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ABSTRACT

Recent simulations have shown that the formation of planets in circumbinary configurations (such as those recently
discovered by Kepler) is dramatically hindered at the planetesimal accretion stage. The combined action of the
binary and the protoplanetary disk acts to raise impact velocities between kilometer-sized planetesimals beyond
their destruction threshold, halting planet formation within at least 10 AU from the binary. It has been proposed that
a primordial population of “large” planetesimals (100 km or more in size), as produced by turbulent concentration
mechanisms, would be able to bypass this bottleneck; however, it is not clear whether these processes are viable
in the highly perturbed circumbinary environments. We perform two-dimensional hydrodynamical and N-body
simulations to show that kilometer-sized planetesimals and collisional debris can drift and be trapped in a belt close
to the central binary. Within this belt, planetesimals could initially grow by accreting debris, ultimately becoming
“indestructible” seeds that can accrete other planetesimals in situ despite the large impact speeds. We find that large,
indestructible planetesimals can be formed close to the central binary within 105 yr, therefore showing that even a
primordial population of “small” planetesimals can feasibly form a planet.
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1. INTRODUCTION

The current paradigm of planet formation includes a stage
where solid bodies (“planetesimals”) that have become large
enough to start decoupling from the aerodynamic drag provided
by the gas disk and interact with each other via gravity (see,
e.g., Lissauer 1993; Armitage 2013; Youdin & Kenyon 2013,
for reviews). This regime traditionally comprised objects that
have a radius of the order of a few kilometers, as predicted by
the classical instability scenarios (e.g., Goldreich & Ward 1973).

The role of kilometer-sized planetesimals as the funda-
mental building blocks of planetary cores is, at best, precar-
ious for the newly discovered circumbinary planets (Doyle
et al. 2011; Welsh et al. 2012; Orosz et al. 2012a, 2012b;
Schwamb et al. 2013; Kostov et al. 2013, 2014). In-
deed, simplified simulations of planetesimal accretion have
shown that the interplay between the gravitational pertur-
bations of the stellar binary and the aerodynamic drag
of the gaseous disk can inhibit planet formation in the
inner few AUs of the protoplanetary disk (e.g., Moriwaki &
Nakagawa 2004; Scholl et al. 2007; Meschiari 2012a).
Meschiari (2012a, hereafter M12) investigated planetesimal dy-
namics in the Kepler-16 system and found that planetesimal col-
lisions inside at least 4 AU (≈20aB, where aB is the binary semi-
major axis) were largely destructive, due to the high collisional
velocities. We proposed that Kepler-16 b formed in the outer re-
gions of the disk, and subsequently migrated to its currently ob-
served location (≈3aB), likely via tidal interaction with the gas
disk (Pierens & Nelson 2007, 2008). Subsequently, Meschiari
(2012b) found that turbulent density fluctuations can potentially
further increase impact speeds, pushing the accretion-friendly
region out to 10 AU (although a more sophisticated treatment of
the stochastic torques might be warranted; Okuzumi & Ormel
2013).

The analysis of M12, however, assumed a static, axisymmet-
ric gas disk as the source of aerodynamic drag for the sake

of computational expediency. Simulations that included the
hydrodynamical evolution of the gas disk suggested an even
more disturbed environment, due to the development of bulk ec-
centricity and spiral perturbations in the disk (e.g., Paardekooper
et al. 2008; Marzari et al. 2012; Müller & Kley 2012; Pelupessy
& Portegies Zwart 2013). Recently, Marzari et al. (2013) self-
consistently followed the hydrodynamical evolution of the disk
together with a swarm of planetesimals (with radii of 5 and
25 km). This setup allowed them to record a large number of
planetesimal impact events throughout the disk. The inferred im-
pact velocities (on the order of 100–1000 m s−1) were beyond
the critical value for planetesimal destruction. Therefore, they
concluded that embryo formation is inhibited everywhere inside
about 10 AU for kilometer-sized planetesimals, again suggesting
the planetary core is formed far from the binary. The migration
scenario is not without its downsides, however. Chiefly, it re-
quires a substantial amount of migration of the planet from the
outer disk to its current location (either through gas torques, or,
less likely, driven by a fossil planetesimal disk, e.g., Gong et al.
2013). Additionally, although impact speeds are reduced below
the critical value for destruction outside 10 AU, they will still
be high enough to preclude runaway growth; therefore, even if
planetesimals are able to accrete, they will do so at a slower rate
than that traditionally assumed in single-star environments.

Alternatively, in situ formation at the inferred collision speeds
could be possible if we allowed for rapid formation of planetesi-
mals at least 100–300 km (depending on the material strength of
the planetesimals) in size, according to the destruction criterion
of Stewart & Leinhardt (2009). Such large planetesimals would
be essentially indestructible and accrete in spite of the large im-
pact velocities. Recent planetesimal formation theories actually
seem to favor the direct formation of massive bound clumps (be-
tween a fraction to several times the mass of Ceres) through the
streaming instability (Johansen et al. 2007, 2011), lending cre-
dence to the latter scenario. However, it is not clear whether the
results of the numerical simulations of the streaming instability
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are applicable to the circumbinary context. First, the instability
is modeled numerically within a corotating shearing box, which
is assumed to be representative of the disk. This approximation
is manifestly inaccurate in the binary environment, which is
subject to time-dependent perturbations from the central binary
(which in turn will excite non-axisymmetric, time-dependent
perturbations in the gas disk). Therefore, it might be premature
to expect that this mechanism can operate in the same man-
ner within the circumbinary environment. Second, meter-sized
boulders (the building blocks that concentrate and gravitation-
ally collapse in overdense regions) are expected to collide at very
high speeds and fragment due to the binary perturbations (re-
gardless of the amplitude of stochastic turbulent torques, which
is the main limiting factor in the aforementioned simulations).
Finally, although direct formation of large planetesimals ap-
pears to be bolstered by the properties of the asteroid census
in the solar system (e.g., Morbidelli et al. 2009), other authors
disagree (e.g., Weidenschilling 2011; Fortier et al. 2013). It is
fair to state that at present, there is no consensus on how plan-
etesimals form in the circumbinary environment, including an
appropriate initial size spectrum.

Although the results of Marzari et al. (2013) appear to pre-
clude in situ planet formation from kilometer-sized planetes-
imal, their simulations have a number of limitations (chiefly
due to the high computational requirements of their approach).
The simulations only spanned a limited time interval (2 × 104

yr), and did not allow for planetesimal accretion and fragmenta-
tion. Therefore, they were restricted to measuring impact speeds
and deeming the disk inside 10 AU accretion-unfriendly. The
evolution of the planetesimal size spectrum, in particular, can
change the boundary of the accretion-friendly zone, as shown
by Paardekooper et al. (2012, hereafter P12). In particular, if
a fraction of planetesimals could survive collisional grinding
and acquire an alternative pathway to growing large enough to
become indestructible (Rpl > 100 km), then planet formation
could proceed even at the significant impact speeds found close
to the central binary.

Radial drift could be potentially helpful to this goal. Solid
objects in Keplerian orbits will lose angular momentum due
to the aerodynamic drag acceleration (Adachi et al. 1976;
Weidenschilling 1977):

Fdrag = −f (vrel, cs)
ρg

ρplRpl
vrel, (1)

where ρg and ρpl are the gas and plantesimal density, respec-
tively, cs is the local sound speed, and vrel = vgas − vpl is
the relative velocity between the gas streamline and the plan-
etesimal. The specific form of the function f (i.e., whether the
Epstein or quadratic regime is appropriate) will depend on the
radius of the body Rpl. The gas speed is given by

v2
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R
+

R

Σ
dP

dR
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h2R

Σ
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]
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where M∗ = M1 + M2 is the total binary mass, P and Σ
are the local pressure and surface density, respectively, and
Ω = RvK is the circular angular speed (in units where G = 1).
The second equality holds for a disk with constant aspect
ratio h (h = H/R, where H is the local scale height) and
an isothermal equation of state P = Σh2R2Ω2. For typical
surface density profiles (with dΣ/dR < 0), the gas speed is
lower than the local Keplerian speed, resulting in the solid body
experiencing a headwind and spiraling inward. While the surface

density gradient can be assumed to be negative in single star
environments (until very close to the central star), the presence of
a central binary will truncate the disk starting at a specific radius
(≈3ab; Artymowicz & Lubow 1994), resulting in a density
gradient inversion and a local pressure maximum. At this locus,
solid bodies could be “trapped,” since the drag force will change
sign across the pressure maximum (vanishing at the pressure
maximum). Therefore, solids will tend to accumulate at the
boundary between super-Keplerian/sub-Keplerian gas speeds,
as seen in numerical simulations that include a non-uniform
pressure profile (e.g., Haghighipour & Boss 2003; Fouchet et al.
2007; Kretke et al. 2009; Kato et al. 2010). This trapping was
also observed by Marzari et al. (2008), who remarked that, in
their simulations, small bodies (100 m in size) concentrated in
the inner regions of the disk surrounding a binary star.

Planetesimals are also liable to accumulating in the same
region, although on a much longer timescale than meter-sized
debris. The drifting speeds for a swarm of kilometer-sized plan-
etesimals in low-eccentricity orbits embedded in an axisym-
metric disk (the typical situation in single-star environments)
are typically very low (of the order of 10−6 to 10−7 AU yr−1,
depending on the planetesimal location). However, in the setup
considered in this paper the central binary will force a large
eccentricity on the planetesimals, such that the velocity differ-
ential vrel is increased, enhancing drift speeds by an order of
magnitude or more (as we will show in Section 2). This implies
that planetesimal drift could be significant on the timescales rel-
evant to planet formation. In particular, any planetesimals that
survive grinding will migrate and stop at the trapping locus.

The radial drift of debris and planetesimals suggests an
alternative to the migration of the planetary core scenario.
Assuming that planetesimals are formed rapidly throughout the
disk, then the following sequence creates an accretion-friendly
planetesimal belt in the inner disk where lucky “survivors” might
thrive and grow.

1. A majority of planetesimals undergo rapid grinding
throughout the disk, creating a large amount of small debris
(“dust”).

2. The dust created by planetesimal grinding quickly drifts
into the pressure maximum, and persists there (it cannot
drift further in due to the combined action of the aerody-
namic drag and the angular momentum barrier).

3. Planetesimal grinding continues until collision timescales
become longer than drift timescales. Planetesimals that
survived fragmentation can therefore migrate and stop into
the debris belt.

4. Within the belt, planetesimals can grow by sweeping up
dust (a localized version of the “snowball model” of
Xie et al. 2010). Due to the ongoing accumulation of
debris within the belt, then planetesimals might quickly
become large enough to be indestructible. These bodies
may become “seeds” for runaway growth and start accreting
other planetesimals, ultimately accumulating into a single
planetary core. Further planetesimal drift extend the feeding
zone of the core.

We sketch this process in Figure 1. Although this scenario
might seem plausible at face value, the arguments presented
so far still represent a substantial simplification of the com-
plex physical setup. Indeed, both the gas disk and the swarm of
planetesimals will develop significant eccentricity and preces-
sion due to the gravitational perturbations of the central binary.
Therefore, it is not immediately clear that planetesimals and de-
bris could reside in a well-confined belt, as hypothesized above.
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Figure 1. Sketch of the destruction–drift–reaccumulation model. Each step is further described in the text, as numbered.

(A color version of this figure is available in the online journal.)

This paper attempts to ascertain whether the “destruction–
drift–reaccumulation” process sketched above can be physically
feasible in a realistic circumbinary environment. We developed
a numerical approach that, despite numerous simplifications,
strives to model the various physical processes at work for the
long timescales involved (up to about 105 yr) as faithfully as
possible. We discuss our code and planetesimal dynamics in
Section 2. In Section 3, we build from the results of Section 2
and create a toy model that follows planetesimal growth in the
belt. Finally, we conclude in Section 4.

2. PLANETESIMAL DRIFT

To validate the scenario proposed in the Introduction, we
first need to verify that planetesimals will halt their migration
close to the pressure maximum. This will require a more
sophisticated approach than that employed in M12, which
assumed an axisymmetric and static gas background. On the
other hand, given that we aim to model planetesimal dynamics
for long timescales, the self-consistent simulations of Marzari
et al. (2013) would be exceedingly expensive. Therefore, we
decided to take a hybrid approach, whereby we first run high-
resolution, two-dimensional hydrodynamical simulations for
104 yr. We then evaluate the output of the simulations in order
to derive a highly simplified model of the gas dynamics. This
model allows us to provide a more realistic approximation for the
aerodynamic drag and a gravitational term arising from the disk,
coupled with our N-body code. As shown below, an eccentric,
rigidly precessing disk is a reasonable (if crude) approximation

to the full hydrodynamical output. Finally, we run our N-body
code fitted with the gas model to verify whether planetesimals
are trapped close to the truncation radius.

2.1. Hydrodynamical Simulations

We ran a host of two-dimensional hydrodynamical simula-
tions using the isothermal FARGO code (Masset 2000). We
modified the code to work in barycentric coordinates. For the
rest of this paper, we consider the binary parameters of the
Kepler-16 system (M1 = 0.69M�, M2 = 0.2M�, PB = 41
days, eB = 0.15) for easy comparison with previous works. The
Keplerian orbital elements of the binary are fixed.

We employ a simple thin disk model as our initial con-
figuration. We assume a disk with surface density Σ ∝ R−1

(with the same normalization as the minimum-mass solar neb-
ula (MMSN); Hayashi 1981) and constant aspect ratio h = 0.05;
the disk is initially circular. The disk is modeled by a grid with
Nθ = 512 azimuthal divisions and Nr = 384 radial divisions
(with an arithmetic spacing). The radial direction covers be-
tween 0.4 AU and 10 AU and ends with an open boundary on
either side of the grid. We added an exponential taper to the sur-
face density close to the inner and outer boundary. This setup is
similar to that of Marzari et al. (2008), although we take a differ-
ent slope for the surface density and we neglect the self-gravity
of the disk. Finally, we assume a constant kinematic viscosity
for the disk (ν = 3×10−6, corresponding to α ≈ 10−3 at 5 AU).

We evolve our disk model for 10,000 yr (more than 105 binary
orbits). The disk very quickly opens an inner cavity (within a
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few tens of binary orbits). After an initial period of activity near
the cavity, the surface density evolves very little throughout the
simulation, except for a slow expansion of the inner cavity (with
the surface density maximum moving outward, as expected for
a viscous external disk; Pringle 1991). The evolution surface
density is shown in the top panels of Figure 2.

Subsequently, we calculated the semi-major axis of each
cell and averaged the eccentricity in each semi-major axis bin
(Figure 2, bottom panel). The eccentricity is calculated from the
velocity components of each grid cell. The eccentricity peaks
close to the inner cavity and rapidly declines, such that the
outer disk (outside ≈1.5 AU) has negligible eccentricity. We
find this situation to be qualitatively similar to the results of
Pelupessy & Portegies Zwart (2013), but quite different from the
results of Marzari et al. (2013). The latter simulations included
more realistic disk thermodynamics than our simple isothermal
assumption. The simulation was run at a higher resolution as
well (with Nθ = 768 and Nr = 512 grid points) in order to
investigate the sensitivity of the numerical results to the grid
resolution. We found that the output of our higher-resolution
runs are consistent with our standard-resolution runs, aside from
small differences in the disk eccentricity and surface density
close to the inner edge (Figure 2).

Figure 3 shows the eccentricity and longitude of periastron
evaluated at a few select radii. Although the eccentricity has
an average value that is approximately constant throughout the
simulation, there are substantial periodic oscillations. The inner
disk (inside ≈1.5 AU) appears to be librating with a very large
amplitude and a period of about 1,000 binary orbits (almost to
the point of rigid precession), whereas the outer disk appears to
be librating around � ≈ �b = π .

We note that the eccentricity thus found is derived assuming
a Keplerian potential around a body placed in the center of
mass of the binary with mass M∗ (i.e., such that the potential is
U = GM∗/r). This might add a substantial eccentricity in the
initial conditions of the disk, due to the fact that the azimuthal
velocity of the fluid cells are started at a lower speed than a
circular orbit in the true axisymmetric potential (Rafikov 2013).
The fictitious eccentricity does not modify the overall dynamics,
as the orbital elements of the disk influence the planetesimal
dynamics through Equation (1) only; this means that the orbital
elements are converted back into a physical velocity vector at
each location within the disk (i.e., the orbital elements are just a
convenient intermediate representation). However, it does imply
that the disk is not initialized in a “true” circular state. For the
specific case of the Kepler-16 system, the fictitious eccentricity
should be of the order of e(r) ≈ 7×10−3×r−2 (with r expressed
in AU, using Formula 26 of Rafikov 2013).

2.2. Model Setup

Ideally, we would like to follow planetesimal drift self-
consistently by coupling test particles (planetesimals) to the
hydrodynamical evolution of the disk. However, as we will
see in the next section, this approach is prohibitively expensive
since, despite the comparatively rapid drift experienced in the
inner 2 AU of the disk, the relevant timescales are much longer
than those modeled above (up to a factor of 100). Therefore,
it is desirable, if not entirely self-consistent, to model the gas
evolution in an approximate fashion, such that the evolution of
a large population of planetesimals can be followed for at least
106 yr.

We follow the spirit of the formulation of Beaugé et al.
(2010) by assuming that the gas disk can be represented as

Figure 2. Snapshot of the gas disk after 104 yr. Dimensionful quantities are
expressed in terms of code units. Top: logarithmic surface density. Middle:
azimuthally averaged surface density as a function of the distance from the
center of mass (the dashed line represents the initial surface density profile).
Bottom: azimuthally averaged eccentricity. The gray line represents a higher-
resolution run (with Nθ = 768 and Nr = 512).

(A color version of this figure is available in the online journal.)
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Figure 3. Sample evolution of the gas eccentricity and longitude of pericenter at
a few representative radii (expressed in AU). The gas eccentricity oscillates as
a function of time, although the average eccentricity is approximately constant
at each radii. The inner disk (inside ≈1.5 AU) librates with a large amplitude
through almost the full 2π , while the outer disk librates with a smaller amplitude.

(A color version of this figure is available in the online journal.)

an eccentric, rigidly precessing disk. We assume that each
hydrodynamical quantity q (i.e., surface density, sound speed,
and scale height) is constant on each eccentric streamline r,
i.e., q = q[r(ag, eg,�g)], where ag is the gas semi-major
axis, eg is the gas eccentricity and �g is the longitude of
periastron. The eccentricity at each semi-major axis is assumed
constant for the duration of the simulation (Figure 2), while
the longitude of pericenter is assumed to be precessing with a
constant period P� , such that �g = 2π/P� × t (although the
outer disk is librating in our simulation, the eccentricity there is
small enough to have a negligible effect on the planetesimal
dynamics). Finally, we assume that the gas speed at each
eccentric streamline is given by

vg(r) = vK(r) × [1 − ξ (ag)], (3)

where ξ (ag) = h2−h2aΣ′/Σ (as in Equation (2)) and vK (r) is the
Keplerian orbital speed along the streamline. Therefore, in our
model the speed differential is determined by the local surface
density gradient (as opposed to being constant, an assumption
of the simplified model of Beaugé et al. 2010). The disk model
is then completed by specifying a surface density profile Σ(r),
an eccentricity profile eg(ag), and the precession period P� .

Once the model is specified as above, we bin the hydrody-
namical quantities over a two-dimensional grid (with 512 radial
and 512 azimuthal zones) for computational convenience. This
step allows us to efficiently compute hydrodynamical quantities
local to the planetesimal, and optionally, the gas potential.

Planetesimals are represented as a swarm of non-interacting
test particles, subject to the sum of the gravitational force of the
binary system, the aerodynamic drag, and the gas potential. The
aerodynamic drag is given by Equation (1), with f taking
the following form in the quadratic regime:

f = 3
8C|vrel| (4)

(where the coefficient C ≈ 0.4 for spherical bodies). The hy-
drodynamical quantities (ρg, vrel,H ) are efficiently interpolated
at the planetesimal location (using bilinear interpolation). The
planetesimal orbits are evolved forward in time using the sphiga
code (Meschiari 2012a, 2012b), which employs an eight-order
Runge–Kutta integration scheme.

The model described above makes a number of approxima-
tions for the sake of computational expediency. The most im-
portant limitation is the choice of an isothermal equation of state
for our hydrodynamical simulations, which appears to affect the
gas dynamics. Marzari et al. (2013) finds that adding a realistic
energy equation to the hydrodynamical model results in a much
more active disk, such that the eccentricity profile and potential
change rapidly as a function of time. Taking these effects into
account in our model may be difficult. However, it is possi-
ble that these time-dependent variations might be transient and
become less important over longer timescales.

Our model assumes that the local hydrodynamical properties
of the disk can be usefully represented by assuming they
are constant over an eccentric streamline. This assumption
simplifies an inherently two-dimensional problem (the evolution
of a hydrodynamical quantity q[R, φ]) into a one-dimensional
problem (q[ag, eg(ag)]). However, Statler (2001) showed that
this approximation is unwarranted if the disk eccentricity varies
as a function of semi-major axis (e′ �= 0). This is exactly the
case in our hydrodynamical simulation (see the bottom panel
of Figure 2). At a given semi-major axis, there is substantial
scatter in Σ and other quantities, especially close to the central
binary (i.e., �1.5 AU) where the perturbations are strongest.
Therefore, the one-dimensional approximation presented in this
section (and further developed into a model in Sections 2.5
and 3) is not strictly correct.

We will summarize a number of caveats related to our
simplified treatment of the background gas disk in Section 4.1.

2.3. Fixed Axisymmetric Background

We first show planetesimal drift as computed assuming the
fixed, axisymmetric gas background of M12. Figure 4 shows
the planetesimal drift (semi-major axis as a function of time)
for planetesimals with radius Rpl = 2.5 km. The planetesimal
disk inside ≈2 AU is depleted within 106 yr. The drift speed is
larger than that expected in single-star systems, due to the large
eccentricity excited in the planetesimal disk (Meschiari 2012a).
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Figure 4. Planetesimal drift over 5 × 105 yr, in the fixed surface density
gas model (with gas potential; black lines) and the axisymmetric gas model
of M12 (gray lines). In the axisymmetric model, planetesimals get locked
in resonance with the central binary close to the 5:1 resonance. In the fixed
density model, planetesimals stop further out close to the pressure maximum.
The red line represents the current location of Kepler-16 b. The bottom
panel zooms in the inner AU of the disk, and sketches some representative
period commensurability’s with the central binary (dotted horizontal lines; each
commensurability is labeled according to the ratio between the orbital period at
the semi-major axis and the binary period). Notice that once planetesimals are
trapped, there is very little semi-major axis variation.

(A color version of this figure is available in the online journal.)

Planetesimals do not migrate all the way to the instability
limit (Holman & Wiegert 1999), however. The presence of the
central binary dictates that as they migrate inward, they are liable
to being captured in a resonance with the stars (analogously to
the resonant capture of migrating planets; e.g., Lee & Peale
2002). In our case, the semi-major axis is fixed; therefore,
planetesimals will converge to a fixed location. For the set of
parameters considered in this paper, planetesimals are captured
just outside the 5:1 resonance (where the planet also resides;
Popova & Shevchenko 2013).

2.4. Fixed Surface Density Model

To investigate planetesimal evolution within a more realistic
gas background, we subsequently ran a simplified model where
the surface density profile is fixed to that derived from the

Figure 5. Comparison between the drift speed for the fixed surface density model
with (solid line) and without (dashed line) the gas potential, for planetesimals
with Rpl = 2.5 km. Notice the large spike in drift speed at R ≈ 2 AU. We
also plot the drift speed in a single-star environment for reference (dotted line,
assuming zero eccentricity).

hydrodynamical snapshot at t = 104 yr (i.e., ignoring any
further viscous evolution of the disk for the duration of the
simulation). While this approximation is unwarranted (given
that significant viscous evolution is bound to happen over the
time range explored below), it speeds up our code, since
the gridding procedure can be run once at the beginning
of the simulation (every hydrodynamical quantity is constant).
To compute the hydrodynamical quantities precessed by �g, we
simply rotate the azimuthal angle accordingly.

For the fixed surface density model, we additionally take the
gas disk potential Φg into account. Marzari et al. (2013) showed
that including the disk potential can raise the eccentricity of the
planetesimals, potentially increasing the drift speed. The disk
potential is calculated by direct summation once at the beginning
of the simulation, and then rotated according to the precession
frequency.

Figure 5 shows the drift speed of 2.5 km planetesimals, with
and without the gas potential. The drift speed is increased by a
factor of two compared to the axisymmetric, static background.
This increase in drift speed for eccentric, precessing disks was
anticipated in the analytic models of Beaugé et al. (2010).
For the model including the gas potential, there is a spike in
drift speed between approximately 2 and 3 AU; this is due
to an enhanced planetesimal eccentricity in that region (see
Figure 6). This region of eccentricity excitation is a secular
resonance located where the secular precession amplitude A
equals the planetesimal precession �̇d induced by the gravity
of the gas disk (Rafikov 2013; note that we do not take
the binary precession term �̇b into account). Evaluating the
secular equations of Rafikov (2013) with the parameters of
our simulations yields a location for the resonance rresonance ≈
2.4 AU, which is approximately consistent with Figure 6. The
increase in eccentricity was also observed in Marzari et al.
(2013). In this narrow region, planetesimals are rapidly depleted.

The drift speed decreases steeply (and actually changes
sign) at astop ≈ 0.8 AU (≈3.5aB), very close to the current
observed location of the planet. This semi-major axis is close
to the location of the pressure maximum (Rmax ≈ 0.9 AU).
We expected that astop and Rmax would not precisely coincide,
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Figure 6. Eccentricity and longitude of periastron after 10,000 yr. Red points
represent the model including the gas potential, while blue points represent
the model neglecting the gas potential. For this figure, we consider 5 km
planetesimals for direct comparison with Marzari et al. (2013).

(A color version of this figure is available in the online journal.)

since Equation (2) is derived in an axisymmetric approximation
(neglecting the eccentricity of the planetesimals and the gas, and
the time-dependent potential of the central binary). We observe
that planetesimals appear to smoothly halt at astop, and once they
reached that radius, they show little semi-major axis variation
(Figure 4, bottom panel).

2.5. Evolving Surface Density Model

As mentioned at the beginning of the previous subsection,
ignoring the viscous evolution of the disk is an unwarranted
simplification, since the viscous timescale tdisk ∼ a2/ν ≈
2 × 105 yr at 2 AU. Therefore, we need a recipe for evolving
Σ(r) as a function of time.

We model the surface density of the disk with the usual
viscous evolution equations (Lin & Papaloizou 1986), with the
addition of an angular momentum source term representing the
binary torque (Pringle 1991; Armitage et al. 2002; Alexander
2012). Again, we effectively assume in our formulation that
the surface density is approximately constant on each eccentric
streamline (labeled by a), rather than on a circular radius R.
Therefore, for the sake of the simplified model presented in

this paper, we write the one-dimensional evolution equations
as:

∂Σ
∂t

= 1

a

∂

∂a

[
3a1/2 ∂νΣa1/2

∂a
− 2ΛΣa3/2

[M1 + M2]1/2

]
. (5)

The term Λ represents the torque exerted by the central binary
and is written as (Armitage et al. 2002):

Λ = bq2(M1 + M2)

2a

(
ab

max(H, |a − ab|)
)4

, (6)

where q = M2/M1 is the binary mass ratio.
The surface density profile predicted by Equation (5) gener-

ates surface density profiles that are more depleted at small radii
(a � 0.8 AU) than the one derived from the hydrodynamical
simulation at equal times. This is likely due to the fact that the
torque prescribed by Equation (6) does not allow any accre-
tion on the disk and quickly pushes material in the inner disk
outward, while in our full hydrodynamical simulations mate-
rial continues to accrete onto the binary via non-axisymmetric
streams. We set the dimensionless parameter b ≈ 0.3 to match
the density profiles generated by Equation (5) with the outputs
of our FARGO runs (Section 2.1). While not a perfect match, it
is adequate for the order-of-magnitude model presented in this
paper.

The viscous evolution dictated by Equation (5) quickly
reduces the gas surface density during the first few 104 yr;
correspondingly, drift speeds are also reduced. We therefore
consider a more massive disk (two times the standard MMSN
normalization of Hayashi 1981), such that drift speeds are
comparable to those observed in the previous section.

We couple this one-dimensional model to the sphiga code,
and update Σ(r) (and, therefore, vrel) at each time step. We ne-
glect the gas potential (which would also need to be recalculated
at each time step) to ease the computational burden. The previ-
ous section showed that the main consequence of including the
gas potential was to speed up drift between 2 and 3 AU, while
drift speed was essentially the same elsewhere in the disk.

The planetesimal drift in this model is shown in Figure 7.
Drift speeds are comparable to those observed in the previous
section. Planetesimals in the outer disk drift inward and tend to
converge to the trap at ≈1 AU. Planetesimals with initial semi-
major axes inside the trap rapidly drift outward, with a speed
that increases sharply at small radii (due to the steep decrease
in surface density, which results in a steep positive pressure
gradient).

The top panel of Figure 8 shows the distribution of semi-
major axes of planetesimals throughout a simulation. As noted
in the previous section, planetesimals that are captured in the
belt tend to be confined to a narrow range in semi-major axis
(Δa ≈ 0.005 AU). We note that trapped planetesimals occupy
a well-defined locus in eccentricity and longitude of pericenter
as well. The bottom panel of Figure 8 shows a snapshot of the
simulation (t = 5 × 105 yr) where planetesimals in the belt are
confined to e ∈ [0.015, 0.03], � − �B ∈ [−15◦, 15◦] (i.e.,
aligned with the central binary).

3. PLANETESIMAL GROWTH IN THE INNER DISK

In Section 2, we verified that kilometer-sized planetesimals
in a circumbinary disk will tend to drift inward, until they
encounter a pressure maximum. At the pressure maximum,
the aerodynamic drag vanishes; therefore, solids tend to be
stranded in a well-confined “belt” (close to 1 AU for the nominal
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Figure 7. Top: planetesimal drift over 5 × 105 yr assuming the surface density
evolution dictated by Equation (5). Bottom: drift speed for Rpl = 2.5 km
planetesimals. Also plotted is the drift speed in a single-star environment of
Figure 5 for reference (dotted line, assuming zero eccentricity and a fixed
surface density).

set of disk parameters). Smaller debris (“dust”) produced
by planetesimal–planetesimal destructive collisions will also
tend to converge to the same region. Therefore, surviving
planetesimals that drift into the belt will find themselves in
a solid-rich region. Assuming that the efficiency of accreting
dust is high, planetesimals could conceivably accrete mass from
the debris reservoir to become indestructible (Rpl ≈ 100 km)
and subsequently form the building blocks of a planetary core.
The crux is now establishing that this process is quick enough
to produce a core within a reasonable time scale.

3.1. Numerical Model

A rigorous approach to the problem at hand would in-
volve tracking planetesimal destruction and dust accretion self-
consistently in the manner of Paardekooper et al. (2008) and
P12. In their simulations, the cascade of fragments produced by
collisions is followed down to a certain size, where it is deemed
as “dust.”

The numerical model of P12 has a number of downsides.
Firstly, it is assumed that there is no pressure gradient in
the static background disk (an ad-hoc assumption to simplify

Figure 8. Top: accumulation of planetesimals in a confined belt around
a ≈ 1 AU. The semi-major axis of Rpl = 2.5 km planetesimals is plotted
as a function of time. Note that planetesimals both inside and outside the belt
converge quickly into the belt. Middle and bottom: eccentricity and longitude
of periastron of 2.5 km planetesimals at t = 5 × 105 yr.

the model); therefore, in their simulations planetesimals and
dust do not drift. Secondly, dust produced by the planetesimal
collisions is accumulated in-place into circular radial bins.
Rather, we should expect dust (which is strongly coupled to
the gas through aerodynamic drag) to settle into the eccentric
streamlines followed by the gas disk. Finally, the computational
burden of tracking collisions and accretion within the N-body
code of Section 2 becomes rapidly unmanageable as the number
of fragments increases.
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Table 1
Parameters Used in the Simulations

Meaning Simulation Values

ρpl Planetesimal density 2 g cm−3

h Scale height normalization 0.05
Rpl,0 Initial planetesimal radius 5 km
Σpl,0 Density of solids at 1 AU 5, 10, 20 g cm−2

β1 Vertical thickness of dust annulusa 1, 1/15, 1/150
β2 Radial extent of dust annulusa 1, 2, 5, 10
ε Dust accretion efficiency 1

Notes. Nominal values are bolded.
a Normalized by the local gas scale height H.

The problem at hand does offer a number of simplifications,
however. Collisional rates will be high throughout the disk due
to the high encounter speeds observed both in our models and
the simulations of Marzari et al. (2013), and the collisional
outcome will always be destructive. Planetesimals will be
ground into many sub-kilometer fragments by collisions rather
quickly; for example, the largest fragment produced from the
collision of two primordial Rpl = 5 km planetesimals at ≈200
m s−1 (super-catastrophic regime) is only ≈800 m in radius.
Subsequent collisions will further grind the material. If we
assume a realistic pressure profile (as opposed to the no-drift
condition of P12), then the sub-kilometer fragments should be
removed from their original site and spiral into the pressure
maximum on a very short timescale. Therefore, if we assume
that planetesimals are rapidly ground into small debris which
drift into the belt on a short timescale, then we can crudely
assume that planetesimal collisions result in an “instantaneous”
increase of dust mass in the belt. This absolves the code from
having to track destruction and accretion throughout the disk,
representing the main simplification of our model.

We now discuss a simple back-of-the-envelope model that
will attempt to qualitatively represent the evolution of the plan-
etesimal system in presence of collisions, drift, and dust accre-
tion (as sketched in the Introduction). It couples a single partial
differential equation following planetesimal drift and destruc-
tion outside the belt with a stochastic model for planetesimal
size evolution inside the belt. This model trades some fidelity
for execution speed, in order to run the simulation for several
105 yr; we discuss some of its limitations in Section 4.1.

Below, we explain the ingredients of the model in more detail.
The bulk of our model are informed by the N-body simulations
presented in the previous Section. However, a few parameters
are not constrained by our simulation; we list these parameters
and their nominal values in Table 1.

3.2. Planetesimal Destruction and Drift

We divide the planetesimal disk in two regions: the semi-
major axis range Rb ± ΔRb (the belt, centered on Rb and with
thickness ΔRb) and the rest of the disk. We assume that a
single-sized population of planetesimals with radius Rpl,0 (mass
Mpl,0) are distributed throughout the disk with a number surface
density Apl. As seen in Section 2, the planetesimal disk will
be endowed with a small eccentricity. For simplicity, however,
we will assume that the surface density of planetesimals is
axisymmetric (Apl ≡ Apl(R)). The planetesimal eccentricity
factors into the planetesimal collision speed vcoll(R,Rpl,0) and
the planetesimal drift speed vdrift(R,Rpl,0), which are estimated
from the simulations conducted in Section 2.5.

We write the time evolution of the surface density as

∂Apl

∂t
= −∂Apl

∂t

∣∣∣∣
coll

− 1

R

∂

∂R
RvdriftApl. (7)

This equation assumes that the time evolution is driven
exclusively by destructive collisions (which reduces the surface
density in planetesimals) and drift; in particular, planetesimals
outside the belt do not grow. The collisional term ∂Apl/∂t |coll
can be written as

∂Apl

∂t

∣∣∣∣
coll

= A2
pl

2īR
πR2

plvcoll. (8)

The main unknown parameter is the average inclination
ī(R) (i.e., the thickness of the planetesimal disk); we assume
it is set by the escape velocity of planetesimals, ī(R) ≈
[(2/3)πRρplR2

pl]
1/2. The planetesimal–planetesimal collision

speed vcoll is instead measured from the N-body simulations:
we evolve a disk of 5 km planetesimals for 2 × 104 yr (as
in Figure 8), and calculate the median collision velocity as
a function of distance from the central binary, giving us an
approximate vcoll(R).

The debris generated by the collisional term is assumed to
rapidly drift into the belt (on a much shorter timescale than
the planetesimal drift), adding into the dust surface density
(Equation (11)). The solid surface density normalization de-
termines the initial planetesimal surface density; we chose a
nominal MMSN value of Σpl,0 = 10 g cm−2.

Equation (7) is solved with a straightforward finite difference
method (e.g., Press et al. 1992). We take an initial distribution
of planetesimals Apl ∝ R−1 extending between Rb (≈1 AU)
and 10 AU. The normalization of Apl is determined by setting
the mass of solids present in the disk.

3.3. Planetesimals in the Belt

At each time step, a number of planetesimals will avoid
destruction and drift into the belt (delimited spatially by Rb ±
ΔRb). We model this by calculating the planetesimal flux as
dictated by Equation (7) in a ghost zone overlapping the belt.

Planetesimals that drift in the belt are tracked as a set of N
evolving radii Ri = R1,R2, ...,RN, i.e., we start following the
size evolution of planetesimals only once they enter the belt.
Dust accretion is calculated as

Ṙi = Σd

4β1Hρpl
Δvdε̄, (9)

i.e., assuming that each planetesimal “sweeps” through a dusty
annulus with surface density Σd and scale height Hd = β1H (a
fraction β1 of the local gas scale height H). The parameter β1
parameterizes the degree of turbulence in the disk; a small β1
indicates that the dust annulus has settled close to the midplane
(thereby increasing the dust accretion rate), implying a low
level of turbulence. We do not consider any enhancement in the
accretion rate by gravitational focusing, since we assume that
the dust is well coupled to the gas.

The efficiency of dust accretion is parameterized by ε̄, varying
between 0 (no dust accretion) and 1 (perfect dust accretion).
We follow P12 in assuming perfect dust accretion whenever
the relative velocity between the dust ring and planetesimals is
larger than 100 times the planetesimal escape velocity. Since
the dust ring (which follows the eccentric gas streamlines)
will not, in general, be aligned with the planetesimal orbit,
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we average ε and Δvd along the orbit of planetesimals and
over the ensemble of planetesimal orbital parameters (taking
ε = 0 when Δvd > 100vesc and ε = 1 otherwise). The resulting
accretion efficiency depends on the planetesimal radius; as the
planetesimal increases in size, the efficiency will become larger
until it reaches ε̄ = 1 (at Rpl ≈ 30 km).

Finally, we need to take into account planetesimal–
planetesimal collisions within the belt. We calculate the proba-
bility for each planetesimal i tracked that it will experience one
or more collisions during a time step Δt as:

Pi = Apl

2īR
πR2

plΔvcoll(1 + F )Δt, (10)

where Apl ≈ N/Ab (Ab = 2πRbΔRb being the area cov-
ered by the belt), Δvcoll is the collision speed, and F =
(8π/3)R2

i ρplΔv−2
coll is the gravitational focusing factor. We sub-

sequently draw a uniform random number u, and a collision
is experienced if u < Pi (we ensure maxi(Pi) 
 1 by reduc-
ing the time step as needed). Δvcoll is drawn from the range
of collision speeds between 5 km planetesimals trapped in the
belt, as measured by the N-body simulations. In a strict sense,
as planetesimal seeds grow to larger sizes, the distribution of
Δvcoll should also evolve; however, we stop the simulation be-
fore planetesimals grow large enough to significantly perturb
the background planetesimal population (see also Section 3.5).

If a collision is experienced, then a second planetesimal j
is selected randomly. When Δvcoll < vesc, we add the mass
of the second planetesimal to the first and remove the second
planetesimal from the simulation. When Δvcoll > vesc, the
outcome of a collision is decided using the disruption criteria
of Stewart & Leinhardt (2009) and Leinhardt & Stewart (2012).
This recipe gives us the size of the largest remaining fragment
R′ as a function of Ri, Rj, and Δvcoll. We consider two
regimes: “strong” planetesimals and “weak” planetesimals, each
possessing different material strengths (Thebault 2011).

3.4. Dust Generation

The last ingredient of our model is the accumulation of dust
in an annulus overlapping the planetesimal belt. We assume that
debris produced by planetesimal grinding (throughout the disk
and in the belt) will be small and therefore quickly siphoned
into a uniform annulus overlapping the planetesimal belt. We
expect the dust to be will be well-coupled to the gas and follow
the gas streamlines once settled close to the pressure maximum.

The surface density of the dust annulus is given by

Σ̇d = 2π

Ad

[∫
RdR

∂Apl

∂t

∣∣∣∣
coll

Mpl −
∑

i

2

3
R2

i Ṙiρpl

]
− Σd

td
,

(11)
where the first term represents dust generation by planetesimal
grinding, and the second term is dust accretion by planetesimals
in the belt (Equation (9)). Ad is the area of the dust annulus. The
width of the dust annulus Δrd cannot be determined from our
simulations. It will likely be set by the competition between the
small-scale interaction with the gas disk (i.e., turbulent motions
in the radial direction, and Brownian motions due to collisions
with the gas molecules), which tends to smear the annulus, and
the overall pressure gradient, which tends to concentrate the
dust toward the pressure maximum. We take the relevant radial
scale to be set by H (the scale of the largest turbulent eddies), so
that Δrd = β2H , with a nominal value β2 = 1; we also consider
higher values of β2, which are less favorable to dust accretion.
Finally, the third term takes into account the possible loss of dust.

The binary torque will tend to stop inflow of material; however,
some accretion will still take place through non-axisymmetric
streams. The accretion rate in the simulations of MacFadyen &
Milosavljević (2008) is approximately 10% of the steady flow
accretion rate. For lack of better guidance, we assume that the
dust accretion timescale td = 10tν , where tν is the local viscous
timescale.

One last source of uncertainty is the extent of the radial
migration of the dust. Dust produced in the disk outside the
snow line (≈3 AU) could potentially be trapped at the snow line
(e.g., Kretke & Lin 2007). Modeling the detailed disk structure
is beyond the scope of this paper; therefore, we cautiously
only consider the inner 3 AU of the disk as sources of dust
that migrates into the annulus at 1 AU. This limitation sets a
maximum mass that can participate in the formation of the core.

3.5. Results: Strong and Weak Planetesimals

We first consider two limiting cases for the material parame-
ters, representing “strong” planetesimals and “weak” aggregates
(Stewart & Leinhardt 2009). The choice of material parameters
dictates the characteristic size above which collisions are not
destructive (i.e., the mass of the largest fragment is larger than
either of the planetesimals involved in the collision). For the
median collision speed in the belt (≈300 m s−1), a body im-
mersed in a sea of 5 km bodies becomes indestructible when it
reaches a size of ≈50 km (≈200 km for weak aggregates). Even
as the largest bodies start becoming indestructible, two-body
gravitational focusing remains weak due to the large velocity
dispersion in the annulus (vesc 
 Δvcoll). Runaway growth be-
comes significant when the largest bodies reach the critical size
of ≈250 km (such that F ≈ 1). We stop the simulation when
there are at least 1000 bodies that have entered runaway growth.
This critical size was chosen since once the largest bodies reach
that size, they will start perturbing the background planetesimal
population and increasing their velocity dispersion (and there-
fore increasing Δvcoll); therefore, we can no longer follow their
size evolution using our simple model. We now describe the size
evolution of our planetesimal population.

The top panel of Figure 9 plots the size of the 1000th largest
body as a function of time (meaning that at any given time, there
are 1000 “seeds” larger in radius). We take the nominal value of
Σpl,0 = 10 g cm−2 (the solid surface density normalization) and
consider three different values for β1 (the thickness of the dust
disk relative to the gas disk, a proxy for the amount of turbulence
in the disk): strong (β1 = 1), intermediate (β1 = 1/15), and
weak (β1 = 1/150) turbulence, following Xie et al. (2010).
The strong turbulence value is the least favorable to planetesi-
mal growth, since it limits the rate at which planetesimals can
accrete dust. We plot the size evolution for strong and weak
planetesimals; we expect the size evolution of a realistic plan-
etesimal population to reside between the two extremes.

Initially, planetesimals in the belt grow exclusively by accret-
ing dust. Dust accretion in our model is relatively fast, since
the dust annulus is fed by planetesimal grinding throughout the
disk, leading to high dust surface densities. Still, the median size
of planetesimals grows slowly (middle panel of Figure 9). This
is the result of the competition between dust accretion (which
increases the radius only linearly; Equation (9)), the continual
grinding by mutual collisions and the drifting of new 5 km plan-
etesimals drifting in from the outer disk. On the other hand, a
fraction of “lucky” planetesimals that suffer fewer collisions can
continue growing to larger sizes, creating a size spectrum in the
belt. Bodies residing in the tail of the size spectrum (the seeds)
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Figure 9. Top: radius of the 1000th largest body as a function of time, in
presence of strong (red), intermediate (blue), and weak (green) turbulence. The
corresponding size evolution for weak aggregates is plotted with a thin line.
Middle: median radius of the planetesimal population as a function of time.
Bottom: size distribution of strong planetesimals in the belt at the end of the
simulation.

(A color version of this figure is available in the online journal.)

become large enough that a significant fraction of the possible
impact speeds results in accretion rather than destruction. This
opens a new growth channel that is not available to the sea
of small planetesimals in the belt. Therefore, the indestructible
seeds start growing at a much faster rate than the background
planetesimals, and can very rapidly reach the runaway growth
stage.

Figure 10. Top: radius of the 1000th largest body as a function of time in
presence of intermediate turbulence (β1 = 1/15), for Σpl,0 = 5, 10, 20 g cm−2

(purple, blue, and orange, respectively). Bottom: radius of the 1000th largest
body as a function of time in presence of intermediate turbulence (β1 = 1/15)
for β2 = 1, 2, 5, 10 (from left to right). β2 sets the radial extent of the dust
annulus in units of the gas scale height H. The corresponding size evolution for
weak aggregates is plotted with a thin line.

(A color version of this figure is available in the online journal.)

The timescale for reaching the critical size is determined
primarily by β1, spanning from just ≈2 × 103 yr (β1 = 1/150)
to ≈105 yr (β1 = 1). This is due to the fact that β1 sets the dust
accretion rate, and consequently the time it takes for bodies to
reach the indestructible size. The material strength also plays a
role: strong seeds are able to start accreting other planetesimals
at a smaller size than their weak counterparts, reaching the
critical size earlier.

Finally, the bottom panel of Figure 9 shows a snapshot of the
size distribution of planetesimals at the end of each simulation.
We note that, again, the size distribution is primarily set by
β1: faster accretion rates imply that planetesimals are able to
leave the 5 km size bin rapidly and become less susceptible
to destructive encounters. Consequently, the size distribution
becomes steeper as the turbulence parameter β1 is increased.

We also considered three different normalizations for the
initial solid surface density (5, 10, and 20 g cm−2), where
10 g cm−2 is our nominal MMSN value. The larger normal-
ization reflects the likely possibility that the primordial solid
inventory in an MMSN-like nebula was larger (by a factor of
2–3), but lost due to inefficiencies in the planet formation pro-
cess (e.g., Hansen & Murray 2012). On the other hand, the
smaller normalization takes into account the possibility of a less
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solid-rich nebula; this normalization could be appropriate for
the sub-solar metallicity of Kepler-16 ([Fe/H = 0.3 ± 0.2). We
plot the growth curves in the top panel of Figure 10, where we
took β1 = 1/15 (corresponding to an intermediate turbulence
level). As expected, a larger initial surface density results in a
faster growth, due both to the higher surface density of the dust
annulus and the larger number of planetesimals available to ac-
crete. Similarly, in the bottom panel of Figure 10 we considered
three different normalizations for the radial extent of the dust
annulus Δrd = β2H ; higher values of β2 reduce the surface
density of dust Σd , and therefore slow down the initial accretion
of dust by the planetesimals.

We note that the dust accretion rate determines the timescale
for the onset of planetesimal accretion (and the subsequent
runaway phase). The dust accretion rate depends on the ra-
tio of Σd and β1 (Equation (9)), and Σd itself depends on β2
(Equation (11)). Consequently, the timescale is strongly degen-
erate with respect to the initial surface density in planetesimals
(Σpl,0), the level of turbulence (β1), and the radial concentration
of the dust (β2).

Even a less massive planetesimal disk could produce inde-
structible seeds if the level of turbulence is correspondingly
reduced or the radial concentration of the dust is increased.
However, the final mass of the core will still ultimately be de-
termined by Σpl,0 (which sets the total mass in solids available
to be accreted).

4. SUMMARY AND DISCUSSION

In situ formation models (e.g., Hansen & Murray 2012;
Chiang & Laughlin 2013) have recently become en vogue, bol-
stered by the discovery of the large, close-in Kepler exoplanets
and the ostensible inability of population synthesis models to
reproduce the planets’ observed properties. In the same spirit,
we presented here a model that side-steps the kilometer-size
bottleneck in circumbinary configurations, allowing planetesi-
mal accretion to proceed near a pressure trap. We identified a
potential trap imposed by the density gradient inversion near the
central binary, and postulated that solid bodies will tend to drift
in and stop at that radius. We then sketched a possible scenario
that takes into consideration planetesimal grinding, drift, and
reaccumulation.

We validated this scenario using a combination of two-
dimensional hydrodynamical and N-body simulations. We first
showed that radial drift can be very fast for both small debris and
kilometer-sized planetesimals, and the pressure structure in the
disk tends to accumulate both close to the central binary. Subse-
quently, we modeled the destruction–drift–reaccumulation pro-
cess using a simplified numerical scheme, informed by our
numerical simulations where possible. Within this model, we
showed that if a population of primordial kilometer-sized plan-
etesimals is formed throughout the disk, a large fraction will be
destroyed, the resulting debris accumulating close to the pres-
sure trap. Surviving planetesimals will also drift into the trap,
finding a solid-rich environment. A few seeds will grow large
enough to become indestructible, start to accrete other planetes-
imals in the belt and entering a runaway growth phase.

Our toy model does not describe the evolution of the system
beyond this critical size, since the large seeds will start stirring
the planetesimal belt and the velocity dispersion will no longer
be set by the binary/disk system alone. A full N-body simulation
will be warranted to proceed further. However, the largest seeds
should end up consolidating into a single, small core, which can

then accrete the rest of the solid inventory in the belt (dust and
planetesimals). In this scenario, the entire solid content within
3 AU is available for accretion by the planetary core.

Is there enough solid material to form a core matching the core
masses inferred for the circumbinary Kepler planets? Again,
Kepler-16 b represents the stringiest test among the observed
circumbinary planets. The core of Kepler-16 b is expected to
contain 40–60 Earth masses in heavy elements (Doyle et al.
2011), despite the low metallicity of the central binary ([Fe/H] =
−0.3±0.2). Assuming the standard MMSN normalization (10 g
cm−2), there are only about 3 Earth masses in heavy elements
between 1 and 3 AU. However, for close-in Kepler planets this
normalization is likely underestimating the solid inventory. In
particular, Chiang & Laughlin (2013) derived a “minimum-
mass extrasolar nebula” assuming the close-in Kepler planets
were formed in situ. The resulting normalization at 1 AU is
approximately 50 g cm−2. Accounting for some inefficiency in
the planet formation process, then there might be just enough
mass in solids to form the core of Kepler-16 b. This need for
an enhanced normalization of the solid disk is common to all
in situ formation models (Hansen & Murray 2012; Chiang &
Laughlin 2013).

We also remark that our model, for a given set of binary orbital
elements, predicts a range of radii for the pressure trap, where we
expect the planet to form. For the Kepler-16 binary parameters
and nominal values for the disk parameters, the distance of the
trap from the central binary is close to the current observed
locations of the planet. To explain any discrepancy between
the observed location of the planet and the position of the trap
(≈ .3 AU for Kepler-16 in this paper), we can simply deviate
from the nominal scale height normalization h considered in
this paper and fine-tune it to match the two radii (Equation (1)).
Another possibility is to change the α parameter that determines
the viscosity of the disk. The option of fine-tuning the radial
location of the trap by varying the physical parameters of the
disk slightly diminishes the determinism inherent to our model,
so that we cannot uniquely predict (or postdict) the location of
the planet given the binary parameters. Unfortunately, models
in which the core formed far out and subsequently migrated in
can also make analogous predictions, provided that h and α are
appropriately adjusted (e.g., Pierens & Nelson 2013). This is
due to the fact that migrating cores will also stall close to the
truncation edge (Pierens & Nelson 2007).

The current scenario for circumbinary planet formation (for-
mation of the core far from the binary, with subsequent mi-
gration) remains the most likely explanation for the origin of
Kepler-16 b and the other circumbinary planets. Its main re-
quirement is the existence of a migration mechanism (Type-I
migration) which we already know is at work within proto-
planetary disks (e.g., Kley & Nelson 2012) and has shaped the
planetary census. On the other hand, the alternative scenario
presented in this paper makes a number of requirements (pri-
marily, the existence of a primordial population of planetesimals
to grind and the capture of both debris and lucky planetesimals
close to the binary) in order to achieve the outcome of planet
formation. An improved simulation addressing the crude sim-
plifications and caveats listed in the next section will help shed
light on the viability of the model.

4.1. Caveats and Future Work

As mentioned throughout the paper, our approach required
a number of simplifying assumptions in order to attempt to
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capture the physical processes at work within the computational
constraints. Not all of these assumptions are fully self-
consistent, but were chosen for the sake of simplicity and to al-
low the modeling of the system over 105 yr. In this respect, given
the crude approximations mentioned in Section 3, the scheme
for planetesimal evolution presented here should be considered
an “order of magnitude” approach to modeling the coupled evo-
lution of the disk, destruction, drift, and debris accretion on
stalled planetesimals. This mainly allows us to derive a range of
plausible timescales over which this process can be at work to
produce a core. Only a more sophisticated treatment will verify
whether some (or all) of the approximations detailed throughout
the paper significantly alter, or even completely inhibit, the pro-
cess described here. An N-body approach in the manner of P12
would lift some of the limitations of our model, while being able
to model the collisional dynamics far more accurately. Such an
improved simulation should try to address the following issues:

Planetesimal and debris sizes. The limitation of a single-
sized initial population is dictated by numerical convenience.
Indeed, if we were to allow for a spectrum of sizes through-
out the disk, then the numerical scheme would need to track
planetesimal size evolution everywhere and lose much of its
simplicity. Similarly, we do not follow the debris evolution in
a detailed manner, but rather we lump them regardless of their
size and categorize it as “dust” and assume it is instantaneously
shepherded into the pressure maximum. We will lift this limita-
tion in a future work (at the expense of increased computational
burden).

As mentioned in Section 3.3, we calculate ε̄ (the dust
accretion efficiency) by averaging over the possible encounter
speeds Δvd between the planetesimals and the dust, assuming
that ε = 1 if Δvd < 100vesc and 0 otherwise. The bulk
of the encounter speed arises from the mismatch between
the gas eccentricity and the planetesimal eccentricity. For
the small planetesimal size considered here (5 km), initially
ε̄(R = 5 km) ≈ 0.1, meaning that a majority of encounters
would happen at high speeds (Δvd > 100vesc). Our averaging
implicitly assumes that such high-speed collisions do not
affect the target planetesimals (i.e., the dust flows around the
planetesimal, or bounces without cratering). This is potentially
the most problematic of the assumptions implicit in our model,
considering that the high-speed collisions might “sandblast” the
planetesimal instead. We note that only a detailed treatment
of the accretion of dust of different sizes on the planetesimal
(considering the balance between cratering and accretion) can
give a more definite value for ε̄. Only for bigger planetesimals
(R � 30 km) the escape velocity is large enough that ε is always
equal to 1 (Δvd is always less than 100vesc).

We also note that we measured vcoll (the planetesimal colli-
sion speed throughout the disk, which determines the balance
between the amount of dust produced and the number of plan-
etesimals that survive long enough to drift into the belt) and vdrift
from an evolved distribution of planetesimals, so that any initial
transients due to eccentricity oscillations have evolved toward
an equilibrium profile. This essentially implies that the plan-
etesimals would be born with the equilibrium orbital elements
“ab initio.”

Disk eccentricity and high-m, non-axisymmetric perturba-
tions. For simplicity, we chose to neglect the non-axisymmetric
perturbations from the disk beyond the simple bulk disk eccen-
tricity. These time-dependent perturbations could potentially
disturb the formation of the planetesimal and dust rings. How-
ever, we remark that in our hydrodynamical simulation the am-

plitude of the m > 1 modes is at least an order of magnitude
smaller than the eccentric mode at 1 AU.

As noted in Section 2.2, the assumption that each hydro-
dynamical quantity is constant along eccentric streamlines
is strictly inconsistent with a non-constant disk eccentricity
(Statler 2001). Indeed, we find that throughout the hydrody-
namical runs, there is substantial scatter of Σ at each semi-major
axis. This issue is especially problematic close to 1 AU, where
it is crucial to correctly model the dynamics of planetesimals in
order to ascertain that planetesimals are captured close to the
pressure maximum. We note that the results of our simulations
are bolstered by the self-consistent simulation of Marzari et al.
(2008), which found that small bodies can drift and congregate
into a ring despite the disk perturbations.

Ascertaining the full impact of both approximations will
require expensive hydrodynamical simulation fully coupled
with the N-body code, which are beyond the scope of the present
paper.

Disk thermodynamics. We choose to model the disk with an
isothermal equation of state. While this choice greatly simplifies
our equations, Marzari et al. (2013) showed that the disk
thermodynamics can be crucial in determining planetesimal
collision speeds and orbital elements. Addressing this important
shortcoming will require a substantial modification of our
model.

Multiple-planet systems? We did not address the issue of
multiple planet formation in this work. Thus far, we have
only detected one such system, Kepler-47, consisting of two
planets with Mb ≈ 7–10 and Mc ∼ 16–23 Earth masses,
respectively. The inner planet is also relatively further away
from the instability region than other circumbinary planets. The
presence of the second planet poses the question of whether it
could also form from a pressure trap, perhaps due to a density
gradient induced by the formation of the innermost planet.
However, it is difficult to model this setup within the constraints
of our model. This system will deserve further study to ascertain
whether its observed properties can be explained within our
framework, once some of its key assumptions are relaxed.

Impact of the fictitious eccentricity? In our model and pre-
vious papers in the literature, both planetesimals and fluid ele-
ments are initialized in a circular orbit assuming a GM∗/R po-
tential, consistently with previous simulations. This was shown
by Rafikov (2013) to introduce a small fictitious eccentricity in
the initial conditions (such that both the disk and the planetesi-
mals are initialized in a slightly eccentric state, especially close
to the binary). In our case, this means that both the disk and
the planetesimals are initialized with some initial eccentricity,
potentially increasing both drift speeds and collision speeds.
While this effect should be small compared to the eccentricities
excited by the central binary, we will ascertain the impact of
changing the initial conditions in a future N-body simulations.

Disk potential and self-gravity. Rafikov (2013) also showed
that including the contribution of the disk potential can have
profound effects on both the planetesimal and binary dynamics.
In particular, the eccentricity of planetesimals might be sup-
pressed, moving the edge of the accretion-friendly region for
Kepler-16 inward down to about 2 AU. This effect could po-
tentially affect our results as well, since Rafikov (2013) argues
that fast binary precession could suppress the development of
eccentricity in the disk.

Further, including the self-gravity of the disk can in turn also
affect both the disk and the planetesimal dynamics (Marzari
et al. 2008). Both effects are likely important ingredients needed
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to capture the full dynamical picture, but are neglected for
simplicity in our model.

Snow line, layered structure, and turbulence. Our simplified,
two-dimensional model does not take into account any strati-
fication or structure, assuming that the whole disk can be rep-
resented with a simple α-disk model. In reality, the snow line
can also act as a solid trap due to the pressure maximum there;
therefore, the inner disk will be “shielded” by the snow line, and
planetesimal grinding in the outer disk will not result in migra-
tion of debris in the inner disk. We have attempted to crudely
capture this effect by only considering dust production within
the inner 3 AU.

Martin et al. (2013) consider layered circumbinary disk
models, and find that a dead zone could likely extend from
the inner edge of the disk to several AUs and remain relatively
unaltered for the disk lifetime. Within the dead zone, solids
could drift toward a peak in the surface density (located at a
few AUs from the stellar binary in their models), and settle
within a fairly quiescent midplane. A similar process as that
outlined in the present paper could then still be in action, but
concentrating the material further out. More sophisticated self-
consistent simulations that include layering will be required to
assess this possibility.

As addressed in Meschiari (2012b), even within a dead zone
planetesimals can be stochastically kicked by residual turbulent
torques, raising their eccentricity and dephasing their orbits.
Additionally, a radially concentrated ring of planetesimal will be
smeared radially (increasing ΔRb and reducing the collision rate
in the planetesimal belt). Low levels of turbulence are therefore
beneficial to our scenario. We plan to include turbulent torques
in the manner of Meschiari (2012b) in future work.

S.M. acknowledges insightful discussions with Augusto Car-
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Pavel, as well as support from the W. J. McDonald Postdoc-
toral Fellowship. The author would like to thank the anonymous
referee for an extremely useful and rigorous critique.
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