networks. In Chapter 6, we present algorithms to perform robust

weighted-sum rate maximization in MIMO interference networks. In Chapter

7, we analyze the pilot contamination in multi-cell TDD systems, and develop

a precoding method that mitigate pilot contamination. The proofs of theorems
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in Chapter 7 are given in Appendix C.

Finally, we conclude with Chapter 8.

1.4 Notation

| · | denotes the determinant of a square matrix, the cardinality of a set,

and absolute value for scalars. 1{E} and I(E) denote the indicator function of

event E. (a)+ denotes max(a, 0). E[·] and var{·} stand for expectation and

variance operations, respectively. R+, Z+ and Z++ denote non-negative reals,

non-negative integers and strictly positive integers, respectively.

Vectors and matrices are usually denoted by bold letters. For vectors,

equality and inequality operators are defined component-wise. a·b denotes the

dot product of a and b, ‖a‖p denotes the Lp-norm, ‖a‖0 denotes the number

of non-zero elements. ‖ · ‖ denotes the two-norm. 0 denotes all-zeros vector,

1 denotes all-ones vector and ei ∈ {0, 1}n denotes the unit vector along i-th

dimension.

(·)T denotes the transpose and (·)† denotes the Hermitian transpose,

tr{·} denotes the trace operation, (·)−1 denotes the inverse operation. ‖ · ‖2
denotes the two-norm, and ‖ · ‖F denotes the Frobenius norm. I denotes the

identity matrix. diag{a} denotes a diagonal matrix with diagonal entries equal

to the components of a. (A)upper denotes its upper triangular portion. A ≻ 0

denotes a symmetric positive-definite matrix.
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Chapter 2

Network Resource Allocation: A

Rate-Distortion Perspective

2.1 Introduction

Traffic forecasts predict mobile video to be the biggest portion of the

world’s mobile data in the near future [2]. Video is different from data and

voice as video streaming quality can be varied with impact on user experience.

Regardless, the vast majority of existing network architectures and protocols

are designed for data. Even the majority of existing research on these topics

assumes a packetized system, and then optimizes network performance [110].

An important component that is absent from such a framework is

(lossy) compression. Compression is typically understood as an application-

layer operation and thus separated from the network protocol stack optimiza-

tion. However, the extent and nature of the compression employed critically

impacts user experience, especially for video streaming. Assuming the sources

are already quantized/compressed leads to a formulation that presents only a

partial picture on the quality of service observed by the users in the system.

For instance, lightly-compressed video may require rates much higher than

those that can be allocated while ensuring stable network operation, while
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heavily compressed video, although easy to deliver, reduces the quality of the

end-user’s experience. Thus, the distortion experienced by each user must be

optimized to provide the best user experience (See [23, 27, 73] and references

therein).

Integrating rate-distortion theory [10] into resource allocation is an im-

portant step from multiple perspectives, including multimedia applications,

and thus bring elements of the application-layer into network optimization.

There has been some prior work in this direction - for certain settings and alter-

nate formulations, network operation optimization and rate-distortion theory

have already been brought together. Rate-distortion optimized video stream-

ing has been studied in the context of multimedia delivery, where the overall

distortion incurred in the streaming process is dynamically minimized given

changing network resources [27]. Similarly, optimal multiple description cod-

ing has also been studied from the networking perspective [79]. While each of

these results have brought rate-distortion together with network constraints,

a systematic analysis for compression is desirable, which is the main theme of

this chapter.

2.1.1 Our Approach & Contributions

We build a new framework for network resource allocation by applying

rate-distortion theory. Traditional resource allocation can be viewed as a spe-

cial case where the distortion (and thus compression algorithm) is fixed at a

value independent of network state and overall user experience. Distributed
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compression problems have been studied and partially solved for special cases

(such as Gaussian and/or binary sources) in particular settings. Typically,

there is no provably optimal separation between source and channel coding in

networks. However, for the special case of independent sources being transmit-

ted through the network, it is known that separate source and channel coding

is optimal [121]. Hence, we focus on independent (uncompressed) sources in

the network that must be compressed and subsequently transmitted through

the network. This applies to many scenarios including video streaming. Fur-

thermore, focusing on source-channel separation allows us to develop a rate-

distortion framework that scales with the network size, and hence, applicable

to large real-world networks.

For networks with mutually independent (but possibly temporally cor-

related) sources, we consider the two quantities - (i) the source-entropy and

(ii) its distortion-offset that are sufficient in representing compression. We

formally define these two quantities in Section 2.2. Using these, we develop a

framework for resource allocation. Few of the important implications of our

framework are:

1. With lossy compression, the traditional notion of flow conservation does

not hold. This has far-reaching consequences in network protocol design.

2. Our formulation based on source-entropy and distortion-offset has only

linear constraints in addition to capacity constraints. Hence, if we focus

on concave utility functions, existing convex optimization techniques can
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be applied, especially the distributed algorithms developed in [74].

Based on the rate-distortion framework, we present the following re-

sults:

1. We show optimal decomposition of network resource allocation into three

layers: (i) an application-layer with compression control, and (ii) a

transport-layer with congestion control, and (iii) a network-layer with

scheduling.

2. For a compression problem with binary sources and proportional-fair

like utility functions, we derive the optimal policy. The optimal policy

requires varying distortion based on link-rate, and hence, clearly shows

the sub-optimality of decoupling compression problem from network op-

timization.

3. We optimally solve specific resource allocation problems involving send-

ing binary and Gaussian uncompressed sources over multiple access chan-

nels.

2.1.2 Related Work

Incorporating compression into network optimization (or resource al-

location) framework brings together different disciplines. The first of these is

the domain of distributed lossy compression [10], a growing field of research.

Distributed compression problems have been studied and partially solved for
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special cases (such as Gaussian and/or binary sources) in particular settings.

These include the multiple description problem [48], the CEO problem [95]

and the two-terminal source coding problem [128]. These compression prob-

lems are formulated in an information-theoretic rate-distortion sense, where

one or many sources must be compressed at minimal rates given distortion

constraints. The resulting achievable rate region can be found for most multi-

source multi-destination settings, and for a limited class of settings, shown

to be optimal. Even though we focus on the setting where source-channel

separation holds, the developed framework can be applied to general settings.

Such a framework for capacity-constrained networks with correlated sources is

studied in [32].

Over the years, we have gained a rich understanding of cross-layer op-

timization. The optimization problem formulation developed in [74] forms the

foundation for our understanding of TCP (and rate control in general) as a

solution to this optimization. Subsequently, multiple other network protocols

have been formulated (and sometimes reverse-engineered) in terms of network

optimization problems. The backpressure algorithm introduced in the context

of stable operation of networks in [119] can be viewed as a dynamic solution

to a similar optimization problem formulation. Indeed, rate control together

with network stability can be formulated as an optimization problem [44]. It

is known that a natural separation exists between the rate control mechanism

and the network stability mechanism, and each of these problems can be indi-

vidually solved and the solutions combined for optimal operation of networks.
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Distributed solutions for rate control based on primal-dual methods can be

found in [110].

The traditional resource allocation framework has been extended con-

siderably to include other network features and characteristics. A significant

fraction of this work is in incorporating the physical-layer aspects into the

framework [93, 94, 108, 131]. Typically, signal to noise ratio (SNR) or signal

to interference and noise ratio (SINR) based models have been used for this

purpose [25]. An equal effort has been devoted to incorporating higher layer as-

pects into the problem structure, such as hierarchical network topologies [135],

delay tolerant networks and so on. Cooperative networking strategies have also

been studied in this context [106,130]. Finally, the framework and the result-

ing optimization decomposition has been used to restructure the protocol stack

and thus optimize overall system performance [96].

2.1.3 Organization

In Section 2.2, we present the rate-distortion framework for network

resource allocation. In Section 2.3, we derive an optimal decomposition of

resource allocation into layers. In Section 2.4, we study a compression control

problem for binary sources. Finally, in Section 2.5, we apply the rate-distortion

framework to Gaussian MACs.
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2.2 Rate-Distortion Framework

We consider a single-hop1 network with N independent sources, la-

beled i = 1, 2, . . . , N . The i-th (possibly continuous-valued) source Xi has an

uncompressed-rate of si symbols/sec. This source is compressed at a distor-

tion of Di (per symbol, averaged across time) to a rate of ci bits/sec. In other

words, a lossy-compression code exists that maps vectors comprised of source

symbols to binary vectors such that recovery is possible to within a distor-

tion of Di per symbol. Mathematically, a rate-distortion code (operating over

blocks of symbols of size n, with n large enough) of rate ci + ǫ bits/sec exists

for source Xi such that reconstruction to within a distortion Di is possible

such that ǫ → 0 as n → ∞.

This compressed source is transmitted over a link with link-rate of ri

bits/sec. The corresponding vectors are denoted by s, D, c and r, respectively.

These link rates are coupled in a wireless network, and this, for a single-hop

network, is captured by the N -dimensional information-theoretic rate region

denoted by C.2 The parameters introduced so far are associated with different

functionalities in a network: (i) si and Di are associated with (lossy) source

coding, (ii) ci is associated with congestion (or rate) control, and (iii) ri is

associated with rate allocation (or scheduling).

The source coding, rate control and scheduling problems are closely tied

1This framework can be extended to multi-hop networks.
2This rate region may be the capacity region if the network’s capacity region is known,

or the best known rate region if unknown.
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to each other. As a result, the parameters associated with these problems must

be jointly optimized. Therefore, we desire a framework that simultaneously

captures all these problems. However, the traditional framework does not

include the source coding component. It is based on the following optimization

problem:

max
r

N∑

i=1

Ui(ci) (2.1)

subject to

ci ≤ ri, ∀i, (2.2)

r ∈ C. (2.3)

In this framework, Ui(ci) in (2.1) is the (concave) utility function associated

with the (compressed) rate ci of i-th source and (2.2)-(2.3) are capacity con-

straints. This framework can be decomposed into two layers: a transport-layer

performing rate control, and a network-layer performing scheduling [96].

To incorporate the source coding parameters, it is natural to utilize

rate-distortion functions of sources studied in information theory [30]. For

explaining this, we consider two source types:

1. Binary sources with Hamming distortion: Consider independent

Bernoulli(pi) binary sources that are mutually independent arriving at

rates of si symbols per second. The rate-distortion function for this

source is known to be

R(si, Di) = si (H(pi)−H(Di)) , (2.4)
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where H(·) is the binary entropy function given by

H(q) = −q log2 q − (1− q) log2(1− q).

Now, motivated from (2.4), we define two variables to represent this

source: (i) source-entropy

αi = siH(pi) (2.5)

in bits/sec, where si is the uncompressed-rate in symbols/sec and 0 <

pi < 1 is the given Bernoulli parameter of i-th source, and (ii) (negative)

distortion-offset

βi = −siH(Di) (2.6)

in bits/sec, where Di is the Hamming distortion per symbol.

2. Gaussian sources with squared-error distortion: Consider zero-

mean independent Gaussian sources with variances σ2
i arriving at a

rate of si symbols per second. With squared-error distortion, the rate-

distortion function is known to be

R(si, Di) =
si
2
log2

σ2
i

Di

. (2.7)

Now, differential source-entropy αi and distortion-offset βi are defined

as follows:

αi =
si
2
log2 2πeσ

2
i ,
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where σ2
i > 0 is the given variance parameter of the i-th source, and

βi = −si
2
log2 2πeDi,

where Di is the squared-error distortion per symbol. Note that these

two variables can take both positive and negative values.

Now, source-entropy and distortion-offset can be identified as two parts

of the rate-distortion function for multiple types of sources, both i.i.d. and

correlated (for example, see Shannon’s rate-distortion lower bound [30]). This

includes both binary and Gaussian sources as special cases. Denoting source-

entropy and distortion-offset as αi and βi respectively, we have a tradeoff

between the two of the form given by:

αi + βi ≤ ci, ∀i. (2.8)

This simply states that the compressed rate should be higher than the fun-

damental limit given by the rate-distortion function. Since distortion-offset

terms appear in the constraints, it shows that flow conservation assumed in

data networks does not hold for sources such as video. This motivates re-design

of network protocol components that assume packets to be immutable.

Now, a user’s happiness (or user experience) can be thought of as a

function of the source-entropy and distortion-offset.3 Therefore, a natural

framework for network resource allocation is to maximize the sum of the user

3Since source-entropy and distortion-offset together is a one-to-one map from source-rate
and distortion, there is no loss of generality.
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experience subject to all network constraints. For deriving suitable layering

architecture in the next section, we consider a slightly different looking but

equivalent4 framework for resource allocation:

max
α,β,c,r

N∑

i=1

Vi(αi, βi) + Ui(ci) (2.9)

subject to

αi + βi ≤ ci, ∀i, (2.10)

aiαi ≥ 0, ∀i, (2.11)

biβi ≤ 0, ∀i, (2.12)

αi + βi ≥ 0, ∀i, (2.13)

ci ≤ ri, ∀i, (2.14)

r ∈ C, (2.15)

where ai, bi ∈ {0, 1} are constants that are source-dependent, (2.10)-(2.13) are

rate-distortion conditions and (2.14)-(2.15) are capacity constraints.

The rate-distortion framework in (2.9) has two main advantages.

• It presents a notion of optimal network optimization while dealing with

uncompressed sources.

• The constraints in (2.10)-(2.14) are linear, and C in (2.15) is a convex

set (with time sharing). Hence, with concave utility functions, we have

a convex framework.

4Ui(ci) can be absorbed into Vi(αi, βi)
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For a convex framework, we consider utility functions with following

two properties:

Definition 2.1 (Concave Utility). Vi(αi, βi) is jointly concave in αi and βi.

Ui(ci) is concave in ci.

Definition 2.2 (Monotone Utility). Given a particular value of variable βi

(αi), Vi(αi, βi) is monotone increasing in the other variable. Ui(ci) is monotone

increasing in ci.

2.3 Decomposition into Multiple Layers

In this section, we show that the framework in (2.9) can be decom-

posed into three layers: (i) “application” layer with compression control, (ii)

“transport” layer with congestion control, and (iii) “network” layer with (cen-

tralized) scheduling. As evident from the names, each of these layers has direct

correspondence with a layer in the standard network protocol stack.

We proceed by introducing two sets of dual variables. We introduce

non-negative dual variables µi, ∀i (vector denoted by µ) corresponding to con-

straints in (2.10), and non-negative dual variables λi, ∀i (vector denoted by λ)

corresponding to constraints in (2.14). With these dual variable, we obtain

the following Lagrangian:

L =

N∑

i=1

Vi(αi, βi) + Ui(ci)−
N∑

i=1

µi(αi + βi − ci)−
N∑

i=1

λi(ci − ri). (2.16)
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Now, the dual objective g(µ,λ) is defined as

g(µ,λ) = max
α,β,c,r

N∑

i=1

Vi(αi, βi)− µi(αi + βi)

+

N∑

i=1

Ui(ci)− (λi − µi)ci

+
N∑

i=1

λiri (2.17)

subject to (2.11)-(2.13) and (2.15). From Langrange duality, it is well-known

that g(µ,λ) gives an upper bound on the primal problem in (2.9) for feasible

primal and dual variables. This leads to the dual problem to obtain an upper

bound on the primal problem, given by

min
µ,λ

g(µ,λ) (2.18)

s.t. λi ≥ 0, µi ≥ 0, ∀i.

For concave utility functions, under mild conditions [16], it follows that this

dual problem is tight, i.e., the optimal value of (2.18) is equal to the optimal

value of (2.9).

Now, it is fairly straightforward to see that the Lagrangian formulation

in (2.17) decomposes into the following optimization problems:

1. Distributed Compression Control: For all i, given µi,

max
αi,βi

Vi(αi, βi)− µi(αi + βi) (2.19)

s.t. aiαi ≥ 0, biβi ≤ 0, αi + βi ≥ 0.
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2. Distributed Congestion Control: For all i, given µi and λi,

max
ci

Ui(ci)− (λi − µi)ci. (2.20)

3. Centralized MaxWeight Scheduling: Given all λi,

max
r

N∑

i=1

λiri (2.21)

s.t. r ∈ C.

In contrast to traditional network optimization, the distributed com-

pression problem in (2.19) is explicitly included in our decomposition. This

problem jointly chooses source-entropy and distortion-offset based on the util-

ity function. The congestion control in (2.20) and the centralized scheduling

in (2.21) match with those known in existing literature [44, 110]. Note that,

in general, all three problems in (2.19), (2.20) and (2.21) are coupled through

dual variables µ,λ. In many cases, it is possible to use gradient methods to

solve for the dual variables [96]. Hence, we do not delve into a discussion of

such methods to solve these problems. Instead, we focus on two problems to

obtain further insights in combining compression control with resource alloca-

tion - first, we study a compression control problem for binary sources, and

then, we apply our framework to Gaussian multiple access channels (MACs).

2.4 Compression Control for Binary Sources

Let us consider the lossy compression problem that determines source-

entropy and distortion-offset given a compressed-rate. We study this problem
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to understand the tradeoff involved in choosing higher source-rate (with higher

distortion) versus lower source-rate (with lower distortion). With utility func-

tions that are strictly increasing, it follows that optimal parameters satisfy

αi + βi ≤ ci with equality. Under this setting, the compression control at

every source is: for given ai, bi and ci

max
αi

V (αi, ci − αi) (2.22)

subject to

aiαi ≥ 0,

bi(ci − αi) ≤ 0.

In order to obtain explicit solutions to the optimization problem in

(2.22) , we solve it in the context of a binary source with Hamming distortion.

For a binary source, we have a = 1 and b = 1. Consider the utility function5:

V (αi, βi) = loge αi +Kiβi, (2.23)

for some constant Ki > 0. Note that this utility function is an extension of

the proportional-fair utility function with linear penalty for distortion-offset.

Therefore, (2.22) simplifies to

max
αi

loge αi +Ki(ci − αi) (2.24)

s.t. αi ≥ ci.

5This is just an example, and the choice of utility functions that is appropriate in practice
is a subject for further study.
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The unconstrained problem in (2.24) is maximized at αi = 1/Ki. Therefore,

for the constrained problem in (2.24), we have

α∗
i =

{
1/Ki, if 1/Ki ≥ ci
ci, otherwise.

(2.25)

This simple rate-distortion-control policy can be implemented as long as the

application layer is aware of the compressed-rate ci.

The expression in (2.25) provides a simple rule to decide whether to

transmit at zero-distortion, i.e., with source-entropy αi = ci and distortion-

offset βi = 0, or transmit with distortion, i.e., source-entropy αi = 1/Ki and

distortion-offset β = ci − 1/Ki. When 1/Ki ≥ ci, substituting αi = 1/Ki

and βi = ci − 1/Ki in (2.5) and (2.6), respectively, we get the following:

uncompressed-rate s in symbols/sec is given by

si =
1

KiH(p)
,

and Hamming distortion Di is given by the expression

H(Di)

H(p)
= 1− ciKi.

Recall that p is the Bernoulli parameter associated with source and H(·) is

the binary entropy function. Thus, source-entropy and distortion-offset can

be translated to the source coding parameters source-rate and distortion.

This compression rule is depicted in Figure 2.1. In simple words, this

rule states that source coding with distortion has to be performed at low

compressed-rates and source coding without distortion has to be performed
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Figure 2.1: Compression control for binary sources; Region to the left of dashed
line represents lossy source-coding while region to the right represents lossless
source-coding

at high compressed-rates. Furthermore, the amount of distortion introduced

by the compression algorithm is piecewise linear. This shows that the tradi-

tional approach of decoupling compression control from network optimization

is suboptimal. In majority of existing video streaming systems, compression

control is performed using ad hoc algorithms. The result in this section show

that simple and optimal compression control can be developed.
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Figure 2.2: Multiple access channel with binary sources

2.5 Rate-Distortion Framework applied to Multiple Ac-

cess Channels

Our next goal is to understand the interplay between compression and

communication - specifically, the way channel capacity and resulting distortion

impact one another. We choose Gaussian multiple access channel (MAC) for

our analysis here as it represents the simplest multi-terminal system model,

and the capacity region for a MAC is well known [30]. Further, we consider

simple utility functions below that are only dependent on the distortion suf-

fered in the compression process. These simplifications help us focus on our

goal.

2.5.1 MAC with binary sources

Consider two i.i.d. Bernoulli(pi) binary sources that are mutually in-

dependent (across sources) arriving at rates of si symbols per second. For a
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binary source with Hamming distortion, the rate-distortion function is given

by (2.4). The uncompressed-rates si are positive constants that are fixed by

nature and assumed to be known. After compression, these two sources are to

be communicated over a Gaussian multiple access channel as shown in Figure

2.2.

Now, the network resource allocation problem for this example can be

expressed as

max
D

2∑

i=1

Vi(Di) (2.26)

subject to

si (H(pi)−H(Di)) ≤ C(Pi), ∀i,
2∑

i=1

si (H(pi)−H(Di)) ≤ C(P1 + P2),

Di ≥ 0, Di ≤ 1, ∀i.

Here, we have used the capacity region of the Gaussian MAC channel. C(·)

corresponds to Shannon’s capacity formula given by

C(P ) =
1

2
log2

(
1 +

P

N

)
.

Note that, if the utility function in (2.26) is concave in distortion, the opti-

mization problem in (2.26) is in convex form.6 This follows from the fact that

entropy is concave.

6This is not in the convex form explained in Section 2.2.
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Next, for deriving further insights into this problem, we consider the

case where utility Vi(Di) in (2.26) is a linear function of H(Di), i.e.,

Vi(Di) = −δiH(Di)

for some constant δi > 0. With change of variables xi = siH(Di), from

(2.26), we obtain an equivalent linear program (LP) (with sign of optimal

value reversed) given by

min
x1,x2

δ1
s1
x1 +

δ2
s2
x2 (2.27)

subject to

xi ≥ siH(pi)− C(Pi), ∀i,

x1 + x2 ≥ s1H(p1) + s2H(p2)− C(P1 + P2),

xi ≥ 0, xi ≤ si, ∀i.

From properties of LP, it follows that at least one optimal solution exists that

is a corner point of the feasible set, which is the convex polytope characterized

by the constraints of the problem in (2.27). More intuitively, we can obtain

the optimal corner points for different cases based on where the source entropy

vector H = (s1H(p1), s2H(p2)) lies with respect to the MAC capacity region

C:

1. Case-A (H ∈ C): The optimal corner point is D∗
1 = 0, D∗

2 = 0, i.e.,

perform lossless source coding.
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2. Case-B (H /∈ C): It follows from the MAC capacity region (and utility

function) that there are only two corner points of interest. These are the

corner points on the sum-capacity boundary. The exact corner points

and the condition for choosing between these corner points are as follows:

If δ1/s1 ≥ δ2/s2, then

s1H(D∗
1) = [s1H(p1)− C(P1)]

+ ,

s2H(D∗
2) = [s1H(p1)− (C(P1 + P2)− C(P1))]

+ ,

otherwise,

s1H(D∗
1) = [s1H(p1)− (C(P1 + P2)− C(P2))]

+ ,

s2H(D∗
2) = [s1H(p1)− C(P2)]

+ .

Here, [x]+ denotes the positive part of x given by max{0, x}.

Thus, we have explicitly solved the resource allocation problem for this

illustrative example. We depict this solution in Figure 2.3. This figure captures

the intuitive distortion-control policy: compute weights and choose the corner

point for operation corresponding to the largest weight.

2.5.2 MAC with Gaussian sources

Next, we consider independent Gaussian sources with squared-error dis-

tortion. Using this example, we show that optimal distortion-control does not

necessarily result in corner points corresponding to the capacity region, even

for certain natural utility function. While using a decomposition approach,
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Figure 2.3: Optimal resource allocation for multiple access channel with bi-
nary sources; Point-A corresponds to Case-A (no-distortion), and Point-B cor-
responds to Case-B (distortion)

the max-weight scheduling component usually chooses one of the corner points.

Therefore, using this example, we show that the decomposition approach leads

to strictly sub-optimal solution. Since the objective considered does not result

in a convex formulation, this is not surprising. However, it is interesting that

some of these non-standard problems can be solved in closed-form.

Consider two i.i.d. Gaussian sources with variance σ2
i arriving at a

rate of si symbols per second. These sources are to be communicated over a

Gaussian MAC channel. Then, the optimal resource allocation problem is:

max
D

2∑

i=1

Vi(Di) (2.28)
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subject to

si
2
log

σ2
i

Di

≤ C(Pi), ∀i,
2∑

i=1

si
2
log

σ2
i

Di
≤ C(P1 + P2),

Di ≥ 0, ∀i.

Now, we consider linear utility function in distortion given by

Vi(Di) = −δiDi. (2.29)

It follows from (2.29) and (2.28) that the optimal max-weight scheduling lies

on the sum-capacity facet. However, in general, it does not correspond to one

of the corner points in this facet.

With change of variables to rates given by

ri =
si
2
log2

σ2
i

Di

and using the fact that for optimal rates, the constraint

r1 + r2 ≤ C(P1 + P2),

is satisfied with equality, we obtain the following equivalent problem (optimal

value scaled by a negative constant) for (2.28):

min
r1

exp

(
−2r1

s1

)
+ γ exp

(
2r1
s2

)
(2.30)

s.t. r1 ≤ C(P1),
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where

γ =
δ2σ

2
2

δ1σ2
1

exp

(
−2C(P1 + P2)

s2

)
.

Now, by differentiating the function in (2.30) w.r.t. r1 and equating to

zero, we get

− 2

s1
exp

(
−2r̂1

s1

)
+

2

s2
γ exp

(
2r̂1
s2

)
= 0,

which simplifies to

r̂1 =
s1

s1 + s2
C(P1 + P2) +

s1s2
2(s1 + s2)

log

(
δ1σ

2
1s2

δ2σ2
2s1

)
.

It is straightforward to check that the second derivate of the function in (2.30)

w.r.t. r1 is strictly positive at this point. For the constrained problem in (2.30),

using elementary functional analysis, it turns out that the optimal solution is

r∗1 = min{r̂1, C(P1)}, r∗2 = C(P1 + P2) − r∗1. For a symmetric case (i.e., all

parameters associated with the two sources are equal), the above solutions

leads to equal rates for both links, i.e., r∗1 = r∗2 = C(P1 + P2)/2.

The above result suggests that, from a distortion-control perspective,

a max-weight scheduling policy for choosing operating points on the capacity

region is not always sufficient. However, if we restrict focus to concave utilities,

a max-weight scheduling policy is sufficient.
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Chapter 3

Queue-Architecture and Stability Analysis in

Cooperative Relay Networks

3.1 Introduction

Cooperative relaying is traditionally seen as a physical-layer commu-

nication scheme involving multiple nodes in the network [92], with limited

network-layer insights originating from such schemes. Indeed, the not-so-

uncommon perception is: whatever be the physical-layer transmission/coding

scheme, the network can abstract it into a rate region and then determine

algorithms to stabilize queues, perform rate control and other tasks at the

higher layers. From this perspective, it seems unimportant to learn about the

intricacies in a multi-hop multi-user communication scheme.

There is a significant and growing body of work suggesting that such

abstractions may not be accurate [36] and that physical-layer aspects must

be included into the analysis. A large class of this work is based on signal-

to-noise ratio (SNR) or signal-to-interference-and-noise ratio (SINR) models

for the physical medium. While this is a worthwhile abstraction for physical-

layer schemes that treat interference as noise, it is often overused and does not

capture more involved physical-layer transmission schemes. From information
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theory, it is well known that treating interference as noise represents a very

limited class of transmission schemes, and a much larger class of schemes

exist that achieve significantly higher throughput. Therefore, a framework

that brings the information-theoretic coding scheme together with network-

stability analysis is needed, to bridge the gap caused by the “unconsummated

union” [38].

We explore building this bridge in the context of cooperative relay

networks. For cooperative relay networks, multiple reasons exist for jointly

studying queueing and cooperative communication schemes.

• First, the rate-maximizing physical-layer coding strategy automatically

imposes scheduling restrictions on the relays/transmitters in the net-

work. For coherent combination at the receivers to be at all possible, all

nodes involved must transmit simultaneously in that block.

• Second, it is codebooks and functions of codebooks being received, stored

and transmitted by nodes and not traditional data packets.

• Finally, the codebook chosen by the source(s) determines the rate of

transmission, which may or may not be alterable at intermediate nodes

(this is a key distinction between general information-theoretic coding

theorems and say, packetized or linear network coded systems where

rate can always be varied at every node). For example, if a relay were

to use amplify-and-forward or compress-and-forward as its physical-layer

strategies, it has no control over rate and has a real vector as its “packet”.
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3.1.1 Organization

In Section 3.2, we present a brief background on cooperative relay net-

works. In Section 3.3, we present our main results. In Section 3.4, we describe

our system model in the context of heterogeneous cellular networks. In Section

3.5, we describe cooperative schemes for such networks in detail and present

a queue-architecture that enables both efficient and optimal operation of the

network. In Section 3.6, we present the main algorithm for operating such

networks, and establish that this algorithm is throughput-optimal.

3.2 Background on Cooperative Relay Networks

Cooperative relay networks have been researched extensively since the

“MIMO effect” was established. Until recently, it was considered hard if not

impractical for nodes to coordinate transmissions to enable cooperative re-

laying. However, emerging heterogeneous cellular networks are increasingly

moving in the direction of standardizing and evaluating schemes with node co-

operation [1]. As cell sizes decrease, an increase in cell edges and interference

requires node cooperation to increase throughput, and cooperative relaying is

an important step in making this happen.

Figure 3.1 shows a basic configuration that incorporates cooperative

relaying in heterogeneous cellular networks. To motivate this setting, we take

the example of a macro-cellular network. Here, the source node S corresponds

to the macro-cell base-station, the relay nodes R1 and R2 correspond to pico-

cell base-stations and the destination nodes D1, D2 and D3 correspond to
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Figure 3.1: A two-hop cooperative network

mobiles. We focus on the downlink scenario where the source S has indepen-

dent messages/bits for the mobiles. The relays’ role is to help the source in

transmitting these messages. Further, we assume a half-duplex cooperative

constraint so that either the first-hop or the second-hop links can be activated

at any given time, with no direct-links from the source to the destinations. A

more general and detailed system model for such cooperative relay networks

is provided in Section 3.4.

Even for simpler networks such as two relays and one destination and

fixed channels, information-theoretic capacity is not yet known. However,

there has been significant progress in developing cooperative communication

schemes for such systems by using coherence and physical-layer coordination

among nodes [77,107]. There are multiple strategies studied in literature that

enable this coordination, referred to as forwarding schemes [24, 31, 104]. One

such scheme of interest is the so-called decode-and-forward scheme that re-
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quires relays to decode messages. In contrast to traditional networks, the relays

decode common messages that are then transmitted cooperatively. However,

the relays still have decoded messages or packets as in traditional networks.

In [132], the authors develop a throughput-optimal network algorithm that

can handle common messages. In [133], the authors consider more general

network configurations, but the applicability is still limited to decode-and-

forward schemes with fixed channels. In essence, all of these apply only in

packet-in packet-out networks. Complimentary to this is the work on opti-

mal resource allocation for non-cooperative wireless networks [44,80,120] (and

references therein).

For enabling generic cooperative schemes, we need to go beyond a

packet-in packet-out framework. We desire that the relays use any information-

theoretic cooperative coding strategy of its choice, be it amplify, compress,

quantize or any alter-and-forward scheme. This couples cooperative coding

and queueing into one joint problem, and the analyses in [44,120,132] and the

vast literature on non-cooperative networks do not apply. Even the analyses

in [132, 133] for decode-and-forward cooperative networks do not apply. This

motivates the need for a new framework and stability analysis.

3.3 Our Approach & Main Results

Before proceeding to describe our results, a note to state the obvious: if

the channel state is fixed and thus its capacity is precomputed, a simple static

split scheme will ensure stable operation while maximizing the information-
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theoretic rate (region) for the network. The challenge, of course, is when the

fading state distribution and input arrival rates are unknown, and the fading

state can only be observed causally. Consider a fading channel with block

fading of T symbols each. When T is much smaller compared to the packet

duration (or equivalently the channel-coding duration), queueing/buffering of

packets at relays is not required as the first-hop and second-hop can be oper-

ated sequentially without reducing data-rates. When T is comparable to (or

larger than) the packet duration, queueing of packets at relays can provide

significant gains in terms of data-rates. Furthermore, when T is roughly the

same as the packet duration, queueing at relays is inevitable as the source

does not know the fading state of the second-hop while encoding the packet.

We focus on the second scenario when T is larger than the packet/codeword

duration. Given that the channel distribution is unknown and the fading state

is only known causally, we ask the question: Is it possible to stabilize the net-

work while operating it close to the boundary of its information-theoretic rate

region?

The answer to the preceding question is yes, which we first proved

for a simpler network with two relays and one destination in [71]. For co-

operative schemes such as amplify/quantize-and-forward and partial-decode-

and-forward, the relays receive and transmit real-valued packets. In [71], we

introduce a new state-based queue-architecture for these real-valued packets,

and develop a throughput-optimal network algorithm that does not require

the knowledge of the fading distribution. Each state corresponds to a vec-
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tor comprised of the entire channel-state of each link in the network. This

approach, although analytically very helpful, suffers from a drawback - it re-

quires that a virtual-queue be maintained for each channel-state at each node

in the network. This leads to an explosion of queues, even for simple network

configurations. Moreover, the approach in [71] is specific to a single destina-

tion setting. Hence, we develop a simpler queue-architecture to enable stable

operation of cooperative relay networks and generalize it to any number of

destinations.

The queue-architecture presented is primarily encoding-based. This ar-

chitecture is motivated by the manner in which adaptive modulation and cod-

ing is currently implemented in practice. In a majority of systems, the source

node implements a limited number of encoding schemes (encoding functions

and rate-vectors). Each encoding scheme is designed so that it can be suc-

cessfully employed for a particular subset of states. Even though encoding

schemes belong to a finite (and usually small) set, the mapping functions at

the relays and the decoding functions at the destinations are usually state-

dependent. A queue-architecture that keeps virtual-queues at the relays for

each state corresponding to the first-hop and each encoding scheme is suffi-

cient. This considerably reduces the number of virtual-queues that must be

maintained while still remaining a “sufficient statistic”, i.e., these encoding-

based queues are a sufficiently rich-enough representation for us to develop

throughput optimal algorithms.

Using this new and somewhat intuitive queue-architecture, we develop
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a network algorithm that has the following properties.

1. It does not require the knowledge of the fading distribution.

2. It does not require the knowledge of the arrival rates.

3. It keeps all the queues stable for any arrival rate-vector within the

throughput region, i.e., it is throughput-optimal.

Note that limiting ourselves to a small set of possible encoding schemes and

rates inherently reduces the network’s information-theoretic rate region. This

loss in rate region would be smaller with more fine-grained encoding schemes

and resulting queue-architecture. The encoding-based queue-architecture itself

does not introduce any sub-optimality.

To sum up, we introduce and study a new encoding-based queue-

architecture, which is inspired by an adaptive coded modulation system ana-

lyzed and implemented at the physical-layer in systems today. There is rich

literature that show the need for interaction between network-layer algorithms

and adaptive coding/modulation in emerging wireless networks [44, 80, 120].

When it comes to cooperative relay networks, this coupling between network-

layer algorithms and adaptive coding/modulation is even more important and

intricate. Specifically, we show that new queuing architectures are required

to develop throughput optimal algorithms that can achieve any information-

theoretic rate region corresponding to its choice of encoding/decoding strate-

gies while maintaining stability.
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3.4 System Model

We consider discrete-time two-hop cooperative networks that include

the network shown in Figure 3.1. We allow for arbitrary number of relays

and destinations, i.e, the network consists of a source node denoted by S,

N relay nodes denoted by R1, R2, . . . , RN , and K destination nodes denoted

by D1, D2, . . . , DK . The source has independent messages for all the desti-

nations. The relays assist in transmitting these messages to their respective

destinations. Throughout this chapter, first-hop refers to the links from the

source to the relays, and second-hop refers to the links from the relays to the

destinations. At any given time, half-duplex and cooperative-communication

constraints require that either the first-hop or the second-hop can be activated

and not both. The presence of direct links from source to destinations will not

invalidate the analysis presented, but would allow for more involved coopera-

tive schemes. For simplicity, in our system model, we assume that direct links

are absent and thus concentrate on equal-path length networks.

Remark 3.1. If the direct links are weak, these can be ignored without sig-

nificant impact on the throughput region. The cooperative schemes developed

assuming no direct links will remain applicable. If the direct links cannot be

ignored, highly sophisticated cooperative schemes such as block Markov coding

are required. In addition to the coding complexity, these coding schemes require

knowledge of the direct links. The analysis can be extended to this scenario by

including direct links into the state (defined later), but the lower complexity of

the queue-architecture is obtained by exploiting the absence of direct links.
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The channel model does not directly impact the queue-architecture,

and thus the network algorithm and stability analysis presented. Consider

any state dependent channel.1 The joint state-distribution is unknown a-priori

but the instantaneous realizations are known causally. A particular channel

model of interest is a linear interaction model with additive white Gaussian

noise (AWGN). In the context of an AWGN channel, an example of state

is a multiplicative fading parameter. We focus on a framework with i.i.d.

block-fading model with a block-length of T symbols. The channels remain

constant for the duration of one block, and then change to a new (independent)

realization from an underlying distribution from block to block. Let t ∈ Z+

denote the channel fading blocks, and let F denote the fading state-space,2

which is assumed to be discrete. In block t, f1[t] ∈ FN denotes the fading

realization for the first-hop and f2[t] ∈ FNK denotes the fading realization for

the second-hop. The combined fading-state is denoted by f [t] = (f1[t], f2[t]).

The corresponding random vectors are denoted by F1[t], F2[t] and F[t]. Note

that F[t] is i.i.d. over time, but can be spatially correlated. Let the probability

that F[t] takes value f be πf . This is the underlying probability distribution

that is unknown to the central controller.

Next, we explain the time-scales in which network and channel param-

eters evolve in our system. The coherence time T is assumed to be comparable

to the channel-coding length in symbols. For the ease of presentation, “packet”

1A state dependent channel is modeled by a conditional probability distribution of the
output given the input and the state.

2In the context of fading AWGN, F is a finite set of positive real-valued SNRs.
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(which is either the channel codeword or any real-vector representing the ac-

tual data packet) length is assumed to be equal to the coherence time T . It

is straightforward to extend the analysis when the packet length is a sub-

multiple of the coherence time T . Each packet is transmitted on the first-hop

and the second-hop exactly once. These transmissions need not happen in

consecutive time-blocks, i.e., these packets can be buffered at the relays. The

coding performed at the source, the mappings performed at the relays, and

the decoding at the destinations can be arbitrary, i.e., this includes any and

all schemes that are information-theoretically capacity-optimal or, if capacity

is unknown, then the best known coding scheme. Further, we assume that

the instantaneous fading-state is causally known to the central controller. In

other words, prior to transmission, the central controller is aware of the entire

network channel state for that particular time-block.

At the source node S, there are K queues consisting of bits (or data)

corresponding to the K destinations. We denote the queue at the source

corresponding to k-th destination by Qk
S with queue-length Qk

S[t] during block

t. There is an exogenous i.i.d. arrival process Ak[t] of data-bits into Qk
S with

mean rate λkT bits/block and bounded variance. The vector of arrival rates

λk is denoted by λ. We need a systematic technique for buffering encoded

packets at the relays so that efficient adaptive control can be performed. We

refer to such a buffering technique as queue-architecture, which is the main

topic of the next section.
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3.5 Queue-Architecture & Throughput Region

The notion of a “packet” in cooperative schemes is different from tra-

ditional networks where a packet is decoded at all intermediate relays, and

is usually meant for one destination. In our terminology, the term “packet”

refers to the set of coded symbols transmitted/received in the network. Note

that each of the relays receives a different noisy version of the transmitted

vector (transmitted “packet”), which is subsequently mapped to a transmit

vector (“packet”) at each relay. Again, the destinations receive a noisy ver-

sion of a linear combination of relays’ transmit “packets”. We refer to the

physical-layer signalling vectors as packets3 at each node in the network.

Consider a packet that is transmitted from the source to the K desti-

nations. Let this packet be transmitted on the first-hop during block t1, and

be transmitted on the second-hop during block t2. Then, g = (f1[t1], f2[t2]) is

said to be the state4 seen by this packet. A packet transmitted by the source

is received by all the destinations in two hops, but the amount of information

each destination receives varies depending on the encoding rates. Given a state

seen by the packet, the set of encoding rates that can be supported is known

as the rate region for the given state. An extremely challenging problem even

in the single destination setting is to find the set of all achievable rates, or

the capacity region for the given state. Even though the capacity region is

3We choose to use this language as the entire network-layer analysis is based on under-
standing the dynamics of these transmit vectors as they traverse the system.

4Note that this notion of state is different from physical channel fading state, but is it of
equal importance in our analysis.
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unknown in most cases, there are many efficient cooperative communication

schemes that have been developed. Therefore, our main aims are: (i) to de-

velop a queue-architecture that can support existing (and future) cooperative

schemes, and (ii) to develop a throughput-optimal network algorithm using

this queue-architecture.

3.5.1 State-based Queue-Architecture

The queue-architecture we developed in [71] for single-destination set-

ting keeps virtual-queues at relays for every state. Next, we describe this using

amplify-and-forward coding scheme as it facilitates the understanding of the

new queue-architecture introduced in Section 3.5.2.

Amplify-and-Forward Scheme: Consider the single destination set-

ting with AWGN channels. Further, consider an average power constraint of

P per block per node in the network, and additive Gaussian noise of unit

variance at each receiver in the network. If the source transmits during fading

state f , then the received signals at the relays are

yn =
√

f1,nxS + wn, for n = 1, . . . , N, (3.1)

where xS denotes the symbol transmitted from the source, and yn denotes the

symbol received at the relay Rn. Instead, if the relays transmit during fading

state f , then the received signal at the destination is

yD =

N∑

n=1

√
f2,nxn + wD, (3.2)
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where xn denotes the symbol transmitted from the relay Rn, and yD denotes

the symbol received at the destination. Here, wn and wD are i.i.d. zero-mean

additive Gaussian noise of unit variance at the relay Rn and the destination

D.

In the static case without any link activation constraint, amplify-and-

forward commonly refers to the relaying scheme at the relays that transmit

(in every time slot) scaled versions of the received signals in the previous time

slot. The scaling parameters at the relays are determined as a function of the

signal-to-noise ratios (SNRs). These scaling parameters should also ensure

that the average power constraints at the relays are satisfied. We look at an

amplify-and-forward scheme (denoted by AF scheme) in which the relays can

transmit any of the previously received signal vectors or choose not to transmit.

We assume that received signal-vectors at the relays are transmitted to the

destination only once.

We say that a symbol xS is transmitted by the source to the destination

over state g = (g1,1, . . . , g1,N , g2,1, . . . , g2,N) ∈ F2N , if the source transmits dur-

ing a fading state of the form (g1,1, . . . , g1,N , ∗, . . . , ∗) and the relays transmit

during a fading state (∗, . . . , ∗, g2,1, . . . , g2,N), where ∗ can be any fading level.

Consider a symbol xS transmitted by the source to the destination over some

state g. Let the average power used at the source S be P g

S and at the relay

Rn be P g
n . These parameters are later optimized for the state g. From (3.1),
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(3.2), the received symbol at the destination is

yD =
N∑

n=1

[√
g2,nP

g
n

g1,nP
g
S + 1

(√
g1,nxS + wn

)
]
+ wD, (3.3)

where xS has zero mean and variance P g
S . From (3.3), it is straightforward to

see that the maximum rate we can obtain is

rg = max
Pg
S
,Pg

1 ,...,Pg
N
≤P

C



P g
S

(∑N
n=1

√
g1,nc1

)2

1 +
∑N

n=1 cn


 , (3.4)

where cn = (g2,dP
g
n )/(g1,nP

g
S + 1) and C(x) = 1

2
log2(1 + x).

Remark 3.2. The rate in (3.4) is equal to the maximum achievable rate using

amplify-and-forward scheme in the static case with fixed channel state g and

full-duplex operation [104]. The power optimization in (3.4) will result in

utilizing maximum power at the source and one of the relays. In general,

the other relays will result in using lower power than the maximum available

power [104].

We can obtain rates strictly greater than the average of rates over all

fading states by buffering at relays. Buffering enables optimal combining of

states between the source and the relays and the relays and the destination.

We will demonstrate this using a simple example. Let P = 1, F = {0, 1, 10}.

Consider the fading distribution such that fading states (0, 0, 0, 0), (0, 0, 10, 10),

(1, 1, 0, 0) and (1, 1, 10, 10) occur with probabilities γ2, γγ̄, γ̄γ, and γ̄2, respec-

tively. Here, γ̄ = 1 − γ and γ can be viewed as the probability of outage in

this example. The rate corresponding to state (1, 1, 10, 10) alone is non-zero,

51



0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Outage Probability (γ)

A
ch

ie
va

bl
e 

R
at

e 
(b

its
/s

ym
bo

l)

 

 

AF − No Buffering
AF − With Buffering

Figure 3.2: Throughput improvement via buffering at relays

which is C(20/11). In this example, it is easy to observe that we can achieve

(0.5γ̄2+γγ̄)C(20/11) bits/transmission with buffering whereas 0.5γ̄2C(20/11)

bits/transmission is the average of rates over different fading states. These

achievable rates are plotted in Figure 3.2.

State-based Queue-Architecture: For handling variable rate allo-

cation, we maintain separate virtual queues at each relay based on the possible

rates of the real-valued “packet”. This is necessitated by the fact that encoding

and decoding in amplify-and-forward relaying is an end-to-end process. Let

Qg
n[t] denote the virtual queue maintained for state g, where g = (g1, g2) ∈ F4.

Note that when the system is in fading state f , for any state g such that

g1 = f1, a “packet” generated with rate rg can be successfully transmitted
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from the source to the relays; and for any state g such that g2 = f2, a “packet”

generated with rate rg can be successfully transmitted from the relays to the

destination.

For the multiple destinations setting, suppose that each rate-region can

be quantized such that the convex-hull of the set of quantized rate-vectors is

“nearly” same as the rate-region itself. Further, let us assume that the rate

corresponding to each destination have to be quantized to L levels. Now, a

direct extension of the state-based queue-architecture would require virtual-

queues at relays for each state and each quantized rate-vector, which results in

LK |F|K(N+1) virtual-queues. This scales exponentially in the number of desti-

nations K. Clearly, such a queue-architecture is not scalable, and might face

implementation issues unless we take advantage of specific structure present

in the system. This is the topic we explore next.

3.5.2 Encoding-based Queue-Architecture

In order to design a low-complexity queue-architecture, we exploit the

fact that practical systems implement limited number of encoding schemes, as

in the case of adaptive modulation and coding. For example, the source might

choose to encode only two destinations at a time using superposition encoding.

In this case, the total number of encoding schemes would be K(K − 1)L2. In

another example, the source might choose to encode at limited boundary rate-

vectors again with superposition encoding. Let M denote the set of encoding

schemes, and rm denote the rate-vector corresponding to each encoding scheme
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m ∈ M. Given that |M| ≪ LK |F|KN , a queue-architecture needs to support

these limited choices. While a queue-architecture can take advantage of this,

it needs to allow for arbitrary mapping at the relays and decoding at the

destinations. These are usually state-dependent, for example, an amplify-and-

forward mapping is state-dependent.

Before describing our queue-architecture, we characterize the through-

put region of the two-hop cooperative network, which is definted next.

Definition 3.1 (Throughput Region). A rate-vector is achievable if there ex-

ists a static split scheduling scheme that supports it, i.e., achievable with the

knowledge of the fading distribution. The throughput region is defined as the

closure of the set of all achievable rate-vectors.

Define I = {(m, g)|m ∈ M can be supported by state g ∈ F(N+1)K},

which represents whether an encoding scheme is supported by a state or not.5

Now, let f = (f1, f2) be any fading-state where f1 is the fading-state of first-

hop and f2 is the fading-state of second-hop. Similarly, let g = (g1, g2) by any

state. We define F̂ = F(N+1)K , I1 = {(f , g)|g1 = f1}, and I2 = {(f , g)|g2 = f2}.

Now, any static split rule can be represented using the following two sets of

parameters: am,g
f - the fraction of time for which packets corresponding to en-

coding scheme m and state g is transmitted from the source to the relays when

the system is in fading state f , and bm,g
f - the fraction of time for which these

5We do not explicitly deal with packet error rate, as it is assumed that the achievable
rate-vector is defined appropriately with required packet error rate.
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packets are transmitted from the relays to the destinations. The throughput

region of the network is characterized in the following lemma.

Lemma 3.1. A rate-vector r̂ is in the throughput region denoted by T only if

there exists am,g
f ≥ 0 and bm,g

f ≥ 0 for all m ∈ M, g ∈ F̂ and f ∈ F̂ such that

r̂ =
∑

m,g,f

πfa
m,g
f rm1{(f ,g)∈I1}1{(m,g)∈I}, (3.5)

∑

f∈F̂

πfa
m,g
f 1{(f ,g)∈I1} =

∑

f∈F̂

πfb
m,g
f 1{(f ,g)∈I2}, ∀(m, g) ∈ I, (3.6)

∑

m,g

am,g
f + bm,g

f ≤ 1, ∀f . (3.7)

Proof. Please see Appendix A.1.

An immediate corollary of this lemma is the following.

Corollary 3.2. The throughput region T is convex.

Encoding-based Queue-architecture: At each relay (say n), we

keep virtual queues corresponding to each encoding scheme m and each fad-

ing state for the first-hop g1 denoted Qm,g1
n with queue-length Qm,g1

n [t] during

block t as shown in Figure 3.3. This queue consists of real-valued packets

encoded at rate rm, i.e., these queue length units are not bits, but symbols.

Since we keep virtual queues for every fading state corresponding to the first-

hop, the mapping function performed at the relays can be a function of the

state. Consider a set of packets chosen for transmission from the relays to the

destinations. Now, the first-hop state information is known from the virtual
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Figure 3.3: Encoding-based queue-architecture; λk is the arrival rate for the
queue corresponding to destination Dk; m represents encoding scheme and g1

represents first-hop state

queues these belong to and the second-hop state is the current fading real-

ization for the second-hop. Thus, the entire state is known while the relays

perform this transmission, and consequently, the mapping function can be a

function of the entire state. Similarly, the decoding function can be a function

of the fading state. With this queue-architecture, the number of virtual queues

at each relay is |M||F|N . This is considerably less compared to the number of

virtual queues required in the state-based approach, and thus provides a low-

complexity queue-architecture. Note that the gain is high in the setting when

the number of destinations is large and number of relays is small, which is the
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case in cellular systems.

The queue dynamics is as follows: During block t, if the fading state for

the first-hop is g1 and if the central controller decides that the source should

transmit a packet using encoding scheme m, then the following queues get

updated:

Qk
S[t + 1] = (Qk

S[t] + Ak[t]− rkmT )
+, ∀k, (3.8)

Qm,g1
n [t + 1] = Qm,g1

n [t] + T, ∀n. (3.9)

Here, rkm denotes the k-th entry in rm, which is the encoding rate corresponding

to destination Dk. During block t, if the fading state for the second-hop is

g2, then the central controller can decide to transmit packets from queues

Qm,g1
n , ∀n for some given m and g1 only if (m, g1, g2) ∈ I. This ensures that

the packet is received successfully at all the destinations. In this case, the

following queues get updated:

Qk
S[t + 1] = Qk

S[t] + Ak[t], ∀k, (3.10)

Qm,g1
n [t + 1] = (Qm,g1

n [t]− T )+, ∀n. (3.11)

Remark 3.3. In the queue updates (3.8)-(3.9), rkmT bits from the source queue

Qk
S is encoded into T symbols and buffered in the relay queue Qm,g1

n . Note that

the source queue lengths Qk
S [t] are in units of bits whereas relay queue lengths

Qm,g1
n [t] are in symbols.

Next, we address the question of designing a central controller that does

not require the knowledge of the arrival rates or the fading state distribution.
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3.6 Throughput-Optimal Network Algorithm

In this section, we show that a throughput-optimal central6 controller

can be designed without the knowledge of the arrival rates or the fading state

distribution. The following algorithm is motivated from back-pressure based

algorithms for non-cooperative networks.

Back-pressure-based Algorithm: In every block, the central con-

troller makes decisions based on the current fading state of the system and the

current queue-lengths. Let the fading-state during block t be f [t] = (f1, f2).

The network algorithm run by the controller is as follows:

1. It computes

A = max
m

∑

k

(
Qk

S[t]− rkm

N∑

n=1

Qm,f1
n [t]

)
rkm

and an optimal parameter m∗ for this problem.

2. It computes

B = max
m,g1

(rm · 1)2
N∑

n=1

Qm,g1
n [t],

s.t. (m, (g1, f2)) ∈ I,

and a set of optimal parameters m̂ and ĝ1 for this problem.

3. If A ≥ B, then the central controller decides to transmit a packet from

the source to the relays using encoding scheme m∗.

6Since cooperative schemes require strong node coordination, the centralized nature of
the algorithm does not create additional system requirements.
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4. Otherwise, the controller decides to transmit a packet from queues Qm̂,ĝ1
n , ∀n,

i.e., from the relays to the destinations.

The controller repeats steps 1− 4 in every block.

The following theorem provides a strong theoretical guarantee on the

throughput performance of this algorithm.

Theorem 3.3. The above algorithm stochastically stabilizes all the queues for

all λ such that there exists ǫ > 0 with λ+ ǫ1 in the throughput region given in

Lemma 3.1, i.e., the underlying network Markov chain is positive recurrent.

In simple terms, the algorithm is throughput-optimal.

Before proceeding to the proof of this theorem, we state the following

lemma that is used in the proof.

Lemma 3.4. Suppose that there exists ǫ > 0 such that λ + ǫ1 is within the

throughput region. Then, there exists am,g
f ≥ 0, bm,g

f ≥ 0 and δ > 0 such that

the following set of conditions are satisfied:

λk −
∑

m,g,f

(πfr
k
ma

m,g
f ) ≤ −δ, ∀k,

∑

f

πf (a
m,g
f − bm,g

f ) ≤ −δ, ∀(m, g, )

∑

m,g

am,g
f + bm,g

f ≤ 1, ∀f ,

am,g
f = 0, ∀(f , g) /∈ I1, ∀(m, g) /∈ I,

bm,g
f = 0, ∀(f , g) /∈ I2, ∀(m, g) /∈ I.

Proof. Please see Appendix A.2.
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3.6.1 Proof of Theorem 3.3

Since the queues form a Markov chain, we use Foster-Lyapunov theorem

in order to prove the stability [9,86]. Without loss of generality, we assume that

rm 6= 0, ∀m. Otherwise, those queues at the relays can be removed without

affecting the throughput region and the stability of the system. Now, consider

the Lyapunov function

V (Q[t]) =
∑

k

(
Qk

s [t]
)2

+

N∑

n=1

∑

m,g1

(rm · 1Qm,g1
n [t])2 ,

where Q[t] denotes the vector of all queue lengths.

Next, we consider an optimization problem that captures the algorithm

given in this section. Consider a fading-state f and the following discrete

optimization problem:

max
αm,g
f

,βm,g
f

∑

m,g,k

[(
Qk

S[t]− rkm

N∑

n=1

Qm,g1
n [t]

)
rkmα

m,g
f

]

+
∑

m,g

[
(rm · 1)2

(
N∑

n=1

Qm,g1
n [t]

)
βm,g
f

]
, (3.12)

s.t.
∑

m,g

(αm,g
f + βm,g

f ) ≤ 1,

αm,g
f = 0, ∀(f , g) /∈ I1,

βm,g
f = 0, ∀(f , g) /∈ I2, ∀(m, g) /∈ I,

αm,g
f , βm,g

f ∈ {0, 1}, ∀m, g.

Remark 3.4. It is fairly straightforward to check that the algorithm given in

this section results from this optimization problem. Note that this optimization

has many redundant variables that are introduced for the purpose of the proof.
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Let an optimal assignment to the optimization problem in (3.12) be

α̂m,g
f , β̂m,g

f . Now, from (3.8), (3.10), (3.9) and (3.11), we can bound queue-

lenths during block t + 1 as follows:

(Qk
S[t+ 1])2 =

(
Qk

S[t] + Ak[t]−
(
∑

m,g

rkmT α̂
m,g
f

))2

≤ (Qk
s [t])

2 + (Ak[t])2 +

(
∑

m,g

rkmT α̂
m,g
f

)2

−2Qk
s [t]

(
∑

m,g

rkmT α̂
m,g
f − Ak[t]

)
, ∀k,

(rm · 1Qm,g1
n [t+ 1])2 ≤

(
rm · 1Qm,g1

n [t] + rm · 1T
∑

g2

(
α̂m,g
f − β̂m,g

f

))2

= (rm · 1Qm,g1
n [t])2 +

(
rm · 1T

∑

g2

(
α̂m,g
f − β̂m,g

f

))2

−2(rm · 1)2Qm,g1
n [t]T

∑

g2

(
α̂m,g
f − β̂m,g

f

)
, ∀m, g1.

Applying the law of iterated expectations, we obtain

E [V (Q [t + 1])− V (Q [t]) |Q [t]]−M

≤
∑

f

πf

[
−
∑

k

2Qk
s [t]

(
∑

m,g

rkmT α̂
m,g
f − λkT

)
−

∑

m,g1,n

(
2(rm · 1)2Qm,g1

n [t]T
∑

g2

(
α̂m,g
f − β̂m,g

f

))]

= 2T

[
∑

k

Qk
S[t]

(
λk −

∑

m,g,f

(
πfr

k
mα̂

m,g
f

)
)
+

∑

m,g,n

(rm · 1)2Qm,g1
n [t]

(
∑

f

πf

(
α̂m,g
f − β̂m,g

f

))]
. (3.13)
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In the last step, we have used the fact that
∑

f πf = 1. M is a finite posi-

tive value. This follows as variance associated with the arrival processes are

bounded and the throughput region is compact.

Let am,g
f , bm,g

f be the values given by Lemma 3.4. Now, substituting

values am,g
f instead of α̂m,g

f and bm,g
f instead of β̂m,g

f in right hand side of

(3.13) increases its value. This is due to the following reason. First, consider

the linear program (LP) obtained by relaxing the integer constraints of the

optimization problem (3.12) and introducing non-negativity constraints. This

relaxation is tight as LPs have at least one optimal solution which is a bound-

ary point. Next, the possible values for am,g
f , bm,g

f is a subset of the feasible set

for the LP. Therefore, by substituting results from Lemma 3.4 in (3.13), we

have

E [V (Q[t + 1])− V (Q[t])|Q[t]]−M

≤ 2T

[
∑

k

Qk
S[t]

(
λk −

∑

m,g,f

(πfr
k
ma

m,g
f )

)
+

∑

m,g,n

(rm · 1)2Qm,g1
n [t]

(
∑

f

πf (a
m,g
f − bm,g

f )

)]

≤ −2Tδ

[
∑

k

Qk
s [t] +

∑

m,g,n

(rm · 1)2Qm,g1
n [t]

]
. (3.14)

Now, from (3.14), it is fairly straightforward to see that there is strict negative

drift except on a compact subset of the set of queue-lengths. This completes

the proof.
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3.6.2 Simulation Results

Consider a two-hop network with a single source, N = 2 relays andK =

10 destinations. Now, consider correlated ON-OFF fading channels as follows:

All the first-hop links are ON or OFF simultaneously with probability p for ON.

Similarly, all the second-hop links are ON or OFF simultaneously independent

of the first-hop links with probability p for ON. For encoding schemes, we

consider the set of cooperative schemes with coding for one destination alone.

Hence, the relays would keep virtual queues for K encoding schemes, i.e.,

one for each destination. Without loss of generality, let T = 1, and r = 1

bit/symbol be the rate achieved from the source to any destination.

For the above example, the throughput region is as follows:

{
λ : λk ≥ 0, ∀k,

K∑

k=1

λk ≤ 0.5p2 + p(1− p)

}
.

Let the arrival processes corresponding to all the destinations be independent

(over processes) i.i.d. Bernoulli with parameter λ. Define ρ = λK/(0.5p2 +

p(1 − p)) as the load factor. Clearly, the queues will be unstable for load

factor ρ > 1. We simulate the algorithm presented in this section with channel

parameter p = 0.5 for load factors ρ = 0.99 and ρ = 1.02. Simulation trace of

one of the queues at the source for 105 time slots in plotted in Figure 3.4, and

the trace of one of the virtual queues at one of the relays is plotted in Figure

3.5. It is easy to observe that the queues are stable for ρ = 0.99 and unstable

for ρ = 1.02.
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Figure 3.4: Simulation trace of one of the queues at the source
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Figure 3.5: Simulation trace of one of the virtual queues at one of the relays
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3.6.3 Extensions

So far, we focused on the single-source two-hop scenario because it

applies to the heterogeneous cellular network downlink. However, this sce-

nario also captures the essential aspects of scheduling in general cooperative

relay network. Hence, the analysis presented will extend to the multi-source

multi-hop scenario. The queue-architecture can be applied by extending the

state-space, and the back-pressure-based algorithm can be modified in a fairly

straightforward manner to account for multi-hop and arbitrary link activation

constraints. The complexity of the queue-architecture would increase exponen-

tially with the number of hops. Hence, an area for further study is reducing the

complexity of queue-architecture by exploiting specific multi-hop cooperative

schemes.
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Chapter 4

Distributed Rate Allocation for Wireless

Networks

4.1 Introduction

The throughput of wireless networks is traditionally studied separately

at the physical and medium access layers, and thus independently optimized

at each of these two layers. As a result, conventionally, data-rate adaptation is

performed at the physical-layer for each link, and link scheduling is performed

at the access-layer. There are significant throughput gains in studying these

two in a cross-layer framework [26,39,44,80,120]. This cross-layer optimization

results in a joint rate allocation for all the links in the network. Cross-layer

approach has been successfully applied to multiple access channels (MAC) to

even guarantee delay-optimal rate allocation [134].

Maximum Weighted (Max-Weight) scheduling introduced in the sem-

inal paper [120] performs joint rate allocation and guarantees throughput-

optimality.1 However, Max-Weight algorithm and its variants have the fol-

lowing disadvantages. (i) It requires periodic solving of a possibly hard op-

timization problem. (ii) The optimization problem is centralized, and thus

1As we already saw in Chapter 3, for cooperative networks, throughput-optimal rate
allocation does not follow from classical Max-Weight scheduling.
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introduces significant overhead due to queue-length information exchanges.

Thus, in order to overcome these disadvantages, we need efficient distributed

algorithms for general physical-layer interference models [80].

Our goal is to perform joint rate allocation in a decentralized man-

ner. A related problem is distributed resource allocation in networks, and

this problem has received considerable attention in diverse communities over

years. In data and/or stochastic processing networks, resource-sharing is typi-

cally described in terms of independent set constraints. With such independent

set constraints, the resource allocation problem translates to medium access

control (or link scheduling) in wireless networks. For such on-off scheduling,

recently, efficient algorithms have been proposed for both random access net-

works [50,117] and CSMA networks [14,83]. More recently, with instantaneous

carrier sensing, a throughput-optimal algorithm with local exchange of control

messages that approximate Max-Weight has been proposed in [99], and a fully

decentralized algorithm has been proposed in [59]. The decentralized queue-

length based scheduling algorithm in [59] and its variants have been shown to

be throughput-optimal in [57, 58, 81]. This body of literature on completely

distributed on-off scheduling has been extended to a framework that incor-

porates collisions in [60, 91]. Further, this decentralized framework has been

validated through experiments in [78].

However, independent set constraints can only model orthogonal chan-

nel access which, in general, is known to be sub-optimal [30] (Section 15.1).

For wireless networks, the interaction among nodes require a much more fine-
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grained characterization than independent set constraints. This can be fully

captured in terms of the network’s rate region, i.e., the set of link-rates that are

simultaneously sustainable in the network, for single-hop networks. As long

as the data-rates of links are within the rate region, simultaneous transmission

is possible even by neighboring links in the network. Therefore, it is crucial

to perform efficient distributed joint rate allocation (and not just distributed

link scheduling) in wireless networks. Although distributed rate allocation is

a difficult problem in general, we show that taking advantage of physical-layer

information can solve this problem.

4.1.1 Our Contributions

We consider single-hop2 wireless networks. We present a simple, com-

pletely distributed algorithm for rate allocation in wireless networks that is

throughput-optimal. In particular, given any rate region for a wireless net-

work, we develop a decentralized (local queue-length based) algorithm that

stabilizes all the queues for all arrival rates within the throughput region.

Thus, we can utilize the entire physical-layer throughput region of the system

with distributed rate allocation. This is an exciting result as the decentralized

algorithm achieves the same throughput region as optimal centralized cross-

layer algorithms. The algorithm requires that each link can determine the

global feasibility of increasing its data-rate from the current data-rate. In Sec-

2The results are likely to generalize to multi-hop by combining back-pressure idea with
the algorithmic framework developed.
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tion 4.8.2, we provide details on techniques to determine rate feasibility, and

explain reasons for using this approach in practice.

Our framework builds on the existing distributed link scheduling frame-

work. As discussed before, the current distributed link scheduling algorithms

primarily deal with binary (on-off) decisions whereas our algorithm performs

scheduling over multiple data-rates. Similar to these existing distributed link

scheduling algorithms, our algorithm is mathematically modeled by a Markov

process on the discrete set of data-rates. However, with multiple data-rates

for each link, the appropriate choice of the large number of transition rates

is complicated. Thus, a key challenge is to design a Markov chain with fewer

parameters that can be analyzed and appropriately chosen for throughput-

optimality. We overcome this challenge by showing that transition rates with

the following structure have this property. For link i, the transition rate to

a data-rate ri,j from any other data-rate can be set to exp(ri,jvi), where vi is

a single parameter associated with link i that is updated based on its queue-

length. The transition takes place only if the new data-rate is feasible. As

expected, this reduces to the existing algorithmic framework in the special

case of binary (on-off) decisions. Thus, our main contributions are:

• We generalize existing on-off framework to multi-state framework.

• We utilize this framework to develop distributed rate allocation algo-

rithms for wireless networks that are (i) throughput-optimal, and (ii)

completely decentralized.
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For the general framework mentioned above, at an intuitive level, the

techniques required for proving throughput-optimality remain similar to exist-

ing techniques. However, there are few additional technical issues that arise

while analyzing the general framework. First, we need to account for more

general constraints that arise from the set of possible rate allocation vectors.

Next, the choice of update rules for vi(t) with time t based on local queue-

lengths that guarantee throughput-optimality does not follow directly. The

mixing time of the rate allocation Markov chain plays an important role in

choosing the update rules. For arbitrary throughput regions, any rate alloca-

tion algorithm that approach ǫ-close (for arbitrarily small ǫ) to the boundary

possibly requires an increasing 1/ǫ number of data-rates per link. This leads

to a potential increase in the mixing time due to the increase in the size of

the state-space. Thus, the analysis performed is more general and essential to

establish throughput-optimality of the algorithms considered.

An important application of this algorithmic framework is for networks

of white-space radios [34], where multiple non-adjacent frequency bands are

available for operation and multiple radios are available at the wireless nodes.

A scheduler needs to allocate different radios to different bands in a distributed

manner. This problem introduces multiple data-rates for every link even in

the traditional carrier sensing3 framework, and hence, existing distributed

algorithms cannot be directly applied. We demonstrate that our framework

3 Note that this application uses traditional carrier sensing and does not require any addi-
tional feasibility assumption. Thus, our framework is of importance in practice irrespective
of the feasibility assumption.
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provides a throughput-optimal distributed algorithm in this setting.

4.1.2 Organization

In Section 4.2, we present the system model. In Section 4.3, we intro-

duce relevant definitions and known results used. In Section 4.4, we explain

the distributed rate allocation algorithm and state the main results. In Section

4.5, we describe the rate allocation Markov chain and the optimization frame-

work. In Section 4.6, we establish the throughput-optimality of the adaptive

algorithm. The algorithm for multiple-band multiple-radio scheduling is given

in Section 4.7. Further discussions and simulation results are given in Section

4.8. The proofs of the technical lemmas in Section 4.5 and Section 4.6 are

given in Appendix B.

4.2 System Model

Consider a wireless network consisting of m nodes, labeled N. In this

network, we are interested in n single-hop flows that correspond to n wireless

links labeled L. Since we have a shared wireless medium, these links interact

(or interfere) in a potentially complex way. For single-hop flows, this interac-

tion among links can be captured through a n-dimensional rate region for the

network, which is formally defined next.

Definition 4.1 (Rate Region). The rate region of a network, denoted by C ⊆

Rn
+, is defined as the set of instantaneous rate vectors c ∈ Rn

+ at which queues

(introduced later) of all n links can be drained simultaneously.
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We assume that the rate region is fixed4 (i.e., not time-varying). By

definition, this rate region is compact. We assume that the rate region has the

following simple property: if c ∈ C, then ĉ ∈ C for all ĉ ≤ c and ĉ ≥ 0. The

above property states that rates can be decreased component-wise. Such an

assumption is fairly mild, and is satisfied by rate regions resulting from most

physical-layer schemes.

Next, we define the throughput region of the network.

Definition 4.2 (Throughput Region). The throughput region of a network,

denoted by T, is defined as the convex hull of the rate region C of the network.

We use a continuous-time model to describe system dynamics. Time

is denoted by t ∈ R+. Every (transmitter of) link i ∈ L is associated with

a queue Qi(t) ∈ R+, which quantifies the information (packets) remaining

at time t waiting to be transmitted on link i. Let the cumulative arrival of

information at the i-th link during the time interval [0, t) be Ai(t) ∈ R+ with

Ai(0) := 0. Rate allocation at time t is defined as the rate vector in the rate

region at which the system is being operated at time t. Let the rate allocation

corresponding to the i-th link at time t be ri(t). Then, for every link i ∈ L,

the queue dynamics is given by

Qi(t) = Qi(s)−
∫ t

s

ri(z)I(Qi(z) > 0)dz + Ai(t)− Ai(s), (4.1)

where 0 ≤ s < t. The vector of n queues in the system is denoted by Q(t) =

[Qi(t)]
n
i=1. The queues are initially at Q(0) ∈ Rn

+.

4We consider fixed or slow-fading channels.
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We consider arrival processes at the queues in the network with the

following properties.

• We assume every arrival process is such that increments over integral

times are independent and identically distributed with Pr(Ai(1) = 0) >

0.

• We assume that all these increments belong to a bounded support [0, K],

i.e., Ai(k + 1)− Ai(k) ∈ [0, K] for all k ∈ Z+.

Based on these properties, the (mean) arrival rate corresponding to the i-th

link is λi := E[Ai(1)]. We denote the vector of arrival rates by λ. Without

loss of generality,5 we assume λmin := mini λi > 0. It follows from the strong

law of large numbers that, with probability 1,

lim
t→∞

Ai(t)

t
= λi. (4.2)

In summary, our system model incorporates general interference con-

straints through an arbitrary rate region and focuses on single-hop flows.

4.3 Definitions & Known Results

We provide definitions and known results that are key in establishing

the main results. We begin with definitions on two measures of difference

between two probability distributions.

5If λi = 0, then this link can be removed from the system.
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Definition 4.3 (Kullback-Leibler (KL) divergence). Consider two probability

mass functions π and µ on a finite set X. Then, the KL divergence from π to

µ is defined as D(µ‖π) =∑x∈X µ(x) log
µ(x)
π(x)

.

Definition 4.4 (Total Variation). Consider two probability mass functions π

and µ on a finite set X. Then, the total variation distance between π and µ is

defined as ‖µ− π‖TV = 1
2

∑
x∈X |µ(x)− π(x)|.

Next, we provide two known results that are used later. Result 4.1

follows directly from [17](Theorem 3.2), and Result 4.2 is in [17](Theorem

4.3).

Result 4.1 (Mixing Time). Consider any finite state-space, aperiodic, irre-

ducible, discrete-time Markov chain with transition probability matrix P and

the stationary distribution α. Let αmin be the minimum value in α and the sec-

ond largest eigenvalue modulus (SLEM) be σmax. Then, for any ρ > 0, starting

from any initial distribution (at time 0), the distribution at time τ ∈ Z++ asso-

ciated with the Markov chain, denoted by β(τ), is such that ‖β(τ)−α‖TV ≤ ρ

if

τ ≥
1
2
log(1/αmin) + log(1/ρ)

log(1/σmax)
. (4.3)

Result 4.2 (Conductance Bounds). Consider the setting as above. The er-

godic flow out of S ⊆ X is defined as F (S) =
∑

x∈S,x̂∈Sc α(x)P (x, x̂) and the

conductance is defined as

Φ = min

{
F (S)∑
x∈Sα(x)

: φ ⊂ S ⊂ X,
∑

x∈S

α(x) ≤ 1

2

}
. (4.4)
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Then, the SLEM σmax is bounded by conductance as follows:

1− 2Φ ≤ σmax ≤ 1− Φ2/2. (4.5)

Lastly, we provide the definition of positive Harris recurrence. For

details on properties associated with positive Harris recurrence, see [33, 86].

Definition 4.5 (Positive Harris recurrence). Consider a discrete-time time-

homogeneous Markov chain on a complete, separable metric space X. Let BX

denote the Borel σ-algebra on X, and Xτ denote the state of the Markov chain

at time τ ∈ Z+. Define stopping time TA = inf{τ ≥ 0 : Xτ ∈ A} for any

A ∈ BX. The set A is called Harris recurrent if Pr(TA < ∞|X(0) = x) = 1

for any x ∈ X. A Markov chain is called Harris recurrent if there exits a

σ-finite measure µ on (X,BX) such that if µ(A) > 0 for some A ∈ BX, then

A is Harris recurrent. It is known that if X is Harris recurrent an essentially

unique invariant measure exists. If the invariant measure is finite, then it may

be normalized to a probability measure. In this case, X is called positive Harris

recurrent.

We proceed to describe the rate allocation algorithm and our main

results.

4.4 Rate Allocation Algorithm & Main Results

Our goal is to design a completely decentralized algorithm for rate

allocation that stabilizes all the queues as long as the arrival rate vector is
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within the throughput region. By assumption, every link can determine rate

feasibility, i.e., every link can determine whether increasing its data-rate from

the current rate allocation results in a net feasible rate vector. More formally,

every link i ∈ L at time t, if required, can obtain the information I(r(t)+αei ∈

C), for any α ∈ R. More details on determining rate feasibility are given in

Section 4.8.

The rate allocation vector at time t is denoted by r(t) = [ri(t)]
n
i=1. For

decentralized rate allocation, we develop an algorithm that uses only local

queue information for choosing r(t) over time t. Further, we perform rate

allocation over a chosen limited (finite) set of rate vectors that are feasible.

We choose a finite set of rate levels corresponding to every link, and form

vectors that are feasible. The details are as follows:

1. For each link i ∈ L, a set of rate levels Ri = {ri,j}kij=0 are chosen from

[0, ci] with ri,0 = 0, ri,ki = ci and ri,j−1 < ri,j . Here, ci is the maximum

possible transmission rate for the i-th link, i.e., ci = argmaxα∈R+ αei ∈

C, and ki ∈ Z++ is the number of levels other than zero. Since the rate

region is compact, without loss of generality,6 we assume 0 < K ≤ ci ≤

K̄ < ∞.

2. The set of rate allocation vectors, denoted by R, is given by R =

{[r1, r2, . . . , rn] : ri ∈ Ri for all i ∈ L, and [r1, r2, . . . , rn] ∈ C}.

6If ci = 0, then this link can be removed from the system.
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The convex hull of the set of rate allocation vectors R is denoted by Rc.

Define Ro
c = {r ∈ R

n
+ : r < t for some t ∈ Rc}, the set of strictly feasible rates.

For rate regions that are polytopes, the partitions Ri can be chosen such that

Rc = T. For any compact rate region, it is fairly straightforward to choose

partitions Ri with ki ≤ ⌈2ci/ǫ⌉ ≤
⌈
2K̄/ǫ

⌉
such that c ∈ Rc if c + ǫ

2
1 ∈ T.

The trivial partition with ǫ/2 as step size in all dimensions satisfy the above

property. Thus, for any given ǫ > 0, we can obtain a set of rate allocation

vectors R such that

|R| ≤
⌈
2K̄/ǫ

⌉n
(4.6)

and c ∈ Rc if c+
ǫ
2
1 ∈ T.

Before describing the algorithm, we define two notions of throughput

performance of a rate allocation algorithm.

Definition 4.6 (Rate stable). We say that a rate allocation algorithm is rate-

stable if, for any λ ∈ Ro
c, the departure rate corresponding to every queue is

equal to its arrival rate, i.e., for all i ∈ L, with probability 1,

lim
t→∞

1

t

∫ t

0

ri(z)I(Qi(z) > 0)dz = λi.

From (4.1),(4.2), this is same as, for all i ∈ L, with probability 1,

lim
t→∞

Qi(t)/t = 0.

Definition 4.7 (Throughput optimal). We say that a rate allocation algo-

rithm is throughput-optimal if, for any given ǫ > 0, the algorithm makes the
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Y = X1 +X2 + Z

X1

X2

Figure 4.1: Gaussian multiple access channel

underlying network Markov chain positive Harris recurrent (defined in Section

4.3) for all λ such that λ + ǫ1 ∈ T. By definition, the algorithm can depend

on the value of ǫ.

Next, we describe a class of algorithms to determine r(t) as a function

of time based on a continuous-time Markov chain. Recall that Ri = {ri,j}kij=0 is

the set of possible rates/states for allocation associated with the i-th link. In

these algorithms, the i-th link uses ki independent exponential clocks with

rates/parameters7 {Ui,j}kij=0 (or equivalently exponential clocks with mean

times {1/Ui,j}kij=0). The clock with (time varying) parameter Ui,j is associ-

ated with the state ri,j. Based on these clocks, the i-th link obtains ri(t) as

follows:

1. If the clock associated with a state (say j = m) ticks and further if

transitioning to that state ri,m is feasible, then ri(t) is changed to ri,m;

7These should not to be confused with the rates for allocation.
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Figure 4.2: Information-theoretic capacity region

2. Otherwise, ri(t) remains the same.

The above procedure continues, i.e, all the clocks run continuously. Define

ui,j = logUi,j , ∀i ∈ L, j ∈ {0, 1, . . . , ki}. It turns out that the appropriate

structure to introduce is as follows:

ui,j = ri,jvi, ∀i ∈ L, j ∈ {0, 1, . . . , ki},

where vi ∈ R, ∀i ∈ L. We denote the vector consisting of these new set of

parameters by v = [vi]
n
i=1.

Example 4.1. Consider a Gaussian multiple access channel with two links

as shown in Figure 4.1 with average power constraint P at the transmitters
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a, 0 b, 0 
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exp(bv1) 
exp(bv1) 

exp(av1) 
exp(0) 

exp(av2) 

exp(0) 

Figure 4.3: Rate allocation Markov chain (transitions to/from (b, a) state alone
shown)

and noise variance N at the receiver. The capacity region of this channel is

shown in Figure 4.2 where C(x) = 0.5 log2(1 + x). In this case, orthogonal

access schemes limit the throughput region to the triangle (strictly within the

pentagon) shown using dash-line. In this example, if we allow for capacity-

achieving physical-layer schemes, the rate region (and hence the throughput

region) is identical to the pentagon shown in Figure 4.2. The natural choice

for the set of rate levels at link-1 is R1 = {0, a, b} where a = C(P/P +N) and

b = C(P/N). Similarly, R2 = {0, a, b}. This leads to the set of rate allocation

vectors R = {[0, 0], [0, a], [0, b], [a, 0], [a, a], [a, b], [b, 0], [b, a]}. It is clear that the

convex combination of this set is the throughput region itself. For this example,

the state-space of the Markov chain and transitions to and from state (b, a) are

shown in Figure 4.3.

80



A distributed algorithm needs to choose the parameters v in a decen-

tralized manner. For providing the intuition behind the algorithm, we perform

this in two steps. In the first step, we develop the non-adaptive version of the

algorithm that has the knowledge of λ. This algorithm is called non-adaptive

as it requires the explicit knowledge of λ. Despite the fact that it assumes λ,

this algorithm is non-trivial as it does not need the knowledge of instantaneous

network-wide queue-lengths. In the second step, we develop the adaptive al-

gorithm, where v is obtained as a function of time t denoted by v(t).8 This

algorithm is called adaptive as it does not even require the knowledge of λ.

4.4.1 Non-Adaptive Algorithm

The rate allocation at time t = 0 is set to be r(0) = 0. This algorithm

uses v∗ at all times which is a function of λ, and is given by

v∗ = argmax
v∈Rn

λ · v − log

(
∑

r∈R

exp (r · v)
)
.

We show in Section 4.5 that, given λ ∈ Ro
c, the above optimization problem

has a unique solution that is finite, and therefore has a valid v∗. An important

result regarding this non-adaptive algorithm is the following theorem.

Theorem 4.1. The above non-adaptive algorithm is rate-stable for any given

λ ∈ Ro
c.

8This implies that the exponential clocks used have time varying rates. These are well-
defined non-homogeneous Poisson processes.
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Proof Outline. For any λ ∈ Ro
c, there is at least one distribution on R that

has expectation as λ. For the Markov chain specified by any v ∈ Rn, there

is a stationary distribution on the state-space R. The value v∗ is chosen such

that it minimizes the Kullback-Leibler divergence of the induced stationary

distribution from the distribution corresponding to λ. For the Markov chain

specified by v∗, the expected value of the stationary distribution turns out

to be λ. This leads to rate-stable performance of the algorithm. The proof

details are given in Section 4.5.

4.4.2 Adaptive Algorithm

The values of v(t) are updated during fixed (not random variables)

time instances τl for l ∈ Z++. We set τ0 = 0 and v(0) = 0. During interval

t ∈ [τl, τl+1) the algorithm uses v(t) = v(τl). The length of the intervals are

Tl = τl+1 − τl. During interval [τl, τl+1), let the empirical arrival rate be

λ̂i(l) =
Ai(τl+1)− Ai(τl)

Tl
(4.7)

and the empirical offered service rate be

ŝi(l) =
1

Tl

∫ τl+1

τl

ri(z)dz. (4.8)

The update equation corresponding to the algorithm for the i-th link is given

by

vi(τl+1) =
[
vi(τl) + αl

(
λ̂i(l) +

ǫ

4
− ŝi(l)

)]
D

(4.9)
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where [θ]D = min(θ,D)I(θ ≥ 0)+max(θ,−D)I(θ < 0), i.e., [θ]D is the projec-

tion of θ to the closest point in [−D,D], and αl are the step sizes. Thus, the

algorithm parameters are interval lengths Tl, step sizes αl and D.

Remark 4.1. Clearly, both empirical arrival rate and empirical offered service

rate used in the above algorithm can be computed by the i-th link without any

external information. In fact, the difference is simply the difference of its

queue-length over the previous interval appropriately scaled by the inverse of

the length of the previous interval.

The following theorem provides (1− ǫ)-optimal performance guarantee

for the adaptive algorithm.

Theorem 4.2. Consider any given ǫ > 0, ǫ ≤ 4λmin. Then, there exists some

choice of algorithm parameters Tl = T (n, ǫ), αl = α(n, ǫ) and D = D(n, ǫ)

such that the appropriate network Markov chain under the adaptive algorithm

is positive Harris recurrent if λ + ǫ1 ∈ T, i.e., the algorithm is throughput-

optimal.

Proof Outline. The update in (4.9) can be intuitively thought of as a gradi-

ent decent technique to solve an optimization problem that will lead to v∗

whose induced stationary distribution on R has expected value strictly greater

than λ. However, the arrival rate and offered service rate are replaced with

their empirical values for decentralized operation. We consider the two time

scales involved in the algorithm - update interval T and N update intervals.
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The main steps involved in establishing the throughput-optimality are the fol-

lowing. First, we show that, sufficiently long T can be chosen such that the

empirical values used in the algorithm are arbitrarily close to the true values.

Using this, we next show that the average offered empirical service rate over N

update intervals is strictly higher than the arrival rate. Finally, we show that

this results in a drift that is sufficient to guarantee positive Harris recurrence.

The proof details are given in Section 4.6.

4.5 Rate Allocation Markov Chain & Rate Stability of

the Non-Adaptive Algorithm

Rate allocation Markov chain: The main challenge is to design a

Markov chain with fewer parameters that can be analyzed and appropriately

chosen for throughput-optimality. First, we identify a class of Markov chains

that are relatively easy to analyze. Consider the class of algorithms introduced

in Section 4.4. The underlying mathematical object for this class of algorithms

is a continuous-time Markov chain with state-space R, which is the (finite) set

of rate allocation vectors. Define

f(r̂, r) = exp

(
n∑

i=1

ki∑

j=0

ui,jI(ri = ri,j)I(ri 6= r̂i)

)
, (4.10)

where r̂ = [r̂1, r̂2, . . . , r̂n] ∈ R, r = [r1, r2, . . . , rn] ∈ R and ui,j are the param-

eters introduced in Section 4.4. Now, the transition rate from state r̂ ∈ R to

state r ∈ R can be expressed as

q(r̂, r) =

{
f(r̂, r), if ‖r̂− r‖0 = 1,
0, if ‖r̂− r‖0 > 1.
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And, the diagonal elements of the rate matrix are given by

q(r̂, r̂) = −
∑

r∈R,r 6=r̂

q(r̂, r), ∀r̂ ∈ R.

This follows directly from the description of the algorithm. This class of algo-

rithms are carefully designed such that it is tractable for analysis. In partic-

ular, the following lemma shows that this Markov chain is reversible and the

stationary distribution has exponential form.

Lemma 4.3. The rate allocation Markov chain (R, q) is reversible and has the

stationary distribution

π(r) =
exp

(∑n
i=1

∑ki
j=0 ui,jI(ri = ri,j)

)

∑
r̃∈R exp

(∑n
i=1

∑ki
j=0 ui,jI(r̃i = ri,j)

) . (4.11)

Furthermore, this Markov chain converges to this stationary distribution start-

ing from any initial distribution.

Proof. The proof follows from detailed balance equations

π(r)q(r, r̂) = π(r̂)q(r̂, r)

for all r, r̂ ∈ R and known results on convergence to stationary distribution

for irreducible finite state-space continuous-time Markov chains [9].

The offered service rate vector under the stationary distribution is

s :=
∑

r∈R

π(r)r.
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In general, for λ ∈ Ro
c , we expect to find values for parameters ui,j as a function

of λ and R such that s = λ. Due to the exponential form in (4.11), it turns

out that the right structure to introduce is

ui,j = ri,jvi, ∀i ∈ L, j ∈ {0, 1, . . . , ki}, (4.12)

where vi ∈ R, ∀i ∈ L, and obtain suitable values for v = [vi]
n
i=1 as a function

of λ and R such that s = λ. To emphasize the dependency on v, from now

onwards, we denote the stationary distribution by πv(r) and the offered service

rate vector by

sv =
∑

r∈R

πv(r)r. (4.13)

Substituting (4.12), we can simplify (4.11) to obtain

πv(r) =
exp(r · v)∑
r̃∈R exp(r̃ · v)

. (4.14)

Optimization framework: We utilize the optimization framework

in [59] to show that values for v exist such that sv = λ. In particular, we

show that the unique solution to an optimization problem given by v∗ has

the property sv∗ = λ. Next, we describe the intuitive steps to arrive at

the optimization problem. If λ ∈ Ro
c, then λ can be expressed as a convex

combination of r ∈ R, i.e., there exists a valid probability distribution µ(r)

such that λ =
∑

r∈R µ(r)r. For a given distribution µ(r), we are interested in

choosing v such that πv(r) is close to µ(r). We consider the KL divergence of

πv(r) from µ(r) given by D (µ(r)‖πv(r)). Minimizing D (µ(r)‖πv(r)) over the
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parameter v is equivalent in terms of the optimal solution(s) to maximizing

F (µ(r), πv(r)) = −D (µ(r)‖πv(r))−H(µ(r)) over the parameter v as H(µ(r))

is a constant. Simplifying F (µ(r), πv(r)) leads the optimization problem as

follows:

F (µ(r), πv(r)) =
∑

r∈R

µ(r) logπv(r)

(a)
=

∑

r∈R

µ(r)r · v − log

(
∑

r∈R

exp(r · v)
)

(b)
= λ · v − log

(
∑

r∈R

exp(r · v)
)
.

Here, (a) follows from (4.14) and (b) follows from the assumption

λ =
∑

r∈R

µ(r)r.

Now onwards, we denote the objective function by F (v,λ). To summarize,

the optimization problem of interest is, given λ ∈ Ro
c,

maximize F (v,λ) = λ · v − log

(
∑

r∈R

exp(r · v)
)

(4.15)

subject to v ∈ R
n.

The following lemma regarding the optimization problem in (4.15) is a

key ingredient to the main results.

Lemma 4.4. Let λ ∈ Ro
c. The optimization problem in (4.15) has a unique

solution v∗(λ), which is finite. In addition, the offered service rate vector

under v∗ is equal to the arrival rate vector, i.e., sv∗ = λ.
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Proof. Please see Appendix B.1.

The important observations are that the objective function is concave

in v and the gradient with respect to v is λ − sv. With offered service rate

equal to arrival rate, the next step is to show that the queues drain at rate

equal to λ.

4.5.1 Proof of Theorem 4.1

Rate stability of the non-adaptive algorithm: Consider time in-

stances νl for l ∈ Z+ with ν0 = 0, and interval length Γl = νl+1 − νl = l + 1.

The queue at the i-th link can be upper bounded as follows. The offered ser-

vice during the time interval is [νk, νk+1) is used to serve the arrivals during

the time interval [νk−1, νk) alone. Consider a time t, and choose l such that

t ∈ [νl, νl+1). Using (4.1) and the above upper bounding technique, we obtain

Qi(t) = Ai(t)−
∫ t

0

ri(z)I(Qi(z) > 0)dz

≤
l−2∑

k=0

[
Ai(νk+1)−Ai(νk)−

∫ νk+2

νk+1

ri(z)dz

]

+

+Ai(t)− Ai(νl−1), (4.16)

where [θ]+ = max(0, θ).

For each interval [νk, νk+1), define the following two random variables:

αi(k) =
Ai(νk+1)− Ai(νk)

Γk
, and

βi(k) =
1

Γk

∫ νk+1

νk

ri(z)dz.
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It follows from the strong law of large numbers that, with probability 1,

limk→∞ αi(k) = λi. From Lemma 4.4 and ergodic theorem for Markov chains,

it follows that, with probability 1, limk→∞ βi(k + 1) = λi. Since the arrival

process Ai(t) is non-decreasing and the increments are bounded by K, we

have

Ai(t)− Ai(νl−1) ≤ Ai(νl+1)− Ai(νl−1)

≤ K(νl+1 − νl−1)

= K(Γl−1 + Γl). (4.17)

Rewriting (4.16) with above defined random variables and applying (4.17)

along with νl ≤ t and Γk ≤ Γk+1, we obtain

Qi(t)

t
≤ 1

νl

l−2∑

k=0

Γk [αi(k)− βi(k + 1)]+ +
K(Γl−1 + Γl)

νl
. (4.18)

In (4.18), the second term on the right hand side (RHS) goes to zero as Γl/νl →

0 as l → ∞. The first term on the RHS of (4.18) goes to zero with probability

1 as αi(k) − βi(k + 1) → 0, νl ≥
∑l−2

k=0 Γk and νl → ∞. Thus, for any given

λ ∈ Ro
c, with probability 1,

lim
t→∞

Qi(t)

t
= 0, ∀i ∈ L,

which completes the proof.

This result is important due to the following two reasons.

1. The result shows that this algorithm has good performance, and an al-

gorithm that approaches the operating point of this algorithm has the

89



potential to perform “well.” Essentially, this aspect is utilized to obtain

the adaptive algorithm.

2. The non-adaptive algorithm does not require the knowledge of the num-

ber of nodes or ǫ, as required by the adaptive algorithm. This suggests

the existence of similar gradient-like algorithms that perform “well” with

different algorithm parameters that may not depend on the number of

nodes or ǫ. We do not explore this further, but the non-adaptive algo-

rithm will serve as the starting point to address such issues.

4.6 Throughput Optimality of the Adaptive Algorithm

In this section, we establish the throughput-optimality of the adaptive

algorithm for a particular choice of parameters. The algorithm parameters

used in this section are dependent on the number of links n and ǫ. It is

evident from the theorem that ǫ determines how close the algorithm is to

optimal performance. Define

C(n) = 35(2K̄ +K)2
(
K̄2n2

2
+ n

)
.

We set all the step sizes (irrespective of interval) to

αl = α(n, ǫ) = ǫ2/C(n), (4.19)

and D used in the projection to

D = D(n, ǫ) =
16K̄

K

n

ǫ
log

⌈
2K̄

ǫ

⌉
+ K̄. (4.20)
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All the interval lengths (irrespective of interval) are set to

Tl = T (n, ǫ) = exp

(
K̂

(
n2

ǫ
log

n

ǫ

))
(4.21)

for some large enough constant K̂ > 0.

Remark 4.2. The large value of T (n, ǫ) in (4.21) is due to the poor bound on

the conductance of the rate allocation Markov chain. The parameters given by

(4.19), (4.20) and (4.21) are one possible choice of the parameters. We would

like to emphasize that this choice is primarily for the purpose of the proofs.

The choice of right parameters (and even the update functions) in practice are

subject to further study especially based on the network configuration and delay

requirements. Some comments on this are given in Section 4.8.

We start with the optimization framework developed in the previous

section. For the adaptive algorithm, the relevant optimization problem is as

follows: given λ such that λ+ ǫ
2
1 ∈ Rc,

maximize Fǫ(v) := F
(
v,λ+

ǫ

4
1
)

(4.22)

subject to v ∈ R
n.

The following result is an extension of Lemma 4.4.

Lemma 4.5. Consider any given ǫ > 0 and λ. Then, the optimization problem

in (4.22) is strictly concave in v with gradient ∇Fǫ(v) = λ + ǫ
4
1 − sv and

Hessian

H(F (v)) = −
(
Eπv

[
rrT
]
− Eπv

[r]Eπv

[
rT
])

.
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Further, let λ + ǫ
2
1 ∈ Rc. Then, it has a unique solution v∗, which is finite,

such that the offered service rate vector under v∗ is equal to λ + ǫ
4
1, i.e.,

sv∗ = λ+ ǫ
4
1. In addition, if ǫ ≤ 4λmin, then the optimal value v∗ is such that

‖v∗‖∞ ≤ 16K̄

K

n

ǫ
log

⌈
2K̄

ǫ

⌉
. (4.23)

Proof. Please see Appendix B.2.

The update step in (4.9), which is central to the adaptive algorithm,

can be intuitively thought of as a gradient decent technique to solve the above

optimization problem. Technically, it is different as the arrival rate and offered

service rate are replaced with their empirical values for decentralized operation.

The algorithm parameters can be chosen in order to account for this. This

forms the central theme of this section.

4.6.1 Mixing within update interval

Consider a time interval [τl, τl+1). During this interval the algorithm

uses parameters vi(τl). For simplicity, in this subsection, we denote vi(τl) by

vi and the vector by v and E[·|v] by E[·]. For the rate allocation Markov chain

(MC) introduced in Section 4.5, we obtain an upper bound on the convergence

time or the mixing time.

To obtain this bound, we perform uniformization of the continuous-

time MC (CTMC) and use results given in Section 4.3 on the mixing time of

discrete-time MC (DTMC). The uniformization constant used is

A = n exp(K̄‖v‖∞).
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The resulting DTMC has the same state-space R with transition probability

matrix P . The transition probability from state r̂ ∈ R to state r ∈ R, r 6= r̂ is

P (r̂, r) = q(r̂, r)/A, and from state r̂ ∈ R to itself is P (r̂, r̂) = 1 + q(r̂, r̂)/A.

With our choice of parameters ui,j given by (4.12), we can simplify (4.10) to

f(r̂, r) = exp

(
n∑

i=1

riviI(ri 6= r̂i)

)
. (4.24)

For all r̂, r ∈ R, r 6= r̂, clearly q(r̂, r) ≤ exp(K̄‖v‖∞). Since at most n elements

in every row of the transition rate matrix of the CTMC is positive |q(r̂, r̂)| ≤ A

for all r̂ ∈ R. Therefore, P is a valid probability transition matrix.

The DTMC has the same stationary distribution as the CTMC. In

addition, the CTMC and the DTMC have one-to-one correspondence through

an underlying independent Poisson process with rate A. In this subsection,

time t denotes the time within the update interval, i.e., t = 0 denotes global

time τl. Let µ(t) be the distribution over R given by the CTMC at time t,

and ζ be a Poisson random variable with parameter At. Then, we have

µT (t) =
∑

m∈Z+

Pr(ζ = m)µT (0)Pm

= µT (0) exp(At(P − I)), (4.25)

where I is the identity matrix. Next, we provide the upper bound on the

mixing time of the CTMC.

Lemma 4.6. Consider any ρ1 > 0. Then, there exists a constant K1 > 0,

such that, if

t ≥ exp

(
K1

(
n‖v‖∞ + n log

1

ǫ

))
log

1

ρ1
, (4.26)
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then the total variation between the probability distribution µ(t) at time t given

by (4.25) and the stationary distribution πv given by (4.14) is smaller than

ρ1, i.e., ‖µ(t)− πv‖TV ≤ ρ1.

Proof. Please see Appendix B.3.

Lemma 4.6 is used to show that the error associated with using empir-

ical values for arrival rate and offered service rate in the update rule (4.9) can

be made arbitrarily small by choosing large enough T . This is formally stated

in the next lemma.

Lemma 4.7. Consider ρ2 > 0. Then, there exists a constant K2 > 0, such

that, if the updating period

T ≥ exp

(
K2

(
n‖v‖∞ + n log

1

ǫ

))
1

ρ2
,

then for any time interval [τl, τl+1)

E

[∥∥∥λ̂(l)− λ
∥∥∥
1

]
+ E [‖ŝ(l)− sv‖1] ≤ ρ2. (4.27)

Proof. Please see Appendix B.4.

Thus, the important result is that due to the mixing of the rate allo-

cation Markov chain, the empirical offered service rate is close to the offered

service rate. The next step is to address whether the offered service rates over

multiple update intervals is higher than the arrival rates.
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4.6.2 ‘Drift’ over multiple update intervals

We consider multiple update intervals, and establish that the average

empirical offered service rate is strictly higher than the arrival rate. This result

follows from the observation that, if the error in approximating the true values

by empirical values are sufficiently small, then the average of the expected value

of the gradient of Fǫ(v) over sufficiently large number of intervals should be

small. In this case, we can expect the average offered service rate to be close to

sv∗ . Since, sv∗ is strictly higher than arrival rates, we can expect the average

offered service rate to be strictly higher than the arrival rate. The result is

formally stated next.

Lemma 4.8. Consider N(n, ǫ) = (7× 35nD2)/(αǫ2) update intervals. Then,

the average of empirical service rates over these update intervals is greater than

or equal to λ+ ǫ
8
1, i.e.,

1

N

N∑

l=1

E [ŝ(l)] ≥ λ+
ǫ

8
1.

Proof. Please see Appendix B.5.

Now, we proceed to show that the appropriate ‘drift’ required for sta-

bility is obtained.

4.6.3 Proof of Theorem 4.2

Consider the underlying network Markov chain X(l) consisting of all

the queues in the network, the update parameters, and the resulting rate
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allocation vectors at time τl, i.e., X(l) = (Q(τl),v(τl), r(τl)) for l ∈ Z+. It

follows from the system model and the algorithm description that X(l) is a

time-homogenous Markov chain on an uncountable state-space X. The σ-field

on X considered is the Borel σ-field associated with the product topology.

For more details on dealing with general state-space Markov chains, we refer

readers to [86].

We consider a Lyapunov function V : X → R+ of the form, V (x) =
∑n

i=1(Q
2
i + v2i + r2i ) for x = (Q,v, r). In order to establish positive Harris

recurrence, for any λ such that λ + ǫ1 ∈ T, we use multi-step9 Lyapunov

and Foster’s drift criteria to establish positive recurrence of a set of the form

V (x) ≤ κ, for some κ > 0. From the assumption on the arrival processes, it

follows that V (x) ≤ κ is a closed petite (small) set (for definition and details

see [57, 86]). Intuitively, petite set is a generalization of a recurrent state for

a countable Markov chain to an uncountable Markov chain. It is well known

that these two results imply positive Harris recurrence [86].

Next, we obtain the required drift criteria. For simplicity, we denote

E[·|X(0)] by E[·] in the rest of this section. Consider

E
[
Q2

i (TN)−Q2
i (0)

]
= E

[
(Qi (TN)−Qi (0))

2

+2Qi (0) (Qi (TN)−Qi (0))]

(a)

≤
(
max

(
K, K̄

)
TN

)2
+

2Qi (0)E [Qi (TN)−Qi (0)] .

9This is a special case of the state-dependent drift criteria in [86].
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Here, (a) follows from the fact that over unit time queue difference belong to

[−K̄,K]. Now, we look at two cases. If Qi(0) > K̄TN , clearly Qi(t) > 0

during interval [0, TN ] as service rate is less than or equal to K̄. For this case,

from Lemma 4.8,

2Qi (0)E [Qi (TN)−Qi (0)] = 2Qi (0) T

(
N∑

l=1

(λi − E [ŝi (l)])

)

≤ − ǫ

4
TNQi (0)

(a)

≤ − ǫ

4
TNQi (0) +

ǫ

4
K̄ (TN)2 .

Here, (a) is trivial, but the extra term is added to ensure that the RHS eval-

uates to a non-negative value for Qi(0) ≤ K̄TN . If Qi(0) ≤ K̄TN , then

clearly

2Qi(0)E[Qi(TN)−Qi(0)] ≤ 2K̄K(TN)2.

Since the bounds for each case do not evaluate to negative values for the other

case, we have

E
[
Q2

i (TN)−Q2
i (0)

]
≤ − ǫ

4
TNQi (0) +

((
K + K̄

)2
+

ǫ

4
K̄
)
(TN)2 .

Since both v and r are bounded, there exists some fixed M(n, ǫ) such that

E
[
v2i (TN)− v2i (0)

]
+ E

[
r2i (TN)− r2i (0)

]
≤ M (n, ǫ) .

Summing up over all i ∈ L, we obtain

E [V (X(N))− V (X(0))] ≤ − ǫ

4
TN

(
n∑

i=1

Qi(0)

)

+nM(n, ǫ) + n
(
(K + K̄)2 +

ǫ

4
K̄
)
(TN)2.
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This shows that there exists some κ > 0 such that for all x with V (x) > κ

there is strict negative drift. Hence, the set V (x) ≤ κ is positive recurrent.

Since λ+ ǫ
2
1 ∈ Rc, clearly λ+ ǫ1 ∈ T. This completes the proof.

In summary, given any rate region for a wireless network, the (queue-

length based) algorithm has (1− ǫ)-optimal performance.

4.7 Application: White-Space Networks

An important application of our algorithmic framework is in the domain

of white-space networks [42, 87]. White-space radios are typically required to

sense the environment [3]. Therefore, these radios are designed with highly

accurate sensing capabilities. Even though these are primarily designed for

sensing the presence of primary radios, the same capability can be exploited for

sensing secondary radios. In this section, we consider a network of secondary

nodes that use the same spectrum, but different from that used by primary

nodes. In particular, we assume that the secondary nodes have already found

spectrum that are not utilized by primary nodes.

Since such a white-space network of secondary nodes is not centrally

controlled, it is desirable to obtain simple distributed algorithms. However,

the scheduling problem in these white-space networks is different from the link

scheduling problem in traditional wireless networks [34]. First, the available

spectrum for the operation of this network is fragmented with different prop-

agation characteristics. Second, these secondary nodes are usually equipped

with multiple radios to operate simultaneously in different bands. This is re-
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ferred to as the multiple-band multiple-radio scheduling problem. Next, we

describe the multiple-band multiple-radio scheduling problem in detail.

Consider the network model introduced in Section 4.2. Define functions

s : L 7→ N that maps links to source nodes, and d : L 7→ N that maps links to

destination nodes. The available spectrum for the operation of this network

is fragmented. The spectrum consists of M bands, labeled B = {1, 2, . . . ,M},

with bandwidths B1, B2, . . . , BM . The transmission from a node to another

node gets different spectral efficiencies on different bands. For a link i, let ci,b

be the spectral efficiency that node s(i) gets when it transmits on band b to

node d(i). The link interference graphs are also different on different bands.

Let Gb = (L,Eb) be the link interference graph on band b, i.e, the transmission

of link u interfere with the transmission of link v in band b if (u, v) ∈ Eb. We

assume that the link interference is symmetric, i.e., if (u, v) ∈ Eb then (v, u) ∈

Eb. These capture the frequency dependent propagation characteristics and the

spatial variation of the quality of spectrum. Further, each node j is equipped

with aj radios.

At time t, the decision whether link i is operated in band b is repre-

sented by binary decision variables σi,b(t), with 1 representing “true” and 0

representing “false”. The decision variables have to satisfy the constraints that

arise from the following. (i) Interference constraints: In every band, the set

of allocated links must be non-interfering. (ii) Radio constraints: The total

number of radios at each node is limited, and these radios are half-duplex, i.e.,

a link requires its end nodes to dedicate one radio each for a transmission to
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happen. More formally, the set of constraints are:

σu,b(t) + σv,b(t) ≤ 1, ∀(u, v) ∈ Eb, ∀b ∈ B,

∑

i:j∈{s(i),d(i)}

∑

b∈B

σi,b(t) ≤ aj , ∀j ∈ N.

For a feasible schedule, the rate of flow supported on link i is

ri(t) =
∑

b∈B

σi,b(t)ci,bBb.

We denote the vector of above rates by r(t). The throughput region T ⊆ Rn
+

is defined as the convex hull of the set of all feasible rate vectors. Note that

the queue dynamics is exactly same as described in Section 4.2.

4.7.1 Distributed Algorithm

In this section, we present an adaptation of the developed algorithm

that is throughput-optimal for multiple-band multiple-radio scheduling. For

simplicity, we assume that perfect and instantaneous carrier sensing is possi-

ble on every band. The scheduling vector corresponding to link i is σi(t) =

{σi,b(t)}b∈B. For this link, the possible states are

{θi : θi = {θi,b}b∈B, θi,b ∈ {0, 1}, ‖θi‖0 ≤ min{as(i), ad(i)}}.

The link uses an independent exponential clock corresponding to each state

with transition rate exp(
∑

b∈B θbci,bBbvi) for state θ. Based on these clocks,

the link obtains σi(t) as follows:

100



1. If the clock associated with a state (say θ) ticks and transitioning to

that state σi(t) = θ is feasible,10 then σi(t) is changed to θ;

2. Otherwise, σi(t) remains the same.

The above procedure continues. The parameter vi is updated over time as a

function of the queue-length Qi(t) as described in Section 4.4. This makes the

algorithm completely distributed. The vector of {vi}i∈L is denoted by v.

In order to establish that this algorithm is throughput-optimal, we show

a correspondence between it and the rate allocation algorithm in Section 4.4.

Consider a fixed v. The above algorithm forms a Markov chain on the set of

feasible states. Let S(t) denote the matrix formed by vectors {σi(t)}i∈L, and S

denote the set of feasible matrices satisfying (4.28) and (4.28). The transition

rate from state Ŝ = {θ̂i}i∈L to state S = {θi}i∈L can be expressed as

q(Ŝ, S) =

{
f(Ŝ, S), if

∑n
i=1 I(θl 6= θ̂i) = 1,

0, if
∑n

i=1 I(θi 6= θ̂i) > 1,

where

f(Ŝ, S) = exp

(
n∑

i=1

∑

b∈B

θi,bci,bBbviI(θi 6= θ̂i)
)
.

And, the diagonal elements of the rate matrix are given by

q(Ŝ, Ŝ) = −
∑

S∈S,S 6=Ŝ

q(Ŝ, S), ∀Ŝ ∈ S.

Now, the following lemma is immediate.

10This is determined using carrier sensing and radio constraints at the source and the
destination of that link.
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Lemma 4.9. The Markov chain (S, q) is reversible and has the stationary

distribution

πv(S) =
exp

(∑n
i=1

∑
b∈B θi,bci,bBbvi

)
∑

S̃∈S exp
(∑n

i=1

∑
b∈B θ̂i,bci,bBbvi

)

=
exp (r(S) · v)

∑
S̃∈S exp

(
r(Ŝ) · v

) .

Furthermore, this Markov chain converges to this stationary distribution start-

ing from any initial distribution.

The offered service rate vector under the stationary distribution is

sv =
∑

S∈S πv(S)r(S). Thus, we show a one-to-one correspondence to the

rate allocation algorithm. As a consequence, we establish the throughput-

optimality of the algorithm described in this section based on Theorem 4.2.

4.8 Further Discussion & Simulation

4.8.1 Convex Rate Regions

Definition 4.8 (Low delay). We say that a rate allocation algorithm has low-

delay if, for any given ǫ > 0, the average queue-lengths are polynomial in

number of links n and log 1/ǫ for all λ such that λ+ ǫ1 ∈ T.

For arbitrary rate regions, there are negative results based on com-

putational hardness for the existence of a low-delay throughput-optimal al-

gorithm [109]. Intuitively, a rate allocation algorithm needs to operate at

multiple operating points leading to potentially large-delay for switching from

one operating point to another.
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However, for convex rate regions, these hardness results do not hold. It

is in fact straightforward to obtain an algorithm that is throughput-optimal

and has low-delay in this setting. The algorithm simply needs to adapt to a

single operating point that is “close” to the arrival-rate vector. Hence, we can

estimate the arrival rates and operate based on this single point. This obser-

vation emphasizes the fact that the hardness lies in convexifying an arbitrary

non-convex rate region in a decentralized manner.

4.8.2 Determining Rate Feasibility

Although the rate allocation algorithm removes the control overhead

associated with queue-length exchanges in the network, it still requires each

link to determine rate feasibility. To elaborate, feasibility implies data-rates of

other links are not impacted, i.e., other links are able to maintain their data-

rates in spite of the change in the given link’s data-rate. Each link can possibly

change its coding and modulation strategies to ensure this. This requires

design of dynamic coding and modulation to support a constant rate. A link

can determine whether a data-rate is feasible if it knows the current set of data-

rates associated with other links. An important fact that makes the algorithm

of practical value is that a link needs to know only data-rates associated with

those links that it “interferes with”. Even though all links interfere with each

other in a wireless network, the magnitude of interference decays with distance.

Therefore, in a large network, every link needs to learn data-rates associated

with few physically near-by links from control messages, for example, through
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ACK/NACKs when ARQ is present. Clearly, this is an approximation, but this

is a widely used approximation while designing algorithms for large networks.

We refer to the process of determining rate feasibility from the interactions of

physically near-by links as channel measuring. This can be considered as a

natural extension of sensing in CSMA.

In order to further explain channel measuring, we consider an exam-

ple with a simplified physical-layer model. In this model, a transmitter can

potentially communicate with a receiver if the receiver is within distance d0.

This transmitter can communicate at data-rate rj , 1 ≤ j ≤ k, if there are no

other transmitters within distance dj to it. We consider r1 ≤ r2 ≤ . . . ≤ rk

and d0 ≤ d1 ≤ . . . ≤ dk. In this setting, for channel measuring, a transmit-

ter needs to simply determine the distance of the nearest active transmitter.

Even though we used an over simplified physical-layer model, this shows that

channel measuring is a very natural technique for determining rate feasibility.

Furthermore, it suggests that slightly more complicated schemes than carrier

sensing may be enough to obtain significant throughput gains.

For complex physical-layer interactions, we acknowledge that channel

measuring requires well-designed physical-layer control architecture, which, by

itself, is a fairly non-trivial problem. However, radios that perform complex

physical-layer signaling are increasingly common and each node has access to

current channel interference level, information from beacons, pilot signals and

its own location. These will definitely help such radios to perform channel

measuring using existing physical-layer control overhead.
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In the context of 802.11 networks, we have actually implemented and

tested the algorithmic framework developed so far. By using a combination of

state measurement techniques, we show in [11] that queue and channel based

rate allocation is indeed practically feasible. Thus, it validates our theoretical

framework in the context of WiFi networks.

4.8.3 Simulation

So far, we show that the algorithm provides throughput-optimal per-

formance for particular choice of algorithm parameters. Although this has

significant theoretical value, these parameters may not be directly suitable in

practice. In particular, we may have to limit the update interval length and at-

tempt rates as large values of update interval can result in large queue-lengths,

and large attempt rates can result in frequent changes in data-rates. There is

certain hardware and physical-layer coding limitations on frequently changing

data-rates, and frequent attempts lead to increased sensing/measuring over-

head. These limitations can be easily dealt with through modified algorithm

parameters.

Our approach motivates a more general class of algorithms that can

be throughput-optimal for appropriate choice of parameters. We can consider

the general class with update rule

vi(τl+1) = h
(
vi(τl), λ̂i(l)− ŝi(l)

)

for some function h(·). Next, we provide a “good” choice of this function based

on simulation results. We consider the update rule vi(τl+1) = log(1+Q(τl+1)).
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The log function results in linear update near origin and prevents the rapid

growth of vi with queue-length. This update rule has been used in literature

[91]. Thus, the purpose of this section is not to simulate the adaptive update

rule that is provably throughput-optimal.

Consider the same Gaussian multiple access channel example with two

links as before. This is shown in Figure 4.1. This is simply an illustrative

example to show scheduling over multiple data-rate levels. Similar simulation

results apply for any number of users. Let the average power constraint at

the transmitters be P = 3 and noise variance at the receiver be N = 1. The

information-theoretic capacity region of this channel is the pentagon shown

in Figure 4.2 where C(x) = 0.5 log2(1 + x). The set of rate levels chosen by

both transmitters are {0, a, b} where a = 0.4 and b = 1. The only infeasible

rate allocation pair is [1, 1]. Consider the following arrival processes at both

the transmitters. At integral times, the queues are incremented by an i.i.d.

Bernoulli random variable such that the arrival rate is λ = ρa+b
2
, where ρ > 0

represents the load in the system. Clearly, the network will be unstable for

ρ > 1.

For this system, we perform Monte-Carlo simulations with update in-

terval T = 10. We provide a trace of the queue-length process for ρ = 0.9

and ρ = 1.1 in Figure 4.4. We observe that the algorithm supports 90% load

in the system without large increase in queue-lengths. Intuitively, this sym-

metric operating point is one of the difficult operating points for a distributed

algorithm. More importantly, the sum-rate ρ(a + b) obtained is close to the
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Figure 4.4: Queue-length trace from simulation

information-theoretic sum-capacity of this system.
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Chapter 5

Genie-MAC Outer Bound for Gaussian

Interference Networks

5.1 Introduction

The motivation to understand the fundamental limits of interference

channel arises from its relevance in wide range of applications. However, large

gaps exist in our understanding of interference channels (IFCs). Since the in-

troduction of interference channels [4], the class of two-transmitter two-receiver

interference channels have been studied in great detail. Initial successes were

achieved in the domains of the two-user very strong [22] and strong discrete-

memoryless [29], and Gaussian IFCs [103]. These results found that the ca-

pacity of the two-user strong Gaussian IFCs is achieved as the intersection

of the capacity region of two multiple access channels. In brief, it is optimal

for each receiver to attempt to jointly decode both messages. Generalizing

the notion of strong interference and such a capacity result to more than two

users is not straightforward. Moreover, joint decoding of messages can be eas-

ily shown to be not optimal for weak (i.e. not-strong) interference channels.

In general, for weak Gaussian IFCs, intuition suggests that treating at least

a portion of the interference as noise is advisable. Indeed, recent results have

shown that, for very weak Gaussian interference channels [7, 88, 112], treating
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the entire interference as noise is optimal from a sum-capacity perspective.

The well-known Han-Kobayashi region [51] combines elements of both, by en-

abling each receiver to perform joint-decoding of a portion of the interference

with the signal. To date, it remains the best-known achievable region for the

two-user interference channel.

Deriving exact capacity results for any channel requires good outer

bounds. To this end, genie-aided bounds have played a central role in inter-

ference channel literature, with a majority of capacity results known resulting

from it. The sum-capacity of two-user very-weak Gaussian IFCs as established

in [7, 88, 112] was shown using genie-aided techniques. Similarly, the capacity

region of the Gaussian interference channel has been characterized to within

one bit using Gaussian codebooks and the Han-Kobayashi region for the inner

bound and a genie-aided technique for the outer bound in [41]. As a con-

cept, the idea of genie-aided outer bounds is fairly intuitive. However, the

main challenge lies in determining the right genie and optimizing the resulting

outer bound to show that it matches (or comes close to matching) the desired

achievable rates. Finding the right genie and matching rate expressions is non-

trivial, which forms an important part of the work in [7,41,76,88,112]. One of

the contributions is similar - where we obtain an optimization problem formu-

lation for genie-aided bounds for a Gaussian K-user IFC that is analytically

tractable.

A majority of known capacity results in the domain of interference

channels are for two-user cases. Unlike the Gaussian multiple access channel
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(MAC) and the Gaussian broadcast channel (BC), the extension from two-

user to K > 2 in Gaussian IFCs is not straightforward. The limits of K-

user IFCs has received considerable attention in recent years. In developing

achievable schemes, the concept of interference alignment has been developed

and applied to numerous channel settings. As introduced in [18], interference

alignment minimizes the subspace spanned by the net interference seen at each

receiver, thus achieving K/2 total degrees of freedom (DoF) for the system.

This is interesting in that linear growth in capacity is achieved asymptotically

in signal to noise ratio (SNR) and can be shown to be optimal. Although the

initial results on DoF analysis for interference channels was for time-varying

channels, more recently results have shown that, for constant channels as well,

under certain conditions, a DoF of K/2 can be achieved [89]. However, a

majority of existing literature is on the DoF of K user IFCs, i.e., is asymptotic

in SNR, with only a limited set of results known for finite SNR.

Recently, some initial results have been developed for finite SNR. To

this end, ergodic interference alignment [90] and lattice interference align-

ment [56] have been developed for time varying and static channel settings re-

spectively. Ergodic alignment, under certain conditions on channel symmetry

over time, achieves a sum-rate ofK/2 log(1+2SNR) non-asymptotically. Sim-

ilarly, lattice alignment is found to achieve a sum-rate of D log(SNR) where

D is a channel-dependent parameter that grows with K for a number of static

channel settings. However, each of these results makes certain assumptions on

the channel. Ergodic alignment requires time variations and symmetry, while
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lattice alignment assumes the channel to be “well conditioned”. Moreover,

neither scheme is known to be sum-rate optimal for the Gaussian K-user IFC.

5.1.1 Our Approach & Contributions

We develop an outer bound that is both computationally tractable

and non-trivial. As discussed above, obtaining such bounds is a fairly non-

trivial task. To date, a majority of the bounds for the discrete-memoryless

or Gaussian IFC have been developed in the context of two-user IFCs [76].

These two-user bounds can be broadly classified into four types: The broadcast

channel type, the multiple-access channel type, the “Z” channel type and the

genie-aided type. These four share significant common ground in terms of

techniques, and a good understanding of these can be gained from [76].

For more than two users, although each of these bounds can be gener-

alized, they do not necessarily yield non-trivial results. The MAC type bound

has been generalized to obtain bounds for general K-user IFCs [19], which are

known to be tight (with high probability) in the DoF sense for these channels.

However, it is not yet known if they are tight for finite-SNR constant chan-

nels. For a class of rational channel gains, combinatorial bounds have been

developed that are tighter than the MAC-type bounds in the DoF sense [40].

However, a general theory for developing non-trivial outer bounds for K-user

is still missing.

In an attempt to obtain a systematic approach to outer bound for the

Gaussian K-user IFC, we build on the literature of genie-aided bounds for
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the Gaussian IFC. A genie-aided bound provides receivers in the interference

channel with one or more “genies” (side information), thus transforming the

channel into one where the rate region can be characterized using single-letter

expressions [41, 76]. Genie-aided bounds are fairly general in their structure,

and they incorporate central elements of the MAC type and the “Z” interfer-

ence channel type bounds. Moreover, genie-aided bounds have proven to be

effective for characterizing the sum-capacity of very weak interference chan-

nels [7, 88, 112]. However, their very general nature is also a disadvantage, as

it is not always easy to characterize the bound in closed form.

In view of this, we do the following:

• We develop a class of outer bounds for Gaussian K-user IFCs by analyz-

ing genie-MAC receivers. This class of bounds creates a virtual multiple

antenna MAC receiver that outer bounds the capacity region of the orig-

inal Gaussian IFC.

• We formulate this bound as an optimization problem in terms of channel

parameters.

• We apply this bound to the degraded Gaussian IFC. We compare this

bound with a simple successive interference cancellation (SIC) based

achievable scheme and find that it is sum-capacity optimal.

• We establish an equivalence between the MIMO unit-rank K-user IFC

and a corresponding SISO degraded K-user IFC, and thus find the sum-

capacity of MIMO unit-rank IFCs.
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The class of degraded Gaussian K-user IFCs is fundamentally different

from those studied in [18, 89] in that the degrees of freedom of a degraded

IFC is one, while those studied in a majority of K-user IFC literature is K/2.

A degraded Gaussian K-user IFC corresponds to the case where the transfer

matrix of the channel is unit-rank. This unit-rank nature may result from

a variety of factors, including co-location, usage of a similar medium (digital

subscriber line (DSL) or optical) to communicate multiple sources. This is

referred to as the keyhole effect where the signal from each transmitter passes

through the same bottleneck (keyhole) to get to the receiver, thus making

the overall channel of low-rank. Unit rank channel matrices represents the

other end of the spectrum from full rank matrices - we consider it for two

reasons: first, it helps us better understand how dependencies among channel

parameters impacts capacity and second, due to analytical tractability - we

are able to establish sum-capacity results for this channel for any SNR and

any number of transmit-receive pairs K.

Note that our result includes the previously known result of sum-

capacity of degraded two-user Gaussian IFCs [101, 102]. This proof uses a

slope-based argument that do not directly generalize to K-user IFCs. It is

possible to provide alternate proofs for this result; for example, entropy power

inequality (EPI) can be used to arrive at this result. However, our proof is

important as it shows that genie-MAC outer bound is sum capacity tight for

degraded networks.
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5.1.2 Organization

In Section 5.2, we present the system model. In Section 5.3, we charac-

terize an outer bound on the capacity region of any Gaussian K-user IFC. In

Section 5.4, we derive the sum-capacity of degraded Gaussian IFCs. In Section

5.5, we extend the results to MIMO unit-rank IFCs.

5.2 System Model

We consider the Gaussian K-user interference channel defined as fol-

lows: a communication system consisting of K transmitter-receiver pairs la-

beled as 1, 2, . . . , K. This channel is shown in Figure 5.1. Each transmitter

has independent messages intended for the corresponding receiver. At time

t, t ∈ Z+, the input-output relations that describe the system are:

Yi[t] =
∑

j

hi,jXj[t] + Zi[t], ∀i. (5.1)

Here, Xj[t] is the signal transmitted by the j-th transmitter, hi,j is the constant

channel gain from j-th transmitter to i-th receiver, Zi[t] is the additive white

Gaussian noise at i-th receiver, and Yi[t] is the signal received at the i-th

receiver. For simplicity, we consider real valued signal/gain/noise and suppress

the time index t henceforth. The power constraint at the j-th transmitter is

E[X2
j ] ≤ P, and the zero-mean Gaussian noise at all receivers have variance N .

The GaussianK-user IFC is characterized by
√
P/NH, whereH is the channel

matrix with hi,j as the entry corresponding to the i-th row and the j-th column.

We use standard information-theoretic definitions for the capacity region and
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Figure 5.1: Gaussian K-user interference channel

the sum-capacity of this channel. CIC(
√
P/NH) denotes the K-dimensional

capacity region of the interference channel, CIC
Σ (
√

P/NH) denotes the sum-

capacity, and Ri denotes the rate corresponding to the i-th transmitter-receiver

pair.

5.3 Outer Bound on Capacity Region

First, we present some background on existing outer bounds in litera-

ture for interference channels:
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5.3.1 Background

The first outer bound on the K-user IFC is obtained by the set of rates

(R1, . . . , RK) such that

Ri ≤ I(Xi; Yi|X1, . . . , Xi−1, Xi+1, . . . , XK , Q), ∀i, (5.2)

for all p(q)p(x1|q)p(x2|q) · · ·p(xK |q), where Q is a time-share variable. This

outer bound can be intuitively understood as follows: If each of the receivers

can determine the “interference” they observe, they can use it as receiver side-

information, which leads to the rates specified by (5.2). In the Gaussian case

(with N = 1) , this reduces to:

Ri ≤
1

2
log(1 + h2

iiP ), ∀i. (5.3)

An improvement on this outer bound can be obtained using a MAC type

approach as studied in [55]. Assuming there exists an hij ≥ hii for some j 6= i,

then we have

Ri +Rj ≤
1

2
log
(
1 + (h2

ij + h2
jj)P

)
. (5.4)

This bound is used to demonstrate that the DoF of a Gaussian K-user IFC is

upper bounded by K/2.

To further improve on this bound, we take the genie aided approach as

introduced in [76]. The core idea is to provide additional side information Ỹ1

to Receiver 1. Assuming that Receiver 1 can determine X1 with an arbitrarily

small probability of error based on Y1, we desire to provide it with Ỹ1 so that
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a function of X1, Y1 and Ỹ1 results in Ŷ2 that is statistically identical to Y2.

Using this approach, for a two-user Gaussian IFC, an outer bound can be

derived as [76]:

R1 +R2 ≤
1

2
log

(
(h2

11P + h2
21P + 1)

(
h2
22P + 1

min(h2
21, 1)h

2
22P + 1

))
. (5.5)

Generalizing this approach to a Gaussian K-user IFC leads to an ex-

plosive growth in the number of parameters to be optimized. We build on

this genie-approach to build a “tractable” framework for upper bounding the

capacity region of the Gaussian K-user IFC.

5.3.2 Our Outer Bound

In our approach, we create a genie-MAC to decode a subset of the

messages in the original interference channel. The capacity region of this genie-

MAC channel then forms an outer bound on the rate region of the original

channel. This genie-MAC technique is a two-step process. The first step is to

find a characterization for the genie-MAC receivers, and the second step is to

optimize this characterization to obtain the tightest bound of this class.

Consider any permutation function π : {1, 2, . . . , K} 7→ {1, 2, . . . , K},

and integers k and m such that 1 ≤ k ≤ K and m ≥ 1. Define tuples

S = (π(1), . . . , π(k)) and Sc = (π(k+1), . . . , π(K)). We use XS to denote the

vector [XS(1)XS(2) XS(|S|)]
T . Now, consider the MAC channel that has XSc
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as side information at the m-antenna receiver and observes the signal

Y = GXS + Z, (5.6)

where Z is i.i.d. N(0,Σ), for some G ∈ Rm×k. Let CMAC(
√
PG,Σ) denote

the capacity region of this MAC channel and CMAC
Σ (

√
PG,Σ) denote the sum-

capacity of this MAC channel. Since the side information is independent of

both XS and Z, it does not change the capacity region.

Next, we provide the conditions under which the capacity region of this

MAC channel form an outer bound on RS of the original Gaussian IFC.

Lemma 5.1. Consider any T = [t1 t2 tk] ∈ Rm×k. Let T, G and Σ be

matrices that satisfy the following conditions:

(
T†G

)upper
= (HS)

upper , (5.7)

t
†
iΣti ≤ N, ∀1 ≤ i ≤ k, (5.8)

Σ ≻ 0,

where HS is |S| × |S| matrix with entry corresponding to the i-th row and j-th

column as hS(i),S(j), i.e.,

HS =




hS(1),S(1) hS(1),S(2) . . . hS(1),S(k)

hS(2),S(1) hS(2),S(2) . . . hS(2),S(k)
...

...
...

hS(k),S(1) hS(k),S(2) . . . hS(k),S(k)


 .

Then,

RS ∈ CMAC
(√

PG,Σ
)
,
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i.e., the capacity region of any MAC channel described by (5.6) satisfying the

above conditions is an outer bound on the rates RS for the Gaussian IFC

described by (5.1).

Proof. It is sufficient to show the following: If there exists an achievable strat-

egy for the interference channel described by (5.1) to achieve a set of rates

(R1, R2, · · · , RK), i.e., if (R1, R2, · · · , RK) ∈ CIC(
√
P/NH), then there exists

an achievable strategy for the MAC channel described by (5.6) to achieve rates

RS, i.e., RS ∈ CMAC(
√
PG,Σ). We show that a stricter condition is satisfied.

In particular, we prove that the MAC channel can obtain statistically identical

(or better) signal as (than) Yi for all i ∈ S.

Let D = T†G. At the MAC receiver, the signal corresponding to YS(l)

(1 ≤ l ≤ k) is obtained sequentially. Consider any step l. Since the messages

from transmitters S(1), S(2), . . . , S(l− 1) have been decoded, the receiver can

generate signals XS(1), XS(2), . . . , XS(l−1). In addition, the MAC receiver has

signals XSc as side information. Therefore, the MAC receiver can obtain the

signal

Ỹl = t
†
lY −

l−1∑

i=1

dl,iXS(i) +

l−1∑

i=1

hS(l),S(i)XS(i) +
∑

i∈Sc

hS(l),iXi

=
k∑

i=1

dl,iXS(i) + t
†
lZ −

l−1∑

i=1

dl,iXS(i) +
l−1∑

i=1

hS(l),S(i)XS(i) +
∑

i∈Sc

hS(l),iXi

=
k∑

i=l

dl,iXS(i) + t
†
lZ +

l−1∑

i=1

hS(l),S(i)XS(i) +
∑

i∈Sc

hS(l),iXi

=
∑

i∈S

hS(l),iXi +
∑

i∈Sc

hS(l),iXi + t
†
lZ.
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The last step follows from (5.7), i.e., dl,i = hS(l),S(i), ∀i ≥ l. Now, from (5.7),

it is clear that Ỹl is statistically better than Yl in the original IFC. Hence, the

MAC receiver can decode the message from transmitter S(l) if the receiver

S(l) in the original IFC can decode the message from transmitter S(l). This

completes the proof of lemma.

The sum-capacity of the MAC channel is given by

CMAC
Σ

(√
PG,Σ

)
=

1

2
log
(
|I+ PΣ−1GG†|

)
.

Therefore, we can formulate a minimization problem as follows:

f ∗(HS, m) = inf
G,Σ,T

1

2
log
(
|I+ PΣ−1GG†|

)
(5.9)

such that
(
T†G

)upper
= (HS)

upper ,

t
†
iΣti ≤ N, ∀1 ≤ i ≤ k,

Σ ≻ 0.

For m = |S|, it is clear that the feasible set is non-empty as G = HS, Σ = NI

and T = I satisfies all the constraints of (5.9). We denote this special case

with m = |S| by f ∗(HS). Now onwards, we assume that m = |S|.

From the above analysis, we obtain the following theorem that provides

an outer bound on the capacity region of any Gaussian K-user IFC.

Theorem 5.2. Consider the Gaussian K-user IFC described by (5.1). Then,

CIC
(√

P/NH
)
⊆
{
(R1, . . . , RK) :

∑

i∈S

Ri ≤ f ∗(HS), ∀S
}
, (5.10)
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i.e., the right hand side (RHS) of (5.10) is an outer bound on the capacity

region of this channel.

The above theorem requires the evaluation of the optimization prob-

lem given by (5.9). Therefore, next, we derive some results that simplify this

optimization problem. In particular, we show that any one of the three pa-

rameters can be fixed to identity without affecting the optimal value. The

next two lemmas formally state and prove these results.

Lemma 5.3. Consider the following optimization that results by choosing Σ =

I:

min
G,T

1

2
log
(∣∣I+ PGG†

∣∣) (5.11)

such that
(
T†G

)upper
= (HS)

upper ,

t
†
iti ≤ N, ∀1 ≤ i ≤ k.

Then, the optimal value of this problem is f ∗(HS).

Proof. Consider any feasible set of parameters G, Σ = AA† and T for the

optimization problem given by (5.9). Let Ĝ = A−1G and T̂ = A†T. Now, we

have the following:

T̂†Ĝ = T†AA−1G = T†G,

T̂†T̂ = T†AA†T = T†ΣT.
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Therefore, Ĝ and T̂ form a feasible set for the optimization problem given by

(5.11). Furthermore, the objective value remains the same due to the following:

|I+ P ĜĜ†| = |I+ PA−1GG†(A†)−1|

= |I+ P (A†)−1A−1GG†|

= |I+ PΣ−1GG†|.

This completes the proof.

Lemma 5.4. Consider the optimization problem given by (5.9). Now, consider

the two sub-problems that result from choosing either T = I or G = I. Then,

each of these sub-problems has optimal value f ∗(HS).

Proof. Case-I (T = I): Consider any feasible set of parameters Ĝ and T̂ for

the optimization problem given by (5.11). Let ǫ be an arbitrary real number

such that 0 < ǫ < 1. Let G = T̂†Ĝ and Σ = ǫNI + (1 − ǫ)T̂†T̂. It is

fairly straightforward to check that these parameters are feasible for the sub-

problem. Furthermore, as the objective function is continuous, the objective

value approaches that of the original problem as ǫ → 0.

Case-II (G = I): Consider any feasible set of parameters Ĝ and T̂ for

the optimization problem given by (5.11). Let ǫ be an arbitrary real number

such that 0 < ǫ < 1. Let T = Ĝ†T̂ and Σ = (ǫI + Ĝ†Ĝ)−1. Again, it is

fairly straightforward to check that these parameters are feasible for the sub-

problem, and the objective value approaches that of the original problem as

ǫ → 0.
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Next, we compare this outer bound expression with other techniques in

literature. It is fairly simple to see that this bound incorporates receiver co-

operation as a special case. In particular, by choosing the genie-MAC channel

matrix G to be the same as the channel gains in the original IFC, the receiver

cooperative bound can be obtained. A multiple-access type outer bound as

studied in [19, 103] is also a special case of this bound. A conventional MAC-

type bound corresponds to the case when S is a set of the form {i, j}. It is

perhaps not as straightforward to see that this is, in fact, a genie-aided outer

bound. If we were to choose a subset of the rows of the matrix G to match

those in the original interference channel definition, then the remaining rows of

G along with XSc represent a “vector genie” provided to enable all messages

to be decoded in the system. This bound does not capture all genie-aided

bounds in the two-user setting.

Although it captures many existing bounding techniques for the inter-

ference channel, the optimization problem in (5.11) does not necessarily lend

itself to a straightforward solution. Furthermore, to evaluate the bound on

the sum of a set of rates, we need to consider all possible orderings of tuples

S resulting from this set. In the next section, we show that analyzing this

bound is indeed tractable in the case of degraded Gaussian K-user IFCs and

yields closed-form expressions for sum-capacity. However, this analysis does

not follow from standard convex optimization techniques. Instead, we provide

a novel construction-based proof.
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5.4 Sum Capacity of Degraded Gaussian IFCs

In this section, we determine the sum-capacity of a class of Gaussian

K-user interference channels called the degraded IFCs. This class of channels

is interesting for multiple reasons: (i) It does not belong to known classes

including “weak” and “strong” interference channels. (ii) It corresponds to

a case where users see highly dependent signals, which may very well be the

case in certain wireless or wired network settings.

For a stochastically degraded discrete memoryless IFC, there exist prob-

ability mass functions qi(yi|yi−1) for 2 ≤ j ≤ n such that:

p(yj|xn
1 ) = p(y1|xn

1 )
n∏

i=2

qi(yi|yi−1),

for all 2 ≤ j ≤ n. This definition extends naturally to the class of degraded

Gaussian IFCs as well. In essence, there is an ordering among receivers, with

Receiver 1 observing the “least corrupted” signal and Receiver K observing

the “most degraded”. It is easy to see that this implies that all degraded

Gaussian IFC channel matrices can be expressed as H = ab†, where a =

[a1 a2 . . . aK ]
T and b = [b1 b2 . . . bK ]

T . Without loss of generality, we assume

a21 ≤ a22 ≤ . . . ≤ a2K , and P = N = 1. Note that in this ordering Receiver 1 is

“most degraded”.

5.4.1 Achievability

We utilize a successive interference cancellation scheme for achievabil-

ity. Each transmitter uses Gaussian codewords to encode its message. The
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i-th receiver decodes the messages from transmitters 1, 2, . . . , i in this order.

Since i-th receiver has a (statistically) better received signal than receivers

1, 2, . . . , i− 1, the message at i-th transmitter can be encoded at rate

Ri =
1

2
log


1 +

a2i b
2
i

a2i

(∑K
j=i+1 b

2
j

)
+ 1


 (5.12)

such that all receivers i, i+1, . . . , K can decode it with decaying probability of

error. Since this is a well-known technique, we do not provide further details.

From (5.12), the achievable sum-rate using this SIC scheme can be expressed

as

K∑

i=1

Ri =
1

2

K∑

i=1

log




a2i

(∑K
j=i b

2
j

)
+ 1

a2i

(∑K
j=i+1 b

2
j

)
+ 1


 ,

=
1

2
log



∏K

i=1

(
a2i

(∑K
j=i b

2
j

)
+ 1
)

∏K
i=1

(
a2i−1

(∑K
j=i b

2
j

)
+ 1
)


 ,

=
1

2

K∑

i=1

log


1 +

(a2i − a2i−1)
(∑K

j=i b
2
j

)

a2i−1

(∑K
j=i b

2
j

)
+ 1


 , (5.13)

where a0 = 0 is introduced for notational convenience.

5.4.2 Outer Bound

The non-trivial step is to obtain a matching outer bound on sum-rate.

We apply the general technique developed in Section 5.3 to obtain the outer

bound. As discussed before, it is very hard to evaluate these bounds (especially

in closed-form) for general IFCs, but the degraded structure of the channel can

be exploited as shown next.
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Consider the optimization problem given by (5.11) for the tuple S =

(1, 2, . . . , K). Solving this is equivalent to showing the existence of feasible

G and T that evaluates to the RHS of (5.13). Now, consider the following

construction for G and T. Given any i such that 1 ≤ i ≤ K, let

ci =
√

a2i − a2i−1, (5.14)

and c = [c1 c2 . . . cK ]
T . We use the following iterative construction to obtain

a upper-triangular matrix T (lower-triangular T†):

ti =
ai−1

ai
ti−1 +

ci
ai
ei, ∀i, (5.15)

where t0 = 0 and ei is the unit-vector along i-th dimension. The entry corre-

sponding to the i-th row and j-th column of G is chosen as

gi,j = cibjdi,j, ∀i, j, (5.16)

where di,j parameters are introduced here for the first time. We fix di,j = 1

for any i ≤ j. The choice of remaining parameters (di,j for i > j) are discussed

later. Irrespective of these remaining parameters, the above construction has

the following property.

Lemma 5.5. Consider any G and T given above. Then, it belongs to the

feasible set corresponding to the optimization problem given by (5.11), i.e.,

(
T†G

)upper
= (H)upper ,

t
†
iti ≤ 1, ∀1 ≤ i ≤ K.
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Proof. First, for all i, we show that t†iti = 1 by induction. Since t1 = e1, we

have t†1t1 = 1. By construction, we have t†i−1ei = 0. Suppose that t†i−1ti−1 = 1

for some i. Then, from (5.15) and (5.14), we have

t
†
iti =

a2i−1

a2i
t
†
i−1ti−1 +

c2i
a2i

,

=
a2i−1

a2i
+

a2i − a2i−1

a2i
,

= 1. (5.17)

Next, for all i, we show that t†ic = ai by induction. Since t1 = e1, we

have t
†
1c = a1. Suppose that t†i−1c = ai−1 for some i. Then, from (5.15) and

(5.14), we have

t
†
ic =

ai−1

ai
t
†
i−1c+

ci
ai
ci,

=
a2i−1

ai
+

a2i − a2i−1

ai
,

= ai. (5.18)

Last, for all i ≤ j, using lower-triangular property of T† and (5.18), we

show that the (i, j)-th entry of T†G is equal to hi,j:

(T†G)i,j = t
†
ibj [d1,jc1 d2,jc2 . . . dK,jcK ]

T ,

= t
†
i [c1 c2 . . . cK ]

T bj , ∀i ≤ j,

= aibj , ∀i ≤ j. (5.19)

With (5.17) and (5.19), the proof is complete.
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Next, we show that parameters di,j (for i > j) exist such that (5.11)

evaluates to RHS of (5.13). For this, we consider a lower-triangular matrix V

with unit diagonal entries. Let (i, j)-th entry of V be denoted by vi,j . Define

F = I+GG†. Therefore, from (5.16), the (i, j)-th entry of VF is

(VF)i,j =

i∑

m=1

(
vi,m

(
δm,j +

K∑

n=1

gm,ngj,n

))
,

=
i∑

m=1

vi,mδm,j + cj

K∑

n=1

(
b2ndj,n

(
i∑

m=1

vi,mcmdm,n

))
. (5.20)

Now, suppose that, for all i ≥ 2 and n ≤ i−1, the parameters are such

that

i∑

m=1

vi,mcmdm,n = 0, ∀i ≥ 2, n ≤ i− 1. (5.21)

Then, for all i and j ≤ i, substituting (5.21) and di,j = 1 for any i ≤ j in

(5.20) , we obtain

(VF)i,j = vi,j + cj

K∑

n=i

(
b2n

(
i∑

m=1

vi,mcm

))
, ∀i, j ≤ i. (5.22)

For the set of values given by

vi,j =
−cicj

∑K
n=i b

2
n(∑i−1

m=1 c
2
m

)(∑K
n=i b

2
n

)
+ 1

, ∀j < i, (5.23)

from (5.22), we have (VF)i,j = 0 for all j < i (i.e., VF is upper-triangular)
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and

(VF)i,i = 1 + ci

K∑

n=i

(
b2n

(
i−1∑

m=1

vi,mcm + ci

))
,

= 1 +
c2i

(∑K
n=i b

2
n

)

(∑i−1
m=1 c

2
m

)(∑K
n=i b

2
n

)
+ 1

,

= 1 +
(a2i − a2i−1)

(∑K
j=i b

2
j

)

a2i−1

(∑K
j=i b

2
j

)
+ 1

, ∀i. (5.24)

Substituting (5.23) in (5.21), we obtain

ci



−
(∑n

m=1 c
2
m +

∑i−1
m=n+1 c

2
mdm,n

)(∑K
j=i b

2
j

)

(∑i−1
m=1 c

2
m

)(∑K
j=i b

2
j

)
+ 1

+ di,n


 = 0, (5.25)

for all i ≥ 2 and n ≤ i− 1. For any given n, it is clear that we can choose di,n

for all i > n, such that (5.25) is satisfied for all i > n. This directly follows

form the fact these are linear equations in di,n with same number of variables

as equations. Therefore, we have a construction that satisfies the assumption

in (5.21). For understanding the structure of the genie-MAC channel matrix

G given by (5.16), it is useful to evaluate di,n that satisfies (5.25). From (5.16),

we can express di,n for i > n as follows: for all 1 ≤ n ≤ K

dn+1,n =
(
∑n

m=1 c
2
m)
(∑K

j=i b
2
j

)

(
∑n

m=1 c
2
m)
(∑K

j=i b
2
j

)
+ 1

,

di,n =

(∑n
m=1 c

2
m +

∑i−1
m=n+1 c

2
mdm,n

)(∑K
j=i b

2
j

)

(∑i−1
m=1 c

2
m

)(∑K
j=i b

2
j

)
+ 1

, ∀i > n+ 1.

Now, for the above construction, VF is upper-triangular and |V| = 1.
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Therefore, from (5.24), we have

1

2
log |I+GG†| =

1

2
log |F|

=
1

2
log |VF|

=
1

2
log

K∏

i=1

(VF)i,i,

=
1

2

K∑

i=1

log


1 +

(a2i − a2i−1)
(∑K

j=i b
2
j

)

a2i−1

(∑K
j=i b

2
j

)
+ 1


 ,

which exactly matches the achievable sum-rate in (5.13).

5.4.3 Sum Capacity

The above analysis establishes the sum-capacity of the class of degraded

Gaussian K-user IFCs. We summarize this result in the following theorem.

Theorem 5.6. Consider any degraded Gaussian K-user interference channel

with H = ab†, where a = [a1 a2 . . . aK ]
T and b = [b1 b2 . . . bK ]

T . Let

a21 ≤ a22 ≤ . . . ≤ a2K and a0 = 0. Then, the sum-capacity of this channel is

given by

CIC
Σ

(√
P/NH

)
=

1

2

K∑

i=1

log


1 +

(a2i − a2i−1)
(∑K

j=i b
2
j

)
P

a2i−1

(∑K
j=i b

2
j

)
P +N


 .

Remark 5.1. This class of channels have degree of freedom equal to 1. The

degree of freedom can be obtained in a straightforward manner as the K-th

receiver can decode messages from all transmitters. However, this approach

does not give the required tight outer bound on sum-rate.
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5.5 MIMO Unit-Rank Interference Channels

In this section, we extend the sum-capacity results to MIMO unit-rank

interference channels, which are sometimes referred to as keyhole channels as

mentioned in the introduction. Consider a MIMO unit-rank Gaussian IFC

described by

Yi,n[t] = ai,n

K∑

j=1




Mj∑

m=1

bj,mXj,m[t]


 + Zi,n[t], (5.26)

for all 1 ≤ n ≤ Ni, 1 ≤ i ≤ K. Here, Ni is the number of antennas at i-th

receiver and Mj is the number of antennas at j-th transmitter. The power

constraint at the j-th transmitter is E[‖Xj‖2] ≤ P, and the zero-mean i.i.d.

Gaussian noise at all receivers have covariance NI.

The following theorem establishes an equivalence to the SISO scenario.

Theorem 5.7. The capacity region of the MIMO unit-rank Gaussian IFC in

(5.26) is identical to the capacity region of the SISO degraded Gaussian IFC

described by

Ŷi[t] = ‖ai‖
K∑

j=1

‖bj‖X̂j[t] + Ẑi[t], ∀1 ≤ i ≤ K. (5.27)

Proof. First, we prove the relatively straightforward result that the capacity

region of the SISO Gaussian IFC is a subset of the capacity region of the MIMO

Gaussian IFC. Consider the following transformation at the transmitters of the

MIMO Gaussian IFC:

X̃j,m[t] =
bj,m
‖bj‖

X̂j [t]. (5.28)
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This transformation in (5.28) satisfies the power constraints for the MIMO

Gaussian IFC due to the following:

Mj∑

m=1

X̃2
j,m[t] =

Mj∑

m=1

b2j,m
‖bj‖2

X̂2
j [t],

= X̂2
j [t]. (5.29)

Next, consider the following transformation at the receivers of the MIMO

Gaussian IFC:

Ỹi[t] =

Ni∑

n=1

ai,n
‖aj‖

Yi,n[t],

= ‖ai‖
K∑

j=1

‖bj‖X̂j[t] +

Ni∑

n=1

ai,n
‖aj‖

Zi,n[t]. (5.30)

Since the additive noise in (5.30) is N(0, N) and transmitter power constraint

is clearly satisfied due to (5.29), the above transformations show that the

capacity region of the SISO Gaussian IFC is a subset of the capacity region of

the MIMO Gaussian IFC.

Next, we prove that the capacity region of the MIMO Gaussian IFC

is a subset of the capacity region of the SISO Gaussian IFC. Consider the

following transformation at the transmitters of the SISO Gaussian IFC:

X̃j [t] =

Mj∑

m=1

bj,m
‖bj‖

Xj,m[t].
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Using CauchySchwarz inequality, we obtain

X̃2
j [t] =

(∑Mj

m=1 bj,mXj,m[t]
)2

‖bj‖2
,

≤

(∑Mj

m=1 b
2
j,m

)(∑Mj

m=1X
2
j,m[t]

)

‖bj‖2
.

=

Mj∑

m=1

X2
j,m[t].

Therefore, this transformation satisfies the power constraints for the SISO

Gaussian IFC. Next, consider the following transformation at the receivers of

the SISO Gaussian IFC:

Ỹi,n[t] =
ai,n
‖aj‖

Ŷi[t] +Wi,n, (5.31)

where (Wi,1,Wi,2, . . . ,Wi,Ni
) is N(0,Σi) (and independent of all other random

variables). These received signals are statistically identical to the received

signals of MIMO Gaussian IFC if

Σi = I− aia
†
i

‖ai‖2
(5.32)

and these are positive semi-definite matrices. The following shows that these

are positive semi-definte matrices:

x†Σix = x†x− x†aia
†
ix

‖ai‖2

= x†x−
tr
(
xx†aia

†
i

)

‖ai‖2

≥ x†x−
tr
(
xx†
)
tr
(
aia

†
i

)

‖ai‖2
= 0. (5.33)
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Thus, the above transformations show that the capacity region of the MIMO

Gaussian IFC is a subset of the capacity region of the SISO Gaussian IFC.

This completes the proof.

This immediately leads to the following corollary.

Corollary 5.8. The sum-capacity of the MIMO unit-rank interference channel

described in (5.26) is given by

1

2

K∑

i=1

log


1 +

(‖ai‖2 − ‖ai−1‖2)
(∑K

j=i ‖bj‖2
)
P

‖ai−1‖2
(∑K

j=i ‖bj‖2
)
P +N


 .

Proof. The proof follows from Theorem 5.6 and Theorem 5.7.
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Chapter 6

Robust Weighted-Sum Rate Maximization in

Multiple Antenna Interference Networks

6.1 Introduction

Limited progress1 has been made in obtaining the capacity region of K-

user Gaussian interference channels (GIFC) whereas significant advances have

been made in understanding degrees-of-freedom2 of these channels. In [18,47],

the degrees-of-freedom (DoF) optimality of interference alignment for time-

varying or frequency-selective SISO and MIMO channels. With limited num-

ber of dimensions (time or frequency) and/or finite power levels, in general, in-

terference alignment is not capacity-region optimal. Even for two-user GIFCs,

it is well known that more involved schemes like Han-Kobayashi scheme are

required to be within one-bit of the capacity region [41]. However, these DoF

results strongly motivate achievable schemes with linear transmit precoding,

linear receive filtering and point-to-point coding. Additionally, such achievable

schemes are greatly motivated from an implementation perspective in cellular

standards such as LTE-A - CoMP: Coordinated Multi-Point TX/RX [1] and

1We refer readers to Chapter 5 for details.
2Degrees-of-freedom is the pre-log factor in sum rate asymptotically as per-user power is

increased to infinity.
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802.16m - Multi-BS MIMO [6]. Further, these standards motivate the need to

develop distributed schemes based on limited (imperfect) channel state infor-

mation (CSI) at the transmitters.

While focusing on linear schemes, the resulting robust transmit pre-

coder designs can be formulated as optimization problems in a straightforward

manner. Solutions to such optimization problems have been widely studied

in the context of MIMO broadcast channels [75, 127] and MISO interference

networks [118], and have proved to be of immediate applicability in practice.

However, there is very limited work on MIMO interference networks under

channel uncertainty. Majority of existing literature on MIMO interference

networks focuses on sum-rate or MMSE objectives in the presence of perfect

CSI [45, 98, 100]. There has been recent work on weighted-sum rate objective

in [105] and rank minimization approach in [97], however, all these results are

limited to perfect CSI.

While dealing with interference networks, the optimization problems

are known to be hard. In particular, the weighted sum rate optimization

problem even in the SISO interference channel with perfect CSI was shown to

be NP hard in [82]. Thus, globally optimal precoder design for the weighted

sum rate metric over MIMO GIFCs cannot be determined efficiently and hence

sub-optimal algorithms must be employed. However, instead of resorting to ad-

hoc algorithms, a systematic approach that provides partial guarantees is that

of formulating sub-problems that can be solved optimally, either in closed-form

or through standard convex optimization formulations such as SDP or MAX-
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DET [16,122]. This approach leads to iterative algorithms that are guaranteed

to converge. Applying this approach is highly non-trivial and requires careful

utilization of the structure present in the optimization problems.

6.1.1 Our Contributions

We consider weighted-sum rate and max-min rate objectives, and two

decoding schemes: single-stream decoding and single-user decoding. Under

channel uncertainty, we consider bounded-error models for quantization and

robust counterparts of the objectives. Our main contributions are the follow-

ing:

• We derive precoder design algorithms using a provably convergent iter-

ative approach for all these scenarios.

• We extend the genie-MAC formulation in Chapter 5 to obtain outer

bounds under channel uncertainty. We develop computable bounds using

an alternating optimization approach.

6.1.2 Organization

In Section 6.2, we present the system model. In Section 6.3, we provide

relevant known results. In Section 6.4, we describe the robust weighted-sum

rate problem and our results for single-stream decoding. We extend these

results to single-user decoding in Section 6.5 and to robust max-min rate ob-

jective in Section 6.6. In Section 6.7, we provide our results on genie-MAC

outer bounds. Finally, in Section 6.8, we present numerical results.
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6.2 System Model

We consider K-user MIMO Gaussian interference channels consisting

of K transmitter-receiver pairs, labeled 1, 2, . . . , K. The j-th transmitter has

Mj antennas and the i-th receiver has Ni antennas.
3 Each transmitter has

independent messages for the corresponding receiver. We assume a discrete-

time channel model as described next. At time t, t ∈ Z+, the input-output

relations that describe the interference channel are:

yi[t] =

K∑

j=1

Hi,jxj [t] + zi[t], (6.1)

where xj[t] ∈ CMj×1 is the signal transmitted by the j-th transmitter, Hi,j ∈

C
Ni×Mj is the constant channel matrix from j-th transmitter to i-th receiver,

zi[t] ∈ C
Ni×1 is the additive complex Gaussian CN(0, σ2I) noise at i-th re-

ceiver, and yi[t] ∈ CNi×1 is the signal received at the i-th receiver. For sim-

plicity, we suppress the time index t henceforth. The power constraint at every

transmitter is E[‖xj‖2] ≤ P, ∀j.

6.3 Preliminaries

Lemma 6.1 (Shur Complement Lemma). Let A, B and C be given matrices,

and X be the symmetric matrix given by

X =

[
A B

B† C

]
.

3Note that these antennas can model time/frequency selective channels by appropriately
choosing block-diagonal channel matrices.
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If A is positive definite, then X is positive semidefinite if and only if

C−B†A−1B � 0.

The following lemma with important consequences in robust optimiza-

tion has been proved in [37].

Lemma 6.2. Let A, B and C be given matrices, with A = A†. Then, the

relation

A � B†DC+C†D†B, ∀D : ‖D‖2 ≤ ǫ

is valid, if and only if

∃λ ≥ 0,

[
A− λC†C −ǫB†

−ǫB λI

]
� 0.

The following is a useful lemma from [28] that allows us to introduce

auxiliary variables to obtain optimally solvable sub-problems.

Lemma 6.3. Consider the function f(s) = −es+log s+1 for any given e > 0.

Then,

max
s∈R+

f(s) = log

(
1

e

)
,

with the optimum value sopt = 1/e.

A matrix version of the above lemma is as follows:

Lemma 6.4. Let d be any integer and E ∈ Cd×d be any matrix such that

E ≻ 0 and |E| ≤ 1. Consider the function f(S) = − tr(SE) + log |S| + d.
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Then,

max
S∈Cd×d, S≻0

f(S) = log |E−1|,

with the optimum value Sopt = E−1.

This lemma is obtained via Fenchel conjugate arguments [15].

6.4 Robust Weighted-Sum Rate Maximization

We focus on a simple communication scheme that uses linear transmit

precoders and linear receive filters so that i-th transmitter-receiver pair can

transmit and receive di streams, which are encoded and decoded independently

using point-to-point schemes. We denote the independently encoded symbols

at j-th transmitter by x̂j ∈ Cdj×1, the precoder at j-th transmitter by Vj ∈

CMj×dj , and the filter at i-th receiver by Gi ∈ CNi×di . Now, using (6.1), the

output of the i-th receiver filter can be expressed as

ŷi =
K∑

j=1

G
†
iHi,jVjx̂j +G

†
izi. (6.2)

From (6.2), the received signal corresponding to the l-th stream is given by

ŷi,l =

K∑

j=1

dj∑

k=1

g
†
i,lHi,jvj,kx̂j,k + g

†
i,lzi. (6.3)

Now, the achievable rate corresponding to this stream can be expressed as

Ri,l = max
gi,l

log

(
1 +

|g†
i,lHi,ivi,l|2∑

(j,k)6=(i,l) |g
†
i,lHi,jvj,k|2 + σ2‖gi,l‖2

)
. (6.4)
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The first problem of interest is the precoder design that maximizes the

weighted sum-rate, which can be formulated as

max
{Vj}

K∑

i=1

di∑

l=1

wiRi,l (6.5)

s.t. ‖Vj‖2F ≤ P, ∀j,

where wi ∈ R+ are given weights.

Remark 6.1. The motivation behind considering weighted-sum rate is that

network resource allocation is often performed by adapting these weights over

time (at a larger time-scale). From a physical-layer perspective, these weights

can be considered as given constants.

Given the presence of channel uncertainty at the transmitters in prac-

tice, a more relevant and difficult problem of interest is a robust counterpart

of (6.5) in the presence of bounded channel errors, which is explained next.

We assume that every channel matrix can be expressed as

Hi,j = Ĥi,j +∆i,j , (6.6)

where Ĥi,j is the channel estimate known to the transmitters, and ∆i,j is the

unknown error with ‖∆i,j‖F ≤ ǫi,j for some given ǫi,j ≥ 0. A natural worst-case

formulation of the optimization problem in (6.5) under channel uncertainty in

(6.6) is the following:

max
{Vj :‖Vj‖2F≤P}

min
{∆i,j :‖∆i,j‖F≤ǫi,j}

K∑

i=1

di∑

l=1

wiRi,l. (6.7)
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Remark 6.2. Here, we focus on the regime where quantization errors dom-

inate the channel estimation errors. In this regime, the above formulation is

appropriate. For channel estimation errors, this formulation can be applied by

choosing the radii of error balls based on “allowable outages”. However, we do

not provide any details on this.

Next, we proceed to obtain iterative algorithms for these two problems

of interest.

6.4.1 Single-Stream Decoding with Perfect CSI

We start with the well-known relation between the achievable rate Ri,l

and the mean-square-error (MSE) with optimal receive filter. The MSE ei,l

for the stream given in (6.3) is given by

ei,l =
∣∣∣g†

i,lHi,ivi,l − 1
∣∣∣
2

+
∑

(j,k)6=(i,l)

∣∣∣g†
i,lHi,jvj,k

∣∣∣
2

+ σ2 ‖gi,l‖2 . (6.8)

We denote the corresponding MSE with optimal receive filter by êi,l. The

following lemma states the well-known relation.

Lemma 6.5. The achievable rate Ri,l in (6.4) and the MSE in (6.8) with

optimal receive filter denoted by êi,l have a one-to-one correspondence given by

Ri,l = log

(
1

êi,l

)
, ∀i, l. (6.9)

Next, in (6.5), first using Lemma 6.5 and then applying Lemma 6.3

with slack variables s = {si,l}, we can reformulate the optimization problem
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in (6.5) as follows:

max
{Vj :‖Vj‖2F≤P},

s,{Gi}

K∑

i=1

di∑

l=1

wi(−ei,lsi,l + log si,l + 1), (6.10)

where ei,l is the mean-square-error given by (6.8). This formulation has a

weighted MSE minimization sub-problem that makes it more tractable.

Next, we show that the sub-problem in receive filters and slack variables

can be solved optimally in closed-form.

Lemma 6.6. Consider the sub-problem in (6.10) for any given {Vj}, ∀j.

Then, the optimal receive filters are given by

g
opt
i,l =

(
K∑

j=1

Hi,jVjV
†
jH

†
i,j + σ2I

)−1

Hi,ivi,l, ∀i, l, (6.11)

which can be readily expressed in matrix form as

G
opt
i =

(
K∑

j=1

Hi,jVjV
†
jH

†
i,j + σ2I

)−1

Hi,iVi, ∀i. (6.12)

Furthermore, the optimal s is given by

sopti,l =
1

ei,l
, ∀i, l, (6.13)

where ei,l is obtained by substituting (6.11) in (6.8).

Proof. The proof follows directly from standard results on optimal MSE receive

filter [72] and Lemma 6.3.
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Now, for any given s and {Gi}, the sub-problem of interest to solve

(6.10) is the following minimum weighted MSE problem:

min
{Vj :‖Vj‖2F≤P}

K∑

i=1

di∑

l=1

αi,lei,l, (6.14)

where αi,l = wisi,l. Substituting (6.8) in (6.14), the optimization problem in

(6.14) becomes

min
{Vj :‖Vj‖2F≤P}

K∑

i=1

di∑

l=1

αi,l

(
|g†

i,lHi,ivi,l − 1|2 +
∑

(j,k)6=(i,l)

|g†
i,lHi,jvj,k|2

+σ2‖gi,l‖2
)
. (6.15)

Let Ai = diag{αi,1, . . . , αi,di}. Then, the problem in (6.15) can be expressed

in matrix form as

min
{Vj :‖Vj‖2F≤P}

K∑

i=1

(∥∥∥A
1
2
i G

†
iHi,iVi −A

1
2
i

∥∥∥
2

F
+
∑

j 6=i

∥∥∥A
1
2
i G

†
iHi,jVj

∥∥∥
2

F

+σ2
∥∥∥A

1
2
i G

†
i

∥∥∥
2

F

)
. (6.16)

Next, we show that this problem can be solved optimally in closed-form

except for a scalar variable. Additionally, this scalar variable can be obtained

efficiently using a bi-section search.

Lemma 6.7. Consider the optimization problem in (6.16) for any given s and

{Gi}, ∀i. Then, the optimal transmit precoders are given by

V
opt
j =

(
K∑

i=1

H
†
i,jGiAiG

†
iHi,j + λjI

)−1

H
†
j,jGjAj , (6.17)
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where each non-negative parameter λj is such that the power constraint

∥∥Vopt
j

∥∥2
F
≤ P

is satisfied. If λj > 0, then this inequality should be satisfied with equality.

Therefore, a unique λj exists.

Proof. Let

Rj =
K∑

i=1

H
†
i,jGiAiG

†
iHi,j + λjI.

The Lagrangian corresponding to this problem can be expressed as

L =
K∑

j=1

(∥∥∥R
1
2
j Vj −R

− 1
2

j H
†
j,jGjAj

∥∥∥
2

F
−
∥∥∥R− 1

2
j H

†
j,jGjAj

∥∥∥
2

F

+σ2
∥∥∥A

1
2
j G

†
j

∥∥∥
2

F
+ λjP

)
.

In fact, it is easier to verify that the above expression simplifies to the La-

grangian. Now, the proof follows from the fact that first term inside summa-

tion must be zero and complementary slackness conditions.

The results in Lemma 6.6 and Lemma 6.7 lead to a natural (iterative)

algorithm for weighted-sum rate maximization:

1. Initialize {Vj};

2. Update {Gi}, s based on Lemma 6.6;

3. Update {Vj} based on Lemma 6.7;
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4. Iterate above two steps till convergence or till maximum number of iter-

ations is reached.

Theorem 6.8. The above algorithm is guaranteed to converge.

Proof. The updates in the algorithm result in monotone increase of objec-

tive function in (6.10). Since the objective function is bounded above, this

monotonicity guarantees the convergence of this algorithm.

We note that this result extends the one obtained in [28] for the MIMO

broadcast channel under perfect CSI.

6.4.2 Single-Stream Decoding under Channel Uncertainty

In this section, we provide the additional steps required in dealing with

channel uncertainty. By introducing slack variables s = {si,l}, we can refor-

mulate the optimization problem in (6.7) as follows:

max
{Vj :‖Vj‖2F≤P}

min
{∆i,j :‖∆i,j‖F≤ǫi,j}

max
s,{Gi}

K∑

i=1

di∑

l=1

wi(−ei,lsi,l + log si,l + 1). (6.18)

The steps used to arrive at this formulation is same as in the previous section,

and hence omitted for brevity. However, this formulation does not directly

lead to a useful algorithm. Therefore, we look at the max-min version of the

inner min-max problem in (6.18) given by

max
{Vj :‖Vj‖

2
F≤P},

s,{Gi}

min
{∆i,j :‖∆i,j‖F≤ǫi,j}

K∑

i=1

di∑

l=1

wi(−ei,lsi,l + log si,l + 1). (6.19)
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This formulation is relevant due to the following two reasons: (i) It is an

achievable weighted-sum rate; (ii) In the algorithm, none of the optimization

variables should depend on the perfect channel.

Next, we show that three sub-problems corresponding to the outer max-

imization in (6.19) can be solved optimally, leading to an iterative algorithm.

Towards showing this, the key step is the derivation of an equivalent problem

for the inner minimization in (6.19), which is given in next lemma.

Lemma 6.9. The inner minimization in (6.19) is equivalent (in terms of

objective) to the following:

max
{τi,j ,λi,j}

K∑

i=1

wi

(
−

K∑

j=1

τi,j − σ2 ‖GiBi‖2F + 2 log |Bi|+ di

)
(6.20)

s.t.




τi,j − λi,j c
†
i,j 0

ci,j I −ǫi,jCi,j

0 −ǫi,jC
†
i,j λi,jI


 � 0, ∀i, j,

λi,j ≥ 0, ∀i, j.

Proof. For this derivation, we introduce the following notation:

Bi = diag{√si,1, . . . ,
√
si,di},

the MSE matrix defined as

Ei = E

[
(ŷi − x̂j) (ŷi − x̂j)

†
]
,

=
(
G

†
iHi,iVi − I

)(
G

†
iHi,iVi − I

)†
+
∑

j 6=i

G
†
iHi,jVjV

†
jH

†
i,jGi

+σ2G
†
iGi,
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and

Ti,j =
(
G

†
iHi,jVj − δi,jI

)(
G

†
iHi,jVj − δi,jI

)†
.

Now, using the above notation, the inner minimization in (6.19) can be ex-

pressed in matrix form:

min
{∆i,j :‖∆i,j‖F≤ǫi,j}

K∑

i=1

wi

(
− tr

(
EiBiB

†
i

)
+ 2 log |Bi|+ di

)
. (6.21)

Due to separation of variables, we can focus on the following optimization

problems: for all i and j

min
∆i,j :‖∆i,j‖F≤ǫi,j

− tr
(
Ti,jBiB

†
i

)
. (6.22)

For each i and j, by introducing a slack variable τi,j, we obtain the following

problem with same optimal value as (6.22):

maxτi,j −τi,j (6.23)

s.t.
∥∥∥B†

i

(
G

†
i

(
Ĥi,j +∆i,j

)
Vj − δi,jI

)∥∥∥
2

F
≤ τi,j ,

∀
{
∆i,j : ‖∆i,j‖F ≤ ǫi,j

}
. (6.24)

To proceed further, we introduce the following notation:

ci,j = vec
(
B

†
i

(
G

†
iĤi,jVj − δi,jI

))
,

Ci,j = V
†
j ⊗

(
B

†
iG

†
i

)
,

di,j = vec (∆i,j) .

Here, ⊗ denotes Kronecker product. Now, using the fact

vec(ABC) = (C† ⊗A) vec(B),
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we can express (6.24) as

‖ci,j +Ci,jdi,j‖22 ≤ τi,j, ∀
{
di,j : ‖di,j‖2 ≤ ǫi,j

}
. (6.25)

Using Schur complement lemma (Lemma 6.1), (6.25) is equivalent to

[
τi,j c

†
i,j

ci,j I

]
+

[
0 d

†
i,jC

†
i,j

Ci,jdi,j 0

]
� 0, ∀

{
di,j : ‖di,j‖2 ≤ ǫi,j

}
. (6.26)

Now, applying Lemma 6.2, (6.26) is equivalent to

∃λi,j ≥ 0,




τi,j − λi,j c
†
i,j 0

ci,j I −ǫi,jCi,j

0 −ǫi,jC
†
i,j λi,jI


 � 0. (6.27)

This completes the proof.

Next, we show that when each set of the variables {Bi}, {Gi} and {Vj}

can be solved optimally while the remaining two sets are fixed. From Lemma

6.9, the optimization problem in (6.19) can be expressed as

max
{Vj :‖Vj‖2F≤P},

{Bi},{Gi}

max
{τi,j ,λi,j}

K∑

i=1

wi

(
−

K∑

j=1

τi,j − σ2 ‖GiBi‖2F

+2 log |Bi|+ di

)
(6.28)

s.t.




τi,j − λi,j c
†
i,j 0

ci,j I −ǫi,jCi,j

0 −ǫi,jC
†
i,j λi,jI


 � 0, ∀i, j,

λi,j ≥ 0, ∀i, j.

Now, note that the constraints of (6.28) are linear matrix inequalities in each

set of variables while others two sets are fixed. This immediately leads to the

following results.
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Lemma 6.10. Consider the sub-problem in (6.28) for any given {Vj} and

{Gi}. Then, the optimization for each i separates, and each Bi can be solved

efficiently by solving the resulting MAX-DET in (6.28) along with the con-

straint that Bi is diagonal.

Lemma 6.11. Consider the sub-problem in (6.28) for any given {Vj} and

{Bi}. Then, the optimization for each i separates, and each Gi can be solved

efficiently by solving the resulting SDP in (6.28). Similarly, consider the sub-

problem in (6.28) for any given {Bi} and {Gi}. Then, the optimization for

each j separates, and Vj can be solved efficiently by solving the resulting SDP.

The above results lead to an iterative algorithm for obtaining transmit

precoders, with the following guarantee.

Theorem 6.12. This iterative algorithm is monotone in the objective function

in (6.28).

We remark that it often difficult to provide a monotone algorithm for

a max-min optimization problem such as (6.19). As a consequence of this

monotonicity property, this algorithm is provably convergent.

6.5 Precoder Design with Single-User Decoding

In this section, we focus on the communication scheme that uses single-

user decoding. Since there are many similarities with the previous section, we

just describe the additional steps. With single-user decoding, the interference
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from other transmitters are treated as noise. We denote the effective transmit

symbols at j-th transmitter by x̂j ∈ Cdj×1 and the precoder at j-th transmitter

by Vj ∈ CMj×dj . Then, the received signal at the i-th receiver is given by

yi =
K∑

j=1

Hi,jVjx̂j + zi. (6.29)

Now, using single-user decoding, the rate achievable by this receiver is

Ri = log

∣∣∣∣∣∣
I+V

†
iH

†
i,i

(
∑

j 6=i

Hi,jVjV
†
jH

†
i,j + σ2I

)−1

Hi,iVi

∣∣∣∣∣∣
. (6.30)

We consider the problem of obtaining the linear transmit precoders

that maximize the weighted sum-rate, which can be formally stated as:

max
{Vj}

K∑

i=1

wiRi (6.31)

s.t. ‖Vj‖2F ≤ P, ∀j,

where wi ∈ R+ are given weights and Ri in (6.31) is given by (6.30). Fur-

thermore, we consider a robust counterpart of this problem in the presence of

bounded channel errors:

max
{Vj :‖Vj‖2F≤P}

min
{∆i,j :‖∆i,j‖F≤ǫi,j}

K∑

i=1

wiRi. (6.32)

Recall that the MSE matrix of the received signal in (6.29) with receive

filter Gi ∈ CNi×di is defined as

Ei = E

[(
G

†
iyi − x̂j

)(
G

†
iyi − x̂j

)†]
. (6.33)

151



Let Ĝi denote the optimal receive filter, i.e.,

Ĝi = argmin
Gi

tr(Ei), (6.34)

and let Êi be the MSE matrix with the receive filter in (6.34) substituted in

(6.33). For given transmit precoders, the optimal receive filters are same as in

the previous section and is given by (6.12). Note that the optimal filter does

not change even if the objective is changed to tr(SEi) for any given S ≻ 0.

Next, we provide a lemma that relates the determinant of optimal MSE

matrix to the achievable rate.

Lemma 6.13. The achievable rate Ri in (6.30) and the MSE matrix with

optimal receive filters Êi are related as follows:

Ri = log
∣∣∣Ê−1

i

∣∣∣ , ∀i. (6.35)

Now, using Lemma 6.13 and applying Lemma 6.4 with (matrix) slack

variables Si ∈ Cdi×di , we reformulate the optimization problem in (6.31) as

follows:

max
{Vj :‖Vj‖2F≤P},

{Gi},{Si}

K∑

i=1

wi (− tr(SiEi) + log |Si|+ di) . (6.36)

With the formulation in (6.36), we can apply the results in the previous

section. For any given {Vj}, the optimal {Gi} and {Si} are given by (6.12)

and Si = E−1
i , respectively. For any given {Gi} and {Si}, optimal Vj is

given by (6.17) with Ai replaced by wiSi. Now, it is straightforward to obtain

provably convergent iterative algorithms for obtaining the transmit precoder

with perfect CSI and under channel uncertainty.
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6.6 Robust Max-Min Rate Objective

So far, we dealt with the objective of weighted-sum rate. This objec-

tive is particularly applicable when a higher-level scheduler ensures long-term

fairness (or, in general, any network optimization) by adapting the weights as-

signed to users with time. However, in certain scenarios, we prefer short-term

fairness. An objective that captures short-term fairness is the max-min rate,4

which implies maximization of the minimum achievable rate in the system.

Note that neither of the objectives (weighted-sum or max-min) include the

other as special case.

Motivated from short-term fairness, next, we study the precoder design

problem that arise in this context. Consider single-user decoding that leads

to the set of achievable rates {Ri} in (6.30). A natural robust precoder design

problem in the presence of bounded errors is:

max
{Vj :‖Vj‖2F≤P}

min
{∆i,j :‖∆i,j‖F≤ǫi,j}

min
i

Ri. (6.37)

For this problem, finding the optimal solution does not seem tractable.5 There-

fore, we apply the same methodology as before - solve sub-problems optimally

to obtain an iterative algorithm.

We follow the same steps as in the previous section to arrive at the

4The results will immediately generalize to max-min weighted-rate, which can be used
to incorporate transmitter/receiver priorities.

5Note that this problem is tractable in the MISO setting.
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following equivalent problem:

max
{Vj :‖Vj‖2F≤P}

min
{∆i,j :‖∆i,j‖F≤ǫi,j}

min
i

max
{Gi},{Si}

(− tr(SiEi) + log |Si|+ di) . (6.38)

Next, to keep the problem tractable, we consider an achievable lower bound

obtained by switching min-max to max-min:

max
{Vj :‖Vj‖

2
F≤P},

{Gi},{Si}

min
{∆i,j :‖∆i,j‖F≤ǫi,j}

min
i

(− tr(SiEi) + log |Si|+ di) . (6.39)

Now, by introducing a slack variable β and following the steps in Section 6.4.2,

we can reformulate the problem in (6.39) as

max
{Vj :‖Vj‖

2
F≤P},

{Gi},{Bi}

max
{τi,j ,λi,j ,β}

β (6.40)

s.t. −
K∑

j=1

τi,j − σ2 ‖GiBi‖2F + 2 log |Bi|+ di ≥ β, ∀i,




τi,j − λi,j c
†
i,j 0

ci,j I −ǫi,jCi,j

0 −ǫi,jC
†
i,j λi,jI


 � 0, ∀i, j,

λi,j ≥ 0, ∀i, j.

For the outer maximization in (6.39), individual maximizations in each

set of variables can be solved optimally while the other two set of variables

are fixed. Particularly, for the individual maximization in {Bi}, the problems

separate into K MAX-DETs (same as in Section 6.4.2). Note that the vari-

able β does not have any explicit role as the problems separate. Similarly, the

optimization in {Gi} also separates into K SDPs (same as in Section 6.4.2).

However, the difference is the optimization in the precoder variables. For this
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optimization in {Vi}, we need to solve one joint SDP that results from (6.39)

while {Bi} and {Gi} are fixed. Thus, the above-mentioned three optimiza-

tions provide an iterative algorithm for robust precoder design under max-min

objective, which is guaranteed to converge.

6.7 Genie-MAC Outer Bound

An optimization framework based on genie-MACs for obtaining outer

bounds for K-user SISO GIFCs is given in Section 5.3. Even though the opti-

mization framework is for general GIFCs, its evaluation for MIMO GIFCs has

not been addressed so far. Next, we generalize the genie-MAC outer bounding

technique to incorporate channel uncertainty using notions of compound-MAC

capacity and then obtain computable outer bounds using an alternating opti-

mization approach, where each of the sub-problems are formulated as convex

MAX-DET problems. Interestingly, this is one of the first approaches to obtain

tighter outer bounds for the GIFC in the presence of channel uncertainty.

6.7.1 Outer Bound on Capacity Region with Perfect CSI

Consider any permutation function π : {1, 2, . . . , K} 7→ {1, 2, . . . , K},

and integers k such that 1 ≤ k ≤ K. For each j ∈ {1, . . . , k}, we define

Uj =




Hπ(1),π(j)
...

Hπ(j),π(j)


 ,
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and introduce variables Lj ∈ C(
∑k

i=j+1 Nπ(i))×Mπ(j). Let

Fj =

[
Uj

Lj

]
.

Now, by extending the optimization framework in Section 5.3 to MIMO GIFCs,

an outer bound on
∑k

j=1Rπ(j) is given by the following:

min
Σ∈T,{Lj}

max
{Sj}

log

∣∣∣∣∣Σ+
k∑

j=1

FjSjF
†
j

∣∣∣∣∣− log |Σ| (6.41)

s.t. tr (Sj) ≤ P, ∀j,

Sj � 0, ∀j,

where

T =
{
T|T = [Ti,l]i,l,Ti,l ∈ C

Nπ(i)×Nπ(l),Ti,i = σ2I,Tl,i = T
†
i,l, ∀i, l,T ≻ 0

}
.

The inner maximization problem in (6.41) is convex, which is well-

studied in MIMO-MAC literature. As shown in [138], a dual problem can be

derived for this problem whose optimum value matches the primal problem.

Using this dual, the problem in (6.41) can be reformulated as:

min
Σ∈T,{Lj},
Γ,{λj}

− log |Γ| − log |Σ|+ tr (ΓΣ) +

k∑

j=1

λjP −
k∑

i=1

Nπ(i) (6.42)

s.t. λjI � F
†
jΓFj , ∀j,

Γ ≻ 0.

Now, the following lemmas are immediate.
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Lemma 6.14. Consider any given Γ ≻ 0. Then, the optimization in (6.42)

over remaining variables, given by

min
Σ,{Lj},{λj}

− log |Γ| − log |Σ|+ tr (ΓΣ) +
k∑

j=1

λjP −
k∑

i=1

Nπ(i) (6.43)

s.t.

[
λjI F∗

j

Fj Γ−1

]
� 0, ∀j,

Σ ∈ T,

is a MAX-DET problem that can be solved efficiently.

Proof. For any given Γ ≻ 0, by Shur complement lemma, λjI � F
†
jΓFj is

equivalent to [
λjI F∗

j

Fj Γ−1

]
� 0.

Now, the proof follows.

Lemma 6.15. Consider any given Σ ∈ T and {Lj}. Then, the optimization

in (6.42) over remaining variables, given by

min
Γ,{λj}

− log |Γ| − log |Σ|+ tr (ΓΣ) +
k∑

j=1

λjP −
k∑

i=1

Nπ(i) (6.44)

s.t. λjI � F∗
jΓFj , ∀j,

Γ ≻ 0,

is a MAX-DET problem that can be solved efficiently.

Note that both optimization problems in (6.43) and (6.44) are con-

vex problems. These can be solved using interior-point methods developed

for determinant maximization with linear matrix inequality constraints. The

problems in (6.43) and (6.44) lead to an iterative algorithm that converges.
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6.7.2 Outer Bound on Capacity Region under Channel Uncertainty

Consider any K user MIMO GIFC. Let n denote the number of channel

uses (or the codeword length). For all 1 ≤ j ≤ K, let Rj(n) denote the rate

of the codebook Cj(n) (in bits per channel use) used by j-thtransmitter. Each

Cj(n) satisfies the power constraint at the transmitter. For each n, we refer to

C(n) = (C1(n), . . . ,CK(n)) as a multi-user code.

Now, consider a sequence of multi-user codes {C(n)}∞n=1 with

lim inf
n

Rj(n) = Rj , ∀1 ≤ j ≤ K.

For any given set of channel estimates {Ĥi,j} (available at all transmitters)

and codes {Cj(n)}, let ǫi(n, {∆i,j}) denote the error probability at i-th re-

ceiver obtained with some decoding scheme (with perfect CSIR) when the

perturbations are {∆i,j}. Note that the average is over the space of codeword

and noise realizations. Define

ǫi(n) = sup
{∆i,j}∈∆

ǫi(n, {∆i,j}), ∀i.

Then the rates (R1, . . . , RK) are defined to be achievable in the GIFC (under

channel uncertainty) if the given sequence of multi-user codes satisfies

lim sup
n

ǫi(n) = 0, ∀i. (6.45)

Suppose that we are given a sequence of multi-user codes whose cor-

responding rate-tuple (R1, . . . , RK) is achievable in the GIFC (under channel

uncertainty). Now consider the genie-MACs. For simplicity of description,
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we consider those genie-MACs with all transmitters and identity permutation

function. However, the arguments immediately follow for all cases. Let the

channel estimates (available at all transmitters) be {Ĥi,j}. Suppose that we

use the multi-user code {Cj(n)}Kj=1 for some codeword length n. Assume per-

fect CSI at the MAC receiver which uses SIC in the order 1 ≤ i ≤ K. We

will use the fact that the joint error probability yielded by the SIC receiver

is identical to that yielded by a genie assisted SIC receiver in which the genie

always ensures perfect cancellation. Thus, the joint error probability at the

MAC receiver for any given perturbations {∆i,j} can be bounded as

Pr(En({∆i,j})) ≤
K∑

i=1

Pr(Eg
n,i({∆i,j})) (6.46)

where Pr(Eg
n,i({∆i,j})) is the codeword error probability of the codeword

transmitted by the i-th transmitter obtained at another MAC receiver, say

RXg
i , which also uses SIC but for which signals corresponding to transmitters

1 ≤ j ≤ i− 1 are expurgated a-priori. Note that

Pr(Eg
n,i({∆i,j})) ≤ ǫi(n, {∆i,j}). (6.47)

This follows from the fact that even a subset of observations available to re-

ceiver RXg
i are statistically better than the ones available to the i-th receiver

in the original GIFC. Thus, since K is finite, from (6.47), (6.46) and (6.45),

we have

lim sup
n

sup
{∆i,j}∈∆

Pr(En({∆i,j})) = 0. (6.48)
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It can be shown that (6.47) and hence (6.48) is satisfied for a genie MAC with

any noise correlation matrix Σ ≻ 0 : Σi,i = σ2I, ∀ i and for arbitrarily fixed

matrices Hi,j ∀ i > j. This observation leads to the following theorem.

Theorem 6.16. (R1, . . . , RK) lies in the compound capacity region of a MAC

with perfect CSIR given by

⋃

Sj≻0,tr(Sj)≤P, ∀ j

R({Sj}, {Ĥi,j}). (6.49)

The region R({Sj}, {Ĥi,j}) is given by



r :

∑

j∈S

rj ≤ inf
π̃;Lπ̃,j∈Lπ̃,j ;
{∆i,j};Σπ̃∈Tπ̃

log

∣∣∣∣∣I+Σ−1
π̃

∑

j∈S

Fπ̃,jSjF
†
π̃,j

∣∣∣∣∣ , ∀S



 ,

where π̃ : {1, · · · , |S|} → S is a permutation, Lπ̃,j ⊂ C

∑|S|

k=π̃−1(j)+1
Nπ̃(k)×Mj is an

arbitrarily large albeit compact set,

Fπ̃,j =




Ĥπ̃(1),j +∆π̃(1),j
...

Ĥπ̃(π̃−1(j)−1),j +∆π̃(π̃−1(j)−1),j

Ĥj,j +∆j,j

Lπ̃,j



, ∀j ∈ S

and

Tπ̃ =
{
T|T = [Ti,l]i,l,Ti,l ∈ C

Nπ̃(i)×Nπ̃(l);Ti,i = σ2I,

Tl,i = T
†
i,l ∀i, l ∈ {1, . . . , |S|};T ≻ 0

}
.

For an upper bound on robust weighted-sum rate, we can consider

the compound MAC capacity region in (6.49). Note that we can consider
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the subsets S ⊆ {1, . . . , K} independently, i.e., take separate infimum. To

illustrate the computation of an outer bound, we consider S = {1, · · · , k}

for some 1 ≤ k ≤ K and fix a permutation π̃(·) such that π̃(j) = j ∀ j ∈

{1, · · · , k}. Then, an upper bound on the sum of the robust (worse-case) rates
∑k

j=1Rj is given by the following (where we drop the subscript π̃):

max
{Sj}

min
{∆i,j :‖∆i,j‖F≤ǫi,j},

Σ∈T,{Lj}

log

∣∣∣∣∣Σ+

k∑

j=1

FjSjF
∗
j

∣∣∣∣∣− log |Σ|

subject to tr (Sj) ≤ P, ∀j,Sj � 0, ∀j. Now, we can obtain an upper bound on

this max-min problem by considering the corresponding min-max problem:

min
{∆i,j}

min
Σ,{Lj}

max
{Sj}

log

∣∣∣∣∣Σ+

k∑

j=1

FjSjF
∗
j

∣∣∣∣∣− log |Σ|

s.t. tr (Sj) ≤ P ;Sj � 0, ∀j. (6.50)

Using the dual formulation for the inner maximization given in (6.50), we can

rewrite (6.50) as

min
{∆i,j},

Σ,{Lj},Γ,{λj}

− log |Γ| − log |Σ|+ tr (ΓΣ) +

k∑

j=1

λjP −
k∑

i=1

Ni

s.t. λjI � F∗
jΓFj , ∀j;Γ ≻ 0. (6.51)

For fixed Γ, we use the Shur complement lemma to obtain the following

MAX-DET formulation in the other variables:

min
{∆i,j},Σ,
{Lj},{λj}

− log |Γ| − log |Σ|+ tr (ΓΣ) +
k∑

j=1

λjP −
k∑

i=1

Ni

s.t.

[
λjI F∗

j

Fj Γ−1

]
� 0, ∀j;Σ ∈ T,

‖∆i,j‖F ≤ ǫi,j, ∀j, i ≤ j. (6.52)
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Note that the last constraint in (6.52) can be written as a linear matrix in-

equality. Next, for any given {∆i,j}, Σ ∈ T, {Lj}, the optimization problem

in the remaining variables can also be shown to be a MAX-DET formulation.

Thus, we have an iterative algorithm to compute an outer bound.

6.8 Numerical Results

In this section, we provide few numerical results for the perfect channel

scenario. We consider the 3-user GIFC. The noise covariance is normalized to

identity matrix. All channel coefficients are chosen as i.i.d. complex Gaussian

CN(0, 1). All plots are averaged over 103 channel realizations.

First, consider two antennas at all transmitters and all receivers. In

Figure 6.1, first, we plot the sum rate versus per-user power achieved using the

iterative algorithm developed for single user decoding. Next, we plot the trivial

upper bound obtained by ignoring interference along with a simple lower bound

obtained when each user transmits with along the singular-vectors of its direct

channel with equal power. As expected, in the latter case the system becomes

interference limited at high SNR and the sum-rate saturates. Lastly, we plot

the iterative upper bound developed using genie-MACs. In Figure 6.1, for a

typical power value like 10 dB, our upper bound is significantly better than the

trivial outer bound and “not-far” from our achievable sum rate. We observe in

simulations that the iterative achievability algorithms can set d = min{M,N}

without reducing performance (in fact this gives the best performance). This

is a significant advantage over (explicit) interference alignment schemes that
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Figure 6.1: Average sum rate for 2 × 2 3-user GIFC; Comparison with outer
bound

need to know “feasibility” (of the assigned DoF vector) a-priori.6 The gap

between the upper bound and the achievable rate seen in numerical results

suggest that there is room for making further progress in terms of lower and/or

upper bounds. Towards this end, our achievability objective can potentially be

appended with objectives for “favoring alignment”. Further, the outer bounds

can be appended with tighter two-user bounds.

Next, consider four antennas at all transmitters and all receivers. In

6We note that with perfect CSI, for any given set of precoders, the rate achieved via
single user decoding can also be achieved with single stream decoding after orthogonalizing
the “effective” MIMO channels.
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Figure 6.2: Average sum rate for 4×4 3-user GIFC; Comparison with existing
schemes

Figure 6.2, we compare our approach with existing schemes. ‘Max-SINR’ and

‘Leakage Minimization’ are schemes developed in [45]. ‘Rank Minimization’

refers to the scheme developed in [97]. In this simulation scenario, our ap-

proach matches or outperforms the sum-rate given by existing schemes at all

SNRs. Note that the main distinguishing feature of our approach compared to

these existing schemes is its applicability to any weighted-sum rate objective

even in the presence of channel uncertainty.
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Chapter 7

Pilot Contamination and Precoding in

Multi-Cell TDD Systems

7.1 Introduction

Multiple antennas, especially at the base-station, have now become an

accepted (and in fact, a central) feature of cellular networks. These networks

have been studied extensively over the past two decades (see [12] and refer-

ences therein). It is now well understood that channel state information (CSI)

at the base station is an essential component when trying to maximize net-

work throughput. Systems with varying degrees of CSI have been studied in

great detail in literature. The primary framework under which these have

been studied is frequency division duplex (FDD) systems, where the CSI is

typically obtained through (limited) feedback. In Chapter 6, we consider this

framework for the K-user MIMO interference channel setting. There is a rich

body of work in jointly designing the feedback mechanism with (pre)coding

strategies to maximize throughput in MIMO downlink (or broadcast chan-

nel) [8, 35, 54, 61, 114, 136]. Time division duplex (TDD) systems, however,

have a fundamentally different architecture from the ones studied in FDD

systems [65, 66, 84]. Our goal is to develop a clear understanding of mecha-

nisms for acquiring CSI and subsequently designing precoding strategies for
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multi-cell TDD systems.

An important distinguishing feature of TDD systems is the notion of

reciprocity, where the reverse channel is used as an estimate of the forward

channel. While utilizing reciprocity, the differences in the transfer character-

istics of the amplifiers and the filters in the two directions must be accounted

for. Arguably, this reverse channel estimation one of the best advantages of a

TDD architecture, as it eliminates the need for feedback, and uplink training

together with the reciprocity of the wireless medium [85, 126] is sufficient to

provide us with the desired CSI. In [49], channel reciprocity has been validated

through experiments. However, as we see next, this channel estimate is not

without issues that must be addressed before it proves useful.

7.1.1 Our Approach & Contributions

We consider uplink training and transmit precoding in a multi-cell sce-

nario with L cells, where each cell consists of a base station with M antennas

and K users with single antenna each. The impact of uplink training on the

resulting channel estimate (and thus system performance) in the multi-cell

scenario is significantly different from that in a single-cell scenario. In the

multi-cell scenario, non-orthogonal training sequences (pilots) must be uti-

lized, as orthogonal pilots would need to be least K × L symbols long which

is infeasible for large L. Specifically, short channel coherence times due to

mobility do not allow for such long training sequences.

This non-orthogonal nature causes pilot contamination, which is en-
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countered only when analyzing a multi-cell MIMO system with training, and

is lost when narrowing focus to a single-cell setting or to a multi-cell setting

where channel information is assumed available at no cost. We perform a

detailed study of this problem and consider precoding in its presence. Pilot

contamination occurs when the channels to users from other cells pollute the

channel estimate at the base station in one cell. Thus, our goals are, first,

to study the impact of pilot contamination (and thus achievable rates), and

then, to develop methods that mitigate this contamination. In older gener-

ation cellular systems, multiple factors including large reuse distance of any

training signal and randomization in the selection of pilots would have helped

in keeping the impact of pilot contamination reasonable. However, with newer

generation systems designed for more aggressive reuse of spectrum, this impact

is very crucial to understand and mitigate. We note that pilot contamination

must also figure in Cooperative MIMO (also called Network MIMO [43,123])

where clusters of base stations are wired together to create distributed arrays,

and where pilots must be re-used over multiple clusters. The fact that pilot

contamination hasn’t surfaced in FDD studies is primarily due to the assump-

tion of partial CSI with independently corrupted noise as in Chapter 6, and

are not fully incorporating the impact of channel estimation.

The fundamental problem associated with pilot contamination is ev-

ident even in the simple multi-cell scenario shown in Figure 7.1. Consider

two cells i ∈ {1, 2}, each consisting of one base station and one user. Let

hij denote the channel between the base station in the i-th cell and the user
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h12

BS-2BS-1

User-2User-1

h22

Cell-1 Cell-2

Figure 7.1: A two-cell example with one user in each cell; Both users transmit
non-orthogonal pilots during uplink training, which leads to pilot contamina-
tion at both the base stations.

in the j-th cell. Let the training sequences used by both the users be same.

In this case, the MMSE channel estimate of h22 at the base station in the

2-nd cell is ĥ22 = c1h12 + c2h22 + cw. Here c1, c2 and c are constants that

depend on the propagation factors and the transmit powers of mobiles, and w

is CN(0, I) additive noise. The base station in the 2-nd cell uses this channel

estimate to form a precoding vector a2 = f(ĥ22), which is usually aligned with

the channel estimate, that is a2 = const · ĥ22. However, by doing this, the

base station (partially) aligns the transmitted signal with both h22 (which is

desirable) and h12 (which is undesirable). Both signal (h22a
†
2) and interfer-

ence (h12a
†
2) statistically behave similarly. Therefore, the general assumption

that the precoding vector used by a base station in one cell is uncorrelated

with the channel to users in other cells is not valid with uplink training using
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non-orthogonal training sequences.

To perform this analysis, we first develop analytical expressions using

techniques similar to those used in [66, 84]. For the setting with one user in

every cell, we derive closed-form expressions for achievable rates. These closed-

form expressions allow us to determine the extent to which pilot contamination

impacts system performance. In particular, we show that the achievable rates

can saturate with the number of antennas at the base station M . This analysis

will allow system designers to determine the appropriate frequency/time/pilot

reuse factor to maximize system throughput in the presence of pilot contami-

nation.

In the multi-cell scenario, there has been significant work on utilizing

coordination among base stations [43,111,123,139] when CSI is available. This

existing body of work focuses on the gain that can be obtained through coor-

dination of the base stations. Dirty paper coding based approaches and joint

beamforming/precoding approaches are considered in [139]. Linear precoding

methods for clustered networks with full intra-cluster coordination and limited

inter-cluster coordination are proposed in [140]. These approaches generally

require “good” channel estimates at the base stations. Due to non-orthogonal

training sequences, the resulting channel estimate (of the channel between a

base station and all users) can be shown to be rank deficient. We develop a

multi-cell MMSE-based precoding method that depends on the set of train-

ing sequences assigned to the users. Note that this MMSE-based precoding is

for the general setting with multiple users in every cell. Our approach does
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not need coordination between base stations required by the joint precod-

ing techniques.1 When coordination is present, this approach can be applied

at the inter-cluster level. The MMSE-based precoding derived has several

advantages. In addition to being a linear precoding method, it has a simple

closed-form expression that results from an intuitive optimization problem for-

mulation. For many training sequence allocations, numerical results show that

our approach gives significant gains over certain popular single-cell precoding

methods including zero-forcing precoding.

7.1.2 Related Work

Over the past decade, a variety of aspects of downlink and uplink trans-

mission problems in a single cell setting have been studied. In information the-

oretic literature, these problems are studied as the broadcast channel (BC) and

the multiple access channel (MAC) respectively. For Gaussian BC and general

MAC, the problems have been studied for both single and multiple antenna

cases. The sum capacity of the multi-antenna Gaussian BC has been shown to

be achieved by dirty paper coding (DPC) in [21, 124, 125, 137]. It was shown

in [129] that DPC characterizes the full capacity region of the multi-antenna

Gaussian BC. These results assume perfect CSI at the base station and the

users. In addition, the DPC technique is computationally challenging to im-

plement in practice. There has been significant research focus on reducing the

computational complexity at the base station and the users. In this regard,

1There is no exchange of channel state information among base stations.
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different precoding schemes with low complexity have been proposed. This

body of work [5,13,53,115,116] demonstratess that sum rates close to sum ca-

pacity can be achieved with much lower computational complexity. However,

these results assume perfect CSI at the base station and the users.

The problem of lack of channel CSI is usually studied by considering one

of the following two settings. As discussed before, in the first setting, CSI at

users is assumed to be available and a limited feedback link is assumed to exist

from the users to the base station. In [8, 54, 61, 62, 114, 136] such a setting is

considered. In [61], the authors show that at high signal to noise ratios (SNRs),

the feedback rate required per user must grow linearly with the SNR (in dB) in

order to obtain the full MIMO BC multiplexing gain. The main result in [136]

is that the extent of CSI feedback can be reduced by exploiting multi-user

diversity. In [8] it is shown that nonrandom vector quantizers can significantly

increase the MIMO downlink throughput. In [54], the authors design a joint

CSI quantization, beamforming and scheduling algorithm to attain optimal

throughput scaling. In the next setting, time-division duplex systems are

considered and channel training and estimation error are accounted for in the

net achievable rate. This approach is used in [20, 46, 65, 84]. In [84], the

authors give a lower bound on sum capacity and demonstrate that it is always

beneficial to increase the number of antennas at the base station. In [65],

the authors study a heterogeneous user setting and present scheduling and

precoding methods for this setting. In [46], the authors consider two-way

training and propose two variants of linear MMSE precoders as alternatives to
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linear zero-forcing precoder used in [84]. Single-cell analysis of TDD systems

are also provided in [20].

Given this extensive body of literature in single-cell systems, our main

contribution is in understanding multi-cell systems with channel training. Its

emphasis is on TDD systems, which are arguably poorly studied compared to

FDD systems. Specifically, the main contributions are to demonstrate the pilot

contamination problem associated with uplink training, understand its impact

on the operation of multi-cell MIMO TDD cellular systems, and develop a new

precoding method to mitigate this problem.

7.1.3 Organization

In Section 7.2, we describe the multi-cell system model. In Section 7.3,

we explain the communication scheme and the technique to obtain achievable

rates. We analyze the effect of pilot contamination in Section 7.4, and give the

details of the new precoding method in Section 7.5. We present few numerical

results in Section 7.6. The proofs of the theorems are given in Appendix C.

7.2 Multi-Cell TDD System Model

We consider a cellular system with L cells numbered 1, 2, · · · , L. Each

cell consists of one base station with M antennas and K(≤ M) single-antenna

users. Let the average power (during transmission) at the base station be

pf and the average power (during transmission) at each user be pr. The

propagation factor between the m-th base station antenna of the l-th cell
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Figure 7.2: System model showing the base station in l-th cell and the k-th
user in j-th cell

and the k-th user of the j-th cell is
√

βjlkhjlkm,
2 where {βjlk} are non-negative

constants and assumed to be known to everybody, and {hjlkm} are independent

and identically distributed (i.i.d.) zero-mean, circularly-symmetric complex

Gaussian CN(0, 1) random variables and known to nobody. This system model

is shown in Figure 7.2. The above assumptions are fairly accurate and justified

due to the following reason. The {βjlk} values model path-loss and shadowing

that change slowly and can be learned over long period of time, while the

{hjlkm} values model fading that change relatively fast and must be learned

and used very quickly. Since the cell layout and shadowing are captured using

the constant {βjlk} values, for the purpose of analysis, the specific details of the

2For compact notation, we do not separate the subscript or superscript indices using
commas.
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cell layout and shadowing model are irrelevant. In other words, any cell layout

and any shadowing model can be incorporated with the above abstraction.

We assume channel reciprocity for the forward and reverse links, i.e.,

the propagation factor
√
βjlkhjlkm is same for both forward and reverse links,

and block fading, i.e., {hjlkm} remains constant for a duration of T symbols.

Note that we allow for a constant factor variation in forward and reverse

propagation factors through the different average power constraints at the base

stations and the users. The additive noises at all terminals are i.i.d. CN(0, 1)

random variables. The system equations describing the signals received at the

base station and the users are given in the next section.

7.3 Communication Scheme

The communication scheme consists of two phases: uplink training and

data transmission. Uplink training phase consists of users transmitting train-

ing pilots, and base stations obtaining channel estimates. Data transmission

phase consists of base stations transmitting data to the users through trans-

mit precoding. Next, we describe these phases briefly and provide a set of

achievable data rates using a given precoding method.
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7.3.1 Uplink Training

At the beginning of every coherence interval, all users (in all cells)

transmit training sequences, which are τ length column vectors.3 Let
√
τψjk

(normalized such that ψ†
jkψjk = 1) be the training vector transmitted by the

k-th user in the j-th cell. Consider the base station of the l-th cell. The τ

length column vector received at the m-th antenna of this base station is

ylm =

L∑

j=1

K∑

k=1

√
prτβjlkhjlkmψjk +wlm, (7.1)

where wlm is the additive noise. Let Yl = [yl1 yl2 · · · ylM ] (τ ×M matrix),

Wl = [wl1 wl2 · · · wlM ] (τ × M matrix), Ψj = [ψj1 ψj2 · · · ψjK ] (τ × K

matrix), Djl = diag{[βjl1 βjl2 · · · βjlK ]}, and

Hjl =




hjl11 · · · hjl1M
...

. . .
...

hjlK1 · · · hjlKM


 .

From (7.1), the signal received at this base station can be expressed as

Yl =
√
prτ

L∑

j=1

(
ΨjD

1
2
jlHjl

)
+Wl. (7.2)

The MMSE estimate of the channel Hil given Yl in (7.2) is

Ĥjl =
√
prτD

1
2
jlΨ

†
j

(
I+ prτ

L∑

i=1

ΨiDilΨ
†
i

)−1

Yl. (7.3)

This MMSE estimate in (7.3) follows from standard results in estimation the-

ory (for example see [72]). We denote the MMSE estimate of the channel

3We assume that there is time synchronization present in the system for coherent uplink
transmission.
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between this base station and all users by Ĥl = [Ĥ1l Ĥ2l · · · ĤLl]. This nota-

tion is used later in Section 7.4.

7.3.2 Downlink Transmission

Consider the base station of the l-th cell. Let the information symbols

to be transmitted to users in the l-th cell be ql = [ql1 ql2 · · · qlK ]T and the

M×K linear precoding matrix be Al = f(Ĥl). The function f(·) corresponds

to the specific (linear) precoding method performed at the base station. The

signal vector transmitted by this base station is Alql. We consider transmis-

sion symbols and precoding methods such that E[ql] = 0, E[qlq
†
l ] = I, and

tr(A†
lAl) = 1. These (sufficient) conditions imply that the average power

constraint at the base station is satisfied.

Now, consider the users in the j-th cell. The noisy signal vector received

by these users is

xj =
L∑

l=1

√
pfD

1
2
jlHjlAlql + zj, (7.4)

where zj is the additive noise. From (7.4), the signal received by the k-th user

can be expressed as

xjk =

L∑

l=1

K∑

i=1

√
pfβjlk[hjlk1 hjlk2 · · · hjlkM ]aliqli + zjk, (7.5)

where ali is the i-th column of the precoding matrix Al and zjk is the k-th

element of zj .
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7.3.3 Achievable Rates

Next, we provide a set of achievable rates using the method suggested

in [84]. With the above communication scheme, the base stations have chan-

nel estimates while the users do not have any channel estimate. Therefore,

the achievable rates we derive have a different structure compared to typical

rate expressions. In particular, the effective noise term has channel variations

around the mean in addition to typical terms.

Let gjkli =
√

pfβjlk [hjlk1 · · ·hjlkM ] ali. Now, (7.5) can be written in the

form

xjk =

M∑

l=1

K∑

i=1

gjkli qli + zjk,

= E

[
gjkjk

]
qjk +

(
gjkjk − E

[
gjkjk

])
qjk +

∑

(l,i)6=(j,k)

gjkli qli + zjk. (7.6)

In (7.6), the effective noise is defined as

z
′

jk =
(
gjkjk − E

[
gjkjk

])
qjk +

∑

(l,i)6=(j,k)

gjkli qli + zjk. (7.7)

Now, the effective point-to-point channel described by (7.6) can be written in

the familiar form

xjk = E

[
gjkjk

]
qjk + z

′

jk, (7.8)

where qjk is the input, xjk is the output, E
[
gjkjk

]
is the known channel and

z
′

jk is the additive noise. E

[
gjkjk

]
is known as it only depends on the channel

distribution and not the instantaneous channel. However, the additive noise
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is neither independent nor Gaussian. We use the result in [52] that shows that

worst-case uncorrelated additive noise is independent Gaussian noise of same

variance to derive the following achievable rates.

Theorem 7.1. Consider the point-to-point communication channels given by

(7.8). Then, the following set of rates are achievable:

Rjk = C




∣∣∣E
[
gjkjk

]∣∣∣
2

1 + var
{
gjkjk

}
+
∑

(l,i)6=(j,k)E

[∣∣∣gjkli
∣∣∣
2
]


 , (7.9)

where C(θ) = log2(1 + θ).

Proof. Please see Appendix C.1.

Remark 7.1. The set of achievable rates given by (7.9) is valid for any linear

precoding method, and depends on the precoding method through the expectation

and variance terms appearing in (7.9).

Similar achievable rates are used in the single-cell setting as well to

study and/or compare precoding methods. Next, we perform pilot contami-

nation analysis using these achievable rates.

7.4 Pilot Contamination Analysis

We analyze the pilot contamination problem in the following setting:

one user per cell (K = 1), same training sequence used by all users (ψj1 =

ψ, ∀j) and matched-filter (MF) precoding. We consider this setting as it cap-

tures the primary effect of pilot contamination which is the correlation between
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the precoding matrix (vector in this setting) used by the base station in a cell

and channel to users in other cells. We provide simple and insightful ana-

lytical results in this setting. As mentioned earlier, we emphasize that the

pilot contamination problem results from uplink training with non-orthogonal

training sequences, and hence, it is not specific to the setting considered here.

However, the level of its impact on the achievable rates would vary depending

on the system settings.

In order to simplify notation, we drop the subscripts associated with

the users in every cell. In this section, Hjl, Ĥjl and Al are vectors and we

denote these using hjl, ĥjl and al, respectively. The matched-filter used at the

base station in the l-th cell is given by al = ĥ
†
ll/‖ĥll‖. The user in the j-th cell

receives signal from its base station and from other base stations. From (7.4),

this received signal is

xjk =
√

pfβjjhjjajqj +
∑

l 6=j

√
pfβjlhjlalql + zj. (7.10)

We compute first and second order moments of the effective channel gain and

the inter-cell interference and use these to obtain a simple expression for the

achievable rate given by (7.9).

In the setting considered here, the MMSE estimate of hjl based on Yl

given by (7.3) can be simplified using matrix inversion lemma and the fact
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that ψ†ψ = 1 as follows:

ĥjl =
√
prτβjlψ

†

(
I+ψ

(
prτ

L∑

i=1

βil

)
ψ†

)−1

Yl,

=
√
prτβjlψ

†


I−

ψ
(
prτ
∑L

i=1 βil

)
ψ†

1 + prτ
∑L

i=1 βil


Yl,

=
√
prτβjl


ψ† −

(
prτ
∑L

i=1 βil

)

1 + prτ
∑L

i=1 βil

ψ†


Yl,

=

√
prτβjl

1 + prτ
∑L

i=1 βil

ψ†Yl.

Remark 7.2. The above channel estimates clearly suggest the graveness of the

pilot contamination impairment. For a given base station, its estimate of every

channel is simply a scaled version of the same vector ψ†Yl. Thus, it cannot

distinguish between the channel to its user and other users, which makes pilot

contamination a fundamental problem in multi-cell systems.

Since ψ†Yl is proportional to the MMSE estimate of hjl for any j, we

have
ĥ
†
jl

‖ĥjl‖
=

Y
†
lψ

‖ψ†Yl‖
, ∀j. (7.11)

Using (7.11), we obtain

hjlal = hjl

ĥ
†
jl∥∥∥ĥ†
jl

∥∥∥
,

=
∥∥∥ĥ†

jl

∥∥∥+ h̃jl

ĥ
†
jl∥∥∥ĥ†
jl

∥∥∥
, (7.12)
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where h̃jl = hjl− ĥjl. From the properties of MMSE estimation, we know that

ĥjl is independent of h̃jl,

ĥjl ∼ CN

(
0,

prτβjl

1 + prτ
∑L

i=1 βil

I

)
,

and

h̃jl ∼ CN

(
0,

1 + prτ
∑

i 6=j βil

1 + prτ
∑L

i=1 βil

I

)
.

These results are used next.

From (7.12), we get

E [hjlal] = E

[∥∥∥ĥ†
jl

∥∥∥
]
,

=

√
prτβjl

1 + prτ
∑L

i=1 βil

E [θ] , (7.13)

where θ =
√∑M

m=1 |um|2 and {um} is i.i.d. CN(0, 1). From (7.12), we also

have

E
[
‖hjlal‖2

]
= E

[∥∥∥ĥ†
jl

∥∥∥
2
]
+ E


 ĥjl∥∥∥ĥ†

jl

∥∥∥
h̃
†
jlh̃jl

ĥ
†
jl∥∥∥ĥ†
jl

∥∥∥


 ,

=
prτβjl

1 + prτ
∑L

i=1 βil

E[θ2] +
1 + prτ

∑
i 6=j βil

1 + prτ
∑L

i=1 βil

. (7.14)

Next, we state two lemmas required to obtain a closed-form expression

for the achievable rate.

Lemma 7.2. The effective channel gain in (7.10) has expectation

E

[√
pfβjjhjjaj

]
=

(
pfβjj

prτβjj

1 + prτ
∑L

i=1 βij

)1/2

E[θ]
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and variance

var
{√

pfβjjhjjaj

}
= pfβjj

(
prτβjj

1 + prτ
∑L

i=1 βij

var{θ}+
1 + prτ

∑
i 6=j βij

1 + prτ
∑L

i=1 βij

)
.

Proof. The proof follows from (7.13) and (7.14). Note that var{θ} = E[θ2] −

(E[θ])2 by definition.

Lemma 7.3. For both signal and interference terms in (7.10), the first and

second order moments are as follows:

E

[√
pfβjlhjlalql

]
= 0,

E

[∣∣∣
√

pfβjlhjlalql

∣∣∣
2
]
= pfβjl

(
prτβjl

1 + prτ
∑L

i=1 βil

E[θ2] +
1 + prτ

∑
i 6=j βil

1 + prτ
∑L

i=1 βil

)
.

Proof. Since E[ql] = 0 and ql is independent of hjl and al, it is clear that

E

[√
pfβjlhjlalql

]
= 0.

The proof of the second order moment follows directly from (7.14).

The main result of this section is given in the next theorem. This

theorem provides a closed-form expression for the achievable rates under the

setting considered in this section, i.e., one user per cell (K = 1), same training

sequence used by all users (ψj1 = ψ, ∀j) and matched-filter (MF) precoding.

Theorem 7.4. For the setting considered, the achievable rate of the user in

the j-th cell Rj during downlink transmission in (7.9) is given by

C

(
pfβjj

prτβjj

κj
E2[θ]

∑
l 6=j pfβjl

prτβjl

κl
E[θ2] + ζ

)
, (7.15)
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where

ζ = 1 + pfβjj
prτβjj

κj
var{θ}+

L∑

l=1

pfβjl

1 + prτ
∑

i 6=j βil

κl
,

κj = 1 + prτ
∑L

i=1 βij, E[θ] =
Γ(M+ 1

2
)

Γ(M)
, E[θ2] = M and var{θ} = M − E2[θ].

Here, Γ(·) is the Gamma function. For large M, the following limiting expres-

sion for achievable rate can be obtained:

lim
M→∞

Rj = C




β2
jj

1+prτ
∑L

i=1 βij

∑
l 6=j

β2
jl

1+prτ
∑L

i=1 βil


 . (7.16)

Proof. Please see Appendix C.2.

For largeM , the value of var{θ} (≈ 1/4) is insignificant compared toM .

The results of the above theorem show that the performance does saturate with

M . Typically, the reverse link is interference-limited, i.e., prτ
∑L

i=1 βil ≫ 1, ∀j.

The term
∑L

i=1 βil is the expected sum of squares of the propagation coefficients

between the base station in the j-th cell and all users. Therefore,
∑L

i=1 βil is

generally constant with respect to j. Using these approximations in (7.16), we

get

Rj ≈ C

(
β2
jj∑

l 6=j β
2
jl

)
.

This clearly show that the impact of pilot contamination can be very significant

if cross gains (between cells) are of the same order of direct gains (within the

same cell). It suggests frequency/time reuse and pilot reuse techniques to

reduce the cross gains (in the same frequency/time) relative to the direct

gains.
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Remark 7.3. Our result in Theorem 7.4 is not an asymptotic result. The

expression in (7.15) is exact for any value of the number of antennas M at

the base stations. Hence, this expression can be used to find the appropriate

frequency/time reuse scheme for any given value of M and other system pa-

rameters. We do not focus on this, as this would depend largely on the actual

system parameters including the cell layout and the shadowing model.

Remark 7.4. The result in Theorem 7.4 is for the setting with one user per

cell. In the general setting with K users per cell, a similar analysis can be

performed, however, it need not simplify to a simple closed-form expression.

The achievable rate in (7.9) can be numerically evaluated in the general setting,

and this can be used to numerically study the impact of pilot contamination.

To summarize, the impact of uplink training with non-orthogonal pilots

can be serious when the cross-gains are not small compared to the direct gains.

This pilot contamination problem is often neglected in theory and even in many

large-scale simulations. The analysis in this section shows the need to account

for this impact especially in systems with high reuse of training sequences. In

addition to uplink training in TDD systems, the pilot contamination problem

would appear in other scenarios as well as it is fundamental to training with

non-orthogonal pilots.

Next, we proceed to develop a new precoding method referred to as the

multi-cell MMSE-based precoding.
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7.5 Multi-Cell MMSE-Based Precoding

In the previous section, we show that pilot contamination severely im-

pacts the system performance by increasing the inter-cell interference. In par-

ticular, we show that the inter-cell interference grows like the intended signal

with the number of antennas M at the base stations while using zero-forcing

precoding. Therefore, in the presence of pilot contamination, in addition to

frequency/time/pilot reuse schemes, it is crucial to account for inter-cell in-

terference while designing a precoding method. Furthermore, since pilot con-

tamination is originating from the non-orthogonal training sequences, it is

important to account for the training sequence allocation while designing a

precoding method. The approach of accounting for inter-cell interference while

designing a precoding method is common, while the approach of accounting

for the training sequence allocation is not. Again, the usual approach is to

decouple the channel estimation and precoding completely. However, while us-

ing non-orthogonal pilots, this is not the right approach. These observations

follow from our pilot contamination analysis in the previous section.

The precoding problem cannot be directly formulated as a joint op-

timization problem as different base stations have different received training

signals. In other words, the problem is decentralized in nature. Therefore,

one approach is to apply single-cell precoding methods. For example, since

we assume orthogonal training sequences in every cell, we can perform zero-

forcing on the users in every cell. The precoding matrix corresponding to this
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zero-forcing approach is given by

Al =
Ĝ

†
ll

(
ĜllĜ

†
ll

)−1

√
tr

[(
ĜllĜ

†
ll

)−1
] , (7.17)

where Ĝll =
√
pfD

1
2
llĤll. However, this zero-forcing precoding or other single-

cell precoding methods do not account for the training sequence allocation,

which is potentially the right approach to mitigate the pilot contamination

problem. We explore this next.

In order to determine the precoding matrices, we formulate an optimiza-

tion problem for each precoding matrix. Consider the j-th cell. The signal

received by the users in this cell given by (7.4) is a function of all the pre-

coding matrices (used at all the base stations). Therefore, the MMSE-based

precoding methods for single-cell setting considered in [46] does not extend

(directly) to this setting. Let us consider the signal and interference terms

corresponding to the base station in the l-th cell. Based on these terms, we

formulate the following optimization problem to obtain the precoding matrix

Al. We use the following notation: Fjl =
√
pfD

1
2
jlHjl, F̂jl =

√
pfD

1
2
jlĤjl and

F̃jl = Fjl − F̂jl for all j and l. The optimization problem is:

min
Al,αl

EF̃jl,zl,ql

[
‖αl(FllAlql + zl)− ql‖2 +

∑

j 6=l

‖αlγ(FjlAlql)‖2
∣∣∣∣∣F̂jl

]
(7.18)

subject to tr(A†
lAl) = 1. This objective function is very intuitive. The objec-

tive function of the problem (7.18) consists of two parts: (i) the sum of squares

of “errors” seen by the users in the l-th cell, and (ii) the sum of squares of
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interference seen by the users in all other cells. The parameter γ of the op-

timization problem “controls” the relative weights associated with these two

parts. The real scalar parameter αl is important as it “virtually” corresponds

to the potential scaling that can be performed at the users. The optimal so-

lution to the problem (7.18) denoted by A
opt
l is the multi-cell MMSE-based

precoding matrix.

The main result of this section is given by the following theorem. This

theorem provides a closed-form expression for the multi-cell MMSE-based pre-

coding matrix.

Theorem 7.5. The optimal solution to the problem (7.18) is

A
opt
l =

1

αopt
l

(
F̂

†
llF̂ll + γ2

∑

j 6=l

F̂
†
jlF̂jl + ηIM

)−1

F̂
†
ll, (7.19)

where

η = δll + γ2
∑

j 6=l

δjl +K,

δjl is given by (C.9) and αopt
l is such that tr

((
A

opt
l

)†
A

opt
l

)
= 1.

Proof. Please see Appendix C.3

The precoding described above is primarily suited for maximizing the

minimum of the rates achieved by all the users. This is because all users are

treated equally without differentiating them based on the channels. There-

fore, when the performance metric of interest is sum rate, this precoding can

be combined with power control, scheduling, and other similar techniques to
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enhance the net performance. Since our main concern is the inter-cell interfer-

ence resulting from pilot contamination, and to avoid too complicated systems,

we do not use this possibility. In the next section, all numerical results and

comparisons are performed without power control.

7.6 Numerical Results

Multi-Cell MMSE precoding denotes the new precoding method given

in (7.19) with parameter γ set to unity.4 ZF precoding denotes the popular

zero-forcing precoding given in (7.17). GPS denotes the single-cell precoding

method suggested in [46], which is a special case of the precoding given in (7.19)

with parameter γ set to zero. In all the plots, we average the performance

metric over 103 i.i.d. channel realizations.

7.6.1 Two-cell System

We consider a basic two-cell example to understand the impact of pilot

contamination on the total system throughput (sum rate). In particular, we

consider a two-cell system with pf = 20 dB, pr = 10 dB and K = 4 users in

both cells. We set all the direct gains to 1 and all cross gains to a, i.e., for all

k, βjlk = 1 if j = l and βjlk = a if j 6= l. We capture the main observations

using two plots.

First, in Figure 7.3, we use cross gain value of a = 0.8 and plot sum rate

4In our simulations, we have observed that the performance is not that sensitive to the
value of this parameter γ.
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Figure 7.3: Sum rate with and without pilot contamination for the two-cell
system; Sum rate saturates in the presence of contamination

versus number of antennas M with zero-forcing for training lengths of τ = 4

(scenario with pilot contamination) and τ = 8 (scenario without contamina-

tion). With τ = 4, the orthogonal training sequences used in the 1-st is reused

in the 2-nd cell. With τ = 8, all users in the system are given orthogonal

pilots. In Figure 7.3, we can clearly observe the saturation of total throughput

in the presence of pilot contamination. Note that both scenarios deal with

interference. In many practical systems, we cannot necessarily keep τ large

(τ = 8 in this example) as the coherence interval is typically very short, which

requires using small τ .

In the presence of pilot contamination (τ = 4), neither GPS nor multi-

cell MMSE provide noticeable improvement in total throughput (except for
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Figure 7.4: Comparison of schemes with orthogonal pilots; Multi-cell MMSE
performs inter-cell interference mitigation leading to improved sum rate

small values of M). This is not surprising as pilot contamination is an indis-

pensable5 problem in this example. For M = 4 to M = 12, the improvement

using GPS and multi-cell MMSE is reasonable. This improvement results

from using MMSE instead of zero-forcing, and hence both GPS and multi-cell

MMSE provide very similar performance.6

In the absence of pilot contamination (τ = 8), the story is different

as shown in Figure 7.4. Multi-cell MMSE outperforms both the single-cell

schemes (GPS and zero-forcing) by a huge margin. This is possible as multi-

cell MMSE is capable of performing efficient inter-cell interference mitigation.

5We can overcome pilot contamination using frequency/time reuse.
6This plot is not provided as it is not the main focus.
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Figure 7.5: Comparison of ZF and multi-cell MMSE; a and b correspond to
different cross-gains and R denotes the minimum rate achieved by all users

Note that this inter-cell interference mitigation is achieved using the channel

estimates obtained in a distributed manner. This clearly shows the advantage

of multi-cell MMSE. However, this example only focuses on the scenario with-

out pilot contamination. Therefore, a natural question is whether multi-cell

MMSE can provide throughput gains in a mixed scenario, which is addressed

next.

7.6.2 Multi-cell System

We consider a multi-cell system with L = 4 cells, M = 8 antennas at

all base stations, K = 2 users in every cell and training length of τ = 4. We
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Figure 7.6: Comparison of GPS and multi-cell MMSE with a = 0.8 and b =
0.1a; R denotes the minimum rate achieved by all users

consider pf = 20 dB and pr = 10 dB. Orthogonal training sequences are collec-

tively used within the 1-st and 2-nd cells. The training sequences used in the

1-st (2-nd) cell are reused in the 3-rd (4-th) cell. Thus, we model a scenario

where training sequences are reused. We keep the propagation factors as fol-

lows: for all k, βjlk = 1 if j = l, βjlk = a if (j, l) ∈ {(1, 2), (2, 1), (3, 4), (4, 3)},

and βjlk = b for all other values of j and l. “Frequency reuse” is handled

semi-quantitatively by adjusting the cross-gains.

Another performance metric of interest is the minimum rate achieved

by all users denoted by R = minjk Rjk. In Figure 7.5, we plot the performance
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Figure 7.7: Comparison of GPS and multi-cell MMSE with a = 0.8 and b =
0.1a; Pilots in cells 1 and 3 (2 and 4) are not reused but rotated by 45 degrees

of ZF and multi-cell MMSE precoding methods for different values of a and b.

We observe significant advantage of using multi-cell MMSE precoding for wide

range of values of a and b. In Figure 7.6, we plot the performance of GPS and

multi-cell MMSE precoding methods as a function of the number of antennas

M . We also consider the scenario when pilots in cells 1 and 3 (2 and 4) are

not reused but rotated by 45 degrees. This comparison is given in Figure 7.7.

In both cases, we observe significant advantages in using our multi-cell MMSE

precoding. Thus, the multi-cell MMSE scheme is capable of handling different

scenarios as it utilizes training sequences for precoder design to mitigate inter-
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Figure 7.8: Comparison of schemes with a = 0.8, b = 0.1a, τ = 8; Each cell
has K = 4 users; Sum rate corresponds to total sum throughput of all cells

cell interference even in the presence of pilot contamination. Note that in both

cases the performance of ZF and GPS are almost indistinguishable, and hence

we have omitted ZF in these plots.

Finally, we consider a system with reused pilots, K = 4 users in every

cell and training length of τ = 8. In Figure 7.8, we plot the total sum through-

put of different precoding methods as a function of the number of antennas

M . In summary, all the numerical results show that the new multi-cell MMSE

precoding offers significant performance gains.
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Chapter 8

Conclusion

Any communication network predominantly deals with compression

and transmission of sources over channels. Hence, it is natural to envisage

source and channel aware resource allocation for any communication network.

However, this could complicate network design, and therefore, such an ap-

proach is desirable only if there are far-reaching consequences. In the context

of wireless networks, this is definitely the case due to the following reasons.

From a source perspective, the fraction of video content being transferred is

steadily growing along with the tremendous growth of overall traffic. From a

channel perspective, the interference issue is worsening as a result of decreasing

cell-sizes along with aggressive frequency reuse.

In this dissertation, we formulate and study the problem of source and

channel aware resource allocation for wireless networks, and solve it in various

scenarios. Some of these results have already been published in [63,64,67–70].

In Chapter 2, we develop a framework for this by incorporating lossy compres-

sion into network resource allocation. Then, we provide a provably optimal

layered architecture for performing network optimization with minimal devi-

ation from existing architecture: (i) an application-layer with compression
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control, (ii) a transport-layer with congestion control, and (iii) a network-

layer with scheduling. We focus on the compression control problem in this

chapter, and develop insights into this problem. In the context of existing net-

works, our findings suggest a re-design of network architecture with dynamic

compression control along with congestion control, and limited exchange of

control information across layers. This calls for further study and raises im-

portant questions: How to connect the simple source abstraction studied with

complicated sources such as video? What are appropriate utility functions in

the context of video, and more importantly, in the context of a mixture of

different types of traffic?

Next, we focus on two important aspects of network-layer scheduling

that have not been sufficiently studied in existing literature. In Chapter 3, we

study the problem of developing throughput-optimal network algorithms for

cooperative relay networks. These networks are fundamentally different from

traditional capacitated and non-cooperative wireless networks, as they require

physical-layer coordination. This physical-coordination cannot be abstracted

out at the network-layer in terms of bits-in-bits-out models, and thus a stability

analysis that incorporates both the physical-layer encoding and the network-

layer dynamics is needed. We develop encoding-based queue-architecture for

cooperative relay networks. This is a succinct representation needed for gener-

ating network-stabilizing algorithms. Using this queue-architecture, we show

that throughput-optimal network algorithms can be developed even when the

fade-distribution and input queue distributions are unknown. Even though
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the queue-architecture we developed brings cooperative schemes closer to re-

ality, there are many challenges yet to be addressed before actual deployment

of such schemes. Specifically, future research needs focus on both developing

efficient cooperative schemes that require limited coordination, and develop-

ing backhaul protocols that provide the coordination required for cooperative

schemes.

In Chapter 4, we explore techniques to develop distributed algorithms

for the inherently centralized scheduling problem. We successfully extend

the current state-of-the-art approach for distributed on-off scheduling to per-

form distributed rate allocation. These algorithms use local sensing-based and

queue-length information, thus, resulting in distributed operation while being

aware of its neighborhood. Surprisingly, these algorithms match the through-

put performance of optimal centralized algorithms. As known in literature,

this algorithmic framework can be combined with network resource allocation,

i.e., the arrival rates can be adaptively chosen such that a certain (convex)

utility function is maximized as discussed in Chapter 2. Our approach can

even be applied to similar problems in other areas, for example, in performing

resource allocation in energy networks. However, further research is required

in improving delay performance. This has to be addressed for specific classes

of network configurations. Additionally, in the context of wireless ad hoc

networks, the channel measurement framework introduced motivates further

research. First, we need to better understand the feasibility of channel mea-

surement with existing and newly developed radios. This needs development
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of good physical-layer architectures that minimize the probability of inaccu-

rate measurement and measurement delay. Further, we need to study the

impact of imperfect channel measurement on throughput. We have already

made progress along this direction for 802.11 networks in [11], which validates

the applicability of channel measurement in practice.

Finally, we make progress in our understanding of maximum achievable

data-rates for important classes of interference networks. In Chapter 5, we de-

velop a family of outer bounds for the K-user Gaussian interference channel

based on constructing multiple-antenna genie-MAC receivers. This formula-

tion results in an optimization problem that may not be easy to solve in the

general case. However, we subsequently show that this family of outer bounds

determine the exact sum-capacity of the class of degraded channels, and pro-

vide closed-form expression for the sum-capacity. Many intriguing questions

stem from this result. Are genie-MAC bounds optimal for other classes of

networks? Are there techniques to extend the sum capacity result to non-

degraded networks?

In Chapter 6, we study linear precoding for multiple antenna interfer-

ence channels under channel uncertainty as robust optimization problems. We

adopt an alternating optimization approach to solve the original non-convex

problems, wherein convex sub-problems are solved at each step. Due to their

convexity, the sub-problems can be solved optimally and we enjoy guaranteed

convergence. As a result, we develop new schemes that gracefully degrade with

increasing channel uncertainty. Based on genie-MACs, we provide computable
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outer bounds. There are many open problems that need further study. Even

if we focus on linear schemes, as we do in this chapter, efficient algorithms to

design optimal precoding matrices do not exist to date. Another open problem

is in deriving reasonable bounds on the gap from optimality while restricting

to linear schemes. Finally, of course, the open problem of utmost importance

is the entire capacity region of these interference networks.

In Chapter 7, we characterize the impact of corrupted channel esti-

mates caused by pilot contamination in time-division-duplex systems. When

non-orthogonal training sequences are assigned to users, the precoding ma-

trix used at a (multiple antenna) base station becomes correlated with the

channel to users in other cells (referred to as pilot contamination). We show

that, in the presence of pilot contamination, rates achieved by users saturate

with the number of base station antennas. We conclude that appropriate fre-

quency/time reuse techniques have to be employed to overcome this saturation

effect. We develop a multi-cell MMSE-based precoding that depends on the

set of training sequences assigned to the users. We obtain this precoding as

the solution to an optimization problem whose objective function consists of

two parts: (i) the mean-square error of signals received at the users in the

same cell, and (ii) the mean-square interference caused at the users in other

cells. Through numerical results, we show that our method outperforms pop-

ular single-cell precoding methods. Thus, our results suggest that efficient

interference management provide significant gains in practice.
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Appendix A

Proofs of Lemmas for Chapter 3

A.1 Proof of Lemma 3.1

Consider any static split rule characterized by am,g
f and bm,g

f . Note that

am,g
f is the fraction of time for which packets corresponding to encoding scheme

m and state g is transmitted from the source to the relays when the system is in

fading state f . Similarly, bm,g
f is the fraction of time for which these packets are

transmitted from the relays to the destinations. Now, this is a valid static split

rule only if the following conditions are satisfied: flow conservation constraint

for the source in (3.5), flow conservation constraint for each encoding scheme

and state in (3.6), and the time conservation constraint for each fading-state

in (3.7). A central controller with the knowledge of the fading distribution can

also achieve these rates using static time-division. Hence, these are necessary

and sufficient conditions.
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A.2 Proof of Lemma 3.4

Since λ+ ǫ1 is in the throughput region, from Lemma 3.1, there exists

âm,g
f ≥ 0 and b̂m,g

f ≥ 0 for all m ∈ M, g ∈ F̂ and f ∈ F̂ such that

λ+ ǫ1 =
∑

m,g,f

πf â
m,g
f rm1{(f ,g)∈I1}1{(m,g)∈I}, (A.1)

∑

f∈F̂

πf â
m,g
f 1{(f ,g)∈I1} =

∑

f∈F̂

πf b̂
m,g
f 1{(f ,g)∈I2}, ∀(m, g) ∈ I, (A.2)

∑

m,g

âm,g
f + b̂m,g

f ≤ 1, ∀f .

Consider ām,g
f and b̄m,g

f obtained as follows:

ām,g
f = 0, ∀(f , g) /∈ I1, ∀(m, g) /∈ I, (A.3)

ām,g
f = âm,g

f , otherwise, and,

b̄m,g
f = 0, ∀(f , g) /∈ I2, ∀(m, g) /∈ I, (A.4)

b̄m,g
f = b̂m,g

f , otherwise.

Due to the indicator functions in (A.1) and (A.2), and the fact that 0 ≤ ām,g
f ≤

âm,g
f and 0 ≤ b̄m,g

f ≤ b̂m,g
f , the following constraints are satisfied:

λ+ ǫ1 ≤
∑

m,g,f

πf ā
m,g
f rm, (A.5)

∑

f∈F̂

πf ā
m,g
f ≤

∑

f∈F̂

πf b̄
m,g
f , ∀(m, g), (A.6)

∑

m,g

ām,g
f + b̄m,g

f ≤ 1, ∀f . (A.7)

Next, consider the following trivial assignment for ām,g
f and b̄m,g

f that
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satisfy (A.3)-(A.4) and (A.6)-(A.7):

ām,g
f = 0, ∀(f , g),

b̄m,g
f = 0, ∀(f , g) /∈ I2, ∀(m, g) /∈ I,

b̄m,g
f =

1

|M||F̂|
, otherwise.

Since ǫ > 0, there exists φ < 1 such that λ ≤ φ(λ + ǫ1). Now, since (A.3)-

(A.4) and (A.6)-(A.7) are linear constraints, the following convex combination

will also satisfy these constraints:

am,g
f = 0, ∀(f , g) /∈ I1, ∀(m, g) /∈ I,

am,g
f =

φ+ 1

2
âm,g
f , otherwise,

bm,g
f = 0, ∀(f , g) /∈ I2, ∀(m, g) /∈ I.

bm,g
f =

φ+ 1

2
b̂m,g
f +

1− φ

2

1

|M||F̂|
, otherwise.

From (A.5), we get

λk <
φ+ 1

2
(λk + ǫ) ≤

∑

m,g,f

πfa
m,g
f rkm, ∀k.

From (A.2), we get

∑

f∈F̂

πfa
m,g
f =

φ+ 1

2

∑

f∈F̂

πf â
m,g
f 1{(f ,g)∈I1}1{(m,g)∈I}

=
φ+ 1

2

∑

f∈F̂

πf b̂
m,g
f 1{(f ,g)∈I2}1{(m,g)∈I}

=
∑

f∈F̂

πfb
m,g
f − 1− φ

2

1

|M||F̂|
∑

f∈F̂

πf1{(f ,g)∈I2}1{(m,g)∈I}

<
∑

f∈F̂

πfb
m,g
f , ∀(m, g).
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In the last step, the strict inequality requires that
∑

f∈F̂ πf1{(f ,g)∈I2}1{(m,g)∈I} >

0. If this is not the case for any given (m, g), those virtual queues can be

neglected from the analysis as it does not affect the throughput region. Thus,

we have constructed am,g
f and bm,g

f that satisfy all the conditions stated in the

lemma.
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Appendix B

Proofs of Lemmas for Chapter 4

The proofs given in this Appendix are generalizations of proofs in [57,

58] to multi-state framework. Since we cannot directly apply existing results,

we provide the complete proofs here.

B.1 Proof of Lemma 4.4

The steps involved are the following. First, we prove that, for any fixed

λ ∈ Rn
+, the objective function F (v,λ) is strictly concave in v. Next, we show

that for any fixed λ ∈ Ro
c, the optimal value v∗ lies inside a compact subset

of Rn. These two statements show the existence of a unique solution that is

finite. This along with certain necessary condition for optimality completes

the proof.

For notational simplicity, we denote F (v,λ) by F (v) and the normal-

ization constant or partition function by Z(v) :=
∑

r∈R exp(r ·v). Using calcu-

lus, it is straightforward to obtain the gradient (first-order partial derivatives)

and the Hessian (second-order partial derivatives) of F (v) in the following
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form:

∇F (v) = λ− Eπv
[r]

= λ− sv; (B.1)

H(F (v)) = −
(
Eπv

[
rrT
]
− Eπv

[r]Eπv

[
rT
])

. (B.2)

Here, sv in (B.1) is the offered service rate vector given by (4.13), and Eπv
[Φ] :=

∑
r∈R πv(r)Φ for any matrix, vector or scalar Φ.

In order to establish that F (v) is strictly concave in v, we show that

the Hessian H is negative definite, i.e., for any non-zero η ∈ Rn, ηTHη < 0.

Since H is the negative of a covariance matrix, it is clear that H is negative

semi-definite, i.e., from (B.2),

ηTHη = −Eπv

[
ηT (r− Eπv

[r])(r− Eπv
[r])Tη

]

= −Eπv

[(
ηT (r− Eπv

[r])
)2] ≤ 0. (B.3)

We next prove that the Hessian H is negative definite by contradiction. Con-

sider a fixed v. Suppose that there exists η 6= 0 such that ηTHη = 0. Then,

from (B.3), it follows that the random variable ηT (r − Eπv
[r]) is zero with

probability 1. For any fixed v, all feasible states have non-zero probability. In

particular, πv(0) > 0 and πv(ciei) > 0 for all i ∈ L. Therefore, the random

variable must evaluate to zero at r = 0 and r = ciei, i.e.,

−ηT
Eπv

[r] = ηici − ηT
Eπv

[r] = 0,
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which implies η = 0. This provides a contradiction and establishes that the

Hessian H is negative definite.

Next, we prove that the optimal value v∗ belongs to a compact set.

Let λ + δK̄1 ∈ Rc for some 0 < δ < 1. Note that for any λ ∈ Ro
c there

exists such a δ. Consider a v ∈ Rn. Define vmin = mini vi, l = argmini vi, and

vmax = maxi vi. Let

λ̂ = λ−min(δK̄, λmin)I(vmin < 0)el.

Clearly, λ̂+min(δK̄, λmin)1 ∈ Rc, and hence, there exists a distribution µ on

R such that λ̂+min(δK̄, λmin) = Eµ[r]. Since λ̂ ≤ K̄1, we have

λ̂ ≤ λ̂+min(δK̄, λmin)

1 + min(δ, λmin/K̄)
=
∑

r∈R

µ(r)r

1 + min(δ, λmin/K̄)
(B.4)

and

∑

r∈R

µ(r)

1 + min(δ, λmin/K̄)
=

1

1 + min(δ, λmin/K̄)

< 1− min(δ, λmin/K̄)

2
. (B.5)

From (B.4), (B.5) and the fact that 0, ciei ∈ R, it follows that there exists a

non-negative measure µ̂ on R such that λ̂ =
∑

r∈R µ̂(r)r with
∑

r∈R µ̂(r) =

1− 0.5min(δ, λmin/K̄). Now, define a distribution

µ̃(r) =





µ̂(clel) +
min(δ,λmin/K̄)

4
I(vmin < 0), if r = clel,

µ̂(0) + min(δ,λmin/K̄)
4

(2− I(vmin < 0)) , if r = 0,
µ̂(r), otherwise.

Define λ̃ = Eµ̃[r]. Now, we have

λ̃ = λ−
(
1− cl

4K̄

)
min(δK̄, λmin)I(vmin < 0)el.
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Clearly, λ · v ≤ λ̃ · v. Substituting these inequalities in (4.15), we obtain

F (v) = λ · v − logZ(v)

≤ λ̃ · v − logZ(v)

=
∑

r∈R

µ̃(r)r · v − logZ(v) =
∑

r∈R

µ̃(r) log
exp(r · v)
Z(v)

(a)

≤ min

(
µ̃(clel) log

exp(clel · v)
Z(v)

, µ̃(0) log
exp(0 · v)

Z(v)

)

(b)

≤ min

(
min(δ, λmin/K̄)I(vmin < 0)

4
log

exp(K̄vmin)

1
,

min(δ, λmin/K̄)

4
log

1

exp(Kvmax)

)
. (B.6)

Here, (a) follows from exp(r · v) ≤ Z(v) for any r ∈ R, and (b) follows from

K ≤ ci ≤ K̄ for any i ∈ L. Let v∗ = supv∈Rn F (v). Then, by definition,

F (v∗) ≥ F (0) = − log |R|. From (B.6), we obtain the bounds

v∗max ≤
4 log |R|

Kmin(δ, λmin/K̄)
(B.7)

and

v∗min ≥ − 4 log |R|
K̄min(δ, λmin/K̄)

. (B.8)

Thus, there exists a unique solution which is finite. Finally, the necessary

condition in (B.1) for optimality completes the proof.

B.2 Proof of Lemma 4.5

The first part of the proof follows directly from Lemma 4.4. The second

part also follows from the proof of Lemma 4.4 as explained next. In the proof,
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replace λ with λ + ǫ
4
1 and choose δ = ǫ

4K̄
. Now from (B.7), (B.8) and (4.6),

we obtain

‖v∗‖∞ ≤ 4nK̄ log
⌈
2K̄/ǫ

⌉

min
(
ǫ
4
, λmin

) 1

K
. (B.9)

This follows from K ≤ K̄. If ǫ ≤ 4λmin, then (B.9) simplifies to (4.23).

B.3 Proof of Lemma 4.6

Consider the matrix P̂ = exp(P − I). It is fairly straightforward to

verify that P̂ corresponds the probability transmission matrix of a reversible

Markov chain with the same stationary distribution πv. Now, the steps in-

volved to complete the proof are the following. We need to obtain a lower

bound on the conductance associated with P̂ and apply Result 4.2. Then, we

can apply Result 4.1 to P̂ at τ = ⌊At⌋.

From (4.14), πv(r) = (exp(r · v))/Z(v), where the partition function

Z(v) =
∑

r∈R

exp(r · v).

From (4.6), it is clear that Z(v) ≤
⌈
2K̄/ǫ

⌉n
exp(K̄n‖v‖∞). In addition, exp(r ·

v) ≥ exp(−K̄n‖v‖∞). Therefore, for all r ∈ R,

πv(r) ≥
exp(−2K̄n‖v‖∞)⌈

2K̄/ǫ
⌉n . (B.10)

Consider two states that differ in one dimension, i.e., r, r̂ ∈ R, ‖r−r̂‖0 =

1, then the transition probability P̂ (r, r̂) is lower bounded by the product

of the probability that a Poisson random variable with parameter 1 is one
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and P (r, r̂). This follows from the fact that these two (independent) events

together contribute to the transition probability P̂ (r, r̂). Hence,

P̂ (r, r̂) ≥ e−1P (r, r̂)

= e−1f(r, r̂)

A

≥ exp(−2K̄‖v‖∞)

ne
,

where f(r, r̂) is given by (4.24) and A = n exp(K̄‖v‖∞). To lower bound

conductance in (4.4), the following observation can be used. If both S and Sc

are non-empty, then there is at least one state in S and another state in Sc that

differ in one dimension alone. This follows from the fact that the state-space

is connected through these one dimensional transitions alone. Applying this,

we obtain

Φ ≥ exp(−2K̄(n+ 1)‖v‖∞)

ne
⌈
2K̄/ǫ

⌉n . (B.11)

Using (4.5), and substituting (B.11), (B.10) in (4.3), we have the required

result ‖µ(t)− πv‖TV ≤ ρ1 if

t = exp

(
Θ

(
n‖v‖∞ + n log

1

ǫ

))
log

1

ρ1
.

This completes the proof.
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B.4 Proof of Lemma 4.7

In the proof, we suppress l in the notation, denote sv by s, and denote

πv by π. From triangle inequality and linearity of expectations, we have

E

[∥∥∥λ̂(l)− λ
∥∥∥
1

]
+ E [‖ŝ(l)− sv(l)‖1] ≤

n∑

i=1

E

[
|λ̂i − λi|

]
+

n∑

i=1

E [|ŝi − E[ŝi]|] +
n∑

i=1

|E[ŝi]− si|. (B.12)

Now, we focus on i-th link and upper bound each of the three terms on the

RHS of (B.12) corresponding to this link separately by ρ2/3n.

For bounding the first term in (B.12), denote the arrivals over integral

times as {ξk}Tk=1. From our assumption on arrival processes, these are i.i.d.

random variables with variance at most K2. Hence,

E

[
|λ̂i − λi|

]
≤

(
E

[
(λ̂i − λi)

2
]) 1

2

=


E



(

1

T

T∑

k=1

ξk − λi

)2





1
2

≤ K√
T
. (B.13)

Next, we consider the expected offered service rate under distribution

µ(t), where µ(t) denotes the distribution over R given by the algorithm at

time t. From (4.13), we have

|Eµ(t)[ri]− si| = |Eµ(t)[ri]− Eπ[ri]|

≤ 2K̄‖µ(t)− π‖TV . (B.14)
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If we look at two times z and y such that 0 ≤ z ≤ y, then

E[ri(z)ri(y)] = E[ri(z)E[ri(y)|ri(z)]]

≤ E[ri(z)]max
β∈Ri

E[ri(y)|ri(z) = β]. (B.15)

We use (B.14) and (B.15) along with Lemma 4.6 to obtain bounds on the last

two terms in (B.12). Let B(ρ1) be large enough time such that it satisfies

(4.26).

For the second term in (B.12), using (4.8), we have

(E [|ŝi − E[ŝi]|])2 ≤ E
[
(ŝi − E[ŝi])

2]

= E
[
(ŝi)

2]− (E[ŝi])
2

= E

[(
1

T

∫ T

0

ri(z)dz

)2
]
−
(
E

[
1

T

∫ T

0

ri(z)dz

])2

=
1

T 2

∫ T

0

∫ T

0

(E [ri(z)ri(y)]− E [ri(z)]E [ri(y)]) dydz

=
2

T 2

∫ T

0

∫ T

z

(E [ri(z)ri(y)]− E [ri(z)]E [ri(y)]) dydz

≤ 2

T 2

∫ T

0

E[ri(z)]Îdz, (B.16)

where the inner integral

Î =

∫ T

z

(
max
β∈Ri

E[ri(y)|ri(z) = β]− E [ri(y)]

)
dy.

Here, we used (B.15). Now, from (B.14) and Lemma 4.6 on mixing time, both

maxβ∈Ri
E[ri(y)|ri(z) = β] and E [ri(y)] are close to si by total variation ρ1
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each if y ≥ z +B(ρ1). Formally, we bound Î as follows:

Î ≤
∫ z+B(ρ1)

z

K̄dy +

∫ T

z+B(ρ1)

4ρ1K̄dy

≤ B(ρ1)K̄ + 4ρ1K̄T. (B.17)

Substituting (B.17)in (B.16), we obtain

E [|ŝi − E[ŝi]|] ≤
(

2

T 2

∫ T

0

E[ri(z)](B(ρ1)K̄ + 4ρ1K̄T )dz

) 1
2

≤
(
2

T
K̄2B(ρ1) + 8K̄2ρ1

) 1
2

, (B.18)

where we used E[ri(z)] ≤ K̄.

For the third term, from (4.8) and (B.14) and using techniques applied

above, we obtain

|E[ŝi]− si| =

∣∣∣∣
1

T

∫ T

0

E [ri(z)] dz − si

∣∣∣∣

≤ K̄B(ρ1)

T
+ 2K̄ρ1. (B.19)

With ρ1 = ρ22/(144n
2K̄2) and the choice of

T = exp

(
Θ

(
n‖v‖∞ + n log

1

ǫ

))
1

ρ2
,

it is fairly straightforward to see that RHS of (B.13), (B.18) and (B.19) can

be made smaller than ρ2/3n. This completes the proof of Lemma 4.7.

B.5 Proof of Lemma 4.8

For simplicity, we denote v(τl) by vl. Define G(v) := Fǫ(v) − ‖v −

v∗‖22. Let [θ]D denote component-wise [θi]D. This function has the following

monotone property.
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Lemma B.1. Consider any v ∈ [−D,D]n, ∆v ∈ [−1, 1]n. Then, G([v +

∆v]D) ≥ G(v +∆v). Also, 0 ≥ G(v) ≥ −7nD2.

Proof. Please see Section B.5.1.

Let the error term in the l-th time interval be

el = (λ̂(l)− ŝ(l))− (λ− svl
)

and êl = α(∇Fǫ(vl) + el). From Lemma 4.5, the update equation in (4.9) can

be written as vl+1 = vl + êl. We have ∇Fǫ(vl) ∈ [−K̄, K̄]n, el ∈ [−K̄ and

vl,v
∗ ∈ [−D,D]n. Therefore, ‖êl‖∞ ≤ α(2K̄ + K) ≤ 1. From Lemma B.1

and Taylor’s expansion, we obtain

G(vl+1) = G([vl + êl]D)

≥ G(vl + êl)

= Fǫ(vl + êl)− ‖vl + êl − v∗‖22

= G(vl) +∇Fǫ(vl) · êl +
1

2
êlH êl

−‖êl‖22 − 2(vl − v∗) · êl, (B.20)

where H is the Hessian of Fǫ(·) evaluated at some ṽ around vl. The elements

of the matrix H belong to [−K̄2, K̄2], el ∈ [−K̄,K]n, ∇Fǫ(vl) ∈ [−K̄, K̄]n

and vl,v
∗ ∈ [−D,D]n. Therefore, ‖êl‖∞ ≤ α(2K̄ +K). Using these, we have

1

2
êlH êl − ‖êl‖22 ≥ −α2c,
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where c = (2K̄ +K)2
(

K̄2n2

2
+ n
)
. Since Fǫ(v) is concave with optimum v∗,

Fǫ(v
∗) ≤ Fǫ(vl) +∇Fǫ(vl) · (vl − v∗).

It follows that ∇Fǫ(vl) · (vl − v∗) ≥ 0. Applying these to (B.20), we obtain

G(vl+1) ≥ G(vl) + α‖∇Fǫ(vl)‖22 + α∇Fǫ(vl) · el − α2c

−2α(vl − v∗) · ∇Fǫ(vl)− 2α(vl − v∗) · el,

≥ G(vl) + α‖∇Fǫ(vl)‖22 − αK̄‖el‖1 − α2c

−4αD‖el‖1,

≥ G(vl) + α‖∇Fǫ(vl)‖22 − 5αD‖el‖1 − α2c.

Here, we used K̄ ≤ D.

Next, performing telescopic sum and then using G(v1) ≥ −7nD2 from

Lemma B.1, we obtain,

G(vN+1) =
N∑

l=1

(G(vl+1)−G(vl)) +G(v1)

≥ α

N∑

l=1

‖∇Fǫ(vl)‖22 − 5αD

N∑

l=1

‖el‖1

−α2cN − 7nD2.

Since G(vN+1) ≤ 0, and then applying (4.27), we get

1

N

N∑

l=1

‖∇Fǫ(vl)‖22 ≤ 5D

N

N∑

l=1

‖el‖1 + αc+
7nD2

αN

≤ 5Dρ2 + αc+
7nD2

αN
. (B.21)
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Applying Cauchy-Schwarz inequality, we obtain

1

N

N∑

l=1

E [∇Fǫ(vl)] ≤ 1

N

N∑

l=1

E [‖∇Fǫ(vl)‖2]1

≤

√√√√ 1

N

N∑

l=1

(E [‖∇Fǫ(vl)‖2])21

≤

√√√√ 1

N

N∑

l=1

E [‖∇Fǫ(vl)‖22]1

≤
√

5Dρ2 + αc+
7nD2

αN
1. (B.22)

Next, we look at the average of the empirical service rates over N

update intervals. From (4.27) and Lemma 4.5, we obtain

1

N

N∑

l=1

E [ŝ(l)]− λ =
1

N

N∑

l=1

E [svl
− λ+ ŝ(l)− svl

]

≥ 1

N

N∑

l=1

E [svl
− λ]− ρ21

=
1

N

N∑

l=1

E

[ ǫ
4
1−∇Fǫ(vl)

]
− ρ21.

Substituting (B.22) and proceeding, we obtain

1

N

N∑

l=1

E [ŝ(l)]− λ ≥
(
ǫ

4
−
√

5Dρ2 + αc+
7nD2

αN
− ρ2

)
1.

Now, choose ρ2 =
ǫ2

5×35D
. Then,

√
5Dρ2 + αc+

7nD2

αN
=

√
ǫ2

35
+

ǫ2

35
+

ǫ2

35

=

√
ǫ2

34
=

ǫ

9
. (B.23)

It is easy to check ρ2 +
ǫ
9
≤ ǫ

8
. This completes the proof.
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B.5.1 Proof of Lemma B.1

Let v̂ = v +∆v. Clearly, ‖v̂‖∞ ≤ D + 1. In order to prove G([v̂]D) ≥

G(v̂), it is sufficient to prove the following. Along any dimension i ∈ L,

G([v̂]D,i) ≥ G(v̂), where [v̂]D,i is defined as: the i-th component of [v̂]D,i is

same as the i-th component of [v̂]D, and all other components of [v̂]D,i are

same as the corresponding components of v̂. It is sufficient to prove this

as we can repeatedly apply G([v̂]D,i) ≥ G(v̂) along all dimensions to obtain

G([v̂]D) ≥ G(v̂).

Consider any i ∈ L. If v̂i ∈ [−D,D], then G([v̂]D,i) = G(v̂). Therefore,

the only non-trivial cases are v̂i ∈ (D,D + 1] and v̂i ∈ [−(D + 1),−D). We

consider these cases separately, and apply |∂Fǫ/∂vi| ≤ K̄, and ‖v∗‖∞ ≤ D−K̄.

For v̂i ∈ (D,D + 1], we have

G([v̂]D,i)−G(v̂) =

Fǫ([v̂]D,i)− Fǫ(v̂)− ((D − v∗i )
2 − (v̂i − v∗i )

2)

≥ −K̄(v̂i −D) + (v̂i −D)(v̂i +D − 2v∗i )

≥ (v̂i −D)(−K̄ + v̂i +D − 2v∗i ) ≥ 0.

The other case follows from similar arguments.

Since Fǫ(v) ≤ 0, clearly G(v) ≤ 0. Next, we obtain a simple lower
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bound on G(v) as follows:

G(v) = Fǫ(v)− ‖v − v∗‖22

= (λ+
ǫ

4
1) · v − log

(
∑

r̃∈R

exp(r̃ · v)
)

− ‖v− v∗‖22

≥ −K̄nD − log
(⌈
2K̄/ǫ

⌉n
exp(K̄nD)

)
− n(2D)2

= −n
(
2K̄D + log

⌈
2K̄/ǫ

⌉
+ 4D2

)

≥ −7nD2.

This completes the proof.
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Appendix C

Proofs for Chapter 7

C.1 Proof of Theorem 7.1

Consider complex Gaussian CN(0, 1) distributions for all inputs Qjk.
1

Then, the resulting mutual information with this (not necessarily maximizing)

input distribution I(Qjk;Xjk) is an achievable rate. However, this does not

result in a computable expression. To obtain a computable lower bound to

this rate, we observe that input random variable Qjk and effective noise Z
′

jk

given by (7.7) are uncorrelated base on the following: The input distributions

are such that Qjk is clearly independent of Qli for all (l, i) 6= (j, k) and Zjk.

Furthermore, Qjk is independent of Gjk
jk. Therefore,

E

[(
Gjk

jk − E

[
Gjk

jk

])
|Qjk|2

]
= E

[(
Gjk

jk − E

[
Gjk

jk

])]
E
[
|Qjk|2

]
= 0.

The variance of the effective noise is

E

[
|Z ′

jk|2
]
= var

{
Gjk

jk

}
+

∑

(l,i)6=(j,k)

E

[
|Gjk

li |2
]
+ 1.

Now, from [52] (Theorem 1), we know the result that the channel with inde-

pendent Gaussian noise Ẑjk with same variance given by

X̂jk = E

[
Gjk

jk

]
Qjk + Ẑjk

1Upper case symbols are used in this proof to emphasize that these are random variables.
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is worse, i.e.,

I(Qjk;Xjk) ≥ I(Qjk; X̂jk)

= h(X̂jk)− h(X̂jk|Qjk)

= h(X̂jk)− h(Ẑjk)

= log2


1 +

∣∣∣E
[
Gjk

jk

]∣∣∣
2

1 + var
{
Gjk

jk

}
+
∑

(l,i)6=(j,k) E

[∣∣∣Gjk
li

∣∣∣
2
]


 .

This completes the proof.

C.2 Proof of Theorem 7.4

The proof of (7.15) follows by substituting the results of Lemma 7.2 and

Lemma 7.3 in (7.9). Since θ has a scaled (by a factor of 1/
√
2) chi distribution

with 2M degrees of freedom, it is straightforward to see that

E[θ] =
Γ(M + 1

2
)

Γ(M)
,

E[θ2] = M

and

var{θ} = M − E
2[θ].

Using the duplication formula

Γ(z)Γ

(
z +

1

2

)
= 2(1−2z)

√
πΓ(2z)

and Stirling’s formula

lim
n→∞

n!√
2πnnne−n

= 1,
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we obtain

lim
M→∞

1√
M

Γ
(
M + 1

2

)

Γ(M)

= lim
M→∞

√
π

M
2(1−2M) (2M − 1)!

(M − 1)!(M − 1)!
,

= lim
M→∞

√
π

M
2(1−2M)

√
2π(2M − 1)(2M − 1)(2M−1)e1−2M

2π(M − 1)(M − 1)2(M−1)e2(1−M)
,

= lim
M→∞

√
2M − 1

2M

(
1 +

1

2(M − 1)

)2M−1

e−1,

= 1.

Therefore,

lim
M→∞

E2[θ]

M
= 1

and

lim
M→∞

var{θ}
M

= 0.

This completes the proof of (7.16).

C.3 Proof of Theorem 7.5

First, we simplify the objective function J(Al, αl) of the problem (7.18)

as follows:

J(Al, αl) = E

[
‖αl (FllAlql + zl)− ql‖2 +

∑

j 6=l

‖αlγFjlAlql‖2
∣∣∣∣∣F̂jl

]
,

= E

[
‖(αlFllAl − IK)ql‖2 +

∑

j 6=l

‖αlγFjlAlql‖2
∣∣∣∣∣F̂jl

]
+ α2

lK.
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Now, by switching linear operators (trace and expectation), we further simplify

J(Al, αl):

J(Al, αl) = tr

{
E

[
(αlFllAl − IK)

† (αlFllAl − IK)

+
∑

j 6=l

α2
l γ

2A
†
lF

†
jlFjlAl

∣∣∣∣∣F̂jl

]}
+ α2

lK,

= tr

{
α2
lA

†
lE

[
F

†
llFll

∣∣∣F̂jl

]
Al +

∑

j 6=l

α2
l γ

2A
†
lE

[
F

†
jlFjl

∣∣∣F̂jl

]
Al

−αlA
†
l F̂

†
ll − αlF̂llAl

}
+
(
α2
l + 1

)
K,

= tr

{
α2
lA

†
l

(
F̂

†
llF̂ll + γ2

∑

j 6=l

F̂
†
jlF̂jl +

(
δll + γ2

∑

j 6=l

δjl

)
IM

)
Al

−αlA
†
l F̂

†
ll − αlF̂llAl

}
+
(
α2
l + 1

)
K.

The last step follows from Lemma C.1.

Now, consider the Lagrangian formulation

L (Al, αl, λ) = J (Al, αl) + λ
(
tr
{
A

†
lAl

}
− 1
)

for the problem (7.18). Let

R = F̂
†
llF̂ll + γ2

∑

j 6=l

F̂
†
jlF̂jl +

(
δll + γ2

∑

j 6=l

δjl +
λ

α2
l

)
IM ,

U = αlR
1
2Al and V = R− 1

2 F̂
†
ll. We have

L (Al, αl, λ) = ‖U−V‖2 − tr
{
F̂llR

−1F̂
†
ll

}
+
(
α2
l + 1

)
K − λ. (C.1)
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This can be easily verified by expanding the right hand side. It is clear from

(C.1) that, for any given αl and λ, L(Al, αl, λ) is minimized if and only if

U = V. Hence, we obtain

A
opt
l =

1

αl
R−1F̂

†
ll. (C.2)

Let L(αl, λ) = L(Aopt
l , αl, λ). Now, we have

L(αl, λ) = − tr
{
F̂llR

−1F̂
†
ll

}
+
(
α2
l + 1

)
K − λ. (C.3)

Note that

F̂
†
llF̂ll + γ2

∑

j 6=l

F̂
†
jlF̂jl

can be factorized in the form

S† diag{[c1 c2 · · · cM ]}S,

where S†S = IM . Let δ = δll + γ2
∑

j 6=l δjl. Therefore,

R−1 =

(
S† diag{[c1 c2 · · · cM ]}S+

(
δ +

λ

α2
l

)
IM

)−1

,

=

(
S† diag

{[
c1 + δ +

λ

α2
l

c2 + δ +
λ

α2
l

· · · cM + δ +
λ

α2
l

]}
S

)−1

,

= S† diag

{[(
c1 + δ +

λ

α2
l

)−1 (
c2 + δ +

λ

α2
l

)−1

· · ·

(
cM + δ +

λ

α2
l

)−1
]}

S. (C.4)
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Substituting (C.4) in (C.3), we get

L(αl, λ) = −
M∑

m=1

dm

cm + δ + λ
α2
l

+ (α2
l + 1)K − λ, (C.5)

where dm is the (m,m)-th entry of SF̂†
llF̂llS

†. Consider the equations obtained

by differentiating (C.5) w.r.t. αl and λ and equating to zero:

M∑

m=1

dm(
cm + δ + λ

α2
l

)2
1

α2
l

= 1, (C.6)

−
M∑

m=1

dm(
cm + δ + λ

α2
l

)2
2λ

α3
l

+ 2αlK = 0. (C.7)

Substituting (C.6) in (C.7), we get

λ

α2
l

= K. (C.8)

Combining the results in (C.2), (C.4), and (C.8), we have

A
opt
l =

1

αopt
l

(
F̂

†
llF̂ll + γ2

∑

j 6=l

F̂
†
jlF̂jl +

(
δll + γ2

∑

j 6=l

δjl +K

)
IM

)−1

F̂
†
ll,

where αopt
l is such that ‖Aopt

l ‖2 = 1. This completes the proof.

Lemma C.1. Consider the optimization problem (7.18). For all j and l,

E

[
F̃

†
jlF̃jl

∣∣∣F̂jl

]
= δjlIM ,

where

δjl = pf tr

{
Djl

(
IK + prτD

1
2
jlΨ

†
jΛjlΨjD

1
2
jl

)−1
}
, (C.9)

and

Λjl =

(
I+ prτ

∑

i 6=j

ΨiDilΨ
†
i

)−1

.
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Proof. Let f̃jlm denote the m-th column of F̃jl. Similarly, we define hjlm and

ĥjlm. From (7.3), we have

f̃jlm =
√
pfD

1
2
jl(hjlm − ĥjlm),

=
√
pfD

1
2
jl


hjlm −√

prτD
1
2
jlΨ

†
j

(
I+ prτ

L∑

i=1

ΨiDilΨ
†
i

)−1

ylm


 ,

where ylm is given by (7.1). For given j and l, it is clear that
{
f̃jlm

}M

m=1
is

i.i.d. zero-mean CN distributed. Hence,

E

[
F̃

†
jlF̃jl

∣∣∣F̂jl

]
= δjlIM

with

δjl = E

[
f̃
†
jlmf̃jlm

∣∣∣F̂jl

]
,

= pf tr
{
D

1
2
jl

(
IK − E

[
ĥjlmĥ

†
jlm

∣∣∣F̂jl

])
D

1
2
jl

}
,

= pf tr
{
D

1
2
jl

(
IK − prτD

1
2
jlΨ

†
jΛjlΨjD

1
2
jl

)
D

1
2
jl

}
,

= pf tr

{
D

1
2
jl

(
IK + prτD

1
2
jlΨ

†
jΛjlΨjD

1
2
jl

)−1

D
1
2
jl

}
,

where

Λjl =

(
I+ prτ

∑

i 6=j

ΨiDilΨ
†
i

)−1

.

The last step follows from matrix inversion lemma. This completes the proof

of the lemma.
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[17] P. Brémaud. Markov chains: Gibbs fields, Monte Carlo simulation, and

queues. Springer, 1999.

[18] V. R. Cadambe and S. A. Jafar. Interference alignment and the degrees

of freedom for the K-user interference channel. IEEE Trans. Inform.

Theory, 54(8):3425–3441, Aug. 2008.

[19] V. R. Cadambe and S. A. Jafar. Multiple access outerbounds and the

inseparability of parallel Gaussian interference channels. In Proc. IEEE

Global Telecommunications Conference (GLOBECOM), 2008.

[20] G. Caire, N. Jindal, M. Kobayashi, and N. Ravindran. Multiuser

MIMO achievable rates with downlink training and channel state feed-

back. IEEE Trans. Inform. Theory, 56(6):2845–2866, Jun. 2010.

[21] G. Caire and S. Shamai (Shitz). On the achievable throughput of a mul-

tiantenna Gaussian broadcast channel. IEEE Trans. Inform. Theory,

49:1691–1707, Jul. 2003.

[22] A. B. Carleial. A case where interference does not reduce capacity.

IEEE Trans. Inform. Theory, 21:569, 1975.

228



[23] J. Chakareski and P. Frossard. Rate-distortion optimized distributed

packet scheduling of multiple video streams over shared communication

resources. IEEE Trans. Multimedia, 8(2):207, 2006.

[24] D. Chen, K. Azarian, and J. N. Laneman. A case for amplify-forward

relaying in the block-fading multiple-access channel. IEEE Trans. In-

form. Theory, 54(8):3728–3733, 2008.

[25] M. Chiang. Balancing transport and physical layers in wireless multihop

networks: Jointly optimal congestion control and power control. IEEE

J. Sel. Areas Commun., 23(1), 2005.

[26] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle. Layer-

ing as optimization decomposition: A mathematical theory of network

architectures. Proceedings of the IEEE, 95(1):255–312, March 2007.

[27] P. Chou and Z. Miao. Rate-distortion optimized streaming of packetized

media. IEEE Trans. Multimedia, 8(2), 2006.

[28] S. Christensen, R. Agarwal, E. Carvalho, and J. Cioffi. Weighted sum-

rate maximization using weighted MMSE for MIMO-BC beamforming

design. IEEE Trans. Wireless Commun., 7(12):1–8, 2008.

[29] M. Costa and A. El-Gamal. The capacity region of the discrete memory-

less interference channel with strong interference. IEEE Trans. Inform.

Theory, 33(5):710–711, 1987.

229



[30] T. Cover and J. Thomas. Elements of information theory. Wiley-

Interscience, 2006.

[31] T. M. Cover and A. El-Gamal. Capacity theorems for the relay channel.

IEEE Trans. Inform. Theory, 25(5):572–584, 1979.

[32] T. Cui, T. Ho, and L. Chen. On distributed distortion optimization

for correlated sources. In Proc. IEEE International Symposium on

Information Theory (ISIT), 2008.

[33] J. Dai. On positive Harris recurrence of multiclass queueing networks:

A unified approach via fluid limit models. Ann. Appl. Probab., 5(1):49–

77, 1995.

[34] S. Deb, V. Srinivasan, and R. Maheshwari. Dynamic spectrum access in

DTV whitespaces: Design rules, architecture and algorithms. In Proc.

ACM MobiCom, 2009.

[35] P. Ding, D. J. Love, and M. D. Zoltowski. On the sum rate of channel

subspace feedback for multi-antenna broadcast channels. In Proc. IEEE

Global Telecommunications Conference (GLOBECOM), pages 2699–2703,

Nov. 2005.

[36] L. Dong. Cross-layer design for cooperative wireless networks. PhD

thesis, Drexel University, 2008.

230



[37] Y. Eldar and N. Merhav. A competitive minimax approach to ro-

bust estimation of random parameters. IEEE Trans. Signal Process.,

52(7):1931, 2004.

[38] A. Ephremides and B. Hajek. Information theory and communication

networks: An unconsummated union. IEEE Trans. Inform. Theory,

44(6):2416–2434, 1998.

[39] A. Eryilmaz, R. Srikant, and J. R. Perkins. Stable scheduling policies

for fading wireless channels. IEEE/ACM Trans. Netw., 13(2):411–424,

2005.

[40] R. Etkin and E. Ordentlich. On the degrees-of-freedom of the K-user

Gaussian interference channel. In Proc. IEEE International Symposium

on Information Theory (ISIT), pages 1919–1923, 2009.

[41] R. Etkin, D. Tse, and H. Wang. Gaussian interference channel capacity

to within one bit. IEEE Trans. Inform. Theory, 54(12):5534–5562,

2008.

[42] F. H. Fitzek and M. D. Katz. Cognitive Wireless Networks. Springer,

2007.

[43] G. J. Foschini, K. Karakayali, and R. A. Valenzuela. Coordinating mul-

tiple antenna cellular networks to achieve enormous spectral efficiency.

IEE Proceedings Communications, 153:548–555, Aug. 2006.

231



[44] L. Georgiadis, M. J. Neely, and L. Tassiulas. Resource Allocation and

Cross-Layer Control in Wireless Networks. Now Publishers, 2006.

[45] K. Gomadam, V. Cadambe, and S. Jafar. Approaching the capacity of

wireless networks through distributed interference alignment. In Proc.

IEEE Global Telecommunications Conference (GLOBECOM), 2008.

[46] K. S. Gomadam, H. C. Papadopoulos, and C.-E. W. Sundberg. Tech-

niques for multi-user MIMO with two-way training. In Proc. IEEE

International Conference on Communications (ICC), pages 3360–3366,

May 2008.

[47] T. Gou and S. Jafar. Degrees of freedom of the K user M times N

MIMO interference channel. IEEE Trans. Inform. Theory, 56(12):6040–

6057, 2010.

[48] V. Goyal. Multiple description coding: Compression meets the network.

IEEE Signal Processing Magazine, 18(5):74–93, 2001.

[49] M. Guillaud, D. T. M. Slock, and R. Knopp. A practical method for

wireless channel reciprocity exploitation through relative calibration. In

Proc. ISSPA, 2005.

[50] P. Gupta and A. L. Stolyar. Optimal throughput allocation in general

random-access networks. In Proc. Info. Sciences and Systems (CISS),

pages 1254–1259, 2006.

232



[51] T. Han and K. Kobayashi. A new achievable rate region for the inter-

ference channel. IEEE Trans. Inform. Theory, 27(1):49–60, 1981.

[52] B. Hassibi and B. M. Hochwald. How much training is needed in

multiple-antenna wireless links? IEEE Trans. Inform. Theory, 49:951–

963, Apr. 2003.

[53] B. M. Hochwald, C. B. Peel, and A. L. Swindlehurst. A vector-perturbation

technique for near-capacity multiantenna multiuser communication part

II: Perturbation. IEEE Trans. Commun., 53:537–544, Jan. 2005.

[54] K. Huang, R. W. Heath, Jr., and J. G. Andrews. Space division mul-

tiple access with a sum feedback rate constraint. IEEE Trans. Signal

Process., 55(7):3879–3891, 2007.

[55] S. A. Jafar. The ergodic capacity of interference networks. http://

arxiv.org/abs/0902.0838, 2009.

[56] A. Jafarian, J. Jose, and S. Vishwanath. Algebraic lattice alignment for

K-user interference channels. In Proc. Allerton Conference on Com-

mun., Control and Computing, pages 88–93, Oct. 2009.

[57] L. Jiang, D. Shah, J. Shin, and J. Walrand. Distributed random access

algorithm: Scheduling and congestion control. IEEE Trans. Inform.

Theory, 56(12):6182–6207, 2010.

233

http://arxiv.org/abs/0902.0838
http://arxiv.org/abs/0902.0838


[58] L. Jiang and J. Walrand. Convergence analysis of a distributed CSMA

algorithm for maximal throughput in a general class of networks. Tech-

nical Report UCB/EECS-2008-185, UC Berkeley, Dec. 2008.

[59] L. Jiang and J. Walrand. A distributed CSMA algorithm for through-

put and utility maximization in wireless networks. In Proc. Allerton

Conference on Commun., Control and Computing, 2008.

[60] L. Jiang and J. Walrand. Approaching throughput-optimality in a dis-

tributed CSMA algorithm with contention resolution. Technical Report

UCB/EECS-2009-37, UC Berkeley, Mar. 2009.

[61] N. Jindal. MIMO broadcast channels with finite-rate feedback. IEEE

Trans. Inform. Theory, 52:5045–5060, Nov. 2006.

[62] M. Joham, P. M. Castro, L. Castedo, and W. Utschick. MMSE op-

timal feedback of correlated CSI for multi-user precoding. In Proc.

IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP), pages 3129–3132, Mar. 2008.

[63] J. Jose, A. Ashikhmin, T. Marzetta, and S. Vishwanath. Pilot contami-

nation problem in multi-cell TDD systems. In Proc. IEEE International

Symposium on Information Theory (ISIT), pages 2184 –2188, Jul. 2009.

[64] J. Jose, A. Ashikhmin, T. Marzetta, and S. Vishwanath. Pilot con-

tamination and precoding in multi-cell TDD systems. Accepted for

publication in IEEE Trans. on Wireless Commun., 2011.

234



[65] J. Jose, A. Ashikhmin, P. Whiting, and S. Vishwanath. Scheduling and

pre-conditioning in multi-user MIMO TDD systems. In Proc. IEEE

International Conference on Communications (ICC), pages 4100 – 4105,

May 2008.

[66] J. Jose, A. Ashikhmin, P. Whiting, and S. Vishwanath. Channel estima-

tion and linear precoding in multiuser multiple-antenna TDD systems.

IEEE Trans. on Veh. Technol., 60(5):2102–2116, Jun. 2011.

[67] J. Jose, N. Prasad, M. Khojastepour, and S. Rangarajan. On robust

weighted-sum rate maximization in MIMO interference networks. In

Proc. IEEE International Conference on Communications (ICC), Jun.

2011.

[68] J. Jose and S. Vishwanath. Sum capacity of K user Gaussian degraded

interference channels. In Proc. IEEE Info. Theory Workshop (ITW),

Dublin, Ireland, Sep. 2010.

[69] J. Jose and S. Vishwanath. Distributed rate allocation for wireless

networks. Accepted for publication in IEEE Trans. Inform. Theory,

2011.

[70] J. Jose and S. Vishwanath. Network control: A rate-distortion perspec-

tive. In Proc. IEEE International Symposium on Information Theory

(ISIT), Aug. 2011.

235



[71] J. Jose, L. Ying, and S. Vishwanath. On the stability region of amplify-

and-forward cooperative relay networks. In Proc. IEEE Info. Theory

Workshop (ITW), pages 620–624, Taormina, Sicily, Oct. 2009.

[72] T. Kailath, A. H. Sayed, and B. Hassibi. Linear Estimation. Prentice

Hall, 2000.

[73] M. Kalman, P. Ramanathan, and B. Girod. Rate-distortion optimized

video streaming with multiple deadlines. In Proc. of International

Conference on Image Processing (ICIP), 2003.

[74] F. Kelly. Mathematical modelling of the internet. Mathematics Unlimited-

2001 and Beyond, pages 685–702, 2001.

[75] M. Khojastepour, X. Wang, and M. Madihian. Design of multiuser

downlink linear MIMO precoding systems with quantized feedback. IEEE

Trans. on Veh. Technol., 58(9):4828 –4836, Nov. 2009.

[76] G. Kramer. Outer bounds on the capacity of Gaussian interference

channels. IEEE Trans. Inform. Theory, 50:581–586, Mar. 2004.

[77] J. Laneman, D. Tse, and G. Wornell. Cooperative diversity in wire-

less networks: Efficient protocols and outage behavior. IEEE Trans.

Inform. Theory, 50(12):3062–3080, 2004.

[78] J. Lee, J. Lee, Y. Yi, S. Chong, A. Proutiere, and M. Chiang. Im-

plementing utility optimal CSMA. In Proc. Allerton Conference on

Commun., Control and Computing, 2009.

236



[79] Y. Li. Optimal network resource allocation for heterogeneous traffic.

PhD thesis, Princeton University, Princeton, NJ, USA, 2008.

[80] X. Lin, N. B. Shroff, and R. Srikant. A tutorial on cross-layer optimiza-

tion in wireless networks. IEEE J. Sel. Areas Commun., 24(8):1452–

1463, July 2006.

[81] J. Liu, Y. Yi, A. Proutiere, M. Chiang, and H. V. Poor. Convergence and

tradeoff of utility-optimal CSMA. Wiley Journal of Wireless Commu-

nications and Mobile Computing, Special Issue on Advances in Wireless

Communications and Networking, Dec. 2009.

[82] Z. Luo and S. Zhang. Dynamic spectrum management: Complexity and

duality. IEEE J. Sel. Topics Signal Process., 2(1):57–73, 2008.

[83] P. Marbach, A. Eryilmaz, and A. Ozdaglar. Achievable rate region of

CSMA schedulers in wireless networks with primary interference con-

straints. In Proc. IEEE Conf. on Decision and Control, 2007.

[84] T. L. Marzetta. How much training is required for multiuser MIMO?

In Proc. Asilomar Conference on Signals, Systems and Computers (AC-

SSC), pages 359–363, Nov. 2006.

[85] T. L. Marzetta and B. M. Hochwald. Fast transfer of channel state

information in wireless systems. IEEE Trans. Signal Process., 54:1268–

1278, 2006.

237



[86] S. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability.

Springer-Verlag, 1993.

[87] J. Mitola and G. Q. Maguire. Cognitive radio: Making software radios

more personal. IEEE Personal Communications, 6(4):13–18, 1999.

[88] A. Motahari and A. Khandani. Capacity bounds for the Gaussian in-

terference channel. IEEE Trans. Inform. Theory, 55(2):620 –643, Feb.

2009.

[89] A. S. Motahari, S. O. Gharan, M. A. Maddah-Ali, and A. K. Khandani.

Real interference real interference alignment: Exploring the potential of

single antenna systems. http://arxiv.org/abs/0908.2282/, 2009.

[90] B. Nazer, M. Gastpar, S. Jafar, and S. Vishwanath. Ergodic interference

alignment. In Proc. IEEE International Symposium on Information

Theory (ISIT), pages 1769–1773, 2009.

[91] J. Ni, B. Tan, and R. Srikant. Q-CSMA: Queue-length based CSMA/CA

algorithms for achieving maximum throughput and low delay in wireless

networks. In Proc. IEEE Infocom, Mar. 2010.

[92] A. Nosratinia, T. Hunter, and A. Hedayat. Cooperative communication

in wireless networks. IEEE Communications Magazine, 42(10):74–80,

2004.

[93] D. O’Neill, E. Akuiyibo, S. Boyd, and A. Goldsmith. Optimizing adap-

tive modulation in wireless networks via multi-period network utility

238

http://arxiv.org/abs/0908.2282/


maximization. In Proc. IEEE International Conference on Communi-

cations (ICC), 2010.

[94] D. O’Neill, A. Goldsmith, and S. Boyd. Cross-layer design with adaptive

modulation: Delay, rate, and energy tradeoffs. In Proc. IEEE Global

Telecommunications Conference (GLOBECOM), 2008.

[95] Y. Oohama. The rate-distortion function for the quadratic Gaussian

CEO problem. IEEE Trans. Inform. Theory, 44(3):1057, 1998.

[96] D. Palomar and M. Chiang. A tutorial on decomposition methods for

network utility maximization. IEEE J. Sel. Areas Commun., 24(8):1439–

1451, 2006.

[97] D. Papailiopoulos and A. Dimakis. Interference alignment as a rank con-

strained rank minimization. In Proc. IEEE Global Telecommunications

Conference (GLOBECOM), Dec. 2010.

[98] S. Peters and R. W. Heath, Jr. Cooperative algorithms for mimo inter-

ference channels. IEEE Trans. on Veh. Technol., 60(1):206–218, Jan.

2011.

[99] S. Rajagopalan, D. Shah, and J. Shin. Network adiabatic theorem: an

efficient randomized protocol for contention resolution. In Proc. ACM

Sigmetrics, pages 133–144, 2009.

[100] I. Santamaria, O. Gonzalez, R. W. Heath, Jr., and S. Peters. Max-

imum sum-rate interference alignment algorithms for MIMO channels.

239



In Proc. IEEE Global Telecommunications Conference (GLOBECOM),

Dec. 2010.

[101] I. Sason. On achievable rate regions for the Gaussian interference chan-

nel. IEEE Trans. Inform. Theory, 50(6):1345 – 1356, Jun. 2004.

[102] H. Sato. On degraded gaussian two-user channels (corresp.). IEEE

Trans. Inform. Theory, 24(5):637 – 640, sep 1978.

[103] H. Sato. The capacity of the Gaussian interference channel under strong

interference (corresp.). IEEE Trans. Inform. Theory, 27:786–788, 1981.

[104] B. Schein. Distributed Coordination in Network Information Theory.

PhD thesis, Massachusetts Institute of Technology, Cambridge, MA,

2001.

[105] D. Schmidt, C. Shi, R. Berry, M. Honig, and W. Utschick. Minimum

mean squared error interference alignment. In Proc. of Asilomar Con-

ference on Signals, Systems, and Computers, 2009.

[106] H. Seferoglu, A. Markopoulou, and U. Kozat. Network coding-aware

rate control and scheduling in wireless networks. In IEEE International

Conference on Multimedia and Expo (ICME), pages 1496–1499, 2009.

[107] A. Sendonaris, E. Erkip, and B. Aazhang. User cooperation diversity

part I and part II. IEEE Trans. Commun., 51(11):1927–48, Nov. 2003.

240



[108] E. Setton, T. Yoo, X. Zhu, A. Goldsmith, and B. Girod. Cross-layer

design of ad hoc networks for real-time video streaming. IEEE Wireless

Communications, 12(4):59–65, 2005.

[109] D. Shah, D. Tse, and J. N. Tsitsiklis. Hardness of low delay network

scheduling. In IEEE Info. Theory Workshop (ITW), Jan. 2010.

[110] S. Shakkottai and R. Srikant. Network optimization and control. Foun-

dations and Trends R© in Networking, 2(3), 2007.

[111] S. Shamai (Shitz), O. Somekh, and B. M. Zaidel. Multi-cell communica-

tions: An information-theoretic perspective. In Proc. Joint Workshop

on Communicaitons and Coding (JWCC), Florence, Italy, Oct. 2004.

[112] X. Shang, G. Kramer, and B. Chen. A new outer bound and the noisy-

interference sum-rate capacity for Gaussian interference channels. IEEE

Trans. Inform. Theory, 55(2):689–699, 2009.

[113] C. E. Shannon. A mathematical theory of communication. The Bell

System Technical Journal, 27(7):379–423, 1948.

[114] M. Sharif and B. Hassibi. On the capacity of MIMO broadcast channels

with partial side information. IEEE Trans. Inform. Theory, 51:506–

522, Feb. 2005.

[115] Z. Shen, R. Chen, J. G. Andrews, R. W. Heath, Jr., and B. L. Evans.

Low complexity user selection algorithms for multiuser MIMO systems

241



with block diagonalization. IEEE Trans. Signal Process., 54:3658–3663,

Sep. 2006.

[116] M. Stojnic, H. Vikalo, and B. Hassibi. Rate maximization in multi-

antenna broadcast channels with linear preprocessing. IEEE Trans.

Wireless Commun., 5:2338–2342, Sep. 2006.

[117] A. L. Stolyar. Dynamic distributed scheduling in random access net-

works. J. Appl. Probab., 45(2):297–313, 2008.

[118] A. Tajer, N. Prasad, and X. Wang. Robust beamforming for multi-cell

downlink transmission. In Proc. IEEE International Symposium on

Information Theory (ISIT), Jun. 2010.

[119] L. Tassiulas and A. Ephremides. Jointly optimal routing and scheduling

in packet radio networks. IEEE Trans. Inform. Theory, 38(1):165,

1992.

[120] L. Tassiulas and A. Ephremides. Stability properties of constrained

queuing systems and scheduling policies for maximum throughput in

multihop radio networks. IEEE Trans. Autom. Control, 37(12):1936–

1948, Dec. 1992.

[121] C. Tian, J. Chen, S. Diggavi, and S. Shamai. Optimality and ap-

proximate optimality of source-channel separation in networks. In

Proc. IEEE International Symposium on Information Theory (ISIT),

Jun. 2010.

242



[122] L. Vandenberghe, S. Boyd, and S. Wu. Determinant maximization with

linear matrix inequality constraints. SIAM journal on matrix analysis

and applications, 19:499–533, 1998.

[123] S. Venkatesan, A. Lozano, and R. Valenzuela. Network MIMO: Over-

coming intercell interference in indoor wireless systems. In Proc. Asilo-

mar Conference on Signals, Systems and Computers (ACSSC), pages

83–87, Nov. 2007.

[124] S. Vishwanath, N. Jindal, and A. J. Goldsmith. Duality, achievable

rates, and sum-rate capacity of Gaussian MIMO broadcast channels.

IEEE Trans. Inform. Theory, 49:2658–2668, Oct. 2003.

[125] P. Viswanath and D. N. C. Tse. Sum capacity of the vector Gaussian

broadcast channel and uplink-downlink duality. IEEE Trans. Inform.

Theory, 49:1912–1921, Aug. 2003.
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[127] N. Vučic, H. Boche, and S. Shi. Robust transceiver optimization in

downlink multiuser MIMO systems. IEEE Trans. Signal Process.,

57(9):3576–3587, 2009.

[128] A. Wagner, S. Tavildar, and P. Viswanath. The rate region of the

quadratic Gaussian two-terminal source-coding problem. IEEE Trans.

243



Inform. Theory, 54(5):1938–1961, 2008.

[129] H. Weingarten, Y. Steinberg, and S. Shamai (Shitz). The capacity re-

gion of the Gaussian multiple-input multiple-output broadcast channel.

IEEE Trans. Inform. Theory, 52:3936–3964, Sep. 2006.

[130] Y. Xi and E. Yeh. Optimal capacity allocation, routing, and congestion

control in wireless networks. In Proc. IEEE International Symposium

on Information Theory (ISIT), pages 2511–2515, 2006.

[131] Y. Xi and E. Yeh. Distributed algorithms for spectrum allocation, power

control, routing, and congestion control in wireless networks. In Proc.

ACM MobiHoc, pages 180–189, 2007.

[132] E. Yeh and R. Berry. Throughput optimal control of cooperative re-

laying networks. IEEE Trans. Inform. Theory, 53:3827–3832, Oct.

2007.

[133] E. Yeh and R. Berry. Throughput optimal control of wireless networks

with two-hop cooperative relaying. In Proc. IEEE International Sym-

posium on Information Theory (ISIT), Jun. 2007.

[134] E. M. Yeh and A. S. Cohen. Delay optimal rate allocation in mul-

tiaccess fading communications. In Proc. of Allerton Conference on

Communication, Control, and Computing, Oct. 2004.

[135] L. Ying, R. Srikant, and D. Towsley. Cluster-based back-pressure rout-

ing algorithm. In Proc. IEEE Infocom, pages 484–492, 2008.

244



[136] T. Yoo, N. Jindal, and A. Goldsmith. Multi-antenna broadcast channels

with limited feedback and user selection. IEEE J. Sel. Areas Commun.,

25:1478–1491, 2007.

[137] W. Yu and J. M. Cioffi. Sum capacity of Gaussian vector broadcast

channels. IEEE Trans. Inform. Theory, 50(9):1875–1892, 2004.

[138] W. Yu, W. Rhee, S. Boyd, and J. Cioffi. Iterative water-filling for Gaus-

sian vector multiple-access channels. IEEE Trans. Inform. Theory,

50(1):145, 2004.

[139] H. Zhang and H. Dai. Co-channel interference mitigation and coopera-

tive processing in downlink multicell multiuser MIMO networks. Euro-

pean Journal on Wireless Communications and Networking, pages 222–

235, 4th Quarter 2004.

[140] J. Zhang, R. Chen, J. G. Andrews, A. Ghosh, and R. W. Heath, Jr.

Networked MIMO with clustered linear precoding. Trans. Wireless.

Comm., 8(4):1910–1921, 2009.

245



Vita

Jubin Jose is a doctoral candidate in the department of Electrical and

Computer Engineering at The University of Texas at Austin. He received

his B.Tech. in Electrical Engineering from the Indian Institute of Technology

(IIT) Madras in 2006 and M.S. in Electrical and Computer Engineering from

UT Austin in 2008. His industry experience includes working as Research As-

sistant at NEC labs, Princeton, NJ; Interim Engineering Intern at Qualcomm

Corporate R&D, San Diego, CA; and Consultant at Alcatel-Lucent Bell Labs,

Murray Hill, NJ. His research interests lie in the broad area of communication

networks.

Permanent address: jubinj@gmail.com

This dissertation was typeset with LATEX
† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

246


	Acknowledgments
	Abstract
	List of Figures
	Chapter 1. Introduction
	Network Architecture: Overview
	Interference Management: Overview
	Organization
	Notation

	Chapter 2. Network Resource Allocation: A Rate-Distortion Perspective
	Introduction
	Rate-Distortion Framework
	Decomposition into Multiple Layers
	Compression Control for Binary Sources
	Rate-Distortion Framework applied to Multiple Access Channels

	Chapter 3. Queue-Architecture and Stability Analysis in Cooperative Relay Networks
	Introduction
	Background on Cooperative Relay Networks
	Our Approach & Main Results
	System Model
	Queue-Architecture & Throughput Region
	Throughput-Optimal Network Algorithm

	Chapter 4. Distributed Rate Allocation for Wireless Networks
	Introduction
	System Model
	Definitions & Known Results
	Rate Allocation Algorithm & Main Results
	Rate Allocation Markov Chain & Rate Stability of the Non-Adaptive Algorithm
	Throughput Optimality of the Adaptive Algorithm
	Application: White-Space Networks
	Further Discussion & Simulation

	Chapter 5. Genie-MAC Outer Bound for Gaussian Interference Networks
	Introduction
	System Model
	Outer Bound on Capacity Region
	Sum Capacity of Degraded Gaussian IFCs
	MIMO Unit-Rank Interference Channels

	Chapter 6. Robust Weighted-Sum Rate Maximization in Multiple Antenna Interference Networks
	Introduction
	System Model
	Preliminaries
	Robust Weighted-Sum Rate Maximization
	Precoder Design with Single-User Decoding
	Robust Max-Min Rate Objective
	Genie-MAC Outer Bound
	Numerical Results

	Chapter 7. Pilot Contamination and Precoding in Multi-Cell TDD Systems
	Introduction
	Multi-Cell TDD System Model
	Communication Scheme
	Pilot Contamination Analysis
	Multi-Cell MMSE-Based Precoding
	Numerical Results

	Chapter 8. Conclusion
	Appendices
	Appendix A. Proofs of Lemmas for Chapter 3
	Proof of Lemma 3.1
	Proof of Lemma 3.4

	Appendix B. Proofs of Lemmas for Chapter 4
	Proof of Lemma 4.4
	Proof of Lemma 4.5
	Proof of Lemma 4.6
	Proof of Lemma 4.7
	Proof of Lemma 4.8

	Appendix C. Proofs for Chapter 7
	Proof of Theorem 7.1
	Proof of Theorem 7.4
	Proof of Theorem 7.5

	Bibliography
	Vita

