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Abstract 

 

Models of Fluid Dynamics in Biological Tissues for Medical Imaging 
and Drug Delivery 

 

Ryan Thomas Woodall, Ph.D. 

The University of Texas at Austin, 2020 

 

Supervisor:  Thomas E. Yankeelov 

 

Fluid dynamics are essential to accurately describe the transport of any solute or 

particle delivered to a tumor, whether it is blood, nutrients, oxygen, systemic therapies, or 

a contrast agent. The purpose of this dissertation is to utilize quantitative medical imaging 

to inform computational fluid dynamics models of transport in biological tissues for 

applications in medical imaging and drug delivery, thereby improving our understanding 

of the imaging modalities, and providing accurate models of contrast agent and drug 

delivery for clinical use to maximize benefit to the individual patient. This objective is 

addressed in two distinct parts. First, we develop a high resolution, tissue-based model of 

contrast agent delivery in the mouse BT474 xenograft model of breast cancer, and simulate 

the acquisition of dynamic contrast enhanced magnetic resonance imaging data in this 

domain to test the accuracy of the standard methodology typically used to analyze such 

data. The results indicate that this widely used methodology for analyzing DCE-MRI data 

has inherent inaccuracies, as it does not account for passive delivery and distribution of the 

contrast agent due to diffusion within each voxel. Second, we develop, calibrate, and 

validate a mathematical model of convection-enhanced delivery of Rhenium-186 
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nanoliposomes to glioblastoma multiforme.  The model is used to identify the optimal 

placement of the catheter within the tumor, so as to simultaneously minimize radiation 

exposure to healthy tissue and maximize tumor coverage. While models of convection 

enhanced delivery of molecular agents are currently on the market, no such models exist 

which are designed specifically for nanoparticle delivery, and which are calibrated and 

validated using clinical medical image data. Our results offer a useful model which 

accurately recapitulates the distribution of these liposomes, and is capable of identifying 

an optimal catheter placement for the delivery of these nanoparticles which avoids leakage 

into non-tumor regions. 
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Chapter 1: Introduction 
 

1.1 Motivation 

The overarching goal of this dissertation is to develop fluid dynamical models for 

the delivery of metabolites to cancer, informed by medical imaging. In the case of breast 

cancer, dynamic contrast enhanced MRI is a tool utilized to parameterize and classify 

tumors. The most widely used models of contrast agent delivery to tumors assume that the 

spatial dependence of contrast agent is negligible, but as our understanding of caner 

biology grows, we are beginning to understand that cancer is highly dependent upon shape 

and geometry, as well as the spatial heterogeneity of cancer cells within a tumor. As such, 

this dissertation challenges the assumption that spatial contributions to contrast agent 

arrival within a tumor, for dynamic contrast enhanced imaging, is unimportant, as is a 

source of significant error in the standard method of dynamic contrast enhanced MRI 

quantification and data processing. In the case of glioblastoma multiforme, a highly 

aggressive and lethal form of primary brain cancer, aggressive and risky treatments must 

be used to extend the patient’s life. Convection enhanced delivery of radioactive liposomes 

via catheter directly to the tumor location is one such treatment for this type of cancer. Due 

to the extreme risks involved in perfusing brain tissue with a highly radioactive therapeutic, 

it is imperative to use all the information available to be able to accurately predict and 

optimize the treatment for individual patients receiving this radical life-extending 

treatment. 

The following introduction serves to introduce and motivate the studies performed 

in this dissertation. First, we introduce breast cancer imaging modalities, their uses and 

limitations, in order to motivate the research implemented in Chapter 2. Second, we 

introduce glioblastoma, its relevant imaging modalities, and discuss radio liposome 

treatment to motivate a model of convection enhanced delivery of said liposomes, 

discussed in Chapters 3 and 4. Each of these projects utilize models of fluid dynamics, 

informed by medical imaging, to further inform the field of biomedical engineering using 

the plethora of medical imaging information available to us in our modern age.  
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1.2 Clinical imaging for breast cancer 

Breast cancer is most common type of cancer in women, accounting for over a 

quarter of all cancer diagnoses in woman across the world. Woman have a 13% lifetime 

risk factor of developing breast cancer [1]. Because breast cancer is so common, woman 

are advised to undergo breast cancer screenings to detect abnormalities beginning at age 

40 [2]. Early detection of breast tumors is associated with higher treatment efficacy and 

survival [3]. Screening for breast cancer is typically done with X-ray mammography, 

where breast tissue is flattened between two plates (to increase image contrast), and an 

image of tissue density is acquired. If an abnormality is identified by a radiologist, further 

imaging and biopsies are performed to establish a definitive diagnosis. 

Upon detection of a suspicious lesion, the focus of imaging shifts to diagnosis. 

Multi-parametric magnetic resonance imaging (MRI) is often performed at this stage to 

identify various properties of the tumor, including its shape, density, and perfusion 

characteristics. In particular, diffusion-weighted (DW) MRI is performed to assess tumor 

cell density, as breast tumors frequently present with increased cellularity compared to the 

surrounding tissue. Contrast-enhanced (CE) and dynamic contrast-enhanced (DCE) MRI 

are often performed to visualize characteristics related to blood flow and the highly 

permeable vasculature commonly associated with many types of cancer. These MRI 

modalities assist physicians in making the decision to proceed to obtaining a biopsy or 

active surveillance.  As contrast enhanced MRI is central to all three aims of this 

Dissertation, we detail the technique in the next section. 

 

1.2.1 Dynamic contrast-enhanced MRI 

Dynamic contrast-enhanced MRI (DCE-MRI) is a noninvasive method to estimate 

pharmacokinetic properties of a tumor [4], [5]. Quantitative DCE-MRI requires the 

following measurements: a pre-contrast T1 map, dynamic T1-weighted data acquired 

before/after the administration of a contrast agent (described in the previous section), the 

concentration of the contrast agent in the blood plasma over time, and a pharmacokinetic 

model to analyze the resulting data.   By fitting the signal intensity time courses to a 
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compartment model, estimates of quantities related to vascular, cellular, and extravascular 

extracellular volume fractions can be quantified. Additionally, the volumetric fluid flux 

between vascular and extravascular extracellular compartments can be quantified. The 

transfer of contrast agent between tissue compartments is modeled using a two-

compartment model, similar to first-order models of chemical reactions. A visualization of 

this two-compartment model is shown in Figure 1.1, and the corresponding ordinary 

differential equation (ODE) is given by: 

,    1.1 

,    1.2 

where Ct is the concentration of contrast agent within the tissue interstitium, Cp is the 

concentration of contrast agent within the vasculature (i.e., the arterial input function), 

Ktrans is the volumetric transfer coefficient from the vascular compartment to the tissue 

compartment (in units of inverse time), Kep is the volumetric transfer coefficient from the 

tissue compartment to the vascular compartment (in units of inverse time), and ve is the 

extravascular extracellular volume fraction. In addition to the measured signal intensity 

time course of the tissue of interest, the time course of concentration of contrast agent in 

the blood is also needed (i.e., Cp). This measurement is particularly difficult and many 

methods for obtaining it from individuals [4] or populations [6] have been established for 

both pre-clinical and clinical studies. The solution to Eq. [1.1] is given by: 

   1.3 

where u is a dummy variable of integration. This formulation is known as the standard 

Kety-Tofts model [7].  In cases of tumors with significant blood plasma contributions to 

signal intensity (i.e., plasma volume fraction > 0.05 [8]), an extended Kety-Tofts model is 

used to incorporate the addition of the plasma compartment: 

,  1.4 

where vp is the vascular volume fraction.  
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Importantly, the concentration of contrast agent in the various tissue spaces is not 

measured directly in an MRI experiment.  Thus, the measured signal intensity has to be 

converted to an estimate of the concentration of contrast agent so that Eq. 1.4 can be applied 

to estimate pharmacokinetic parameters.  For the particular type of image acquisition 

employed in our studies (i.e., the spoiled gradient recalled echo), the MR signal intensity 

is given by: 

,    1.5 

where S0 is the baseline signal intensity, ! is the flip angle, TR is the repetition time for the 

scan, R1(t) is the longitudinal relaxation rate constant, and we have assumed that the echo 

time is much less than the tissues T2*. R1 is converted to the concentration of contrast agent 

via: 

,     1.6 

where r1 is the relaxivity of the contrast agent (in units of mM-1s-1), Ct is the concentration 

of the contrast agent, and R1,0 is the pre-contrast R1 value of the voxel which is obtained 

from a T1-mapping acquisition [4]. Eq. [1.5] coupled to Eq. [1.6] is then fit either on a 

voxel-by-voxel basis or for an entire region of interest (ROI). If fit for individual voxels, 

each voxel will yield its own pharmacokinetic parameters (e.g., Ktrans or Kep) which can 

then yield maps that can be overlain on anatomical images to visualize the spatial 

distribution of each parameter. A sample DCE-MRI enhancement curve, model fit, and 

AIF are demonstrated in Figure 1.2.  

 

1.2.2  DCE-MRI limitations 

 DCE-MRI is widely considered to be an effective method of measuring the 

transport dynamics of contrast agent within tumor tissue [4], [9]. While the information it 

provides is relevant to transport and has shown to be useful in the diagnostic and prognostic 

settings, the pharmacokinetic models used to analyze the DCE-MRI data do not necessarily 

properly characterize the relevant physiology, and as such its usage has numerous 

limitations [8], [10].  

1
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A primary limitation of the Kety-Tofts model is that it does not consider fluid 

transport between voxels [10].  All contrast agent which enters a voxel is assumed to both 

arrive and leave from vasculature within the voxel. This requires the assumption that 

interstitial fluid flow between voxels is negligible [10]. Another fundamental assumption 

of DCE-MRI is that the contrast agent within the extravascular extracellular space in each 

voxel instantaneously equilibrates. However, the known diffusion coefficient of the 

common FDA-approved contrast agents (2.6 mm2/s, Gadovist, Bayer, Whippany, NJ) 

(mm2/s), is significantly smaller than what would enable instantaneous filling of the 

interstitial space on the time scale of typical DCE-MRI image acquisitions (1.6 seconds) 

[8].  

As the Kety-Tofts model is widely used, yet has potentially conflicting assumptions 

built into its methodology, it is important to understand the validity of this model. To 

estimate the validity of this model in a pre-clinical mouse xenograft model of breast cancer, 

in Chapter 2, we simulate contrast agent delivery to a histologically-derived tumor domain 

with known perfusion parameters and volume fractions, and compare those known 

quantities to those obtained from a simulated DCE-MRI acquisition and the standard 

extended Kety-Tofts model.  

 

1.3 Glioblastoma Multiforme (GBM) 

The following sections are intended to introduce the necessary information to motivate 

an imaging informed model of convection enhanced delivery for the treatment of recurrent 

GBM. GBM is the most common of the primary brain cancers, and is the most deadly. 

GBM has an incidence of 3.2 in 100,000 person-years, and accounts for the majority of all 

primary central nervous system tumors [11]. The disease grows rapidly, and is often 

undetected until acute neurological symptoms necessitate hospitalization [12]. Once 

diagnosed with GBM, median survival time is only 14 months, and the disease is almost 

guaranteed to recur, with a five year survival under 5% [13]. As GBM is so deadly, there 

are a number of trials ongoing, attempting to increase both median and five-year survival. 
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1.3.1  Standard of care for GBM 

Typical treatment for GBM consists of an initial tumor resection (to relieve 

interstitial pressure and mass effect), external beam radiation therapy, and concurrent 

chemotherapy [14]. In most clinical presentations of GBM, primary tumor resection is 

necessary for the immediate survival of the patient and reduction of the rapid onset of acute 

symptoms including nausea, headache, lack of motor control, and seizure, stemming from 

the increased cranial pressure introduced by the tumor [12]. External beam radiation serves 

to provide a locally elevated dose of ionizing radiation to kill tumor cells within the region 

of exposure. Concurrent chemotherapy is typically delivered as temozolomide, a DNA 

alkylating agent. While effective when in combination with external beam radiation [14], 

temozolomide is a nonspecific cancer treatment, and causes off-target effects including 

nausea, fatigue, alopecia, and severe myelosuppression [15]. Temozolomide relies on the 

disruption of the BBB to successfully enter the tumor region, and as such requires a high 

dose to provide a therapeutic effect, resulting in increased morbidity from off-target effects 

[14]. Temozolomide is not known to be effective at extending post-resection survival 

alone, but has been shown to extend survival from 12.1 to 14.6 months when given 

concurrently with radiation therapy [14]. More generally, systemically delivered 

chemotherapies have difficulty reaching regions of brain tumors that possess an intact 

blood-brain barrier, meaning, thereby reducing the effectiveness of the intervention [16]. 

Despite this aggressive post-surgical treatment, GBM is all but guaranteed to recur, with a 

5 year survival of less than 5% [12].    

 

1.3.2  Clinical imaging of GBM 

As the incidence of GBM is quite low (a total lifetime risk of between 4 and 

5/1000), regular surveillance screening for this disease is not performed. Instead, screening 

for GBM typically occurs after a patient complains of symptoms associated with GBM, 

such as headache, changes in personality, vomiting, or difficulty speaking [12]. Initial 

screening is performed via magnetic resonance imaging.  
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At initial presentation, a multimodal suite of MRI scans is performed to locate the 

tumor and identify the extent of disease. CE-MRI and DCE-MRI are utilized to visualize 

the tumor blood supply, as GBM is known to degrade the BBB and allow blood flow (and 

therefore contrast agent) into the tumor region. CE-MRI is the gold-standard for non-

invasively identifying GBM, as the disease typically presents with a ring of contrast agent 

enhancement around a dark necrotic tumor core. T2-weighted and fluid attenuation inverse 

recovery (FLAIR) MRI are acquired to differentiate between tumor, edema, healthy tissue, 

and cerebro-spinal fluid (CSF). Diffusion MRI is also performed in GBM patients as the 

tumor burden changes the tissue density within and around the tumor, altering the apparent 

diffusion coefficient (ADC) of water in the brain at the tumor location. Additionally, 

diffusion tensor imaging (DTI) is a central tool for planning a surgical intervention. Water 

preferentially diffuses along white matter tracts in the brain which connect different 

functional regions of the brain. DTI allows for the measurement of the preferred diffusion 

direction and fractional anisotropy of the diffusion tensor, providing clear maps of white 

matter tracts, helping to plan for a tumor resection.  As with DCE-MRI, diffusion MRI 

provides data that is central to each Aim of this Dissertation; thus, we detail the technique 

in the next section.  

 

1.3.3 Diffusion-weighted MRI 

Diffusion-weighted MRI is capable of measuring the diffusion of water molecules 

within biological tissue [17]. Diffusion of water occurs is described by Brownian motion 

and, as such, the standard diffusion coefficient of water is temperature dependent, higher 

with increasing temperature (or thermal energy). The diffusion of a molecule is also 

affected by its surroundings; water molecules in free solution diffuse without restriction, 

while molecules within more complicated geometries can have more collisions with 

boundaries, effectively decreasing the apparent diffusion coefficient (ADC) of water. 

Further details are shown in Figure 1.3. To measure diffusion within biological tissue, a 

strong magnetic gradient is applied in a single direction, spatially encoding a phase 

difference in the direction of the gradient. Diffusion along the gradient direction will cause 
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a decoherence in bulk Larmor frequency, and a subsequent loss in signal intensity. The 

signal intensity for a diffusion-weighted image at a given position, may be determined by 

the following equation: 

,    1.7 

where S0 is the baseline signal intensity, g is the gyromagnetic ratio of water, Gx is the 

magnetic field gradient strength applied in direction x, d is time the diffusion gradient field 

is on, D is the time between the gradient radio-frequency pulses, and ADCx is the apparent 

diffusion coefficient of water in the x direction. This equation is often simplified by 

collecting all of the acquisition parameters into a single value, b: 

,     1.8 

where 

.      1.9 

To determine the ADC in a single direction, the signal intensity is recorded at multiple b-

values, and linear regression is performed on the natural log of the measured signal 

intensities. To obtain the average ADC irrespective of direction, the diffusion-weighted 

scan is repeated in all three orthogonal spatial directions x, y, and z, and its mean is taken: 

    1.10 

As the ADC of water is high (approximately 2.7 × 10-3 mm2/s at 37oC [17]) in unrestricted 

regions, and decreases in the presence of many physical barriers, the ADC is often used as 

a proxy measurement for cellularity or cell density. In cancer, the ADC is useful in 

identifying regions of abnormally high cellular density (often a sign of rapidly proliferating 

tumor cells), as well as regions of abnormally low cellular density (often a sign of necrosis) 

[18], [19]. The ADC is also useful in predicting resistance to flow, as fluid under a pressure 

gradient will preferentially flow along the direction of least resistance, and is used as a 

proxy for hydraulic conductivity in modeling interstitial fluid flow [20].  

If the ADC is measured in six or more directions, a complete diffusion tensor image 

(DTI) may be constructed [17]. In tissues where neighboring cells are highly organized and 

structured, the DTI data can provide information on the orientation and arrangement of 

2 2 2
0 ( )x xS S Gexp ADCg d- D=

0 ( )xS expS bADC-=

2 2 2
xb Gg d= D

( ) / 3x y zADC ADCADC ADC= + +
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cells. For example, DTI is widely used to identify the directions of white matter tracts 

within the brain, as water preferentially diffuses along the direction of the tract due to the 

increased presence of diffusion barriers in all perpendicular directions [17]. As such, DTI 

is an important tool for neurosurgical planning, by allowing physicians to visualize the 

physical connections between differing function regions in the brain. As advection is a 

directional process, hydraulic conductivity may also be considered as a tensor, with 

decreased resistance in directions of the least resistance [21].  

  

1.3.4 Single photon emission and X-ray computed tomography 

Many therapeutic agents are designed to preferentially deliver a payload containing 

a radioactive element to a particular area of interest—usually a diseased tissue.  Once 

arriving at its destination, the agent can irradiate into the targeted tissue [22]. There are 

some agents which are designed to emit to forms of radiation—one to deliver a therapeutic 

effect, and another designed to be captured outside the body to form an image and 

determine the internal distribution of the drug. The radiation which escapes the body may 

be observed (depending on the tracer) by the common nuclear imaging techniques of 

positron emission tomography (PET) and or single photon emission computed tomography 

(SPECT).  In this dissertation, Aim 3 makes extensive use of SPECT data and we now 

focus on this technique. 

SPECT imaging is utilized to visualize a spatial map of the location of where 

radioactive decay events are occurring within the body. To acquire a SPECT image, a 

patient is first placed into a SPECT scanner, consisting of a rotating 2D camera array. 

Individual gamma particles escape the body and are detected on a 2D camera array. This 

camera array rotates around the body part to be imaged, collecting a 2D image from many 

angles around the body. Each 2D image at each rotational position around the body is 

reconstructed into a 3D volumetric image using one of two methods. The simplest method 

of 3D reconstruction is filtered back-projection, where each 2D image is first projected in 

3D along the direction it was acquired along, and each resulting projection is summed 

together and filtered to increase resolution. More advanced iterative reconstruction 
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algorithms now exist, which minimize imaging artifacts and take into account the 

attenuation of gamma particles by tissue [23], [24]. 

 While SPECT images provide useful spatially resolved functional information, 

such as the location of radioactive decay events or high metabolic activity, images from 

the modality do not offer any anatomical context by themselves. As such, SPECT is often 

co-acquired with X-ray computed tomography. In X-ray CT, external gamma particles are 

emitted from a source outside the body and emitted through the body onto a detector on 

the opposite side. This source/detector pair also rotates around the body, and the resulting 

data is acquired and reconstructed in a similar fashion as the SPECT data. By co-acquiring 

SPECT with X-ray CT, the functional SPECT data may be registered and overlain on an 

anatomical map from co-acquired X-ray CT data [25]. 

 

1.5 Convection-Enhanced Delivery 

Convection enhanced delivery (CED) is an experimental method for the delivery 

of therapeutic agents directly to cancers within the brain via a surgically inserted catheter. 

Agents delivered to the brain can either be chemotherapies or radiotherapies. After initial 

imaging and approval for entry into the study, a catheter is surgically inserted into the brain, 

directly into the tumor. The therapeutic agent is then delivered through the catheter, into 

the brain interstitium, using a syringe pump to supply pressure. The obvious advantage of 

this method is the direct delivery of therapeutic agents to the tumor without reliance on the 

breakdown of the BBB. This benefit is twofold: first, more active agent is delivered to the 

region of interest, increasing the dose delivered to the tumor. Second, the total amount of 

therapeutic delivered is substantially less than that which is systemically delivered, 

reducing overall systemic toxicity and off-target effects.  In spite of these potential 

advantages, there is currently no CED protocol FDA-approved for clinical use. This is 

because CED carries with it numerous risks and tradeoffs. The first of which is the infusion 

rate. Higher infusion rates are known to correspond to larger coverage volumes, but also 

carry with them risks of backflow along the catheter [26], cavitation at the site of the tumor 

[27], and leakage into the CSF [28] and along white-matter tracts [29]. It is also theorized 
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that GBM grows in the direction of interstitial fluid velocity streamlines, meaning that there 

is therefore an increased risk of tumor invasion, especially in the case of prolonged CED 

at low flow rates, over the course of multiple days [30]. 

 

1.4.1 Rhenium-186 Nanoliposomes 

Rhenium-186 nanoliposomes (RNL) are a radiotherapeutic agent, delivered via 

CED, under clinical investigation at The University of Texas at Health Science Center San 

Antonio. Rhenium-186, a beta- and gamma-emitting radioactive element, is encapsulated 

within liposomes composed of distearoylphosphatidylcholine (DSPC) and cholesterol in a 

molecular ratio of 55:45 [22]. Encapsulation into liposomes prevents leakage of the 

radiotherapeutic agent into the CSF, and increases the duration of tumor retention [31], 

[32]. This ensures that the radiation is primarily delivered to the tumor before it is cleared 

(by relying on the enhanced permeability and retention effect [33]), thereby limiting the 

exposure of healthy tissue (e.g. liver, kidney, healthy brain) to high doses of beta-radiation. 

Rhenium-186 has two primary decay mechanisms: the first of which, accounting 

for approximately 93% of the energy emitted during decay, is decay to Osmium-186, with 

a neutron decaying into proton, emitting an electron and an electron antineutrino (1.07 

MeV) [34]. The pathlength of this beta particle is approximately 2 mm before absorption 

into tissue. Beta decay accounts for the majority of energy deposition for this therapeutic 

method, and is the primary therapeutic effect of RNL. The second decay mechanisms is to 

Tungsten-186, releasing a gamma particle at (137 keV) [35]. This gamma decay event can 

be imaged using SPECT imaging, as the energy of this decay event is within the imaging 

window for imaging Technetium-99 decay. The radioactive half-life of Rhenium-186 is 

3.72 days, allowing the deposition of energy to take place over the course of multiple days 

[22].  

In preclinical trials, RNL was demonstrated to have high retention at the delivery 

site in rats. After 20 hours, greater than 50% of the RNL was still present within the rat 

brains. In rat U87 xenograft models of GBM, it was demonstrated that RNL extended 

survival from 46 (control) to 126 days (treatment) [22]. Further, the survival of rats was 
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highly dependent upon dose, with rats receiving greater than 100 Gy surviving significantly 

longer than rats receiving less than 100 Gy to the local of the tumor. The standard clinical 

dose to the entire brain for external beam radiation therapy is roughly 40 Gy [36]. RNL is 

currently in Phase I/II dose escalation trials, under the supervision and direction of Dr. 

Andrew Brenner M.D Ph.D., at The University of Texas at Health Science Center San 

Antonio for treatment of recurrent GBM after initial tumor resection [37].  

 

1.5 Models of fluid transport in biological tissues 

 Medical images are highly useful in conjunction with models of fluid dynamics. In 

this section, we describe the relevant models used in the development of a model for 

convection enhanced delivery. The models in this section are informed by medical 

imaging, such that each model may be run given a patient’s specific geometry and using 

material properties measured directly from patient imaging such as MRI and SPECT/CT. 

 

1.5.1  Darcy’s Law 

Fluid flow through porous media is a common occurrence in biological tissues. The 

interstitial fluid which bathes cells is constantly flowing between the pores of tightly 

packed cells and extracellular structures [38]. The geometry of the extracellular matrix is 

highly heterogenous, which makes exact models of fluid flow difficult to implement. 

However, bulk fluid flow through porous media is well-described by Darcy’s Law, which 

states that fluid will flow with a velocity in the direction of decreasing pressure gradient, 

with a magnitude proportional to the hydraulic conductivity of the medium: 

     1.11 

where "⃗ is the interstitial fluid velocity, K is the hydraulic conductivity of the medium, and 

p is the continuous pressure field within the medium [38]. Darcy’s Law is derived as a 

simplification of Stokes’ Law [39]. In the present work, we utilize Darcy’s Law to calculate 

the steady-state interstitial fluid velocity and pressure in our model of convection enhanced 

delivery. 
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1.5.2  Starling’s Law 

Starling’s Law describes the rate of fluid filtration through tissue permeated by 

capillary structures, and is often used to model the transfer of fluid from capillary space to 

tissue space. Starling’s Law states that the fluid flux entering the tissue intersitium is 

proportional to relative pressure between the interstitial compartment and vascular 

compartment, scaled by the total surface area interface between the two compartments: 

,    1.12 

where Lp is the hydraulic conductivity of the capillary wall, S/V is the ration of capillary 

surface area to volume, pc and pi are the capillary and interstitial hydrostatic pressures, $! 
and $" are the capillary and interstitial osmotic pressures, and % is the capillary wall 

reflection coefficient [38]. In the present work, we utilize Starlings’s Law to incorporate 

the leaky BBB allowing fluid to leave the brain into the blood stream. 

 

1.5.3  Advection diffusion 

The advection diffusion equation describes the time-dependent transport of a solute 

or particles carried by a bulk fluid phase under the effects of random thermal motion 

(diffusion) and a bulk fluid flow. The standard partial differential equation form of the 

advection diffusion equation reads as a time-dependent flux into a differential element 

composed of the flux due to diffusion, advection, and a local source term. The standard 

advection diffusion equations reads as,  

,    1.13 

where c is the metabolite concentration, D is the coefficient of diffusion, "⃗ is the bulk fluid 

velocity field, and f is a source term [40]. This equation directly models the transport of a 

well-mixed metabolite, assumed to be dissolved within the bulk fluid [41]. In the case of 

modeling nanoparticle transport, the nanoparticles are orders of magnitude larger than a 

metabolite which might be dissolved, and thus will experience a significant restriction in 

motion, whether due to drag forces or collisions between nanoparticles and cellular 
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boundaries within the medium [41]. As such, a restriction term, R, may be introduced to 

reduce the nanoparticle velocity [41]: 

.    1.14 

We utilize the advection-diffusion equation, coupled with Darcy’s and Starling’s laws to 

calculate the spatiotemporal distribution of liposomes in a model of convection enhanced 

delivery.  

 

1.6 Dissertation overview 

The overall goals of this dissertation are divided into two largely separate projects, 

united under the umbrellas of quantitative medical imaging and fluid dynamics: first, we 

investigate the accuracy of the Kety-Tofts model of DCE-MRI in the diffusion-limited 

regime. The Kety-Tofts model is widely used to parameterize DCE-MRI models, and the 

resulting parametric maps are widely used to predict response to chemo- and radiation 

therapy [42]–[44], as well as to parameterize models of tumor growth [45]. However, 

validation of the measured parameters is difficult to achieve, requiring prior knowledge of 

the parameters before evaluating a DCE-MRI acquisition. As such, we attempt to 

investigate the accuracy of this model by comparing a Kety-Tofts parameterization of a 

simulated DCE-MRI acquisition of a mouse xenograft tumor, to known tissue volume 

fractions and assigned flow parameters in a digital phantom derived from high resolution 

histological images. 

Second, we develop a functional framework to model and optimize the delivery of 

Rhenium-186 liposomes via convection-enhanced delivery to glioblastoma mulitforme, 

calibrated and validated using clinical patient data from an ongoing Rhenium-186 

clinical trial. While models of CED exist for molecular agents, no such models exist for 

nanoparticles. As nanoparticles are several orders of magnitude larger than molecular 

agents, they experience a greater restriction of motion, and therefore distribute among a 

smaller volume than is predicted by models designed to simulate molecular agents. By 

accurately modeling the delivery of RNL, we seek to maximize the benefit to each 
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individual patient in the clinical trial by predicting the optimal catheter placement and the 

resulting distribution of RNL.  

 

1.6.1 Specific Aims 

Aim 1: Investigate the effects of slow contrast agent diffusion on the accuracy of the Kety-

Tofts model of DCE-MRI analysis  

1a. Use histological tumor data (BT474 mouse-xenograft) and the finite element 

method to build a cell-resolution DCE-MRI model, simulating the transport of 

contrast agent within a realistic tumor domain. 

1b. Compare the known tissue volume fractions and delivery parameters to those 

obtained by fitting the Kety-Tofts model to simulated DCE-MRI data. 

Hypothesis: Slow diffusion of contrast agent within and across voxels decreases the 

accuracy of the Kety-Tofts parameterization of DCE-MRI data. 

Aim 2: In vivo modeling of 186Re-liposome distribution using MRI and SPECT data in GBM 

patients 

2a. Develop a spatiotemporal model of 186Re-liposome distribution, informed with 

patient-specific DCE-MRI, DW-MRI, anatomical MR, and the location of the 
186Re-liposome injection.  Longitudinal SPECT data will be used as the gold 

standard for calibration and assessment of error in model predictions. 

2b. Validate the calibrated model of RNL delivery using leave-one-out and Monte 

Carlo methods to compare predicted RNL distributions to those measured by the 

gold standard.  

Goal: Develop, calibrate, and validate a model which predicts the spatio-temporal 

distribution of RNL within an individual patient’s brain. 

Aim 3: Utilize a model of Rhenium-186 liposome delivery to predict optimal catheter 

placement for individual patients 

3a. Develop a flexible framework and objective function that minimizes leakage of 

injected RNL, while simultaneously maximizing the tumor coverage of the agent. 
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3b. Identify the optimal delivery location for individual patients using calibrated 

parameters determined in Aim 2.  

Goal: Develop and demonstrate a framework which will predict the optimal delivery 

location of RNL, which minimizes leakage into healthy tissue, while maximizing 

tumor coverage. 

 

1.6.2 Significance 

In Aim 1, we model an idealized case of DCE-MRI, which assumes minimal flow 

from vasculature and between voxels, and relies purely on diffusion of contrast agent from 

blood vessels to perfuse the surrounding tissue. Under these idealized assumptions, we 

demonstrate that DCE-MRI is incapable of fully describing the transport of contrast agent 

within tumor tissue, and that the quantities measured by DCE-MRI, even in this idealized 

scenario. While extended Kety-Tofts parameters are useful as biomarkers and predictors 

of tumor aggression and treatment response, if the parameters do not accurately measure 

the quantities it claims to measure, then the model is not an accurate descriptor of the 

underlying physical phenomena. If the Kety-Tofts model of DCE-MRI is incapable of 

accurately parameterizing contrast agent dynamics within a tumor, then more advanced 

models which consider both flow and diffusion, both between and within voxels, are 

required to accurately represent the physical fluid transport phenomena occurring during a 

DCE-MRI acquisition.  

 In Aims 2 and 3, we develop and utilize a model of the delivery of Rhenium-186 

liposomes to GBM. A validated model and optimization methodology, as proposed in Aims 

II and III, would maximize the life-extending benefit of this experimental procedure while 

simultaneously minimizing the posed risks. Rhenium-186 nanoliposomes are an extremely 

promising therapeutic for treating GBM. In preclinical studies, RNL was shown to extend 

the survival of a rat U87 brain xenograft model from 49 days (control) to 125 days 

(treatment) (p = 0.0013) [22]. Animals receiving less than 100 Gy had a median survival 

time of 48 days, and animals receiving a dose greater than 100 Gy had a median survival 

greater than 125 days (p < 0.0001) [22]. While this treatment is promising, CED has had a 
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challenging time in the clinic, often hypothesized to be due to poor catheter placement [27], 

[28], [30]. As the radioactive doses for this therapy are so high, it is imperative to be able 

to accurately predict the outcome of an RNL infusion to limit leakage into surrounding 

healthy tissue and maximize tumor coverage.  

 

1.6.3 Innovation 

 The extended Kety-Tofts model is currently used to provide spatial information on 

blood flow (and therefore nutrient, oxygen, contrast agent, and drug delivery profiles) in 

models of tumor growth [44], [46]–[48]. These tumor growth models are built upon the 

assumption that the parameters derived from this model are accurate. It is clear that the 

accuracy of this model needs to be rigorously validated, but to do that experimentally 

would require expensive experiments and microfluidic devices, in order to have prior 

knowledge of all volume fractions and Ktrans. A simulated system, derived from histological 

imaging, circumvents this limitation by allowing for the assignment of known delivery 

parameters, such as Ktrans, while also allowing for the volume fractions to be calculated by 

image-processing techniques. Simulated contrast agent delivery and MRI acquisitions will 

never replace a physical validation experiment of the Kety-Tofts model, but may guide 

researchers in designing such experiments by helping researchers select optimal imaging 

parameters and choose an optimal phantom design.  

  While mathematical models of convection-enhanced delivery exist, none to our 

knowledge are designed to model the delivery of nanoparticles [20], [27], [49], [50], which 

are orders of magnitude larger than molecular agents. Additionally, the current industry 

standard, iPlan Flow (BrainLab, Munich, Germany), utilizes a particle-based Monte Carlo 

method for the discretization of the partial differential equations for fluid transport. Monte 

Carlo methods are slow to numerically converge to the true solution, and prior to 

convergence may be inaccurate. In the fields of petroleum, aerospace, and biomedical 

engineering, the standard for accurate modeling of fluid flow is by Finite Element analysis. 

Finite elements are known to be more accurate and faster to converge than Monte Carlo 

methods, and have well-studied stabilization methods [40]. The method proposed in the 
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present work will bring the modeling methods of CED into the modern era of stabilized 

finite elements for fluid dynamics, which are well-suited to error analysis [51], and 

calibration to patient data. Further, finite elements are well suited to optimal control and 

adjoint-based methods of optimization, allowing for procedures to eventually be optimized 

and controlled in real time, given sufficient computational power [52].  

 

1.7  Dissertation outline 

The current chapter provides the necessary background information and motivation 

for the studies described in the ensuing chapters. Chapter 2 presents Specific Aim I in 

which the accuracy and validity of the Kety-Tofts is rigorously investigated via simulations 

over a gold-standard domain established from high-resolution histology images of mouse 

xenograft tumors. Specific Aim 2 is presented in Chapter 3, where a coupled Darcy-

Advection-Diffusion model of CED is developed, calibrated, and validated on clinical 

SPECT/CT data in five patients from an ongoing clinical trial investigating the effect of 

RNL on extending survival in patients with recurrent GBM. In Chapter 4, Aim 3 is 

investigated by applying the model developed in Chapter 3 to systematically locate an 

optimal RNL catheter placement (in the same five patients) that maximizes delivery to the 

tumor while simultaneously minimizing RNL leakage into healthy brain tissue. Finally, in 

Chapter 5, we summarize the key results of the Dissertation, their implications, and future 

directions for each individual Aim.   
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Figure 1.1 Compartment diagram of the extended Kety-Tofts model. Contrast agent may 
transfer between the plasma compartment to the extra-vascular extra-cellular compartment 
with a volumetric rate of Ktrans. Contrast agent may transfer back into the vascular 
compartment from the extra-vascular extra-cellular compartment by Kep, which is 
identically Ktrans/ve. It is assumed that the AIF is known, so that the only unknown variables 
in the ordinary differential equation are the volume fractions and transfer coefficients. The 
resulting ordinary differential equation for Ct(t) is then solved and inverted for these 
parameters [7]. 
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Figure 1.2 Depictions of DCE data. Figure 1.2a depicts a population AIF, which acts as 
known source term for the Kety-Tofts model. The AIF serves as the known value of Cp(t) 
in the differential equation. Figure 1.2b depicts a standard DCE- acquisition profile for a 
single voxel (black lines) and temporal model fit for said voxel (red lines). 
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Figure 1.3 Depiction of apparent diffusion coefficient of water with decreasing freedom 
of diffusive mobility. In the bottom panel, tumor cells and cell walls block the free diffusion 
of water, restricting its motion, and decreasing the apparent diffusion coefficient of water. 
As cells die, the membranes which restrict the free diffusion of water break down, allowing 
water to more freely move, allowing the ADC of the water within the voxel to increase 
towards the free diffusion coefficient of water. Figure adapted from Hall et al. Clin Canc 
Res 2004 [53]. 
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Chapter 2: 

The effects of intra-voxel contrast agent diffusion on the analysis of 

DCE-MRI data in realistic tissue domains 
 

2.1 Introduction 

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is performed 

by acquiring sequential T1-weighted images before, during, and after the intravenous 

injection of a Gadolinium-based contrast agent.  As the contrast agent is delivered into a 

tissue of interest, it decreases the native T1 relaxation time, thereby increasing the measured 

signal intensity.  As the contrast agent leaves the tissue, the relaxation time returns to the 

baseline value, as does the measured signal intensity.  Thus, each voxel within the image 

series yields a signal intensity time course that can then be analyzed with a pharmacokinetic 

model to return estimates of parameters of physiological interest related to (for example) 

vessel perfusion and permeability and tissue volume fractions [54]. These parameters, 

which can be obtained on a region-of-interest or individual voxel scale, find application in 

both diagnostic [55-58] and prognostic [59-62] settings in various cancers. Due to leaky 

and fragile tumor-associated vasculature, DCE-MRI has a well-established presence in the 

quantitative imaging of cancer [63-66]. 

  The standard approach to analyzing DCE-MRI data is the two-compartment Tofts-

Kety model, which describes the exchange of contrast agent between the vascular and 

extravascular-extracellular spaces [67].  The utility of the parameters returned from a 

model is fundamentally limited by the ability of the model to sufficiently and realistically 

capture the in vivo behavior.  A fundamental assumption of most DCE-MRI models is that 

contrast agent is actively delivered throughout each voxel via blood vessels, and not 

through passive inter-voxel diffusion. There is an increasing body of evidence indicating 

that this assumption can lead to significant estimation errors of the desired pharmacokinetic 

parameters, and extended models accounting for both active delivery and inter-voxel 

diffusion have been proposed [56],[68-71]. These methods show promise in improving the 
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accuracy of many dynamic contrast-enhanced imaging modalities, particularly those using 

fast-diffusing contrast agents.   

A second limitation of the standard model is the assumption of instantaneous and 

uniform filling of the extravascular extracellular space (EES). In its original 

implementation, the Kety model was used to measure the concentration of solvated gasses 

in the two compartments of interest, and as such, assumes a high molecular diffusivity of 

the solvate [72]. However, in DCE-MRI, the contrast agent is many times larger than a 

gaseous molecule and therefore has a lower characteristic diffusivity, D.  In fact, the range 

of D for gadolinium chelates has been measured to be 1-4 ×10-4 mm2 s-1 [73-74], which is 

multiple orders of magnitude less than that of the typical gases dissolved in tissue (17-

1,010 mm2 s-1) [75-76]. For comparison, the ADC of water in cancerous tissue is typically 

0.01-3 ×10-3 mm2s-1 [59]. This invalidates the assumption that the domain is uniformly 

filled, and introduces a parameterization error into the model. Barnes et al. investigated the 

effect of intra-voxel diffusion on the accuracy of the standard model in silico, using 

simulated domains generated by means of a pseudo-random algorithm for the placement 

of cells and vessels [77]. It was determined that intra-voxel diffusion, within the range of 

standard gadolinium chelates, introduces significant parameterization error into the 

analysis of typical DCE-MRI data. They also demonstrated that this parameterization error 

was eliminated as the contrast agent diffusivity was increased into the gaseous range [77].  

The present study aims to rigorously investigate the effects of intra-voxel diffusion 

of contrast agent, within realistic tissue domains derived from in vivo tumors, on the 

accuracy of the pharmacokinetic parameters derived from the extended Tofts-Kety model.  

We hypothesize that parameterization error due to diffusivity will increase as the 

coefficient of diffusion of the contrast agent decreases. We predict that this occurs due to 

slow diffusion away from vasculature, resulting in non-uniform filling of the domain. This 

is in contrast to the assumption of uniform filling of the extra-cellular compartment. In 

particular, we predict that there will be significant parameterization errors seen in DCE-

MRI analysis when using common gadolinium-based contrast agents.  These hypotheses 
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will be tested by developing a finite element method (FEM) model of segmented 

histological slices, obtained from BT474 tumors grown in mice.  

 

2.2  Methods 

Figure 2.1 provides a visual guide through each component of the experiments and 

data analysis. 

 

2.2.1 Histological analysis 

While details are presented in Sorace et al. 2016, the salient features are as 

presented here [79]. Representative histologically-stained images are demonstrated by 

Figure 2.1a, and the resulting segmentation shown in Figure 2.1b. All procedures were 

approved by the Institutional Animal Care and Use Committee. BT474 cells (107) were 

grafted into the hind-flank of adult female fox nu/nu mice (Charles River Laboratories, 

Wilmington, MA), and tumors were allowed to grow for 4-6 weeks, until the size of the 

tumor exceeded 200 mm3. Animals were humanely sacrificed and tumors were 

immediately excised and fixed in 10% formalin. Tumors were then stored in 70% ethanol 

for further processing. Serial slices of the tumor (5 μm thickness) were taken at the center 

cross-section of the tumor. Hematoxylin and eosin (H&E, for cell identification) and anti-

CD31 (ab28364, Abcam Cambridge, MA, for endothelial cell and vascularity 

identification) stains were performed on consecutive histological slices.  Slides were 

digitally scanned at 20× resolution (0.5 μm lateral resolution) with bright-field microscopy 

using a Leica SCN400 Slide Scanner (Leica Microsystems Inc, Ariol, Buffalo Grove, IL) 

[78]. Digitized CD31 and H&E stains from corresponding mice were then registered by 

intensity-based rigid transformation (MATLAB Image Processing Toolbox, Natick, MA). 

H&E images were then segmented into cellular and extra-cellular regions using color 

thresholding in Hue-Saturation-Value (HSV) space. Nuclei were first segmented by 

thresholding the dark blue stain in H&E, while the cytoplasm was segmented from the 

background by thresholding purple stained H&E regions. To create an initial mask of 

cellular space, which was later refined, the masks for nuclei and cytoplasm were combined. 



 25 

The distance transform was performed on the inverse of the cellularity mask (equivalent to 

a mask of extracellular space), and the resulting image was watershed-transformed to 

obtain the edges between cytoplasm and extra-cellular space. Likewise, the distance 

transform was performed on the mask of nuclei, and watershed-transformed to identify the 

boundary between nuclei and cytoplasm. Finally, each segmented nuclei was 

morphologically dilated until reaching the boundary between cytoplasm and extra-cellular 

space, filling in any small holes in the initial mask of cellularity. 

CD31 stains were segmented into vascular and non-vascular space using color 

thresholding to identify epithelial tissue, and a closing operation (dilation followed by 

erosion) to fill in open space within blood vessels. Red-colored regions were selected using 

the HSV color space, and then converted into a rough mask of vascularity. This rough mask 

was then refined by morphological closing, closing the lumen of the blood vessels in the 

vascular mask and removing small holes within vascular regions. Objects smaller than 2 

μm in diameter were excluded from the vascular mask to accurately represent the 

segmentation at the lower finite element resolution.  

Registered masks of cellularity and vascularity were then down-sampled from 0.5 

µm to 2 μm lateral resolution to achieve a reasonable solve time for the finite element 

model (FEM; see below). Finally, the mask of extracellular space was modified such each 

blood vessel has a region of extracellular space 2 μm thick surrounding it. This was done 

to ensure each vessel could distribute contrast agent to the extravascular extracellular space 

in all directions, and was not hindered by cellularity directly adjacent to the vasculature. 

All morphological operations were performed on histological images using a 3 x 3 pixel 

sliding window. An example of the resulting segmentation is presented in Figure 2.1b. All 

image processing was performed using the MATLAB Image Processing Toolbox (2016a, 

Natick, MA).  
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2.2.2 Finite Element Methods: Forward Model 

The following constitutes the forward model, depicted visually in Figure 2.1c. The 

extended Tofts-Kety model of DCE-MRI is described by the following ordinary, linear, 

differential equation with constant coefficients: 

 ,  2.1 

where and are the concentration of contrast agent within the tissue and blood 

plasma compartments at time t, respectively. Ktrans is the volume transfer rate of the contrast 

agent from the plasma to the extravascular compartment, and ve is the extravascular 

extracellular volume fraction [79-80]. Solving Eq. [2.1] and including a correction factor 

for a non-negligible plasma volume fraction, vp [57,80], yields the extended, two-

compartment Tofts-Kety model: 

 . 2.2 

If can be measured (or estimated), Eq. [2.2] can be fit to measured DCE-MRI data, 

using standard, least-squares error minimization, to return estimates for the parameters 

Ktrans, ve, and vp on a voxel-wise basis.  

  In order to determine the accuracy of Eq. [2.2] in tissue, we extend the FEM 

methodology developed in Barnes et al. [78]. The diffusion equation in two dimensions,   

 ,  2.3 

is used to disperse contrast agent throughout the extravascular extracellular space, where 

C(x, y, t) is the 2D spatial and temporal distribution of contrast agent within the domain. 

The vessel boundary conditions are set such that the flux of contrast agent is determined 

by an assigned Ktrans.  D is the coefficient of diffusion, or diffusivity (in units of mm2s-1) 

of the contrast agent, and is assigned values within the experimentally measured range 

(1×10-4 < D < 4 ×10-4 mm2 s-1) [73-74]. We approximate the solution to Eq. [2.3] at each 
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time step through FEM [81-82] using a set of linear, local basis functions &#((, *), and 

locally approximated concentration functions Cj: 

 ,  2.4 

where n is the total number of elements, C(x,y) is the exact spatial distribution of contrast 

agent within the tumor domain, and Ĉ(x,y) is the approximated solution at a single time 

step within the domain. Time stepping is performed using Crank-Nicholson methodology 

[83]. This methodology guarantees an exact solution at element vertices (to machine 

accuracy), and continuous linear interpolation between all vertices within the problem 

domain.  

 To implement domain boundary conditions between plasma and extravascular 

extracellular space, the Tofts-Kety model is implemented:  

 ,  2.5 

where P is the permeability, defined as (Ktrans V)/S, with S as the total surface area of the 

vasculature within the voxel, ,- is the unit normal vector to the boundary, and V as the 

volume of tissue within the voxel. The concentration within the plasma, , is assigned 

as a constant at each time step, according to a population AIF. Because our simulation is 

in 2D, S is measured as vessel perimeter (mm), and V is measured in units of area (mm2). 

For simplicity, P (mm•min-1) is assigned as a constant value for all vessel boundaries within 

one entire tumor domain, such that the voxel containing the maximum S will have a Ktrans 

value of 0.5 min-1, and voxels with no vasculature (i.e., S = 0) have a Ktrans of 0 min-1. This 

is equivalent to scaling Ktrans from 0 to 0.5 min-1 as S scales from 0 to Smax.  

 These methods constitute a forward model which is used to simulate the spatio-

temporal evolution of contrast agent within the histological FEM domain. By changing the 

model parameters (Ktrans, ve, vp, D, tissue geometry), the model output (i.e., C(x,y,t)) is 

determined. The forward model output is then analyzed using the methodology outlined 

below in the Simulations section to systematically and quantitatively assess the error in the 

extended Tofts-Kety model on a voxel-wise basis, when the assumption of instantaneous 
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and uniform filling of the contrast agent in the extravascular extracellular space is not 

satisfied. This model was designed such that all the extended Tofts-Kety parameters could 

be directly measured or assigned. It is not intended to be an exact representation of tumor 

biology and contrast agent delivery, but an investigational tool which allows fine 

parametric control in a large variety of biologically relevant geometries under best-case 

imaging conditions.  

 

2.2.3 FEM Mesh 

The mesh developed in this section is used to evaluate the FEM model discussed 

above (Figure 2.1c). To calculate tissue volume fractions within the segmented histology 

image that correspond to a typical imaging voxel, down-sampled histological masks were 

binned into 438 µm ´ 438 µm pixels to match the in-plane spatial resolution of a typical 

preclinical DCE-MRI study. The extravascular extracellular volume fraction (ve) and 

plasma volume fraction (vp) were then calculated for each simulated voxel. Vessel surface 

area (S), (in this case a 1D vessel perimeter) was calculated in each simulated voxel as well. 

Tissue volume V was measured as the total area of histological pixels in the mask within 

the voxel. These measured parameters are presented in Figure 2.1d. In all presentation of 

results, except in Table 2.1 where it is explicitly stated otherwise, truth for ve is considered 

to be the fraction of EES accessible to contrast agent, through connectivity to vasculature. 

Determining connectivity to vasculature was done by first partitioning the mask of 

extravascular extracellular space into connected regions, and then determining whether 

each region was connected to vasculature. Regions of extracellular extravascular space not 

connected to vasculature were counted in the cellular space volume fraction. This was done 

to ensure the results only reflect error introduced from slow contrast agent diffusion, and 

not tissue geometry.  

To generate a 2D mesh, each pixel in the extravascular extracellular space was 

divided into two triangular elements in a cross-hatched manner, placing the location of the 

nodes at the corners of each pixel in the histology segmentation. Boundary elements 

directly adjacent to vasculature were denoted as “vascular boundaries”, while boundary 
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elements adjacent to cells and the tumor periphery were denoted as “cellular boundaries”. 

Contrast agent is permitted to enter and leave the extravascular extracellular space through 

vascular boundaries (see Eq. [2.5]), while no contrast agent flux is permitted at cellular 

boundaries. Each element within a simulated imaging voxel is used to then calculate a 

modeled signal intensity for that region. It should be noted that there are no boundaries 

between simulated voxels so that contrast agent may flow freely between voxels, 

representative of in vivo delivery. Elements without a connection (i.e., a physical path) to 

a contrast agent source were not included in the meshed area for the sake of memory 

reduction, as the concentration of contrast agent within these isolated pockets of the 

extravascular extracellular space can never increase beyond zero.    

 

2.2.4 Simulations 

The FEM model and compartment model developed above, and their 

implementation here is represented in Figure 1c. For implementing the forward model, a 

range of diffusivities, D, for the common, clinically-approved Gadolinium-based contrast 

agents were chosen as 1.0, 2.0, 2.6 and 4.0 ×10-4 mm2s-1 [73]; in particular, 2.6 ×10-4 mm2s-

1 was chosen to directly simulate a DCE-MRI scan using Gd-DTPA (Magnevist, Bayer, 

Berlin, Germany) [74]. Each tumor (n = 4) was excised, stained, digitized, segmented, 

meshed, and run through the forward model for with the prescribed values of D. Each time-

step was solved using the preconditioned conjugate gradients method on the sparse array 

of nodal indices. The maximum bound for Δ/ was selected according to Eq. [2.6], ensuring 

that it is small enough to capture the dynamic behavior with the given minimum element 

area, Aelm,min, and assigned D for the simulation:  

  . 2.6 

An appropriate values, less than that calculated from Eq. [2.6] was selected for Δ/ such 

that the time course utilized in the simulation captured the peak value of the AIF curve.  

,4
8
elm minA

t
D
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To calculate signal enhancement for each voxel, at each time point k in the 

simulation, the total relaxivity of each compartment is calculated and weighted according 

to its corresponding volume fraction: 

   2.7 
 with k corresponding to a measured time point in the population AIF.  The longitudinal 

relaxation rate constant for each element within the extravascular extracellular space,

, is calculated as: 

  , 2.8 

where is the area of the element, area is the area of tissue within the simulated voxel, 

r1 is the relaxivity of the contrast agent, (4.7 mM-1s-1 appropriate for Gd-DTPA at 7T, [30]), 

is the average concentration of contrast agent within the element, and  (set to 

0.5 s-1) [77] is the pre-contrast relaxation rate constant of tissue. Summing over all elements 

yields  [Eq. 2.7]. We also include the vascular contribution to the signal intensity as: 

  , 2.9 

where is the longitudinal relaxation rate constant for each element with a blood 

vessel, Cp is the population AIF [83], and  (set to 0.5 s-1) [77] is the pre-contrast 

longitudinal relaxation rate constant of the blood.  Contrast agent is assumed to be 

uniformly distributed within the blood plasma, and is therefore not weighted by element, 

but rather multiplied by vp. Finally, the longitudinal relaxation rate constant, , of the 

kth time step is calculated by summing up each of the contributions described by Eq. [2.8] 

and Eq. [2.9] and accounting for the static contribution of the intracellular space (to which 

CA does not have access) to the R1: 
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The expression in Eq. [2.9] is then used with Eq. [2.11] to calculate a simulated signal 

intensity for each voxel at each time point k (in which we have assumed the echo time, TE 

<< T2*): 

  , 2.11 

where α is the flip angle of the DCE-MRI acquisition (25°), TR is the repetition time 

between scans (5 ms), and, for S0 = 1 for simplicity. 

 The FEM and DCE-MRI simulations were performed at the Texas Advanced 

Computing Center (TACC), using the Lonestar 5 system. Each simulation (four values of 

D over four tumor domains) was run on its own system node, consisting of 12 dual-core 

processors with 64 GB DDR4 RAM. Each time step completed in roughly 10 seconds, 

resulting in a total solve time for each simulation ranging from 6 days to 5 weeks, 

depending on the necessary Δ/ required for stability (Eq. [2.6]).      

 

2.2.5 Statistical analysis 

After computing the signal intensity for each simulated voxel, the time course for 

each voxel is fit to Eq. [2.2], using least-squares error minimization in MATLAB 

(MathWorks, Natick, MA) to provide estimates of  Ktrans, ve, and vp (akin to what would be 

calculated on a voxel-wise basis in a standard, in vivo DCE-MRI study). Volume fraction 

estimates ve and vp are bounded between 0 and 1, and Ktrans is bounded between 0 and 5 

min-1.   This process is represented by the curve-fitting shown in Figure 1c, and the 

estimated parameters shown in Figure 2.1f. Finally, these parameters are then compared to 

the histological (ve, vp) and assigned (Ktrans) parameters, and a percent error is calculated 

for each simulated voxel (Figure 2.1e): 

 , 2.12 

where,  represents one of the parameters obtained from curve-fitting the SI time-

course (i.e., Ktrans, ve, or vp), and  is the same parameter either measured 
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histologically or assigned in the forward model. %Errorvoxel values are then used to 

determine the accuracy of the standard model. These results are reported as mean ± the 

95% confidence interval, at each simulated D (Table 2.1). Note that voxels with a 

histological vp = 0 will result in an infinite %Error in vp and Ktrans, due to a zero 

denominator, and are omitted from the summary of results in Table 2.1. It is important to 

note that, in all Figures in Chapter 2, the error in ve has been corrected to reflect the fraction 

of EES which is accessible to contrast agent and connected to a vascular source. Any EES 

which is not accessible to the contrast agent is not included in the calculation of the error 

in ve, except where it is explicitly reported in Table 2.1. 

  

2.2.6 Domain size analysis 

 In order to determine the effect of domain size on the accuracy of the standard 

model, the size of the domain was varied for three different domains. These domains 

consisted of a single 10 µm diameter vessel in empty EES, a single 10 µm diameter vessel 

in surrounded by uniformly spaced (6 µm in all directions) 10 µm diameter cells, and a 

single vessel surrounded by cells made using methods described above in Histological 

Analysis. In each of these domains, the edge boundaries were set to have zero-flux 

boundaries, and the forward model was evaluated. Initially, the domain consisted of only 

the blood vessel and the domain resulting from a single morphological dilation (i.e., 

addition of a single layer of white pixels around the white region of a binary mask) of the 

vessel. The domain size was then incrementally increased by further dilating the previous 

domain four times, and then the model was again run to compare fit and true volume 

fractions as a function of increasing domain size. Each domain was grown until 

morphological dilation was performed a total of 60 times. Each simulation was repeated 

for values of D = 1.0, 2.0, and 4.0 ×10-4 mm2s-1. Error analysis for each domain was 

performed according to the methods described in the Statistical Analysis section. 
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2.3 Results 

Using a poorly perfused tumor domain (Figure 2.2a, Ktrans = 0.05 min-1, ve = 0.93, 

vp = 0.003), three values of D were used to determine the effects of diffusion. The resulting 

signal intensity time-courses for these simulated scans are depicted in Figure 2.2b. As D is 

increased from 1.0 to 4.0 ×10-4×10-4 mm2s-1, the total amount of contrast agent within the 

EES increases, corresponding to an increase in total signal enhancement. The results of the 

FEM simulation for this domain are shown in Figure 2.2c. Initially, at t = 1 min, the 

distribution of contrast agent within the voxel is extremely uneven. For D = 1.0, 2.0 ×10-4 

mm2s-1, the voxel does not equilibrate until near the end of the simulated experiment. As 

D is further increased to 4.0 ×10-4 mm2s-1, the concentration of the contrast agent within 

the domain takes less time to equilibrate. Increasing D corresponds with an improvement 

in parameterization error from -31.8% to -15.5% in Ktrans, and from -23.7% to -0.2% in ve. 

Similar results were observed in a well-perfused voxel (Ktrans = 0.18 min-1, ve = 0.66, vp = 

0.009) in Figure 2.3a, with increasing total signal enhancement correlating with increasing 

D (Figure 2.3b). The well-perfused voxel equilibrates much sooner, and with a lower D 

than the poorly perfused voxel (Figure 2.3c). Parameterization error of Ktrans improves from 

-30.3% to 11.7%, error in ve improves from -5.7% to 3.1%, and error in vp improves from 

49.9% to 4.3%. Absolute error in ve is notably lower for all values of D in the well perfused 

voxel (Figure 2.3c), when compared to the necrotic voxel (Figure 2.2c). Errors in Ktrans are 

similar between the two sampled voxels, while the error in vp is more sensitive to changes 

in D for the well-perfused voxel. The necrotic domain demonstrates a characteristic slow 

wash-in and lack of notable wash-out (Figure 2b), while the well-perfused domain 

demonstrates both wash-in and wash-out (Figure 2.3b) [84]. 

 Figure 4 depicts the means and 95% confidence intervals of the parameterization 

errors for a single mouse tumor (histology and segmentation of tumor shown in Figures 

2.5d-f), using the full range of values of D within the physiological range. Mean error in 

all parameters approaches zero with increasing D. Ktrans is most often underestimated, with 

its mean value below zero at all diffusivities simulated in this study. The confidence 

interval for Ktrans error begins to contain positive values at D = 2 ×10-4 mm2s-1 (Figure 2.4a).  
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Likewise, mean error in ve is negative for all simulated diffusivities, but Eq. [2.2] begins to 

overestimate ve at values of D ≥ 2.0 ×10-4 mm2s-1 (Figure 2.4b). Error in vp is by far the 

most widely varied, although the estimation of vp improves steadily as D increases (Figure 

2.4c). A map of parameterization error in all parameters for D = 2.6 ×10-4 mm2s-1 is shown 

in Figures 2.5a-c.  Areas of high necrosis near the center of the tumor demonstrate high 

error in Ktrans. This simulation predicts that DCE-MRI, using the imaging parameters in the 

Methods section, will contain inherent parameterization error of Ktrans between -32.0 and 

8.8%, ve error between -10.0% and 2.4%, and vp between 95.6% and 149.9%. Many voxels 

are present with infinite parameterization error, due to histological vp = 0. These voxels are 

marked with an “X”, and are not included in the 95% confidence intervals displayed in 

Figure 2.4. Infinite parameterization error also frequently occurs for voxels on the edge of 

the tumor domain, where the voxel is not completely occupied by tissue.  

The 95% confidence intervals of the errors demonstrated in Figures 2.4 and 2.5, as 

well as those found in the remaining subjects, can be seen in Table 1. This table summarizes 

our complete results for each specimen (n = 4), at each of the four assigned values of D. In 

aggregate, the mean error of each parameter improves with increasing D. For D = 2.6 ×10-

4 mm2s-1, the Ktrans is most often underestimated, while the number of voxels over-

estimated increases with D. The same trend is true of ve. The parameter vp is nearly always 

over estimated, with error reduced with increasing diffusivity. Note that Table 1 also 

reports ve error uncorrected for regions without contrast agent accessibility.  On average, 

there is a difference of 20% between values corrected for contrast agent accessibility and 

raw values without this correction. This difference in error is discussed in detail in the 

Discussion section.  

Figure 2.6 illustrates the effect of domain size on parameter error by examining the 

domain immediately surrounding a single vessel. As the domain surrounding the vessel 

becomes larger, the parameterization error worsens. Figure 2.6a depicts this phenomenon 

in a voxel containing no cells (i.e. composed solely of the vessel and extravascular 

extracellular space) to demonstrate this effect with smooth curves for error in all 

parameters. In each parameter, error is most sensitive to lower diffusivity, while higher 
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diffusivity continues to result in the best parameter estimation. Figure 2.6b depicts the same 

phenomenon with a domain of evenly distributed cells around a central circular blood 

vessel. The addition of cells increases the rate of error accumulation in Ktrans and ve as the 

domain size is increased.  Spikes in the plot of ve error (Figure 2.6b) are caused by the non-

smooth changes in EES and true volume fractions as the domain increases in size. This 

non-smooth behavior is unavoidable using discretized steps in an irregular domain. Figure 

2.6c depicts the process using a domain generated from actual histology; the same trend of 

accumulating error with increasing window size is apparent with all parameters. Due to the 

pseudo-random distribution of cells, the spikes in error are more present than in the domain 

with evenly distributed cellularity (Figure 2.6b). In general, the parameter is most 

accurately estimated with a contrast agent of higher diffusivity, and the Eq. [2.2] estimation 

of each parameter worsens as the domain increases in size, thereby increasing the distance 

the contrast agent must travel in order to fill the domain. This process was performed on a 

number of other tissue domains and blood vessels, and the same general trend of increasing 

error with increasing window size was found to hold (results not shown). It should be noted 

that when vp is reduced below 0.01 (shown with a dashed vertical line in Figures 2.6a-b), 

the extended Tofts-Kety model no longer holds [67,85], introducing a high 

parameterization error in vp.  

 

2.4 Discussion 

The results above are intended to demonstrate the error due to diffusion in the 

extended Tofts-Kety model, for values of Ktrans, ve, and vp within tumor domains derived 

from entire histology slices. These methods enable us to examine situations which arise in 

biological tissues that might not occur in contrived or overly-simplistic models of cell 

density. Of particular note is the presence of regions within the tumors which, due to the 

distribution of cells, do not allow for any contrast agent to reach them. Such regions were 

evident in all four tumors studied, suggesting that there could be pockets of tissue in vivo 

which will not contribute to contrast agent-mediated signal enhancement. In our calculation 

of error, regions of extravascular extracellular space with no possible enhancement were 
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counted in the veis fraction, and only regions accessible to contrast agent were counted in 

ve. When non-accessible regions are accounted for, the extended Tofts-Kety model is 20% 

more accurate in all cases. Volume fractions with isolated regions of extravascular 

extracellular space can never be quantified using a model of perfusion, and may be better 

measured via diffusion weighted MRI [86]. However, this effect may be mitigated in real 

tissue, given that there will be more physical pathways for the contrast agent to diffuse 

through in three dimensions.  

This work focuses on a range of diffusivities D which represents those common for 

gadolinium based contrast agents. Barnes et al. demonstrated that as D increases into the 

gaseous range, the domain equilibrates within the time-resolution of a typical DCE-MRI 

experiment, and approaches instantaneous equilibration of contrast agent within the 

extravascular extracellular space [77]. In particular, with high diffusivity, overestimation 

of Ktrans indicates that more contrast agent is present in the voxel than would be indicated 

by perfusion and permeability alone. Likewise, overestimation of ve indicates that the 

washout of contrast agent from the voxel is slower than expected, and that the voxel is 

leaking into neighboring voxels [84]. While we do show that for some voxels, Ktrans and ve 

are overestimated, our results (Table 2.1, and Figures 2.2, 2.3, 2.5) indicate that Ktrans and 

ve are most often underestimated for gadolinium chelate MRI contrast agents.  

Figure 2.2c clearly demonstrates an unequal distribution of contrast agent within 

the imaging voxel, and a clear relationship between the total concentration, signal intensity, 

and contrast agent diffusion. With low D, the rate at which the voxel can fill with contrast 

agent is limited by the bottleneck of high-concentration at the vessel boundary. The 

extended Tofts-Kety model dictates that the rate of exchange between the plasma and 

extravascular extracellular compartments is governed by the concentration gradient 

between those two compartments (Eq. [2.5]). Therefore, if contrast agent is unable to 

quickly diffuse away from the vessel to fill empty portions of the extravascular 

extracellular space, the amount of contrast agent entering the domain will be limited due 

to a small gradient between compartments. Figure 2.5 demonstrates the same phenomenon 

in terms of distance instead of time. Faster-diffusing contrast agents are able to equilibrate 
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a larger region of the extravascular extracellular space in a shorter time period, and 

therefore will more accurately represent the entire voxel on the time scale of a DCE-MRI 

experiment. Contrast agents which diffuse more slowly will not be able to evenly fill a 

large region of extravascular extracellular space, and therefore decreases the accuracy of 

the model.  

An example of the error commonly encountered when performing a DCE-MRI 

experiment, using a temporal resolution of 1.6 seconds, and Gd-DTPA, is depicted in 

Figure 2.4. The large error in Ktrans is particularly of note due to its common application in 

diagnosing [55-58] and evaluating response in cancer [59-61,78]. Thus, an accurate 

estimate of perfusion is necessary to provide accurate predictions of tumor growth and 

response to therapeutics.  By correcting for the error introduced by diffusion, we 

hypothesize that accurately estimated parameters will have even more predictive power for 

diagnosis and prognosis. This will require modification of the extended Tofts-Kety model 

to account for both inter- and intra- voxel diffusion.  

Previous efforts have investigated methods to improve the accuracy of the extended 

Tofts-Kety model by treating the tumor as a continuum, while accounting for inter-voxel 

diffusion between boundaries [56,68-71]. These models are applicable for using fast-

diffusing contrast agents, or for correcting for necrotic regions of the tumor where the only 

source of signal enhancement is from the diffusion of contrast agent from neighboring 

voxels. They do not, however, account for the underestimation of Ktrans and ve resulting 

from intra-voxel diffusion as demonstrated in the routine pre-clinical DCE-MRI 

procedures using common gadolinium chelates described in this manuscript.  

Our study of intra-voxel diffusion was limited due to stability requirements (Eq. 

[2.6]); evaluating the forward model for an entire tumor domain at D > 4 ×10-4 mm2s-1 was 

prohibitively long. By taking advantage of mesh partitioning and parallelization, we could 

potentially extend our model to analyze contrast agents with diffusivities in the gaseous 

range (0.17-10.1 cm2 s-1) [59,60], although CA in this range of diffusivity would likely not 

be delivered through injection. Decreasing the simulation time would also allow for 

simulations of the Tofts-Kety model within the flow-limited regime, as increased contrast 
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agent velocity would require finer time-steps. For the same reasons, the spatial resolution 

of our model is limited to 2 µm in the imaging plane, and it is assumed that each blood 

vessel is surrounded by at least 2 µm of extracellular space. This was a necessary 

assumption in order to allow contrast agent to enter the domain from all directions from 

any given vessel. Our model is also limited in that the concentration within the plasma 

compartment is constant in space, and varies temporally with the given population AIF 

[83]. This means our analysis is limited to the permeability-limited case of the Tofts-Kety 

model [79]. This analysis does not accurately reflect well-perfused tumors, in the flow-

limited regime of the extended Tofts-Kety model. Rather, our approach is most applicable 

in tumors with poor vascularization and perfusion. Finally, we offer no immediate solution 

to eliminate this error from the analysis of DCE-MRI. Potential methods for correcting this 

model may include the molecular diffusivity of the contrast agent, as well as including 

prior knowledge of the spatial distributions of vascular and cellular volume fractions within 

the tumor obtained from other imaging techniques.  

Future efforts will investigate the effect of the flow-limited case, requiring 

alternative treatment of the plasma compartment, Ktrans, and inclusion of a perfusion term 

in the FEM. We currently lack a model which would correct for the effects of inter and 

intra voxel diffusion. Future work may also include methods of parameterizing the spatial 

distribution of blood vessels within a voxel, as vessel proximity to a voxel boundary plays 

a central role in inter-voxel exchange of contrast agent. Additionally, future development 

of a diffusion-corrected inverse model for DCE-MRI is of interest. The work presented is 

intended to inform the interpretation of results obtained from extended Tofts-Kety analysis 

of DCE-MRI data until such a model is implemented. 

 

2.5 Conclusion 

The purpose of this study was to illustrate the effect of diffusion of contrast agent 

on parameterization error in the analysis of quantitative DCE-MRI data. By simulating the 

distribution of contrast agent within an entire tumor domain, we are able to highlight the 

sources of error which might be seen in a typical DCE-MRI experiment. More specifically, 
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by using histological stains of cellularity and vascularity, highly realistic tumor domains 

were generated for FEM implementation of the extended Tofts-Kety model at sub-MRI-

voxel resolution. From these simulations, we were able to perform simulated DCE-MRI 

experiments, compare assigned (Ktrans) and histologically measured parameters (ve and vp) 

with those estimated by curve-fitting to the extended Tofts-Kety model, and produce a 

spatial map of parameterization error. Our results show that diffusion plays a measurable 

and significant role in determining the accuracy of the current widely used DCE-MRI 

model, and point towards the need for an improved model which accounts for the diffusion 

of contrast agent within and between voxels.  
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Figure 2.1 Depiction of workflow for developing the simulation domain. Scale bar = 50 
µm. Figure 2.1a depicts whole tumor slice stains of cellularity (H&E) and vascularity 
(CD31) (along with magnified ROIs of a representative 438 µm x 438 µm voxel region). 
Figure 2.1b depicts whole tumor segmentation after registration and image processing, 
(along with a magnified ROI of a 438 µm x 438 µm voxel region). Extravascular 
extracellular space is represented in blue, cells are represented in green, and vessels are 
represented in red. Figure 2.1c depicts FEM modeling and fitting done to produce a 
simulated DCE-MRI curve for a single voxel. Figure 2.1d depicts the measurement of 
model parameters by calculation of volume fractions and Eq. [2.5]. Figure 2.1e shows the 
comparison of truth and simulated measurements from extended Tofts-Kety analysis. 
Figure 2.1f lists model parameters obtained from fitting to the simulated signal intensity 
time-course. 
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Figure 2.2 Model results from simulations performed on a representative necrotic tissue 
domain. Figure 2.2a displays segmentation of the necrotic domain into the extravascular 
extracellular space, cells, and vasculature. The extravascular extracellular space is 
represented in blue, cells represented in green, and vessels represented in red. Note the 
large areas of extravascular extracellular space, and sparsely distributed cells and 
vasculature. Dimensions of the domain are 438 µm x 438 µm. Figure 2.2b presents signal 
intensity time-course, comparing signal enhancement with varying diffusivity. Dashed 
lines indicate the time-points shown in Figure 2.2c. This voxel exhibits the characteristic 
slow enhancement and lack of wash-out typically associated with necrotic regions in the 
tumor.  Figure 2.2c shows concentration distributions at sampled time points 1, 3.5, and 8 
minutes into the simulated DCE-MRI scan, as well as the associated parametric errors for 
each simulation. Note that as D increases, the voxel equilibrates sooner and is associated 
with reduced error in parameter estimation. Underestimation of vp is due to the true value 
being <<0.01 (vp = 0.003). 
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Figure 2.3 Model results from simulation performed on a representative well-perfused 
tissue domain. Edges of the domain have zero flux boundary conditions. Figure 2.3a 
displays segmentation of the well-perfused domain into the extravascular extracellular 
space, cells, and vasculature. The extravascular extracellular space is represented in blue, 
cells represented in green, and vessels represented in red. Cells and vasculature are more 
evenly distributed than in Figure 2.2a. Figure 2.3b presents signal intensity time-course, 
comparing signal enhancement with varying diffusivity. Dotted lines indicate the time-
points shown in Figure 2.3c. Note that this domain exhibits a rapid enhancement, and slow 
washout, typical of a well-perfused voxel. Figure 2.3c shows concentration distributions at 
sampled time points 1, 3.5, and 8 minutes into the simulated DCE-MRI scan, as well as the 
associated parametric errors for each simulation. Note that as D increases, the voxel 
equilibrates sooner and error is reduced. Higher vp accuracy in the well perfused voxel, 
compared to the poorly perfused voxel, is due to the increased vascularity the domain (vp 
= 0.009). 
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Figure 2.4 Mean and 95% confidence intervals of the parameterization error in a single 
mouse specimen (see Figure 2.5) for a range of diffusivities. Figure 2.4a summarizes the 
parameterization error of Ktrans as a function of diffusivity of the contrast agent. The mean 
of the measurement approaches 0 for each value of increasing D. As diffusivity increases, 
the standard model begins to over-estimate Ktrans, shown with error bars extending above 
0%. Figure 2.4b summarizes the parameterization error of ve as a function of diffusivity. 
The model more accurately predicts ve with increasing D, with over-prediction occurring 
more frequently with increasing D. Figure 2.4c summarizes the parameterization error of 
vp as a function of diffusivity. The standard model nearly always overestimates vp, but 
becomes more accurate with increasing diffusivity. Note that Ktrans and ve are most often 
under-estimated at the D values used in this simulation. 
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Figure 2.5 Depiction of parameterization error for a single tumor specimen, with D = 2.6 
×10-4 mm2s-1 (appropriate for Magnevist). Regions marked with an “X” do not contain 
any detected vasculature, and thus result in an infinite parameterization error. Figure 2.5a 
displays the absolute percent error in Ktrans. In general, Ktrans is not accurately measured 
throughout the entire tumor, with regions of highest error occurring in necrotic regions. 
Figure 2.5b presents absolute percent error in ve while panel c shows absolute percent error 
in vp. Note that the scale bar ranges from 0 to 500%; error in vp is considerably higher than 
in Ktrans or ve. H&E and CD31 stains of the tumor are depicted in Figures 2.5d and 2.5e, 
respectively, while whole tumor segmentation is depicted in Figure 2.5f. Scale bar is the 
length of a voxel, 438 µm.  
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Figure 2.6 Comparison of model accuracy as a function of distance from blood vessel. 
Starting with the domain shown in Figure 2.6a, only the elements directly adjacent to the 
blood vessel are included in the simulated DCE-MRI scan. For each data point shown, the 
initial domain is expanded in all directions using morphological dilation with an 8 pixel 
neighborhood. The window of elements used in the simulation continues to increase in 
size, up to 120 µm away from the nearest vessel boundary. Figure 2.6a depicts a simple 
domain containing a single 10 µm diameter vessel, and the associated error as the analysis 
window increases in size. Figure 2.6b presents results from the same procedure performed 
in Figure 2.6a, but includes evenly spaced cells, both with 10 µm diameter, spaced 6 µm 
apart. Note the similar trends in increasing error, with decreased smoothness caused by the 
addition of cells. Figure 2.6c shows a segmented domain from a section of tumor. Note 
similar trends to Figures 2.6a and 2.6b, with even further increased noise do to the pseudo-
random distribution of cells in the domain. In all cases, the fastest diffusing contrast agent 
allows for the best parameter estimation with a large window size. At low window size, 
the model accurately measures the local environment, but begins accumulating error as the 
domain increases in size and the contrast agent must diffuse further to fill the domain. Scale 
bar 20 µm. 
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D  
(×10-4 mm2s-

1) 
% Error Ktrans % Error 

ve,corrected 

%Error  
ve,uncorrected 

%Error vp 

 
1 
 

 
-36.9 ± 7.2 

 
-11.3 ± 3.79 

 
-30.1 ± 4.10 

 
93.5 ± 16.1 

 
2 
 

 
-23.6 ± 9.5 

 
-5.02 ± 3.76 

 
-25.6 ± 4.07 

 
85.2 ± 16.6 

 
2.6 

 

 
-19.1 ± 10.6 

 
-4.92 ± 3.86 

 
-26.1 ± 4.02 

 
79.5 ± 16.8 

 
4 
 

 
-10.6 ± 12.3 

 
-1.23 ± 5.22 

 
-24.4 ± 4.03 

 
74.9 ± 16.8 

 
Table 2.1: Summary of parameterization errors over all four tumors  
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Chapter 3: 

Patient specific, imaging-informed modeling of Rhenium-186 

nanoliposome delivery via convection enhanced delivery in glioblastoma 

multiforme 

3.1  Background and introduction 

 Glioblastoma Multiforme (GBM) is the most common and deadliest of all primary 

brain cancers [87-88]. Shortly after diagnosis, patients typically begin treatment and 

receive maximal allowable resection (to remove the bulk tumor and reduce intracranial 

pressure), followed by fractionated radiotherapy concurrent with temozolomide [89]. This 

aggressive treatment regimen results in a median overall survival of 15 months [90].  

Despite numerous clinical trials, the standard clinical treatment of GBM has remained 

relatively unchanged [87-88]. It is nearly impossible to resect all disease, as GBM is highly 

aggressive, grows rapidly, and initial clinical presentation often requires immediate 

surgical intervention to release intercranial pressure [90]. Residual invasive disease all but 

guarantees recurrence, which typically occurs within two years [87,91]. Given the current 

limitations in successfully treating this disease, especially after the initial treatment course 

has been completed, there are a large number of aggressive therapies currently in clinical 

trials, each designed to significantly extend survival (and quality of life) for the patient 

[92].  One such family of therapies is the local administration of beta radiation for recurrent 

disease.  

 Beta radiation provides a strong, local administration of radiation to the site of 

recurrence, due to the short pathlength (2-4mm) of beta particles, potentially limiting 

further exposure of healthy brain tissue [91]. One such radiotherapeutic in development is 

the delivery of Rhenium-186 nanoliposomes (RNL) via convection-enhanced delivery 

(CED) directly to the site of recursion. A promising pre-clinical study, has shown that RNL 

effectively halts disease progression in the U-87 murine model of GBM, and that radio-

nanoliposome retention in the tumor region is much higher than that of molecular 
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radiotherapeutics [93-94]. This approach is now being investigated in an on-going phase 

I/II clinical trial (NCT Number NCT01906385) to deliver high doses of radiation, 

eventually exceeding 20 Gy directly to areas with recurrent disease. The immediate goal 

of this trial is to treat recurrent tumors and their associated margins with high dose radiation 

to slow and potentially prevent subsequent recurrent disease, with the ultimate goal of 

significantly extending mean survival without further surgical resections [93-95].  

Many therapeutics delivered via CED have had limited success in clinical trials. 

While the direct delivery of concentrated drug or radioactive agent to the tumor avoids 

systemic toxicity and bypasses challenges associated with passing the blood-brain barrier, 

successful delivery and disease treatment is highly dependent on the individual patient and 

the therapeutic particle being delivered [92]. Jahangiri et. al stated that accurate prediction 

of the spatio-temporal distribution of therapeutic delivered via CED is necessary to 

maximize the chance of success for any given experimental therapy [92]. In particular, they 

found that less than 50% of patients entered into the PRECISE trial (convection-enhanced 

delivery of IL13-PE38QQR) had suboptimal catheter placement, and computationally 

optimized placement might account for the lack of survival  benefit expected during the 

trial [92,96]. 

 Given the high doses of beta radiation delivered by RNL, it is vital to ensure a 

catheter placement which minimizes the risk of leakage into the cerebrospinal fluid (CSF) 

and healthy tissue exposure, while simultaneously maximizing tumor coverage. While 

surgical planning software exists for delivery of molecular therapeutics [97-99], there is no 

such software tool or model (to our knowledge) specifically designed to predict the 

spatiotemporal distribution of nanoparticles (100 nm in diameter in the case of RNL) 

delivered via CED. As nanoparticles are orders of magnitude larger in size than molecular 

agents (~100 nm vs. < 1 nm respectively), there are unique challenges in predicting the 

delivery of nanoparticles via CED. Further, current state-of-the-art computational models 

of CED rely on particle-based discretization, which is computationally expensive to run, 

slow to converge, and are highly sensitive to initial conditions and random seeds prior to 

model convergence [97]. 



 49 

The goal of this study is to define, calibrate, and validate a physics-based computational 

fluid dynamics model of CED delivery of RNL to recurrent glioblastoma, solved using the 

finite element method. This approach is designed to account for decreased nanoparticle 

mobility associated with their larger size in comparison to molecular agents, and utilizes 

patient-specific pre-operative imaging to derive material properties. The model is 

implemented using the theory of finite elements, which are stable, deterministic, and 

ubiquitous in all high-precision fields of science. We utilize a five-patient subpopulation 

taken from the RNL clinical trial to calibrate and validate our approach. Each model in a 

family of 12 is calibrated to a gold standard of single photon emission computed 

tomography (SPECT) images, acquired during and immediately following the infusion of 

RNL. To assess the validity of each model, a leave-one-out framework is utilized, such that 

only information obtained prior to a patient’s RNL infusion is utilized in making a 

prediction. Further, while this specific model is developed for the prediction of RNL 

delivery within the context of the clinical trial, we propose that this framework may 

potentially be extended to any therapeutic delivered by CED, given the proper data to 

calibrate and constrain model parameters. 

 

3.2  Methods 

3.2.1 Clinical protocol 

 The patients presented in this study consist of 5 patients from the Phase I/II clinical 

trial of RNL performed at The University of Texas Health Science Center at San Antonio 

(UTHSCSA) [95].  The population consists of adult patients suffering from recurrent GBM 

after an initial tumor resection. While full information on the study (including details on 

patient population, entry criteria, and full details on image acquisition) can be found in the 

public clinical trial documentation (NCT Number NCT01906385), here we summarize the 

salient details relevant to our modeling efforts.  

 After initial screening and MR imaging are performed (see Imaging details, below), 

a single catheter is surgically inserted intracranially to the site of infusion, and the patient 

is allowed to rest for approximately 8 hours. RNL is then delivered via an automated 
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syringe pump, initially under a ramp to ensure minimal leakage into the CSF and nearby 

vasculature, and then at a constant rate of 5 microliters per minute. For the purposes of this 

study, and due to the minimal amount of RNL delivered during the initial ramp, it is 

assumed that the rate of delivery is a constant 5 microliters per minute. The total volume 

of RNL infused and time of infusion for each patient are listed in Table 3.1.  

 

3.2.2  Imaging details 

 While full details of clinical image acquisition can be found in the public clinical 

trial documentation (NCT Number NCT01906385), here we summarize the salient details. 

Each patient undergoes an initial imaging protocol consisting of multimodal magnetic 

resonance imaging (MRI) for surgical planning. The MR modalities collected consist of 

T1- and T2- weighted images, T2-fluid attenuated inversion recovery (or FLAIR) images, 

post-contrast T1-weighted, and diffusion imaging (including apparent diffusion coefficient 

(ADC), fractional anisotropy, and diffusion tensor imaging; thought the latter two are not 

used in the present study). For the post-contrast T1-weighted images, patients received 

Gadovist (Bayer, Whippany, NJ). All images considered in the present study are acquired 

in the axial direction. MR images are acquired on a Phillips Acheiva 3T scanner using an 

8-channel coil.  

On the day of the RNL infusion, the patient is placed into a GE Infinia SPECT/CT 

scanner, along with an imaging standard containing one fifth of the total amount of RNL 

to be delivered to the patient; the imaging standard is to be used for decay correction and 

establishing consistency among inter-image intensities. The X-ray CT data (acquired 

simultaneously with the SPECT images on the same scanner) serves to provide anatomical 

landmarks for interpretation of the SPECT images, as well as facilitate image registration 

to the MRI data. SPECT/CT images are collected after half of the RNL volume is infused, 

and at end-of-infusion (EOI). Further SPECT/CT images are acquired through the 

following week, to track RNL retention, but those images are not considered in this present 

study. Field of view and resolution of each imaging modality used in this study are listed 

in Table 3.2. Further MR image acquisition details are provided in Table 3.3. 
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3.2.3 Image processing 

 All image processing is performed in MATLAB 2019a and the Image Processing 

Toolbox (Mathworks, Natick, MA). Voxels which presented non-physical values (e.g., 

ADC < 0 mm2/s, or SPECT signal intensity < 0) in all imaging modalities are replaced with 

the mean of the eight nearest non-zero neighboring voxels in the same axial slice. A 

gaussian filter with a 3 × 3 voxel kernel is applied to each MR image on each axial slice to 

reduce noise and smooth sharp gradients in the images. The tumor regions of interest were 

segmented by hand from the post-contrast T1-weighted image, while gray and white matter 

were segmented via a k-means clustering of the T1-weighted signal intensity, using three 

clusters (white matter, gray matter, background) [100]. CSF was segmented using a 

threshold of ADC values greater than 3 × 10-3 mm2/sec, and validated by comparison to T2 

and FLAIR images [101]. All MR images are registered and resampled using linear 

interpolation (using the imregtfrom and imwarp functions, and ‘multimodal’ option) after 

rigid registration to the T1-weighted image. Registration is performed internally by 

maximizing the Mattes Mutual Information for every pixel in a transformation [102]. The 

T1-weighted image is then registered to the CT image acquired at EOI, and the resulting 

transformation is applied to each of the co-registered MR images. The skull-brain boundary 

is manually identified using the T1-weighted image. The region within the skull-boundary 

is then transformed into an initial mesh (on the axial slice of maximal SPECT intensity) by 

converting each voxel within the skull boundary into 2 isosceles right triangle elements. 

This 2D mesh is then refined, according to the procedure outlined in Section 2.5. 

SPECT images are first normalized to the total intensity of the SPECT standard 

within the image, to decay correct and obtain a map of RNL concentration.  SPECT images 

are normalized by dividing the image by the total sum of the signal within the imaging 

standard. Prior to normalization to the standard, the SPECT images provide a map of 

radioactive activity as the signal is directly proportional to concentration in any given 

voxel. After normalization, the signal intensity is directly converted to the concentration of 

RNL, thus serving as our gold standard for the measurement of the spatial distribution of 

RNL concentration across time [93-94]. This is done to convert the raw SPECT data, which 
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is a map of radioactivity, to a map of RNL concentration. X-ray CT images and their 

corresponding SPECT images are then cropped to a FOV which contains only the skull. 

These cropped FOVs are then registered to the FOV acquired at EOI. The corresponding 

cropping and registration transformations are then subsequently applied to the normalized 

SPECT images.  

In order to compare SPECT data to the output of the model, we develop an 

empirical SPECT PSF for the purpose of simulating a SPECT acquisition. The SPECT 

point-spread function (PSF) is approximated using a Jaszczak Deluxe SPECT Phantom 

(Biodex, Shirley, NY). The phantom is imaged submerged in water, and in air, according 

to the same imaging conditions as an individual patient. A digital representation of the 

phantom (identical in dimensions to the Jaszczak phantom) is approximated by a 3D 

voxelized sphere, with uniform intensity, and a resolution 10x higher than the SPECT 

image (0.442 mm), positioned to match the center of mass between the phantom image and 

the simulated phantom. The simulated phantom image is then convolved with Gaussian 

point-spread functions of varying standard-deviations, and down-sampled to match the 

SPECT resolution (4.42 mm). The summed square-error between the actual SPECT 

phantom image and the simulated phantom image is minimized. Using these methods, it 

was empirically determined that the standard deviation of the Gaussian PSF was 5.23 mm 

which agrees with values previously reported for clinical SPECT scanners [103-104]. This 

PSF is then applied to all simulated RNL fields to simulate a SPECT acquisition, thereby 

enabling direct comparison of the predicted RNL distribution to that actually measured 

from the SPECT data.  

 

3.2.4  Fluid dynamics model 

 Interstitial pressure and fluid velocity are modeled using the laws of Darcy and 

Starling, respectively. Darcy’s law describes the flow of fluid through porous media (e.g., 

biological tissue, sand, or granular material): 

,      3.1 u K p= - Ñ
!
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where 01⃗ (x) is the interstitial fluid velocity, p(x) is the interstitial fluid pressure, and K(x) is 

the hydraulic conductivity of the tissue. Darcy’s law states that fluid velocity is 

proportional to the gradient of pressure, with a proportionality constant K in the opposite 

direction of the fastest decreasing pressure. Starling’s law describes the pressure loss into 

capillaries within the tissue: 

,     3.2 

where Lp(x)  is the capillary hydraulic conductivity, S/V(x) is the ratio of capillary surface 

area to volume (Lp and S/V are unidentifiable, so they are combined into a single term), and 

f is the source term used to introduce the fluid flow from the catheter. Starling’s Law is 

typically used to describe the influx of velocity through capillaries. However in this 

formulation, the pressure p represents the pressure differential between capillary and 

interstitial compartments (pcap - pint,  pcap << pint) due to the high pressures required for 

CED, therefore introducing a negative sign into the equation. The catheter fluid flux source 

term, f, is implemented as a Gaussian with a total mass flux of 5 μL/min, with the mean 

located at the catheter tip, and a standard deviation of 0.25 mm (such that 95.4% of the 

mass is distributed within the 1 mm catheter diameter). A Gaussian source term was 

selected as it is smooth and easier to implement than a point source.  Interstitial velocity 

and pressure are assumed to rapidly equilibrate within the tissue. Mechanical deformation 

and stiffening of the brain tissue, along with formation of an annular void at the catheter 

tip are not considered. Pressure is assumed to have equilibrated at the domain boundary, 

and a zero-slip boundary condition for velocity result in the following Dirichlet boundary 

conditions: 

,     3.3 

,     3.4 

where 2 denotes the domain boundary. 

 Transport of RNL is modeled as an advection-diffusion system within the skull, 

using the modified advection-diffusion equation from Jain et. al [105-106]: 

pu L S p f
V
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,    3.5 

where c(x,t) is the concentration of RNL at position x and time t, D(x)  is the diffusion of 

RNL within the domain due to random thermal motion, R(x) is a restriction factor which 

accounts for decreased liposome velocity with respect to interstitial fluid velocity (R ϵ 

[0,1]), and g is a Gaussian source term identical in shape to f, with a total mass determined 

by the total normalized RNL intensity divided by the duration of the RNL infusion for each 

patient. RNL is not permitted to cross the skull boundary, resulting in a Neumann boundary 

condition for the transport equation: 

,      3.6 

where ,- denotes the normal vector at the domain boundary. The initial condition for RNL 

concentration c(x, t = 0) is assumed to be uniformly 0.  

 

3.2.5  Numerical implementation and analysis 

Eqs. [3.1-3.6] are numerically solved using the finite element method in two-

dimensions, on the central axial tumor slice. The 2D finite element mesh is generated on 

the registered mask of the region within the skull (CSF and brain). Each voxel within then 

axial slice of maximal SPECT intensity, is then mapped to two isosceles right triangular 

mesh elements for each of the two masks. The two short sides of each triangular element 

are 1 mm on a side, corresponding to the size of the T1-weighted image voxels. A separate 

measurement mesh is generated using the SPECT image, with each SPECT voxel 

corresponding to two isosceles right triangular elements, with short side lengths equal to 

the SPECT voxel resolution of 4.42 mm. Simulations are performed on the high resolution 

mesh, but all comparisons between simulation and measured SPECT data are performed 

after projecting the results onto the lower resolution mesh, corresponding to a simulated 

SPECT measurement.   

The steady-state pressure and interstitial fluid velocity are determined by solving a 

simultaneous mixed element system of Darcy’s Law Eq. [3.1] and Starling’s equation Eq. 

[3.2]. The continuous variational problem is: 

( ) ( )c D c Ruc g
t
¶

Ñ × Ñ -= Ñ× +
¶

!
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,    3.7 

,    3.8 

where "⃗ and 01⃗  are second-order Brezzi-Douglas-Marini test and trial functions [107], and 

q and p are first-order Discrete Galerkin test and trial functions. (The <•,•> Ω notation is 

used to denote the inner product operator on domain Ω.)  Note that the boundary term from 

integration by parts in Eq. [3.7] has vanished due to application of the Dirichlet boundary 

conditions summarized by Eqs. [3.3] and [3.4]. The above system is iteratively solved on 

the high-resolution mesh initially, and the mesh is locally refined until the residuals in p 

are reduced below 1×10-6 N/mm2 (Figure 3.3). The resulting refined mesh and steady state 

velocity field is used in implementing the transient transport model (i.e., Eqs. [3.5] and 

[3.6]), with implicit forward time-stepping, 

 

, 3.9 

where ∆t = 1 min is the simulation timestep, w and c are first-order Lagrange test and trial 

functions, respectively. However, it is known that this formulation is unstable, and requires 

stabilization [108]. From a residual perspective, Eq. [3.9] is equivalent to  

,    3.10 

where it becomes apparent that weak form Eq. [3.9] is a minimization of residuals with 

respect to a set of test functions w. Stabilization of Eq. [3.10] is performed by adding 

diffusion in the direction of the velocity streamlines, using the streamline upwind Petrov-

Galerkin method [109],  

,    3.11 

where 

,     3.12 

and 
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,    3.13 

with Peclet number (i.e., the ratio of advective to diffusive flux in an element) 

,      3.14 

where 3 represents diffusive stabilization basis in the direction of velocity streamlines, 4 

is a scaling factor determined by both the local element size, h, and Pe such that more 

diffusive stabilization is applied in regions of high Pe. Again, note that the boundary term 

introduced by integration by parts in Eq. [3.9] vanishes, this time due to the implementation 

of zero-flux conditions of Eq. [3.6]. All finite element modeling is done using Python 2.7 

, using the Fenics 2017.2 library [110], and SuperLu distributed solver method [111].  

 

3.2.6  In silico assessment of model fidelity 

 To ensure the CFD model converges to a single solution, and becomes more 

accurate with refinement, we perform a refinement-based convergence analysis [112]. The 

model is first run on a 100 mm × 100 mm domain, with a source term located at the center, 

and boundary conditions described above. The mesh is initially subdivided by 10 triangular 

elements in each of the two dimensions (10 mm on a short side), the model (i.e., Eqs. [3.7 

– 3.14]) is run forward in time, and the spatial distribution of RNL is recorded at mid- and 

final timepoints. The mesh is then progressively refined, and the model run again, adding 

10 to the total number of elements per dimension, until the mesh is subdivided into 400 

elements per dimension (0.25 mm on a short side). The L2-norm of each progressive model 

run is calculated between the current iteration and the highest resolution iteration at the 

final time point. This process is performed for values of hydraulic conductivity of varying 

orders of magnitude (K = [10-1, 10-2, 10-3, 10-4] mm/min). The results of this analysis are 

demonstrated in Figure 3.3.  

 

 

 

1( ) coth( )Pe Pe
Pe

z = -

| |
2
R hP ue
D

=
!



 57 

3.2.7 Model family 

 Table 3.4 contains a full mathematical description of each of the models in the 

family which are tested. Models 1 and 2 utilized spatially homogenous material properties. 

Models 3 and 4 utilized material properties which are linearly weighted by the ADC map 

[107]. Models 5 and 6 weight material properties by exponential weighting of the ADC 

map, such that parameter value for the field asymptotically approaches the calibrated 

maximum [113]. Models 7-9 utilize bulk material properties for CSF and brain tissue. 

Models 10-12 further categorize brain tissue into white matter and grey matter. Models 1, 

3 ,5, 7, and 10 assume a fixed value of LpS/V which is not fit for. Models 2,4,6,8 and 11 

assume a homogenous constant LpS/V which is a fit parameter. Models 9 and 12 assume 

LpS/V is 0 in CSF (congruent with incompressible fluid assumption), but allow for a fit 

parameter to determine the material property corresponding to the segmented brain region.  

 

3.2.8  Statistical analysis and model selection 

The parameters in each model are calibrated to minimize the sum squared error 

(SSE) between the model results and SPECT gold standard at times t = 0, t = ½, and t = 1 

(times which correspond to the total fraction of RNL delivered). Note, the RNL 

concentration at t = 0 is assumed to be identically zero everywhere. Calibrated parameters 

are initialized using a multi-start framework to avoid local minima in the objective 

function. Parameters are calibrated using SciPy (Python 2.7) least squares minimization 

(scipy.optimize.least_squares) [114]. To estimate the gradient of the objective function, 

each parameter is perturbed by a factor of 1×10-4 to approximate an element-wise objective 

function gradient. These perturbations require a forward solve for each parameter, and are 

therefore run in parallel. The least-squares algorithm is then run until the change in 

parameters is less than a tolerance of 1×10-4, the change in SSE (Eq. [3.15]) is less than 

1×10-4, or the gradient of the objective function is less than 1×10-6 (minimum is reached).  

 We compare the results of calibrating each model to data from the five 

representative patients via a number of metrics. The quality of the model fit to the data is 

calculated as: 
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,    3.15 

 

where j denotes the spatial index of each voxel in the measured or simulated images, and t 

denotes the temporal index of the measured or simulated images. The concordance 

correlation coefficient (CCC) quantifies the deviation from the line of unity of a model’s 

prediction of the spatial distribution of RNL to that experimentally measured from SPECT 

[115]. A CCC of 1.0 indicates a perfect recreation of the measured data by the model. To 

compare the shape of the distributions of RNL between the SPECT data and model output, 

a mask of the RNL is generated using a simple threshold. Voxels are considered to be above 

the noise floor if their intensity is greater than or equal to 5% of the maximum-intensity 

voxel for that particular SPECT measurement or simulation. The resulting masks are then 

compared using the Dice correlation coefficient, which quantifies the overlap between the 

simulated and measured spatial distributions of RNL, agnostic of the underlying 

concentration field. A Dice value of unity corresponds to a perfect match between masks, 

while a Dice value of 0 corresponds to a perfect mismatch between masks [116].  

We use two model selection criteria to select the optimal model from the family of 

12. The first is the Akaike Information Criteria (AIC) [117] which balances goodness of 

fitness with the number of free parameters, k, as follows:  

,    3.16 

with n, the number of samples (in this case, the number of non-zero voxels). The model 

with the smallest AIC is selected as the most parsimonious model. Second, we consider 

which model maximizes the overlap of the simulated and measured RNL distributions (i.e., 

maximizes the Dice value). This second model selection criteria identifies the model that 

most accurately matches the spatial distribution of RNL immediately following the 

infusion.  
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3.2.9  Validation 

 To determine the ability of each model to predict the final spatial distribution of 

RNL in each patient, we employed the leave-one-out method.  That is, we would calibrate 

four of the five patients to a model to yield a distribution of parameter values.  These 

distributions would then be used to assign the model parameters for the fifth patient, 

thereby enabling the model to be run forward to predict the final spatial distribution of 

RNL which could then be directly compared to the experimentally measured value for that 

patient.  More specifically, with one patient held back, the mean, μ, and standard 

deviation, σ, of the model parameters for the remaining four calibrated parameter sets are 

used to determine a beta-distribution [118]: 

,    3.17 

,     3.18 

,    3.19 

where a and b are the beta distribution shape parameters, in terms of the sample mean and 

variance. The beta-distribution is a generalized monomodal distribution, defined on the 

interval [0,1], and is used in place of the normal distribution which is defined on the interval 

(-∞, ∞). This distribution allows for appropriate sampling of the prior distribution for 

model parameters which exist between some pre-specified lower and upper bounds.  If σ2 

< μ(1- μ), the beta distribution is replaced with a uniform distribution. Sample parameters 

are randomly generated from parameter distributions defined by Eq. [3.17], N = 100. The 

forward model is then run using the geometry and imaging data corresponding to the fifth 

patient that was held back. This approach simulates the results of the model prediction as 

if the fifth patient were newly entered into the clinical trial. From these 100 independent 

simulations, a mean and 95% confidence interval are determined on a voxel-wise basis, at 
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the times corresponding to the SPECT acquisitions. These means and 95% confidence 

intervals are compared to the measured SPECT data using the CCC, Dice, and SSE.  

 

3.3  Results  

3.3.1  Convergence analysis 

To determine if we are meshing our domain finely enough, the model is run on a 

uniform square mesh, with a pressure source at the center. At a resolution of one element 

per 1 mm in each direction, the global L2-norm for pressure is less than 10-6 N/mm2 for all 

values of K. Figure 3.3 demonstrates that, upon further refinement, the global L2-norm 

continues to slowly decrease upon further refinement. For the purposes of the current study, 

a residual of 10-6 N/mm2 was considered sufficiently refined. 

 

3.3.2   Calibration and model selection 

While prediction results are calculated for each of the 12 models, for clarity we 

present prediction results for only two of the models: Model 1, which has the fewest 

parameters, and Model 12, which minimizes the mean AIC across 4 of 5 patients, and 

maximizes the mean Dice across all patients. (Please see the supplemental material for a 

presentation of all model predictions). Upon calibration of each patient to each model, the 

AIC, Dice, and CCC were recorded, along with the parameters which minimized the SSE 

between each patient’s measured RNL distribution and the model simulated distribution. 

Model 12 performed with the highest mean CCC and Dice, ranging from 0.71 to 0.95 in 

CCC, and 0.84 to 0.97 in Dice. Model 1 performed similarly, with only fitting 3 global 

parameters, ranging from 0.70 to 0.92 in CCC, and 0.76 to 0.97 in Dice. Model 1 required 

3 fit parameters, while model 12 required 8 parameters for a fit, though Model 12 

minimized the AIC for each patient except patient 4. The models which performed the 

worst were Models 5 and 6 (exponentially weighted). Out of all patients, Patient 2 was 

most closely calibrated with each model iteration, while Patient 4 had the poorest model 

calibration for each model iteration. 
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3.3.3 Model prediction 

 Figure 3.4 presents the Model 1 prediction results for patient 5. As Model 1 does 

not take into account spatially varying material properties, the predicted distribution of 

RNL is radially symmetric (Figure 3.4a). Following the leave-one-out approach described 

above in section 2.9, Model 1 predicts the distribution of RNL with a  CCC ranging from 

0.70 to 0.94, and Dice ranging from 0.46 to 0.82. Model 1 underestimates the peak intensity 

at the center of the distribution at both mid- and post- infusion time points by greater than 

10% (Figure 3.4a, 3.4b), and the model prediction confidence interval is widest at the center 

of the RNL distribution (greater than 0.65 AU), near the location where the catheter is 

placed (Figure 3.4a). The model has regions of high error (underestimating the SPECT data 

by a factor greater than 90% relative error) near the edge of the brain, where it fails to 

predict a small leak into the CSF (Figure 3.4a).  

Figure 3.5 presents the prediction results from patient 5 for Model 12 which assigns 

separate material properties to white matter, gray matter, and CSF. Model 12 is able to 

predict the voxel-wise distribution with CCC ranging from 0.81 to 0.98, and Dice score 

ranging from 0.47 to 0.84. A full tabulation of calibration results for each model is provided 

in Table 3.5, and a full tabulation of prediction results from the models selected are shown 

in Table 3.6. The predicted maximum values for Model 12 overestimates (Figures 3.5a, 

3.5b) the RNL concentration by over 20% within the central region of the distribution, in 

contrast to Model 1 which underestimates the concentration by 12% after the final time 

point. The region of highest uncertainty in the model prediction for Model 12 is located 

(greater than 0.70 AU) at the center of the distribution (near the catheter placement site, 

similar to Model 1), and in CSF within and surrounding the brain (Figure 3.5a). Model 12 

recapitulates the leak the CSF surrounding the brain more accurately than Model 1 (Figure 

3.5a).  

 

3.4  Discussion 

 We have presented a family of 12 models which are capable of characterizing the 

distribution of RNL delivered to a patient’s tumor via CED. Through calibration, we 
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demonstrate that we can recapitulate the shape and voxel-wise concentration of RNL to a 

high degree (mean Dice = 0.91 ± 0.10, CCC = 0.83 ± 0.10, Table 3.5) using spatially 

invariant material properties (Model 1). Upon addition of spatial information, implemented 

through calibration of material properties determined through pre-operative MRI (Model 

12), these metrics improve (mean Dice = 0.93 ± 0.07, mean CCC = 0.83 ± 0.11, Table 3.4). 

Utilizing prior-knowledge from other patients in a leave-one-out method, Model 12 is 

highly predictive of the distribution of RNL (Dice = 0.69 ± 0.18, CCC = 0.88 ± 0.12), 

indicating that this model has potential for predicting the distribution of RNL for future 

patients within this clinical trial. In addition to predicting the spatio-temporal distribution 

of RNL, this framework provides a map of model uncertainty that indicates the statistical 

level of confidence in the model prediction at a local voxel level.   

There are a number of improvements which can be implemented in this modeling 

framework. For example, the model was implemented in 2D but applied to a 3D structure. 

In spite of this, the predictive ability of the model in this preliminary data set is high, which 

we attribute largely to the differences between in-plane and through-plane spatial 

resolution in the imaging data: 0.98 mm versus 5 mm.  Similarly, the spatial resolution of 

the SPECT data (4.42 mm on each side) also fundamentally limits the accuracy of the 

predictions.  The limited spatial resolution afforded by SPECT is, of course, well-known 

and there is little that can be done at this time.  It is possible that calibrating to MR-labeled 

nanoparticles [119] may be a way to improve the spatial resolution of the input data and 

this would, in turn, potentially improve the predictive ability of our modeling scheme. Our 

model also assumes that resting-state interstitial velocity is dominated by the flow due to 

CED, and resting-state interstitial fluid velocity is therefore ignored. This simplifying 

assumption may be invalid, particularly in the case of slow, multi-day infusions. The 

effects of CED on interstitial flow, and its effects on tumor growth is a growing field, and 

is currently under investigation [120-121].  

 Given the modest sample size (N = 5), the results above should be interpreted as 

an initial contribution that must be validated in a large patient set that includes patients of 
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heterogeneous physiologies and outcomes, including those with and without significant 

CSF leaks.  But the positive results in the current data set does warrant further investigation. 

Other models of CED have been presented previously [97,99,122-124]. However, 

to the best of our knowledge, all models currently in use have been developed with 

molecular agents in mind, and may therefore systematically overestimate the distribution 

of RNL, especially in the case of nanoliposomes. Additionally, some models utilize 

literature values for material properties, which apply only in the situations with identical 

conditions to which the measurement are taken, but may not apply in the case of large 

molecules, or other assumptions than those used to measure or estimate the material 

properties in the present work [98,123]. 

Other modeling approaches (e.g., iPlanFlow (BrainLab, Munich Germany), and 

those contributed by Raghavan et. al.) utilize a linear scaling of the diffusion tensor 

imaging (DTI) map to inform K as a tensor [97,99,124]. While our model does not utilize 

the full DTI tensor field, Kim et. al. hypothesize that fully informing K with DTI imaging 

may not be necessary, and that large changes in K, such as those found between boundaries 

between differing tissue types, are the most important feature to capture in modeling CED 

[124]. We believe this hypothesis is supported by the fact that Model 12, which uses only 

segmented tissue types instead of a scaling of the ADC map, was the most accurate at 

predicting the distribution of RNL on both voxel-wise and volumetric basis. Some models 

of CED couple tissue deformation at the catheter tip with changes to the hydraulic 

conductivity [97,99]. While we do not take this phenomenon into account explicitly, it is 

possible that the empirical nature utilized to determine material properties (i.e. calibration 

versus direct measurement) may account for discrepancies between these methods.   

 

3.5 Conclusion 

 We have presented a family of 12 models calibrated by patient-specific, multi-

modality imaging that is capable of predicting the final spatial distribution of RNL with a 

DICE score of 0.69 ± 0.18 and a CCC of 0.88 ± 0.12. We aim to utilize this modeling 

methodology for the optimization of CED catheter placement, such that tumor coverage 
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is maximized while healthy tissue exposure is minimized, for treatment of recurrent 

glioblastoma in the ongoing Phase I/II RNL clinical trial.  
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Patient 
Infused volume 

(mL) 

Infusion time 

(min) 

Dose 

(mCi) 
CSF leak? 

1 0.66 132 1 yes 

2 1.32 264 2 no 

3 2.64 528 4 no 

4 2.64 528 4 yes 

5 2.64 528 4 yes (minor) 

Table 3.1: Clinical patient details 
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Modality 

In-plane 

Resolution  

(mm) 

Slice 

Resolution 

(mm) 

FOV  

(voxels) 

T1 1.0 1.0 256 × 256 × 165 

T1+C 1.0 1.0 256 × 256 × 165 

ADC 0.98 5.0 256 × 256 × 30 

SPECT 4.42 4.42 128 × 128 × 128 

CT 1.10 4.42 512 × 512 × 90 

Table 3.2: Clinical imaging details 
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Image Sequence TR 
(ms) 

TE 
(ms) 

TI 
(ms) 

α 
 

b-values 

T1 Fast field echo 25 2.1 - 30° - 
T1+contrast Fast field echo 25 2.1 - 30° - 

T2 Turbo spin echo 8,052 100 - 90° - 
FLAIR Long TR 11,000 125 2,800 90° - 
ADC Single Shot SENSE 4,390 56 - 90° 800,1000 

Table 3.3: Clinical MR image acquisition parameters 
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Model 

Apparent Tissue Hydraulic 

Conductivity 

(K, mm2) 

Apparent Liposome 

Diffusivity  

(D, mm2 s-1) 

Restriction 

Factor  

(R, unitless) 

Hydraulic conductivity and capillary 

area to volume ratio (LpS/V, mm2 N-1 s-1) 

Total 

Parameters 

1 ! = #! $ = #" % = ## &$'/) = 0.01 3 

2 ! = #! $ = #" % = ## 
&$'
)

= #% 4 

3 ! = #! × .$/ $ = #" × .$/ % = ## 
&$'
)

= 0.01 3 

4 ! = #! × .$/ $ = #" × .$/ % = ## 
&$'
)

= #% 4 

5 ! = #!012	(−#"/.$/) $ = ##exp	(−#%/.$/) % = #& 
&$'
)

= 0.01 5 

6 ! = #!012	(−#"/.$/) $ = ##exp	(−#%/.$/) % = #& 
&$'
)

= #' 6 

7 : = ;
#!, /'=
#", >?@AB

 $ = ;
##, /'=
#%, >?@AB

 % = #& 
&$'
)

= 0.01 5 

8 : = ;
#!, /'=
#", >?@AB

 $ = ;
##, /'=
#%, >?@AB

 % = #& 
&$'
)

= #' 6 

9 : = ;
#!, /'=
#", >?@AB

 $ = ;
##, /'=
#%, >?@AB

 % = #& 
&$'
)

= ;
0, /'=
#', >?@AB

 6 

10 ! = C
#!, /'=

#", DℎAF0	G@FF0?
##, H?0I	G@FF0?

 $ = C
#%, /'=

#&, DℎAF0	G@FF0?
#', H?0I	G@FF0?

 % = #( 
&$'
)

= 0.01 7 

11 ! = C
#!, /'=

#", DℎAF0	G@FF0?
##, H?0I	G@FF0?

 $ = C
#%, /'=

#&, DℎAF0	G@FF0?
#', H?0I	G@FF0?

 % = #( 
&$'
)

= #) 8 

12 ! = C
#!, /'=

#", DℎAF0	G@FF0?
##, H?0I	G@FF0?

 $ = C
#%, /'=

#&, DℎAF0	G@FF0?
#', H?0I	G@FF0?

 % = #( 
&$'
)

= ;
0, /'=
#), >?@AB

 8 

Table 3.4: List of each member of the model family and their associated and unknown 
parameters θn   
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 Model 1 2 3 4 5 6 7 8 9 10 11 12 
Pa

tie
nt

 1
 AIC -188 -186 -187 -185 -186 -183 -241 -292 -292 -305 -333 -338 

CCC 0.85 0.85 0.88 0.88 0.87 0.87 0.87 0.89 0.89 0.89 0.91 0.90 

Dice 0.92 0.92 0.92 0.92 0.92 0.92 0.93 0.94 0.94 0.94 0.95 0.95 

Pa
tie

nt
 2

 AIC 725 727 780 782 886 889 711 713 713 695 693 691 

CCC 0.92 0.92 0.91 0.91 0.89 0.89 0.95 0.95 0.95 0.95 0.95 0.95 

Dice 0.97 0.97 0.96 0.96 0.93 0.93 0.97 0.97 0.97 0.97 0.97 0.97 

Pa
tie

nt
 3

 AIC 1,187 1,190 1,173 1,175 1,308 1,310 1,181 1,169 1,169 1,180 1,185 1,162 

CCC 0.87 0.87 0.88 0.88 0.88 0.88 0.87 0.88 0.88 0.87 0.87 0.88 

Dice 0.96 0.96 0.96 0.96 0.92 0.92 0.96 0.96 0.96 0.96 0.96 0.97 

Pa
tie

nt
 4

 AIC 433. 492 494 459 461 335 337 333 278 280 262 278 

CCC 0.70 0.70 0.71 0.71 0.70 0.70 0.70 0.70 0.70 0.71 0.71 0.71 

Dice 0.76 0.76 0.74 0.74 0.74 0.74 0.81 0.81 0.81 0.83 0.83 0.84 

Pa
tie

nt
 5

 AIC 276 278 298 300 282 269 218 220 218 132 131 128 

CCC 0.81 0.81 0.80 0.80 0.81 0.80 0.82 0.82 0.82 0.82 0.82 0.83 

Dice 0.92 0.92 0.92 0.92 0.92 0.92 0.93 0.93 0.93 0.95 0.95 0.95 

M
ea

n 

AIC 487 500 512 507 550 524 441 429 417 396 388 384 

CCC 0.83 0.83 0.83 0.83 0.83 0.83 0.84 0.85 0.85 0.85 0.85 0.85 

Dice 0.91 0.91 0.90 0.90 0.89 0.89 0.92 0.92 0.92 0.93 0.93 0.93 

Table 3.5: AIC, CCC, and Dice for model calibrations for each patient and model 

combination 
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 Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Mean 

Model CCC Dice CCC Dice CCC Dice CCC Dice CCC Dice CCC Dice 
1 0.80 0.60 0.91 0.65 0.70 0.49 0.80 0.46 0.94 0.82 0.83 0.60 
12 0.84 0.74 0.98 0.79 0.81 0.48 0.83 0.58 0.96 0.84 0.88 0.69 

Table 3.6: Prediction results 
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Figure 3.1 Schematic for modeling process. The SPECT/CT and MRI data are first co-
registered and used to create the FEM mesh. The model (for one model family) is then run 
forward using an initial set of parameters. The result of the model is then compared with 
the SPECT data to determine the error, and the model parameters are updated until the error 
between model and SPECT data for 1 single patient are minimized. The parameters which 
minimize the error are then used to create a parameter distribution, which is then used in a 
leave-one-out Monte Carlo boot-strapping methodology to predict the distribution of RNL.   
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Figure 3.2 Demonstrative T1+contrast image, and its corresponding FEM mesh. Each 
voxel in the image in panel A is meshed into two isosceles right-triangular elements in 
panel B. This mesh is then refined until the pressure residuals in each element are below 
10-6 N/mm2, before the forward model is run.  
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Figure 3.3 Model Convergence with mesh refinement. Depicted are the total residuals 
(defined as the L-2 norm) of the steady-state pressure field. For all values of K, 
concentration residuals decrease with increasing mesh refinement. An initial mesh 
resolution of 1 element per 1 mm (corresponding to N = 100 elements per dimension) is 
selected, as residuals for each value of K are below a tolerance of 10-6 N/mm2. Further local 
refinement is iteratively performed on the patient-specific imaging-derived mesh, until the 
pressure residual everywhere is less than 10-6 N/mm2. For the purposes of the convergence 
analysis, the mesh was refined until a residual of 10-6 N/mm2 was achieved, and simulations 
were truncated early for brevity.  
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Figure 3.4 Visualization of the Model 1 prediction for (representative) Patient 5. Each 
image in panel A consists of a heatmap of the model prediction overlaid over on a 
grayscale, post-contrast, T1-weighted image through the central axial tumor slice. Images 
in the top row of panel A correspond to the mid-infusion time point, and images in the 
bottom row correspond to the post-infusion time point. The left-most column depicts the 
true distribution of RNL within the central tumor slice, the second column the mean of 100 
simulations from Model 1, the third column 95% confidence interval of the model 
prediction, and right-most column the absolute value of prediction error. The Dice 
coefficient between the model and measured SPECT image for the patient shown is 0.82. 
Panel B depicts the voxel-wise values as red points, with the line of unity shown in black. 
The CCC for the patient shown is 0.94. 
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Figure 3.5 Visualization of the Model 12 prediction for representative Patient 5. For each 
image in panel A, each image consists of a heatmap of the model prediction is overlaid 
over of a grayscale post-contrast T1-weighted image through the central axial tumor slice. 
Images in the top row correspond to the mid-infusion time point, and images in the bottom 
row correspond to the post-infusion time point. The left-most column depicts the true 
distribution of RNL within the central tumor slice, the second column the mean of 100 
model predictions, the third column 95% confidence interval, and right-most column the 
absolute value of prediction error. The Dice coefficient between the model and prediction 
5% maximum threshold for the patient shown is 0.84. Panel B depicts the normalized 
voxel-wise values as red points, with a line of unity (where perfect agreement between 
model and data would occur) is shown in black. The CCC for the patient shown is 0.96. 
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Chapter 4:  

A framework for optimal catheter placement for RNL delivery 
 

4.1 Introduction 

Convection enhanced delivery (CED) is a promising experimental method for 

delivering drugs to the brain to treat a variety of malignancies; in particular, the approach 

has found much utility for treating aggressive glioma or glioblastoma multiforme in 

preclincal trials [125-126]. By injecting therapeutic agents directly into the brain via 

catheter, CED bypasses the blood-brain barrier and achieves greater intratumoral 

concentrations of the therapy than systemic delivery [127]. Despite its promise, and the 

advantages over systemic delivery, CED has yet to enter the standard of care [125]. As 

with any neurological surgical procedure, there are numerous risks, primarily associated 

with the placement of the catheter, and leakage of high-dose chemo- or radiotherapeutic 

into cerebrospinal fluid (CSF) and non-diseased brain tissue. As such, planning an optimal 

trajectory for the placement of the catheter is imperative to maximize the chances of a 

successful procedure and extend an individual patient’s survival.  

Selecting a catheter placement for CED requires the balance of numerous factors [128-

129]. Primarily, the surgeon must select a location which will maximize the delivery of the 

drug within the tumor, while simultaneously minimizing leakage into CSF and exposing 

non-diseased brain tissue [130-131]. Additionally, the surgeon must consider the 

neuroanatomy of the patient so that the insertion trajectory allows the catheter to be firmly 

set in place to avoid catheter reflux, while also minimizing the risk of neurological function 

loss due to compromising the integrity of white-matter tracts [130]. A successful 

intervention must optimize all of these considerations. 

With the long-term goal of assisting the clinician in surgical planning for CED, we 

present a framework for an algorithm to select the optimal catheter placement, given the 

constraints listed in the previous paragraph. Using a patient-specific model of CED of 

Rhenium-186 nanoliposome (RNL) delivery, calibrated and validated in Chapter 3, we 

present a flexible framework for optimizing the catheter placement and predicted spatial 
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distribution of RNL for an individual patient. Given a radiologist-determined tumor region 

of interest (ROI), segmented map of different tissue types from magnetic resonance 

imaging, we define an objective function that seeks to maximize the delivery of RNL to 

the tumor, minimize RNL delivery to  healthy tissue, and has the capacity to be extended 

to include additional constraints as determined by the investigator or clinician. The overall 

goal of this chapter is to systematically investigate the effects of catheter placement on 

healthy tissue exposure to RNL, the variance of RNL concentration within the tumor, to 

identify the optimal location for catheter placement on an individual patient basis.  

 

4.2 Methods 

4.2.1 Prediction of RNL distribution 

To predict the final distribution of RNL for a patient after infusion, we employ the 

model defined and investigated in Chapter 3 (i.e., Eqs. [3.1-3.14]). The model is initialized 

with each patient’s pre-operative MR imaging data, consisting of pre- and post-contrast T1-

weighted images, T2-weighted images, fluid attenuated inversion recovery images, 

diffusion weighted images, and the segmented tumor ROI. To complete the 

parameterization of the model, and allow for predicting the final distribution of RNL, a 

leave one out approach is employed whereby the data from n -1 patients (where n is the 

total number of patients) are calibrated to the model, and these parameter values are then 

averaged and assigned to the patient held back from the calibration process.  Using the 

patient’s individualized geometry, together with the n – 1 group averaged parameter values, 

a set of potential catheter positions are selected and the model is simulated forward to 

determine the resulting final distribution of RNL.  For the purpose of this study, the set of 

potential catheter positions consists of the center of each imaging voxel within the tumor 

ROI.  For each catheter position, the forward model (Eqs. [3.1-3.14]) is run to provide a 

map of the predicted RNL distribution.  The objective function is then evaluated on each 

predicted RNL distribution.  

Once the location of the catheter placement which minimizes the objective function 

(section 4.2.2) is identified, a Monte Carlo simulation is performed to provide a confidence 
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interval for the predicted delivery of RNL to the tumor at the objective-minimizing 

location. The forward model is evaluated 100 times, using parameter sets randomly 

sampled from the parameter distributions determined in Chapter 3 (Eqs. [3.17-3.19]). The 

mean concentrations from the Monte Carlo simulation are used to display a predicted 

concentration map.  

 

4.2.2 Objective function and analysis 

The objective functions consist of the sum of two terms, J1 and J2, with the goal of 

minimizing this function. More specifically, to minimize leakage into the CSF and 

exposure to healthy brain tissue, we calculate J1, the total amount of RNL outside the tumor 

ROI: 

,     4.1 

where J1 is the first term in the objective function, c is the concentration of RNL 

immediately following infusion, Ω is the full domain, and Ωtumor is the region within the 

tumor. In an attempt to maximize uniform exposure of RNL to the tumor, we calculate J2, 

the total variance of RNL concentration over the tumor ROI: 

,     4.2 

where J2 is the second term in the objective function, i is the index for each voxel within 

the tumor mask, nv is the total number of voxels within the tumor mask, ci is the 

concentration of RNL within voxel i, and 6 ̅is the mean concentration of all voxels within 

the tumor mask. These two quantities are combined into a quadratic objective (or loss) 

function:  

,     4.3 

where J is the total objective function evaluated from a given catheter placement, m is the 

index for the objective function terms, Am is the weight term (where A1 = 100, and A2 = 1) 

and Jm is the objective function term. This general framework was selected to allow for the 
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inclusion of additional constrains; for example, white matter tracks, as identified from 

diffusion tractography, may need to be avoided as much as possible. A1 was selected to be 

greater than A2 to prioritize minimization of RNL to healthy tissue over RNL concentration 

variance within the tumor. A quadratic objective function was chosen such that future 

optimization schemas could take advantage of their numerous beneficial properties (e.g., 

guaranteed minimum, and efficient algorithms for objective descent) [132].  

To determine the relevant merit of a given injection site, he RNL distribution that 

minimized the objective function was compared to 1) the surgical placement the patient 

actually received,  the 2) tumor center of mass (COM, to simulate a naïve catheter 

placement), and 30 a worst-case placement (i.e., the placement that maximized the 

objective function).  For each of the above catheter placements, J is evaluated for each of 

five patients and compared using fold-change from objective-maximized placement, 

placement at the tumor COM, and objective-minimized placement.  

 

4.3 Results 

4.3.1 Objective function maps 

Patients 1-3 (Figures 4.1-4.3, respectively) have tumors which are largely convex 

(i.e., any two points within the tumor ROI can be connected by a line segment that is 

contained with the tumor ROI), and have a clear COM located within the tumor itself. The 

resulting maps of the objective function have clear global minima near the tumor COM, 

and regions of high objective function near tumor edges, especially near resection cavities 

(see, e.g., Patient 3 in Figure 4.3). Patients 4 and 5 (Figures 4.4 and 4.5, respectively), have 

tumors which are highly asymmetric, concave, and have COMs not located within the 

tumor itself. As such, the objective function map is highly asymmetrical. In the case of 

Patient 4 (Figure 4.4), there is no clear global minimum, though the optimal placement 

reduced J2 by 505% and reduced J1 by 5.5% from worst placement to best placement. The 

In the case of Patient 5 (Figure 4.5), the objective function has a clear global minimum. 

The maps of J1 and J2 for Patient 3 are depicted in Figures 4.6a and 4.6b respectively. In 

Patient 3, both J1 and J2 are maximized near the resection cavity and at the periphery of the 
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tumor, and are minimized near the tumor COM.  We also demonstrate the predicted 

concentration of RNL from 100 Monte Carlo simulation, given catheter placements which 

(Figure 4.7a) minimize J, (Figure 4.7b) at the tumor COM, and (Figure 4.7c) maximize J.  

J2 is increased by 334% from best to worst placement, and J1 is increased by 7.8%, and the 

overall objective J is increased by 28.4% from best to worst placement. The difference 

between optimal placement and COM placement is  

 

4.3.2 Optimization comparison  

A quantitative comparison of the improvement in all terms of the objective function is 

presented in Table 4.1. The mean reduction in RNL concentration variance from worst 

placement to optimal is 315%, and is 67% from COM to optimal placement. The mean 

improvement in catheter placement for reduction in RNL leakage (J1 term in the objective 

function) is 5% from worst placement to optimal, and 0.3% from COM to optimal. The 

improvement from COM to optimal placement, in terms of leakage for all patients, was 

less than 1%. The improvement of the entire objective function for Patient 10 was roughly 

1.1%, with the remaining patients resulting in an objective function improvement over 

COM of less than 1%. In overall objective improvement, the mean for all patients from 

COM to optimal is 0.5%, and the improvement from worst placement to best placement is 

14%. Patient 1 had the overall lowest improvement in J from worst to best, while Patient 3 

saw the highest improvement.  

 

4.4 Discussion 

In cases with a clearly defined and largely convex tumor, the objective function is 

clearly defined, and the minimum value of the objective function is easily identified as a 

global minimum (see patients 1-3, Figures 4.1-4.3). For tumors which are highly concave 

or irregularly shaped, the objective function is more complex, and locating a global 

minimum may be difficult (see patients 4-5, Figure 4-5). However, the resulting 

distribution of RNL for local minima could be compared, and maxima (Figures 4.4-4.5) 

can be easily avoided, providing additional information to the surgeon. We anticipate that 
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the benefit of a visual objective function is most useful in tumors with an external COM, 

or whose primary bulk is along the boundaries of a resection cavity. The objective function 

in nearly all other cases improves by less than 1% when compared to the tumor COM, 

indicating that the objective function may be more useful in excluding regions of high risk 

of poor tumor coverage (high RNL variance within the tumor), and less valuable (in its 

current state) as a tool to determine the optimal placement. Future implementations of this 

model may incorporate the predicted radiation field and down-stream models of tumor 

progression, enabling the catheter to be placed in a location which minimizes future tumor 

progression [133-135]. 

While there is a rich history of optimization for external beam radiation therapy [135-

137], computational methods for the optimization of catheter placement are sparse [128]. 

The current methodology utilized is for the clinician to select a number of potential catheter 

trajectories, and the results are then predicted using iPlanFlow (BrainLab, Munich, 

Germany). While iPlanFlow is capable of detecting poor catheter placements by comparing 

catheter trajectories with DTI tractography and identifying poor tumor coverage and 

potential leakage, it does not (to our knowledge) utilize these metrics to determine a spatial 

map of placement optimality. Additionally, iPlanFlow is designed to model molecular 

agents, and has not been calibrated to predict the delivery of much-larger nanoparticles, 

while the methodology presented is calibrated with data collected from nanoparticle 

delivery [138].  

We have presented a preliminary framework which is capable of providing critical 

guidance on placing a catheter for CED. This framework is limited, in that the underlying 

model and patient-derived parameters used to estimate the distribution of RNL, are 

calibrated using a small preliminary cohort of five patients. This model and optimization 

scheme is also presented in two spatial dimensions, whereas advection for CED, as well as 

the geometry of the brain and tumor, are all inherently three-dimensional. However, ADC 

images used are acquired with a slice thickness of 5-mm, and an in-plane resolution of 0.98 

mm, a 2D approximation may not significantly differ from a full 3D simulation, and 3D 

simulation would be difficult to perform with anisotropic voxel sizes. Further, the current 
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results only reflect the location of the tip of the catheter, and not the full 3D catheter 

trajectory from the skull to the tip of the cannula. As such, information regarding the 3D 

placement of the catheter is not considered. Future investigations will need to expand the 

underlying model to three spatial dimensions, include a larger sample size (potentially from 

a cancer imaging database), and consider other factors such as avoiding trajectories which 

cross vital functional regions of the brain identified by DTI tractography [139]. The 

methodology may further be extended to optimize for syringe-pump pressure, even taking 

a time-integrated optimal control approach [140], or incorporating the placement of 

multiple catheters.  

These results, while preliminary, demonstrate the potential functionality of a 

methodology which would predict an optimal catheter placement for a patient undergoing 

CED of RNL for a recurrent GBM. This method not only provides an estimated optimal 

catheter placement, but may also provide additional useful information by providing a 

spatial map of the objective function. This map may allow clinicians to identify multiple 

potential locations and help them to avoid regions with a high risk of leakage, or regions 

where full tumor coverage would not be achieved. We hope that further iterations of this 

methodology will help to maximize the benefit to each individual patient, and help identify 

patients whose tumors and brain geometries may not have a high chance of treatment 

success. These methods were designed for and calibrated using data from for the ongoing 

RNL clinical trial, but we anticipate that this methodology and underlying model could be 

adapted to fit any theranostic agent which can be measured by medical imaging.  

 

4.5 Conclusion 

We demonstrate a functional framework to optimize the placement of a catheter for 

CED of RNL. In two dimensions, we perform an exhaustive search for the location which 

simultaneously minimizes the chances of predicted CSF leaks and minimizes uneven tumor 

coverage. With preliminary results, we reduce the amount of leakage by a factor of 5.2%, 

and reduced concentration variance within the tumor ROI coverage by a factor of over 

300%, when compared to the naïve choice of center of mass. Using this framework, we 
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hope to improve the outcomes of future studies investigating the efficacy of RNL in GBM 

patients, and maximize the potential life-extending benefit of this experimental procedure 

for each individual patient.  
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Figure 4.1 Objective function overlain on T1 + contrast image for Patient 1 on central tumor 
slice. Patient 1 has the smallest tumor out of the preliminary cohort, and as such the optimal 
catheter placement is near the center of mass. Regions on the branching structures of the 
tumor have an objective function value greater than 9300, indicating that these regions 
would allow excess RNL to escape into the surrounding brain tissue.  
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Figure 4.2 Objective function overlain on T1 + contrast image for Patient 2 on central tumor 
slice. The tumor present in Patient 2 is largely symmetrical, and convex, indicating a clear 
objective global minimum near the tumor center of mass. Regions near the edges of the 
tumor in red (objective greater than 9400), are regions where total tumor coverage would 
not be achieved, and where maximal leakage into the surrounding tissue is predicted to 
occur. 
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Figure 4.3 Objective function overlain on T1 + contrast image for Patient 3 on the central 
tumor slice. The tumor of Patient 3 is located directly adjacent to a large prior resection 
cavity. The region of highest objective (objective > 9600) is located in a branch closest to 
the resection cavity. This indicates that catheter placements near this region could result in 
poor tumor coverage (minimized RNL variance), and leakage into the resection cavity. A 
global objective minimum is observed near the tumor center of mass.  
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Figure 4.4 Objective function overlain on T1 + contrast image for Patient 4 on the central 
tumor slice. The tumor for Patient 4 is highly concave, and located along the rim of a prior 
tumor resection cavity near the left ventricle. As the majority of the tumor is directly 
adjacent to a cavity, a global minimum is difficult to distinguish by eye. Multiple catheter 
sites within the map, highlighted in blue (objective less than 8700) may be run in a forward 
simulation to aid the surgeon in determining the true optimal placement.    
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Figure 4.5 Objective function overlain on T1 + contrast image for Patient 5 on the central 
tumor slice. The tumor in Patient 5 is highly asymmetrical, and as such has a highly 
asymmetrical objective function. Despite this asymmetry, there is a clear global minimum, 
aiding the physician in determining the optimal placement which minimizes leakage in a 
tumor with complex geometry. 
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Figure 4.6 Maps of individual components of objective function J. Figure 4.6a depicts a 
map of J1, the normalized ratio of RNL outside of the tumor, over the segmented tumor 
overlain on a T1+contrast image of Patient 3. Figure 4.6b depicts a map of J2, the variance 
of [RNL] within the tumor, over the segmented tumor overlain on a T1+contrast image of 
Patient 3. As the tumor is largely convex, the maps of J1 and J2 have a similar shape. Both 
J1 and J2 are maximized nearest to the resection cavity, and minimized near the tumor 
center of mass.   
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Figure 4.7 Distributions of RNL in Patient 3, resulting from the mean distribution of 100 
Monte Carlo predictions, with (4.7a) catheter placement minimizing the objective function 
J(x,y), (4.7b) placement at tumor center-of-mass, (4.7c) and placement maximizing the 
objective function J(x,y). 
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Table 4.1: Comparison of the objective function components and objective function 

Objective-minimizing catheter placement (Best), Objective-maximizing placement (Worst), and tumor 
center-of-mass placement (COM).  Objective function  = {100(fraction of RNL outside of tumor) + 
(Variance within tumor)}2 

 

  

  Patient  
  1 2 3 4 5  

R
N

L 
ou

ts
id

e 
tu

m
or

 ( J
1)  

Best 4556 32255 88314 8055 8256  

Worst 4646 34166 95190 8496 8636  

COM 4565 32273 88478 8135 8275 Mean 

Worst/Best 1.020 1.059 1.078 1.055 1.046 1.052 
COM/Best 1.002 1.001 1.002 1.010 1.002 1.003 

V
ar

ia
nc

e 
w

ith
in

 
tu

m
or

 (J
2) 

Best 0.464 4.703 3.441 0.413 0.389  

Worst 1.291 8.728 11.491 2.086 1.056  

COM 1.088 4.890 3.651 1.088 0.497 Mean 
Worst/Best 2.782 1.856 3.340 5.049 2.715 3.148 
COM/Best 2.343 1.040 1.061 2.633 1.278 1.671 

O
bj

ec
tiv

e 
Fu

nc
tio

n 
(J

)  

Best 9070 8073 7889 8547 8156  

Worst 9314 9604 10129 9308 8905  

COM 9112 8095 7936 8640 8166 Mean 

Worst/Best 1.0270 1.190 1.284 1.089 1.092 1.136 
COM/Best 1.004 1.003 1.006 1.011 1.001 1.005 
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Chapter 5: Conclusion 
 

5.1  Summary 

The overall goal of this dissertation was to apply computational fluid dynamics 

models to the field of medical imaging to improve the quantitative characterization of 

cancer. In Aim 1 (Chapter 2), the goal was to investigate the effect of contrast agent 

diffusion within the extravascular extracellular space on the accuracy of DCE-MRI 

analysis. We demonstrated that when in the permeability limited regime, the extended 

Kety-Tofts model under-estimates Ktrans and ve, and overestimates vp. These results 

highlight the need for improved models of contrast agent transport data acquired from time 

resolved DCE-MRI data to accurately characterize the blood perfusion properties of the 

tissue. In Aim 2 (Chapter 3), the goal was to develop a computational fluid dynamics 

approach, utilizing patient specific imaging and modern finite element methods, to predict 

the distribution of radiolabeled nanoparticles within brain tumors. After calibrations, the 

model was capable or recapitulating SPECT data in two-dimensions, and able to provide a 

confidence-bounded prediction of the final liposome distribution. In Aim 3 (Chapter 4), we 

utilized the model developed and validated in Aim II to predict the optimal catheter 

placement for delivery. From our results, we are able to not only predict the locations which 

minimize leakage into the tumor, but also maximize tumor coverage and prevent excessive 

leakage outside the tumor. 

 

5.2  Future directions 

5.2.1  Models of DCE-MRI data 

The results from Aim I (Chapter II) indicate a need for a more accurate 

parameterization and physical description of the fluid dynamics involved in DCE-MRI. To 

more accurately parameterize the tissue, we propose utilizing a simple advection-diffusion 

modeling framework, utilizing ADC information to initialize material property priors, so 

that DCE-MRI data may be the main source of information on blood perfusion, interstitial 

velocity, and the presence of local source terms (vasculature). One of the original 
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advantages of the Kety-Tofts model was that it could be efficiently applied to each 

individual voxel, or the mean signal intensity curve of a whole region of interest. A large 

concern in the original implementation of the Kety-Tofts model in the 1990’s was that 

applying the method to an entire 4D DCE-MRI dataset would be too memory- and 

processing- intensive. Computational power and efficiency have grown exponentially since 

then, and it is now feasible to invert 4D datasets to determine individual voxel contributions 

to flow between voxels, as well as the individual source terms within voxels. We 

hypothesize that a methodology for inverting the advection-diffusion equation for DCE-

MRI data (solving for the unknown fields of interstitial velocity, diffusion, and source 

term), further informed by the ADC, would more accurately reflect the fluid dynamics, 

increase the predictivity of tumor response models based on the extended Kety-Tofts 

model, and will allow for the development of more granular, patient-specific models of 

tumor growth, drug delivery, and treatment response. We propose to develop a completely 

new parameterization of DCE-MRI, which solves for a local interstitial velocity, and 

source term, using the method of adjoint states to efficiently perform the inversion of the 

advection-diffusion-equation. After this data analysis, we would compare these parameters 

to the extended Kety-Tofts parameters to determine if they carry the same predictive 

capacity for treatment response and tumor aggression. 

  

5.2.2  Modeling RNL-186 for CED 

 The model developed in Aim II, while accurate, is only a two-dimensional model, 

and leaves out much of the spatial information acquired. Thus, the model needs to be 

expanded to account for all three spatial dimensions. To achieve that goal, the model must 

be re-written in a compiled language (so that inversion may be achieved in a reasonable 

amount of time), and expanded to incorporate the full three-dimensional MRI acquisition. 

Further, the patient cohort used to calibrate the model consisted of only five patients. To 

have more confidence in the model and its validation, we would retrospectively calibrate a 

newly developed 3D model for each patient which has entered into the RNL trial, and 

repeat the leave-one-out validation to ensure the model performance is preserved. 
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Additionally, as the RNL clinical trial has begun utilizing multiple catheters do further 

increase coverage of RNL, we would like to extend the model to allow for the placement 

of multiple catheters to continue to aggregate patients from this study into our parameter 

distributions. Finally, while SPECT is useful data for calibrating the model in vivo with 

clinical data, in the future we would co-encapsulate an MR contrast agent along with the 

Rhenium-186 in the nanoliposomes, so that the concentration of the contrast agent may be 

calibrated and validated against higher resolution (in both time and space) imaging 

modality. This methodology could be used to minimize gamma-ray exposure from X-ray 

CT imaging, assuming MR-compatible catheters are available and compatible with the 

syringe pumps in use for the current clinical trial. 

 

5.2.3 Optimizing CED catheter placement 

 In Aim 3, we demonstrate a framework for optimal catheter placement, and 

demonstrate the results of one such instantiation of that framework. To fully characterize 

the optimization protocol, the model must be thoroughly validated in a larger patient cohort 

(see 5.2.2), and then applied on a larger dataset to fully investigate. We propose running 

the optimization algorithm on a large cohort of patients from a GBM dataset taken from 

the open source Cancer Imaging Archive (wiki.cancerimagingarchive.net), to fully 

investigate, test, and optimize the catheter placement algorithm. Utilizing a large dataset 

would allow for a stronger analysis of the total statistical power and study of the clinical 

utility of our algorithm and framework. Additionally, we would like to expand the 

optimization algorithm to incorporate the optimization of multiple catheter placements, 

incorporate DTI tractography, and optimize syringe pump pressure live in the operating 

room, utilizing the SPECT data acquired during the procedure, a more robust inversion 

methodology, and the theory of optimal control. 
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