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Transition metal alloys are an important class of materials in heterogeneous 

catalysis due in no small part to the often greatly enhanced activity and selectivity they 

exhibit compared to their monometallic constituents. A host of experimental and 

theoretical studies have demonstrated that, in many cases, these synergistic effects can be 

attributed to atomic-scale features of the catalyst surface. Realizing the goal of 

designing—rather than serendipitously discovering—new alloy catalysts thus depends on 

our ability to predict their atomic configuration under technologically relevant conditions. 

This dissertation presents original research into the development and use of 

computational tools to accomplish this objective. 

These tools are all based on a similar strategy: For each of the alloy systems 

examined, cluster expansion (CE) Hamiltonians were constructed from the results of 

density functional theory (DFT) calculations, and then used in Metropolis Monte Carlo 

(MC) simulations to predict properties of interest. 

Following a detailed description of the DFT+CE+MC simulation scheme, results 

for the AuPd/Pd(111) and AuPt/Pt(111) surface alloys are presented. These two systems 

exhibit considerably different trends in their atomic arrangement, which are explicable in 

terms of their interatomic interactions. In AuPd, a preference for heteronuclear, Au-Pd 
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interactions results in the preferential formation of Pd monomers and other small 

ensembles, while in AuPt, a preference for homonuclear interactions results in the 

opposite. AuPd/Pd(100) and AuPt/Pt(100) were similarly examined, revealing not only 

the effects of the same heteronuclear/homonuclear preferences in this facet, but also a 

propensity for the formation of second nearest-neighbor pairs of Pd monomers, in close 

agreement with experiment. Subsequent simulations of the AuPd/Pd(100) surface suggest 

the application of biaxial compressive strain as a means increasing the population of this 

catalytically important ensemble of atoms. A method to incorporate the effects of 

subsurface atomic configuration is also presented, using AuPd as an example. This 

method represents several improvements over others previously reported in the literature, 

especially in terms of its simplicity. Finally, we introduce the dimensionless scaled pair 

interaction, whereby the finite-temperature atomic configuration of any bimetallic surface 

alloy may be predicted from a small number of relatively inexpensive calculations. 
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Chapter 1: Introduction 

Heterogeneous catalysis is essential to an estimated 20% of all industrial output1 

and also plays a pivotal role in a host of current and emerging energy technologies such 

as polymer electrolyte membrane fuel cells2,3 and photocatalytic water splitting4,5. 

Despite their prevalence, the mechanistic details of how particular catalysts actually work 

are frequently unknown, and the process of developing new catalysts remains costly and 

often owes as much to chance as it does to physical insight. Uncovering the principles 

that govern the catalytic properties of materials is thus an important research activity and 

a necessary first step toward the ultimate goal of designing new catalysts. 

Transition metal alloys are one class of materials that has garnered enormous 

attention in this regard. Alloys often exhibit catalytic properties that are remarkably 

superior to those of their pure constituent metals, suggesting the enticing possibility of 

improving or even creating entirely new functionality in metal catalysts by purposefully 

altering their composition. 

A combination of experimental and theoretical efforts has shown that in many 

cases, the enhanced properties of alloys can be attributed to atomic-scale details of their 

surface structure. For instance, it has been proven experimentally that the addition of gold 

to palladium catalysts results in dramatically enhanced activity toward the direct 

synthesis of hydrogen peroxide6. Subsequent theoretical calculations demonstrated that 

surface sites composed of individual Pd atoms surrounded by Au were likely the key to 

this improvement7. At these sites, O-O bond scission, an unwanted side reaction which 

readily occurs on the pure Pd surface, is suppressed due to the comparatively low 

adsorption energy of the reaction products on Au. 
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The role played by surface Pd monomers in improving the activity and selectivity 

of AuPd catalysts toward H2O2 synthesis is an example of an ensemble effect8-11, defined 

as an improvement in catalytic properties that arises from the presence of a particular 

geometric arrangement of surface metal atoms. Ligand effects—improvements due to 

modifications to the surface electronic structure of an alloy because of dissimilar metal-

metal interactions—have proven to be important in other instances. Clearly, 

understanding and taking advantage of these kinds of connections between the surface 

structure and surface chemistry of alloys will require detailed knowledge of their atomic 

configurations. This is the central motivating concern of the research presented in this 

dissertation. In each of the following chapters, a different aspect of my inquiry into the 

atomic configuration of alloy catalysts is reported. 

A detailed description of the simulation schemes that were used in this work is 

offered in Chapter 2. These are in all cases based ultimately on density functional theory 

(DFT), a quantum mechanical modeling method. Due to the relatively high 

computational cost of DFT calculations, extensive use was made of Ising-like models of 

alloy energetics known as cluster expansions (CE), which are many orders of magnitude 

faster and less memory intensive. The CEs were constructed from the results of DFT 

calculations, and then incorporated into simulations based on the Metropolis Monte Carlo 

algorithm in order to predict the finite-temperature, equilibrium properties of alloys. 

Chapter 3 reports the use of this scheme to examine and compare the atomic 

configuration of AuPt/Pt(111) and AuPd/Pd(111) surface alloys. In particular, the MC-

predicted size and shape distributions of contiguous Pt and Pd ensembles are presented 

for a range of compositions and temperatures, and these results are explained in terms of 

the differing interatomic interactions present in each alloy. Through the use of electronic 

structure calculations, it was found that in AuPt, homonuclear, Pt-Pt interactions are 
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favored over heteronuclear, Au-Pt interactions, while in AuPd the opposite is true. 

Accordingly, the Monte Carlo simulations showed that Pd prefers to form small, isolated 

ensembles with extended shapes, and Pt prefers to agglomerate and form larger 

ensembles with compact shapes. 

Results from simulations of AuPd and AuPt surface alloys in the (100) 

crystallographic facet are reported in Chapter 4. As in the (111) surface, a preference for 

heteronuclear interactions in the AuPd surface led to an increased number of small Pd 

ensembles, and the reverse occurred in AuPt. A tendency for Pd monomers to form 

second nearest-neighbor pairs was also identified. Pairs of Pd monomers have been 

observed experimentally by the Goodman group, and the MC simulation results are in 

remarkable agreement with statistics derived from their STM images of the bulk 

AuPd(100) surface. Second nearest-neighbor pairs of Pd monomers have been identified 

as the active ensemble in vinyl acetate synthesis on the AuPd(100) surface, and soon-to-

be published work by the Hwang research group also shows that they may promote the 

oxygen reduction reaction, as well. 

The effects of biaxial strain on the arrangement of atoms in AuPd(100) are 

presented in Chapter 5. Application of 2% compression was found to heighten the 

preference for heteronuclear Au-Pd interactions, and 4% tensile strain to reduce it. The 

tendency toward formation of monomer pairs also increased under compression. One 

consequence is that c(2×2) ordering was found to persist up to significantly higher 

temperatures in the compressed surface than in either the strain-free or tensile strain 

cases. An electronic structure analysis that linked strain and atomic arrangement in the 

AuPd/Pd(100) surface to characteristics of its d-band electron density of states is also 

presented. 
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Chapter 6 describes the development and application of a methodology for 

predicting surface segregation and atomic configuration in surface terminated bulk alloys. 

Once again, the approach is based on DFT, the cluster expansion method, and Monte 

Carlo simulations; this time, however, in the grand canonical ensemble. Issues pertaining 

to training set and cluster expansion construction in this system are addressed, and the 

approach is shown to be an improvement over others reported in the literature, 

particularly in terms of reduced complexity. In addition, a shortcoming in the Direct 

Exchange Monte Carlo method of performing simulations in the grand canonical 

ensemble is identified. 

In Chapter 7, the topic of surface alloys is once again taken up, but with a slightly 

different focus. In the work reported in earlier chapters, cluster expansions were 

developed with the goal of closely matching DFT predictions. This is what enabled 

distinguishing between the three strain cases in Chapter 5 and the close correspondence 

between experiment and the simulation results presented in Chapter 4. Unfortunately, as 

will be explained in Chapter 2, this approach relies on the iterative construction of a 

relatively large “training set” of computationally expensive DFT calculations. Predicting 

the atomic configuration of surface alloys composed of more than a handful of separate 

transition metal pairs—for a high-throughput theoretical catalysis study, for example—

would thus be impractical. To address this concern, a strategy based on first nearest-

neighbor pair interactions and a restricted DFT training set is described, as is its 

application to several bimetallic surface alloys. As will be shown, limiting interactions to 

first nearest-neighbor pairs provides the additional benefit of reducing the canonical 

ensemble description of all bimetallic surface alloys to a single dimensionless parameter, 

termed the scaled pair interaction. 
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Chapter 2: Methodology 

2.1 INTRODUCTION 

This chapter describes the methodological approaches used in the remainder of 

this dissertation. In the first section (2.2), a brief review is given of density functional 

theory (DFT), which is a means of efficiently solving the Schrödinger equation. While 

DFT is the tool of choice for a wide variety of theoretical investigations of materials and 

even chemistry, it remains too computationally expensive to apply to many problems 

directly. Hence, in the second section (2.3), the cluster expansion (CE) method is 

described. The CE method is used to construct highly accurate and computationally 

efficient Hamiltonians for use in substitutional, lattice-based systems. The cluster 

expansions developed in this work are all based on the results of DFT calculations and in 

that light can be viewed as “extending” the reach of DFT. The CE method formalism is 

discussed, as well as its specific application to a few of the systems considered later. In 

the final section (2.4), the Metropolis Monte Carlo algorithm for estimating finite-

temperature, equilibrium properties is reviewed, including the original proof provided by 

Metropolis et al. in their seminal paper. 

2.2 DENSITY FUNCTIONAL THEORY 

Since Walter Kohn12 and John Pople13 were jointly awarded the Nobel Prize in 

Chemistry in 1998 for their contributions to the development of density functional theory 

(DFT), its use has continued to increase rapidly, as shown in Figure 2.114. Because the 

majority of the calculations that will be presented in the following chapters are based 

ultimately on DFT, a brief overview of its theoretical underpinnings will be provided in 

this section. For the general outline and many of the references, I am indebted to the 
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authors of Refs. 15 and 16. Emphasis will be placed on the implementation in the 

Vienna Ab initio Simulation Package (VASP)17-20, which was used for all calculations. 

2.2.1 The Schrödinger equation 

The time-independent Schrödinger equation 

 Hψ = Eψ (2.1) 

is a partial differential equation which that relates the stationary states or wavefunctions, 

ψ, of a system characterized by a Hamiltonian, H, to their corresponding energies, E. In 

the context of materials science or chemistry, the primary systems of interest are 

collections of atoms that make up molecules or condensed matter. In systems such as 

these, ψ depends on the coordinates in three dimensional space of every electron and 

nucleus. That is, in a collection of M atoms that possess a total of N electrons, ψ =	ψ���, � , ⋯�" , #�, # , ⋯ , #$�, where R and r are position vectors of the atomic nuclei 

Figure 2.1. The number of papers returned by a Web of Knowledge 
search for the term DFT by year. Reproduced from Fig. 1 in Ref. 14. 
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and electrons, respectively. However, since the mass of a nucleon is approximately 1836 

times larger than the mass of the electron21, the electrons respond much more rapidly to 

changes in their surroundings than do the nuclei. This leads to the so-called Born-

Oppenheimer approximation22,23, in which the electrons are treated separately from the 

nuclei, and the ground-state energy is considered a function of nuclear position, 

E(��, � , ⋯ , �"). 

Equation (2.2) shows a still quite general form of the Schrödinger equation which 

makes more explicit the Hamiltonian for a system of electrons and nuclei interacting 

under the Born-Oppenheimer approximation. 

 

 %− ℏ 2( ) ∇+ 
$

+,� + ) -(#+) + ) ) ./#+ , #01+2�
0,�

$
+,�

$
+,� 3 ψ = Eψ (2.2) 

The first term in the brackets is the kinetic energy of each electron, and the second 

and third terms are the potential energies due to electron-nuclei interactions and electron-

electron interactions, respectively. The form of the electron-nuclei interaction term 

depends on the system in question (in particular, the positions and atomic numbers of the 

nuclei), but /#+ , #01 = 45
6#72#86 , the Coulomb interaction between electrons i and j. It is 

also this latter term that prevents solution of the Schrödinger equation by separation of 

variables, making its analytical solution an intractable many-body problem in all but the 

very simplest cases, such as the hydrogen atom. 

2.2.2 Hohenberg, Kohn, and Sham 

In 1964, Hohenberg and Kohn24 laid the groundwork for density functional 

theory by proving two theorems. These theorems are restated in plain language by Sholl 

and Steckel15 as: 
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1. “The ground-state energy from Schrödinger’s equation is a unique functional of 

the electron density” 

2. “The electron density that minimizes the energy of the overall functional is the 

true electron density corresponding to the full solution of the Schrödinger 

equation.” 

The first theorem of Hohenberg and Kohn means that the ground-state energy 

(and other properties) of a system of interacting electrons and nuclei is known if the 

electron density, n(:), is known. Since n(:) is only a three-dimensional function, this 

is in principle a vast improvement over attempting to directly calculate E and ψ, a 

function of 3N coordinates. 

Although the exact form of the functional E;<(#)= is unknown, the second 

theorem provides some direction in how to go about finding the true, ground state <(#). 

Given an assumed, approximate energy functional, successively better (in the sense that 

they result in lower energy) guesses for <(#) move us closer and closer to the ground 

state energy. This is known as the variational principle. 

The following year, Kohn and Sham25 demonstrated that it is possible to replace 

the original many-body problem posed by the Schrödinger equation with a system of 

non-interacting, single-electron equations. Their approach was based on first writing the 

electron density as a sum over occupied single-electron orbitals 

 

 
n(:) = ) >+∗(#)>+(#)+  

(2.3) 

Then writing the energy in terms of n(:), 
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@AB;<(#)= = CD;<(#)= + @E;<(#)= + @FG;<(#)=+ H -(#)<(#)I# + @JJ (2.4) 

In this equation, CD;<(#)= is the sum of the kinetic energy contributions of each 

non-interacting electron, which equals − ℏ5
 K ∑ M >+∗(#) ∇ ψ+(:)dr. The Hartree energy, 

@E;<(#)= = � M M O(#)O(#P)|#2#P| I#RI#, accounts for a portion of electron-electron interactions. 

The interaction of electrons with the external potential (including the atomic nuclei) is 

defined by -(#), and the nuclei-nuclei interactions are equal to @JJ. The final term in eq. 

(2.4) is the exchange-correlation energy, @FG;<(#)=. This term accounts for all the 

effects not included in the other terms. The formulation of @FG;<(#)= is an ongoing 

topic of research and will be discussed further in the next section. 

Kohn and Sham minimized eq. (2.4) by taking the functional derivative with 

respect to n(:), in accordance with Hohenberg and Kohn’s second theorem. The result is 

a system of equations of the form 

 

 S− ℏ 2( ∇ + -(#) + -E(#) + -FG(#)T >+(#) = U+>+(#) (2.5) 

In eq. (2.5), the third term, -E(#), is the Hartree potential and is equal to V M O(#P)|#2#P| I#R. It describes the Coulomb interaction between electron i and the combined 

density of all electrons in the system and includes an erroneous self-interaction energy 

between the electron and itself. -FG(#) is the functional derivative of the exchange-

correlation energy. 

 

 -FG = W@FGW<  (2.6) 
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The system of equations represented by eq. (2.5) explicitly contains both n(:) 

and >+(#) and must be solved in a self-consistent fashion using an iterative procedure. 

A set of >+(#) or, equivalently, n(:) is “guessed.” V(#), -E(#), and -FG(#) for this 

density are calculated. Then, the system of Kohn-Sham equations is solved for U+ and 

>+(#). These >+(#) are used to compute n(:). If this n(:) is similar enough to the 

“guessed” n(:), convergence has been achieved. Otherwise, a new n(:) is constructed 

and the process is repeated. Figure 2.2 shows an outline of this procedure.  

2.2.3 The Exchange-Correlation Functional 

As stated above, the exchange-correlation energy comprises all the many-body 

effects that are not accounted for by the other terms in eq. (2.5). One such effect, the 

exchange interaction, arises from the Pauli exclusion principle; no two electrons may 

occupy the same quantum state simultaneously, and so they are forced spatially apart, 

Figure 2.2. Flowchart for iterative solution of the 
Kohn-Sham equations. 
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lowering their Coulombic repulsion. Problematically, the true form of @FG(<)  is 

unknown, which has led to the development of many competing “functionals.” 

The first functionals were based on the local density approximation (LDA). In the 

LDA, it is assumed that YFG;<(#)= at a point r in the system of interest can be 

approximated by its value in a homogeneous electron gas that has the same density <(#). 

The exchange energy can be rigorously derived in this system26,27 as 

 

 VFZ[K(<) = − 34 ]3̂_�/` <a/` (2.7) 

On the other hand, the correlation energy of the homogeneous electron gas is 

known exactly only in the high and low density limits27. The results of quantum Monte 

Carlo simulations are interpolated at intermediate values. 

Functionals based on the generalized-gradient approximation (GGA) incorporate 

local gradient information, instead of assuming a homogeneous electron gas. That is, 

 

 @FG;<(#)= = H I#	b[<�#�, ∇<�#�] (2.8) 

 

The functional used throughout this work is a GGA functional, and was 

developed by Perdew and Wang in 199128,29. It is fittingly named PW91. 

2.2.4 Basis Set 

Solutions of the Schrödinger equation in a periodic system must be in Bloch 

form30 

 

 >c(#) = exp	�ig ∙ :�hc�#� (2.9) 
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In eq. (2.9), hc(#) is a periodic function with the same translational symmetry as 

the underlying lattice (hc(#) = 	 hc�# + i�, where T is any lattice vector), and k is vector 

with units of reciprocal length that labels >c(#). 

In VASP, hc(#) is expanded in terms of a set of planewaves, which compose the 

basis set, 

 

 
hc(#) = ) jkexp	�lk ∙ #�k  

(2.10) 

The sum in this expression is over lattice vectors in reciprocal space, m = n�op +n oq + n`or, where the basis vectors os are related to the real-space unit cell basis 

vectors ts 
 

 os = 2^ tu × tcts ∙ tu × tc (2.11) 

Hence, 

 

 
>c(#) = ) jkwcexp	[l�k + c� ∙ #]k  

(2.12) 

 

One variable that is crucial to the accuracy and efficiency of the calculation is the 

number of planewaves in the sum. This is controlled via the cutoff energy31, 

 

 @xyz = ℏ 2(k{|}  (2.13) 

 

The planewaves defined by eq. (2.10) must meet the criterion k + c < k{|}. 
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2.2.5 Pseudopotentials 

Although strictly speaking, pseudopotentials are not formally a part of density 

functional theory, they are in practice almost always used in DFT calculations, and 

therefore are worthy of mention. 

Pseudopotentials address two related concerns in quantum chemical calculations. 

First, it is chiefly the valence electrons that participate directly in chemical bonding, and 

the core electrons, which are typically much lower lying in energy, are not strongly 

affected by the environment surrounding the atom. Even so, core electrons must still be 

explicitly simulated in an “all electron” calculation. Second, the core electron wave 

functions vary rapidly near the nucleus. Representing these fluctuations correctly requires 

Figure 2.3. Comparison between pseudo and all-
electron wavefunction and between pseudopotential 
and all-electronic potential. Taken from Ref. 32. 
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a high @xyz (that is, use of a larger basis set, or number of planewaves). In both cases, 

the cost of the DFT calculation is significantly increased, but for questionable benefit. 

Sholl and Steckel15 provide the following definition, the import of which is now 

easily understood: 

Conceptually, a pseudopotential replaces the electron density from a chosen set of 
core electrons [around a nucleus] with a smooth density chosen to match various 
important physical and mathematical properties of the true ion core. The 
properties of the core electrons are then fixed in this approximate fashion in all 
subsequent calculations; this is the frozen core approximation. 

The pseudopotential approach is illustrated schematically in Figure 2.332. In an all 

electron (AE) calculation, interaction of the electrons with the true potential -�� = �/� 

results in the fluctuating electron wave function Ψ��. The pseudopotential -�D4y�[ has 

been carefully designed to result in a wavefunction Ψ�D4y�[ that coincides with Ψ�� 

beyond the cutoff radius rx. 

2.3 THE CLUSTER EXPANSION METHOD 

2.3.1 Introduction 

The energetics of a system can provide important insight into its configuration 

and, consequently, its properties. For example, we may be interested in finding the 

minimum-energy state of a multicomponent material, or in predicting finite-temperature 

thermodynamic averages of its properties. This presents a practical difficulty. Even if we 

stipulate that the systems to be considered are well-represented by crystal lattices, N 

lattice sites may be occupied by M constituents in MN unique ways, neglecting 

symmetry. Any one of these may in principle be the ground state, and all of them 

contribute to some degree to the system’s partition function. Except for small systems 

that have few components, directly applying DFT or any other quantum-mechanics based 

approach is out of the question. Indeed, it is somewhat unusual to encounter a DFT-based 
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study in the literature in which more than a few dozen small configurations have been 

examined. 

One possible alternative is to use an appropriate empirical potential, such as the 

Stillinger-Weber potential33 or the Embedded Atom Method34. In a potential, the total 

energy of an atomic configuration is written as a sum of the interactions between its 

atoms. The interactions are calculated using relatively simple functional forms which are 

written in terms of quantities such as interatomic separations and bond angles. They also 

depend on a set of parameters which are usually determined by fitting to some 

combination of experimental data and simulation results from higher level methods like 

DFT. 

One of the advantages to using potentials is that they impose few restrictions on 

the geometry of the atomic configuration; that is to say, potentials may be as readily used 

to model amorphous materials as crystalline ones. At first glance, this is an attractive 

feature, since even in lattice-based systems, local relaxations away from exact lattice 

points can significantly affect the relative stability of a configuration. On the other hand, 

since potentials “coarse-grain” the physics of bonding, they always involve compromises 

and tradeoffs between accuracy, simplicity, and transferability. This shortcoming is 

reflected in the fact that although many researchers have attempted to generate libraries 

of general purpose potentials and parameters for an assortment of elements35-38 would-be 

users often seem to find it necessary to spend considerable time and effort re-optimizing 

them prior to use39-41. Another strike against potentials is that while they do allow explicit 

local relaxation of the lattice, it is just as accurate to say that they require it, and 

optimizing the geometry of a single configuration can require calculating energies and 

gradients at dozens of intermediate steps. Moreover, calculating thermodynamic averages 
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at just a single condition (e.g. constant NVT) typically requires computing the (relaxed) 

total energies of ~104 configurations per lattice site. 

2.3.2 Formalism 

The cluster expansion (CE) method is a frequently used technique42-49 to model 

the dependence of energy on configuration in lattice-based materials and systems. In 

most cases, accuracy comparable to DFT can be achieved. CE Hamiltonians also possess 

many other qualities that recommend their use over potentials for this class of problems, 

as will be discussed below. 

To construct a cluster expansion, every site i in a lattice is assigned an occupation 

variable σ+ which takes an integer value according to the species at the site. In a binary 

alloy of species A and B, σ+ = +1 or -1, according to whether site i is occupied by A or 

B. The dependence of any property (usually, but not necessarily, energy) on the 

occupancy of the lattice may now be expanded50 in terms of polynomials of these σ+. 
The occupation variables are sometimes also referred to as “spins,” probably in reference 

to the similarities between the cluster expansion method and the Ising model. 

For a two-component system, the polynomials are simply products of the 

occupation variables themselves. Using the CE method, the total energy of a binary 

system with N lattice sites [E(�), � = 	 �σ�, σ , ⋯ , σ$�] may be written 

 

 
E��� = Y� ∙ � +)Y+�++ +)Y+0�+�0+�0 + ) Y+0��+�0�� +⋯+�0��  

(2.14) 

where Jo, Ji, Jij, and Jijk are expansion coefficients [called effective cluster interactions 

(ECIs)] for empty, point, and all pair, and three body “clusters” of occupation variables. 

The complete expansion contains all clusters allowed by the symmetry and extent of the 

lattice, but in practice it can be truncated to just a few of the most important terms 
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without unacceptable loss of precision. The procedure to choose the clusters and pick 

parameters is outlined in section 2.2.3. 

Figure 2.4 shows a CE Hamiltonian developed for the body-centered cubic Mo-Ta 

alloy examined in Ref. 46. The upper part of the figure contains ECIs for the pairs and 

multi-body clusters included in the expansion, and the lower panel shows the multi-body 

clusters. Application of this CE requires (1) visiting every site in the lattice in order to (2) 

add up the products of the σ+ for each pair and multi-body cluster, as in eq. (2.14), while 

(3) taking care not to “double count” interactions and also (4) properly taking the 

symmetry of the lattice into consideration. These items will be elaborated in the next 

section.  

Figure 2.4. Upper panel: Symmetry-weighted pair 
and many-body interactions obtained in the 
cluster expansion of Mo-Ta. Lower panel: 
definition of the figures. From Fig 1 in Ref 46. 
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Based on the description of potentials and the form of eq. (2.14), some of the 

computational advantages of cluster expansions may now be apparent. Using CE 

Hamiltonians mostly involves multiplying and adding integers, while nearly all potentials 

employ several transcendental functions, which are several orders of magnitude more 

expensive to compute. Also, when potentials are used, geometry optimization is usually 

necessary to account for energy changes due to local relaxations. However, there is no 

reason in principle that this effect cannot be folded into the CE itself by cluster expanding 

the energies of already-relaxed configurations. Indeed, this is nearly always what is done. 

Another advantage of CEs is that, compared to potentials, they make few prior 

assumptions about the nature of bonding in a material. In this way, the problem posed by 

unanticipated physical phenomena (for example, coulomb interactions due to charge 

transfer in metal alloys) which stymies many potentials is side-stepped by cluster 

expansions. 

2.3.3 CE Implementation 

2.3.3.1 Introduction 

This section will explain, in some detail, several considerations related to 

implementing a cluster expansion in a particular lattice. It is intended not only to convey 

the methods used in subsequent chapters, but to be used as a primer by those who may 

wish to produce their own cluster expansion-based codes. 

Particular attention will be given to the fcc(100) and fcc(111) surface facets, 

shown in Figure 2.5. The (100) surface is a square lattice (space group p4m). Its primitive 

unit cell is defined by the orthonormal basis vectors shown in Figure 2.5(a). The (111) 

surface, a hexagonal lattice, belongs to one of two space groups, depending on whether 

the subsurface layer of atoms is taken into consideration. The darkened 3-fold hollow 
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sites in Figure 2.5(b) indicate the presence of a subsurface atom at that location in the real 

(111) surface, and are conventionally referred to as hcp hollows. Hollow sites that lack a 

subsurface atom in the (111) surface are called fcc hollows. When fcc and hcp hollows 

are distinguished, the space group of the surface facet is p3m1, and a 3-fold rotation axis 

passed through each lattice site. If, on the other hand, the effects of the subsurface layer 

are neglected, the (111) surface facet has the full symmetry of the hexagonal lattice 

(including a 6-fold rotation axis), and belongs to space group p6m. 

2.3.3.2 Representation of the (100) and (111) lattices 

Since, in the cluster expansion, energy depends only on the occupation of lattice 

sites and the effects of local relaxations are lumped into the ECIs, it is unnecessary to 

keep track of the precise location of each atom in three dimensional space. We need only 

maintain the “spin” (+1 or -1) at each lattice position. The primitive unit cells of both the 

(100) and (111) surface contain only a single lattice point, so these can be efficiently 

Figure 2.5. Schematics of the (a) fcc(100) crystallographic facet and the (b) 
fcc(111) facet. Atoms in the subsurface of fcc(111) are also shown to distinguish 
the hcp and fcc 3-fold hollow sites. 
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stored in two-dimensional arrays, the zero-based indices of which equal the integer 

components of position vectors. 

First, the basis vectors of the (100) (square) surface may be written as column 

vectors in a matrix. 

 

 � = ;�p �q=; 	� = �1 00 1� (2.15) 

And for the (111) (hexagonal) surface as 

 

 � = [�p �q]; 	� = �1 1 2�0 √3 2� � (2.16) 

The position vector r of any atom in the (100) surface may then be written 

 

 � ∙ : = ���p + � �q (2.17) 

where the components of r are integers; hence the occupation of all sites can be stored in 

an integer-indexed 2D array, e.g. lattice[r1][r2]. The same is of course true of the 

(111) surface. 

2.3.3.3 Symmetry-equivalent clusters in (100) and (111) 

The primary challenge of implementing a cluster expansion-based code is 

developing an efficient strategy to account for every instance of a cluster (e.g. the first 

nearest-neighbor pair cluster) permitted by the space group of the underlying lattice. For 

simple clusters, like pair interactions, it is relatively easy to think of “hard coded” 

schemes to accomplish this task, but as the clusters grow in size and complexity this 

approach becomes cumbersome, error-prone, and difficult to maintain. A flexible, 
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automated scheme that accepts a representative of any valid cluster as input and generates 

the full, symmetry-equivalent set would be much preferred. 

A few definitions make discussion more convenient. The technical, group-

theoretic term for the collection of all symmetry-equivalent instances of a cluster in the 

lattice is the orbit51,52. The individual instances themselves (that is, a particular nearest 

neighbor pair) will be referred to as figures. Equation (2.14) can be more compactly 

stated with these definitions in mind. 

 

 
E(�) = ) Y�Φ�(�)�  

(2.18) 

where 

 

 
Φ�(�) = ) � ��,++�  

(2.19) 

The sum in eq. (2.19) is over the figures in the orbit of cluster �, and product is 

over the sites in the  th figure. Φ� is referred to as a cluster function. Φ� for the 

empty cluster (Φ�) is by definition equal to the number of lattice sites. 

Developing a simulation to apply eq. (2.18) to a lattice can be broken down into 

two intertwined problems. The first is identifying an algorithm and set of data structures 

to efficiently calculate cluster functions in the context of the type of simulations to be 

performed. The second is the expansion of a cluster into all the figures in its orbit; that is, 

populating the aforementioned data structures.  

2.3.3.4 Algorithm and Data Structures 

One approach to the first problem is to construct a set of figures for each cluster in 

such a way that after the set has been individually applied to every site in the lattice, 

every figure in that cluster’s orbit is included only once. 
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For example, for the nearest neighbor pair cluster in the (100) surface, the list of 

figures generated by this strategy might be {(1, 0); (0, 1)}, with each ordered pair in the 

set representing a vector in the S basis [eq (2.15)]. The vectors are the positions of one 

site in a nearest neighbor pair relative to the site that the list is currently being applied to. 

(See Figure 2.6.) The other two nearest neighbor pairs that the current site belongs to, 

those formed with sites at (-1,0) and (0,-1), would be included in the sum when those 

sites were visited. 

Using this strategy, it is very easy to calculate the energy of the lattice by iterating 

over every site. On the other hand, it is quite inconvenient to calculate the change in 

energy due to swapping the spin (from +1 to -1 or vice versa) of a site. This is so because 

a swap implies that the products of all of the figures that a site is part of need to be 

recalculated, but the list of figures is incomplete by design. Since calculating the energy 

Figure 2.6. First nearest-neighbor pairs in fcc(100). 
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change due to a swap is a very frequent operation in Monte Carlo simulations, this is 

perhaps a poor strategy. 

This problem is alleviated if the list contains every figure (again, in relative 

coordinates) that an individual site participates in, rather than a truncated list designed to 

avoid duplicates. For the nearest neighbor pair, this would be {(1,0); (0,1); (-1,0); (0,-1)}. 

If site i is swapped, the change to the nearest neighbor pair cluster function is computed 

by iterating over the list of figures 

 

 
∆Φ = (�+,O4¡ − �+,[¢�) ∙ ) � ��,00£+�  

(2.20) 

In this case, the sum is over the γ figures in the list, rather than over the whole 

orbit, and the product is over the unchanged sites. The same is true for all clusters in the 

expansion, and the change in the energy is obtained from summing over the changes in 

the cluster functions multiplied by their ECIs. ( ∆E = ∑ Y� ∙ ∆Φ�� ). Note that when two 

sites that are part of the same figure are changed simultaneously (as when they are 

swapped with one another in a Monte Carlo move), it is necessary to compute the effects 

of their changes sequentially. 

Although constructing lists in this fashion greatly facilitates calculating changes 

in energy, it introduces the problem of multiple counting when the energy is initially 

calculated; since every figure that a site participates in is counted when that site is visited, 

the same figure is counted again when the other sites in the figure are visited. Correcting 

for this is as simple as dividing each cluster function by the number of sites in each of its 

figures, (� 

 

 
E(�) = ) Y� Φ�(�)(��  

(2.21) 
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However, the efficiency of the calculation of E is lowered relative to the first 

strategy, which may be important if the simulation requires a large number of fresh 

energy calculations. Since Monte Carlo simulations typically rely on ∆E calculations, 

the full-list strategy is still the preferred one. 

2.3.3.5  Generating Figures 

Regardless of the lattice, generating the complete list of figures that a site 

participates in follows roughly the same procedure. Briefly: The positions of (� − 1 

sites of a single, representative figure are read in. The (�th site is assumed to be the 

origin, (0,0), and the positions of the other sites are given relative to it. A series of 

symmetry operations of the lattice is applied to the figure to reorient it about the origin, 

and the resulting figures are added to the list. Additional figures are generated by shifting 

each of these figures to place each of their sites at the origin. The final step is removal of 

the large number of duplicates that these operations typically produce. 

The detailed procedure for the fcc(111) surface, including hcp and fcc hollows, is 

described in Figure 2.7. Two symmetry operations are used to generate new orientations 

of clusters in this surface: Reflection of the input figure across ;11= (the line passing 

through the origin, rotated ^ 6�  relative to the horizontal) and rotation of the resulting 

pair of figures about the 3-fold axis at the origin. (When the subsurface is neglected, the 

axis is 6-fold). 

For the (100) surface, the input figure is reflected across the x-axis, then both the 

resulting figures are reflected across the y-axis to produce a total of four. These four are 

rotated (and copied) about the 4-fold axis at the origin. 

The transformation of the coordinates of each site under reflection can be 

obtained by inspecting the lattice: in the (111) case, the reflection across [11] results in 
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the transformation (r1,r2)→(r2,r1). In the (100) surface, reflection across the x- and y-axis 

is accomplished by sign changes. The rotations are performed using rotation matrices of 

the form53 

 

 �¦ = �j§¨© −¨l<©¨l<© j§¨© � (2.22) 

The rotated vector r’ is the result of the matrix multiplication �¦#. Vectors in the 

(111) surface must undergo a change of basis before they are rotated, and then be restored 

to the H [eq. (2.16)] basis52. 

 :R = ª2��¦ª ∙ # (2.23) 

 :R = �′¦ ∙ # (2.24) 

For the rotations about the 3-fold and 6-fold axes, 

 �′q¬/r = �−1 −11 0 � (2.25) 

 �′¬/r = �0 −11 1 � (2.26) 
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Figure 2.7. Procedure to generate an orbit of figures from a representative input 
figure in the fcc(111) surface. 
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2.3.4 Cluster Selection 

Most CE Hamiltonians reported in the literature are constructed using DFT-based 

training sets of (configuration, energy) pairs. This is also my approach, although 

examples of fitting to experimental data also exist54. 

Determining how best to truncate the expansion (i.e. deciding which clusters to 

include) is one of the chief difficulties of constructing a CE. If too few clusters are 

included, the expansion will be a poor fit to the training set. On the other hand, if too 

many clusters (or the wrong clusters) are included, an expansion with poor predictive 

ability may result due to overfitting. 

Cross validation (CV) has been proposed to detect and prevent overfitting, while 

also providing a measure of the predictive ability of a CE model55. The optimal set of 

clusters with respect to a given training set of DFT results is obtained by minimizing the 

CV score (ξ) which is given by: 

 

 ­ = 1� )®@¯°±(O) − @G�(O)² $
O,�  (2.27) 

where @¯°±(O)  is the DFT energy of the nth of N total configurations in the training set, 

and @G�(O) is a prediction of the same energy by a CE with a particular set of clusters. The 

ECIs used in the calculation of @G�(O) are obtained (by minimization of the squared error) 

for a subset of the full training set that excludes the nth configuration, so that @¯°±(O) −
@G�(O) is a genuine prediction error. Consequently, the CV score of a truncated CE is a 

sum over N prediction errors obtained from N independent fittings of its associated ECIs. 

2.3.4.1 CV Minimization 

Identifying the set of clusters that minimizes the CV score is itself a challenging 

problem. In the fcc lattice, even if interactions are limited to the third nearest-neighbor 
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distance, there are a total of 60 different clusters which can be combined in different 

ways to give 260 possible cluster expansions56. Candidate solutions to the CV score 

minimization problem can be encoded as binary sequences, where a 1 indicates inclusion 

of a cluster and a 0 indicates exclusion. This is somewhat reminiscent of a set of genes, 

which is perhaps what has prompted some to employ genetic algorithms56. Simulated 

annealing57-59, which we have used in our published work, seems to give satisfactory 

results, as well. 

Simulated annealing is a global optimization technique which is conceptually 

based on the actual metallurgical process of annealing. By heating a metal sample to high 

temperature, then permitting it to cool slowly, its atoms have the opportunity to overcome 

kinetic barriers trapping them in local minima and assume their thermodynamically 

preferred configuration. Similarly, in simulated annealing, candidate solutions to an 

optimization problem are permitted to travel “uphill” and out of local minima in order to 

more fully explore the problem space. The candidate solution in the current iteration is 

randomly changed to produce a new one (in our case, a cluster’s “bit” is flipped on or 

off), the objective function is computed (the CV score, ξ), and then the ratio of the new 

solution’s Boltzmann factor to that of the old one is used to determine whether the move 

is accepted. A randomly generated number [0..1] on the uniform distribution is compared 

to 

 P = V2(´µ¶·2´¸¹º)∙» (2.28) 

and the move is accepted if P is smaller. P is of course greater than unity when 

­O4¡ < ­[¢� , so movements further down into minima are always accepted. The 

parameter ¼ is a fictitious inverse temperature, and is adjusted from some initial value 

on a schedule as the simulation proceeds. At the beginning of the simulation, ¼ is small, 

implying a high temperature, which permits easy escape from local minima and 
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exploration of the space. As ¼ is slowly increased, the simulation becomes trapped in 

what is hopefully the global minimum. The number of iterations, the initial and final 

values of ¼, and the cooling schedule (which need not be simply linear in the iteration 

number) can significantly affect the outcome of the optimization, and it is typically 

necessary to explore several combinations of these parameters to achieve confidence in 

the result. 

 A pair of hierarchical rules has also been proposed, that (1) if an n-body cluster 

is included, then include all n-body clusters of smaller spatial extent, and (2) If a cluster 

is included, include all its subclusters60. In unpublished work, we have used these rules to 

construct tree-like graphs of cluster dependencies which greatly the reduce the number of 

possible cluster expansions, in some cases to the point where it becomes practical to 

locate the guaranteed global minimum CV score by “brute force” enumeration of all 

permitted CEs. 

The CV score provides a criterion to judge the predictive quality of a CE with 

respect to a given training set, but it provides no assurance that the training set itself 

contains adequate information to construct a genuinely predictive model. Because the 

training set is finite, important clusters may be left out of the CE, or spurious clusters 

may be left in. However, recognizing that the reason for constructing a CE is often to 

predict likely (i.e. low energy) configurations suggests a method of reducing this risk: 

After constructing a CE, use it to predict ground-state configurations, which can then 

supplement the training set. In this way, the training set is iteratively expanded and the 

CE is refined, especially in terms of its ability to distinguish between energetically low-

lying configurations55,61.  

The overall scheme is presented in a flowchart in Figure 2.8. A training set is 

initialized with (configuration, energy) pairs from DFT calculations. These are used to 
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create a trial CE by minimizing the CV score. The trial CE is then used to predict 

minimum-energy configurations. If these configurations are not already present in the 

training set, their energies are calculated using DFT and they are included. If, on the other 

hand, all the minimum-energy configurations predicted by a trial CE are already present, 

it is considered to be fully converged and ready for use. 

Figure 2.8. Flowchart for the 
construction of cluster 
expansions. 
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2.3.4.2 ECI Fitting 

For each of the N terms in eq. (2.27), the ECIs of the cluster expansion being 

examined are fit to a portion of the training set which contains �D = � − 1 structures, 

so that the energy of the Nth can then be predicted. Each of these fits can be construed as 

a problem in quadratic programming62, that is, minimization of a function of the form 

 

 f(½) = t±¾ + 12 ¾±k¾ (2.29) 

Subject to zero or more inequality constraints 

 s(½) ≡ Á±¾ − o ≥ 0 (2.30) 

and zero or more equality constraints 

 

 s(½) ≡ ÁÃ±¾ − oÃ = 0 (2.31) 

To demonstrate that this is the case, we write the average of the squared errors 

between the DFT and CE-calculated energies of the �D surfaces of the training set: 

 

 U = 1�D )®@¯°±(O) − @G�(O)² $Ä

O,�  (2.32) 

Substituting eq. (2.18) for @G�(O), we have 

 

 U = 1�D ) Å@¯°±(O) − ) Y�Φ�(O)$Æ

�,� Ç
 $Ä

O,�  (2.33) 

The quantity in parentheses is then expanded, and the terms not involving 

unknowns (the ECIs) are moved to the left hand side. Also, all terms are multiplied by a 

factor of ½. 
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12 U �D − 12 )®@¯°±(O) ² $Ä

O,�
= 12 %) Y�Φ�(O)$Æ

�,� 3
 

− 12 ) @¯°±(O)$Ä

O,� ) Y�Φ�(O)$Æ

�,�  

(2.34) 

Because ε  is the only non-constant value on the left hand side, minimizing the 

right hand side also minimizes it. We rewrite eq. (2.34) in matrix form, which is seen to 

be the same as equation (2.29). 

 f(È) = 12 É±ÊË É + Ì±É (2.35) 

In this equation, J is the vector of ECIs, ÊË  is a matrix whose elements i,j equal 

 

 ΦË +,0 = ) Φ+(O)Φ0(O)$Ä

O,�  (2.36) 

And E is a vector whose elements i equal 

 

 E+ = − 12 ) @¯°±(O)$Ä

O,� Φ+(O) (2.37) 

Since ÊË  and Ì do not change, they can be pre-computed for each of the N 

partitions of the training set required by eq. (2.27). A number of free, open-source 

libraries exist for solving quadratic programming problems, such as the one by Di 

Gaspero and Moyer63, which is based on the algorithm of Goldfarb and Idnani64. 

In Ref. 62, Lerch et al. recommend three constraints, which they attribute to 

Garbulsky and Ceder65: 

 

|ΔÍ¯°±(�) − ΔÍG�(�)| < W�(�) 

6ΔÍ¯°±ÎBÏ (�) − ΔÍG�ÎBÏ(�)6 < W (�) 

6ΔÍ¯°±¢[¡4Dz(�) − ΔÍG�¢[¡4Dz(�)6 < W`(�) 

(2.38) 
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Where ΔÍ refers to the mixing enthalpy of the examined system. The first constraint 

ensures that the prediction of ΔÍ for every individual structure in the training set is off 

by no more than W� . The second and third constraints measure ΔÍ  relative to, 

respectively, the ground state line (GSL) and the lowest energy structure of the same 

composition. The purpose of the latter two constraints is to help maintain the relative 

energetic ordering of configurations. In this scheme, each value of W  can be set 

independently: 

 

 W��, ,`�(�) = W��, ,`�x[ODz exp Ð− ΔÍ¯°±¢[¡4Dz(�)ÑÒC Ó (2.39) 

This definition of W tightens the constraint for lower-energy structures, with the 

intention of preserving the energy hierarchy near the ground state at the expense of 

greater error in the higher energy predictions. The constraints are controlled by a pair of 

user-provided parameters, Wx[ODz and T. (Note that T is not the simulation temperature; 

it is input separately and controls only the extent to which the constraints are relaxed for 

higher energy structures.)  

The constrained minimum may of course be greater than the unconstrained, and 

accordingly the cross validation score for the same set of clusters also may be higher 

when constraints are applied. Experience suggests that expansions with a larger number 

of clusters appear to be affected in this way to a smaller degree, perhaps because they are 

able to satisfy the constraints more easily. This disparity leads in practice to the selection 

of larger expansions by the scheme in Figure 2.8 when constraints are applied than when 

not. In all cases I examined, the size of the cluster expansion depends very sensitively on 

Wx[ODz and T, with rapid increases occurring when either parameter approaches a certain 



 

 34 

threshold from above. Since it is unclear whether a CE that satisfies the constraints in 

eqs. (2.38) actually possesses greater predictive ability, they should be used only with 

caution. 

2.4 METROPOLIS MONTE CARLO 

In the canonical (NVT) ensemble, the expectation value of a property 〈Õ〉 of a 

thermally equilibrated system can be calculated by66 

 

 〈Õ〉 = ∑ Õ+exp	�−@+ ÑÒC�⁄+ �  (2.40) 

In the sum, which is over every configuration in the ensemble, Ei and Ai are, 

respectively, the energy and measured value of A of configuration i. The exponential is 

called the Boltzmann factor, and is the relative probability of selecting configuration i at 

random from the ensemble; hence, it serves as a weighting factor in the average. Z is a 

normalization constant called the partition function, which is obtained by summing the 

weights over the entire ensemble, Z = ∑ VÙÚ(− @+ ÑÒC)⁄+ . 

While for many systems there is no obvious, tractable way to directly calculate 

〈Õ〉 using this expression, a Monte Carlo (MC) algorithm developed by Metropolis et 

al.67,68 can be used to obtain a reasonable estimate. The algorithm has four main steps. 

1. The initial configuration (or the configuration from the previous iteration) is 

randomly changed to produce a new configuration. 

2. The difference in the energies of the two configurations is calculated. 

3. The probability of transitioning to the new configuration is determined using the 

ratio of their Boltzmann factors. 

 Û[¢�→O4¡ = exp	[−�@O4¡ − @[¢�� ÑÒC⁄ ] (2.41) 
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This probability is compared to a random number between 0 and 1. If the random 

number is smaller, transition is successful. The microstate from the previous 

iteration is discarded, and the new microstate is kept. Otherwise, the previous 

microstate is retained.  

4. Before the beginning of the next iteration, the properties of the configuration that 

was kept are calculated and accumulated. 

 

After a preset number of iterations over these four steps, the data collected in the 

fourth step is averaged over the number of iterations to yield ensemble averages. 

Metropolis et al. also provided a proof in Ref. 68 that the sequence of 

configurations produced by these four steps would tend to adopt the same distribution as 

the canonical ensemble; that is, the number of times any configuration i is visited in the 

simulation is proportional to the Boltzmann factor. For this reason, the unweighted 

average of a property over all the visited states should converge on the weighted average 

in eq. (2.40). 

The proof proceeds as follows. Consider a large ensemble of systems. The 

number with configuration i is <+. Every system undergoes a random change which 

(possibly) converts it to a different configuration. The probability that a random move 

will convert a particular configuration i into configuration j is Û+0. (We require that 

Û0+ = Û+0  .) Next, we assume that @+ > @0, so that transitions from i to j are guaranteed. 

Therefore, the number of systems in the ensemble with configuration i that transition to 

configuration j will be  

 <+Û+0 (2.42) 
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And the number that move in the opposite direction, from j to i, will be 

 

 <0Û0+VÙÚÞ−/@+ − @01/ÑÒCß (2.43) 

The difference between eq (2.42) and (2.43) is the net number of systems that 

change from configuration j to i 

 

 Û+0à<0VÙÚÞ−/@+ − @01/ÑÒCß − <+á (2.44) 

 

After dividing by <0, we see that if the following expression is true 

 

 
<+<0 > VÙÚÞ−/@+ − @01/ÑÒCß 

(2.45) 

then the number of systems in configuration i that convert to j outnumber those that go in 

the opposite direction. In subsequent iterations, as <0 grows and <+ diminishes, the 

condition  

 

 
<+<0 = VÙÚÞ−/@+ − @01/ÑÒCß 

(2.46) 

will eventually obtain for every pair of configurations i and j. When this has occurred, the 

ensemble of systems will have achieved a canonical distribution. 

Note that while this proof demonstrates that the Metropolis algorithm eventually 

will produce an ensemble of configurations that satisfy the Boltzmann distribution, it 

offers no guarantee that it will do so quickly. Fortunately, it turns out that for many 

systems, the number of iterations required is modest. It is, however, typically necessary 

to ascertain through experimentation the convergence of ensemble-averaged properties 
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with number of iterations. For surface alloys, on the order of 103-104 iterations per atom 

has proven to be adequate. 
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Chapter 3: AuPd/Pd(111) and AuPt/Pt(111) Surface Alloys 

3.1 INTRODUCTION 

Alloys often exhibit catalytic properties superior to those of their pure constituent 

metals. A number of recent articles have reported enhanced activity and selectivity of 

certain gold-based bimetallic alloys. Au-Pd surface alloys, for instance, have been shown 

to promote CO oxidation69-72, the direct synthesis of hydrogen peroxide6,73-77, vinyl 

acetate synthesis78-81, and the hydrogen evolution reaction82, among others. CO oxidation 

is also promoted by Au-Pt alloys83, as well as n-hexane isomerization84. 

As explained in Chapter 1, attempts to explain enhancements in the catalytic 

properties of alloys are usually marshaled in terms of two related phenomena: the 

geometric (ensemble) effect and the electronic (ligand) effect8-11. The ensemble effect is a 

change in the activity of a surface site due to particular arrangements of the two alloyed 

species in the site’s vicinity. The ligand effect acts through modification of the local 

electronic structure that results from interactions between the different metallic species. 

Clearly, both effects depend on the arrangement of atoms in and near the surfaces of 

alloys. Unraveling and exploiting the synergistic catalytic properties of alloys will require 

characterizing and controlling them at the atomic scale. 

A number of experimental and theoretical studies have been undertaken to image 

or otherwise infer details about the surfaces of alloys with atomic resolution and also to 

explain catalytic function in terms of these details. Maroun et al.69 examined monolayer 

AuPd surface alloys on Au(111) substrates and concluded that ensembles containing at 

least one Pd atom are necessary for CO oxidation, while hydrogen adsorption occurs on 

Pd ensembles no smaller than dimers. Chen et al.78,79 offered evidence that second 

nearest neighbor pairs of Pd atoms are responsible for the enhanced activity of the 

AuPd(100) surface toward vinyl acetate synthesis. Calculations reported by Hwang and 
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coworkers7 suggest that Pd monomers surrounded by less active Au atoms are responsible 

for the heightened activity of AuPd surfaces toward direct H2O2 synthesis by suppressing 

O-O bond cleavage. 

While studies such as these have been critical in advancing our understanding of 

catalysis on surface alloys, the difficulty of sample preparation and characterization has 

perhaps hindered efforts to systematically understand surface atomic arrangements using 

experiments. Theoretical efforts to supplement the available experimental data include 

the work of Boscoboinik et al., who examined AuPd(111) surfaces using a nearest-

neighbor pair model85,86, and that of Bergbreiter et al. on AuPt(111) surfaces using longer 

range pairs87. These studies demonstrate the usefulness of simulation tools in this area 

and also indicate the importance of the interactions between surface layer atoms in 

ensemble formation. However, the nature and consequences of interatomic interactions in 

surface alloys are still not fully understood. 

In this chapter, we employ the simulation scheme presented in Chapter 2 to 

predict the equilibrium size and shape distributions of surface ensembles in 

AuPd/Pd(111) and AuPt/Pt(111) alloys at a range of temperatures and compositions. We 

begin by using density functional theory (DFT) to understand the nature of the 

interatomic interactions present in these two material systems. Next, using training sets 

composed of DFT results, we develop computationally inexpensive model Hamiltonians 

based on the cluster expansion method. Finally, we employ the Monte Carlo scheme to 

obtain thermally averaged ensemble size and shape distributions in the AuPd and AuPt 

surface alloys, which we present and explain in terms of interatomic interactions. By 

clarifying the connection between interatomic interactions and ensemble populations, we 

hope to offer guidance in the rational design of bimetallic catalyst materials. 
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3.2 METHODS 

3.2.1 Density Functional Theory  

Quantum mechanical calculations reported herein were performed on the basis of 

spin polarized density functional theory (DFT) within the generalized gradient 

approximation (GGA-PW91)88, as implemented in the Vienna Ab-initio Simulation 

Package (VASP)89. The projector augmented wave (PAW) method with a planewave 

basis set was employed to describe the interaction between ion cores and valence 

electrons. The PAW method is in principle an all-electron frozen-core approach that 

considers exact valence wave functions90. Valence configurations employed are: 5d10 6s1 

for Au, 4d9 5s1 for Pd, and 5d9 6s1 for Pt. An energy cutoff of 350 eV was applied for the 

planewave expansion of the electronic eigenfunctions. To model the fcc (111) surface, we 

used supercell slabs that consist of either a rectangular 2√3 × 4 surface unit cell (for the 

results in Section 3.3.1.), or a hexagonal 4×4 surface unit cell (for the training sets 

described in 3.2.2). Both shapes of cells include four atomic layers, each of which 

contains 16 atoms. The bottom three layers are pure Pd (111) or Pt (111) slabs, and the 

topmost is a monolayer alloy of the same species with Au. A slab is separated from its 

periodic images in the vertical direction by a vacuum space corresponding to seven 

atomic layers. The upper two layers of each slab were fully relaxed using the conjugate 

gradient method until residual forces on all the constituent atoms became smaller than 

5×10-2 eV/Å, while the bottom two layers were fixed at corresponding bulk positions. 

The lattice constants for bulk Pd and Pt are predicted to be 3.95Å and 3.98Å, virtually 

identical to previous DFT-GGA calculations and also in good agreement with the 

experimental values of 3.89Å and 3.92Å9. For Brillouin zone integration, we used a 

(2×2×1) Monkhorst-Pack mesh of k-points to determine the optimal geometries and total 

energies reported in 3.3.1. We increased the k-point mesh size up to (7×7×1) to refine 
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corresponding electronic structures reported in 3.3.1 and to (4×4×1) to refine the total 

energies for use in the training sets in 3.2.2. Previous calculations suggest that the chosen 

parameters are sufficient for describing the surface properties of the model systems 

considered7,91. 

3.2.2 Models for Alloy Surface Configurations 

In this work, the fcc (111) surface was represented by a two-dimensional, 

hexagonal lattice with two types of 3-fold hollow sites. A hollow site is designated 

hexagonal close-packed (hcp) if an atom is present in the first subsurface layer directly 

beneath it and face-centered cubic (fcc) if not. We considered all possible clusters in this 

representation of the surface which have a maximum width less than or equal to the third 

nearest neighbor distance. A total of 36 meet this criterion, including the empty and point 

clusters. 

The initial training sets for the AuPt and AuPd alloys each contained 30 model 

surfaces, with every possible surface composition (Au16-xPtx/Pdx, where x = 0, 1, … 16) 

represented at least once. From these, a trial CE for each alloy was constructed by using 

simulated annealing to minimize the CV score as described in Chapter 2. The trial CEs 

were used to predict minimum-energy surfaces for all compositions, which then were 

relaxed using DFT and added to their respective training set if not already present. The 

trial CE was considered to be fully converged if it predicted no new minimum-energy 

surfaces. Otherwise, the enlarged training set was used to generate a new trial CE, and the 

procedure was repeated. For the AuPd surface alloy, convergence was achieved after four 

iterations, during which 26 model surfaces were added to the training set. The AuPt 

surface alloy required five iterations and 21 additional model surfaces. The selected 

clusters and ECIs appear in Table 3.1. 
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Table 3.1. Clusters and ECIs for the AuPd and AuPt cluster expansions. Pd/Pt are spin 
down (-1), and Au is spin up (+1). 

For comparison, CEs that included only up to first nearest neighbor (1NN) pair 

interactions also were created for each alloy, taking: 

 

 
∑∑
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++=
NNji

jiNN

i
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NN ssJsJJsE
1

110
1 )ˆ(

 (3.1) 

AuPd  AuPt 

Cluster ECI, eV  Cluster ECI, eV 

Empty -4.24230529e-02  Empty 1.20756337e-02 

Point -1.27466453e-02  Point 2.44016540e-03 

(1,0) 1.07907186e-02  (1,0) -7.42265700e-03 

(1,1) -3.37387684e-05  (1,1) 2.36833928e-03 

(2,0) 1.34503904e-03  (1,0); (0,1) -1.01725048e-03 

(1,0); (1,-1) 1.40957177e-03  (1,0); (1,-1) 1.28675590e-03 

(1,0); (1,1) 4.26267110e-04  (1,0); (1,1) -5.41111799e-04 

(1,0);(2,0) 1.34073010e-03  (2,0); (2,-2) 2.99397774e-04 

(2,0); (0,1) 4.88749936e-04  (2,0); (0,1) 2.22055731e-04 

(0,2); (-1, 1) 2.23736043e-04  (1,0); (0,1); (1,1) -3.45924976e-04 

(1,-1); (2,-1); (2,0) 6.24028246e-04  (0,1); (1,1); (2,0) 4.43726281e-04 

(0,1); (1, -1); (2,0) 2.64233213e-04  (1,-1); (2,-1); (2,0) 3.44624115e-04 

(1,0); (2,0); (0,1) 3.40111699e-04  (1,0); (2,0); (0,1) -3.30269726e-04 

   (1,0); (2,0); (1,-1); (1,1) -4.55763194e-04 

   (0,1); (1,-1); (1,1); (2,0) 1.43284025e-04 

   (1,0); (2,0); (0,1); (0,2) -2.06468622e-04 

   (1,0); (2,0); (0,1); (1,1); (0,2) 8.01443361e-04 
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where J0, J1, and JP1 were fit to the training sets just described. Training set formation 

energies calculated using the 1NN CEs are compared to DFT in Figure 3.1 together with 

the longer-range, multisite (‘3NN’) CEs. Accounting for multibody and longer range 

interactions reduces the mean error of the AuPt CE by a factor of 9.8, and the AuPd CE 

by a factor of 4.2.  

3.2.3 Monte Carlo (MC) simulations  

Using MC in the canonical (NVT) ensemble and CE Hamiltonians, we simulated 

AuPt and AuPd surface alloys with a Pt/Pd coverage between 5% and 50% at 

temperatures between 100K and 800K. All simulated surfaces contained 900 total spins. 

Figure 3.1. Parity plots showing 
discrepancies between CE and DFT 
predictions. Open circles are for 1NN 
models, and filled circles are for 3NN 
models. The mean errors, U(̅1NN) and U(̅3NN), are averages of the 
discrepancies over all N surfaces in the 
training sets, each of which has 16 
surface atoms. 



 

 44 

To reduce the influence of the initial surface configurations on the final results, the 

simulations were all started at a high temperature of 1000K, then cooled to the target 

simulation temperature over a period of 1.8×107 steps (2×104 steps per spin). Then, the 

surfaces were permitted to equilibrate at the target temperature for 4.5×107 steps (5×104 

steps per spin). In each step, the new microstate was generated by swapping a randomly 

selected Au atom with a randomly selected Pd/Pt atom. After the equilibration period, 

data collection began. The number, size, and shape of Pd/Pt ensembles in each sampled 

microstate were collected and averaged over 9×106 steps (104 steps per spin). 

3.3 RESULTS AND DISCUSSION 

3.3.1 Stability of small Pd/Pt ensembles: DFT calculations 

Table 3.2. Calculated formation energies (in eV) of Pd/Pt ensembles. The yellow balls 
represent Au atoms, and the blue, Pd. 

 M D T 

   
AuPd 0.07 0.11 0.15 
AuPt 0.25 0.24 0.23 

 

We first calculated and compared the formation energies of small, isolated Pd/Pt 

ensembles [i.e., monomer (M), dimer (D), and hcp trimer (T)] in the AuPd/Pd(111) and 

AuPt/Pt(111) surface alloys (see the illustrations above Table 1) to examine their relative 

stability. Here, the ensemble formation energy per X atom (Ef, X = Pd, Pt) is given by: Ef 

= {EAuX – EAu + NX(EAu-bulk – EX-bulk)}/NX, where EAuX, EAu, EAu-bulk, and EX-bulk represent 

the total energies of AuX/X(111), Au/X(111), bulk Au (per atom), and bulk X (per atom), 

respectively, and NX indicates the number of X atoms in the AuX surface alloy. As 
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summarized in Table 3.2, predicted Pd monomer, dimer, trimer formation energies (per 

atom) are Ef(M)=0.07 eV, Ef(D)=0.11 eV, and Ef(T)=0.15 eV, respectively; taking these 

values, M + M → D and M + D → T agglomeration reactions tend to be endothermic by 

0.08 eV [∆ED = 2×Ef(D) – 2×Ef(M)] and 0.16 eV [∆ET = 3×Ef(T) – 2×Ef(D) – Ef(M)], 

respectively. This suggests that Pd would have a tendency to remain isolated, rather than 

forming aggregates in the AuPd surface alloy. In contrast, the corresponding 

agglomeration reactions for Pt turn out to be slightly exothermic, i.e., ∆ED = –0.02 eV 

and ∆ET = –0.05 eV; implying that Pt may favor clustering.  

Figure 3.2 shows the local density of states (LDOS) projected onto the d-bands of 

a Pd/Pt monomer in the AuPd/AuPt surface alloy; LDOS plots for pure Pd(111)/Pt(111) 

surfaces are also presented for comparison. The LDOS of the Pd monomer noticeably 

Figure 3.2. Density of states projected 
on the outmost s and d states of Pd/Pt 
monomer and pure Pd/Pt(111) surfaces. 
The s and d states are represented 
respectively by the shaded gray and 
patterned red areas in the monomer 
cases and by the thick black and thin 
blue solid lines in the pure surface 
cases. The vertical dotted line indicates 
the Fermi level position. 
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broadens as compared to the Pd(111) case; in particular, the onset of the high binding 

energy tail shifts down below –6eV (from around –5eV in Pd(111)) while the peaks near 

the Fermi level (– 1eV < E – Ef) appear to be reduced. On the other hand, the Pt monomer 

exhibits more pronounced LDOS peaks in the low binding energy region (–2eV < E – Ef) 

at the cost of reduction in the higher binding energy peaks (E – Ef < –2eV). As a result of 

these differences in the LDOS, the d-band centers for Pd and Pt monomers are shifted 

relative to the respective pure Pd and Pt surfaces. In the Pt case, the d-band center of the 

monomer is 0.09 eV higher than that of Pt(111). The shift is in the opposite direction for 

Pd; the monomer is 0.07 eV lower than Pd(111). These results unequivocally demonstrate 

that, in AuPt surface alloys, the homonuclear Pt-Pt interaction is energetically more 

Figure 3.3. Ensemble Size Distribution at T=300K 
and Ө=20%. In the AuPd surface alloy (black bars, 
leftmost in each group), smaller ensembles are 
preferred. Larger ensembles are preferred in the 
AuPt surface alloy (light gray, center in each 
group). Results for the random alloy (dark gray, 
rightmost in each group) are included for 
comparison. 
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favorable than the heteronuclear Pt-Au interaction, while in AuPd surface alloys, the 

heteronuclear Au-Pd interaction is stronger. This opposite tendency in the interatomic 

interactions may result in markedly different atomic arrangements in AuPd and AuPt 

surface alloys, as discussed in the following sections. 

3.3.2 Surface atomic arrangements: MC simulations 

3.3.2.1 Ensemble size distributions 

Using MC simulations, we first calculated the size distributions of ensembles on 

AuPd and AuPt alloy surfaces at T=300K and a Pd/Pt coverage of θ=20 at.%. Figure 3.3 

shows how Pd and Pt are distributed into small ensembles of size N = 1–4, and also the 

fractions of each which exist in larger islands containing more than four contiguous 

atoms. For comparison, predictions made using a random alloy of non-interacting spins 

are also included. In AuPd, most of the Pd atoms, around 73%, exist as monomers. This 

is about 2.8 times larger than predicted by the random model. As N increases, the Pd 

fraction decreases sharply, becoming comparable to the random alloy for N = 2, but 

almost vanishing for N > 4. Relative to the random model, the formation of small 

ensembles is clearly preferred on the AuPd surface. This is consistent with the energetic 

favorability of Au-Pd interactions relative to Pd-Pd; as ensembles become larger, the 

number of Au neighbors per Pd atom tends to decrease. In AuPt, where the reverse 

relationship holds, our calculations show a preference for larger ensembles. The majority 

of Pt atoms, about 67%, are part of ensembles with N > 4. This is about 2.4 times larger 

than the fraction predicted by the random model. For smaller ensembles with N = 1 to N 

= 4, the Pt fraction is less than the random prediction. 
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Figures Figure 3.4 and Figure 3.5 show the effects of temperature and coverage 

on monomer and dimer populations in AuPd and AuPt surface alloys. Behavior in the 

high (“infinite”) temperature limit, where atomic interactions are negligible, can be 

represented by the random alloy. Results for the random alloy are also a helpful reference 

for explaining and comparing the finite temperature behavior of the two alloys. 

At infinite temperature, the fraction of surface Pd/Pt atoms that exist as monomers 

[Fig. Figure 3.4(a)] monotonically decreases with increasing coverage. This is a 

consequence of the fact that when the surface contains few Pd/Pt atoms, the probability 

of finding two or more together is low, but as the surface becomes more crowded, it 

increases. Unlike the monomer plot, the infinite temperature dimer plot [Fig. Figure 

3.4(b)] passes through a maximum at approximately θ=12 %. As more Pd/Pt atoms 

crowd the surface, the probability of randomly placing two together increases. This 

explains the initial rise. However, the same is true of trimers, tetramers, and other, larger 

Figure 3.4. Average fraction of surface 
Pd atoms in monomers a) and dimers b) 
in AuPd surface alloys at several levels 
of coverage and temperature. As 
temperature increases, the monomer 
population declines, and the peak in the 
dimer population shifts toward higher 
coverage. 
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ensembles. The fraction of Pd/Pt atoms in dimers must at some point give way to the 

growing fraction in larger ensembles and begin to diminish. 

The overall shape of most of the finite temperature Pd monomer plots [Fig. 

3Figure 3.4 (a)] resembles the infinite temperature limit. The T = 100K and 200K plots 

are exceptions. The maxima they exhibit at θ=30−35% can be attributed to the stability of 

the (√3×√3)R30° ordered phase19,, as will be explained in greater detail below. 

Regardless of temperature, at θ = 5%, between 74% and 100% of Pd atoms are 

monomers, but at θ=50%, fewer than 4% are. As expected, reducing the temperature 

(thereby increasing the contribution of interatomic interactions) results in a significant 

enhancement of the monomer population at all levels of coverage. At θ = 30% and 

T=100K, close to 100% of Pd atoms exist as monomers, while at T= ∞, only around 12% 

do. Even at 800K, the monomer fraction differs from the random model by as much as 24 

percentage points (at θ = 10%). 

Figure 3.5. Average fraction of 
surface Pt atoms in monomers a) and 
dimers b) in AuPt surface alloys at 
several levels of coverage and 
temperature. As temperature 
increases, the monomer population 
also increases, and the peak in the 
dimer population shifts toward lower 
coverage. 
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Plots of the Pd dimer fractions [Fig. 3Figure 3.4(b)] at the finite temperatures 

considered exhibit maxima, just as at infinite temperature. However, relative to the 

random alloy, the maxima are shifted increasingly toward higher coverage as temperature 

decreases. The shift is equal to about 15 percentage points in the T = 250K case. This is 

apparently due to the preference for small ensembles in the AuPd surface alloy. The 

preference for monomers over dimers delays the rise of the dimer fraction, and decline of 

the dimer fraction likewise is delayed by the preference for dimers over larger ensembles. 

The T = 100K and 200K dimer plots have minima at θ=30−35% that coincide 

with the previously mentioned maxima in the monomer plots. These features in the low 

temperature dimer and monomer plots can be explained by the stability of the ordered 

(√3×√3)R30° surface, which can form at a Pd coverage of exactly 1/3. As illustrated in 

Figure 3.6, every Pd atom is surrounded by six Au nearest neighbors and six Pd second 

nearest neighbors. The surface is unique in that: i) it is the only one with a coverage of 

1/3 in which all Pd atoms can exist as monomers; and ii) no such surfaces exist at Pd 

coverage > 1/3. The CE predicts the (√3×√3)R30° phase to be the ground state for the 

Figure 3.6. The (√3×√3)R30° ordered 
surface. Yellow atoms are Au and blue 
atoms are Pd. The polygon on the left 
shows the unit cell for the hexagonal 
lattice with unit length basis vectors. The 
polygon on the right shows the unit cell 
for the ordered surface. The striped atom 
is Au in the perfectly ordered surface. If 
it is swapped with one of the three 
adjacent Pd atoms, a Pd trimer is formed. 
A Pd tetramer is formed if it is swapped 
with any non-adjacent Pd atom. 
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Au2Pd surface. Moreover, swapping any pair of dissimilar atoms creates either a Pd 

trimer, which incurs an energy penalty of 0.12 eV, or a tetramer, with a penalty of 0.18 

eV. These energy penalties are not trivial, particularly at low temperatures. In the MC 

scheme, the probability of transitioning from the ground state to a microstate containing a 

single trimer at T=200K is exp(-0.12eV/kBT) = 9.5×10-4. This explains the strong 

preference for monomers and near absence of dimers on low-temperature AuPd surfaces 

with θ ≈1/3. 

In the AuPt surface alloy, the effects of temperature on the populations of 

monomers and dimers are all the opposite of those for AuPd, due to the energetic 

favorability of Pt-Pt interactions over Au-Pt. Monomer populations [Fig. Figure 3.5 (a)] 

decrease with temperature for all levels of coverage. At T=100K and θ=5%, about 4% of 

surface Pt exists as monomers, compared to 74% in the random alloy. Even at 300K, the 

fraction rises to only about 43%. Maxima in the AuPt dimer plots [Fig. Figure 3.5 (b)] are 

clearly visible only in the 600K and 800K trends. They have been shifted as in the AuPd 

surface, but toward lower, rather than higher, coverage.  

3.3.2.2 Shape distributions of trimers and tetramers 

Finally, we examined the shapes of ensembles in AuPt, AuPd, and random 

surface alloys. Here, only trimers and tetramers are considered. Four shapes of trimers 

and ten shapes of tetramers are possible in the fcc (111) surface. They are shown 

schematically in Figure 3.7. The order of their labeling (A-D for trimers and A-J for 

tetramers) corresponds to their spatial extent in the surface.  
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Figure 3.8 shows the predicted shape distributions of trimers and tetramers in a 

surface with θ = 30% at T=300K. In the random alloy, around 12% of trimers are 

compact-fcc (Shape A), 12% are compact-hcp (B), 51% are bent-linear (C), and 25% are 

linear (D). These fractions differ from one another despite there being no difference in 

the formation energies of the four shapes. This can be understood by recognizing that if 

the total number of orientations of each shape is counted separately, there are actually 11 

possible trimers in the surface, rather than 4. The two compact shapes account for one 

each, the bent-linear shape accounts for six, and the linear shape accounts for three, as 

shown in Figure 3.9. Each of the 11 total orientations is equally probable, so the compact-

hcp and compact-fcc shapes each account for 1/11 (= 9.1%) of the total number of 

Figure 3.7. The four types of 
contiguous trimers (upper 
panel) and ten types of 
contiguous tetramers (lower 
panel) in the fcc (111) surface, 
accounting for the two types of 
3-fold hollow sites. Black 
interstitial fill marks the 
presence of an atom in the first 
subsurface layer. 
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trimers, bent-linear for 6/11 (=54.5%), and linear for 3/11 (=27.3%). These fractions 

differ somewhat from the ones obtained via MC simulation and reported in Figure 3.8. 

The discrepancies appear to be an effect of coverage. In the low coverage limit, our 

simulations show that the MC results approach the fractions just calculated, but as 

coverage increases the compact trimer fraction rises at the expense of the bent-linear and 

linear fractions. All of the foregoing applies in a similar way to tetramers. Further details 

will be presented elsewhere. 

The AuPt and AuPd shape distributions differ a great deal from one another and 

from the random alloy results. The fractions of Pd trimers [Figure 3.8(a)] that adopt the 

compact-fcc and compact-hcp shapes are smaller than the random model predictions by 

Figure 3.8. Trimer and tetramer 
shape distributions at T=300K and 
Ө=30%. More compact trimers 
(those with more homonuclear 
interactions) are favored in the AuPt 
(light gray, center bars) surface, and 
more extended trimers (with more 
heteronuclear interactions) are 
favored in AuPd (black, leftmost 
bars). 
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factors of 5.2 and 6.4, respectively. The compact-fcc and -hcp trimer fractions are much 

larger in the AuPt case than in AuPd, around 0.8 and 4.2 times the size of the random 

prediction. Here, we note that the large difference between the populations of fcc and hcp 

compact trimers (shapes A and B) in AuPt is due to the difference in their formation 

energies. To capture this effect, a model Hamiltonian must consider multisite 

interactions; pair interactions alone may be insufficient. For the bent-linear trimer shape, 

the Pd fraction is about 1.4 times larger than the random prediction, while the Pt fraction 

is smaller by about half. The Pd fractions for the compact tetramer shapes A, B, and C are 

all much smaller than the prediction for either AuPt or the random alloy, but as can be 

seen in Figure 3.8(b), the fractions for the more extended tetramers D-I are comparatively 

larger. Conversely, in the AuPt alloy, relatively few tetramers have the extended shapes 

(D-I), but a large fraction are compact (A-C). 

The differences in the AuPd and AuPt shape distributions can once again be 

explained by interatomic interactions. Compact ensembles contain a larger number of 

homonuclear, nearest-neighbor interactions than extended ones. The compact trimers 

contain three such interactions, while the bent-linear and linear each contain two. The 

most compact tetramer shape (A) contains five, tetramers B and C contain four, and the 

remainder each contain three. Accordingly, in the AuPd alloy, where heteronuclear 

Figure 3.9. Every trimer and tetramer shape possesses one 
or more orientations. The six possible orientations of the 
bent trimer (trimer shape C) are shown here for illustration. 
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interactions are favored over homonuclear, the fraction of trimers and tetramers that have 

compact shapes is smaller than in the AuPt alloy. The opposite is true of the more 

extended shapes, which are more likely to be found in AuPt. 

3.4 SUMMARY 

Using the cluster expansion (CE) method, model Hamiltonians were constructed 

for AuPt/Pt(111) and AuPd/Pd(111) surface alloys. These cluster expansions match DFT-

calculated energies to within a fraction of an meV per surface atom. They are also 

sufficiently computationally inexpensive to enable their use in Monte Carlo (MC) 

simulations. We used the MC scheme to predict the size and shape distributions of Pd and 

Pt surface ensembles for a range of compositions and temperatures. The results of the 

MC simulations show that the surface ensemble populations are strongly influenced by 

the interatomic interactions present in AuPt/Pt(111) and AuPd/Pd(111) surface alloys. 

The origin of these interactions is revealed by DFT predictions of the formation energies 

and electronic structures of small Pt and Pd ensembles in the model alloys, which show 

that homonuclear (Pt-Pt) interactions are favored in AuPt surface alloys, while 

heteronuclear (Au-Pd) are favored in AuPd. As a consequence, AuPd exhibits a strong 

preference for small ensembles compared to the AuPt alloy and a random alloy (with no 

interactions), according to our MC simulations. For example, at 300K and 20% coverage, 

73% of surface Pd atoms are monomers. The corresponding quantities in the AuPt and 

random alloys are predicted to be 26% and 8%, respectively. Similarly, at this level of 

coverage and temperature, a negligible fraction of surface Pd belongs to ensembles that 

contain five or more contiguous atoms, but around 67% of surface Pt is part of ensembles 

of this size. The differences in interatomic interactions also explain the influence of 

coverage and temperature on monomer and dimer populations in the two alloys. 
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Monomer populations in AuPd are seen to increase as temperature is reduced, while the 

reverse happens in AuPt. Maxima in the dimer populations are also shifted in opposite 

directions as temperature increases, toward higher coverage in AuPt and toward lower in 

AuPd. Our MC simulations also demonstrate that compact ensembles which contain a 

greater number of homonuclear interactions are favored in AuPt, while more extended 

shapes are preferred in AuPd. The computational scheme described here can be extended 

to evaluate a host of other potential influences on ensemble formation in bimetallic 

surfaces, such as their crystallographic orientation, degree of strain, the presence of 

adsorbates, interactions with the catalyst support, and their bulk composition. 
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Chapter 4: AuPd/Pd(100) and AuPt/Pt(100) Surface Alloys 

4.1 INTRODUCTION 

In the last chapter, the effects of differing interatomic interactions on atomic 

arrangement in AuPd/Pd(111) and AuPt/Pt(111) surface alloys were evaluated. We now 

report on a similar treatment of the same alloys; this time in the (100) surface facet. The 

AuPd(100) surface is known to be significantly more active toward vinyl acetate 

synthesis than not only pure Pd(100) and Au(100), but also the (111) surface facet of the 

AuPd alloy79-81. Unpublished calculations performed in the Hwang Group also suggest 

that the AuPd(100) surface may exhibit unexpected activity toward the oxygen reduction 

reaction. 

As before, density function theory calculations were used to construct cluster 

expansion Hamiltonians for use in Monte Carlo simulations. After sharing details 

pertaining to the construction of the CEs, we report and discuss the results of the MC 

simulations, specifically the populations of small ensembles of contiguous Pd or Pt atoms 

(monomers and dimers). We explain these in terms of the interatomic interactions present 

in AuPd and AuPt surface alloys. We also compare some of our predictions to available 

experimental data. 

4.2 COMPUTATIONAL METHODS 

4.2.1 Density functional theory 

Quantum mechanical calculations reported herein were performed on the basis of 

spin polarized density functional theory (DFT) within the generalized gradient 

approximation (GGA-PW91)88, as implemented in the Vienna Ab-initio Simulation 

Package (VASP)89. The projector augmented wave (PAW) method with a planewave 

basis set was employed to describe the interaction between ion cores and valence 
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electrons. The PAW method is in principle an all-electron frozen-core approach that 

considers exact valence wave functions90. Valence configurations employed are: 5d10 6s1 

for Au, 4d9 5s1 for Pd, and 5d9 6s1 for Pt. An energy cutoff of 350 eV was applied for the 

planewave expansion of the electronic eigenfunctions. To model the fcc(100) surface, we 

used supercell slabs that consist of a square 4×4 surface unit cell. The cell includes four 

atomic layers, each of which contains 16 atoms. The bottom three layers are pure Pd(100) 

or Pt(100) slabs, and the topmost is a monolayer alloy of the same species with Au. A 

slab is separated from its periodic images in the vertical direction by a vacuum space 

corresponding to seven atomic layers. The upper two layers of each slab were fully 

relaxed using the conjugate gradient method until residual forces on all the constituent 

atoms became smaller than 5×10-2 eV/Å, while the bottom two layers were fixed at 

corresponding Pd or Pt bulk positions. The lattice constants for bulk Pd, Pt, and Au are 

predicted to be 3.95Å, 3.98Å, and 4.18 Å, respectively, virtually identical to previous 

DFT-GGA calculations and also in good agreement with the experimental values of 

3.89Å, 3.92Å, and 4.08 Å 92 . For Brillouin zone integration, we used a (2×2×1) 

Monkhorst-Pack mesh of k points to determine the optimal geometries. We increased the 

k-point mesh size up (4×4×1) to refine the total energies for use in the training sets 

described in 4.2.2. Previous calculations suggest that the chosen parameters are sufficient 

for describing the surface properties of the model systems considered7,91. 

4.2.2 Cluster expansion Monte Carlo 

The surfaces we simulated contained 900 surface atoms. In order to adequately 

sample the configuration space of a binary alloy, it is not unusual to attempt on the order 

of 104 swaps per lattice site. Hence, we required a fast and accurate means of calculating 

how energy varies with atomic configuration. For this purpose, we constructed CE 
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Hamiltonians by fitting to DFT-based training sets of small model surfaces meeting the 

description in section 4.2.1. The procedure we followed closely matches the one 

described in Chapter 2. 

The training sets initially contained 30 model surfaces, but to help guard against 

the possibility of bias, they were iteratively expanded during the fitting procedure. In 

each iteration, a trial cluster expansion was created by identifying the subset of terms in a 

pool which included pairs and multi-body interactions up to the third nearest-neighbor 

(3NN) distance that minimized the cross validation score31 with respect to the training 

set. The trial CE was used to predict new minimum-energy surfaces, which were then 

added to the training set. The trial CE was considered to be converged when it predicted 

no new minimum-energy surfaces. The AuPt training set was expanded by this procedure 

to contain a total of 49 model surfaces, and the AuPd training set contained 42. Figure 4.1 

Figure 4.1. Parity plots showing discrepancies 
between CE and DFT predictions. Filled, red 
circles are for the AuPd cluster expansion, and 
open, blue circles are for AuPt. The mean 
errors (ãË) are averages of the discrepancies 
over all surfaces in the training sets, each of 
which has 16 surface atoms. 
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shows the discrepancies between the final CE- and DFT-predicted energies for the alloy 

surfaces in the training sets. Table 4.1 shows the clusters and their associated ECIs. 

Table 4.1. The clusters and ECIs for AuPd/Pd(100) and AuPt/Pt(100). Pd/Pt are spin 

down (-1), and Au is spin up (+1). 

4.3 RESULTS AND DISCUSSION 

4.3.1 Atomic arrangements in the random, AuPd and AuPt alloys 

For the purpose of comparison, we first considered a random alloy, in which there 

are no interatomic interactions. Because there are no interactions, all microstates of a 

random alloy have the same energy, and therefore, regardless of the simulation 

temperature, the Boltzmann factor calculated for any given pair of microstates is equal to 

unity. The Boltzmann factor also approaches unity as T→∞ in non-random alloys, so the 

random alloy can be seen as representing the high temperature behavior of the AuPd and 

AuPt surface alloys. 

AuPd  AuPt 

Cluster ECI, eV  Cluster ECI, eV 

Empty -3.3111e-3  Empty 1.7889e-2 

Point 3.9978e-3  Point 5.4025e-3 

(1,0) 5.6123e-e  (1,0) -9.9535e-3 

(1,1) -3.9613e-3  (1,1) -2.7995e-3 

(1,0); (1,-1) -9.1449e-4  (2,0) 2.3880e-3 

   (1,0); (1,-1) -2.4864e-3 
   (1,0);(1,1),(1,-1) -7.4130e-4 
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Figure 4.3 shows the size distribution of ensembles of same-species atoms which 

Figure 4.3. Ensemble sizes in a random fcc(100) 
surface alloy of two fictitious, noninteracting 
species. The unbroken plots show the fractions of 
atoms of one species which belong to ensembles 
of size n, as a function of that species’ surface 
coverage in units of atomic percent. The dashed 
plot is for the monomer (n = 1) in the fcc(111) 
surface alloy, which has six first nearest-
neighbors instead of four. 

Figure 4.2. Snapshots from simulations of 
(a) AuPd, (b) the random alloy, and (c) AuPt 
at Ө = 0.15 and T = 300K. Note the tendency 
of Pt to agglomerate while the 1NN shells of 
most Pd atoms are filled entirely by Au. 
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are contiguous through first nearest-neighbor (1NN) relationships as a function of 

coverage in units of atomic fraction (Ө). Monomers (n=1; that is, a single atom of one 

species that has four first nearest-neighbors of the opposite species) are seen to 

monotonically decrease with increasing Ө, while trends for larger-sized ensembles all 

pass through maxima. This can be understood by considering that the likelihood of 

creating a dimer or larger ensemble by placing an atom next to a monomer of the same 

species increases with Ө. For the same reason, the trends for the dimers and other, larger 

ensembles initially rise as Ө increases, then begin to fall as they themselves are converted 

to still larger ensembles. The monomer trend for the (111) surface (dashed line), which is 

also included for comparison, lies significantly below the monomer trend for the (100) 

surface. This is due to the fact that every atom has six first nearest-neighbors with which 

Figure 4.4. Average fraction of 
surface Pd atoms in (a) monomers 
and (b) dimers in AuPd surface 
alloys at several levels of coverage 
and temperature. As temperature 
increases, the monomer population 
declines, and the dimer population 
increases. 
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to form larger ensembles in the (111) surface, but only four first nearest-neighbors in the 

(100) surface.  

The random alloy is a helpful guide to understanding qualitatively the 

arrangement of atoms in the AuPd and AuPt(100) surface alloys, to which we now turn. 

Snapshots (single microstates) from simulations of the random, AuPd, and AuPt alloys 

with Ө = 0.15 at T = 300K are shown in Figure 4.2. Figure 4.4(a) and (b) show the 

monomer and dimer trends in AuPd as a function of temperature and Ө, and Figure 4.5(a) 

and (b) show the same for AuPt. The corresponding random alloy (‘infinite’ temperature) 

results are also included on each plot. 

In the AuPd alloy, all of the finite temperature monomer trends lie above the 

infinite temperature trend. In general, as temperature is lowered, an increasing number of 

Pd atoms are surrounded entirely by Au. The higher temperature trends decrease 

Figure 4.5. Average fraction of 
surface Pt atoms in (a) monomers and 
(b) dimers in AuPt surface alloys at 
several levels of coverage and 
temperature. As temperature 
increases, the monomer population 
also increases, and the peak in the 
dimer population shifts toward lower 
coverage. 
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monotonically, just as the infinite temperature trend does, but at lower temperature, this 

ceases to be the case. A shoulder is apparent in the 300K trend, the 200K trend has a 

maximum, and the 100K trend is nearly constant until it drops off suddenly, all at Ө ≈ 

0.5. The dimer plots for the AuPd alloy exhibit the opposite behavior in that they all lie 

beneath the infinite temperature plots, and the population of dimers is reduced as 

temperature is lowered. 

The temperature-dependent trends for the monomer and dimer populations in the 

AuPt alloy are quite different from those in the AuPd alloy. The populations of 

monomers at all finite temperatures are lower than in the random alloy and appear to 

increase with increasing temperature, the opposite of what was found for AuPd. Although 

the populations of the dimers are also typically lower than in the infinite temperature case 

(except at low Pt coverage, where the trends cross), reducing the temperature appears 

mainly to have shifted the trends to lower Ө rather simply reducing them as in the AuPd 

alloy. 

Many of these observations can be explained in terms of the contrasting 

interatomic interactions in the AuPd and AuPt surface alloys17. In the AuPt alloy, 

homonuclear (Pt-Pt) interactions are energetically more favorable than heteronuclear (Pt-

Au). This explains the relative scarcity of Pt monomers, which are completely surrounded 

by Au nearest neighbors. The AuPt dimer trends appear shifted to lower Ө because of the 

tendency of Pt atoms to cluster into larger ensembles which contain more Pt-Pt 

interactions. As the temperature is reduced, dimers may be more readily formed from 

monomers available in the surface (resulting in a shift in the initial rise in the dimer 

population trends), but also more readily converted into trimers and other larger 

ensembles (resulting in a shift in the decline). 
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In contrast to AuPt, heteronuclear interactions dominate in the AuPd surface 

alloy, which leads to the energetic favorability of Pd monomers and, to a lesser extent, 

dimers at the expense of larger ensembles. The preference for Au-Pd interactions also 

leads to long range ordering at low temperatures, which explains the unusual features 

centered around Ө = 0.5 in the AuPd monomer plot. In the c(2×2) ordered surface (Figure 

6), which is the ground state for this level of Pd coverage, every atom is surrounded by 

atoms of the opposite type, and the number of heteronuclear interactions is maximized. A 

related set of features occurs in the AuPd(111) ensemble distributions due to the 

(√3×√3)R30° ordered surface (Chapter 3). 

4.3.2 Comparison of AuPd(100) simulation results to experiment 

Goodman and coworker93 have experimentally ascertained atomic arrangements 

in the (100) surface of one AuPd alloy sample. They prepared the (1:1 atomic ratio) 

sample by repeated cycles of Ar+ sputtering and annealing, followed by annealing 

without sputtering at 550°C for 30 minutes. The sample was then permitted to cool to 

room temperature prior to STM imaging. Sample preparation and imaging were 

conducted in UHV conditions. The surface Pd coverage was determined by LEISS to be 

Ө = 0.1. Statistics were collected from images of three separate locations on the surface. 

Rather than counting contiguous groups of atoms as we have in Figure 4.3, Figure 4.4, 

Figure 4.6. The c(2×2) 
ordered surface. Every Pd 
(blue) atom has four Au 
(yellow) nearest neighbors, 
and vice versa. 



 

 66 

and Figure 4.5, unique arrangements of the 8 nearest neighbors (4 first nearest-neighbors 

plus 4 second nearest-neighbors; see the labels on the horizontal axis of Figure 4.7) 

surrounding every surface Pd atom were tallied. The totals from the images were 

compared to their corresponding expectation values in the random alloy, which were 

analytically calculated.  

In Figure 4.7, we have reproduced some of the results they reported along with 

our MC predictions for several temperatures between 300K and 800K. Simulation results 

Figure 4.7. Frequency of occurrence of different 
Pd site-types as predicted by simulation and 
reported by Goodman and coworkers based on 
their experimental observations. The site-types 
depicted on the horizontal axis are among the 
most probable in a random fcc(100) surface alloy 
with Ө = 0.1. One site-type with a probability 
equal to that of the 4th has not been included 
because no experimental results were reported for 
it. The empty bars are an average of the site 
counts taken from three STM images and the 
error bars show the maximum and minimum. The 
filled gray bars are for the random alloy and the 
points are the simulation predictions for 
temperatures between 300K and 800K. 
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for a range of temperatures have been included since it is difficult to know 

unambiguously the equilibration temperature that the experimental results represent. The 

two sets of results are in basic agreement with regard to the direction of the deviation 

from the random alloy. That is, in both the experimental results and the MC predictions, 

site-type 1 was encountered somewhat less frequently than would be expected in a 

random alloy, site-type 2 also less, site-type 3 more, and so on. Site-types 4 and 5 are 

exceptions; however, together they account for only a small fraction of Pd sites, and in 

both cases, the simulation results and the random probabilities are within the window of 

experimental observations. The correspondence between experiment and simulation helps 

to validate our approach, the uncertainty in the equilibration temperature and the 

relatively small number of STM images included in the analysis notwithstanding. We 

further believe that our findings lend support to the proposal that, “the thermodynamic 

properties of AuPd alloys can be used to tailor surface ordering”93, at least in some cases. 

4.3.3 Additional short-range order in AuPd(100): 2NN pairs of Pd monomers 

Examination of both the 1NN and 2NN shell around every surface Pd atom 

highlights a manifestation of AuPd interatomic interactions which is not readily apparent 

from the plots of monomers and dimers in Figure 4.4 and Figure 4.5 and which extends 

beyond the distinction between homo- and heteronuclear interactions which we have so 

far employed. The central atoms in site-types 1, 3, and 6 in Figure 4.7 are all Pd 

monomers which have four Au first-nearest neighbors. It is in their 2NN shells that the 

three site-types differ from one another. It is apparent that Pd monomers with no Pd 

second nearest-neighbors (site-type 1) are somewhat less likely than in the random alloy, 

while those with one or two (site-types 3 and 6) are a great deal more likely. 
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The short range order (SRO) parameter94 α(�) = 1 − Ú�Ò(�)/ÙÒ, where xB is the 

overall fraction of the surface atoms which are species B, and pAB(r) is the probability of 

finding a B atom a distance of r from an A atom, shows this as well [Figure 4.8(a)]. In a 

completely random alloy, α(r) is always 0. In the simulated AuPd alloys, at the 1NN 

Figure 4.8. (a) The short-range order 
parameter (α) at the 1st, 2nd, and 3rd nearest 
neighbors distances for a AuPd surface with 
Ө = 0.1. The horizontal, dotted reference line 
is for the random alloy, which has no SRO (α 
= 0). α < 0 indicates heteronuclear correlation 
and α > 0 indicates homonuclear. The inset 
shows α for the AuPt surface alloy at the 
same Ө. In (b) (lower left) and (c) (lower 
right), arrows indicate some small regions of 
2NN Pd-Pd correlation in a snapshot from a 
simulation of the AuPd surface at T = 300K 
and 600K. 
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distance, α is negative, indicating a surplus of Pd-Au 1NN pairs. At the 2NN distance, α 

is positive, showing Pd-Pd correlation. Some SRO persists at the 3NN neighbor distance, 

but it is much lower. The simulation snapshots in Figure 4.8(b) and (c) help to illustrate 

these more quantitative measures of atomic arrangement. White arrows indicate a few of 

the small patches of Pd monomers standing at the second and third nearest neighbor 

distance from one another. A plot of α(r) for a AuPt surface alloy at the same temperature 

and level of coverage is included in the inset of Figure 4.8 (a) for comparison. 

It is instructive to compare the DFT-predicted formation energies of an isolated 

Pd monomer and the c(2×2) ordered surface, in which all 1NN interactions are 

heteronuclear and all 2NN interactions are homonuclear. The formation energies were 

calculated using Ef = {EAuPd – EAu + NPd(EAu-bulk – EPd-bulk)}/NPd, where EAuPd, EAu, EAu-bulk, 

and EPd-bulk represent the total energies of AuPd/Pd(100), Au/Pd(100), bulk Au (per 

atom), and bulk Pd (per atom), respectively, and NPd indicates the number of Pd atoms in 

the AuPd surface alloy. We found that the formation energy per Pd atom of a monomer is 

about 0.02 eV higher than that of the c(2×2) ordered surface.  

The lower Ef of the c(2×2) ordered surface helps explain the abundance of sites 

that include 2NN Pd-Pd pairs in Figure 4.7, the degree of 2NN SRO seen in Figure 4.8 

(a), and the visible patches of ordered monomers in Figure 4.8(b) and (c). It also 

highlights the danger of neglecting longer range (>1NN) interactions when modeling 

surface alloys. A Hamiltonian that includes only 1NN pair interactions would yield the 

same Ef for the Pd monomer and the c(2×2) ordered surface and thus would be expected 

to incorrectly predict their relative contributions to ensemble averaged properties of 

AuPd surface alloys. It is true that heteronuclear, 1NN pair interactions can produce some 

degree of SRO at longer range because they in effect “push” like atoms out of the 1NN 

shell into longer range shells which they consequently enrich. However, when we 



 

 70 

adjusted a 1NN pair model to yield the same SRO at the 1NN distance as our cluster 

expansion at T = 500K and Ө = 0.1, it predicted negligible 2NN SRO, in sharp contrast to 

both the experimental and cluster expansion-based simulation results. Since correctly 

predicting 2NN SRO may be important in explaining the catalytic properties of surface 

alloys6, this discrepancy argues against the use of 1NN pair models for this purpose. 

4.4 SUMMARY 

Using density-functional theory calculations, we created two cluster expansion 

Hamiltonians, one for AuPd/Pd(100) surface alloys, and the other for AuPt/Pt(100). Pair 

and multi-body interactions up to the 3NN distance were considered for inclusion in the 

models. The cluster expansions were used in canonical ensemble Monte Carlo 

simulations of AuPd and AuPt surface alloys over a range of temperature and Pd or Pt 

coverage. The simulations show that the differing interatomic interactions present in the 

two alloys result in dramatically different arrangements of atoms. In the AuPt alloy, in 

which homonuclear (Pt-Pt) interactions prevail, the population of isolated Pt monomers is 

depressed compared to the random alloy, but increases with temperature. The population 

of Pt dimers exhibits a maximum which is shifted toward lower coverage as the 

temperature decreases. Heteronuclear (Au-Pd) interactions are stronger in the AuPd alloy, 

which favors the formation of monomers and, to a lesser extent, dimers. The population 

of Pd monomers decreases with temperature, while the dimer population increases. At 

low temperature and a Pd coverage of Ө = 0.5, heteronuclear interactions also lead to the 

formation of a c(2×2) ordered surface, in which the four first nearest-neighbors of every 

atom is of the opposite species. We also compared some of the results from our 

simulations of the AuPd surface alloy to the reported experimental findings of Goodman 

and coworkers. The two were found to be in substantial agreement, lending support to our 
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approach and also to their proposal that the thermodynamics of AuPd alloys might be 

used to tailor their surface atomic arrangements. One observation common to both our 

simulations and their experiments is the existence of a greater-than-expected number of 

2NN pairs of Pd monomers; the catalytic importance of this ensemble has already been 

demonstrated experimentally. It is noteworthy that Hamiltonians based only on 1NN pair 

interactions would appear to be inadequate to account for the frequency with which 2NN 

Pd pairs are encountered in the AuPd (100) surface. These results increase our confidence 

that our approach, Monte Carlo simulation based on cluster expansions, is capable of 

providing insight into the atomic arrangements of surface alloys for the purpose of 

elucidating their catalytic properties. 
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Chapter 5: The Strained AuPd/Pd(100) Surface Alloy  

5.1 INTRODUCTION 

The application of strain has been investigated extensively as a method of 

modifying the catalytic properties of metal surfaces. Theoretical and experimental studies 

of late transition metal surfaces, for example, have revealed that biaxial strain induced by, 

for example, a lattice mismatch between a pure, epitaxially deposited metal overlayer and 

a dissimilar metal substrate can lead to modified surface reactivity11,95-104. However, the 

potential effects of biaxial strain on the arrangement of atoms in a surface alloy have, so 

far as we know, not been investigated nearly so extensively. Owing to the demonstrated 

importance of ensemble effects in many catalytic systems, this is a shortcoming that we 

wished to address. 

In this chapter, we report the results of a theoretical investigation of the influence 

of strain on the atomic arrangement of AuPd/Pd(100) surface alloys. We considered three 

different strain conditions: Strain-free, 2% compressive strain, and 4% tensile strain. We 

chose this alloy and facet largely because it is known to host a greater-than-expected 

concentration of catalytically interesting second nearest-neighbor (2NN) pairs of Pd 

monomers. We first generated cluster expansion (CE) Hamiltonians from the results of 

density functional theory (DFT) calculations on a training set of model surfaces, which 

we then used in canonical ensemble Monte Carlo simulations of surface alloys to obtain 

finite-temperature predictions of their properties. The key result of this study is that under 

2% compressive strain, the tendency of the surface to order and to form 2NN monomer 

pairs is increased compared to the strain-free case, while under 4% tensile strain, it is 

reduced.  
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5.2 METHODOLOGY  

5.2.1 The Cluster Expansion Method 

In this work, we chose to model the energetics of the strained AuPd/Pd(100) 

surface by preparing separate cluster expansions for each of the strain conditions that we 

considered, each having its own training set of model surfaces (described in the following 

section). Cross validation score minimization was used to select from among candidate 2-

body clusters with up to 5th nearest-neighbor interactions and 3- and 4-body clusters with 

up to 4th nearest-neighbor interactions. To improve sampling of the low energy region of 

the potential energy surface, the training sets were also iteratively expanded to include 

global minima as they were discovered by candidate CEs. The procedure we followed is 

described in greater detail in Chapter 2.  

Figure 5.1. Formation energies per surface Pd atom 
(Ìå/æçè) of the model surfaces in each training set, 
where Ìå = Ìé|çè − (Ìé| + æçè ∙ êÌçè2é|). In 

this expression, Ìé|çè and Ìé| are, respectively, the 
total energies of the model surface in question and a 
model surface with a pure Au surface layer, and êÌçè2é| is the difference in the cohesive energies of 
bulk Pd and Au. 
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The final CE for the compressive strain case contained a total of 14 clusters, and 

the associated training set contained 51 model surfaces. For the strain-free and tensile 

cases, these quantities were (14 clusters, 45 surfaces) and (15 clusters, 49 surfaces), 

respectively. The clusters and ECIs for each strain condition are shown in Table 5.1. 

Table 5.1. Clusters and ECIs for each strain condition considered. Pd is spin down (-1) 
and Au is spin up (+1). 

2% Compression  Strain-Free  4% Tension 

Cluster ECI, meV  Cluster ECI, meV  Cluster ECI, meV 
Empty 1.85450636e+02  Empty 2.04188719e+02  Empty 2.19039037e+02 
Point -1.92351093e+02  Point -2.08394424e+02  Point -2.27812364e+02 
(1,0) 7.30184811e+00  (1,0) 5.44405978e+00  (1,0) 4.80639218e+00 
(1,1) -4.24548795e+00  (1,1) -3.86100527e+00  (1,1) -2.12944464e+00 
(2,0) 7.30438761e-01  (1,0);(0,1) -3.41407295e-01  (2,0) -3.50272344e-01 
(2,1) 3.35283741e-01  (1,0);(2,0) 8.54348214e-01  (1,0);(0,1) -4.95481534e-01 

(1,0);(0,1) -4.19913803e-01  (1,1);(2,0) -1.56993104e-01  (1,0);(2,0) 1.34674051e+00 
(1,0);(2,0) 9.15397099e-01  (0,2);(2,1) -1.24900792e-01  (1,1);(2,1) 2.02970429e-01 

(1,1);(2,0) -3.81950900e-01  
(1,1);(2,1); 

(1,2) 
1.97837618e-01  (0,2);(2,1) -1.51739369e-01 

(0,1);(2,1) 1.32076102e-01  
(1,1);(2,1); 

(2,0) 
2.02586151e-01  

(0,1);(1,1); 
(1,2) 

1.68068397e-01 

(2,1);(1,2) -1.24055321e-01  
(0,2);(1,1); 

(2,1) 
-3.06952291e-01  

(1,1);(2,1); 
(2,0) 

1.87181144e-01 

(1,1);(2,1); 
(1,2) 

2.93404379e-01     
(0,2);(1,1); 

(2,1) 
-2.66476399e-01 

(0,2);(1,1); 
(2,1) 

-1.57010033e-01     
(0,2);(1,2); 

(2,1) 
1.69105310e-01 

(0,1);(1,1); 
(2,1) 

-1.11313251e-01       

(1,1);(1,-1); 
(2,0) 

-4.98309871e-01       

5.2.2 Density functional theory 

The DFT calculations were spin polarized and used the GGA-PW91 functional88 

as implemented in the Vienna Ab-initio Simulation Package (VASP)89. The projector 

augmented wave (PAW) method with a planewave basis set was employed to describe 

the interaction between core and valence electrons90. The valence configurations 

employed to construct the ionic pseudopotentials are 5d10 6s1 for Au and 4d9 5s1 for Pd. 

An energy cutoff of 350 eV was applied for the planewave expansion of the electronic 

eigenfunctions. For Brillouin zone integration in the model surfaces, a (6×6×1) 
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Monkhorst-Pack mesh of k-points was used. This is a higher k-point density than we used 

previously to study the energetics of surface alloys, but it was deemed to be necessary in 

order to adequately resolve the effects of strain. 

As in our previous work, the models used to represent AuPd/Pd(100) surfaces in 

our DFT calculations were four layer slabs, each consisting of a 4×4 AuPd(100) surface 

layer atop three additional (100) layers of pure Pd. The top and bottom of the slabs were 

separated through a periodic boundary by the equivalent of 7 atomic layers. The bottom 

two layers were fixed at bulk positions, and the top two were relaxed until all the atomic 

force components were smaller than 0.03 eV/Å. Biaxial strain was simulated by 

uniformly changing the surface-parallel dimensions of the supercell by -2%, 0%, or +4% 

of the bulk Pd value, which was determined by DFT to be 3.961 Å. The surface-

perpendicular separation of the fixed Pd layers was also adjusted to account for strain-

induced relaxation in that direction. The extent of the relaxation was determined by 

applying biaxial strain to a bulk Pd sample, then minimizing the energy with respect to 

the supercell size along the perpendicular direction. The ratio of applied strain to 

response determined from these calculations is -0.689 and -0.586 for 2% compression 

and 4% tension, respectively, which closely match a Hooke’s law-based prediction made 

using experimentally measured 0K elastic stiffness constants for Pd (-0.665)30. 

Predictions made using the cluster expansions are compared to DFT results in 

Figure 1. Each point represents the formation energy (on a per Pd atom basis, defined in 

the caption) of a model surface from the CE training sets. The energies span a range of 

approximately 140 meV, and the CE predictions exhibit only very small departures from 

the DFT reference energies. 
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5.2.3 Monte Carlo Simulations 

Once completed, the three cluster expansions were incorporated into canonical 

ensemble Monte Carlo simulations of the AuPd/Pd(100) surface. All of the surfaces we 

simulated contained 30×30 (100) surface unit cells for a total of 900 atoms. The surfaces 

were first annealed at high temperature and then cooled and equilibrated at the simulation 

temperature over a period of 7×105 steps per site. Properties of the atomic configuration 

were then calculated and averaged over 1×105 steps per site. The candidate 

configurations evaluated at the beginning of each step were generated by swapping 

randomly selected Au and Pd atoms. Past experience has shown this procedure to be 

adequate to erase any bias from the initial configuration and to achieve consistency 

between repeated runs at the same simulation temperature and composition. 

5.3 RESULTS AND DISCUSSION 

5.3.1 Monte Carlo Simulations 

Figure 5.2 shows snapshots from simulations of select AuPd/Pd(100) surfaces 

with different composition ratios and degrees of strain. While some qualitative trends 

may be evident from the images, they are chiefly intended to complement and aid in the 

interpretation of the results which will be presented in Figure 5.3 and Figure 5.4, in which 

each “point” is an average over all the configurations visited in the course of a separate 

MC simulation, as just discussed. 
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Figure 5.3 shows the effect of strain on the population of Pd monomers in 

AuPd/Pd(100) at T = 300K. The monomer population is found to be increased by 

compression and reduced by tension, relative to the strain-free case, over the entire 

composition range considered. The strain effect becomes greatest at a Pd atomic fraction 

of xPd = 0.45-0.50, where the population of monomers in the compressively strained 

surface is about 1.8 and 3.3 times larger than in the strain-free and tensile cases, 

respectively.  

Figure 5.2. Snapshots from MC simulations of AuPd/Pd(100) under 
different strain conditions and with different levels of Pd coverage, xPd. 
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It can also be seen that under all three strain conditions (-2%, 0%, 4%), the 

population of monomers is larger in the AuPd/Pd(100) surface than in a random alloy 

(which has no interatomic interactions). In our previous work on AuPd surfaces, we 

showed that Pd monomers form in greater-than-expected numbers because of a 

preference for heteronuclear (Au-Pd) over homonuclear (Au-Au, Pd-Pd) interactions. The 

differences between the population of monomers in the strained surfaces suggest that 

compressive strain strengthens heteronuclear interactions relative to homonuclear ones, 

and that tensile strain weakens them. 

Due to their importance in a number of surface reactions, we next considered how 

strain affects the population of 2NN pairs of Pd monomers. In Figure Figure 5.4, we plot 

the number of 2NN pairs per surface Pd atom as a function of xPd and degree of strain, as 

obtained from MC simulations at T = 300K. The number of 2NN pairs is increased by 

Figure 5.3. Number of Pd monomers per surface Pd atom at T = 
300 K, obtained from MC simulation, under compressive (-2%), 
strain-free (0%), and tensile (+4%) conditions. 
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compressive strain and reduced by tensile strain. The strain effect becomes especially 

pronounced in the region of xPd = 0.5, where the number of pairs in the compressed 

surface is almost 8 times greater than in the tensile case.  

The origin of this sizeable difference between the compressive and tensile 

surfaces at xPd = 0.5 can be clarified by examining the last row of snapshots in Figure 5.2. 

In particular, the compressed [5.2(c)] surface appears to be well ordered, with several 

extended c(2×2)-like patches. Note that in the (100) surface facet, c(2×2) order 

maximizes the number of monomers and 2NN monomer pairs. Patches of c(2×2) order 

also exist in the strain-free surface [5.2(f)], but are visibly smaller, and in the 4% tensile 

case [5.2(h)], they have nearly vanished. 

This effect of strain on ordering can be measured using the Warren-Cowley short 

range order (SRO) parameter94, which we restrict here to the first nearest neighbor shell: 

Figure 5.4. Number of 2NN pairs of Pd monomers per surface Pd 
atom at T = 300 K, obtained from MC simulation, under 
compressive (-2%), strain-free (0%), and tensile (+4%) conditions. 
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In eq. (5.1), ABp  is the probability (in an alloy of A and B atoms) that a first 

nearest neighbor of a randomly selected A atom will be a B atom, and xB is the fraction of 

B atoms in the surface. In a completely random alloy, there is no tendency for A atoms to 

preferentially attract either A or B atoms into their 1NN shells, so BAB xp = , and therefore 

0=α . On the other hand, in a AuPd(100) surface alloy with xB = 0.5 and perfect c(2×2) 

order, the 1NN shell of every atom is populated entirely by dissimilar atoms, so ABp = 1, 

and 1−=α . 

Figure 5.5 shows the MC-predicted dependence of α on temperature and strain 

for xPd = 0.5. The plots indicate that at low temperatures, the AuPd/Pd(100) surface 

exhibits perfect c(2×2) order under all three strain conditions considered. As the 

Figure 5.5. Short-range order as a function of temperature 
when xPd = 0.5. 
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temperature rises, the arrangement of Au and Pd atoms in the surface becomes 

increasingly random; however, compressive strain is seen to significantly delay the 

deterioration of order. 

These results clearly demonstrate that compressive strain promotes the formation 

of monomers and stabilizes c(2×2)-like order in the AuPd/Pd(100) surface. To gain more 

insight into this finding, we turned next to examining how the surface electronic structure 

is modified by alloying and strain.  
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5.3.2 Electronic Structure 

Figure 5.6 shows the electron density of states (DOS) projected onto the d orbitals 

of Pd and Au atoms in the strain-free c(2×2) surface; results for the unalloyed Pd/Pd(100) 

and Au/Pd(100) surfaces are also shown for comparison. Formation of the c(2×2) surface 

alloy is found to significantly enhance the Pd DOS in the high binding tail about 4-6 eV 

below the Fermi level [Figure 5.6(a), top panel]. 

Figure 5.6. Surface Pd d DOS 
(red line, upper panels) and Au d 
DOS (red line, lower panels) for 
the strain-free c(2×2) surface, 
compared to their respective 
pure surfaces, Pd/Pd(100) and 
Au/Pd(100) (grey backgrounds). 
All plots have been normalized 
independently and shifted to 
place the Fermi energy at 0 eV. 
For clarity, the scales of the 
graphs showing the In-plane (b) 
and Out-of-plane (c) components 
have also been magnified 2× 
relative to the Total (a). 
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As can be seen by comparing the top panels of Figure 5.6(b) and (c), this 

enhancement is due almost entirely to a downshift of in-plane ( 22 yxxy dd
−

+ ) states; the 

out-of-plane ( 2zyzxz ddd ++ ) states in the tail region are affected comparatively little. A 

concurrent upshift of Au in-plane states also occurs [Figure 5.6(b), lower panel], 

indicating significant hybridization between the in-plane Au 5d and Pd 3d states, which 

may contribute to the stability of the c(2×2) surface. 

To better understand the relative stability of different arrangements of surface 

atoms under different strain conditions, we compared the c(2×2) surface and a p(4×2)-

ordered surface which is shown schematically in Figure 5.7; the p(4×2) surface has the 

same composition (xPd = 0.5) but a smaller number of Au-Pd nearest neighbors. As 

expected, the c(2×2) surface is energetically more stable than the p(4×2), and the 

difference is greatest under compression and least under tension. The strain effect on 

relative stability can be explained by examining the electronic structures of the two 

surfaces.  

As shown in Figure 5.8, under all three strain conditions considered, the Pd d 

DOS of both surfaces show enhancement in the tail region (below around -4 eV from the 

Figure 5.7. Strain-dependent 
differences in the total energies of the 
p(4×2) and c(2×2) surfaces that we 
examined. 
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Fermi level); this is due apparently to in-plane Au 5d-Pd 4d hybridization. The two 

surfaces nonetheless differ in that the enhancement is consistently more pronounced in 

c(2×2), due to its larger number of Au-Pd neighbors. This difference is visibly largest 

when the surfaces undergo compression [Figure 5.8(b)] and smallest when they undergo 

tension [Figure 5.8(c)], paralleling the trend in their relative stability as described earlier. 

This suggests that compressive strain stabilizes c(2×2)-like order (and also promotes 

monomer formation) by, at least in part, magnifying the effects of in-plane d-d 

hybridization between neighboring Au and Pd atoms.  

Figure 5.8. Surface Pd d DOS for the 
c(2×2) (red, solid line) and p(4×2) 
(blue, dotted line) surfaces compared 
to Pd/Pd(100) (grey background) 
under different strain conditions. All 
plots have been normalized 
independently and shifted to place 
the Fermi energy at 0 eV. 
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5.4 SUMMARY 

Using density-functional theory calculations, we created three cluster expansion 

Hamiltonians for the AuPd/Pd(100) surface alloy undergoing biaxial strain: one for 2% 

compression, one for the strain-free case, and the last for 4% tension. Pair interactions up 

to the 5NN distance and 3- and 4-body interactions up to the 4NN distance were 

considered for inclusion in the models. The cluster expansions were used in canonical 

ensemble Monte Carlo simulations of the strained surface alloys over a range of 

temperature and Pd. 

The simulations show that differing strain conditions result in dramatically 

different arrangements of atoms. In particular, compressive strain was seen to increase 

the number of Pd monomers relative to the strain-free case, and tensile strain was seen to 

reduce it. The number of second nearest-neighbor pairs of Pd monomers was similarly 

enhanced by compressive strain. Short range order in the xPd = 0.5 surface is also 

maintained until significantly higher temperatures in the compressed surface. 

We also examined the effects of strain and atomic configuration on the d-band 

electron density of states of two AuPd(100)/Pd surfaces: one with c(2×2) order and the 

other with p(4×2) order. After comparing the Au and Pd d-band DOS of these two 

surfaces to one another under different strain conditions, we concluded that hybridization 

between in-plane Au and Pd d states, evidenced by an enhancement in the Pd d-band 

DOS at high binding energy, may be responsible for the improved stability of the c(2×2) 

surface under compressive strain. 

These results increase our confidence that our approach, Monte Carlo simulation 

based on cluster expansions, is capable of providing insight into and perhaps even 

optimizing the atomic arrangements of surface alloys for the purpose of elucidating and 

improving their catalytic properties.  
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Chapter 6: Near-surface layers of the bulk AuPd(100) alloy 

6.1 INTRODUCTION 

In previous chapters, the surfaces of alloy catalysts were modeled using relatively 

thin slabs, in which alloying was confined to the topmost layer. Using this model, we 

investigated how finite-temperature atomic configuration was modified by variables such 

as strain, crystallographic surface facet, and chemical composition. The same basic model 

has been used to great benefit in a large number of other theoretical and experimental 

investigations of alloy catalysts. 

However, surface-confined alloys can be relatively difficult to construct 

experimentally and likely are unstable at elevated temperatures, which limits their 

technological relevance. As a result, experimental workers have shown considerable 

interest in characterizing more convenient and applicable model systems. The Goodman 

group, for example, has studied surface segregation and surface atomic arrangement in 

thin, 10-layer AuPd alloys deposited on Mo(110) substrates105,106. In these experiments, 

overall Au-Pd ratio, annealing temperature, and annealing time were systematically 

varied. They similarly examined the (100) surface facet of a bulk AuPd alloy that had a 

1:1 atomic ratio93. In another study, Tysoe and coworkers evaporated multiple layers of 

Au onto the (111) surface facet of a single crystal Pd substrate and investigated the 

effects of annealing temperature on surface segregation and other structural 

properties107,108.  
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The likely presence of near-surface configurational disorder raises concerns about 

the applicability of the surface-confined alloy model to these more complex systems. For 

example, the effects on surface atomic arrangement of subsurface disorder are largely 

unknown and may be quite significant. The results shown in Figure 6.1 would seem to 

confirm this suspicion. There we have plotted the relative stability of four distinct 

arrangements of Au and Pd atoms in a (100), 2×2 surface (vertical axis) as a function of 

the atomic arrangement of the 1st subsurface layer (horizontal axis). It can be seen that as 

Figure 6.1. Formation energy of four, 2×2 surface 
configurations as a function of subsurface atomic arrangement. Ìå(s, u) = Ìs/u − /Ìë/u + æçè ∙ ∆Ìçè2é|1, where Ìs/u, Ìë/u, 
and ∆Ìçè2é| are the total energies of the surface i on 
subsurface j, pure Au surface (i.e. 0) on subsurface j, and the 
difference in the cohesive energies of bulk Pd and Au. æçè is 
the number of Pd atoms in the surface. The formation energies 
in the plot are additionally divided by æçè and presented 
relative to Ìå(p, u). 
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the concentration of Pd in the subsurface is lowered and its atomic configuration changes, 

the relative stability of the surface layers is substantially altered. 

A theoretical strategy that addresses the interrelationships between all of these 

variables (bulk composition, surface composition, temperature, and surface and 

subsurface atomic arrangement) would clearly be of benefit in understanding the 

properties of alloy catalysts. Indeed, this need has been recognized by others, and several 

attempts to provide such a framework have been reported. However, they all suffer from 

various shortcomings. A number of studies have relied upon empirical potentials (such as 

the Embedded Atom Method), which may lack sufficient accuracy to correctly predict 

finer details of the surface atomic arrangement109-113. The cluster expansion based studies 

conducted by Yuge et al. surmount this particular difficulty, but are somewhat complex 

(in simulations of Pt-Rh and Cu-Pt surfaces, their approach led to CEs with 39 and 51 

ECIs, respectively), and, as will be discussed later, they also may encounter certain 

methodological problems114,115. 

In this chapter, a new method of predicting the surface concentration and surface 

atomic arrangement of binary alloys as a function of temperature and bulk composition 

will be described. A bulk AuPd alloy terminated by a (100) surface facet will be used as 

an example. As in previous chapters, the approach is based on a Monte Carlo simulation 

scheme, but in the grand canonical, rather than the canonical, ensemble. The surface 

terminated bulk was modeled as multilayer slab, which represented the near-surface 

region, in thermal and chemical equilibrium with a bulk reservoir of Au and Pd atoms. 

The energetics of the two systems were described using a cluster expansion Hamiltonian 

constructed on the basis of density functional theory calculations. 

After a brief description of the technical details pertaining to the DFT 

calculations, the results of a DFT-based study of AuPd(100) slabs will be reported. The 
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purpose of this study was to identify the minimum size of slab needed to achieve 

energetic convergence and also to establish a set of simplifying assumptions that could be 

made in the formulation of a cluster expansion for the system. 

Next, construction of the cluster expansion will be described. The procedure in 

this chapter differs in important ways from the approach used in previous ones. 

Finally, the grand canonical ensemble Monte Carlo (GCMC) simulation scheme 

will be discussed. An initial attempt was made to use a framework known as Direct 

Exchange Monte Carlo (DEMC)110 to implement GCMC, but was found to fail in certain 

cases. The reasons for this failure will be clarified. 

After the method has been fully explained, simulation results will be discussed in 

light of the experimental findings of other researchers as well as the results presented in 

earlier chapters. 

6.2 DENSITY FUNCTIONAL THEORY 

The DFT calculations were spin polarized and used the GGA-PW91 functional88 

as implemented in the Vienna Ab-initio Simulation Package (VASP)89. The projector 

augmented wave (PAW) method with a planewave basis set was employed to describe 

the interaction between core and valence electrons90. The valence configurations 

employed to construct the ionic pseudopotentials are 5d10 6s1 for Au and 4d9 5s1 for Pd. 

An energy cutoff of 350 eV was applied for the planewave expansion of the electronic 

eigenfunctions. For Brillouin zone integration in the model surfaces studied in section 

6.2, a (4×4×1) Monkhorst-Pack mesh of k-points was used, regardless of slab thickness. 

For those used in the training sets described in section 6.5, which were all the same 

thickness, but varied in lateral dimension, we employed a (N×N×1) mesh, where N was 

adjusted to maintain a consistent density. For the 2×2×15 atom slabs, N = 6. 
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In all cases the equivalent of at least 7 layers of vacuum space separated the top 

and bottom surfaces of the slabs through the periodic boundary. All atoms in the slabs 

were permitted to relax until all of their force components were smaller than 0.02 eV/Å. 

6.3 SLAB ENERGETICS 

In the method used by Yuge et al. in Refs. 114 and 115, a set of clusters which 

was previously found to reasonably capture the energetics of the bulk is re-used in the 

slab. However, because the symmetry of the clusters is broken by the surface, they 

become layer dependent. This is illustrated by a pair of diagrams in Ref. 115 which is 

reproduced in Figure 6.2. The left panel shows the set of clusters in the bulk, and the right 

panel shows their expansion into a much larger set in a nine layer slab. Each of the 51 

slab clusters has its own ECI. This procedure received somewhat limited justification by 

an appeal to the convergence of the layer-dependent ECIs to their bulk values (see Figure 

4 in Ref. 115). 

While it is more than plausible that interatomic interactions in an alloy would be 

affected by the presence of a surface, it would be beneficial to determine the ways and 

extent to which this actually occurs before formulating a perhaps overly complex 

Figure 6.2. On the left, clusters 
for the bulk Cu-Pt alloy. On the 
right, layer-dependent expansion 
of the bulk clusters for the Cu-Pt 
(111) slab. From Figs. 1 and 3 in 
Ref. 115. 
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Hamiltonian. Other concerns—such as the slab thickness required for convergence of the 

layer-dependent energetics—must also be addressed. 

Figure 6.3 shows a side view of the structures we used to answer some of these 

questions. Each is an Au slab terminated by (100) surface facets on top and bottom. Two 

layers in each slab were replaced by Pd impurity layers, and the slabs were fully relaxed 

using DFT. The pairs of Pd layers, which were always mirror images of one another, had 

one of the 2×2 atomic arrangements schematically shown along the horizontal axis of 

Figure 6.1. In the text, these will be referred to as “impurity layers”, and also by label in 

italicized text, e.g. 1, 2d, etc. 

The formation energies of the Pd impurity layers were calculated using 

 @ì = (@�yí� − @�y − �í� ∙ ∆@í�2�y	�/�í� (6.1) 

Figure 6.3. Structures with between 7 and 17 (100) layers were used to 
determine the convergence of relative formation energies within a AuPd 
slab. 
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in which @�yí� and @�y are the total energies of the alloy slab and the pure Au slab, 

∆@í�2�y is the difference in the cohesive energies of bulk Pd and Au, and �í� is the 

total number of Pd atoms in the slab. 

To limit interaction of the impurity layers with one another, we only examined 

slabs in which they were vertically separated by at least three Au layers. 

Figure 6.4 shows the formation energies of 1 as a function of slab thickness and 

depth. As the impurity layer is pushed from the surface to the 1st subsurface layer, a 

large, approximately 0.4 eV/atom reduction in formation energy occurs. This is expected; 

as previously mentioned, Au preferentially segregates to the surface of bulk AuPd alloys, 

and the surface energy of Au is significantly lower than Pd (1.626 J m-2 vs 2.034 J m-

2)116. We also note that in the 17 layer slab, the formation energy of 1 is seen to have 

attained almost 97% of its value in the 7th layer. This suggests that the effects of the 

surface are fairly shallow. On the other hand, the formation energies themselves depend 

Figure 6.4. Formation energy of 1 as a function of slab 
thickness and depth. 
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considerably on the overall thickness of the slab. It is not until the slabs achieve a 

thickness of at least 15 layers that they appear to converge. 

Figure 6.5 shows the per Pd atom formation energies of 2d, 2p, 3, and 4 relative to 

1, all within the same layers. Examining the relative formation energies in this way 

removes the sizable layer-dependence of the absolute formation energies, which 

facilitates closer examination of their differences.  

In the 7 layer slab, the relative formation energies are all positive, while in the 9 

layer slab, they are mostly negative. When the slab thickness grows to 11 and then 13 

layers, the ranking of their stability follows the trend 2p < 2d < 3 < 4, regardless of depth, 

but the energy of 2p relative to 1 changes significantly between the 11 and 13 layer slabs. 

The relative formation energies in the 15 and 17 layer slabs exhibit the same overall 

ordering regardless of depth (1 < 2p < 2d < 3 < 4) and seem generally more similar to 

one another than any other adjacent pair. 
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Figure 6.5. Formation energies, per Pd atom and relative to 1, of 
each surface layer type, as a function of depth and slab thickness. 
Layer 1 is the surface layer. 



 

 95 

In, the relative formation energies in the 15 and 17 layer slabs are compared 

directly. The formation energies of the impurity layers are generally higher in the 17 

layer slabs by an average of about 10-20 meV. Trends in the 15 layer and 17 layer slabs 

share few features in common, apart from minima that occur in all of the relative 

formation energies at a depth of 2. 

These dissimilarities between the 15 and 17 layer slabs indicate that convergence 

with respect to slab thickness was not perfectly achieved, even at 15 layers. At the same 

time, the limits of our computational resources demand that we must accept some amount 

of error. Considering also that the surface segregation energy of Pd in the Au slab is on 

the order of 400 meV, we found the errors associated with the 15 layer slab model 

acceptable, and this is the model we chose to use for the development of our cluster 

expansion. 

Figure 6.6. A comparison of the depth-dependent 
formation energies of the impurity layers labeled 2p, 
2d, 3, and 4 relative to 1 in the 15 and 17 layer slabs. 
A depth of 1 corresponds to the surface layer. 
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We also note that the strong variation of the relative formation energies with slab 

thickness creates some suspicion about the 7 and 9 layer slabs used by Yuge et al. in their 

simulations of the Pt-Rh and Cu-Pt surfaces. Although the layer-dependent cluster 

expansion Hamiltonians they developed may have been quite accurate in these slabs, it is 

questionable whether many of the simulation results they obtained would continue to 

hold for thicker ones, let alone bulk Pt-Rh or Cu-Pt crystals. 

This leads to the final observation we will make about the results in Figure 6.4, 

Figure 6.5, and Figure 6.6. Although we chose to accept a 15 layer slab as a model of the 

AuPd(100) subsurface, we remain conscious of the fact that the relative formation 

energies in slabs of this thickness exhibit depth dependence somewhat different from in 

17 layer slabs. A model Hamiltonian that perfectly reproduced the energetics of 15 layer 

slabs would therefore provide slightly incorrect results for 17 layer and (presumably) 

thicker slabs. For this reason, we concluded that a cluster expansion that attempts to 

replicate all of the fine, layer-dependent energetic details of the 15 layer slab would be 

pointlessly complex. 

6.4 CLUSTER EXPANSION METHOD 

In light of this conclusion, we formulated a cluster expansion scheme in which 

depth-dependence appears explicitly only in the point clusters, i.e. the on-site energies. 

The remainder of the slab formation energy  

 @ì = @�yí� − (��y ∙ @�y − �í� ∙ @í�) (6.2) 

is expanded using a set of three-dimensional clusters that (potentially) could have 

included pairs out to the fifth nearest-neighbor distance (in the 3D fcc lattice) and 3- and 

4-body interactions out to the fourth nearest-neighbor distance—a total of 29 unique 

clusters. If a cluster contains a site that falls outside of the slab, its product is equal to 0. 
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The point cluster ECIs were constrained to converge to a bulk value a fixed number of 

layers beneath the surface. The set of clusters used in the final expansion, as well as the 

number of layer-dependent point cluster ECIs, were chosen based on their cross 

validation score. Further discussion of the optimization procedure and construction of the 

training set, which presented some unique difficulties not encountered in previous 

chapters, is reserved for the following section. 

One advantage to this formulation of the cluster expansion is that it obviates the 

need for creation of a separate CE for the bulk reservoir, which can be modeled using the 

slab CE minus the layer dependent point clusters. It also permits arbitrary increases in the 

thickness of the GCMC simulated slab because of the assumption that interatomic 

interactions do not depend on depth. 

6.5 TRAINING SETS 

Recall that the process to construct cluster expansions for the surface alloys was 

iterative in nature. From an initial training set of randomly generated surface alloys, a 

trial cluster expansion was created by minimizing the cross validation score. Then this 

cluster expansion was used to locate ground state configurations for every possible 

surface composition with (up to) a 4×4 unit cell. These were relaxed using DFT and 

added to the training set if not already present. At the beginning of the next iteration, a 

new trial CE was created. This process was repeated until the trial CE discovered no new 

ground state configurations. 

The rationale for this approach was that since we are practically limited in the 

number of model surfaces that can be included in our training set, the CE should be 

trained to accurately predict the differences in the energies of low-energy configurations 
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in particular, since it is these configurations that mostly determine the finite temperature 

properties of the surface. 

In the present case, however, this approach would almost certainly lead to a 

highly inaccurate cluster expansion at the temperatures that we wished to consider. 

Experimentally, the (100) surface of the 1:1 AuPd alloy contains about 10% Pd after an 

800 K anneal93. On the other hand, we have estimated that the segregation of a Pd atom 

from the 1st subsurface layer of an Au slab to its surface incurs a penalty of about 400 

meV. We would therefore not expect the ground state configuration of a slab to contain 

any surface Pd atoms until the subsurface had been completely filled. The atomic 

configurations that would result from the iterative procedure are thus likely to be highly 

non-representative of what we would reasonably expect to find in reality. 

What if we created a training set composed entirely of randomly generated slabs? 

To help answer this question, we constructed a normalized distribution of the 1NN pair 

Figure 6.7. Probability density of the pair cluster 
function in a 2×2×15 slab. The arrow indicates the 
minimum value. 
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cluster function (Φ = ∑ ¨++�0 0̈) in a 15 layer, 2×2 slab with a AuPd ratio of 1:1. It was 

created by calculating Φ  for 100 million randomly generated samples. Φ  was 

selected as a measure of atomic configuration because it is both simple to calculate and 

readily indicates whether one slab compared to another is more ordered (a larger number 

of 1NN pairs of unlike atoms; in smaller Φ ) or segregated (a larger number of 1NN 

pairs of like atoms; larger Φ ). It is also typically an important term in a cluster 

expansion, and so the distribution of Φ  values in a training set is of immediate interest 

to the question at hand. This distribution is shown in Figure 6.6. 

The arrow on the horizontal axis of Figure 6.6 indicates the position of the 

minimum value of Φ that can be attained in a 15 layer, 1:1 slab, that is, Φ  of the slab 

that contains the maximum possible number of 1NN interactions between unlike atoms. 

Its location far to the left of the peak indicates how narrowly distributed randomly 

generated slabs are likely to be compared to the full spectrum of possible slabs, which 

raises doubts about the efficacy of a purely random training set. 

In light of the concerns that have been raised, we developed an alternative 

procedure to build a training set for the slab CE Hamiltonian. The motivating concept 

was to modify the random Φ  distribution by introducing a 1NN interaction. Intuitively, 

in a canonical ensemble MC simulation of even a non-random (i.e. containing 

interactions) alloy, the Φ  distribution of all the visited microstates will coincide with 

the random distribution in Figure 6.6, provided that the simulation is performed at a 

sufficiently high temperature. As temperature is lowered and the influence of the 1NN 

interaction on the arrangement of atoms in the slab begins to be manifested, the 

distribution will shift and change shape. Hence, by selecting microstates from MC 

simulations conducted over a range of temperatures, we should be able to construct a 

training set with a broader range of Φ  values than would be achievable by purely 
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random sampling. Furthermore, if the 1NN interaction chosen is a reasonable estimate of 

the AuPd 1NN interaction, these slabs should contain a more representative selection of 

the kinds of atomic configurations found in actual AuPd slabs. 

The 1NN interaction we used was obtained by fitting (using least squares) a 

limited CE with only a 1NN pair interaction 

 
E = Y� + Y� ) ¨++ + ) ¨+ 0̈+�0  

(6.3) 

to the small training set of AuPd alloys shown in Figure 6.8, the mixing energies of 

which are compared to the experimental mixing energy117. 

 

Figure 6.8. The training set for the 1NN CE is shown 
along the horizontal axis, along with the Pd fraction of 
each configuration. The DFT-predicted (solid circles) and 
CE-predicted (open circles) mixing energies are shown in 
the plot along with the experimentally derived curve 
(solid line) from Ref. 117. 
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Using this CE, we conducted canonical ensemble MC simulations of the 15 layer, 

2×2 slab over a range of compositions and temperatures. After an initial phase of 

equilibration, 〈Φ 〉 (the angle brackets denote an ensemble average) was calculated. 

Finally, a single representative microstate was chosen at random from each simulation 

with the constraint that its Φ  had to fall within 0.25 standard deviations of the average 

for its composition and temperature. 

Values of Φ  for a 50% Pd slab at six temperatures are indicated using arrows in 

Figure 6.9, which, for comparison, also again shows the random Φ  distribution. The 

Φ  values themselves are located to the left of the peak of the random distribution. This 

is consistent with the preference for heteronuclear interactions in AuPd alloys, which 

tends to decrease Φ . They are also all in a tail region of the random distribution, from 

which they are unlikely to be selected by chance. These results show that the introduction 

Figure 6.9. Probability density of the pair cluster 
function in a 2×2×15 slab. The arrow indicates the 
minimum value. The arrows indicate values of the pair 
cluster function for slabs taken from simulations 
conducted at the indicated temperatures. 
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of a 1NN pair interaction is a simple and intuitive way to, in effect, bias the random 

selection of slabs to increase their configurational diversity and applicability to the 

system in question—in this case, a AuPd slab. 

The training set we built using this procedure contained a total of 66 slabs. The 

largest number of these (42) contained 2×2 layers, but eighteen 3×2×15 and six 4×2×15 

slabs were also included. The overall Pd fraction of these slabs varied between 15% and 

85%. The MC simulation temperatures were 100 K, 300 K, 500 K, 700K, 1000 K, and 

1400 K. The surface-parallel lattice constant chosen for the slabs was the average of the 

DFT-derived Au and Pd lattice constants. Vegard’s Law118, which accurately describes 

AuPd alloys, states that the lattice constants of alloys obey the lever rule, so a simple 

average corresponds to a Au:Pd ratio of 1:1. 

Figure 6.10. Clusters in the AuPd(100) expansion, 
indicated by the red atoms in each unit cell. The 
numbers correspond to the entries in Table 6.1. 
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6.6 CROSS VALIDATION 

Using the training set just described, a cluster expansion was constructed by 

identifying the set of clusters that minimized the cross validation score. This optimization 

was performed using simulated annealing, and resulted in a final CV score was 1.178 

meV/atom. The final expansion included a null cluster, three point clusters 

(corresponding to sites in the surface layers, the first subsurface layers, and the bulk), two 

pairs, four trimers, and four tetramers, for a total of 14 total parameters. The clusters 

themselves appear in Figure 6.10 and ECIs in Table 6.1. 

In Figure 6.11, the DFT formation energies of the training set slabs are compared 

to the corresponding CE predictions. As can be seen, the two are in good agreement with 

one another. 

As an additional check on the validity of CE, we performed canonical ensemble 

MC simulations of the slab in which alloying was permitted only in the topmost surface 

Figure 6.11. Formation energies of the training set slabs 
predicted by the cluster expansion versus the DFT predictions. 
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layers, and the subsurface layers contained only Pd. We compared the results of these 

simulations to results from Chapter 5 for the AuPd(100) surface alloys under strain. 

 

Figure 6.12 shows the population of 2NN Pd monomer pairs at 300K as a 

function of Pd surface coverage for the slab (Bulk 1:1 in legend), the random surface 

alloy, and the AuPd surface alloys under strain-free, compressive, and tensile strain 

conditions. Figure 6.13 shows the temperature dependence of the Warren-Cowley short 

range order parameter for the same systems, but with 50% Pd coverage. In both figures, 

the results for the slab fall for the most part between the results for the strain-free and 

tensile cases. This is as expected, since the lattice constant of the slabs in the training set 

corresponds to 2.7% tensile strain. 

Figure 6.12. Population of 2NN pairs of Pd monomers in 
the AuPd/Pd(100) surface. The results for compressive, 
strain-free, and tensile strain are based on the CEs 
developed in Chapter 5. 
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Figure 6.13. Short range order parameter in the 
AuPd/Pd(100) surface with a Pd coverage of 50%. The 
results for compressive, strain-free, and tensile strain are 
based on the CEs developed in Chapter 5. 
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Table 6.1. ECIs for the bulk and near-surface region of AuPd(100). Pd is spin down (-1) 
and Au is spin up (+1). 

Cluster Number ECI, eV Note 

1 1.979630E-02 

2 -2.029820E-01 Surface 

-4.653230E-02 Subsurface 

-3.084700E-02 Bulk 

3 1.286190E-02 

4 1.543120E-03 

5 2.455640E-03 

6 9.411140E-04 

7 2.780580E-04 

8 -1.414850E-03 

9 -1.247460E-04 

10 -2.661940E-04 

11 -1.287840E-04 

12 3.777410E-04 

6.7 GRAND CANONICAL ENSEMBLE MONTE CARLO 

In canonical ensemble MC, the volume, composition, total number of atoms, and 

temperature of the simulated system are fixed. This was an appropriate choice of 

ensemble for the surface alloys considered in previous chapters, because atomic exchange 

between their simulated two-dimensional surfaces and their subsurface layers was, by 

assumption, disallowed, and, as a result, their compositions were well-defined. 
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The same is not true of a bulk AuPd alloy with a free surface. In the previously 

mentioned experiments reported by the Goodman group, they found that after cleaning 

their 1:1 atomic ratio AuPd sample by argon sputtering, then annealing at 800 K, its 

surface contained 90% Au. Significantly, the segregation of Au from the bulk to the 

surface would have changed the bulk composition by only a negligible amount from the 

initial 1:1 AuPd ratio, since the number of surface sites is minuscule compared to the 

number of bulk sites. The near-surface layers in the real sample are in effect in 

equilibrium with a bulk reservoir of Au and Pd atoms, the composition of which equals 

the overall composition of the sample. To achieve the same effect in a canonical 

ensemble MC simulation of the system, a potentially very large number of subsurface 

layers would have to be considered explicitly. If too few layers were included, the 

composition of the bulk would differ substantially from the overall (bulk + near-surface 

layers) composition, which is the real independent variable for the simulation. 

An alternative and more attractive approach that avoids this difficulty is to 

perform MC simulations in the grand canonical ensemble (GCMC), in which the volume 

and temperature of the simulated system remain fixed, but the composition is allowed to 

change through the exchange of atoms with a constant chemical potential (μ) reservoir. 

As just suggested, in a simulation of the AuPd(100) surface, the near-surface layers are 

considered the system, and the bulk is considered the reservoir. The Boltzmann factor for 

the grand canonical ensemble in a two component system is66 

 exp;(−@ + �� ∙ î� + � ∙ î )/ÑC= (6.4) 

where Ni is the number of atoms of each species, and î+ is their corresponding chemical 

potentials, on an atomic basis. The ratio of the Boltzmann factor written for two systems 

is then 

 P = exp;(−∆@ + ∆�� ∙ î� + ∆� ∙ î )/ÑC= (6.5) 
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In our simulations, we add the constraint that the total number of atoms in the slab 

remains constant (i.e. there are no vacancies, interstitial defects, or surface adatoms), and 

therefore, 

 P = exp;(−∆@ + ∆� ∙ ∆î)/ÑC= (6.6) 

from which it is clear that only the difference between the chemical potentials of Au and 

Pd must be known. A definition of ∆î can be obtained by rearranging the fundamental 

property relation for the Helmholtz free energy. 

 dA = −SdT − pdV + î�I�� + î I�   

 dA = −SdT − pdV − î�I� + î I�   

 ] ñÕñ� _±,ò = ∆î (6.7) 

Using this definition, ∆î could be approximated by conducting canonical MC 

simulations on bulk (periodic in all directions) AuPd over a range of temperature and 

composition, then numerically differentiating the ensemble-averaged energies 〈@〉 
(approximately equal to the free energy A) along the isotherms with respect to changes in 

Pd composition. However, a seemingly more simple and elegant simulation strategy 

called Direct Exchange Monte Carlo (DEMC) has also been proposed110. 

In a DEMC simulation of the AuPd(100) system, bulk AuPd would first be 

thermally equilibrated using canonical ensemble MC. Representative snapshots would 

then be taken from these simulations to serve as reservoirs in GCMC simulations of 

slabs. When an atom exchange move is attempted in GCMC, the energy change due to 

swapping a randomly chosen atom (Au→Pd or Pd→Au, as appropriate) in the reservoir 

is first computed. This is taken to equal ∆î. The swap is then attempted in the slab, and 

the Boltzmann criterion is calculated. If the swap is successful, the new slab 
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configuration is kept. However, in order to preserve their composition, the swaps are 

never actually carried out in the reservoir. 

The purported advantage of DEMC is that it is relatively simple to implement, but 

reduces the required number of reservoir MC simulations by at least a factor of 2, 

because O(h2) central differences require two data points. One of the downsides of 

DEMC, as we will see, is that it does not always work as expected. 

6.8 LIMITATIONS OF DEMC 

Bulk AuPd samples containing 25%, 50%, and 75% Pd in a 12×12×12 

configuration (1728 total atoms) were simulated at 800K using canonical ensemble MC 

to obtain reservoir structures for DEMC. The simulations consisted of a linear ramp from 

1500K down to 800K over 17,280,000 steps (10,000 per site), followed by equilibration 

Figure 6.14. Depth-dependent Pd fraction at 800 K of 
systems with 25%, 50% and 75% bulk composition. 
Obtained using the DEMC method. 
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at 800 K for another 17,280,000 steps. The configurations at the end of the equilibration 

phases of each simulation were taken as the reservoirs. 

The slabs used in the DEMC simulations contained 4464 atoms in a 12×12×31 

configuration. The equilibration phase in these simulations also took 20,000 steps per 

site, including the temperature ramp. Data was collected over 10,000 steps per site. In 

each MC step, the new candidate microstate was constructed by either swapping a 

dissimilar pair of atoms within the slab, or by attempting to swap an atom with the 

reservoir. The choice of the type of swap was made randomly; swaps with the reservoir 

occurred with a 1 in 20 probability. 

Figure 6.14 shows the variation of composition with depth for the three bulk 

compositions examined. The concentration of Pd is lowest in the topmost layer of all 

three slabs. It shoots up in the 1st subsurface layer, and then undergoes oscillations of 

decreasing amplitude with increasing depth, converging toward a constant value in the 

deepest layers. This oscillatory behavior is in qualitative agreement with atomistic 

simulations of surface segregation in other alloys. 

In the 25% and 50% cases, the value to which the Pd concentration converges is 

just the corresponding bulk composition. However, in the 75% case, the DEMC-predicted 

Pd concentration in the deepest layers is approximately 57%. 

The explanation for this surprising and apparently non-physical result can be 

understood by comparing ∆î(C, Ù) in the slab and reservoir systems as a function of 

overall Pd composition. In GCMC, the average composition of the simulated system will 

be the value at which its chemical potential equals the chemical potential of the reservoir. 

In Figure 6.15, we have plotted ∆î of the slab and bulk at 800K. These values were 

computed by differentiating 〈@〉 as described in section 6.7. As can be seen in Figure 

6.15, at 25% and 50% bulk compositions, this condition is satisfied in each case by only 
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one slab composition, as indicated by the dashed lines. However, at approximately 65%, 

∆î in the slab becomes smaller than ∆î in the bulk reservoir, and bulk compositions 

greater than this no longer uniquely correspond to a single slab composition. In the 75% 

case, slab compositions of approximately 72% and 57% both have matching ∆î. The 

DEMC simulation will favor the more stable composition (see the experimental mixing 

energy in Figure 6.8), even though it is untenable that the subsurface layers of the 

AuPd(100) system, which are of course in physical contact with the “bulk”, would 

exhibit this behavior. 

Figure 6.15. ∆ó in a slab and a bulk reservoir, obtained 
by numerical differentiation of ôÌõ. The dashed lines 
leave the horizontal axis at the bulk composition, meet 
the bulk ∆ó curve, cross over at constant ∆ó to the slab 
curve, then go vertically downward to rejoin the axis at 
the composition of the slab that is in equilibrium with the 
bulk. At bulk compositions above ~65%, the horizontal 
tie lines cross the slab curve twice, and a DEMC 
simulation will result in a slab with the lower 
composition. 
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For this reason, the remainder of the MC results reported in this chapter are based 

on cubic spline interpolations of plots like the ones shown in Figure 6.15 instead of the 

DEMC method. The SciPy package for the Python programming language was used to 

perform all necessary differentiation and interpolation119. 

Figure 6.16. Pd fraction in the surface and 1st subsurface 
layers as a function of temperature and bulk composition, 
as predicted by GCMC simulation. 
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6.9 SURFACE AND SUBSURFACE COMPOSITIONS 

Description of the overall method is now complete. In this section, we will 

discuss a few results of the simulations. 

Figure 6.16 shows how the compositions of the surface and 1st subsurface layers 

of 25%, 50%, and 75% AuPd(100) slabs vary with temperature. Pd content in the surface 

layer is seen to always increase with temperature, while subsurface composition 

decreases. These two trends are easily understood in terms of what we already know 

about AuPd energetics, in particular, the significantly higher surface energy of Pd and the 

preference for heteronuclear interactions. As temperature is increased, higher energy 

microstates with greater surface Pd fractions are visited with greater frequency in the MC 

simulations. Although Pd in the 1st subsurface layer is still somewhat less stable than in 

the bulk (the bulk and 1st subsurface site ECIs differ by only about 15 meV), Pd 

concentrates there because it is attracted to the Au in the surface. As the surface Au 

fraction is diminished by increasing temperature, so also is the Pd fraction in the 1st 

subsurface layer. 

At 25% bulk composition, the surface concentration of Pd remains very low over 

the entire examined temperature range. Even at 1400 K, it is predicted to be smaller than 

2%. The surface of the 50% alloy is considerably more enriched in Pd, achieving a value 

of nearly 13% at 1400 K. The predicted surface Pd fraction is about 5% at 800 K, while 

the experimentally determined value is about 10%. This may suggest that Pd surface 

segregation is under-predicted by the simulation methodology that we developed, but it is 

also possible that the annealing time used in the experiment was inadequate to fully 

equilibrate the surface concentration profile. In the 75% alloy, the surface layer is 

predicted to contain as much as 30% Pd. The 75% alloy also contains considerably more 
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Pd in its 1st subsurface layer than either the 25% or the 50% alloys. Even at high 

temperature, it decreases to only about 76%. 

In our MC simulations of AuPd(100) surface alloys (Chapters 4 and 5), we 

considered surfaces in which the Pd fraction was as high as 80%. The results in Figure 

6.16 indicate that a Pd bulk composition in excess of 75%, as well as a high annealing 

temperature, would be necessary to achieve such high levels of Pd surface coverage in a 

bulk sample. On the other hand, the high Pd content of the 1st subsurface layer in a 75% 

bulk sample tends to confirm the applicability of the surface alloy model, which has a 

pure Pd subsurface, to the bulk alloy. 

6.10 SUMMARY  

In this chapter, the development of a scheme for modeling surface segregation 

and atomic configuration in surface terminated bulk alloys was presented. The scheme 

was based on density functional theory, the cluster expansion method, and grand 

canonical Metropolis Monte Carlo. The AuPd(100) surface was used as an example. 

The first step in the development of the scheme required determining the 

minimum thickness of slab required to model the energetics the near-surface layers. For 

this purpose, the relative formation energies of five Pd-containing 2×2 surface layers in 

otherwise pure Au slabs were calculated at various depths in increasingly “thick” slabs. 

The formation energies were found to largely converge when the slabs reached a 

thickness of 15 layers, as judged by the differences between the 15 and 17 layer slabs. 

Accordingly, the 15 layer slab was selected as a model system. 

The relative formation energies of the Pd surface layers appeared to depend only 

slightly on depth, and in fact the variation was judged to be comparable to the error 

introduced by using a 15 rather than a 17 layer slab model. For this reason, the decision 
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was made to include layer dependence only in the point clusters of the cluster expansion, 

which is necessary to account for the relatively large surface segregation energy of Pd 

(~400 meV for a Pd atom segregating from a bulk Au host to the surface). 

Having established these criteria for the truncation of the cluster expansion, we 

turned next to the development of a DFT training set of model surfaces. We first reasoned 

that the approach used in earlier chapters of seeking ground state structures would likely 

fail due to the high surface energy of Pd. We also argued that using only randomly 

generated configurations would similarly produce non-representative configurations. 

Hence, we developed a scheme to generate more realistic configurations using a first 

nearest-neighbor pair interaction in canonical Monte Carlo simulations. 

Using this training set, we constructed a cluster expansion for the AuPd(100) 

surface which included a total of 14 ECIs, including three separate point ECIs, one each 

for the surface, subsurface, and bulk. Excellent agreement was achieved between CE and 

DFT predictions of the formation energies of the training set surfaces, and comparisons 

between MC predictions made using this CE and the CEs developed in Chapter 5 were 

also reasonably consistent. 

The slab cluster expansion was employed in grand canonical simulations of the 

near-surface layers of the AuPd(100) system using the Direct Exchange Monte Carlo 

scheme. The DEMC scheme was found to produce physically implausible results for a 

slab in equilibrium with a bulk reservoir with a Pd composition greater than ~65%. For 

example, the deepest layers of a simulated slab in contact with a reservoir composed of 

75% Pd were found to have a Pd composition of approximately 57%. This apparent error 

was found to occur because ∆î (the difference in the chemical potential of Au and Pd) 

in the slab crosses over and becoming smaller than ∆î in the reservoir at approximately 

65%. In order to overcome this shortcoming in the DEMC method, the equilibrium slab 
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compositions for each temperature and reservoir composition that we examined were 

determined using an interpolation scheme. 

Our simulations of the AuPd(100) surface were found to be in reasonable 

agreement with available experimental data; a 50% AuPd alloy is known to have a 

surface composition of ~10% Pd after annealing at 800 K, while our simulations 

predicted 5%. Pd composition. The Pd composition in the subsurface layers was found to 

oscillate with depth due to the attraction between Pd and Au atoms. In order to achieve 

Pd surface compositions as high as those we considered in Chapters 4 and 5, we found 

that it may be necessary to employ high bulk Pd fractions. 
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Chapter 7: (111) Surface Alloys and the Scaled Pair Interaction 

7.1 INTRODUCTION 

As available computing resources have grown, so also has interest in theoretical 

catalysis studies that employ a combinatorial or high-throughput approach, in which the 

properties of multiple alloys are screened for their activity or selectivity toward a targeted 

reaction. In one such study, Dellamorte et al. used density functional theory calculations 

to predict the effectiveness of six Ag-based surface alloys for ethylene epoxidation and 

NOx reduction, identifying several that outperformed pure Ag catalysts in subsequent 

experiments120. Nørskov and coworkers investigated the methanation reaction (CO + 3H2 

→ CH4 + H2O) on 117 different bimetallic alloy catalysts using DFT121. Based on their 

results, they synthesized and evaluated a Ni-Fe catalyst, which proved to be superior to 

the conventionally used Ni catalyst. In two large studies, Greeley et al. developed a 

library of almost 750 binary surface alloys, which were used to screen for catalysts for 

the oxygen reduction reaction and the hydrogen evolution reaction, also identifying a 

number of promising candidates122,123. 

These studies and others like them demonstrate that the combinatorial approach 

may be an effective strategy for uncovering new catalysts. However, one shortcoming 

they typically exhibit is a lack of attention to the way in which atoms are likely to be 

arranged in the alloys they consider. Dellamoret et al. assumed a p(3×3) surface cell in 

their study, for instance; Greeley et al. used only pure overlayers and alloys with 

/√3 × √31ö30° order. Although Greeley et al. also tested the stability of these systems 

in Ref. 123, they appear to have made no further attempts to determine the catalytic 

properties of those that did not pass, even though they comprised the great majority. 

It seems reasonable to suggest that the combinatorial approach could only benefit 

from incorporation of information about the arrangement of atoms in surface alloys, both 
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through the identification of promising candidates that were overlooked by the studies 

described above and the rejection of false positives. The cluster expansion-based 

simulation strategy described in Chapter 2 is capable of providing this kind of detail. 

Unfortunately, since each alloy that we might wish to consider would require iterative 

construction of a sizable training set of DFT results, the computational costs of carrying 

out a systematic study that included a large number of alloys would quickly become 

prohibitive. 

To provide direction for developing a new, less computationally demanding 

approach, we might start by reopening the question of why such large training sets were 

needed in the first place. The chief reason was the inclusion of a large number of long 

range and multibody interactions in our cluster expansions. While these interactions may 

have been necessary to resolve many finer details of alloy surface atomic configuration—

the strain-dependent populations of 2NN pairs of Pd monomers in AuPd(100), for 

instance—it may be possible to trade some accuracy for improved speed while 

nonetheless providing beneficial results. 

The approach developed in this chapter is an attempt to successfully negotiate this 

trade. In the first portion, cluster expansions restricted to 1NN pair interactions are 

constructed for 12 surface alloys in the fcc(111) surface facet using small DFT training 

sets. Models developed in this way are compared to our earlier, more sophisticated 

models of the AuPd and AuPt surface to demonstrate that they are indeed capable of 

providing acceptable results. Next, we explain how properties of the finite-temperature 

atomic configuration of any bimetallic surface alloy modeled using a 1NN CE can be 

predicted on the basis of a dimensionless parameter, the scaled pair interaction.  

Finally, we discuss results from a series of canonical ensemble Monte Carlo simulations 

that we performed over a range of values of the scaled pair interaction. 
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7.2 METHODS 

Quantum mechanical calculations reported herein were performed on the basis of 

spin polarized density functional theory (DFT) within the generalized gradient 

approximation (GGA-PW91)88, as implemented in the Vienna Ab-initio Simulation 

Package (VASP)89. The projector augmented wave (PAW) method with a planewave 

basis set was employed to describe the interaction between ion cores and valence 

electrons. The PAW method is in principle an all-electron frozen-core approach that 

considers exact valence wave functions90. Valence configurations employed in all cases 

include the d and s electrons belonging to the highest numbered shell. An energy cutoff 

of 350 eV was applied for the planewave expansion of the electronic eigenfunctions. 

The slabs we used to model the fcc (111) surface alloys had four 2×2 layers. One 

component of each alloy was identified as the host, and the other as the impurity. The 

bottom three layers contained only host atoms, and the topmost layer was a monolayer 

alloy of host and impurity atoms. The top and bottom layers of each slab were separated 

from one another through a periodic boundary by a vacuum space corresponding, before 

relaxation, to seven atomic layers. The upper two layers were fully relaxed using the 

conjugate gradient method until residual forces on all the constituent atoms became 

smaller than 2×10-2 eV/Å, while the bottom two layers were fixed at bulk positions 

determined by the host lattice constant. The calculated lattice constants of several host 

metals appear in Table 7.1 side-by-side with experimental values124. As is typical for 

GGA calculations, most of the predicted values are slightly high. 

For Brillouin zone integration, we used a (12×12×1) Monkhorst-Pack mesh of k 

points to determine the optimal geometries and total energies. Previous calculations 

suggest that the chosen parameters are sufficient for describing the surface properties of 

the model systems considered. 
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Table 7.1. Lattice constants predicted by DFT. Experimental values taken from Ref. 124. 

 
a (DFT), Å a (Expr), Å % Diff. 

Pd 3.961 3.890 1.82% 
Pt 3.986 3.924 1.59% 
Ir 3.882 3.839 1.10% 
Ni 3.521 3.524 -0.08% 
Ag 4.159 4.086 1.79% 
Cu 3.635 3.615 0.58% 

The Metropolis Monte Carlo (MC) method was used to predict the finite 

temperature arrangement of atoms in the surface alloys. The simulations were performed 

in the canonical (constant NVT) ensemble on surfaces with 900 atoms arranged in a 

30×30 supercell. The surfaces were annealed at high temperature for 9×106 steps to 

eliminate dependence on the initial configuration, and then the temperature was ramped 

down to the simulation temperature over another 9×106 steps. Data was collected over a 

final 4.5×106 steps. 

 Cluster expansions truncated to the first nearest neighbor pair interaction 

were used to model surface alloy energetics. That is, 

 

 
E = Y� ∙ �D+z4D + Y� ) �++ + Y ) �++�0 �0 

(7.1) 

where �D+z4D is the total number of atoms in the lattice, σ+ is the spin of atom at lattice 

site i, and	Y�, Y�, and Y  are the empty, point, and 1NN pair effective cluster interactions 

(ECIs). Host atoms were spin-down (σ+ = −1 ) and impurity atoms were spin-up 

(σ+ = +1). For convenience, we will also refer to the sums in eq. (7.1) using the notation Φ�, where Φ� = �D+z4D, Φ� = ∑ �++ , and Φ = ∑ �++�0 �0. 
It is well-known that pair-wise additive terms alone are inadequate to model the 

energetics of metals34,125. We justify restricting the CE to 1NN pair interactions in three 

ways. First, as already stated, our goal is not to predict every subtlety in how atoms are 
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arranged in the surfaces of alloys, but to provide an easily implemented methodology to 

determine likely arrangements. In catalytically promising cases, it may be worthwhile to 

adopt a more thorough approach. Second, the inaccuracy that arises from a pair-only 

model is probably most important in systems in which metal atoms can have varying 

coordination. This occurs in simulations that include, e.g., vacancies and interstitial 

defects, surface adatoms, or in which both the bulk and surface are considered. In our 

simulations, all atoms have the same coordination. The third justification is the 

substantial agreement between predictions made using a 1NN pair CE and the more 

complete CE developed in Chapter 3, which will be shown below. 

7.3 ESTIMATING THE ECIS 

The ECIs for the alloys that we considered were determined by fitting to the 

mixing energies of the five surfaces shown schematically in Figure 7.1, referred to 

collectively as the training set. The mixing energy was defined as 

 @K+ø = @ù − ;@�.� + © ∙ (@�.� − @�.�)= (7.2) 

The energies on the right hand side of eq. (7.2) are total energies per surface atom 

calculated using DFT according to the method described in Section 7.2. The subscripts 

indicate the impurity content, θ. 

The fit was made by minimizing the squared errors between the CE and DFT-

predicted mixing energies of the N = 5 training set surfaces with respect to J�, J�, and 

J . 

Figure 7.1. Training set surfaces. 
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 ε = 1� )/@K+ø,+G� − @K+ø,+¯°± 1 $
+,�  (7.3) 

Taking the partial derivative of ε  with respect to J�, J�, and J  results in a 

system of three linear equations and three unknowns, each of which have form  

 

) Φ0,+ ∙ 4 ∙ @K+ø,+¯°±$
+,�

= Y� ) Φ�,+ ∙ Φ0,+
$

+,� + Y� ) Φ�,+ ∙ Φ0,+
$

+,� + Y ) Φ ,+ ∙ Φ0,+
$

+,�  
(7.4) 

 

The sums are over the N surfaces in the training set, and the first and second 

subscripts on the cluster functions Φ0,+ indicate the associated ECI and the associated 

surface, respectively. The factor of 4 on the left hand side appears because @K+ø,+¯°±  is 

defined on a per atom basis. The cluster functions appear in Table 7.2 for convenience. 

Table 7.2. Cluster functions for each of the surfaces in the training set. 

θ Φ� Φ� Φ  

0.0 4 -4 12 
0.25 4 -2 0 

0.5 4 0 -4 

0.75 4 2 0 

1.0 4 4 12 

Using this procedure, we estimated J�, J�, and J  for the list of alloys shown in Table 

7.3. The error between the CE and DFT-predicted mixing energy of each alloy are also 

shown. 
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 Table 7.3. ECIs and errors for the alloys considered. The first element in each is 
considered the “impurity”, and is spin = +1 in the cluster expansion. The second is the 
“host”, which is spin = -1. 

 

Figure 7.2. DFT (blue, close symbols) and CE (red, open symbols) mixing 

energies for each training set surface., which shows the mixing energy curves for all the 

alloys considered, may provide a clearer indication of the fidelity of the cluster 

expansions to their respective DFT training sets than the error alone. For some alloys 

(AuPd, AuPt, PdIr, PtNi, PdAg, PtCu) the fit appears to be quite good, and may well 

provide quantitatively accurate predictions of atomic configuration. For others (e.g. AgPt 

or CuPt), this is less true. In these cases, we expect the predictions to still be capable of 

providing some degree of guidance, but caution is urged. The alloy with visibly the worst 

fit of all those that we examined is PtPd. Its mixing energy changes signs midway across 

the composition range. We note, however, that the magnitude of its mixing energy and of 

its ECIs are extremely small compared to all of the other alloys, indicating that it would 

behave much like the random alloy. 

Alloy J� J� J  ε/atom (meV) 

AuPd -0.03495 -0.00133 0.01154 1.006 
AuPt 0.01483 -0.00004 -0.00490 0.219 
PdIr 0.07886 -0.00037 -0.02624 0.321 
PtNi -0.25173 0.01188 0.08335 8.024 
AgPd -0.01647 -0.00222 0.00541 1.461 
AgPt 0.01300 0.00178 -0.00439 1.169 
CuPt -0.00940 0.00146 0.00298 1.204 
PdAg -0.05222 0.00241 0.01728 1.652 
PdPt -0.00104 0.00021 0.00035 0.133 
PtAg -0.01877 0.00579 0.00602 3.851 
PtCu -0.11009 0.00722 0.03633 4.926 
PtPd 0.00011 -0.00009 -0.00004 0.056 
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In order to evaluate our assumption that 1NN pair interactions are capable of 

providing a reasonable approximation of surface alloy energetics, we next performed a 

series of MC simulations of the AuPd(111) and AuPt(111) surfaces using the ECIs 

Figure 7.2. DFT (blue, close symbols) and CE (red, open symbols) mixing energies 
for each training set surface. 
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reported in Table 7.3 and then compared the results to those presented in Chapter 3. 

Recall that the MC simulations discussed in Chapter 3 were based upon CEs constructed 

from much larger training sets and included pair and multibody interactions out to the 

3NN distance. 

Figure 7.3 compares the 300K population of Pd and Pt monomers in AuPd and 

AuPt surface alloys as a function of their overall atomic fraction. While the results based 

on the 1NN models are not exactly the same as those based on the longer range CEs, their 

discrepancies from another are small compared to the differences between the alloys 

themselves. 

Using the procedure described above, we also fit the 1NN CE to the AuPd and 

AuPt training sets from Chapter 3, which included, respectively, 56 and 51 4×4 surfaces. 

The resulting values of J  were 0.01270 eV for AuPd and -0.00525 eV for AuPt, both 

quite similar to the values derived from the five-member, 2×2 training sets used in this 

work (See Table 7.3). 

Figure 7.3. Monomer 
populations predicted using 
CEs developed in Chapter 3 
and the 1NN CEs developed 
in this chapter. 
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Both of these results increase our confidence in the ability of 1NN pair models 

based on the small training set shown in Figure 7.1 to provide reasonable predictions of 

the arrangement of atoms in fcc(111) surface alloys. 

7.4 SCALED PAIR INTERACTIONS 

Figure 7.3 shows the results of a set of simulations performed at a particular 

temperature for two pairs of metals, each with their own cluster expansion. While it 

would be possible to perform similar simulations for any and every alloy that we desire to 

consider, this would quickly become cumbersome. Fortunately, the form of the 1NN CE 

suggests an alternative approach. 

In a canonical ensemble (constant NVT) MC simulation, transition from the 

current microstate, labeled i, to a new, randomly generated one, j, occurs in each step 

with a probability equal to the ratio of their Boltzmann factors. 

 Û+→0 = V2∆�7,8/�û± (7.5) 

where ∆@+,0 is the difference in their energies. For a surface alloy whose energetics are 

modeled by the 1NN CE, this difference is 

 ∆@+,0 = Y ∙ /Φ ,0 − Φ ,+1 (7.6) 

The other two ECIs (Y� and Y�) and their associated cluster functions vanish due 

to the constraint of constant composition. Substituting eq. (7.6) into eq. (7.5) results in 

 Û+→0 = exp	Þ−Y Ë ∙ /Φ ,0 −Φ ,+1ß (7.7) 

In eq. (7.7), we have replaced the quantity Y /ÑÒC with Y Ë , the scaled pair 

interaction. By writing the MC criterion in terms of Y Ë  rather than T and Y  separately, 

we have conceptually eliminated the need to simulate every alloy, each with its own Y , 

over a range of temperatures. Instead, we may perform a single set of simulations over a 
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range of Y Ë , then locate the finite temperature behavior of a particular alloy (i.e. with a 

particular Y ) within these results. 

The relationship between Y Ë  and Y  is illustrated in Figure 7.4, which shows the 

values of Y  for several of the alloys considered above scaled over temperatures between 

200 K and 1200 K. For alloys that have negative Y  values, the top of the bar in Figure 

7.4 corresponds to values of Y Ë  at 1200 K, and the bottom to 200 K. The reverse is true 

for alloys with positive Y  values. 

Figure 7.4 makes clear that a broad range of interatomic interactions exists in 

surface alloys, even in our small sample. Some of them consequences of this will be 

discussed in the following section, where we present further results of MC simulations. 

Here we note that although AuPd(111) and AuPt(111) surface alloys are known to 

possess significantly different atomic configurations (cf. Chapter 3), their interatomic 

interactions are relatively similar compared to those of other alloys. 

Figure 7.4. The scaled pair interaction over 
temperatures between 200K and 1200K for 
several alloys. 
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7.5 HOST-IMPURITY DISTRIBUTION AS A FUNCTION OF ÉqË  

Figure 7.5. Snapshots from simulations of fcc(111) surface alloys with θ = 1/3 at the 
scaled pair interaction indicated. 
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In order to explore the effects of Y Ë  on atomic arrangement in surface alloys, MC 

simulations were performed over a range of values from Y Ë  = -1.2 to +2.4. Impurity 

compositions between θ = 0.01 and θ = 0.50 were examined. 

Figure 7.5 shows snapshots taken from simulations with θ = 1/3. 

At Y Ë  = -1.2, the impurity atoms (red) fully segregate from the host (gray). This 

occurs because interactions between like atoms (Impurity-impurity or host-host) make a 

positive contribution to Φ , and therefore are energetically favorable when Y  is 

negative. For the same reason, the island of impurity atoms is roughly circular, which 

minimizes the number of impurity-host interactions. As Y Ë  is increased to -0.5 and -0.38, 

impurity monomers and dimers are ejected from the island, and its boundaries become 

roughened. Larger islands break away at Y Ë  = -0.3. At -0.2, impurity atoms form a 

mixture of large islands and small ensembles. 

As Y Ë  changes sign to become positive, host-impurity interactions become more 

energetically favored, and impurity atoms become increasing well-dispersed in the 

surface. At Y Ë  = 0.23, 0.45, and 0.68, a growing number of small impurity ensembles 

exist in the surface. In addition, the larger ensembles take on branching chain shapes, 

rather than the more clustered appearance they had at negative values of Y Ë . Small 

patches of /√3 × √31ö30°-like order begin to emerge at Y Ë  = 0.68, and order clearly 

dominates at 0.8. At 2.4, the surface is completely ordered and free of defects. 

The sequence of snapshots in Figure 7.5 demonstrate the strong dependence of 

atomic configuration on interatomic interactions. They also suggest that if atomic 

arrangement plays an important role in the kinetics of a reaction, screening studies based 

solely on ordered surfaces may fail to identify (or wrongly identify) a potentially 

promising catalyst. 
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Figure 7.6. Ensemble size distributions for a range of scaled pair interactions. 
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The series of plots in Figure 7.6 show the size distribution of contiguous impurity 

ensembles as a function of θ and Y Ë . The fractional population of impurity monomers, 

dimers, trimers, and tetramers are shown, as well as the fraction of impurity atoms 

belonging to all larger contiguous islands. 

For the most negative Y Ë  shown (-1.2), all impurity atoms belong to ensembles 

larger than tetramers, regardless of the impurity fraction in the surface. As Y Ë  is 

increased, impurity atoms increasingly take part in smaller ensembles, especially at lower 

θ. At Y Ë  = 2.4, the population of impurity atoms in large ensembles is essentially 0 until 

θ > 1/3, whereupon the spaces between impurity atoms in the ordered surface begin to be 

“filled in.” (See Figure 7.5) 

The population of monomers varies with Y Ë  and θ in an almost mirror-image 

fashion to the larger ensembles. At large, negative Y Ë , no monomers are present in the 

surface, while at large, positive Y Ë , impurity atoms exist exclusively as monomers until 

the symmetry properties of the hexagonal lattice no longer permit it (at θ > 1/3). 

For most values of Y Ë , the populations of intermediate-sized enembles—dimers, 

trimers, and tetramers—never rise above the populations of monomers. In the vicinity of 

Y Ë  = 0.23 and 0.45, the fraction of impurity atoms in dimers takes on its absolute largest 

value, approximately 0.3.  

Taken as a whole, the size distributions in Figure 7.6 urge caution in cases where 

the activity or selectivity of a proposed catalyst depends strongly on the presence of 

certain contiguous ensembles and/or the absence of others. If a desired reaction has been 

predicted to occur readily on impurity dimers, trimers, or tetramers in a certain alloy, for 

instance, the relatively small population of these ensembles that are predicted by our 

simulations to exist in any surface alloy may be an impediment to its adoption as a 

catalyst. Similarly, if a reaction pathway depends on the absence of dimers and larger 
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ensembles for its selectivity, it may be necessary to use a catalyst with low θ, where the 

majority of impurity atoms are monomers. However, a catalyst with low θ by definition 

has a small number of impurity sites, which would reduce the rate. One caveat to this 

warning is that the distribution of atoms in a surface alloy is not only a matter of 

thermodynamics under vacuum conditions, but has been demonstrated in some cases to 

also depend on, for example, the presence of adsorbates. Although this phenomenon 

deserves further attention, it is outside of the scope of this work. 

7.6 CONCLUSIONS 

A method was developed to predict the energetics of bimetallic surface alloys 

using a cluster expansion (CE) truncated to include only first nearest-neighbor pair 

interactions. Restricted training sets composed of only five, 2×2 fcc(111) slabs were used 

to parameterize the cluster expansion for particular alloys. The energies of the slabs in the 

training set were calculated using density functional theory. Parameterization was 

performed using a least squares procedure, and the effective cluster interactions of the 

1NN CE model were presented for several example alloys. The errors associated with 

truncating the CE and using a restricted training set were evaluated in two cases 

[AuPd(111) and AuPt(111)] by comparing with results from Chapter 3. We determined 

that in these two surface alloys, the errors were acceptable. 

We next demonstrated that because we had limited the cluster expansion to 1NN 

pair interactions, the finite-temperature, equilibrium arrangement of atoms in all surface 

alloys was controlled by a single dimensionless parameter, the scaled pair interaction, Y Ë . 

Finally, we reported the results of a series of canonical ensemble Metropolis 

Monte Carlo simulations conducted over a range of Y Ë  values and degrees of surface 

impurity fraction. Snapshots of the simulated surface and the impurity ensemble size 
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distribution were presented to show that surface atomic arrangement is greatly influenced 

by both variables. Ordered alloys, which are commonly used in combinatorial theoretical 

catalyst studies, were shown to exist only at Y Ë  values greater than approximately 0.8. 

Based on the ensemble size distributions, we also argued that care must be taken in 

interpreting the results of theoretical surface chemistry studies that depend strongly on 

the arrangement of surface atoms. 
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Chapter 8: Conclusions 

Using a simulation scheme that combines density functional theory, the cluster 

expansion method, and the Metropolis Monte Carlo algorithm (Chapter 2), we explored a 

number of influences on the atomic configuration of bimetallic catalytic surfaces. In 

Chapter 3, we examined the consequences of differing interatomic interactions in surface 

alloys in the (111) crystallographic facet by comparing the results of MC and DFT 

simulations of AuPd/Pd(111) and AuPt/Pt(111). Chapter 4 extended this study into the 

(100) surface facet of the same pairs of metals, where it was seen that longer range 

interactions resulted in the preferential formation of second nearest-neighbor pairs of Pd 

monomers. Some of the effects of biaxial strain were explored in Chapter 5, and a 

method to predict the near-surface atomic configuration of bulk alloys was presented in 

Chapter 6. Finally, in Chapter 7, we developed a computationally inexpensive method to 

predict the finite-temperature atomic arrangement of bimetallic alloys by reducing their 

behavior to a single dimensionless parameter, the scaled pair interaction. In each of these 

cases, we have shown the utility of the DFT+CE+MC approach as a tool for predicting 

atomic arrangement in alloy surfaces. 

Extensions of this work could be pursued fruitfully in a number of directions. To 

name a few: 

� The “pressure gap” that exists between traditional ultra-high vacuum surface 

science experiments and catalysis under more realistic, high pressure 

conditions has been at least partially addressed for pure metals126-129. For 

alloys, the situation is complicated by the fact that many adsorbates interact 

more strongly with one component than others, which can cause rearrangement 

of atoms in the surface or enhance segregation to the surface of that 
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component72,126,130,131. Additional study is needed to elucidate the nature and 

consequences of these phenomena. 

� Similar to the “pressure gap”, a “materials gap” exists between the atomically 

flat surfaces that commonly have been used in both experimental and 

theoretical surface science, and more realistic catalytic systems in which metal 

particles are dispersed on a support. Tremendous effort has been expended 

developing techniques to determine the morphologies of single-metal and alloy 

clusters, but the great majority of these have focused on particles in the gas 

phase132,133. Research into the ways in which particle-support interactions 

affect the structure and ultimately the catalytic properties of supported catalysts 

would clearly be of benefit. 

� The Metropolis algorithm has enabled us to predict characteristics of the 

atomic configuration of alloys at thermodynamic equilibrium. However, it is 

likely that kinetics also plays an important role in determining the structure of 

alloys. While a few DFT-based, atomistic studies of the diffusion processes 

occurring in and near the surfaces of alloys have been reported134,135, this area 

of research is in its infancy. 

 

The prevalence of heterogeneous catalysis, the exponential growth of computing 

power (and, concomitantly, its increasing availability)136, and ongoing improvements in 

the accuracy and accessibility of modeling techniques virtually guarantee that 

computational studies such as the ones described in this dissertation and those 

recommended above will only become more numerous. 
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