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First-principles electronic structure calculations are a popular tool for

understanding and predicting properties of materials. Among such methods,

the combination of real-space density functional theory and pseudopoten-

tials to solve the Kohn–Sham equation has several advantages. Real-space

methods, such as finite differences and finite elements, avoid the global com-

munication needed in fast Fourier transformation and offer better scalability

for large calculations on hundreds or thousands of compute nodes. Besides,

finite-difference methods with a uniform real-space grid are easy to imple-

ment, e.g., the convergence of a Kohn–Sham solution is controlled by a single

parameter – the grid spacing.

One promising algorithm for solving the Kohn–Sham eigenvalue problem

in real space is the Chebyshev-filtered subspace iteration method (CheFSI).

Within this algorithm, the charge density is constructed without regard to a

solution for individual eigenvalues. However, for large systems CheFSI may
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suffer from super-linear scaling operations such as orthonormalization and

the Rayleigh–Ritz procedure.

In the dissertation I will present two improvements in CheFSI to enhance

its scalability and accelerate calculation. The first one is a hybrid method

that combines a spectrum slicing method and CheFSI. The spectrum slicing

method divides a Kohn–Sham eigenvalue problem into subproblems, wherein

each subproblem can be solved in parallel using CheFSI. We will show that,

by the simulations of confined systems with thousands of atoms, this hybrid

method can be faster and possesses better scalability than CheFSI.

The second improvement is a grid partitioning method based on space-

filling curves. Space-filling curves based grid partitioning improves the effi-

ciency of the sparse matrix—vector multiplication, which is the key compo-

nent of CheFSI. We will show that, by computations of confined systems with

50,000 atoms or 200,000 electrons, this method effectively reduces the com-

munication overhead and improves the utilization of the vector processing

capabilities provided by most modern parallel computers.

Along with the improvements, I will also present three applications. One

is the study of the evolution of density of states of silicon nanocrystals from

small ones to their bulk limit. The simulations can hardly be performed

without the improvement in sparse matrix–vector multiplication enhanced

by space-filling curves based grid partitioning. The other two applications

are the studies of proton transfer in liquid water and the adsorption of water

on titanium dioxide surfaces.
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Chapter 1

Introduction

1.1 Background

Material properties are related to their electronic structure. For example,

electrical conductivity of most solids can be understood by their electronic

band structure, and mechanical strength depends on how tightly atoms bind

together by the “electron glues.” The effects of defects on materials, such as

the formation of semiconductors, can be interpreted and predicted through

electronic structure calculations. Furthermore, the interaction between elec-

trons and phonons plays an important role when we consider superconductors

and finite-temperature phenomena in our daily lives. All of these are related

to and rely on our understanding of the electronic structure of materials, and

whether we are able to calculate it is paramount.

The fundamental equation for electronic structure is the Schrödinger
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equation. It has been formidable work to solve it for large systems. A

famous quote from P. A. M. Dirac one century ago pointed this out: “The

underlying physical laws necessary for the mathematical theory of a large

part of physics and the whole of chemistry are thus completely known, and

the difficulty is only that the exact application of these laws leads to equa-

tions much too complicated to be soluble.” [7] This seems still true in our

time; however, we have made progress. The increasing richness in theory, the

birth of modern massively parallel computers, and the advances in numerical

methods make it possible to solve electronic structure of myriad systems of

interest by first-principles calculations.

First-principle calculations and simulations have emerged as a third sci-

entific tool on par with experiment and theory. Since the seminal work of

Hohenberg and Kohn in establishing the foundation (proving the existence of

a unique functional that gives the lowest value when a system is at its ground

state) of density functional theory (DFT) [8], and the creation of a practical

calculation scheme (on finding the ground-state energy and corresponding

electronic charge density) by Kohn and Sham [9], DFT has become an indis-

pensable tool for understanding and predicting material properties. The idea

that the ground-state energy is a functional of the electronic charge density

leads to a great simplification of the corresponding many-body Schrödinger

equation. The minimization of the functional results in the Kohn–Sham

equation [9].

Within DFT, real-space methods are increasingly popular as a means for
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reduction of the computational load associated with solving the Kohn–Sham

equation [10, 11]. Such methods are mathematically robust, highly accu-

rate, and inherently amenable to multiple/hybrid parallelization paradigms

(i.e., intra-/inter-node parallelization, GPU acceleration) without the need

for global (and often computationally intractable) communication overhead.

Furthermore, mixed and customizable boundary conditions can easily be

employed. Many implementations of real-space methods exist, including

those based on multigrids [12, 13, 14], wavelets [15], numerical atomic or-

bitals [16, 17], high-order finite differences [18, 19, 20, 21, 22, 23, 24], and

finite elements [25, 26].

Among the various real-space methods, the finite-difference method is

particularly straightforward and one of the easiest to implement. By using

pseudopotentials, which remove the Coulomb singularity [27, 28] and set the

energy and length scale to those of the valence states, simple cubic grids can

be used. No explicit basis is then needed and convergence is straightforward.

In the finite-difference method, Hamiltonian matrices obtained from domain

discretization are typically large but sparse [29]. We require an iterative

eigensolver to leverage the character of this Hamiltonian matrix to achieve

efficiency.

The routinely solvable system size for materials has increased from hun-

dreds of atoms in the 1990s to tens of thousands of atoms, thanks to theoret-

ical developments and advances in computing power. Real-space pseudopo-

tential DFT along with the Chebyshev-filtered subspace iteration (CheFSI)
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algorithm (Figure 1.1) has shown the ability to solve the electronic structures

of systems containing up to 50,000 atoms [30, 31, 32].
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Figure 1.1: Illustration of solving for lowest-energy states from Kohn–Sham
equation using Chebyshev-filtered subspace iteration method.

CheFSI is an efficient iterative method for solving the Kohn–Sham equa-

tion [17, 30, 31, 33, 34, 35, 36]. CheFSI maintains an evolving subspace

approximating the eigenspace. By simultaneously improving the subspace

and the potentials, CheFSI reduces the computational load for determin-

ing highly accurate eigenstates as the charge density is converged. Once

a converged charge density is achieved, the subspace is also the required
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eigenspace. In practice, we do not store the Hamiltonian matrix, but we

have access to it for sparse matrix–vector multiplication (SpMV). As a re-

sult, the performance of CheFSI relies heavily on the efficiency of SpMV of

the Hamiltonian matrix with the wave functions. Consequently, an efficient

SpMV operation is desired.

The CheFSI algorithm has been adopted in several other large-scale DFT

based electronic structure analysis software such as DGDFT [37], SPARC [23],

and FE-DFT [38]. A library that implements a Chebyshev Accelerated Sub-

space Iteration has recently become available [35]. In 2016 Michaud-Rioux

et al. also demonstrated that a combination of CheFSI and their partial

Rayleigh–Ritz method enables the routine calculation of thousands of atoms

with only moderate computational resources [17]. The CheFSI algorithm is

applied by Banerjee et al. [34] to not only the original Kohn–Sham Hamil-

tonian, but also the projected subspace problem defined in Rayleigh–Ritz

method. It is even employed in introductory textbooks [39].

Here, we use PARSEC, a DFT software package featuring real-space cal-

culations and the pseudopotential approximation, to solve the Kohn–Sham

equation [19]. The real-space representation of the wave functions has the

advantage of making a parallel implementation and software development rel-

atively straightforward [30]. Furthermore, pseudopotential theory and tech-

niques encapsulate the chemically inert core electrons into an ion core poten-

tial as part of the external electric field felt by valence electrons. This enables

us to solve the Kohn–Sham equation only for the valence electrons, greatly

23



reducing the computational demands and fixing the energy and length scales

by the valence states.

For small to medium sized problems, the time cost of CheFSI is dom-

inated by the multiplication of Hamiltonian matrices with vectors. These

SpMV operations can be efficiently parallelized. However, for large systems

the Rayleigh–Ritz procedure used to extract the desired eigenvalue approx-

imation and the other dense linear algebra operations required to construct

and analyze the projected problem become a bottleneck, as shown in Fig-

ure 1.2. As a result, in the dissertation I will propose two methods to address

this issue.

Si1947H604 Si4001H1012 Si23049H3220 Si51071H5484
0

1000

2000

3000
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Ti
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e 
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Figure 1.2: The cubic-scaling operations (orthonormalization (ORTH) and
Rayleigh–Ritz procedure (RR)) in CheFSI will gradually dominate simula-
tion time cost as the problem size increases. This limits the scalability and
hamper larger-scale DFT calculations.
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1.2 Overview of Dissertation

In the section on Methods I will start from the time-dependent Schrödinger

equation, and derive the time-independent Schrödinger equation for elec-

trons. Then I will discuss the theoretical basis of DFT. By the Hohenberg–

Kohn theorems we can solve electronic structure using the Kohn–Sham equa-

tion instead of the time-independent Schrödinger equation. Next I will intro-

duce pseudopotential theory and finite-difference discretization, and finally

we will obtain the real-space pseudopotential Kohn–Sham equation, which

we will use to solve electronic structure problems.

Next, I will introduce the CheFSI method and explain how to apply it

to solving the Kohn–Sham equation, followed by the theoretical part of my

proposed methods: the spectrum slicing (SS) method and space-filling curves

(SFCs) based grid partitioning method.

For SS I will describe how to perform polynomial filtering and review

the major computational components of both CheFSI and SS algorithms.

Then I will discuss how to construct both Cheybshev and bandpass filter

polynomials for computing eigenpairs at the low end and within a spectral

slice respectively. Furthermore, I will examine how to partition the spec-

trum into spectral slices using an estimated density of states obtained from

a Lanczos iteration, and refine the partition using Ritz values obtained from

previous SCF iterations. Then I will discuss a number of issues related to

an efficient implementation of polynomial filtering algorithms. These include
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the use of an appropriate data layout for carrying out the computation on

a two-dimensional process grid, how to achieve good load balance, and the

type of communications involved in the parallel implementation. At the end

of Methods, I will introduce first-principles molecular dynamics (FPMD) as

we will use it in the studies of proton transfer and water adsorption.

The following part is Results and Discussion. I will present the bench-

mark results of SS.1 A number of computational examples are presented in

Section 3.1. In particular, we show the performance characteristics of both

CheFSI and SS, and note the relative cost of Hamiltonian–vector multipli-

cation and dense matrix computations performed within a subspace. We

demonstrate that SS has much better strong parallel scalability compared

with CheFSI for a sufficiently large problem when it is performed on an ad-

equately large number of compute cores. In fact, for a large test problem,

we show the crossover point (in terms of computational resources) beyond

which the time cost used by SS is lower than that used by CheFSI.

I will also present the results of SFCs based grid partitioning2 and an-

alyze the performance. Afterwards, I will present three applications based

on the improvements in the algorithms: evolution of the density of states of

silicon nanocrystals, proton transfer in liquid water, and water adsorption on

titanium dioxide surfaces.

1The work of spectrum slicing has been published on Computer Physics Communica-
tions [36].

2The work of space-filling curves based grid partitioning has been published on Journal
of Chemical Theory and Computation [32].
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Finally, I will conclude my dissertation with the key points and findings

in my research, and outlook that points to opportunities for future studies.
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Chapter 2

Methods

2.1 Description of Electrons – Schrödinger Equa-

tion

For a collection of particles (N electrons and M nuclei), these particles can

be described by the time-dependent Schrödinger equation:

i~
dΘ({ri}, {RI}; t)

dt
= ĤΘ({ri}, {RI}; t), (2.1)

where {ri} = {r1, r2, ..., rN} are the positions of the electrons, {RI} =

{R1,R2, ...,RM} are the positions of the nuclei, t is time, the i in front of ~ is

the imaginary unit, ~ = h
2π

is the reduced Planck constant, Θ({ri}, {RI}; t)

is the wave function of the system, and Ĥ is the Hamiltonian operator which

includes kinetic and potential energy of the particles.
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If the Hamiltonian does not depend on time, a possible solution of the

wave function could be Θ({ri}, {RI}; t) = Ψ({ri}, {RI})exp(−iEtott/~), where

Etot is the total energy of the system. Equation (2.1) becomes

i~
dΨexp(−iEtott/~)

dt
= i~Ψ

dexp(−iEtott/~)

dt

= EtotΨexp(−iEtott/~)

= ĤΨexp(−iEtott/~),

(2.2)

and we obtain the time-independent Schrödinger equation for many particles:

ĤΨ({ri}, {RI}) = EtotΨ({ri}, {RI}). (2.3)

An Hamiltonian consists of the kinetic energy and potential energy of the

underlying particles. For a collection of electrons and nuclei, the Hamiltonian

is

Ĥ = KEn + KEe + PEnn + PEne + PEee

=
∑
I

p̂2
I

2MI

+
∑
i

p̂2
i

2me

+
1

2

e2

4πε0

∑
I,J
I 6=J

ZIZJ
|RI −RJ |

− e2

4πε0

∑
I,i

ZI
|RI − ri|

+
1

2

e2

4πε0

∑
i,j
i 6=j

1

|ri − rj|
,

where KEn is the kinetic energy of the nuclei, KEe is the kinetic energy

of the electrons, PEnn is the potential energy between the nuclei, PEne is

the potential energy between the nuclei and electrons, PEee is the potential
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energy between the electrons, p̂I and MI are the momentum and mass of

nucleus I, p̂i and me are the momentum and mass of electron i, e is the

elementary charge, ε0 is the permittivity of free space, ZI and ZJ are the

atomic numbers of nuclei I and J .

Substituting the quantum-mechanical form for the momenta, p̂I = −i~∇I

and p̂i = −i~∇i, and adopting the Hartree atomic units (see Appendix A),

the Hamiltonian becomes

Ĥ = −
∑
I

∇2
I

2MI

−
∑
i

∇2
i

2

+
1

2

∑
I,J
I 6=J

ZIZJ
|RI −RJ |

−
∑
I,i

ZI
|RI − ri|

+
1

2

∑
i,j
i 6=j

1

|ri − rj|
.

(2.4)

We apply Born–Oppenheimer approximation, which assumes that the

motions of electrons and nuclei are decoupled and the wave function of the

system can be separated as a product of an electronic wave function and a

nuclear wave function:

Ψ({ri}, {RI}) = Φ{RI}({ri})χ({RI}),

where the subscript of Φ denotes that Φ is solved under a specific nuclear

configuration. Substituting the wave function ansatz into Equation (2.3) and
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writing down explicitly the terms of the Hamiltonian, we have

[
−
∑
I

∇2
I

2MI

−
∑
i

∇2
i

2
+

1

2

∑
I,J
I 6=J

ZIZJ
|RI −RJ |

−
∑
I,i

ZI
|RI − ri|

+
1

2

∑
i,j
i 6=j

1

|ri − rj|

Φ{RI}χ = EtotΦ{RI}χ. (2.5)

Next, we define the electronic Hamiltonian, Ĥe, and obtain the Schrödinger

equation for the electrons:

ĤeΦ{RI} =

−∑
i

∇2
i

2
−
∑
I,i

ZI
|RI − ri|

+
1

2

∑
i,j
i 6=j

1

|ri − rj|

Φ{RI}

= E{RI}Φ{RI},

(2.6)

where E{RI} is the total energy of the electrons. Note that the nuclear

positions {RI} enters this equation parametrically. With this definition,

Equation (2.5) becomes

E{RI}Φ{RI}χ+

−∑
I

∇2
I

2MI

+
1

2

∑
I,J
I 6=J

ZIZJ
|RI −RJ |

Φ{RI}χ = EtotΦ{RI}χ.

(2.7)

After rearranging the equation and eliminating the electronic wave function,
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we obtain the nuclear Schrödinger equation:

−∑
I

∇2
I

2MI

+
1

2

∑
I,J
I 6=J

ZIZJ
|RI −RJ |

+ E{RI}

χ = Etotχ. (2.8)

Note that the electronic energy, E{RI}, serves as the potential-energy surface

that the nuclei move along.

2.2 Density Functional Theory

Density functional theory (DFT) is an alternative approach to solving the

electronic Schrödinger equation (Equation (2.6)) and obtaining the total elec-

tronic energy. To simplify the derivation, let us rewrite Equation (2.6) in

terms of operator symbols:

(
T̂ + V̂ext + V̂ee

)
Φ = EΦ, (2.9)

where T̂ = −
∑

i
∇2
i

2
is the kinetic energy operator, V̂ext = −

∑
I,i

ZI
|RI−ri|

is the

potential energy the electrons feel from the nuclei, V̂ee = 1
2

∑
i,j
i 6=j

1
|ri−rj | is the

potential energy due to the interaction between the electrons, Φ = Φ({ri})

is the electronic wave function, and E is the total energy of the electrons.
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2.2.1 First and Second Hohenberg–Kohn Theorem

First Hohenberg–Kohn Theorem

The first Hohenberg–Kohn theorem states that the external potential, V̂ext

is a unique functional of the electronic charge density,

n(r) = N

∫
dr2dr3...drNΦ†(r, r2, ..., rN)Φ(r, r2, ..., rN),

up to a constant. Note that the wave function, Φ(r, r2, ..., rN), satisfies anti-

symmetry and is normalized, such that

∫
dr n(r) = N

∫
drdr2dr3...drNΦ†(r, r2, ..., rN)Φ(r, r2, ..., rN) = N.

On the other hand, V̂ext uniquely determines the ground-state wave function

of the system, and hence the total energy. As a result, the total energy, E,

is a functional of n(r). This means that it is possible to devise a fictitious

system that has the same charge density, and the total energy of the fictitious

system is the same as that from the Schrödinger equation.

To prove the first Hohenberg–Kohn theorem, we start from two different

Hamiltonians:

Ĥ = T̂ + V̂ext + V̂ee,

and

Ĥ
′
= T̂ + V̂

′

ext + V̂ee.
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The difference is in the external potential (two different sets of nuclei). We

denote the ground-state wave function of each system as Φ0 and Φ
′
0, respec-

tively. They should be different because the external potentials are different.

We then assume that the two different external potentials, V̂ext and V̂
′

ext, lead

to the same ground-state charge densities, n0(r), through the Hamiltonians,

Ĥ and Ĥ
′
.

For the next step we compute the total energy from Ĥ
′

using the ground-

state wave function of the first system, Φ0. We expect to obtain an energy

that is greater than the ground-state energy, since Φ0 is not the same as the

ground-state wave function of the second system, Φ
′
0. That is,

E = 〈Φ0|Ĥ
′|Φ0〉

=

∫
Φ†0(T̂ + V̂

′

ext + V̂ee)Φ0dr

=

∫
Φ†0(T̂ + V̂

′

ext + V̂ee + V̂ext − V̂ext)Φ0dr

=

∫
Φ†0(T̂ + V̂ext + V̂ee)Φ0dr +

∫
Φ†0(V̂

′

ext − V̂ext)Φ0dr

= E0 +

∫
(V
′

ext − Vext)n(r)dr

>

∫
(Φ
′

0)†Ĥ
′
Φ
′

0dr

= E
′

0,

where E0 and E
′
0 are the ground-state energy of the first and second system,

respectively. On the other hand, we can perform the same derivation for Φ
′
0
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through Ĥ and obtain

E
′

0 +

∫
(Vext − V

′

ext)n(r)dr > E0.

If we add up the above two inequalities on both sides, we find

E0 + E
′

0 > E0 + E
′

0, (2.10)

which is wrong. As a result, different external potentials must result in dif-

ferent charge densities. That is, the external potential (and the Hamiltonian

and total energy) is uniquely determined by its charge density.

Second Hohenberg–Kohn Theorem

The second Hohenberg–Kohn theorem states that the universal functional

(F = T̂ + V̂ee) delivers the lowest energy if and only if the input charge

density is the true ground-state density, n0(r). In other words, if we know

the universal functional, a charge density that gives the lowest energy would

be the ground-state energy of the system:

F [n] +

∫
Vextn(r)dr ≥ F [n0] +

∫
Vextn0(r)dr = E0. (2.11)

In sum, Hohenberg–Kohn theorems prove that the ground-state energy

of a non-degenerate system is a functional of the density of the system. That

is, E0 = F [n0(r)]. This greatly simplifies electronic structure problems. Take
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Si29H36 as an example. There are 29 × 14 + 36 × 1 = 442 electrons in the

system, and each electron has three spatial variables. As a result, the solution

of the electronic Schrödinger equation (Equation (2.6)) for the system is a

function of 442× 3 = 1326 spatial variables. However, by Hohenberg–Kohn

theorems we know that the ground-state energy is a functional of the charge

density of the system, which is a function of only three spatial variables.

2.2.2 Kohn–Sham Method

The Hohenberg–Kohn theorems allow a description of the ground-state en-

ergy of a system if we know (1) the universal functional, F [n] = T̂ + V̂ee, and

(2) the charge density of the ground state. If we only know the universal

functional, but not the ground-state charge density, we are able to approx-

imate the total energy using trial functions for the charge density, thanks

to the variational principle. Unfortunately we do not know the universal

functional.

Kohn and Sham proposed a method to compute the total energy approx-

imately based on DFT [9]. Their method assumes (1) A fictitious system

of independent electrons that results in the same charge density as the one

obtained from the original system of interacting electrons. (2) The kinetic-

energy contribution and the electron-electron interaction-energy contribution

can be largely captured by the kinetic energy and the Hartree energy of these

independent electrons. (3) The difference due to the above approximations

and the other many-body effects are lumped into an “exchange-correlation
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energy term” and approximated by the local density (local-density approxi-

mation). That is,

E = F [n] + 〈Φ|V̂ext|Φ〉

= 〈Φ|T̂ + V̂ext + V̂ee|Φ〉

= 〈Φ|T̂KS + V̂ext + V̂H + T̂ − T̂KS + V̂ee − V̂H|Φ〉

= 〈Φ|T̂KS + V̂ext + V̂H + V̂xc|Φ〉

= 〈Φ|T̂KS|Φ〉+ 〈Φ|V̂ext|Φ〉+ 〈Φ|V̂H|Φ〉+ 〈Φ|V̂xc|Φ〉

= −
∑
i

∫
drφ†i

∇2

2
φi +

∫
drVext(r)n(r) +

1

2

∫
drdr′

n(r)n(r′)

|r− r′|
+ Exc.

(2.12)

Then we define a Lagrangian, L[n], that includes the total energy and the

constraints required by the normalization of the single-particle orbitals for

the independent electrons through the help of Lagrange multipliers, λi:

L[n] = E +
∑
i

λi(1− φ†iφi).

To find a minimum of L[n], we need to satisfy

δL[n]

δn
= 0, (2.13)

and

δL[n]

δλk
= 0, for 1 ≤ k ≤ N, (2.14)
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where n =
∑N

i |φi|2. The latter ones are automatically satisfied since they

are the constraints we impose. For the former, we have

δL[n]

δn
=
∑
k

δφ†k
δn

δL[n]

δφ†k
= 0. (2.15)

Since
dφ†k
dn

is non-zero, we then have

δL[n]

δφ†k
= 0, (2.16)

for every k. Expanding L[n], we obtain

δE

δφ†k
+
∑
i

λi
δ

δφ†k
(1− φ†iφi) = 0. (2.17)

With further simplification, the above equation becomes

[
−∇

2

2
+ Vext(r) +

∫
dr′

n(r′)

|r′ − r|
+ Vxc[n]

]
φk − λkφk = 0, (2.18)

where Vxc[n] = δExc

δn
. Interpreting the Lagrange multipliers as Kohn–Sham

energy levels and the functions, φk, as Kohn–Sham single-particle orbitals,

we obtain the Kohn–Sham equation:

(
−1

2
∇2 + Vext(r) + VH(r) + Vxc[n]

)
φi(r) = εiφi(r), (2.19)
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where

Vext(r) = −
∑
I

ZI
|r−RI |

, (2.20)

Vxc[n] =
δExc

δn
, (2.21)

and

VH(r) =

∫
dr′

n(r′)

|r′ − r|
, (2.22)

which is often recast into the Poisson equation form (see Appendix B for the

derivation):

∇2VH(r) = −4πn(r). (2.23)

The Kohn–Sham equation is a non-linear eigenvalue problem, since the

effective potential, Veff = Vext + VH + Vxc, depends on its solution. One ap-

proach to solving this equation is to construct a self-consistent field (SCF).

A flowchart of the SCF construction is shown in Figure 2.1. The effective

potential is calculated from an initial charge density that is constructed from

the superposition of atomic charge densities. Using this potential we solve

a linear eigenvalue problem and obtain a new charge density and the corre-

sponding effective potential. The resulting effective potential is mixed with

those of previous steps to achieve a self-consistent potential, i.e., the pro-

cedure is iterated until the difference between the input potential and the

output potential is within a specified tolerance.
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n0

Veff

[−1
2
∇2 + Veff

]
φi(r) = εiφi(r)

n(r) =
∑

occ |φi(r)|2

V new
eff

|V new
eff − Veff | < ε

stop

SCF loop

no

yes

Figure 2.1: Flowchart of an SCF DFT calculation

The single-particle orbital φi and the corresponding energy εi form the

ith eigenpair of the Kohn–Sham Hamiltonian HKS, which is a functional of

the ground-state electronic charge density n(r) defined by

n(r) = 2
Ns∑
i=1

fi|φi(r)|2, (2.24)
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where the prefactor 2 accounts for electronic spins (which we do not dis-

tinguish in this work since we are not considering magnetic systems), Ns is

the number of states being calculated, and fi is the Fermi–Dirac distribution

function:

f(t) =
1

exp((t− εF)/kBT ) + 1
(2.25)

evaluated at the single-particle energy εi. Here, kB is the Boltzmann con-

stant, and T is the temperature. The eigenvalues εi’s are ordered in ascending

order, i.e., ε1 ≤ ε2 ≤ · · · . The first Nocc eigenpairs, (φi, εi), i = 1, 2, ..., Nocc,

are occupied states, and all others are unoccupied states.

If there is a spectral gap between the occupied and unoccupied states, the

Fermi level εF is between εNocc and εNocc+1 and ensures the electronic charge

density n(r) integrates to 2Nocc. When the temperature T is relatively low,

f(t) decreases from 1 to 0 rapidly near the Fermi level. As a result, the

number of effective terms Ns to be summed in (2.24) may include a few

partially occupied states.

2.3 Pseudopotential Theory

Pseudopotential theory is the foundation of pseudopotentials which incorpo-

rate the effects of core electrons into the external potential and result in an

effective ion core potential felt by valence electrons.

We solve the all-electron Kohn–Sham equation for an atom first, which
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is computationally easy:

(
−1

2
∇2 + Vext + VH + Vxc

)
φAE
i (r) = εAE

i φAE
i (r), (2.26)

where we obtain the all-electron wave functions, φAE
i (r), and energy levels,

εAE
i . Then we choose nodeless and smooth pseudo wave functions, φPS

i (r),

such that

φPS
i (r) =


a smooth function, for |r| < rc,

φAE
i (r), for |r| ≥ rc,

(2.27)

where rc is a cutoff radius. We also choose energy levels to be the same as

the all-electron ones.

Substituting the pseudo-wave function of a target state and the corre-

sponding energy level into the Kohn–Sham equation and computing the

Hartree and exchange-correlation terms using the charge density from the

pseudo-wave function, we can solve for the effective pseudopotential for the

target state:

V PS
ext (r) = εAE

i +
1

2

(
∇2φPS

i (r)

φPS
i (r)

)
− VH(r)− Vxc(r). (2.28)

In most chemical environments, only valence electrons participate in bond-

ing (i.e., the core electrons almost do not change). However, the orbitals

of valence electrons need to be orthogonal to the core states, i.e., pos-

sess a nodal structure. This may necessitate a very fine real-space grid or
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high-energy Fourier components. To avoid this obstacle, Hellmann [40] and

Fermi [41] proposed the concept of pseudopotentials (see the reviews by Che-

likowsky [27] and Schwerdtfeger [28]). As mentioned earlier, pseudopotentials

are obtained by assuming a nodeless pseudo-wave function that reproduces

the same eigenvalue as the original all-electron wave function:

(
−1

2
∇2 + V PS

ext + VH[nPS] + Vxc[n
PS]

)
φPS
i (r) = εiφ

PS
i (r), (2.29)

where V PS
ext is the unscreened pseudopotential or ion core pseudopotential,

Vion. In general, the ionic potential depends on the angular-momentum quan-

tum number and we can express it as

V̂ion =
∑
l

VlP̂l, (2.30)

where P̂l is a projector for angular momentum quantum number l to project

out the corresponding component from a wave function.

Kleinman and Bylander proposed a fully-separable form for the ionic

potential operator [42]:

V̂ion =
∑
l

VlP̂l = Vion,local + V̂ion,nonlocal. (2.31)

The ionic potential operator is called separable because the dependence of

two spatial points in the nonlocal part is disconnected, i.e., V̂ion,nonlocal(r, r
′) =
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P̂l(r)∆VlP̂l(r
′) [43]. If we apply the operator to a wave function, we will have

V̂ionφi(r) = Vion,local(r)φi(r) + V̂ion,nonlocalφi, (2.32)

where the nonlocal part is written as

V̂ion,nonlocalφi =
∑
l,m

Glmulm(r)∆Vl(r), (2.33)

where ulm(r) is the pseudo-wave function for angular momentum quantum

number l and magnetic quantum number m, ∆Vl(r) = Vl(r) − Vion,local(r),

and

Glm =

∫
dr′ulm(r′)∆Vl(r

′)φi(r
′)∫

dr′′ulm(r′′)∆Vl(r′′)ulm(r′′)
. (2.34)

Because ∆Vl is short-ranged, we only need to compute the contribution from

the grid points near the nuclear center.

Pseudopotential theory enables us to focus on valence electrons when we

solve the Kohn–Sham equation. Consider Si29H36 as an example. There are

442 electrons. If we are to solve the Schrödinger equation, the ground-state

solution will be a function of 1326 variables. And if we resort to DFT, in

theory the solution (the charge density) will be a function of three variables.

However, we do not know the universal functional yet. If we use the Kohn–

Sham DFT method, we will need to solve for the Kohn–Sham orbitals. For

442 electrons we need the 221 lowest-energy Kohn–Sham orbitals (each being

a function of three variables), assuming spin-unpolarized calculations (i.e.,
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each orbital can accommodate two electrons).

If we further use the pseudopotential theory, we would need to solve for

valence states only. That is, states emerging from the 3s and 3p states of

silicon atoms and the 1s state of hydrogen atoms. A silicon atom has four

valence electrons while a hydrogen atom has one. As a result, for Si29H36

there are 152 electrons, and we are solving for the 76 lowest-energy Kohn–

Sham orbitals, assuming we are performing spin-unpolarized calculations.

We can see in this small case the number of electrons we need to consider is

already reduced by a factor three.

Not only the reduced number of electrons to consider, but there are also

numerical advantages. The pseudo-wave functions are nodeless. They are

smooth and extended states (i.e., they are not highly localized core states).

All of these make it less computationally demanding and possible to describe

wave functions accurately with a modest basis.
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2.4 Finite-Difference Discretization

When discretized on a cubic real-space grid using a higher-order finite-difference

method, the Kohn–Sham equation can be expressed as [18]:

− ~2

2m

[
N∑

n1=−N

Cn1φl(xi + n1h, yj, zk) +
N∑

n2=−N

Cn2φl(xi, yj + n2h, zk)+

N∑
n3=−N

Cn3φl(xi, yj, zk + n3h)

]
+

[
V̂ion(xi, yj, zk) + VH(xi, yj, zk) + Vxc(xi, yj, zk)

]
φl(xi, yj, zk) =

εlφl(xi, yj, zk). (2.35)

In the above equation, V̂ion(xi, yj, zk) is the ionic pseudopotential applied to

the valence electrons. V̂ion can be divided into a local part, Vion,local, plus a

nonlocal part, V̂ion,nonlocal, in the Kleimann–Bylander form [42]. VH(xi, yj, zk)

is the Hartree potential, Vxc(xi, yj, zk) is the exchange-correlation potential, h

is the grid spacing, and (φl, εl) is the lth eigenpair of this eigenvalue problem.

We seek the lowest-energy eigenpairs with l = 1, 2, ..., Nocc, where Nocc is the

highest occupied state.

When HKS is discretized by a real-space method such as finite difference,

the discretized HKS is extremely sparse. The dimension of the discretized

Hamiltonian is much larger than the number of eigenstates Ns to be com-

puted. Therefore, an iterative method is preferred to compute the desired

eigenstates.
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2.5 Chebyshev-Filtered Subspace Iteration Method

2.5.1 Polynomial Filtering

There are a number of iterative methods for solving large sparse eigenvalue

problems. In the early days, The initial version of PARSEC [19], a real-

space pseudopotential DFT code, used the implicitly restarted Lanczos (IRL)

algorithm implemented in the ARPACK software [44]. Although the method

is robust and accurate, its computational cost increases rapidly with respect

to the number of eigenstates computed. This is partly due to the fact that

more iterations and restarts are needed to converge eigenvalues deep inside

the spectrum, e.g., near the Fermi level. Moreover, IRL can only make use

of a good initial guess to a single eigenvector. This feature makes it less

effective for subsequent SCF iterations in which a good initial guess to the

entire subspace associated with the occupied states is available. Furthermore,

IRL is not a block method, i.e., in IRL the Hamiltonian can be multiplied

with only one vector at a time. This makes it less scalable on a parallel

machine.

Both the Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) [45]

and Davidson algorithms [46] are block algorithms that can take advantage

of a good initial guess of the subspace associated with the occupied states.

However, without a good preconditioner, these methods tend to converge

slowly. For real-space methods, it is generally difficult to construct an ef-

fective preconditioner. Thus these methods are less effective. Furthermore,
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these methods are less stable when a large number of eigenpairs are to be

computed [47].

The use of polynomial filtering for computing eigenvalues of a large sparse

matrix dates back over 50 years to the work of Stiefel [48] and was carefully

examined by Yang [49]. The use of Chebyshev filtering for solving the Kohn–

Sham eigenvalue problem was first developed by Zhou et al. [50], where ef-

fective spectral bounds were developed to construct an effective Chebyshev

filtering polynomial. The CheFSI was used to compute the invariant sub-

space associated with the occupied states instead of eigenvectors explicitly.

The success of Zhou et al. brought a speed-up of five to ten times compared

to other eigensolvers, and marked the beginning of the prevalence of the

CheFSI method in electronic structure calculations.

We review the CheFSI method in Section 2.5.2, and briefly discuss how

to construct a bandpass polynomial filter to amplify eigencomponents asso-

ciated with interior eigenvalues in Section 2.6.1. We explain why it is a good

idea to combine spectrum slicing using bandpass polynomials with CheFSI

in a hybrid polynomial filtering algorithm for accelerating the SCF iteration

in Section 2.6.2.

2.5.2 Chebyshev-Filtered Subspace Iteration

An mth-degree Chebyshev polynomial of the first kind can be defined recur-

sively as

Tm(t) = 2tTm−1(t)− Tm−2(t), (2.36)
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with T0(t) = 1 and T1(t) = t. The magnitude of Tm(t) is bounded by 1

within [−1, 1] and grows rapidly outside of this interval. Figure 2.2 shows

Chebyshev polynomials of various degrees.
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Figure 2.2: Chebyshev polynomials of the first kind.

We define the estimated lower and upper bounds of the spectrum of H,

λlb and λub, and an estimated Fermi level, εF. By mapping the unwanted

eigenvalues (e.g., the unoccupied states) of the Kohn–Sham Hamiltonian

H enclosed by [εF, λub] to [−1, 1] through the linear transformation (t −

c)/e, where c = (εF + λub)/2 and e = (λub − εF)/2, we can use T̂m(H) =

Tm((H−cI)/e)v to amplify the eigenvector components in v that correspond

to eigenvalues outside of [εF, λub]. Applying Tm((H − cI)/e) repeatedly to

a block of vectors V filters out the eigenvectors associated with eigenvalues

in [εF, λub]. The desired eigenpairs can be obtained through the standard
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Rayleigh–Ritz procedure [51] described in Algorithm 3.

Owing to the three-term recurrence in (2.36), W = T̂m(H)V can be

computed recursively without forming T̂m(H) explicitly in advance. Algo-

rithm 1 describes how this step is carried out in detail. To maintain numer-

ical stability, we orthonormalize vectors in W . The orthonormalization can

be performed by a (modified) Gram–Schmidt process or by a Householder

transformation based QR factorization [52].

Although these algorithms can achieve high accuracy, they are not the

most efficient ones, especially when implemented on a distributed, parallel

computer. We choose the Cholesky QR algorithm described in Algorithm 2

to perform orthonormalization because Algorithm 2 can make use of highly

efficient matrix computation kernels such as matrix–matrix multiplication,

Choleksy factorization, and triangular substitution with multiple right-hand

sides. We perform a fixed number of Chebyshev polynomial filtering (Algo-

rithm 1) and orthonormalization (Algorithm 2) steps before using Rayleigh–

Ritz procedure to extract approximations to the desired eigenvalues and

eigenvectors. The overall Chebyshev-filtered subspace iteration procedure

is described in Algorithm 4.

In Algorithm 1, the required inputs are λlb, λub, εF, and a filter degree,

m. In the first SCF iteration, λlb and λub can be calculated by running a few

Lanczos iterations, and εF is typically set to (2λlb+λub)/3. In the subsequent

SCF iterations, λlb can be replaced by the lowest Ritz value while εF can be

computed by solving an equation of the conservation of valence electrons,
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i.e., Ne =
∫
n(r)dr, where Ne is the total number of valence electrons. See

the work of Saad [53] and Zhou et al. [31] for more details on Chebyshev

filtering.

We note that for systems with a relatively large gap between the occupied

and unoccupied states (e.g., insulators), it may not be necessary to perform

the Rayleigh–Ritz procedure because the basis vectors φi’s used in (2.24)

can be any orthonormal basis vectors that span the same invariant subspace

defined by the occupied states. For gapless systems (metals) or systems

with a relatively small energy gap, approximate eigenvalues near the gap are

needed to obtain the occupancy defined in (2.25). Moreover, the use of the

Rayleigh–Ritz procedure may also allow us to lock eigenvectors that have

already converged to reduce the computational cost of subsequent subspace

iterations.

Algorithm 1 Chebyshev filtering

1: procedure W = ChebyFilter(H, V , m, εF, λub, λlb)
2: e = (λub − εF)/2
3: c = (λub + εF)/2
4: σ = e/(c− λlb)
5: τ = 2/σ
6: W = (HV − cV )(σ/e)
7: for i = 2→ m do
8: σnew = 1/(τ − σ)
9: Wt = (HV − cV )(2σnew/e)− (σσnew)V

10: V = W
11: W = Wt

12: σ = σnew
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Algorithm 2 Cholesky QR

1: procedure V = Orth(W )
2: A = W TW . A is positive definite
3: Find an upper triangular R such that A = RTR . Cholesky

factorization
4: V = WR−1

Algorithm 3 Rayleigh–Ritz procedure

1: procedure (V ,D) = RayleighRitz(H, V )
2: A = V THV
3: Compute Q and D such that AQ = QD and QTQ = I. . D has the

Ritz values
4: V = V Q

Algorithm 4 Chebyshev-filtered subspace iteration

1: procedure (V,D) = ChebySubIt(H, V , m, εF, λub, λlb, maxiter)
2: for iter = 1 → maxiter do
3: W = ChebyFilter(H, V , m, εF, λub, λlb);
4: V = Orth(W );
5: (V ,D) = RayleighRitz(H, V );
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2.6 Polynomial Filtering Spectrum Slicing Method

Spectrum slicing (SS) methods have been proposed to address the issue from

the cubic scaling operations (orthonormalization and Rayleigh–Ritz proce-

dure). SS refers to dividing the spectrum of interest into several spectral slices

and computing approximate eigenpairs within each slice simultaneously. Al-

though SS methods can clearly reduce the overhead associated with solving

the projected subspace problem (because each slice contains a much smaller

subset of the eigenvalues), it needs to compute interior eigenvalues that may

be clustered. A different type of polynomial filters needs to be constructed

to amplify eigenvalues within each slice, just as a Chebyshev polynomial is

used to amplify eigenvalues at the left end of the spectrum in the CheFSI

method. The degree of these types of polynomials, which we will refer to as

“bandpass filter polynomials,” may be much higher than that of the Cheby-

shev polynomials used in CheFSI when the eigenvalues to be computed are

very close to each other.

Previously, a thick-restart Lanczos algorithm was proposed to compute

interior eigenvalues filtered by bandpass filter polynomials [54]. The method

converges fast, but has limited levels of concurrency. In this work, we propose

using a subspace iteration method to compute interior eigenpairs. Although

the subspace iteration method tends to have a slower convergence rate, es-

pecially at the beginning of a SCF calculation when no good initial guess to

the approximate eigenpairs is available, it is a block method that exhibits
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multiple levels of concurrency that lead to superior parallel scalability.

To address the potential slow convergence of the subspace iteration method,

we propose using CheFSI in the first few SCF iterations and then transition-

ing to SS based polynomial filtering in the subsequent SCF iterations. We

show by numerical examples that this hybrid polynomial filtering scheme is

effective.

One of the keys to achieving scalable performance in SS is an optimal

partition of the desired part of a spectrum. The partition must take into ac-

count the distribution of eigenvalues (which can be obtained from either an

estimated density of states or approximated eigenvalues computed in a previ-

ous SCF iteration) as well as load balance needs in a parallel implementation.

We present a practical way to perform such a partitioning.

2.6.1 Spectrum Slicing

When the number of eigenpairs to be computed (usually the occupied states

plus some unoccupied states), Ns, is relatively small (e.g., less than a thou-

sand), the computational cost of CheFSI is dominated by sparse matrix-

vector multiplications HV . By making these multiplications scalable through

the distribution of vectors in V on a 2D process grid, we can compute the

desired eigenpairs efficiently. However, as the system size increases, the num-

ber of eigenpairs Ns becomes very large. As a result, orthonormalization

and Rayleigh–Ritz procedure, which scale cubically with respect to Ns, start

to dominate the computational cost. Furthermore, because these types of
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computation involve more collective communication among all processes, the

overall computation is difficult to scale to a large number of compute cores.

To address this difficulty, an SS algorithm was proposed by Schofield et

al. [55] to divide the eigenvalues to be computed into several subintervals

(i.e., slices) that can be examined simultaneously. Eigenvalues within each

subinterval can still be computed by a polynomial filtered iterative method.

However, with the exception of the leftmost subinterval, a different type

of filter needs to be constructed to focus on eigenvalues within the other

subintervals.

Schofield et al. [55] and Li et al. [54] implemented methods for construct-

ing polynomial filters pm(t) for computing eigenvalues within an interval [a, b].

A thick-restart Lanczos iteration is used to compute the largest eigenpairs of

pm(H). Although these studies examined several key issues of the SS algo-

rithm, and provided a proof of concept, a few important details such as how

to partition the spectrum to achieve scalable performance on a large number

of compute cores were not addressed.

Here we examine several implementation details that are key to achiev-

ing scalable performance. Instead of using a thick-restarted Lanczos itera-

tion method, which cannot take full advantage of a 2D process grid to com-

pute eigenpairs within each interval, we propose to use a subspace iteration

method to compute the largest eigenpairs of pm(H). However, because the

subspace iteration method typically has a slower convergence rate, a high

degree polynomial or a large number of iterations may be required.
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Spectrum Partition

Although SS is conceptually easy to understand, there are a number of issues

that we must address in order to make it a practical computational method.

The first pertains to the partition of a spectrum into distinct slices that can

be examined in parallel. Because we often do not know how the eigenvalues

are distributed in advance of the solution, this is not a trivial task.

One way to estimate the distribution of eigenvalues is to use a Lanczos

algorithm [56]. We use an ensemble of ` randomly generated vectors v(j),

j = 1, 2, ...`, with Gaussian independent and identically distributed elements

to start ` k-step Lanczos iterations, which produce ` k×k tridiagonal matrices

T (j), j = 1, 2, ..., `. If the eigenvalues of T (j) are denoted by θ
(j)
i , i = 1, 2, ..., k,

and the first component of the eigenvector associated with θ
(j)
i is denoted by

τ
(j)
i , an approximation to the density of states can be expressed as

d(t) =
∑̀
j=1

k∑
i=1

(τ
(j)
i )2 exp

(
−(t− θ(j)

i )2

σ
(j)
i

)
, (2.37)

where σ
(j)
i ’s are scaling parameters that should be chosen carefully [56]. Note

that the ` Lanczos runs can be carried out in parallel on different process

groups.

Although the function d(t) describes the distribution of eigenvalues, the

value d(t) for a specific t is not so useful. It is more useful to work with the
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cumulative density of states defined as

g(t) ≡
∫ t

−∞
d(s)ds =

√
π

2

∑̀
j=1

k∑
i=1

(τ
(j)
i )2σ

(j)
i

[
erf

(
t− θ(j)

i

σi

)
+ 1

]
. (2.38)

In particular, given two real numbers t1 and t2 with t1 < t2, g(t2) − g(t1)

yields the number of eigenvalues within the interval [t1, t2).

The strategy we use to partition the spectrum of interest is to divide the

interval [a, b], where a is a lower bound of the eigenvalues of H and b is an

(estimated) upper bound of the occupied states, uniformly into p slices of

equal size [li, ui), i = 1, 2, ..., p, where l1 = a, up = b and li = ui−1 for i > 1,

ui = li+1 for i < p. We call this partition scheme a uniform partition. The

optimal number of slices p depends on a number of factors, which we will

discuss later in Section 2.6.3. The uniform partition will also need to be

modified to achieve good load balance in a parallel implementation.

In order to avoid missing eigenpairs in each slice [li, ui), we construct the

polynomial on a slightly larger interval [li − δ, ui + δ], where δ is typically

chosen to be a fraction of the width of a slice. (We use δ = (ui − li)/10 in

our simulations.)

We use ci = g(ui + δ) − g(li − δ) to estimate the number of eigenvalues

within that augmented interval. Note that some of the eigenvalues within

[li−δ, ui+δ) overlap with those in [li−1−δ, ui−1 +δ) and [li+1−δ, ui+1 +δ), as

shown in Figure 2.3. Once the eigenvalues in each slice are computed, we use

the slice bounds li and ui to select eigenvalues and eigenvectors to be included
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in the occupancy and electronic charge density calculation. An eigenvalue

in the overlap regions is possibly captured by both adjacent slices, but will

be counted by only one of the two adjacent slices when the SCF calculation

approaches convergence. The overlaps between adjacent augmented slices

allow us to eliminate the need to orthogonalize approximate eigenvectors

computed in different slices, which requires additional data communication.

Figure 2.3: (a) An illustration of uniform partitioning. (b) Extension of the
bounds of a filter by δ in both directions, and overlaps (shaded regions) of
2δ between adjacent slices.

Based on the eigenvalue count ci and the degree of the bandpass filter

used to amplify eigenvalues within the ith slice, we assign an appropriate

number of processes to each slice to balance the computational load among

different processes. We will discuss the load balance details in Section 2.6.3.

An alternative way to partition a spectrum is to determine values li and ui

such that g(ui)− g(li) are approximately the same for all i’s. This approach
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will yield slices of different spectral widths even though each slice contains

nearly the same number of eigenvalues. The potential difficulty with this ap-

proach is that bandpass filters of drastically different degrees may be needed

for different slices (see the next section), thereby making load balancing more

difficult to achieve.

We note that the use of the Lanczos-based density of states estimation to

partition the spectrum is only needed in the first few SCF iterations. When

the Ritz values computed from each spectral slice are sufficiently accurate,

we can use them to refine the spectrum partition. Such a partition will not

change much in subsequent SCF iterations.

Filter Polynomial Construction

The bandpass filter polynomials we construct can have a large impact on

the convergence of the SS algorithm. An ideal filter F (t) should map the

eigenvalues within a spectral slice [l, u] to a much larger value than the values

of F outside of this interval (but within [λmin, λmax]. If the interval [l, u]

is sufficiently large, the bandpass filters proposed by Schofield et al. [55]

generally works well. These bandpass filter functions are expanded in terms

of Chebyshev polynomials. To simplify the discussion, let us assume the

eigenvalues of H are within [−1, 1], and we are interested in the eigenvalues

within an interval [l, u] with −1 < l < u < 1. With αk = π
k+2

, the following

polynomial filter
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F (t) ≈ p(t) =
k∑
i=0

γig
k
i Ti(t), (2.39)

where

γi =


1
π
(cos−1(l)− cos−1(u)) as i = 0,

2
π
(

sin(i cos−1(l))−sin(i cos−1(u))
i

) as i > 0,
(2.40)

and

gki =
(1− i

k+2
) sin(αk) cos(iαk) + 1

k+2
cos(αk) sin(iαk)

sin(αk)
, (2.41)

amplifies λ ∈ (l, u).

Figure 2.4 shows four bandpass filters of different degrees defined on the

interval [−0.8,−0.7]. Note that in practice we will use li − δ and ui + δ as

bounds in polynomial filtering but select the converged eigenpairs based on

li and ui, as explained in Section 2.6.1.
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Figure 2.4: Bandpass polynomial filters of different degrees. The dashed lines
indicate the lower and upper bounds of the slice.

If [l, u] is relatively small compared with the spectrum width of H, a poly-

nomial filter constructed from a least squares approximation to the Dirac-δ

distribution (function), which was proposed by Li et al. [54], works well. Such

a polynomial can be expressed as

Fk(t) =
k∑
j=0

µjTj(t), (2.42)

with

µj =


1
2

as j = 0,

cos(j cos−1(γ)) otherwise,
(2.43)
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where γ is the center of the Dirac-δ function. By specifying the value of F (t)

at the bounds, we can determine the degree of the polynomial.

We should note that a Chebyshev polynomial can be used as the filter for

the leftmost slice. Because the degree of the Chebyshev polynomial required

to amplify the eigenvalues in the leftmost slice is typically much lower than

those of the polynomials constructed for other interior slices, we may include

more eigenvalues in the leftmost slice in a parallel implementation of the SS

algorithm to achieve good load balance. We will discuss this in Section 2.6.3.

Lanczos vs Subspace Iteration

In the previous work by Schofield et al. [55] and Li et al. [54], polynomial

filtering is combined with a thick-restarted Lanczos algorithm to generate a

Krylov subspace of the form

K(F (H), v0) = {v0, F (H)v0, F
2(H)v0, ...}, (2.44)

where v0 is typically chosen to be a random starting vector. Rayleigh–Ritz

procedure is then performed on the orthonormal basis V of K(F (H), v0) pro-

duced by the Lanczos algorithm. Because the eigenpairs of interest are those

associated with the largest eigenvalues of F (H), which are known to emerge

rapidly [57], this approach can produce highly accurate approximations after

k iterations, where k is typically a small (e.g., 2 to 3) multiple of the num-

ber of eigenvalues within the the interval of interest. This observation was
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reported by Schofield et al. [55]. However, the main drawback of the Lanc-

zos algorithm is that only one matrix-vector multiplication can be applied

at a time. Because F (H) cannot be applied simultaneously to a number of

vectors, this procedure prohibits us from using a 2D process grid employed

in the parallel implementation of CheFSI.

We propose to use a subspace iteration instead of the Lanczos algorithm

to obtain approximations to the desired eigenpairs. The algorithm is nearly

identical to Algorithm 4 except the filter used in line 3 of the algorithm

is different. The convergence of subspace iteration is linear. The rate of

convergence depends on the minimum of the ratio

F (λin)

F (λout)
,

where λin is an eigenvalue of H within the interval of interest [a, b) and λout

is an eigenvalue outside of [a, b). When the ratio is small (close to 1), many

iterations may be required to reach convergence. To make the ratio large,

a high degree polynomial may be required, thereby increasing the cost per

iteration. Thus, there is a tradeoff between the number of subspace iterations

and the degree of filter polynomials. The optimal values depend on the size

of the interval and the distribution of eigenvalues.

Another way to improve the convergence rate of subspace iteration is

to make the subspace slightly larger than the number of eigenvalues within

the target interval [a, b). The enlarged subspace can include a fraction of
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the states from adjacent slices (see Section 2.6.3). In this case, the effective

convergence rate is defined by the minimum of the ratio

F (λin)

F (λout′)
,

where λout′ is outside of an interval [a′, b′], with a′ < a and b′ > b. The

overlap intervals [li − δ, ui + δ] proposed in Section 2.6.1 allow us to achieve

this. The exact values of a′ and b′ depend on the size of the spectral slice

and the distribution of eigenvalues outside of that slice. We only take the

Ritz values within [a, b) and the corresponding harmonic Ritz vectors as the

approximate eigenpairs of H. Other Ritz pairs obtained from the same space

V approximate eigenpairs in other intervals. Therefore, Ritz pairs computed

in different slices have some overlap. This overlap allows us to eliminate

the need to move vectors across different slices as the Ritz values change

throughout the SCF iterations.

As the Hamiltonian H changes over the SCF iterations, a Ritz value θ(i) ∈

[a, b) obtained in the ith SCF iteration may move outside of that interval in

the next iteration, i.e., θ(i+1) may move into an adjacent interval. This type

of shift tends to occur more often in the first few SCF iterations, when the

electronic charge density is far from converged. By making the dimension of

the subspace larger than the number of eigenvalues within [a, b), we avoid

the need to move the harmonic Ritz vector z associated with θ(i+1) explicitly

to a different slice which is typically mapped to a different process group.
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An explicit move would require additional communication. A harmonic Ritz

vector in another interval whose corresponding Ritz value was previously

outside of that interval but lands in that interval in the (i + 1)th iteration,

may take the place of z. Multiple approximations to the same eigenpair

obtained from different slices can be easily sorted out by simply using the

bounds of the intervals.

We should note that in most SCF iterations, a subspace iteration is

started from previous approximations to the eigenpairs of interest. The sub-

space iteration method does not need to produce highly accurate approxima-

tions to the desired eigenpairs until the SCF calculation is near convergence.

Therefore, the number of subspace iterations in a SCF iteration can be set

to a modest number (e.g., between 1 and 5).

We note that for interior eigenvalues, the standard Rayleigh–Ritz proce-

dure can produce some spurious eigenpairs as indicated by relatively large

residuals [58]. Although including more basis vectors in a subspace can

improve the accuracy of the Ritz approximation, in general, the standard

Rayleigh–Ritz procedure cannot completely eliminate the presence of spu-

rious Ritz approximations to interior eigenpairs [55]. However, it is well

known that the harmonic Rayleigh–Ritz procedure can be used to address

this issue [59]. The harmonic Rayleigh–Ritz procedure imposes the condition

that

(H − σI)−1v − (θ̃ − σ)−1v ⊥ (H − σI)2V , (2.45)
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where the harmonic Ritz vector v lies in the subspace V , σ is the center of

a spectral slice, and θ̃ is the corresponding harmonic Ritz value. If V forms

an orthonormal basis of V , and v = V c for some c, v and θ̃ can be obtained

by solving the generalized eigenvalue problem

V T (H − σI)V c = ξV T (H − σI)2V c, (2.46)

where ξ = (θ̃ − σ)−1. For completeness, we outline the harmonic Rayleigh–

Ritz procedure in Algorithm 5. The eigenvalue approximations θi’s are com-

puted as θi ≈ θ̃i = ξi
−1 + σ.

Algorithm 5 Harmonic Rayleigh–Ritz

1: procedure (V ,D) = HarmonicRayleighRitz(H, V , σ)
2: A = V T (H − σ)V
3: B = V T (H − σ)2V
4: Compute Q, D̃ such that AQ = BQD̃ and QTQ = I.
5: V = V Q

Convergence Monitoring and Termination Criteria

To ensure the convergence of a SCF calculation, which is monitored by ex-

amining charge-weighted self-consistent residual error (SRE), defined as

SRE =

√
1

Ne

∫
drn(r)[V

(i)
tot (r)− V (i−1)

tot (r)]2, (2.47)

where n(r) is the electronic charge density, V
(i)

tot (r) is the total potential after

the ith SCF iteration, and Ne is the total number of valence electrons, we
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need to make sure that the approximate invariant subspace returned from

the polynomial filtered subspace iteration is sufficiently accurate over SCF

iterations. Although the accuracy of the approximate invariant subspace can

be measured by the residual

R = HV − VΘ,

where V contains the Ritz or harmonic Ritz vectors and the diagonal matrix

Θ contains the Ritz values on its diagonal, such a measure is likely to be con-

servative in early SCF iterations where the SRE is likely to be large. In these

early SCF iterations, we can also adopt an alternative termination criterion

that simply counts the number of Ritz values that falls within a perturbed

spectral bounds of each slice, where the size of the perturbation is related

to the residual norm of each Ritz pair. We could therefore terminate the

subspace iterations when the counts no longer change. Although the ques-

tion of how to set the convergence tolerance in an optimal fashion remains

open, from our experience, an approximate tolerance commensurate with the

magnitude of SRE can be used in early SCF iterations. The tolerance can be

gradually tightened in subsequent SCF iterations as SRE becomes smaller.

2.6.2 Hybrid Polynomial Filtering

Owing to the relatively slow convergence of the subspace iteration method

used in the SS algorithm for computing eigenvalues within each slice, apply-
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ing the SS algorithm directly to a random guess of the invariant subspace

associated with the desired eigenvalues can be computationally complex. Ei-

ther an extremely high degree polynomial or many subspace iterations may

be required to obtain an approximation to the invariant subspace of interest

with sufficient accuracy in the first few SCF iterations. In both cases, the

large number of multiplications of H with vectors in subspace iterations may

offset the reduction in calculation cost of orthonormalization and Rayleigh–

Ritz procedure.

When a good initial guess of the invariant subspace associated with the

eigenvalues within a slice is available, a bandpass-filtered subspace iteration

can be effectively used to refine the approximation to the desired invariant

subspace.

Based on this observation, we combine CheFSI with SS to devise a hy-

brid polynomial filtering method for SCF calculations. In the first few SCF

iterations, CheFSI is used to obtain a reasonably accurate approximation

to the desired invariant subspace of a converging sequence of Kohn–Sham

Hamiltonians. In the subsequent SCF iterations, the SS method that utilizes

bandpass filter polynomials is applied to the approximate subspace produced

in previous SCF iterations.

2.6.3 Parallel Implementation

Although the hybrid filtering method that combines CheFSI and SS is con-

ceptually easy to understand, an efficient implementation on a large-scale,
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distributed memory, parallel computing platform is nontrivial. The imple-

mentation requires a careful data layout on a 2D computational process grid

to increase concurrency and reduce communication overhead. To achieve

good load balance in SS, the spectrum partition must take into account both

the number of eigenvalues to be computed and the degree of the bandpass

filter used to amplify eigenvalues within a slice, which may vary from slice

to slice.

Data layout

To implement Algorithm 4 efficiently on a distributed memory parallel com-

puter, we need to develop a data distribution scheme to perform both poly-

nomial filtering and orthonormalization in parallel. We employ a 2D process

grid nr × nc. By partitioning vectors in V into nc groups and mapping each

group to a distinct column group in the 2D process grid (Figure 2.5), we can

compute several column groups of T̂ (H)V independently with essentially

no communication between different column groups (shaded regions in Fig-

ure 2.5). Within each column group, matrix-vector multiplication w = Hv

can be performed in parallel by partitioning and distributing w and v by

rows and mapping each row block onto a distinct row process in each column

group. The kinetic energy part of H, which can be represented by a finite

difference stencil, is not explicitly stored. Both the pseudopotential and the

LDA/GGA exchange-correlation potential can be partitioned conformally

with the partition of the vectors. Only nearest neighbor communication is
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needed to combine local computation.

Figure 2.5: Different process grids with 512 MPI processes. The shaded
regions denote the first column group.

A 2D process grid can also be used to perform the matrix-matrix mul-

tiplication A = V TV required in the Cholesky QR algorithm by calling the

PDGEMM subroutine in PBLAS [60].

Both the Cholesky factorization and the subspace diagonalization used in

Rayleigh–Ritz procedure may be performed among a subset of the processes

if the total number of processes is large.

The optimal choice of nr and nc depends on the size of a problem and the

number of available processes. Polynomial filtering favors a large nc because

the multiplication of H with vectors mapped to different column groups can

be performed simultaneously with no communication. On the other hand,

the dense matrix-matrix multiplication used for inner product calculation

V TV favors a large nr, especially when the leading dimension of V is large.

Switching from one 2D process grid to another (using the ScaLAPACK
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utility PDGEMR2D) can be beneficial when different types of operations are

performed. The overhead associated with such a switch is relatively small.

For SS, the column groups are further partitioned into supergroups ac-

cording to a slice partitioning scheme, i.e., each slice is assigned a set of

column groups. For example, Figure 2.6 shows that eight column groups are

divided into three supergroups, each associated with a spectral slice. The

first spectral slice uses only one column group (highlighted in red), whereas

the second and third use four (highlighted in green) and three column groups

(highlighted in blue) respectively. Each bandpass-filtered subspace iteration

is carried out on a 2D process grid with nr × nci processes, where nci is the

number of column groups assigned to the ith slice, and
∑

i nci = nc. Unlike

polynomial filtering, which is done within each column group, orthonormal-

ization and Rayleigh–Ritz procedure require communication between column

groups and are done within each slice independently.
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Figure 2.6: (a) A 2D process grid with nr × nc = 4× 8. (b) A slice partition
of the eight column groups into three slices. In this example, slices 1, 2, and
3 have 1, 4, and 3 column groups, respectively.

Load balance

To achieve good load balance in a parallel implementation of CheFSI, we

need to divide Ns evenly among different column groups and partition V

according to this division.

Balancing computational load for SS is a bit more complicated. The

uniform spectrum partition scheme discussed in Section 2.6.1 suggests that

different slices may contain a different number of eigenvalues. To achieve

good load balance, we proportionally map more processes to slices that have

more eigenvalues. This is achieved by partitioning column groups according

to the number of eigenvalues in each slice. In addition, because the degrees

of the polynomials used for different slices may be different, the partitioning
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of column groups needs to take the degrees of the polynomials into account

as well. In particular, because the degree of the Chebyshev polynomial used

for the leftmost slice is generally much lower than that of a bandpass filter

polynomial used for an interior slice, fewer column groups should be assigned

to the leftmost slice.

Furthermore, the degrees of bandpass filters associated with different in-

terior slices of equal sizes may be slightly different as well. This is because

the amplification effect of a bandpass filter for a particular slice depends on

the location of the slice within the spectrum region of interest [55]. Figure 2.7

shows four filters, and the three on the right are bandpass filters of the same

degree for different interior slices of the same size. We can see that the filter

associated with the rightmost slice is flatter and its maximum within the

slice is lower than that associated with the second slice from the left.
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Figure 2.7: Four filters used in the simulation of Si1947H604. The degree of
the Chebyshev polynomial (for the leftmost slice) is 20, while the degrees of
the bandpass filters for the interior slices are 160. The dashed lines visualize
the slice bounds.

Figure 2.8 shows that, in order to achieve the same amplification effect,

the degrees of the bandpass filters for different slices may be slightly different,

with the rightmost slice having a higher degree than the others. We note

here that one method to estimate the necessary degree of a bandpass filter

has been proposed by Schofield et al. [55], which requires a user-specified

amplifying ratio, ramp, and demands that both p(li)
p(li−δ) ≥ ramp and p(ui)

p(ui+δ)
≥

ramp are satisfied.
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Figure 2.8: Four filters with the same slice bounds as those in Figure 2.7 but
of different polynomial degrees. The degree of the Chebyshev polynomial (for
the leftmost slice) is 20, while the degrees of the bandpass filters for slices
2, 3, and 4 are 137, 168, and 195, respectively. The amplifying ratio is 1.1.
The dashed lines visualize the slice bounds.

Once a partition of the spectrum into multiple slices has been determined,

the number of column groups assigned to the ith slice (nci) can be set ac-

cording to the following formula

nci =

⌊
nc ·

pimi∑s
i=1 pimi

⌋
, (2.48)

where pi is the number of eigenvalues in the ith slice, mi is the degree of

the polynomial constructed for that slice, s is the total number of slices,

and nc is the total number of column groups defined in Section 2.6.3. Some

adjustment may be needed to ensure that nci ’s add up to nc. In practice, we
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use a larger pi, which is the number of eigenvalues in that slice plus some

states from adjacent slices. These extra states may originate from as many as

two column groups in each of the adjacent slices. This strategy improves the

stability of the SS algorithm and prevents the potential necessity of moving

overlap states between slices over SCF iterations.

One of the challenges in implementing SS is to choose an optimal partition

so that

max
i
pimi (2.49)

is minimized. Because the degree of the Chebyshev polynomial used for the

leftmost slice is generally much lower, it makes sense to make the leftmost

slice slightly wider to include more eigenvalues. To minimize (2.49), we can

perform an exhaustive search on the number of slices, s, that yields the

minimum of (2.49). That is, at first the degree of the Chebyshev polynomial

is set to 20. If 20p1 is significantly less than (2.49) for any interior slice,

we merge nl leftmost slices with nl = 2, 3, .., s − 1 until 20p1 is as close to

maxi pimi as possible.

Communication

There are two types of communications in both CheFSI and SS. One is within

a column group, and the other is within a slice. The communication required

in the multiplication of the Hamiltonian with a distributed vector is limited

to within each column group. Processes in the same column group exchange
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data via neighborhood collective communication. Communication overhead

can be lowered by using non-blocking communication and overlapping the

communication and local computation. Another improvement can be done is

to use space-filling curves when partitioning the real-space grid. A real-space

grid partition based on space-filling curves has good locality of neighboring

grid points and thus the communication for stencil traversal can be reduced.

This improves the efficiency and scalability of the multiplication of H with

vectors. Our preliminary result has shown that, if not communication-bound,

a speed-up of 1.5 to 2, compared with a simple real-space grid partition, can

be achieved. This will be one of our future studies.

In CheFSI, orthonormalization of basis vectors and other dense matrix-

matrix operations such as solving the projected eigenvalue problem involves

all processes on the 2D process grid. We rely on the communication lay-

ers implemented in PBLAS and ScaLAPACK to perform the necessary data

communication required to carry out these operations. The communication

cost can be relatively high. In SS, all dense matrix computation is carried out

among the column groups mapped to a spectral slice. Consequently, all com-

munication takes place within a subset of processes, which can significantly

reduce the communication overhead.
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2.7 Space-Filling Curves Based Grid Parti-

tioning Method

Space-filling curves (SFCs) can improve the parallelization efficiency of sparse

matrix–vector multiplication (SpMV) operations. A naive domain decom-

position method may easily lead to an imbalance in communications when

thousands of processors are involved, and prevents one from efficiently paral-

lelizing the eigensolvers and simulating large systems. This problem can be

addressed by using SFCs for domain partitioning. SFCs are based on con-

tinuous lines that traverse a three-dimensional space or a two-dimensional

plane [61]. Using SFCs, data defined on higher-dimensional grids can be rep-

resented by a one-dimensional continuous array, which provides an elegant

and efficient way to access data [62, 63, 64]. The self-similarity of space-

filling curves localizes spatially neighboring grid points in a one-dimensional

array [65, 66]. This makes for an efficient computation of the Laplacian acting

on wave functions and for effective storing of the nonlocal part of ionic pseu-

dopotentials, such that data communication near subdomain boundaries can

be reduced and communication is better balanced over processors. Further

improvement can then be obtained by blockwise operations [67, 68].

SFCs based domain partitioning is a kind of graph partitioning that uses

only the geometric information (vertex coordinates) and ignores the infor-

mation of the connectivity between vertices. It is faster and more scalable

in the generation of partitions [69], and is more economical in memory usage
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compared to the multilevel heuristics based graph partitioning methods [70].

For a regular grid the SFCs based graph partitions are proven “quasi opti-

mal” [70].

Here, we propose a blockwise Hilbert method that partitions a real-space

grid based on Hilbert SFCs, the grid-point indices of which are further mod-

ified to enable blockwise operations. We implement and test this approach

in PARSEC [19], a real-space pseudopotential DFT code. By combining

CheFSI, pseudotentials, and high-order finite differences, we achieve highly

efficient electronic structure calculations for confined systems. We present

results for large silicon nanocrystals up to 12 nm in diameter, which contain

over 50,000 atoms.

2.7.1 Grid Partitioning Based on Space-Filling Curves

SFCs can be used to generate efficient grid partitions. As illustrated in Fig-

ure 2.9 for a four-processor, two-dimensional case, the stencil corresponding

to the Laplacian requires communication between four processors by a sim-

ple Cartesian order (SCO) method, while by the Hilbert SFC method the

Laplacian would involve only three processors (see the next section for the

construction of SFCs). The difference can be more evident when a simulation

domain is partitioned into hundreds of processors. By taking advantages of

the self-similarity of SFCs, we are able to devise grid partitioning schemes

that minimize the boundary communication between processors when per-

forming SpMVs.
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Figure 2.9: Illustration of two-dimensional grid partitioning by (a) the SCO
method and (b) the Hilbert SFC method. The red dots constitute 13-point
stencils.

Figure 2.10 illustrates the two-dimensional versions of the grid partition-

ing methods we will examine in this study. The four different grid partition-

ing methods are (1) SCO, (2) Hilbert, (3) blockwise SCO (the SCO method

with grid blocks), and (4) blockwise Hilbert (the Hilbert method with grid

blocks). The SCO method simply partitions a real-space grid by running

through the Cartesian coordinates in order. “Blockwise” means that, when

performing the Laplacian, wave functions of multiple grid points (belonging

to the same grid block) are updated simultaneously rather than one grid

point at a time.
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SCO Blockwise SCO

Hilbert Blockwise Hilbert

Figure 2.10: Two-dimensional illustration of the four grid partitioning meth-
ods. The grid points are partitioned into four processors. The thin solid
lines follow the actual memory storage order. The thick gray solid lines in
the blockwise methods visualize the order of the grid blocks. The grayscale
of the grid points denote the processor to which they belong.

2.7.2 Generation of Blockwise Hilbert Space-Filling Curves

Figure 2.11 shows the first three generations of three-dimensional Hilbert

SFCs. The vertices of the virtual boxes are the grid points. Generation 0

has only the central point (80 = 1 point). The rules to generate the curves can

be seen from Generation 1 (81 = 8 points) to Generation 2 (82 = 64 points).

To obtain the eight virtual boxes in Generation 2, we scale and rotate the

81



virtual box in Generation 1. For example, to obtain the coordinates of the

grid points of the virtual box 5 in Generation 2, we scale the virtual box

in Generation 1 by 0.5 in each direction, rotate it around the y-axis by 180

degrees, and translate it to the fifth vertex of the virtual box in Generation

1. Mathematically,


x′

y′

z′

 = Tvertex 5 +Ry,180o × 0.5×


x

y

z



=


−0.25

−0.25

0.25

+


−1 0 0

0 1 0

0 0 −1

× 0.5×


x

y

z



= 0.5×



−0.5

−0.5

0.5

+


−1 0 0

0 1 0

0 0 −1



x

y

z


 ,

where (x, y, z) are the coordinates of the vertices of the virtual box in Gen-

eration 1, and (x′, y′, z′) are the coordinates of the vertices of the virtual box

5 in Generation 2. A recursive Hilbert curves generation algorithm is listed

in Algorithm 6. The input for the algorithm is the order of the curve. The

outputs (fx, fy, fz) are the fractional coordinates of the grid points in the

Hilbert order. All of the equations in Algorithm 6 can be derived in the same

manner as the above one.
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Generation 0
(1 grid point)
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"
# (0.5, 0.5, 0.5)

(-0.5, -0.5, -0.5)

(0, 0, 0)

Generation 1
(8 grid points)

(0.25, 0.25, 0.25)

(-0.25, -0.25, -0.25)

(0.375, 0.375, 0.375)

(-0.375, -0.375, -0.375)

!

"
# (0.5, 0.5, 0.5)

(-0.5, -0.5, -0.5)

Generation 2
(64 grid points)

!

"
# (0.5, 0.5, 0.5)

(-0.5, -0.5, -0.5)

3 26 7

4 15 8

Figure 2.11: The first three generations of three-dimensional Hilbert curves.
The generation rules are demonstrated from Generation 1 to Generation 2,
where the eight virtual boxes are obtained by scaling, rotating, and translat-
ing the one in Generation 1.
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Algorithm 6 Generation of grid points based on Hilbert space-filling curves

procedure CreateHilbert3D(order, fx, fy, fz)
if order is 0 then

fx = fy = fz = 0.0
else

Create temporary arrays tx, ty, and tz, each with length 8order−1

call CreateHilbert3D(order− 1, tx, ty, tz)
l is the length of the temporary arrays

j = 1 . virtual box 1
fx[j : j + l − 1] = 0.5(0.5 + tz)
fy[j : j + l − 1] = 0.5(0.5 + tx)
fz[j : j + l − 1] = 0.5(0.5 + ty)
j = j + l . virtual box 2
fx[j : j + l − 1] = 0.5(0.5 + ty)
fy[j : j + l − 1] = 0.5(0.5 + tz)
fz[j : j + l − 1] = 0.5(−0.5 + tx)
j = j + l . virtual box 3
fx[j : j + l − 1] = 0.5(−0.5 + ty)
fy[j : j + l − 1] = 0.5(0.5 + tz)
fz[j : j + l − 1] = 0.5(−0.5 + tx)
j = j + l . virtual box 4
fx[j : j + l − 1] = 0.5(−0.5− tx)
fy[j : j + l − 1] = 0.5(+0.5 + ty)
fz[j : j + l − 1] = 0.5(+0.5− tz)
j = j + l . virtual box 5
fx[j : j + l − 1] = 0.5(−0.5− tx)
fy[j : j + l − 1] = 0.5(−0.5 + ty)
fz[j : j + l − 1] = 0.5(+0.5− tz)
j = j + l . virtual box 6
fx[j : j + l − 1] = 0.5(−0.5− ty)
fy[j : j + l − 1] = 0.5(−0.5− tz)
fz[j : j + l − 1] = 0.5(−0.5 + tx)
j = j + l . virtual box 7
fx[j : j + l − 1] = 0.5(+0.5− ty)
fy[j : j + l − 1] = 0.5(−0.5− tz)
fz[j : j + l − 1] = 0.5(−0.5 + tx)
j = j + l . virtual box 8
fx[j : j + l − 1] = 0.5(+0.5 + tz)
fy[j : j + l − 1] = 0.5(−0.5− tx)
fz[j : j + l − 1] = 0.5(+0.5− ty)

Deallocate the temporary arrays tx, ty, and tz
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After we obtain the fractional coordinates, we use them to generate the

index arrays (integer arrays in the units of grid spacing) that will be used in

SpMV. Algorithm 7 shows how to use the outputs of Algorithm 6 to obtain

the index arrays. In Algorithm 7 we multiply the fractional coordinates

(whose values range in [−0.5, 0.5] since we construct the vertices within a

unit cube) by 2order+1, shift by 1, and divide by 2. Finally we store only the

integer part. This results in integer indices ranging from −2order−1 + 1 to

2order−1 in each direction.

The indices from Algorithm 7 are in the Hilbert order. We need one more

step to reorder the indices of the grid points that belong to the same grid

block from the Hilbert order to a regular order, as we will use in the blockwise

SCO and the blockwise Hilbert methods. We go through the index arrays

blockwise and change the indices of the grid points within each block. That

is, for every eight grid points, we modify the indices from a Hilbert order to

the regular order: (0, 0, 0) → (0, 0, 1) → (0, 1, 0) → (0, 1, 1) → (1, 0, 0) →

(1, 0, 1) → (1, 1, 0) → (1, 1, 1). Taking the virtual box of Generation 1 in

Figure 2.11 as an example, the original order of the eight vertices starts

at (1, 1, 1) (the one with fractional coordinates (0.25, 0.25, 0.25)) and ends

at (1, 0, 1) (the one with fractional coordinates (0.25, -0.25, 0.25)). After

rearranging the indices of the grid points, the vertices will start at (0, 0, 0)

(the one with fractional coordinates (-0.25, -0.25, -0.25)) and end at (1, 1, 1).

We perform the same operation for each grid block. Afterwards, we partition

the real-space domain evenly into the processors by assigning the indices
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arrays evenly among the processors.

Algorithm 7 Generation of grid-point indices in Hilbert order

procedure Hilbert3DInt(order, ix, iy, iz)
Create temporary arrays fx, fy, and fz, each with length 8order

call CreateHilbert3D(order, fx, fy, fz)

toIndex = 2order+1

ix = int((nint(fx× toIndex) + 1)/2) . nint returns the nearest
integer of its argument. int returns the integer part of its argument.

iy = int((nint(fy× toIndex) + 1)/2)
iz = int((nint(fz× toIndex) + 1)/2)

Deallocate the temporary arrays fx, fy, and fz

2.7.3 Blockwise Laplacian

Algorithm 8 shows how the blockwise Laplacian is applied to a wave function.

A processor may hold many grid blocks. Some of the blocks are internal,

which means their updates do not require information from the blocks of

other processors. The rest of the blocks are external and require information

from the blocks on neighbor processors.
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Algorithm 8 Blockwise Laplacian

1: procedure LaplacianOperator(wfnIn, wfnOut, coeff)
2: External blocks of a wave function are sent out to the neighbor pro-

cessors
3:

4: for all blocks j on this processor do
5: rowOffset = RowOffsetOfBlock(j)
6: call UpdateCentralBlock(
7: wfnIn[rowOffset+1:rowOffset+8],
8: wfnOut[rowOffset+1:rowOffset+8], coeff)
9:

10: for all neighbor blocks k of j do
11: if k is also on this processor then
12: rowOffsetNeighbor = RowOffsetOfBlock(k)
13: call UpdateNeighborBlock(
14: wfnIn[rowOffsetNeighbor+1:rowOffsetNeighbor+8],
15: wfnOut[rowOffset+1:rowOffset+8],
16: NeighborType(j,k), coeff)

17:

18: Wait until the wave functions from the neighbor processors are ready
19:

20: for all blocks j on this processor do
21: rowOffset = RowOffsetOfBlock(j)
22: for all neighbor blocks k of j do
23: if k is sent from neighbor processors then
24: rowOffsetNeighbor = RowOffsetOfBlock(k)
25: call UpdateNeighborBlock(
26: wfnIn[rowOffsetNeighbor+1:rowOffsetNeighbor+8],
27: wfnOut[rowOffset+1:rowOffset+8],
28: NeighborType(j,k), coeff)

At the beginning of the SpMV subroutine, the wave functions are sent to

the neighbor processors in a non-blocking manner. After which we perform

blockwise wave function update for the internal blocks. Once the wave func-
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tions from the neighbor processors are ready, we update the wave functions of

the external blocks. This overlap of communication and computation hides

the latency of the wave function transfer and improves efficiency.

For 12th-order central differences on a uniform real-space grid, we need 12

points, in addition to the central point, in each dimension. For the blockwise

update, since a block comprises 2×2×2 grid points, in each dimension there

will be 12/2 = 6 blocks. For three dimensions, this results in 6 × 3 = 18

neighbor blocks with respect to the central block (Figure 2.12a). Based on

this we have two types of blockwise update: one is for the central block,

i.e., the block itself (Algorithm 9), and the other for the 18 neighbor blocks

(Algorithm 10).
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Figure 2.12: Illustration of the update for the central block. (a) The 18
blocks used in updating the central block. (b) The grid points of the central
block and block X1, with the grid points in the regular order.

For example, Figure 2.12b shows the update of the central block from the
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contribution of its X1 block. This can be expressed in a matrix form:



ψ(1)

ψ(2)

ψ(3)

ψ(4)

ψ(5)

ψ(6)

ψ(7)

ψ(8)



=



c2 0 0 0 c3 0 0 0

0 c2 0 0 0 c3 0 0

0 0 c2 0 0 0 c3 0

0 0 0 c2 0 0 0 c3

c1 0 0 0 c2 0 0 0

0 c1 0 0 0 c2 0 0

0 0 c1 0 0 0 c2 0

0 0 0 c1 0 0 0 c2





ψ(1′)

ψ(2′)

ψ(3′)

ψ(4′)

ψ(5′)

ψ(6′)

ψ(7′)

ψ(8′)



, (2.50)

where ψ(1), ψ(2), ..., ψ(8) are the wave functions of the central block, and

ψ(1′), ψ(2′), ..., ψ(8′) are the wave functions of block X1. ci’s are the finite-

difference coefficients. The subscripts of ci’s denote the distance between

grid points. For example, in the equation: ψ(1) = c2ψ(1′) + c3ψ(5′), c2 is

used because points 1 and 1’ are at a distance of two (Figure 2.12b), and c3

is used because points 1 and 5’ are at a distance of three. As a result, for

12th-order central differences on a cubic grid, we need c0, c1, ..., c6 (shown as

the coefficient array, coeff, in Algorithms 8, 9, and 10). The pseudocode of

the update from an X1 block is listed in Algorithm 10 as block type 1.
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Algorithm 9 Adding the diagonal terms and the contribution from the same
block

1: procedure UpdateCentralBlock(vin, vout, coeff)
2: for j ← 1, 8 do
3: vout[j] = vout[j] + coeff[0]× vin[j]

4:

5: for j ← 1, 4 do
6: vout[j] = vout[j] + coeff[1]× vin[j + 4]
7: vout[j + 4] = vout[j + 4] + coeff[1]× vin[j]

8:

9: for j ← 1, 2 do
10: vout[j] = vout[j] + coeff[1]× vin[j + 2]
11: vout[j + 2] = vout[j + 2] + coeff[1]× vin[j]
12: vout[j + 4] = vout[j + 4] + coeff[1]× vin[j + 6]
13: vout[j + 6] = vout[j + 6] + coeff[1]× vin[j + 4]

14:

15: vout[1] = vout[1] + coeff[1]× vin[2]
16: vout[3] = vout[3] + coeff[1]× vin[4]
17: vout[5] = vout[5] + coeff[1]× vin[6]
18: vout[7] = vout[7] + coeff[1]× vin[8]
19: vout[2] = vout[2] + coeff[1]× vin[1]
20: vout[4] = vout[4] + coeff[1]× vin[3]
21: vout[6] = vout[6] + coeff[1]× vin[5]
22: vout[8] = vout[8] + coeff[1]× vin[7]
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Algorithm 10 Adding the contribution from a neighbor block

1: procedure UpdateNeighborBlock(vin, vout, blockType, coeff)
2: if blockType is 1 then . neighbor block X1

3: for j ← 1, 4 do
4: vout[j + 0] = vout[j + 0] + coeff[2]× vin[j + 0] + coeff[3]×

vin[j + 4]
5: vout[j + 4] = vout[j + 4] + coeff[2]× vin[j + 4] + coeff[1]×

vin[j + 0]

6: else if blockType is 2 then . neighbor block X2

7: for j ← 1, 4 do
8: vout[j + 0] = vout[j + 0] + coeff[4]× vin[j + 0] + coeff[5]×

vin[j + 4]
9: vout[j + 4] = vout[j + 4] + coeff[4]× vin[j + 4] + coeff[3]×

vin[j + 0]

10: else if blockType is 3 then . neighbor block X3

11: for j ← 1, 8 do
12: vout[j + 0] = vout[j + 0] + coeff[6]× vin[j + 0]

13: for j ← 5, 8 do
14: vout[j + 0] = vout[j + 0] + coeff[5]× vin[j − 4]

15: else if blockType is 4 then
16: ...
17: else if blockType is 18 then
18: ...

2.8 First-Principles Molecular Dynamics

2.8.1 Equation of Motion for Nuclei

For a nucleus K treated as a classical object, the Newton’s second law states

that

FK = MKaK , (2.51)

91



where MK is the mass of the nucleus and aK is its acceleration. Assuming a

conservative force field, we have

aK =
1

MK

FK =
−1

MK

dE

dRK

, (2.52)

where E is the potential energy surface that the nucleus moves along. From

Equation (2.8) we know

E = E({RI}, {ri}) =
1

2

∑
I,J
I 6=J

ZIZJ
|RI −RJ |

+ E{RI}. (2.53)

Inserting the energy expression into (2.52), we obtain

aK =
−1

MK

∑
I,K
I 6=K

ZIZK
RI −RK

|RI −RK |3
+
dE{RI}

dRK

 . (2.54)
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We then invoke the Hellmann–Feynman theorem for the electronic energy

term (see Equation (2.6)):

dE{RI}

dRK

= 〈Φe|
dĤe

dRK

|Φe〉

= 〈Φe|
d

dRK

(−
∑
i

∇2
i

2
−
∑
I,i

ZI
|RI − ri|

+
1

2

∑
i,j
i 6=j

1

|ri − rj|
)|Φe〉

= 〈Φe|ZK
∑
i

RK − ri
|RK − ri|3

|Φe〉

= ZK

∫
drn(r)

RK − r

|RK − r|3

= −ZK
∫
drn(r)

r−RK

|r−RK |3
.

(2.55)

We note that, when pseudopotentials are used, the Coulombic term−
∑

I,i
ZI

|RI−ri|

should be replaced by the ion core pseudopotentials. We use the original all-

electron form in the derivation for brevity.

Combining all together, we obtain the equation of motion for nuclei:

d2RK

dt2
= aK =

ZK
MK

(
−
∑
I 6=K

ZI
RI −RK

|RI −RK |3
+

∫
drn(r)

r−RK

|r−RK |3

)
. (2.56)

The first term on the right-hand side is the contribution from the other nuclei

and the second term from that of the electrons.
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2.8.2 Born–Oppenheimer Molecular Dynamics

The nuclei move along a potential-energy surface, E({RI}, {ri}). Accord-

ing to DFT, the energy depends on the electronic charge density and we

can drop the index for electrons and write it as E({RI}, n(r)). In Born–

Oppenheimer Molecular Dynamics (BOMD) we make sure the electronic

charge density, n(r), is always the one of the ground-state solution at ev-

ery nuclear configuration, {RI}. This contrasts to Car–Parrinello Molecular

Dynamics (CPMD) [71], where the electronic charge density might not be

the one from the ground-state solution at a certain nuclear configuration.

2.8.3 Langevin Thermostat

We use Langevin thermostat in our work. Langevin thermostat is to simulate

the effect of a thermal bath using a Gaussian noise [72, 73].

The Langevin equation is written as:

d2RI

dt2
= − 1

MK

dE({RJ})
dRI

− βdRI

dt
+

1

MI

GI , (2.57)

where the last two terms on the right-hand side are Langevin dissipation

and fluctuation forces defined by the friction coefficient β and the random

Gaussian variables {GI} with a white spectrum:

〈Gα
I (t)〉 = 0,

〈Gα
I (t)Gα

J(t′)〉 = 2βMIkBTδIJδ(t− t′),
(2.58)
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where kB is Boltzmann constant and T is temperature of the thermal bath.

The angular brackets denote ensemble or time averages, and α stands for the

Cartesian coordinate.

2.8.4 Integration of Equation of Motion

We use Beeman’s algorithm [74] to integrate the equation of motion. It is a

predictor-corrector algorithm. The predictor for positions is

xn+1 = xn + vnh+
1

6
(4an − an−1)h2 +O(h4), (2.59)

where h is the time step size. Based on this position we can compute the

acceleration of the next step, an+1, through a DFT calculation, and the

velocity of the next step, vn+1, through a corrector of velocity in the following.

The correctors for positions and velocities are

xn+1 = xn + vnh+
1

6
(an+1 + 2an)h2 +O(h4), (2.60)

and

vn+1 =
1

h
(xn+1 − xn) +

1

6
(2an+1 + an)h+O(h4). (2.61)

Assuming the prediction for the next position is the same from the predictor

and the corrector (Equations (2.59) and (2.60)), we can obtain an estimated
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acceleration for the next time step:

ãn+1 = 2an − an−1. (2.62)

Replacing an+1 in Equation (2.61) with ãn+1, we obtain an estimation for the

velocity:

ṽn+1 =
1

h
(xn+1 − xn) +

1

6
(5an − 2an−1)h. (2.63)

Substituting xn+1 from Equation (2.59), we obtain an estimation for the

velocity, ṽn+1, based on the current velocity and the previous and current

accelerations:

ṽn+1 = vn +
1

2
(3an − an−1)h. (2.64)

The estimated velocity will be used in the computation of the Langevin

dissipation force of the next time step.

Algorithms 11 and 12 summarize the FPMD methods we will use in this

work.
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Algorithm 11 Microcanonical Ensembles (NVE) BOMD

1: Load x0

2: Compute the quantum force F0

3: Generate v0 from a Maxwell distribution based on the initial temperature
4: Adjust v0 to make the velocity of the center of mass zero
5: Rescale v0 to match the initial temperature
6: Compute the acceleration: a0 = F0

M

7: Compute the position of the next step: x1 = x0 + v0h+ 0.5a0h
2

8: Output the current dynamics (x0, v0, a0)
9:

10: for n← 1,∞ do
11: Compute the quantum force Fn based on xn
12: Compute the acceleration: an = Fn

M

13: Compute the corrector of velocity: vn = 1
h
(xn−xn−1)+ 1

6
(2an+an−1)h

14: Adjust vn to make the velocity of the center of mass zero
15: Compute the predictor of position: xn+1 = xn+vnh+ 1

6
(4an−an−1)h2

16: Calculate the kinetic energy (and the temperature Tn)
17: Output the current dynamics (xn, vn, an)

97



Algorithm 12 Canonical Ensembles (NVT) BOMD

1: Load x0

2: Compute the quantum force F0

3: Generate v0 from a Maxwell distribution based on the initial temperature
4: Adjust v0 to make the velocity of the center of mass zero
5: Rescale v0 to match the initial temperature
6: Compute the acceleration that includes the viscous and friction terms
a0 = F0

M
− βv0 + G(β,Tset)

M
. Tset is the target temperature

7: Compute the position of the next step: x1 = x0 + v0h+ 0.5a0h
2

8: Estimate the velocity of the next step: ṽ1 = v0 + a0h
9: Output the current dynamics (x0, v0, a0)

10:

11: for n← 1,∞ do
12: Compute the quantum force Fn based on xn
13: Compute the acceleration that includes the viscous and friction terms

an = Fn
M
− βṽn + G(β,Tset)

M

14: Compute the corrector of velocity: vn = 1
h
(xn−xn−1)+ 1

6
(2an+an−1)h

15: Compute the predictor of position: xn+1 = xn+vnh+ 1
6
(4an−an−1)h2

16: Calculate the kinetic energy (and the temperature Tn)
17: Estimate the velocity of the next step: ṽn+1 = vn + 1

2
(3an − an−1)h

18: Output the current dynamics (xn, vn, an)
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Chapter 3

Results and Discussion

3.1 Spectrum Slicing Method

In this section, we evaluate the performance of the polynomial filtering algo-

rithm. The computational experiments are carried out on the Cori Haswell

compute nodes (Intel Xeon E5-2698 v3, 32 cores per node) maintained at the

National Energy Research Scientific Computing (NERSC) Center.

We use a silicon nanocrystal with 1,947 Si atoms passivated by 604 H

atoms to test the performance of the proposed algorithm. This system is

denoted by Si1947H607 below. The finite difference order is 12, and the grid

spacing is 0.7 bohr, which corresponds to a kinetic energy cutoff of ∼20 Ry

in a plane wave representation. The simulation domain is a sphere, beyond

which the wave functions are set to zero. A margin of at least 7 bohr is pre-

served between the atoms and the boundary of the simulation domain. The
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Hamiltonian size is 1,527,083, and the number of states to be calculated is set

to 4,352 (though the number of occupied states is 4,196, we include extra (un-

occupied) states to accelerate the convergence, as explained in Section 2.6.1).

We use Troullier-Martins norm-conserving pseudopotentials [75], and for H

atoms the cutoff radius for 1s is 1.80 bohr, while for Si atoms the cutoff radii

for 3s/3p are 2.80/2.80 bohr, respectively. The exchange-correlation func-

tional is local density approximation from Ceperley and Alder, [76] with the

parameterization by Perdew and Zunger [77] (LDA CA PZ). The Anderson

mixing scheme [78] is used. The mixing ratio is 0.3, and the potential mixing

performed at a particular SCF iteration uses the potentials computed in the

previous 4 SCF iterations. The convergence criterion (SRE) is set to 0.0001

Ry. Smaller silicon nanocrystals are used to study SCF convergence with

filter polynomials of different degrees, and a larger one (Si3893H988) is used

to study the strong parallel scalability of the SS algorithm.

In all experiments, we use CheFSI in the first few SCF iterations, and

then transition to SS in the subsequent SCF iterations. Communication

groups are created to map column groups to different spectral slices so that

the ith spectral slice owns nci column groups, where nci is defined in (2.48).

Data redistribution among column groups is required as we transition from

CheFSI to SS. Some Ritz vectors kept on one column group are sent to

adjacent column groups to create Ritz pair overlap that can help accelerate

subspace iteration within each slice as discussed in Sections 2.6.1 and 2.6.3.
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Component Description
FLTR Amplification of lowest-energy states
ORTH Orthonormalization of wave functions via Cholesky QR

RR Rayleigh–Ritz procedure (i.e., projection of wave func-
tions into a Ritz matrix, eigen-decomposition of the Ritz
matrix, and subspace rotation)

Table 3.1: Main computational components of subspace iteration

3.1.1 Performance Profile

We first report the performance characteristics of both CheFSI and SS when

they are run with 256 Cori Haswell cores. The timing measurements of

subspace iteration are grouped into the three categories listed in Table 3.1.

We use a Chebyshev polynomial of degree 20 in the CheFSI calculation.

The definition of the 2D process grid for the CheFSI calculation is not unique.

For example, we can use only one column group and partition the basis vec-

tors into 256 row blocks, which was used in previous implementations of the

PARSEC software. At the other extreme, we can partition the basis vec-

tors into 256 column groups (i.e., 1 process per column group). Figure 3.1

shows for one subspace iteration how the timing measurements of different

components in the CheFSI calculation change as we change the data lay-

out. By partitioning the basis vectors into multiple column groups that do

not require communication during polynomial filtering (FLTR), the perfor-

mance of this part can be significantly improved. When the basis vectors

are distributed among 32 columns groups (i.e., 8 process per column group),

the time spent on FLTR is reduced by a factor of 3.9 when compared with
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the approach in which 256 processes are used in a single column group to

perform the multiplication of H with vectors distributed by rows among the

256 processes. However, as we continue to increase the number of column

groups and reduce the number of row blocks within each column group, the

performance of FLTR does not change much. This is because the parallel

implementation of the sparse matrix-vector multiplication Hx scales well to

a modest number of processes (in this case, 8).

However, we can also see that as the number of column groups increases,

the orthonormalizaton (ORTH) and Rayleigh–Ritz procedure (RR) in CheFSI

become more costly. This is because these components make use of parallel

dense matrix–matrix multiplication (PGEMM) which attains the best per-

formance with the ratio between the number of rows and the number of

columns is not too large nor small. In order to achieve optimal performance,

we use two different data layouts in the CheFSI calculation for FLTR and

other dense linear algebra computation. The last bar in Figure 3.1 depicts

the performance profile using a 8×32 process grid for FLTR, and transition-

ing to a 256 × 1 process grid for other dense linear algebra operations. We

use PDGEMR2D to change data distribution. The overhead associated with

data reshuffling, which is embedded in ORTH and RR, appears to be small,

as we can see from the last bar in Figure 3.1.
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Figure 3.1: Computational time of the key components in the CheFSI calcu-
lations with different process grids.

The performance profile of the SS algorithm for one subspace iteration

is illustrated in Figure 3.2. The process grid is 16 × 16, and four slices are

used. The numbers of column groups in slice 1–4 are computed to be 1,

5, 6, and 4, respectively. A Chebyshev polynomial of degree 40 is used to

compute approximate eigenpairs in the leftmost slice. Bandpass filters of

degree 160 are used to compute approximate eigenpairs in the other slices.

For comparison, we also plot the performance profile using CheFSI as the

leftmost bar. The leftmost slice contains 1,334 eigenvalues among which

808 are actually within the spectral bounds associated with that slice. Slice

2–4 contain 1,970, 2,496 and 1,820 eigenvalues, respectively. Among them

891, 1,482 and 1,015 eigenvalues of interest are within the spectral bounds
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associated with these slices. As we can see from Figure 3.2, FLTR takes most

of the time in the SS algorithm. All the other computational kernels (ORTH,

RR) take a small faction of the total wallclock time. Since pimi/nci ≈ 64, 000,

we expect the computation to be well load-balanced as is the case. The time

spent on each slice is roughly the same (∼ 800 seconds). We can see FLTR

in SS costs about an order of magnitude more than that in CheFSI, due to

the requirement of high degree filters in SS. Though FLTR in SS is more

expensive than that in CheFSI, in this case, the cost of the cubically scaling

operations (ORTH+RR) in SS is less than that in CheFSI. This shows the SS

algorithm can indeed reduce the cost of the dense linear algebra operations.

We note that for slices 2–4 there is no time cost shown for ORTH, because

we solve a generalized eigenvalue problem for these interior slices, so the time

cost of ORTH is embedded in RR.

Because the degrees of the bandpass filter polynomials used in SS are

much higher than the degree of the Chebyshev polynomial used in CheFSI,

we expect the wallclock time spent on FLTR to be much longer in SS than

that in CheFSI.

For this problem, the significantly higher cost of FLTR in SS cannot be

completely offset by the reduction in the cost of ORTH and RR. As a result,

the total cost of SS is still higher than that of CheFSI when the problem

is solved on 256 cores. We show in Section 3.1.3 that, as the problem size

becomes larger and more compute cores are used, the time spent on ORTH

and RR will start to dominate in CheFSI calculation regardless how many

104



compute cores are used, whereas such cost is relatively low in SS calculation.

Because FLTR can easily scale to tens of thousands of cores, whereas it is

difficult to achieve this kind of scalability for ORTH and RR, SS will scale

to much larger number of compute cores and eventually outperform CheFSI.
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Figure 3.2: Computational time of the key components in the SS calculation.
The leftmost bar shows the wallclock time by CheFSI, serving as a reference.

3.1.2 Comparing Subspace Iteration with Lanczos for

Spectrum Slicing

As we argued in Section 2.6.1, using subspace iteration to compute the de-

sired eigenpairs within a spectral slice has the advantage of allowing the

multiplication of H with different vectors to be performed among different

column groups on a 2D process grid. The multiple levels of concurrency are
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likely to yield better parallel scalability even though the subspace iteration

method has a slower convergence rate compared with the Lanczos algorithm,

which cannot perform multiple Hamiltonian and vector multiplications si-

multaneously.

Figure 3.3 shows, from one of the slices in the simulation of Si1947H604,

how the cumulative wallclock time spent on both FLTR and ORTH of the

Lanczos method increases with respect to the Lanczos iteration number. We

compare the cost of the Lanczos method with that of the subspace iteration

method for a spectral slice that contains the most eigenpairs. The number of

eigenvalues in this slice is 1, 363. The degrees of the polynomials are 200. The

Lanczos iteration is performed on a 1D process grid with 256 processes. The

subspace iteration is carried out on a 16× 16 2D process grid. As expected,

the wallclock time increases as we perform more Lanczos iterations. For

this slice, 2, 538 Lanczos steps are needed to produce sufficiently accurate

approximate eigenpairs. As a result, the total number of Hamiltonian and

vector multiplications used by the Lanczos method is 2, 538×200 ≈ 500, 000.

The corresponding wallclock time is nearly 1, 500 seconds.

When subspace iteration is used, we include 3, 616 basis vectors in the

subspace to accelerate convergence. The dashed line in Figure 3.3 shows

the wallclock time for one subspace iteration, which is around 700 seconds.

Even though the subspace iteration perform 3, 616 × 200 > 720, 000 Hamil-

tonian and vector multiplications, which are more than those performed in

the Lanczos method, the wallclock time used by subspace iteration is much
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less than that used by the Lanczos method. This is due to the much better

parallel scalability of the subspace iteration method as we discussed earlier.

We should point out that in many cases, one subspace iteration with a suffi-

ciently high degree polynomial is enough to make the SCF iteration converge.

However, in some cases, more than one subspace iteration may be required

to ensure SCF convergence.
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Figure 3.3: Cumulative wallclock time spent on FLTR and ORTH in the
Lanczos method with respect to the Lanczos iteration number. The dashed
line shows the wallclock time using the subspace iteration method for the
same slice.

3.1.3 Parallel Scalability

We now examine the strong parallel scalability of the SS algorithm and com-

pare it with that of CheFSI. We use a Si3893H988 silicon nanocrystal for
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this test. The dimension of the Hamiltonian is 2, 637, 711. The number

of states to be computed is 9, 216. Both the CheFSI and SS calculation

are performed on 2D process grids with nr × nc processes. Our strong scal-

ing tests use 256, 512, 1,024, 2,048, and 4,096 compute cores. In all tests,

nr is set to 32. For CheFSI, we try nc = 8, 16, 32, 64, and 128. For SS,

the spectrum is divided into 2, 4, 8, and 16 slices. The number of col-

umn groups for each slice is (1, 15), (1, 9, 13, 9), (1, 9, 6, 9, 8, 14, 10, 7), and

(1, 6, 9, 8, 5, 6, 10, 7, 6, 10, 12, 14, 12, 7, 4, 11), respectively. The degree of the

Chebyshev polynomial is 20, and the degrees of the bandpass filter polyno-

mials are 120.

We can clearly see from Figure 3.4 that FLTR in both CheFSI and SS

has nearly perfect parallel scalability. The cost of FLTR in SS is ∼ 5 times

of that associated with CheFSI owing to the higher degree of the bandpass

filter polynomials. We also note that due to the large number of states to be

included in the SCF calculation, ORTH and RR in CheFSI take more time

than FLTR which consists of mostly sparse matrix vector multiplications.

By dividing the spectrum into more slices, the cost of ORTH and RR can

be significantly reduced through a trivial parallelization at the slice level.

Because ORTH and RR are performed among fewer column groups and uses

fewer processes, good scalability can be achieved in these calculations. This

can be seen from the green curve marked by empty circles in Figure 3.4. The

scalabilty of these types of operations is harder to achieve in CheFSI when

many column groups must be distributed on many processes. The green
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curve marked by solid circles shows the cost of ORTH and RR in CheFSI

actually increases when nc becomes larger than 16.

As a result, the overall strong scalability of SS is much better than that

of CheFSI. When the total number of processes reaches 32× 64, the compu-

tational time of SS is less than that of CheFSI.

We should note that more states are computed in SS and the overall

subspace size in SS is larger than that in CheFSI, because the subspace for

each slice is augmented in order to improve convergence and avoid missing

states (see Section 2.6.3). However, because SS is compute-bound in compar-

ison with CheFSI which is communication-bound (due to the communication

overhead when performing ORTH and RR among all states), it is likely to

outperform CheFSI if the degrees of bandpass filter polynomials are not too

high and the number of subspace iterations is moderate.
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Figure 3.4: Strong scaling test of Si3893H988. “LOOP” is the sum of all
operations. The computational time shown here is for one subspace iteration.

3.2 Space-Filling Curves Based Grid Parti-

tioning

The simulations in this work were run on NERSC Cori machine. Two types

of nodes are available: Haswell and Knights Landing (KNL). Each Haswell

node is equipped with two Intel Xeon E5-2698 v3 CPUs, resulting in 32 cores

per node, while each KNL node is equipped with one Intel Xeon Phi 7250

CPU, which has 68 cores.

The order of the finite-difference method in Equation (2.35) is 2N , where

we use N = 6 through out our simulations. The pseudopotentials are norm-
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conserving, constructed by Troullier–Martins method [75] and used in the

Kleimann–Bylander form [42]. The cutoff radii for hydrogen and silicon

atoms are 1.8 bohr for 1s and 2.78/2.78/2.78 bohr for 3s2/3p2/3d0, respec-

tively. The exchange-correlation functional is the local-density approxima-

tion, as determined numerically by Ceperly and Alder [76] and parameterized

by Perdew and Zunger [77]. We use an Anderson algorithm [78] for poten-

tial update. The mixing ratio is 0.3, and the mixing history includes four

previous steps. The effective potential is converged to within 10−4 Ry.

3.2.1 Speedup of Sparse Matrix–Vector Multiplication

Figure 3.5 shows the speedup of SpMV for various problem sizes using the

four grid partitioning methods. The system is Si29H36 and very fine grids are

used in this test. To generate problems of different sizes, three different values

of grid spacing are used: 0.180, 0.145, 0.115 bohr. The simulation domain

radius is 18 bohr. For the SCO and the Hilbert methods, the resulting

numbers of grid points are 4,187,849, 8,013,533, and 16,062,961. For the

blockwise methods the numbers of grid points are 4,282,696, 8,159,520, and

16,294,760. Blockwise methods have more grid points because a grid block

is counted if any one of its eight grid points is inside the simulation domain.

However, we note that the blockwise methods can reference eight grid points

at a time by grid-block indices, which is advantageous to data exchange.

The overall speedup (the yellow bars in Figure 3.5) is nearly independent

of the problem size. There are two contributions to the speedup: one is the
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Hilbert partitioning and the other is the blockwise operation. The speed gain

from the blockwise operation, compared to the SCO method, is about 2.2

(the dark blue bars in Figure 3.5), while the speed gain from the Hilbert par-

titioning is about 2.8 (the green bars in Figure 3.5). As a result, the blockwise

Hilbert method is about 6 times faster than the SCO method overall. The

speedup for the Hilbert partitioning is due to more balanced communication

among processors and reduced communication volume. The speedup from

the blockwise operation is due to better utilization of the vector-processing

units. We also note that, although the Hamiltonian size for the blockwise

methods is slightly bigger than the one of the SCO methods, the use of

blockwise operations is still advantageous.
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Figure 3.5: The speedup in SpMV using different partitioning methods for
various of problem sizes. Eight Haswell nodes (256 processors in total) are
used. The speedup within each group is normalized with respect to the one
of the SCO method.
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3.2.2 Communication Patterns

We examine the amount of transferred data between processors during a

Laplacian operation to measure the extent of balance of communication.

Figure 3.6 shows typical communication patterns when the number of neigh-

bor processors is small (one to a few). The system is Si29H36 and the number

of grid points is ∼ 4 million. We note that the communication is spread

out to more neighbor processors for the Hilbert partitioning methods (the

bottom two in Figure 3.6), indicating that network traffic is improved. The

advantage of balanced communication is expected to become more evident

for large-scale simulations.

On the other hand, if the number of available processors increases, each

processor will be in charge of less grid points but may need to communicate

with more neighbor processors. In this scenario, the use of Hilbert SFCs

can keep the increase in the number of neighbor processors relatively modest

compared to that of the SCO method (as illustrated in Figure 2.9).

We note that the use of grid blocks (i.e., the blockwise methods) does

not significantly change the communication patterns, because the amount

of data exchanged near the boundaries are almost the same. A 12th-order

central finite difference still needs 12 grid points (six grid blocks) in each

direction.

113



1 2 3 4 5 6 7 8

1
2

3
4

5
6

7
8

SCO
1 2 3 4 5 6 7 8

1
2

3
4

5
6

7
8

Blockwise SCO

1 2 3 4 5 6 7 8

1
2

3
4

5
6

7
8

Hilbert
1 2 3 4 5 6 7 8

1
2

3
4

5
6

7
8

Blockwise Hilbert

0

200

400

600

800

1000

1200

1400

kilobytes

Figure 3.6: Typical communication patterns for the four grid partitioning
schemes. Eight processors are used. The color reflects the amount of trans-
ferred data during one Laplacian operation, where the darker the more data
to be transferred. In each subplot, the y-axes show the sending nodes, and
the x-axes show the receiving nodes.

3.2.3 Scalability of Sparse Matrix–Vector Multiplica-

tion

The use of Hilbert SFCs not only improves the balance of communication

between the processors (Figure 3.6), but also reduces the amount of trans-
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ferred data. Figure 3.7 shows the total amount of transferred data in one

Laplacian operation and the scalability of the SCO and the blockwise Hilbert

methods. The system is Si29H36, and the numbers of grid points in this test is

24,733,520, resulting from a grid spacing of 0.1 bohr and a spherical domain

radius of 18 bohr.
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Figure 3.7: (a) Total amount of transferred data in one Laplacian operation
and (b) the speedup of SpMV when different number of processors are used.
The empty circles denote the SCO method, while the empty squares denote
the blockwise Hilbert method. The dashed line in (b) visualizes the ideal
scaling. Cori Haswell nodes are used. The speedups are normalized with
respect to 64 processors.

Figure 3.7a shows that by the SCO method there is more data to transfer
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between the processors. On average the amount of data by the SCO method

is an order of magnitude larger compared to that by the blockwise Hilbert

method. This impacts the scalability of SpMV by the SCO method. As

shown in Figure 3.7b, the SpMV by the SCO method can scale up to around

100 processors, while by the blockwise Hilbert method it is able to scale

up to 512 processors. When 1024 processors are used, the speedup by the

SCO method drops to 31% of that of the ideal scaling, due to increasing

communication overhead and unbalance of communication. The speedup by

the blockwise Hilbert method is still 85% of that of the ideal scaling.

3.3 Evolution of Density of States of Silicon

Nanocrystals toward Bulk Limit

As an example that illustrates the computational capabilities afforded by

the blockwise Hilbert partioning method in a practical scenario of scientific

interest, we consider the distribution of Kohn–Sham eigenvalues in a series

of Si nanocrystals, which approximately yields the density of states for the

nanocrystal. Using the above-described approaches, we are able to simulate

silicon nanocrystals with up to 56,555 atoms (∼ 12 nm in diameter), and

observe the evolution of density of states from small nanocrystals to the bulk

limit.

Table 3.2 lists the sizes of the nanocrystals examined, the computational

resources, the number of SCF steps to reach convergence, and the time-to-
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solution. We employ a grid spacing of 0.7 bohr except for Si51071H5484.

System Ngrid Nstates Nprocs Niter Wall time (hr)
Si849H348 812,112 2,000 64 21 1.3
Si4001H1012 2,707,504 9,216 512 19 4.0
Si10869H1924 6,377,184 24,576 4,096 17 8.4
Si23049H3220 15,180,904 61,440 16,384 18 27.9
Si51071H5484 15,522,368 114,688 65,536 15 28.0

Table 3.2: Test systems and their sizes (the dimension of the Hamiltonian,
Ngrid, and the number of computed states, Nstates), the number of processors,
Nprocs, the number of self-consistent-field steps to reach a convergence of the
energy to within 0.0001 Ry, Niter, and the wall time (time to solution). Cori
KNL nodes are used. For the largest one, Si51071H5484, we used a grid spacing
of 0.9 bohr.

For a system with translational periodicity, the wave vector, k is a good

quantum number and Bloch’s theorem can be employed. The resulting energy

band structure can be used to determine the density of states [79]. If we label

the energy bands as En(k) where n is the band index, the density of states,

D(E) can be written as

D(E) =
∑
n

∫
dk

ΩBZ

δ(E − En(k)) (3.1)

where ΩBZ is the volume of the first Brillouin zone. The density of states

for crystalline silicon is illustrated in Figure 3.8. The energy bands were

computed from the same real-space formalism as per the nanocrystals, save

periodic boundary conditions were used [80, 81]. The time to compute En(k)

over a grid of k is dramatically reduced compared to a nanocrystal, owing
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to translational symmetry. We use a Monkhorst–Pack sampling [82] with a

density of 20× 20× 20.

The structure in crystalline density of states arises from Van Hove singu-

larities, i.e., points where

∇k En(k) = 0 (3.2)

The structure near the singularity can be quantified as corresponding to

local maxima, minima or saddle points, and is well-known to have been ana-

lyzed accordingly [79]. An interesting question arises for silicon nanocrystals.

Namely, one expects the density of states of the nanocrystal to converge to

the bulk configuration and presumably replicate structure associated with

Van Hove singularities. At what point will this be evident? For the smallest

nanocrystal we considered, Si849H348, the general features become evident,

but not until nanocrystals of several thousand atoms are the Van Hove sin-

gularities clearly discernible. For the large nanocrystal, the density of states

is virtually the same as the crystalline value, which serves to validate our

computational approach to large nanocrystals.
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Figure 3.8: Evolution of the density of states. The energy of the highest
occupied state is set 0 eV. For the bulk system, the Kohn–Sham eigenvalues
are convoluted with a Gaussian function with a standard deviation of 0.1 eV.
For the nanocrystals, a histogram bin width of 0.1 eV is used.

The eigenvalue counts of the largest silicon nanocrystal, Si51071H5484, is

shown in Figure 3.9. The singularities are evident, which indicates that the

internal of the nanocrystal well reproduces the bulk environment. This shows

119



the possibility of simulating charged defects in crystals in a straightforward

manner using real-space pseudopotential DFT.
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Figure 3.9: Eigenvalue counts for Si51071H5484. The energy of the highest
occupied state is taken to be 0 eV and a histogram bin width of 0.1 eV is
used.

3.4 Proton Transfer in Liquid Water

Water is vital to life and a fundamental study subject. With the improve-

ments in our real-space pseudopotential DFT, we are able to simulate the

liquid water system for a long time scale in the level of DFT. We also study

the proton transfer in liquid water. More specifically, we study the diffusivity

of water and protons in liquid water.

Troullier–Martins pseudopotentials [75] are used. The cutoff radii of

2s2/2p2 for O are 1.45/1.45 bohr. For 1s of H it is 1.00 bohr. The exchange-

correlation functional is GGA-PBE. We use GGA-PBE because LDA fails to
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reproduces the energetics of water [83]. The grid spacing is 0.25 bohr. The

time step size is 20 a.u. (approximately 0.5 fs).

We simulate a system of 64 H2O. The length of the cubic simulation box

is 23.5 bohr. This results in a density of 1.00 g-cm3.

The initial structure for FPMD is obtained by running classical MD for

1 ns under NVT subjected to 2000 K. LAMMPS [84] is used for the classical

MD simulations and TIP4P force field is used for water.

We take the structure of the last time step of the classical MD to be

the initial structure for FPMD. For FPMD we first run NVT using Langevin

dynamics (see Section 2.8.3) and gradually cool the system down from a tem-

perature of 2000 K to the target ones (300, 325, 350 and 400 K). Afterwards

we run NVE and start the sampling.

3.4.1 Thermal Annealing and Energy Conservation

In order to reach lower-energy equilibrium states, we cool down the system

using a Langevin thermostat from a high temperature (2000 K), and grad-

ually reduce the thermostat friction coefficient, β. The advantage to reduce

the friction coefficient in a multi-stage manner is that there would be higher

chance for the system to fall into globally lower-energy states. If we switch

to NVE (equivalent to a small β) too early, the system may linger around a

globally high-energy state. That is, it cannot jump out of the current local

minimum of the potential-energy surface. On the other hand, if we maintain

a high β, the system may jump between low- and high-energy states due to
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high thermal fluctuation energy, and thus have incorrect dynamics.

Figures 3.10 and 3.11 show the evolution of energies during the multi-

stage cooling process for target temperatures 300 and 350 K. There are mul-

tiple regions. Region I is NVT. The system is cooled down following a linear

temperature change from 2000 K to the target temperature. In Regions II–

IV, NVT is performed and temperature is fixed at the target temperature,

while β is gradually reduced as 0.01, 0.001, and 0.0001, respectively. The

last region is NVE, where we start sampling the dynamics of the system.

One thing worth noting is that in Figure 3.11, there is an evident discon-

tinuity for the total energy between Region IV and V. This is because we

take the structure of the last step in Region IV as the initial structure for

NVE and renormalize the velocity. Because the structure is the same, we can

see the potential energy is continuous. However, the velocity is renormalized

and results in a discontinuity in the kinetic energy, and hence a discontinuity

in the total energy.

In Region V (NVE), we observe good energy conservation. The energy

drift is less than 5 K-ps-1.
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Figure 3.10: Energy evolution of the case cooling from 2000 K to 300 K. In
Region I NVT is performed, and the controlled temperature is 2000 K to 300
K. The Langevin damping parameter, β, is 0.01. For Regions II–IV, NVT is
performed at 300 K. β is 0.01, 0.001, 0.0001, respectively. In Region V NVE
is performed.
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Figure 3.11: Energy evolution of the case cooling from 2000 K to 350 K. In
Region I NVT is performed, and the controlled temperature is 2000 K to 350
K. The Langevin damping parameter, β, is 0.01. For Regions II–IV, NVT is
performed at 350 K. β is 0.01, 0.001, 0.0001, respectively. In Region V NVE
is performed.

3.4.2 Diffusivity of Water and Proton

Diffusivity of water is a good indicator for whether our water model is ac-

curate. Figure 3.12 shows the diffusivity of water under different simulation

temperatures. We measure the mean-squared displacements of the oxygen

atoms of water and, by using a random-walk model, the diffusivity, D, is

computed as

D =
1

6t
〈|R|2〉,
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where 〈|R|2〉 is the ensemble average of the squared displacements (mean-

squared displacement) and t is time measured from the beginning of the

random walk. The preliminary results of the diffusivity along with experi-

mental data are listed in Table 3.3.
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Figure 3.12: Mean-squared displacement (MSD) of water in liquid water
under different temperatures. The dotted lines are the fitting curves. The
y-intercepts of which are assumed zero.

From Table 3.3 we found the simulated diffusivity is less sensitive to tem-

perature, compared to the experiment data. In the simulation, the change in

diffusivity is 0.115 Å2-ps-1 across a temperature range of 118 K, while in ex-

periment the diffusivity changes 0.226 Å2-ps-1 across a range of only 40 K. We

also observed that our simulations diffusivity are lower than the experiment.

For example, we obtained a diffusivity of 0.163 Å2-ps-1 at 309 K, while in
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experiment, at 298 K it is 0.2299 Å2-ps-1. Similar underestimation has been

summarized and reported by Gillan et al. [83] This is because GGA-PBE

functional tends to produce over-structured water in which water molecules

can hardly diffuse. To reproduce experimental dynamics, in simulations we

can adopt a slightly higher temperature. From Table 3.3 we can see that,

in order to obtain a similar diffusivity of water as experiment under room

temperature, we may use a temperature of 365 K. That is, 60–70 K higher

than the temperatures in experiment.

We note that we do not know the melting temperature of water when

GGA-PBE is used. A further study on the melting temperature with GGA-

PBE would justify the use of a higher simulation temperature.

Average temperature ± std (K) Diffusivity (Å2-ps-1)
PARSEC

427± 19 0.278
365± 21 0.237
326± 14 0.192
309± 16 0.163

Experiment
318 0.3575
298 0.2299
278 0.1313

Table 3.3: Diffusivity of water in liquid water. The experimental data are
from Mills [1].

To study proton transfer, we add one extra proton into the liquid wa-

ter system. A compensating background charge is used to keep the system

charge-neutral.
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Figure 3.13 shows the mean-squared displacement of a proton in liquid

water. We monitor the motion of the oxygen atom of the hydronium ion

(H3O
+). We can see there are several “jumps,” where the proton transfers

occur.
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Figure 3.13: Mean-squared displacement (MSD) of a proton in liquid water.
The shade denotes the standard deviation computed over three runs. The
dotted line is the fitting curve, where the y-intercept is assumed zero.

The preliminary results of the diffusivity of proton in liquid water is listed

in Table 3.4. Our simulation result is 2.69 Å2-ps-1. From Table 3.4 we found

our diffusivity of proton is similar to those of other simulations but about 3

times higher than the experimental one. This could be reasonable since we

simulated at a higher temperature. On the other hand, we also list the ratio

of the diffusivity of the proton over that of water. The experimental value is
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4.05, and our result is 2–3 times bigger than it, but is similar to those of the

other simulations.

We note that there are efforts to improve the exchange-correlation func-

tionals to obtain correct diffusivity of water without simulating at a different

temperature [85, 86].

Temperature (K) Diffusivity (Å2-ps-1) DH+/DH2O

PARSEC
353 2.69 11.4

Other simulations
440 3.00 5.4
300 1.02 23.1

Experiment
298 0.9311 4.05

Table 3.4: Diffusivity of a proton in liquid water. The data of other simula-
tions are from Fischer et al. [2]), and the experimental value is taken from
CRC Handbook of Chemistry and Physics [3].

3.5 Water Adsorption on Titanium Dioxide

Surfaces

Titanium dioxide (TiO2) is a widely used, non-toxic photocatalyst. The

water splitting on TiO2 surfaces is a challenging subject. Surface types, mor-

phology, and treatment, all of which would influence the catalytic reactivity.

There are two types of water adsorption on TiO2 surfaces: molecular and

dissociative. The types of TiO2 surfaces that lead to dissociation of water
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have been a subject of discussion [4, 6]. With the advent of computational

tools, we are able to explore a great range of parameter space and study the

intricacy between the interplay of water and TiO2 surfaces.

Troullier–Martins pseudopotentials [75] are used. The cutoff radii of

4s2/4p0/3d2 for Ti are 2.54/2.96/2.25 bohr. Partial core-correction is used

for Ti with a core cutoff of 1.96 bohr. For the parameters for O and H,

see Section 3.4. The exchange-correlation functional is GGA-PBE. The grid

spacing is 0.25 bohr. We use a Monkhorst–Pack sampling [82] with a den-

sity of 4× 4× 4. For structural relaxation the convergence criterion for the

maximum force is 0.01 Ry-bohr-1. For the FPMD simulations the time step

size is 20 a.u. (approximately 0.5 fs).

3.5.1 Structural Properties and Cohesive Energy of

Titania

Table 3.5 shows the optimized structure of rutile and anatase TiO2 (the co-

ordinates are listed in Appendix C). We found that the simulated lattice

constants with GGA-PBE for both rutile and anatase TiO2 are a few per-

cents removed from the experimental values. Glassford et al. used LDA and

obtained results in better agreement with experiment [87]. This indicates

that GGA with a four-electron Ti pseudopotential might not be adequate

to describe the chemical environment of TiO2. Tegner et al. [88] discussed

that a 12-electron pseudopotential, including the semi-core states, can more
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accurately describe TiO2. Another solution is to use multireference pseu-

dopotentials proposed by Reis et al. [89].

For the bulk modulus and its derivative, we obtained 194 GPa and 5.24

for rutile TiO2, which are comparable to the experimental values 211 GPa

and 6.5. The results of anatase TiO2 agree better with experiment. Our

simulated bulk modulus and its derivative for anatase TiO2 are 178 GPa and

4.90, which are very close to the experimental values 179 GPa and 4.5.

For the cohesive energy, we obtained 18.1 eV per TiO2 unit, which is close

to the experimental value 19.9 eV. The cohesive energy of anatase TiO2 is

similar that of rutile TiO2. This is because cohesive energy measures the

easiness of breaking a crystal into its constituent units. The small difference

in the cohesive energy between the rutile and anatase TiO2 reflects that the

reorganization energy to transform between the two phases is small.

a (Å) c (Å) B0 (GPa) B
′
0 Ecoh (eV/TiO2)

Rutile
PARSEC: 4.76 (+3.8%) 3.13 (+6.0%) 194 5.24 18.1
Other sim. 4.634 (+1.0%) 2.963 (+0.3%) 204 4.62 21.44
Exp 4.587 2.954 211± 10 6.5± 0.7 19.9

Anatase
PARSEC: 4.01(+6.0%) 9.64(+1.5%) 178 4.90 18.4
Other sim. 3.786(+0.1%) 9.737(+2.5%) 176 2.99 21.54
Exp 3.782 9.502 179± 2 4.5± 1.7 -

Table 3.5: Comparison between calculated structural properties of the rutile
and anatase TiO2. The data of the other simulations and experiment are from
Lazzeri et al. [4] The difference between calculated and measured values are
shown as a percentage in parentheses.
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3.5.2 Surface Energy

We study the surface energy of various anatase TiO2 surfaces. Slab semi-

periodic boundary condition is used, and there is at least 10 bohr of vacuum

above either side of the slab. We use a Monkhorst–Pack sampling [82] with

a density of 4× 4.

Figure 3.14 shows four different types of surfaces: (101), (100), (001), and

(001) 1×4 ad-molecule (ADM) model. Table 3.6 lists the preliminary results

of the surface energy. We found that the surface energy of the unrelaxed and

relaxed surface structure can be as large as 0.7 eV. Therefore, it is necessary

to fully relax the surface in order to get the correct surface energy. Our

surface energy (the energy difference between the relaxed surfaces and the

bulk) is in good agreement with other simulations (within about 0.2 eV). The

(101) surface has the lowest surface energy, suggesting that during synthesis

of TiO2 surfaces, it is easier to form (101) surfaces. On the other hand,

the surface energy of (001)-(1 × 4) is only half of that of the (001) surface.

This indicates that it is easier to form reconstructed (001)-(1 × 4) surfaces

compared to pristine (001) surfaces.
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Figure 3.14: Types of surfaces of anatase TiO2 we examine in this study

PARSEC Other simulations
NL Nat Eunrl Erel Eunrl Erel

(101) 6 36 1.03 0.59 1.28 0.49
(101) 4 24 0.99 0.69 - 0.45
(100) 6 36 1.34 0.66 1.59 0.58
(100) 4 24 1.31 0.73 - 0.63
(001) 6 18 1.40 1.19 1.12 0.98
(001) 4 12 1.30 1.14 - 0.98

(001)-(1× 4) 6 78 - 0.73 - -
(001)-(1× 4) 4 54 - 0.79 - 0.51

Table 3.6: Types of anatase TiO2 surfaces, the number of layers (NL), the
number of atoms in the simulation box (Nat), the surface energy of the un-
relaxed (Eunrl) and relaxed (Erel) structure. The surface energy is in J-m-2.
The results of the other simulations are from Lazzeri et al. [4] and Lazzeri et
al. [5]
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3.5.3 Adsorption Energy of Water

In this section we compute the adsorption energy of water with various cover-

age percentage and on different surfaces of anatase TiO2. We examined (101)

and (001) surfaces. All of them have four layers, with the bottom two layers

fixed. We use supercells that have 48 atoms in both models. Four threefold-

coordinated and four fourfold-coordinated Ti are exposed on the (101) and

(001) surfaces, respectively. This enables us to examine water coverage of

0.25, 0.50, or 1.00, when we place one, two, or four water molecules into the

models. The sizes of the simulation boxes are 19.73 bohr × 15.16 bohr and

15.16 bohr×15.16 bohr, respectively. Slab semi-periodic boundary condition

is used, and there is at least 10 bohr of vacuum above either side of the slabs.

Figures 3.15 shows the optimized structure of the (101) surface with water

coverage of 0.25 (i.e., one extra water molecule). For the molecular adsorp-

tion (Figure 3.15(a)), the O atom of water forms a covalent bond with the

surface Ti while the two H atoms form hydrogen bonds with two twofold-

coordinated surface O atoms. There are two types of dissociative adsorption

of water on a (101) surface: inter (Figure 3.15(b)) or intra (Figure 3.15(c)).

For inter-dissociative adsorption one of the water O–H bond is broken and

the H atom forms a covalent bond with one of the far twofold-coordinated

surface O atoms. As for intra-dissociative adsorption, the H atom forms a

covalent bond with the near twofold-coordinated surface O atom.
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(c) (101), ! = 0.25, dissociative (intra)

(a) (101), ! = 0.25, molecular

(b) (101), ! = 0.25, dissociative (inter)

Figure 3.15: Water adsorption on anatase TiO2 (101) surfaces. The water
coverage is 0.25. (a) is molecular adsorption, (b) is dissociative adsorption
(inter), and (c) is dissociative adsorption (intra).

Figures 3.16 shows the optimized structure of the (001) surface with wa-

ter coverage of 0.50 (i.e., two extra water molecules). For the molecular

adsorption (Figure 3.16(a)), the O atom of water forms a covalent bond with
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the surface Ti while one of the H atoms forms a hydrogen bond with the near

twofold-coordinated surface O atoms along 〈100〉. For the dissociative ad-

sorption of water on a (001) surface (Figure 3.16(b)), H atoms form covalent

bonds with surface O atoms while Ti–O bonds are broken.

(c) (001), ! = 0.50, mixed

(a) (001), ! = 0.50, molecular

(b) (001), ! = 0.50, dissociative

Figure 3.16: Water adsorption on anatase TiO2 (001) surfaces. The water
coverage is 0.50. (a) is molecular adsorption, (b) is dissociative adsorption,
and (c) is mixed adsorption.
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Interestingly, at water coverage of 0.25, there is only dissociative adsorp-

tion on the (001) surface, because of the weakening of the Ti–O bond by the

newly formed O–H functional group. However, it is possible to have a stable

configuration of molecular adsorption with water coverage of 0.50. That is, if

multiple water molecules are approaching the surface simultaneously, the Ti–

O bonds may not be weakened to the extent of breaking. It is also possible

that, after one water is dissociatively adsorbed on the surface, the reactivity

of the surface is weakened and another water molecule may come and be

adsorbed physically. We then obtain the mixed adsorption (Figure 3.16(c)).

Table 3.7 shows the preliminary results of water adsorption energy of

anatase TiO2 surfaces. For (101) surfaces, we found the molecular adsorption

energy is larger, indicating that it is the preferred adsorption type. As for

(001) surfaces, we observed the opposite trend that dissociative adsorption

energy is larger. This implies that the (001) surface would be a better surface

for water splitting applications. The water coverage percentage does not

affect much the adsorption energy per H2O, and the adsorption energy of the

mixed type of the (001) surface falls between the molecular and dissociative

types as expected.
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PARSEC Other simulations
Surface, θ ∆HH2O ∆HH,OH ∆Hmix ∆HH2O ∆HH,OH ∆Hmix

(101), 0.25 1.30 0.68, 1.03 - 0.74 0.23, 0.30 -
(101), 1.00 0.99 0.75 - 0.72 0.44 -
(001), 0.25 - 1.73 - - 1.59 -
(001), 0.50 0.78 1.56 0.90 0.81 1.44 -
(001), 1.00 0.77 - 0.79 0.82 - 1.01

Table 3.7: Adsorption energy ∆H per H2O molecule (eV) on anatase (101)
and (001) surfaces with various water coverage θ using PARSEC. The data
of the other simulations are from Vittadini et al. [6]. Subscripts refer to the
character of the adsorption state: H2O is molecular, H,OH is dissociative, mix
is mixed. The two values of ∆HH,OH refer to two different isomers (interpair,
and intrapair) of the dissociated molecule.

We also perform FPMD of water on (001) anatase TiO2 surfaces to study

their interaction and the water splitting process. Figure 3.17 shows some

snapshots of a water molecule (with water coverage of 0.25) on the (001)

surface. Initially the molecule was placed at 2.8 angstrom above the surface.

The water molecule then tilted itself due to the interaction with the surface.

At around 0.5 ps the H atom of the water was strongly attracted by the O

atom of the surface. Afterwards, the water molecule was dissociated and the

Ti–O bond was broken. As a result, for water coverage of 0.25 on the (001)

surface the water dissociates spontaneously.
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0 ps 0.1 ps 0.2 ps 0.3 ps 0.4 ps 0.5 ps 0.55 ps 0.6 ps

Figure 3.17: FPMD simulation of water on anatase TiO2 (001) surfaces. The
dissociation of a water molecule is observed.
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Chapter 4

Conclusion and Outlook

In the dissertation I presented two methods to improve the original CheFSI

method. The first improvement is a polynomial filtering SS method, which

extends the SS framework established in the work of Schofield et al. [55]

We discussed several practical issues in implementing polynomial filtering

for solving the Kohn–Sham DFT problem in real space. We proposed us-

ing a hybrid Chebyshev and bandpass filter polynomial filtering scheme to

compute the invariant subspace required to construct the electronic charge

density. The latter type of polynomial filtering is combined with the SS

method [55] designed to reduce the computational overhead involved in solv-

ing the projected eigenvalue problem in the CheFSI method. We showed how

to partition the spectrum based on an estimated density of states that can

be obtained from a few Lanczos iterations. We proposed using subspace iter-

ation (instead of thick-restarted Lanczos iteration) to compute approximate
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eigenpairs within each interior spectral slice in the SS algorithm. Harmonic

Ritz vectors (instead of Ritz vectors) are used as approximate eigenvectors.

To achieve scalable parallel performance, we used a 2D process grid that al-

lows the multiplication of H with multiple vectors to be performed efficiently.

We discussed how to partition and map column groups within the 2D pro-

cess grid to spectrum slices to achieve good load balance in the SS procedure.

Numerical examples were presented to show the performance profiles of both

the CheFSI and SS components of the computation.

We demonstrated that for large problems SS can outperform CheFSI

on a large number of compute cores due to the higher level concurrency of

the algorithm and reduced cost for solving the projected subspace problem,

despite the much larger number of Hamiltonian vector multiplications used

by the algorithm. The optimal performance of the SS algorithm depends

largely on how the spectrum is partitioned and how computational resources

are allocated to different spectrum slices. This is currently done in a case

by case manner. An efficient procedure can be developed to automate this

process.

We should also note that a number of techniques such as the use of mixed

precision arithmetic to reduce data movement and memory requirement and

overlapping computation and communication can be used to further im-

prove the performance of both CheFSI and SS for large-scale simulations

performed on next-generation supercomputers that are equipped with accel-

erators. These techniques have been demonstrated to be effective by Das et
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al. [90]

The second method we proposed to improve the original CheFSI method

is a grid partitioning method based on SFCs. We implemented grid par-

titioning methods based on SFCs in a real-space DFT code, PARSEC. We

showed that the blockwise Hilbert grid partitioning method speeds up SpMV

and improves the scalability of the CheFSI method. We also investigated

the evolution of the density of states of silicon nanocrystals up to 56,555

atoms. The use of Hilbert ordering offers better balance of communication

and reduces the communication overhead. The blockwise stencil update of

Laplacian in SpMV increases the opportunity of vectorization. These meth-

ods can also be applied to, and benefit, other real-space codes that discretize

the domain on a regular grid. An extension to non-Cartesian grids and a

generalized scheme with grid blocks of various sizes is also possible.

The improvements in CheFSI from the SS method and the SFCs based

grid partitioning method speed up real-space pseudopotential DFT calcu-

lations, and make it possible to solve electronic structure of large systems.

Along with the improved algorithms, three applications were presented in

the dissertation: density of states of silicon nanocrystals from small ones to

the bulk limit, proton transfer in liquid water, and water adsorption on TiO2

surfaces.

From the density of states of silicon nanocrystals from small ones to the

bulk limit, we observed the emergence of Van Hove singularities without

invoking Bloch theorem. This triggers interesting questions such as how we
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interpret the quantum number k in the Bloch theorem and how the Van

Hove singularities connect to the wave functions when the concept of lattice

symmetry is not clear in the calculations.

In the second application we examined the dynamics of protons in liquid

water by FPMD simulations. The diffusivity of proton is several times larger

than the experimental value. We found that the energy conservation is good

by our methods. However, more simulation runs are needed to have good

statistics.

For the last application we studied the surfaces of anatase TiO2. We

found the trend of surface energy in our calculations is consistent with other

simulations. The surface energy of the (101) surface is lower than that of

the (001) and (100) surfaces. This indicates that it is easier to form (101)

surfaces experimentally. For water adsorption energy, the trend is also similar

to other simulations. The (001) surface tends to dissociate water molecules.

However, when multiple water molecules are adsorbed at the same time, it

is possible that molecular adsorption happens.

Real-space pseudopotential DFT is a powerful tool. With the improve-

ments presented in the dissertation, we are able to explore larger systems of

interest and longer-timescale phenomena. It would be interesting to apply

the tool to the studies of interfacial systems, such as titanium dioxide-water

interfaces and other electrochemical interfacial reactions that are important

to battery design, semiconductor surface etching and cleaning.
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Appendix A

Hartree Atomic Units

The following quantities are set to 1.

Reduced Planck constant ~→ 1 atomic unit of action

Elementary charge e→ 1 atomic unit of charge

Bohr radius a0 → 1 atomic unit of length

Electron mass me → 1 atomic unit of mass

4πε0 → 1 (A.1)

After the normalization, the energies are in Hartree, the lengths are in

bohr, the masses are in electron mass, etc.
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Appendix B

Derivation of Poisson Equation

for the Hartree Potential

The Hartree potential energy is originally written in an integral form:

VH(r) =

∫
dr′

n(r′)

|r′ − r|
. (B.1)

We can recast it into a differential form,

∇2VH(r) = −4πn(r), (B.2)

which is the Poisson equation and can be solved efficiently by conjugate

gradient method, etc.

Here is the derivation. First we examine the integration of ∇2 1
|r| :
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∫
dr∇2 1

|r|
= lim

η→0

∫
dr∇2 1√

|r|2 + η2

= lim
η→0

∫ ∞
0

4πr2dr∇2 1√
r2 + η2

= lim
η→0

∫ ∞
0

4πr2dr
1

r
(

r√
r2 + η2

)′′

= lim
η→0

∫ ∞
0

4πr2dr
1

r

−3η2r

(r2 + η2)
5
2

= lim
η→0
−12π

∫ ∞
0

dr
η2r2

(r2 + η2)
5
2

,

(B.3)

where we have used the Laplacian in spherical coordinates:

∇2f =
1

r

∂2

∂r2
(rf) +

1

r2 sin θ

∂

∂θ
(sin θ

∂f

∂θ
) +

1

r2 sin2 θ

∂2f

∂φ2
.

Let r = ηξ and ξ = tanα, we have

∫
dr∇2 1

|r|
= lim

η→0
−12π

∫ ∞
0

dξ
ξ2

(ξ2 + 1)
5
2

= lim
η→0
−12π

∫ π
2

0

1

cos2 α
dα

tan2 α

( 1
cosα

)5

= lim
η→0
−12π

sin3 α

3

∣∣∣π2
0

= lim
η→0
−4π

= −4π.

(B.4)
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From the above equation, we know

∇2 1

|r|
= −4πδ(r). (B.5)

Therefore, taking Laplacian on the both sides of Equation (B.1) and using

Equation (B.5), we obtain

∇2VH(r) =

∫
dr′n(r′)∇2 1

|r′ − r|

= −4π

∫
dr′n(r′)δ(r′ − r)

= −4πn(r).

(B.6)
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Appendix C

Structure of Rutile and

Anatase Titanium Dioxide

The optimized lattice constants of rutile titanium dioxide, a and c, are 8.99

and 5.91 bohr. The optimized lattice constants of anatase titanium dioxide,

a and c, are 7.58 and 18.22 bohr.
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Figure C.1: Unit cells of the rutile and anatase titanium dioxide.

Atom Position (in fractional coordinates)
Ti1 (0.0000, 0.0000, 0.0000)
Ti2 (0.5000, 0.5000, 0.5000)
O1 (0.3034, 0.3034, 0.0000)
O2 (−0.3034,−0.3034, 0.0000)
O3 (0.8034, 0.1966, 0.5000)
O4 (−0.8034,−0.1966, 0.5000)

Table C.1: Coordinates of the atoms in a unit cell of rutile titanium dioxide
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Atom Position (in fractional coordinates)
Ti1 (0.000, 0.000, 0.000)
Ti2 (0.500, 0.000, 0.250)
Ti3 (0.500, 0.500, 0.500)
Ti4 (0.000, 0.500, 0.750)
O1 (0.000, 0.000, 0.213)
O2 (0.000, 0.000, 0.787)
O3 (0.500, 0.000, 0.463)
O4 (0.500, 0.000, 0.037)
O5 (0.500, 0.500, 0.713)
O6 (0.500, 0.500, 0.287)
O7 (0.000, 0.500, 0.963)
O8 (0.000, 0.500, 0.537)

Table C.2: Coordinates of the atoms in a unit cell of anatase titanium dioxide
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