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Peridynamics is a well-established nonlocal method for modeling the

deformation of solid bodies. The concepts introduced by the peridynamic (PD)

theory have demonstrated special utility for problems in solid mechanics which

include the evolution of spatial discontinuities, i.e. cracks. While the PD theory

has been extensively studied on problems of solid mechanics, its capabilities as

a multi-scale modeling theory also make it a candidate for modeling problems

of heat and mass transport in fluids. Fluid mechanics has so far been an

under-explored area of peridynamic research.

The aim of this dissertation is to lay the foundation for the use of peri-

dynamics in fluid mechanics by presenting viable techniques for modeling heat

and mass transport problems using peridynamic-based nonlocal models. This

investigation starts with a nonlocal advection-diffusion model for immiscible

two-phase flow in porous media. The proposed nonlocal formulation is shown
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to be capable of naturally handling the sharp and irregular changes in the

concentration at the interphase of the fluids. As a result, the proposed model

can capture the formation and evolution of instabilities at the fluid interface.

An important feature of peridynamics models is an influence function

which governs the strength of nonlocality and can be used as a tool for mul-

tiscale modeling. The local limit of a peridynamics model is independent of

the choice of the peridynamic influence function; however, the correct non-

local mechanics cannot be modeled unless a physically meaningful influence

function is used. This dissertation presents a systematic approach for the

calculation of a nonlocal kernel that has been homogenized from molecular

dynamics (MD) calculations of heat transfer in nanofluids. The MD calcula-

tions fully resolve the individual constitutes of the nanofluid. The peridynamic

continuum model is then shown to be accurate in demonstrating the enhanced

heat transfer properties of nanofluids on domains larger than what can be

practically solved using MD.

Finally, a nonlocal extension of the Navier-Stokes equations is devel-

oped along with a penalty formulation for their numerical solution. Math-

ematical convergence is shown to recover the classical Navier-Stokes partial

differential equations as limiting case. Computational simulation results are

then presented for several test cases demonstrating that the formulation is

stable and can recover important features of the classical theory for several

test cases.
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Chapter 1

Introduction

1.1 Motivation

Over the past 20 years, peridynamic (PD) theory has become a well-

established nonlocal method for simulating the deformation of solid bodies.

The concepts introduced by the peridynamic theory have proven to be espe-

cially helpful for problems in solid mechanics, which include spatial disconti-

nuities, e.g. cracks. The theory was originally developed by Silling [86] as a

reformulation of the classical theory of solid mechanics. The main goal of this

theory was to remove the dependence on the spatial derivatives of displace-

ments. Silling achieved this goal by introducing pairwise forces that connect

two material points over a finite distance. These interactions over finite dis-

tances make the peridynamic theory nonlocal by nature.

In addition to tackling problems in solid mechanics with spatial discon-

tinuities, peridynamic theory is also proven to be a strong tool for multi-scale

modeling [4,101,113]. Silling [87] demonstrated that in solid materials, nonlo-

cality can be a direct result of the small-scale heterogeneities of the domain.

These heterogeneities are often excluded through the implicit or explicit ho-

mogenization of the problem. Therefore, a physically meaningful peridynamic
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model for a solid material must contain information about the microstructure

of the material. This information in a peridynamic-based model is typically

captured by the influence function, ω. Delgoshaie et al. [24] explained the

presence of anomalous diffusion in porous media by using the multi-scale con-

nectivity of the natural pore networks. The authors presented a systematic

method to use the pore network mesoscale computational models to extract

the required peridynamic influence function. D’Elia et al. [27] focused on find-

ing the diffusivity parameter for peridynamic and fractional models by using

an optimal control technique. More recently, Xu et al. [112,113] introduced a

data-driven regression algorithm for the calculation of the influence function

of a bond-based peridynamic model to describe the macro-scale deformation

of linear elastic medium with periodic heterogeneity.

While the PD theory has been extensively studied using problems of

solid mechanics, its capabilities as a multi-scale modeling tool also make it

an ideal candidate for modeling problems of heat and mass transport in fluid

mechanics. Fluid mechanics has so far been an under-explored area of peridy-

namic theory. The goal of this dissertation is to lay the foundation for the use

of peridynamic theory in fluid mechanics by presenting viable continuum mod-

els and numerical techniques for modeling heat and mass transport problems

using peridynamic-based nonlocal models.

Classical models of heat and mass transport use governing laws in which

fluid flux is linearly related to a potential (e.g., Fick’s and Darcy’s laws). These

models can be derived by statistical analysis that assumes the Brownian mo-
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tion of diffusing particles. In such situations, the Markovian nature of the un-

derlying statistics is the core assumption of the diffusion process. Nonetheless,

this assumption is often not valid for heterogeneous domains where analysis of

diffusing tracer particles leads to non-Gaussian distributions. These processes

are termed anomalous diffusion and include sub- and super-diffusion as partic-

ular cases [57]. Examples of anomalous diffusion are seen in polymers [35,62],

biomaterials [6] and in petroleum engineering in the studies of flow through

porous media [39,82] and the formation of viscous fingers [19,42].

Viscous fingering is an interface instability that can occur between two

or more phases in miscible multiphase fluid flow. It is characterized by a

highly irregularly shaped interface, often with long “fingers” from the displac-

ing phase propagating far into the phase(s) being displaced. Although many

secondary effects may be involved, most researchers consider the principal con-

trolling mechanism to be the viscosity ratio between phases. Spatial changes in

pressure are lower in the phase with lower viscosity leading to higher pressure

in the leading edge of the fingers. This higher pressure causes a force imbal-

ance that assists in propagating the interface forward into the more viscous

phase.

The most used experimental methods for modeling viscous fingering,

employes Hele-Shaw cells to mimic two-dimensional creeping fluid flow in a

porous media. The use of the Hele-Shaw cells offers a convenient way for

the visual study of the viscous fingers. Since the introduction of this method

by Saffman and Taylor [75], many have attempted to improve the setup to

17



model viscous fingering more accurately. But despite the improvements, the

experimental work has not yet provided an accurate method for the character-

ization of the viscous fingering phenomena. Dispersion cannot be elucidated in

Hele-Shaw cell experiments due to the underlying homogeneous medium; nev-

ertheless, it can be significant in applications of miscible displacements such as

secondary and tertiary oil recovery in the field of petroleum engineering [49].

More recently, numerical simulations using finite difference and finite

element approaches have been used to model initiation and propagation of fin-

gers [77,91]. While these numerical simulations can be tools for exploring many

factors involved in viscous fingering, the underlying physical equations that

they discretize are void of any dispersive effects [3,45] (i.e. any observed disper-

sion is numerical). Occasionally, the underlying partial-differential equations

used to model subsurface fluid flow are parameterized with time-dependent

diffusion coefficients to account for dispersion; however, the physical justi-

fication for this assumption is not well-established in many cases (i.e. when

modeling Newtonian fluids). Dispersion is a spatial phenomenon in the subsur-

face caused by heterogeneities at length scales smaller than what are typically

resolved in a fluid transport simulation.

Another common example of a problem where small-scale perturbations

can result in macro-scale features in a flow is seen in the study of turbulence.

Turbulence is widely known as one of the oldest unsolved problems in physics.

It is characterized by the chaotic behavior of the fluid pressure and velocity

fields at high Reynolds numbers. Although the effects of turbulence are ex-
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perienced through the macroscopic features of a flow, its source lies in the

interactions of the fluid particles at the micro-scale. Small perturbations in

the flow, which are typically formed within a boundary layer or introduced at

inlets, can be retarded by viscous forces. However, if the momentum effects

are large enough, a laminar flow will quickly transition to an unsteady and

disorganized turbulent flow. Examples of turbulent flows include blood flow

inside arteries and flow through mechanisms such as pumps, turbines, and

around aircraft wings.

Traditionally, automotive and aerospace industries have used experi-

mental methods such as wind tunnels and scaled prototypes to visually study

the behavior of flow as it passes over an object of interest. However, wind

tunnels that are large enough to fit full-scale prototypes are rare and hard to

maintain. Additionally, reproducing the exact conditions of real-world interest

inside a tunnel is often hard to achieve. Given the challenges involved with

experimental studies using wind tunnels, the computational methods for mod-

eling turbulent flows have gained more popularity in the past few decades.

Computational methods based on the classical continuum approach such as

direct numerical simulation (DNS) can be used to accurately calculate shear

stresses and pressure fields in all parts of the flow. These fields can then be used

to calculate forces and momentum as well but only if a fine enough spatial and

temporal discretization can be employed. An appropriate spatial discretiza-

tion must be fine enough to capture the dissipative and viscous effects that

occur at microscopic levels while covering a domain size, which is typically
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many orders of magnitudes larger. This means that even with the widespread

availability of high-performance computers, the computational time required

is still the bottleneck of DNS modeling. Alternative computational methods,

such as Reynold’s Averaged Navier-Stokes (RANS) modeling and Large Eddy

Simulations (LES), offer their own advantages. As useful as LES is, it still

requires significant computational power and lacks the ability to model small

scale phenomena.

One of the main challenges with the study of turbulence is that the un-

derlying assumptions of continuum mechanics break down at scales approach-

ing the mean free path of particles. Typically, spatially nonlocal physics are

analyzed with a fractional derivative approach [57] or with the use of integral

equations [82]. The latter is more general and hence, is the method chosen

for the current investigation. An example of an integral-type nonlocal model

called peridynamic theory was introduced by Silling [86] to model elasticity

and material failure in solid mechanics. Silling’s initial work was focused on

the derivation of a set of integro-differential equations for conservation of mo-

mentum in solid structures. This work became the foundation of a theory

that has turned into a promising modeling tool. While multiple studies have

investigated the mathematical soundness of the peridynamic approach in fluid

mechanics, little work has been done to study the effectiveness of this approach

when it comes to modeling complex flow geometries including turbulence.

The use of integrals in the place of derivatives makes nonlocal models

more effective in modeling spatial discontinuities. However, this enhancement

20



comes at a significant cost of much longer computational time. To remedy this,

most nonlocal models are solved in parallel using a supercomputer. Another

challenge involved with peridynamic-based nonlocal models is related to the

extraction of the nonlocal kernel. The nonlocal kernel is a weight function that

defines the strength of the bonds between different grid points in a nonlocal

simulation. The selection of this nonlocal kernel has historically been made

to reduce the inaccuracies of the integration process [79]. However, as this

work will discuss in depth, a proper choice must also take into consideration

the physics of the problem [80], either through numerical upscaling procedures

[109, 114] or by theoretical homogenization of micro-structural heterogeneity

[113].

Seleson and colleagues [81] argued that peridynamic and in general

nonlocal models have similar computational structures to molecular dynamics

(MD) models and showed the extent to which MD results can be recovered

when NL models are used to perform the upscaling procedure. As a result,

using MD can be thought of as a natural way to extract the nonlocal kernel

of a domain.

As an example, in the numerical studies of nanofluids, the small scale of

the problem makes it possible to use molecular dynamics to study the domain.

For this specific problem, the continuum-based models fail to accurately simu-

late the nanofluid suspensions. The continuum formulations simply ignore the
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changes to the atomic structure of the suspension when nano-sized 1 particles

are added to the base fluid. Classical models also consider the suspensions

to be static, composite structures, an assumption which many believe adds to

the inaccuracy of the calculations done using continuum models [76].

Recent work has shown that MD approaches can offer an accurate and

easily reproducible method for the study of nanofluids [50, 52]. These models

typically calculate the thermal conductivity using the Green-Kubo method.

Apart from being able to investigate particle size and volumetric fraction, MD

models have the capability to explore more complex aspects of a suspension,

which includes the fluid layering [50,52,97] and the changes in the movement

of base fluid after the introduction of particles [76]. Despite their strength, it’s

important to note that MD models are extremely computationally expensive.

As a result, they are typically only run on domains that include a small number

of particles.

The small domains used in the MD models are certainly not appropriate

for modeling engineering problems. The MD models can, however, be used to

study the strength of the interactions between the particles in the domain.

Careful characterization of these interactions can then be used to extract an

appropriate kernel to be used in a nonlocal model to run the analysis on much

larger domains.

1Average particle diameter of 10e− 9
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1.2 Outline of The Dissertation

In the following chapters, the capabilities of peridynamic-based models

in modeling mass and heat transport problems will be explored. This investi-

gation will start with a nonlocal advection diffusion model for two-phase flow

in porous media. The proposed nonlocal formulation is naturally capable of

handling the sharp changes in the concentration at the interphase of the fluids.

As a result, the proposed model can capture the formation and development of

instabilities at the fluid interface. As time passes, these instabilities are shown

to develop into long fingers of the less viscous fluid also known as viscous

fingers.

Chapter 4 focuses on the transfer of heat in nanofluids. This is a sce-

nario in which macro-scale changes in the conductivity of the fluid can only be

understood through the accurate modeling of the interactions at the atomic

layer. In this chapter, an MD model is used to introduce a systematic approach

for the calculation of the nonlocal kernel also referred to as the influence func-

tion. This influence function is then used to estimate the thermal conductivity

of a wide range of Ar-Cu nanofluids with different copper loadings.

Finally, Chapter 5 builds on the other chapters of this project and

presents a nonlocal model as an alternative to the penalty formulation of the

Navier-Stokes equations for a two-dimensional incompressible flow. In this

chapter, the nonlocal model is used to model more complex flow problems such

as the von Karman Street problem. This chapter demonstrates the capabilities
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of the proposed nonlocal model for modeling multi-scale phenomena such as

vortex shedding.
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Chapter 2

Literature Review

This chapter offers an overall review of the literature written on peri-

dynamic theory. The following sections cover the relevant developments of

the peridynamic theory in the field of fluid mechanics. Each subsequent chap-

ter of this dissertation focuses on a specific problem in fluid dynamics and

heat transfer. The chapters each propose a peridynamic-based solution as an

alternative nonlocal modeling technique to counter the shortcomings of the

available local models.

Each chapter also includes a literature review section. These sections

offer a more in depth look at the specific problem they are examining and re-

view the more relevant literature from the field of peridynamics. For example,

chapter 3 studies the problem of two-phase miscible flow in porous media. This

chapter covers the peridynamic-based models of advection-diffusion and the

advancements of the peridynamic field in mathematical and numerical aspects

with regard to advection-diffusion modeling.
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2.1 peridynamic

Continuum mechanics (CM) was first developed by Cauchy in the 19th

century as a branch of mechanics that analyzes objects and systems as contin-

uous media rather than discrete particles. From the perspective of continuum

mechanics, particles are only allowed to interact at zero distances, deforma-

tions are twice differentiable and the conservation laws of mechanics apply.

In the past few decades, CM based numerical methods such as the finite

element method (FEM) have contributed to significant advancements in mod-

eling engineering and scientific problems. However, CM based methods includ-

ing FEM suffer from mesh dependency related difficulties. Mesh-dependency

of FEM limits the use of this method in problems with large deformations

such as ductile failure and problems that include spatial discontinuities such

as cracks. Linear elastic fracture mechanics (LEFM) introduced the concepts

of stress intensity factor and kinetic relations to attempt to model the pro-

gression of crack tips. However, as the name suggests, LEFM use is limited to

the linear and elastic deformations. In quasi-brittle materials, large, inelastic

deformations experienced at the crack tip break the underlying assumptions

of LEFM.

For such problems, one of the most robust continuum-based methods

available is the cohesive zone model (CZM) [8] . The cohesive zone refers to

the zone of micro-cracks surrounding the crack tip. Here, the crack path is

determined by the interconnection of the micro-cracks. This method offers a

26



solution to capture the organic growth of the crack tip. Nonetheless, CZM

still suffers from mesh-dependency issues as it only allows for the formation

and growth of the crack in the pre-defined zone with cohesive elements [102].

Another typical approach for tackling domains with discontinuities is

the extended finite element method (XFEM) approach [58]. In the original im-

plementation of the XFEM, standard polynomial basis functions for the nodes

that are in contact with a crack are coupled with discontinuous basis functions

to provide a method for solution dependent crack growth [23, 95]. However,

the XFEM approach requires external input to govern the orientation of the

crack tip propagation and as a result adds more complexity to the system.

Another shortcoming of CM is experienced when studying domains

where the domain size is comparable to the characteristic length scale of the

problem. For such problems, Molecular Dynamics (MD) might be used as the

appropriate tool for the analysis. In the MD view, discretized particles are

allowed to interact via long range Van der Waals forces. However, the use of

the MD approach is currently restricted to the domains that include a small

number of particles. The long simulation times and massive computational

powers that are needed limit the ability to use MD models for the analysis of

engineering problems at larger scales.

Peridynamic (PD) was originally introduced by Silling [86] as a way
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to develop a theory that unifies the mechanics involved in continuous media,

discrete particles, and media with evolving discontinuities. Silling arrived at

a theory that is nonlocal by nature by avoiding the assumption that internal

forces are contact forces and allowing the material particles to interact at

finite distances. This goal is mathematically achieved using integro-differential

operators instead of the differential operators used in classical formulations. In

the classical continuum theory, the conservation of linear momentum is given

as:

ρ0ü(X, t) = ∇ ·P(X, t) + ρ0b(X, t), ∀X ∈ R, t ≥ 0

Here, X is the position vector of each material point in a material region R.ρ0

is the density field, u is the displacement field, b is the external body force

density field and t stands for time. This local formulation of the linear momen-

tum conservation is built based on the divergence of stress. The presence of

spatial derivatives makes local formulations based on the local momentum for-

mulation unable to deal with spatial discontinuities in the displacement field.

Alternatively, the formulation of the conservation of the linear momen-

tum used by the peridynamic theory takes the following integro-differential

form:

ρ0ü(X, t) =

∫
H(X)

f(X + ξ,X, t)dξ + ρ0b(X, t), ∀X ∈ R, t ≥ 0

Here, the function f(X + ξ,X, t) is the pairwise force density function and H

is the neighborhood or horizon of X. Any material point inside H is allowed
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to directly interact with the point X. ε refers to the radius of this horizon

which is conceptually equivalent to the cut off radius used in the MD models.

In this formulation the term “bond” is used to refer to the pairwise interaction

between a material point X and any of it’s neighbors X′. In this formulation,

ξ is the peridynamic bond defined in the reference state. The peridynamic

formulation is typically solved in its discretized format. This formulation can

be written as:

ρ0ü(Xi, t
n) =

∑
Xj∈Hi

f(Xj,Xi, t
n)∆Vj + ρ0b(Xi, t

n), ∀Xi ∈ R̃, tn ≥ 0

where R̃ is the discretized body, n is the time step, and letter i and j refer

to points Xi and its neighbors Xj. Here, ∆Vj stands for the volume of the

horizon. The pairwise force density vectors between material points as defined

in the peridynamic formulation need not be equal in magnitude. Nonetheless,

if the force density vectors exerted by material points on each other are equal

in magnitude and parallel to the relative position vector in the deformed state,

then the peridynamic formulation is referred to as the bond-based formulation.

2.1.1 Bond-based peridynamic

The earliest and the simplest form of peridynamics, the bond-based

peridynamic, was introduced in the original work of Silling [86]. In this formu-

lation, the force density function that the two material points exert on each

other are assumed to be equal in magnitude and parallel to the position vector
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Hε(x)

x
ξ

ε

Figure 2.1: Point x and its horizon shown in white. ξ is a vector connecting
x to other points in its neighborhood and ε is the radius of the horizon.

in the deformed state. Before providing the mathematical representation of

the aforementioned property of the bond-based peridynamic formulation, let

us introduce

η = u[X′, t]− u[X, t]

and as before

ξ = X′ −X ∀X ∈ R.

As stated above, the force density function, f must satisfy

f(−η,−ξ) = −f(η, ξ) ∀ξ ∈ HX, t ≥ 0.

and, for conservation of momentum to hold

(η + ξ)× f(η, ξ) = 0 ∀ξ ∈ HX t ≥ 0.

30



Here, f contains all the constitutive properties of the material and its inde-

pendence from all other local conditions limits the ability of this formulation

to freely define a Poisson’s ratio. In fact, the bond-based peridynamic formu-

lation automatically specifies this value as 0.33 for the two-dimensional case

and 0.25 for the three-dimensional problems.

2.1.2 State-based peridynamic

The state-based peridynamic theory was introduced by Silling in 2007

to address the aforementioned issues of the bond-based peridynamic formu-

lation, which is its inability to define an arbitrary Poisson’s ratio. In the

state-based formulation, the force density vector is defined as:

f(X′,X, t) = T(X, t)〈ξ〉 −T(X′, t)〈−ξ〉,∀X ∈ R, ξ ∈ H(X) t ≥ 0.

Here, T is called the force vector state that operates on ξ and maps the de-

formation vector state into a force vector state for all the points in horizon,

H(X). This is conceptually similar to the operation of second order tensors

in the sense that both operators map a vector into another vector. Using the

definition of the peridynamic force vector state, the state-based peridynamic

linear momentum equation can be written as

ρ0ü(X, t) =

∫
H(X)

[T(X, t)〈ξ〉 −T(X′, t)〈ξ〉]dξ + ρ0b(X, t)∀X ∈ R, t ≥ 0.

In this equation, regardless of the chosen T , the linear admissibility condition

is automatically satisfied although, the balance of angular momentum is no
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longer fulfilled a priori. In this case, it is explicitly required that∫
HX

y(X, t)〈ξ〉 ×T(X, t)〈(ξ〉dξ = 0,∀X ∈ R, t ≥ 0. (2.1)

Here, y is the deformation vector state that maps a bond to its deformed shape.

Equation (2.1) can be used to further split peridynamic materials into two

subcategories. If for a peridynamic material the force state is parallel to the

deformed bond, then this equality is automatically satisfied, and the material

is known as the ordinary state-based material. Otherwise, the formulation is

referred to as non-ordinary state-based peridynamics.

2.2 The Mesh-free Methods

The typical mesh-based approaches used in techniques such as FEM

cannot be used with 3 dimensional domains with complex geometries. A dis-

torted mesh can result in unacceptably large numerical errors. The mesh

based approaches also fail to accurately model domains with discontinuities

and transient fluid flow in porous media [63]. Silling et al. [88] introduced

the mesh-free discretization for the strong form of the peridynamic equations.

Their proposed method divides the domain into nodes from a grid each with

a known volume in the reference configuration. This method is referred to

as mesh-free as it does not use elements to connect the nodes. The authors

demonstrated the capabilities of their proposed mesh-free method by modeling

the interaction and propagation of cracks during an impact between a rigid

sphere and a brittle target. Figure 2.2 shows the result of this simulation.
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Figure 2.2: Fragmentation of a brittle target due to an impact with a rigid
sphere [88]

The mesh-free method is simple to implement and computationally in-

expensive. It can, however, result in inaccuracy and convergence issues. In

peridynamics, spatial derivatives are replaced with integrals. Thus, the numer-

ical implementation of the peridynamic models greatly depend on the accuracy

of the discretization of the integrals. One of the main sources of inaccuracy

in this proposed mesh-free method is the estimation of the intersecting areas

between the neighborhood of a point and its neighboring cells. Seleson [78]

addressed this issue by classifying these intersecting regions for square lattices

and presented analytical derivations for the calculation of their areas.
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2.3 The Influence Function

In both the state and bond-based formulations, the force density func-

tion, f can take the form

f(η, ξ) = ω(ξ)s(
ξ

|ξ|
)

where s, the bond stretch is defined as:

s =
|ξ + η|
|ξ|

.

In some cases, the influence function, ω, can be selected arbitrarily [85];

or to address the inaccuracies in numerical integration [79]. However, it is

clear that a proper choice must also take into consideration the physics of the

problem [80], either through numerical upscaling procedures [109, 114] or by

theoretical homogenization of microstructural heterogeneity [113]. Although

this fact is well established, there is still no general procedure for the system-

atic computations of the influence function for a material or a given domain.

In recent years, a few works have attempted to offer a general approach for

the calculation of a physically meaningful influence function for a given do-

main. Delgoshaie et al. [24] presented a numerical procedure for upscaling

pore-network models into a continuum nonlocal formulation for single phase

flow in porous media. The authors showed that the multi-scale connectivity of

the pore networks can be used to extract the required influence function for the

domain. D’Elia et al. [27] focused on finding the diffusivity parameter for peri-

dynamic and fractional models by using an optimal control technique. You et
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al. [114] looked at the problem of wave propagation through a one-dimensional

heterogenous bar. The authors offered a solution to find the optimal influence

function through the use of a nonlocal-equation-constrained optimization al-

gorithm. More recently, Xu et al. [112] introduced a data-driven regression

algorithm for the calculation of the influence function. In this work a bond-

based peridynamic model is used to simulate the macro-scale deformation of

linear elastic medium with periodic heterogeneity.

In the following chapters the importance of the peridynamic influence

function is explored in more depth. In chapter 4 a systematic approach for

the calculation of a nonlocal influence function based on upscaling of an MD

model of a Cu-Ar nanofluid will be presented.

2.4 Multi-scale Problems

Since its introduction the peridynamic theory has proven to be a pow-

erful tool for multi-scale material modeling [4,101]. Turbulence is an example

of a problem in which large-scale phenomena are caused by small scale interac-

tions. Turbulence, widely considered the oldest unsolved problem in physics,

refers to the chaotic behavior of the pressure and velocity fields. Although the

effects of turbulence can be experienced through the macroscopic features of a

flow, its source lies in the interactions of the fluid particles at the microscopic

scale. Small perturbations in the flow, whether formed within the boundary

layer or introduced by the incoming flow field can be retarded by viscous forces.

However, if the viscous forces are not able to dampen these perturbations, a
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laminar flow can quickly transition to an unsteady and chaotic turbulent flow.

After many years of slow progress in turbulence modeling, fractional

models have recently shown the advantages of a nonlocal approach. The “log

law” approach traditionally offered a solution restricted to the interior region

of the domain. However, a recent work by Song et al. [94] proposed a nonlocal

fractional model capable of calculating the entire velocity profile from the wall

to the centerline for channel, Couette and pipe flows. Equation 2.3 presents

this fractional model.

ν0
∂2U

∂y2
+ ν(y)Dα(y)

y U = f, ∀y ∈ Λ = (0, 1] (2.2)

Here Dα
y is the Caputo fractional derivative, f = ∂P

∂x
= 1 is the dimensionless

pressure gradient, U(y) is the mean velocity and ν0 is the kinematic viscosity.

The Caputo derivative is defined as

Dα
yU(y) =

1

Λ(1− α)

∫ y

0

(y − τ)−αU ′(τ)dτ, (2.3)

The Caputo derivative here is identical to the Reimann-Liouville left-sided

derivative as U(0) = 0. In fractional models, the fractional order, α(y) can

be thought of as a weight function that links the entire domain. This method

can be used to prove the effectiveness of a nonlocal approach when simulating

problems where the locality assumption does not hold. However, the fact

that the entire domain is linked results in very high computational times. A

peridynamic based nonlocal model can recover the fractional models with an
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appropriate choice of the influence function [25, 26]. Therefore, the fractional

calculus approach can be thought of as a special case of a larger family of

peridynamic-based nonlocal models. Peridynamic-based models do not suffer

from the shortcomings of fractional models caused by the fractional order.

Here, the horizons typically cover an area much smaller than the full domain

which results in lower computational times.

One of the early applications of peridynamic-based models for multi-

scale modeling was presented by Boraru et al. [13]. The authors showed that

the peridynamic’ horizon δ can be thought of as a length-scale. One of the main

challenges of the multi-scale modeling approach is the appropriate modeling of

the transitions from micro to macro scale. To address this problem, multiple

works developed multi-scale numerical models to couple molecular dynamics

(MD) and PD [69,101].

2.5 Heat & Mass Transport Problems

Bobaru and Duangpanya [11,12] used ideas from peridynamic mechan-

ics to model isotropic transient heat conduction. They developed a non-local

model capable of analyzing the physics of dynamic fractures in the presence

of thermal gradient. Recent experiments on brittle polymers [73] have shown

that upon rapid loading, the crack tip temperature can experience a signifi-

cant drop. This change in the temperature can result in the transition from

trans-granular to inter-granular fracture [41]. Furthermore, depending on the

setup of the problem, this temperature change may also be important in the
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ductile-to-brittle transition [21]. As a result, it is important to be able to

include the thermal effects in modeling crack tip thermodynamics.

Du et al. [25,26] extended [12] to include advection-diffusion problems.

The authors exploited nonlocal vector calculus to provide variational analysis

of nonlocal diffusion problems. Using nonlocal vector calculus, their work

also drew striking analogies between nonlocal models and classical models

for diffusion, including the concept of nonlocal flux. In particular, the authors

showed that fractional Laplacian and derivative models of anomalous diffusion

can be considered as special cases of the peridynamic based nonlocal models.

Typically, when solving hyperbolic partial differential equations, up-

winding scheme is used to resolve the instability issues experienced in the

flow field. Applying up-winding in a finite differencing setting is a standard

procedure. However, applying up-winding in a nonlocal setting requires special

attention. Tian et al [99] expanded on [25,26] and presented a mathematically

sound procedure for applying up-winding in a nonlocal setting. In summary,

This method splits the horizon of a point into two semi-circles, centered at

x in upstream and downstream directions. All the calculations are then only

based on the contributions of the neighbors in the upstream direction. Figure

2.3 depicts this concept.

Katyar et al. [45] used the aforementioned ideas and focused on mod-

eling convective transport in anisotropic porous media. The classical theories

of transport use constitutive equations for diffusion based on the assumption

that the fluid flux is proportional to the gradient of a potential. However,
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Figure 2.3: Horizon of each point in the domain is split into up-wind and
down-wind halves based on the local flow velocity [99]

many scientific fields must solve problems in which the presence of anomalous

diffusion breaks this underlying assumption. Examples of anomalous diffu-

sion can be seen in studies of biomaterials [7] and polymers [35]. Anomalous

diffusion is also experienced in the diffusion process through porous media.

Here, the presence of long range channels means that the diffusion process

does not follow Gaussian statistics. Figure 2.4 demonstrates how these long

range channels in a porous media can link material points that are physically

separated. In such domains, the flux at point x is not only dictated by the

local flux at x but also by a function of the flux at point x′. As a result, here

a nonlocal model is a more appropriate tool for the analysis compared to its
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Figure 2.4: Long range channels in a porous media can serve as direct connec-
tion between point x and its nonlocal neighbor x′ [45]

local counterparts. This work also introduced a mesh-free numerical technique

that is can analyze heterogeneities, including highly irregular bodies with ap-

plications in tight pinch-outlets [71].

Sen et al. [82] also studied flow in porous media and proposed their

nonlocal model as a method to deal with the multiscale pathways of a porous

media. In their non-local model, the flow rate at each node is calculated based

on the sum of the pressure differential between that node and every other

node in the domain. In this formulation, each interaction is given a strength

level. The authors used a conductivity kernel to define the strength of these

connections and showed that their formulation would recover Darcy’s law as

a special local case. Delgoshaie et al. [24] expanded on [82] and provided

an example for a systematic approach for the calculation of the conductivity

kernel. In their work, the authors used a high-resolution pore network of a

natural porous media in order to extract a physically meaningful conductivity
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kernel and also demonstrated the convergence of their results to Darcy’s law.

Jabakhanji et al. [39] used a peridynamic-based approach to arrive at a

nonlocal model for transient flow in unsaturated, heterogenous and anisotropic

soil. This model is an alternative for the classic Richard’s equation. In this

alternative approach, the absence of spatial derivatives allows the spurious

formation of cracks, which would result in singularities in the parameter of

hydraulic potential fields. Delgoshaie et al. [24] presented a non-local ap-

proach to model flow in porous media. The authors also used the multi-scale

pore-network connections to extract a physically meaningful influence function

for their peridynamic based model.

Madenci et al. [53, 54] introduced peridynamic differential operators,

PDDO, as a mathematical technique to represent spatial derivatives of classical

models in nonlocal form. More recently, Nguyen [60] used the PDDO to model

Eulerian incompressible fluid flow. The authors demonstrated the capabilities

of the PDDO method for tackling multi-scale problems by modeling the vortex

shedding in a 2-dimensional problem of flow over a cylinder.
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Chapter 3

A nonlocal advection-diffusion model for

two-phase miscible flow in porous media

3.1 Introduction

Viscous fingering is an interface instability that can occur between two

or more phases in miscible multiphase fluid flow. It is characterized by a highly

irregularly shaped interface, often with long “fingers” of the displacing phase

propagating far into the phase(s) being displaced. Although many secondary

effects may be responsible for the onset and propagation of viscous fingers,

most researchers consider the principle controlling mechanism to be the vis-

cosity ratio between phases. Spatial changes in pressure are lower in the phase

with lower viscosity leading to higher pressure in the leading edge of the fin-

gers. This causes a force imbalance that assists in propagating the interface

rapidly forward into the more viscous phase. Other characteristic features of

the fingers often include splitting of fingers into multiple smaller fingers or

shielding of some fingers by a rapidly growing finger that is spatially placed

ahead in the velocity field.

As the formation and propagation of fingers occur, a competition be-

tween two main features of the flow is apparent. In one case, the increased
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contact area of the phases will drive a higher mixing rate. In the other, the

isolation of large parts of the displaced fluid between fingers results in lower

mixing. Previously, experimental and numerical approaches have provided re-

sults that have shed light on the general behavior of the fingers in a laboratory

and/or idealized settings. However, an unexplored aspect that is highly influ-

ential in large-scale subsurface applications is the effect of dispersion on the

onset and propagation of viscous fingers and how it contributes to the overall

phase mixing. This chapter aims to investigate the effect of fluid dispersion

on miscible mixing and the formation, size, shape, and trajectory of viscous

fingers in the context of subsurface engineering applications.

Saffman and Taylor [75] were among the first to explore viscous fin-

gering using Hele-Shaw cells to mimic two-dimensional creeping fluid flow in

a porous media. In their study the authors described a mathematical model

that could explain viscous fingering for a two-phase immiscible flow given that

the displaced fluid would form a film layer of constant thickness between the

plates of Hele-Shaw apparatus. Later works by Park and Homsy [65] and

Reinelt [70] expanded this model to allow the study of two phase flow where

displacing fluid can potentially wet the surface and thus provided a “fix” for

the boundary condition assumptions of the Saffman and Taylor model. These

models were further enhanced by the contributions of Wilson [111] and Pa-

terson [66] that explored the instability of radial flows from a central point

source. The studies mentioned here and other research during 1980s and 90s

added to the validation of this experimental approach. However, dispersion
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cannot be elucidated in Hele-Shaw cell experiments due to the underlying

homogeneous medium; nevertheless, it can be significant in applications of

miscible displacements such as secondary and tertiary oil recovery in the field

of petroleum engineering [49].

More recently, numerical simulations using finite difference and finite

element approaches have been used to model initiation and propagation of fin-

gers [77,91]. While these numerical simulations can be tools for exploring many

factors involved in viscous fingering, the underlying physical equations that

they discretize are void of any dispersive effects [3,45], i.e. any observed disper-

sion is numerical. Occasionally, the underlying partial-differential equations

used to model subsurface fluid flow are parameterized with time-dependent

diffusion coefficients to account for dispersion; however, the physical justifi-

cation for this assumption is not well established in many cases (e.g. when

modeling Newtonian fluids). Dispersion is a spatial phenomenon in the subsur-

face caused by heterogeneities at length scales smaller than what are typically

resolved in a fluid transport simulation.

Classical models used in simulation of transport phenomena use gov-

erning laws in which fluid flux is linearly related to a potential, e.g. Fick’s and

Darcy’s laws. These models can be derived by statistical analyses assuming

the Brownian motion of diffusing particles. The core assumptions of a diffusion

process, the Markovian nature of the underlying statistics, is often not valid

for heterogeneous domains where analysis of diffusing tracer particles lead to

non-Gaussian, e.g. heavy-tailed, spatial distributions. These processes are
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termed anomalous diffusion and include sub- and super-diffusion as particu-

lar cases [57]. Examples of anomalous diffusion are seen in polymers [35, 62],

biomaterials [6] and even in the field of biology when looking at the foraging

habits of animals [47].

In the case of porous media, small-scale heterogeneities result in sudden

changes in permeability which are then responsible for fluctuations in diffusion

particles velocity. The transport characteristics of a domain with such hetero-

geneities, can be modeled with equations that allow for the fluid velocity at a

point x to depend not only on the local properties (i.e. permeability, viscosity,

concentration, etc.) but also at points x′ separated from x by a finite dis-

tance. These models are called nonlocal models and can be rigorously derived

by considering non-Gaussian statistics such as Levy flights.

Typically, spatially nonlocal physics are analyzed with a fractional

derivative approach [57] or with the use of integral equations [82]. The lat-

ter is more general and the method chosen for the current investigation of

viscous fingering in dispersive media. An example of an integral-type nonlo-

cal model called peridynamics theory was introduced by Silling [86] to model

elasticity and material failure in solid mechanics. Silling’s initial work was

focused on the derivation of a set of integral-differential equations for conser-

vation of momentum in solid structures. This work became the foundation of a

theory that has turned into a promising modeling tool. Bobaru and Duangpa-

nya [11,12] used ideas from peridynamic mechanics to model isotropic transient

heat conduction. This work was extended to advection-diffusion problems by
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Gunzburger et al. [25, 26]. Katyar et al. [45] focused on anisotropic porous

media and discussed the case of a transient fluid flow in fractured media. The

current study, to the extent of our knowledge, is the first nonlocal model for

advection-diffusion processes in two-phase miscible flow. The proposed model

is developed to simulate complex two-phase fluid flow in a dispersive porous

media and shows the advantages of the integral-type formulation, both in ac-

curately capturing the physics of the problem and its versatility in dealing

with the discontinuities at the interface of the phases.

This chapter starts by introducing a nonlocal advection-diffusion model

for two-phase flow in porous media. We will specifically explore the fluid in-

teraction as the viscosity ratio between the displaced and displacing phases is

varied and show results of the viscous fingering simulations for one and two

dimensional cases. We also show the convergence of the introduced nonlocal

model to both the mathematical (local) continuum model and the computed

solutions of its finite differencing discretization for both pressure and concen-

tration as the local limit is approached.

In this work we have assumed the relationship between kinematic vis-

cosity and phase concentration to have an exponential form. Additionally, it

is assumed that the flow is a Darcy type flow and both phases are incompress-

ible, first contact miscible, and diffusivity coefficient is constant. With these

assumptions, the local form of the model reduces to an advection-diffusion
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system of equations similar to those presented in [42], i.e.

0 =
∂c

∂t
− 1

µ(c)
∇p∇c− 1

Pe
∆c, (3.1a)

0 = R∇c∇p+ ∆p, (3.1b)

where, c is the concentration, t is time, µ is kinematic viscosity, p is pres-

sure, Pe is the Peclet number and R is defined as µ2

µ1
|t=0 where the subscripts

1 and 2 refer to the phases. ∇ and ∆ = ∇ · ∇ are the spatial gradient

and Laplacian operators, respectively. In this model the (3.1a) is a form

of an advection-diffusion equation (ADE) and the (3.1b) describes both the

viscosity-concentration relation and the incompressibility assumption.

The remainder of this chapter is organized as follows: Section 2 presents

the mathematical structure of the nonlocal model and provides convergence

proofs that the model reduces to (3.1) in the limit of vanishing nonlocal-

ity. Section 3 describes the discretization of the nonlocal model. Section 4

presents numerical verification simulations as well as several qualitative case

studies along with respective discussion. Section 5 presents conclusions and

recommendations for future work.

3.2 Nonlocal Model

To introduce the proposed nonlocal model, we adopt the notation and

terminology from peridynamic mechanics. Namely, we assume that a point

x interacts with all points x + ξ within a finite distance parameterized by ε

called the horizon. The set of all points x + ξ is called the neighborhood of
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Hε(x)

x
ξ

ε

Figure 3.1: Point x and its horizon shown in white. ξ is a vector connecting
x to another point in the neighborhood and ε is the radius of the horizon.

x, and is labeled Hε(x). We will assume a spherical neighborhood in three

dimensions and circular in two-dimensions (therefore ε is a radius), but other

choices are available. An illustration of these concepts is shown in fig. 4.1.

The proposed nonlocal model is then given by (3.2)

0 =
∂c

∂t
− 1

µ(c)

∫
Hε

γω(|ξ|) (p(x + ξ)− p(x))
ξi
|ξ|2

dξ× (3.2a)∫
Hε

γω(|ξ|) (c(x + ξ)− c(x))
ξi
|ξ|2

dξ − 2

Pe

∫
Hε

γ
ω(|ξ|)
|ξ|2

(c(x + ξ)− c(x))dξ,

0 = R

∫
Hε

γω(|ξ|) (p(x + ξ)− p(x))
ξi
|ξ|2

dξ

∫
Hε

γω(|ξ|)(c(x + ξ)− c(x))
ξi
|ξ|2

dξ

+

∫
Hε

2γ
ω(|ξ|)
|ξ|2

(p(x + ξ)− p(x))dξ, (3.2b)

where c, t, µ, p, R, Pe all have the same meaning as in (3.1). We’ve dropped

the functional dependence of c and p on t, but it is implied. ω is called the

48



influence function and controls the strength of interactions among the points

in the neighborhood. The choice of influence function will be discussed in more

detail in the sequel. Finally, γ is a scaling function whose choice is discussed

in the following sections.

A requirement for the validity of the nonlocal model is that it should

converge to (3.1) as ε → 0. The proof of this is somewhat tedious and would

yield unwieldy derivations if addressing the entire system of equations (3.2)

at once. To avoid this, we will break the equations down term-by-term to

demonstrate the convergence of the integral operators to their local derivative

operator counterparts in the limit of vanishing horizon.

3.2.1 Nonlocal Gradient

Inspecting the first integral in (3.2a) we can show that it will converge

to the local gradient operator. First, we assume the pressure field is continuous

such that the Taylor expansion about ξ = 0 exists

p(x + ξ) = p(x) +
∂p

∂xj
(x)ξj + O(|ξ|2). (3.3)
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Substituting (5.7) into the first integral in (3.2a) and taking the limit as ε→ 0

lim
ε→0

∫
Hε

γω(|ξ|) (p(x + ξ)− p(x))
ξi
|ξ|2

dξ

= lim
ε→0

γ

∫
Hε

ω(|ξ|)
|ξ|2

(p(x)ξi +
∂p

∂xj
(x)ξiξj − p(x)ξi) + O

(
|ξ|2
)

dξ,

= lim
ε→0

∂p

∂xj
(x)γ

∫
Hε

ω(|ξ|)ξjξi
|ξ|2

+ O
(
|ξ|2
)

dξ,

= lim
ε→0

∂p

∂xj
(x)δji + O(ε),

= lim
ε→0

∂p

∂xi
(x) + O(ε),

= ∇p.

Note, as shown below, there is an ε2 term in the denominator of γ which

explains the O(ε) after integration. Here ω(|ξ|) = ωs(|ξ|) is assumed to be

spherically symmetric which implies that

∫
Hε

ωs(|ξ|)
ξkξj
|ξ|2

dξ =δkj

∫
Hε

ωs(|ξ|)
ξ2

1

|ξ|2
dξ,

=δkj

∫ 2π

0

∫ π

0

∫ ε

0

ωs(|ξ|)
ξ2

1

|ξ|2
|ξ|2 sin θdξdθdφ,

=δkj
m1

3
,

where

m1 =

∫
Hε

ωs(|ξ|)dξ,

and we have used the spherical coordinates, ξ1 = |ξ| sin θ cosφ, ξ2 = |ξ| sin θ sinφ,

and ξ3 = |ξ| cos θ to evaluate the integral. Therefore, in order for the first in-
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tegral in (3.2a) to converge to ∇p in the limit of vanishing horizon, we require

γ =
3

m1

.

Using an identical procedure, we can show that the second integral

in (3.2a) will reduce to the spatial gradient of concentration as the horizon

vanishes, i.e.

lim
ε→0

∫
Hε

γω(|ξ|)(c(x + ξ)− c(x))
ξi
|ξ|2

dξ = ∇c(x).

3.2.2 Nonlocal Laplacian

Now we address the last term in (3.2a) and demonstrate that it con-

verges to the Laplacian operator shown in (3.1a) as ε→ 0. Following a similar

procedure as the last section, this time we start with Taylor expansion of
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c (x + ξ) about ξ = 0 with a truncation error of O (|ξ|3)

lim
ε→0

2

Pe

∫
Hε

γ
ω(|ξ|)
|ξ|2

(c(x + ξ)− c(x))dξ =

= lim
ε→0

2

Pe
γ

∫
Hε

ω(|ξ|)
|ξ|2

(c(x + ξ)− c(x))dξ,

= lim
ε→0

2

Pe
γ

∫
Hε

ω(|ξ|)
|ξ|2

( ∂c
∂xi

ξi +
1

2

∂2c

∂xi∂xj
ξiξj + O(|ξ|3))dξ,

= lim
ε→0

2

Pe
γ

∫
Hε

ω(|ξ|)
|ξ|2

(1

2

∂2c

∂xi∂xj
ξiξj + O(|ξ|))dξ,

= lim
ε→0

2

Pe
γ

∫
Hε

ω(|ξ|)
|ξ|2

(1

2

∂2c

∂xi∂xj
ξiξj)dξ + O(ε),

= lim
ε→0

2

Pe
γ

1

2

∂2c

∂xi∂xj

∫
Hε

ω(|ξ|)
|ξ|2

(
ξiξj)dξ + O(ε),

= lim
ε→0

1

Pe

∂2c

∂xi∂xj
δij + O(ε),

= lim
ε→0

1

Pe

∂2c

∂xi∂xi
+ O(ε),

=
1

Pe
∆c,

where γ and m1 have the definitions as in §3.2.1.

Similarly, it can be shown that the last term in (3.2b) converges to the

pressure Laplacian in (3.1b), i.e.

lim
ε→0

∫
Hε

2γ
ω(|ξ|)
|ξ|2

(p(x + ξ)− p(x))dξ = ∆p.

We’ve now addressed the convergence of all terms in (3.2) and can

confirm that (3.2) → (3.1) as ε→ 0.
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3.2.3 Influence Function

There are infinite choices for the influence function ω, and under some

circumstances the choice can be arbitrary [85]; however, the choice is usually

made to address inaccuracies in numerical integration [79]. A proper choice

must take into consideration the physics of the problem [80], either through

numerical upscaling procedures [109,114] or by theoretical homogenization of

microstructural heterogeneity [113]. Delgoshaie et al. [24] presented a numer-

ical procedure for upscaling pore-network models into a continuum nonlocal

formulation for single phase flow in porous media. The correct choice for the

physical setting where viscous fingering occurs will be the subject of future

work. When investigating the convergence to the local limit of the nonlocal

model, all admissible choices will result in a convergence to the local equations.

Solely for demonstrating this point we will show the closed form integration

of m1 with a few common functional forms of the influence function.

3.2.3.1 Constant

Choosing a constant value such as unity for the influence function means

that the same weight is given to all neighbors. For the one dimensional case,

we have

m1 = 2×
∫
Hε

ξdξ = 2×
[
ξ2

2

]+ε

0

= ε2.
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3.2.3.2 Linear

Choosing a linear decaying profile for ω is a popular choice that can

improve the accuracy of the numerical integration within the neighborhood.

We chose ω (|ξ|) = 1− |ξ|
ε

. As before, for the one dimensional case

m1 = 2×
∫ ε

0

(
1− ξ

ε

)
ξdξ = 2×

[
ξ2

2
− ξ3

3ε

]ε
0

=
ε2

3
.

For the case of two dimensional domain, horizon takes the form of a circle with

radius ε. In this case γ = 2/m

m =

∫ 2π

0

∫ ε

0

ω(ξ)ξdθdξ =

∫ 2π

0

∫ ε

0

(
1− ξ

ε

)
ξdθdξ =

[
ξ2

2
− ξ3

3ε

]ε
0

,

=
ε2π

3
.

3.3 Discretization

For the nonlocal simulations, we have chosen equally spaced nodes with

a typical horizon size of 4.5 node spacings. For the presented results, the Peclet

number and R were respectively chosen to be 10000 and 3.0. Discretization

of the domain into finite number of nodes also results in the conversion of the

integral equations to finite sums. Equation (4.4) states the equations solved for

the nonlocal simulations. NOX package from Trilinos was used to tackle these

non-linear equations. All simulations were solved using a massively parallel

python code ran on STAMPEDE super computer at the University of Texas

at Austin. The discretized form of the nonlocal model is presented by (4.4)
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0 =
cn+1(xi)− cn(xi)

∆t
− 1

µ(c)

∑
j

γω(|ξ|)
(
pn+1(xj)− pn+1(xi)

) ξα
|ξ|2

Aj

×
∑
j

γω(|ξ|)(cn+1(xj)− cn+1(xi))
ξα
|ξ|2

Aj

− 2

Pe

∑
j

γ
ω(|ξ|)
|ξ|2

(cn+1(xj)− cn+1(xi))Aj, (3.4a)

0 = R
∑
j

γω(|ξ|)
(
pn+1(xj)− pn+1(xi)

) ξα
|ξ|2

Aj

×
∑
j

γω(|ξ|)(c(xj)− c(xi))
ξα
|ξ|2

Aj

+
∑
j

2γ
ω(|ξ|)
|ξ|2

(pn+1(xj)− pn+1(xi))Aj. (3.4b)

Above Aj can be thought of as ∆x2 for 2-D case and as ∆x for the 1-D case.

α subscript represents x and y directions. Here xj := xi + ξ where j stands

for a neighboring node and xi is the spatial position of the node of interest.

The inherent non-linear nature of the ADE makes the simulations un-

stable. This is especially important for the concentration solution. A common

procedure to avoid this unstable behavior is up-winding. This procedure was

used both for the finite differencing solution and the nonlocal simulations. The

up-winding procedure for finite differencing solution is a standard procedure

and does not require further explanation. However, applying the up-winding

procedure in a nonlocal setting requires some attention. Tian et al [99] have

presented a mathematically sound procedure for applying up-winding in a non-

local setting. In summary, This method splits the horizon of a point into two

semi-circles, centered at x in upstream and downstream directions. All the
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calculations are then done only based on the contributions of the neighbors in

the upstream semi-circle.

In order to implement this method, the code calculates the velocity

field, v for every node x in the domain. The dot product between the velocity

field and the array holding all position vectors, ξ, is then calculated for the

neighbors of x. The resultant array will have negative values for all the nodes

upstream of x and positive values for all the neighbors that are downstream

of x. Applying the Sign function, Sgn(v.ξ) and replacing all 1 with 0 and

-1 with 1, brings us to the final step of the calculation. In this final step,

the inner product of the calculated vector with the concentration terms of

equation 3.2 is calculated. This will exclude the contribution from all the

neighbors downstream of x. This procedure is repeated for every iteration of

the solver. Figure 3.2 shows this procedure applied to point x. The green

semi-circle includes all the neighbors of point x that are located upstream of

the this point and contribute to the concentration calculation.

56



v

Hε(x)

Figure 3.2: Up-winding applied to the neighborhood of point x. Here Hε is
the horizon and v shows the local wind direction

3.4 Results and Discussion

We have formally derived a nonlocal set of equations capable of mod-

eling two-phase miscible flow in porous media. The convergence of the model

to the classical results as ξ approaches zero was mathematically proven. In

what follows, the convergence of the numerical method using a 2-D, two-phase

miscible flow case with a flat interface is shown. Disturbance is then intro-

duced at the phase interface in order to study the two dimensional linear and

radial flow cases and show the capabilities of the proposed method in mod-

eling the formation and propagation of fingers while capturing the effects of

dispersion. Here, periodic boundary condition is used for the top and bottom

edges. Figure 3.3 demonstrates this concept by showing the horizon for 3 ran-

domly chosen nodes in the domain. In this setup, a node placed at the bottom

edge (here shown in blue) has half of its neighbors on the top boundary of the

domain and half at the bottom edge.
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Figure 3.3: Illustration of how horizon of a point can be split at the edges of
the domain

3.4.0.1 Parametrization

We have solved the proposed flat interface problem with the following

parameters. The domain length, L = 1 m, domain height, h = 0.5 m, µ1 = 1.0

and R = 1.0. Pe = 104 and the pressure difference between the right and left

edges is set to 1 kPa.

3.4.0.2 Boundary Conditions

Imposing the Dirichlet boundary conditions for the nonlocal model can

be done by setting the value of all nodes within a horizon distance from the

left and right boundaries equal to the desired value. Imposing the periodic
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boundary condition can be done by linking the top and bottom nodes together.

In this condition, all the nodes within one horizon from the top and bottom

edges will have at least one neighbor on the opposite side.

3.4.1 Case 1: Finite Differencing Scheme

A backward in time, central differencing method was used to calculate

and solve the pressure field. However, the non-linearity in the advection dif-

fusion equation makes this method unstable when solving for concentration.

Up-winding was used to stabilize the concentration solution. This method is

explicit in both pressure and concentration. The set of equations used are di-

rect translations of (3.1) with the addition of up-winding to the gradient term

of the concentration. It is clear that a two dimensional problem with a flat in-

terface between the two phases can be modeled as a one dimensional problem.

Therefore to save computational time, the equivalent 1D problem was solved.

The nonlocal model was however solved both in one and two dimensions to

make sure that the results do in fact match.

3.4.1.1 Parametrization

The finite differencing problem has been solved with the following pa-

rameters. The domain length, L = 1 m, domain height, h = 0.5 m, µ1 = 1.0

and R = 1.0. Pe = 104 and the pressure difference across the right and left

edges was set at 1 kPa.
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3.4.1.2 Boundary Conditions

To be consistent with the nonlocal solution, the Dirichlet boundary

condition was imposed on left and right boundaries. The top and bottom

boundaries were also linked to achieve the periodic boundary condition.

3.4.2 Case 1: Convergence Study

The exact nonlocal solution can only be calculated as m, the number

of nodes that radially fit into the horizon, approaches infinity. Although a

supercomputer and in some cases up to 256 computational nodes were used to

solve the non-linear model, the simulations were still limited by the available

computation hours on the supercomputer. Thus, a typical convergence test

for nonlocal models called m-convergence was performed to understand the

required node density for a satisfactory result. The m-convergence study re-

vealed that for a constant horizon size, an m value between 4 and 6 will result

in an acceptable solution. This finding is in close agreement with the study of

Katiyar et al. [45].

Running the m-convergence test helps us study the convergence of the

model to the exact nonlocal solution. This exact nonlocal solution, however,

is not the same as the local solution achieved through finite differencing. Get-

ting to the local solution is only possible when the discretization is refined at a

higher rate as the rate at which m is increased [12,14]. Following figures show

the convergence of the nonlocal model to the solution of the finite differencing
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scheme of section 3.4.1 for both pressure and concentration. Figure 3.4 shows

the convergence of the nonlocal model to the solution of the one-dimensional

advection diffusion problem for concentration, while the same result for pres-

sure is presented on figure 3.5.

3.4.3 Case 2: Disturbed Interface

In their 1958 paper, Saffman and Taylor [75] introduces the idea of

Saffman-Taylor instability which is now widely know as viscous fingering. The

initiation of this phenomena is naturally triggered by the heterogeneities of a

physical domain. However, capturing this event in a numerical study requires

an initially disturbed interface. As it happens, placing a disturbance in the

interface is all that is needed to capture this instability using the advection

diffusion equations. In what follows, we present the results of flow simulations

with a disturbed interface for the nonlocal model and show that the proposed

model also captures this phenomena without the need for any further modifi-

cation.

3.4.3.1 Parametrization

For the first study, disturbance is added to the flat interface of case 1.

For the specific results presented, m = 4.5 and ∆x = L/1600. Peclet number

is set at 10000 and R = 3.0.
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Figure 3.4: Convergence of concentration solution of the nonlocal model to
the finite differencing solution drawn in black
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Figure 3.5: Convergence of pressure solution of the nonlocal model to the finite
differencing solution drawn in black
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3.4.3.2 Boundary Conditions

This simulation also has Dirichlet boundaries for left and right edges

and periodic boundary conditions for the top and bottom edges. In this case,

the disturbance is added to the interface at time zero and it is held long enough

for the fingers to form.

3.4.3.3 Nonlocal Simulation Results

As expected, the nonlocal model was able to capture the viscous finger-

ing phenomena without requiring any adjustment. Initial disturbance of the

interface grows upon injection and quickly forms fingers that open up channels

through the second phase. For this simulation, we have chosen the following

parameters. ∆t = 0.03125 ms, ∆p = 1000 Pa , R = 3.0, ε = 3.5 grid spacings.

We are also using a linear weight function as presented in section 3.2.3.2.

The simulation results from the left-injection simulation and the ones

provided below from a central injection clearly show the three well known

characteristics of viscous fingering. These characteristic are know as shielding,

splitting and spreading and are typically used even by experimental works to

qualitatively discuss viscous fingering [38].
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(a) Screen shot taken at time=0
to show the intial disturbance
placed at the interface in order to
promote the occurance of viscous
fingering

(b) After only 3 ms the formation
of the fingers have already taken
shape. The interactions between
adjacent fingers is promoting fur-
ther disorder

(c) 6.3 ms into the injection and
the pressure build up at the finger
tips is causing the elongation of
the fingers

(d) At 8 ms, the splitting and
merging of fingers can be clearly
seen

Figure 3.6: Above screen shots follow the evolution of fingers from the injection
moment for 8 ms for a two phase flow with an initially disturbed interface.
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(a) Initial snapshot shows the in-
jection point which is placed at
the mid point of the domain

(b) Formation of viscous fingers is
clearly apparent in the snapshots
taken at initial stages of injection

(c) Note the simultaneuos growth
of the central inclusion

(d) Symmetry of the domain has
stopped tangential interaction of
fingers

Figure 3.7: Central injection was done under pressure difference ∆p = 1500
Pa, R = 3.0, ∆t = 0.00625 ms. Screen shots are taken at 3 ms intervals.
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An interesting feature of experimental results are the sharpening of

finger tips as the viscosity ratio is increased. The proposed model has proven

to be capable of capturing this phenomena. This result has been reproduced

in the proposed model by increasing the R value from a moderate 2 to a high

value of 7. Provided experimental results are for central injection of glycerol-

water mixture into silicone oil. The numerical results are not done at local or

nonlocal limit and so the results should only be compared qualitatively. The

experiments are done with different pressure difference and viscosity ratios but

both results show two uniquely similar characteristics for the fingers. Firstly,

as mentioned, the increase in viscosity ratio has resulted in sharper and longer

fingers. Secondly, as the viscosity ratio is increased, the central injection area

of the displacing fluid finds it increasingly harder to grow. Instead, the fingers

now carry all the displacing fluid inside the domain. This characteristic can

significantly reduce the ability of the displacing phase to move the more viscous

fluid out of the domain.

3.4.4 Dispersion vs. Mixing Degree

For a given numerical discretization, one would expect to see more dis-

persion as the horizon size is increased. This is due to the nature of a nonlocal

model and the fact that with a larger horizon the particles are allowed to have

direct contact over a wider area. Therefore, the mixing interface should get

wider as m is increased. To capture this idea mathematically, we have de-

cided to calculate the mixing degree of the two phase flow based on the model
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(a) Experimental results as presented by [10]

(b) Predictions of the proposed nonlocal model

Figure 3.8: Comparison of the experimental results and the prediction of the
proposed nonlocal model. Plots are showing the effect of increasing the vis-
cosity ratios on the shape of and size of the fingers
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Figure 3.9: Illustration of the mixing degree based on the calculation of the
variance of the concentration field

presented by [42]. The mixing degree X is given by X(t) = 1 − σ2(t)/σ2
max.

Where σ is the variance of the concentration field and σmax is the maximum

value achieved during the simulation. Figure 3.9 shows the increase in the

degree of mixing as the nonlocality is increased. This is a significant result

and as far as we know, the first numerical attempt to include the direct effect

of dispersion in a viscous fingering simulation.

In the current study, we have presented a nonlocal model capable of studying

the effect of dispersion on the characteristics of viscous fingers in two phase

miscible flow. We have shown that dispersion can be controlled through the

size of horizon chosen for the domain. We, however, skipped over the impor-

tance of the nonlocal weight function, ω. ω is in fact a physical representation

of the nature of the porous media. Together with the chosen horizon size,

it can significantly adjust the dispersion level inside a domain. As a result,
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we have chosen to dedicate the next chapter to present a standard procedure

to extract the correct shape for ω in a domain. Having said that, it is also

important to mention that ω only affects the result at the nonlocal limit and

does not change the final result when the local limit is considered.

3.5 Conclusion

In this chapter, a nonlocal advection-diffusion model for 2-phase mis-

cible flow in porous media was introduced. The convergence of this model to

the classical advection-diffusion result was proven for the case of a vanishing

horizon and the capabilities of the model in capturing the effect of dispersion

was explored. Here, the discussion about the appropriate size and shape for

the nonlocal weight function, ω, was left untouched. The different choices of

ω will not affect the local limit but could be a significant factor if the nonlocal

limit is being studied. This point will be investigated in more detail in the

upcoming chapters.
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Chapter 4

Nonlocal Formulation for Heat Transfer in

Nanofluids

4.1 Introduction

Nanofluids are suspensions made up of nano-sized1 fibers or particles in

a fluid. In most nanofluids, the particles take up less than 5% of the volume

of the suspension. Yet, studies suggest that the addition of nanoparticles can

result in a significant improvement in the thermal properties of the suspension

[29, 59]. In some cases, nanofluids have been reported to reach up to 3 times

higher conductivities compared to their base fluid [17].

Maxwell [56] is known as the first scientist to study the thermal prop-

erties of suspensions. Maxwell’s work suggests a direct relationship between

thermal conductivity of suspensions and the volumetric fraction of particles,

also known as particle loading. His work, however, focused only on suspen-

sions made up of spherical particles. To address this shortcoming, Hamilton

and Crosser (HC) [37] presented a modified model to predict the heat trans-

fer coefficients of suspensions with nonspherical particles. Both models can

offer a close estimate for the heat transfer enhancements of suspensions with

1i.e., characteristic length on the order of 10−9 m
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mili- and micro-sized particles. However, they fail to predict the anomalous

enhancement of nanofluids [106]. These continuum formulations consider the

particle size and loading while ignoring any changes to the atomic structure

of the base fluid. They also consider the suspensions to be static, composite

structures, an assumption which many believe adds to the inaccuracy of the

calculations that use continuum models [76].

Since Maxwell’s pioneering work, numerous theoretical and experimen-

tal research has been conducted on nanofluids. The study by Choi and East-

man [17] found a strong dependence between the thermal conductivity of a

suspension and its particles’ shape and percentage loading. The authors re-

ported an enhancement of 200% when copper nanoparticles were added to

water, forming a suspension with 20% copper loading. The result of this

study sparked interest across multiple scientific fields. Wang et al. provide

a thorough review of some of the main experimental work done on nanoflu-

ids [100, 106]. A majority of the literature reports an increase in the thermal

conductivity for nanofluids with increased particle loading and increased av-

erage diameter. Nevertheless, the results are not always in agreement. As

an example, the following studies were all conducted using a suspension of

alumina and water. Masuda et al. [55] reported a 33% enhancement for a

suspension with average particle diameter of 13 nm and volumetric fraction

of 4.3%. A later study by Timofeeva et al. [100] used a suspension with an

average particle diameter of 11 nm and particle loading of 5%. However, they

reported a much more moderate 7% enhancement. Wang et al. [107] also used
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a suspension with 5% particle loading but contained larger particles with an

average diameter of 28 nm. They reported an enhancement of 15%. Eastman

et al. used even larger alumina particles with an average diameter of 33 nm.

They report the thermal conductivity enhancement to be closer to 25%. Ex-

perimental work on nanofluids often fails to reproduce previously reported re-

sults due to the complexities involved in testing. Furthermore, nanoparticles’

average diameter can vary from batch-to-batch, and nanofluid suspensions are

typically far from stable (i.e. the suspension’s thermal conductivity can dras-

tically change due to particle aggregation and sedimentation; therefore special

effort is needed to stop such phenomena from happening).

More recently, molecular dynamics (MD) approaches have offered an

easily reproducible method for the study of nanofluids. These models typically

calculate the thermal conductivity using the Green-Kubo method. Apart from

being able to investigate particle size and volumetric fraction, MD models have

the capability to explore more complex aspects of a suspension including the

fluid layering [50, 52, 97] and the changes in the movement of base fluid after

the introduction of particles [76]. It’s important to note that while MD models

are good modeling tools, they are typically only accurate when used to model

suspensions of particles or fibers in a base liquid with a simple atomic structure.

Liquid argon is an example of a base fluid commonly used in MD studies. As

a result, MD models are typically viewed as strong qualitative tools for the

study of nanofluids. Sarkar et al. [76] used an equilibrium MD model to study

the effect of copper loading using liquid argon as the base fluid. They report
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a 20% enhancement in thermal conductivity when 1% volumetric fraction of

copper was added to the base fluid. Their model shows a continued growth

in conductivity to a significant 52% enhancement for 8% Cu loading. This is

almost double the prediction of HC formulation for the same particle loading

of Cu-Ar nanofluids. The authors attribute most of this enhancement to the

increased movement of liquid atoms in the presence of nanoparticles. However,

this study did not explore the effect of fluid layering around nanoparticles. In

another study on Cu-Ar done by Ling [50] the researchers used the density

measurements of the base fluid to show that a dense layer of argon atoms form

around copper nanoparticles. Additionally, they showed that the same argon

atoms remained near the copper nanoparticles throughout the simulation. This

study reports 21% enhancement for 2% Cu loading. Which is almost 10%

lower than the estimate of [76]. Ling attributed the improved conductivity

seen in their model to the layering of Ar around Cu particles and, as a result,

concluded that conductivity must be dependent on the size of the particles as

a larger particle can house more Ar atoms on its surface. Additional studies

have so far investigated the effect of other factors such as particles’ shape and

size [22] and aggregation and clustering of nanoparticles [43]. Jabbari et al. [40]

provide a thorough review of the most recent MD studies on nanofluids.

MD studies of nanofluids are typically in better agreement to observa-

tions than other numerical and theoretical methods used. However, running

MD models is a computationally expensive task. As a result, MD studies

are usually done on domains that only include a single nanofluid and its sur-
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rounding base fluid atoms. Such a domain can be a great tool for studying

the interaction between nanoparticles and the base fluids. However, this small

domain limits the ability to study the more complex features of a suspensions,

including the interaction of the particles with each other and with the bound-

aries of the domain. Nonlocal (NL) models such as peridynamic [86] theory

can be thought of as a natural up-scaling solution for MD models [81]. NL

models could be used to potentially reduce the computational expense while

providing a consistent homogenized model of the suspensions. In a similar

fashion to MD models, nonlocal models evaluate the overall force balance on

each particle through the summation of the interactions from every other par-

ticle in a nonlocal subdomain of interest. Peridynamics was first introduced

and used by Silling to model elasticity and material failure in solid mechanics.

Bobaru et al. extended this work to the study of transient heat conduction [11].

Seleson and colleagues [81] argued that peridynamic and in general nonlocal

models have similar computational structures to MD models and showed the

extent to which MD results can be recovered when NL models are used to

perform the upscaling procedure.

This chapter introduces a NL model for simulating heat conduction in

nanofluids. Here, we specifically focus on the computation of the nonlocal

kernel and demonstrate a systematic method for this calculation using an Cu-

Ar nanofluid.
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4.2 Nonlocal Diffusion Model

MD models are typically run on small domains with periodic bound-

ary conditions. It is reasonable to assume that central heating problems in

such domains do not generate significant convective flows. Therefore, diffusive

heat transfer can be taken as the dominating heat transfer mechanism in MD

simulations. With this assumption, and inspired by the works of Bobaru et

al. [12], let us represent the proposed nonlocal model for diffusive heat transfer

as given by (4.1).

0 = ρc
∂T

∂t
− 2k

∫
Hε

γω(||ξ||)(T (x + ξ)− T (x))
1

||ξ||2
dξ (4.1)

In this equation, ρ is density, c is the heat capacity at constant pressure, T is

temperature, t is time, and k is the thermal conductivity. Hε is the nonlocal

horizon, which dictates the radius ε of interaction for every point x in the

domain. ξ is the position vector of another point within x’s horizon as shown

in figure 4.1. Finally, ω is the nonlocal kernel or weight function. The nonlocal

kernel used here determines the influence of all the particles in the horizon on

x. The nature of the nonlocal kernel will be discussed in detail in this chapter.

γ is an appropriate scaling function for the nonlocal model and its relation to

other parameters including ω will also be discussed.

Nonlocal models are enhanced with mathematical properties to model the

physical nature of a given domain more generally than their classical coun-

terparts. They can recover the classical solution through the δ-convergence
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Hε(x)

x

x′

ξ

ε

Figure 4.1: Point x and its horizon shown in white. ξ is the vector connecting
x to any other point in the horizon and ε is the radius of the horizon.

method. In this convergence, the size of the horizon is reduced while more

nodes are introduced into the domain at a faster rate and until convergence is

observed. This convergence can be proven by using a Taylor expansion of the

temperature about ξ = 0,

T (x + ξ) = T (x) +
∂T

∂xj
(x)ξj + O(|ξ|2). (4.2)
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Plugging 4.2 back into 4.1, we have

lim
ε→0

2k

∫
Hε

γ
ω(||ξ||)
||ξ||2

(T (x + ξ)− T (x))dξ =

= lim
ε→0

2kγ

∫
Hε

ω(||ξ||)
||ξ||2

(T (x + ξ)− T (x))dξ,

= lim
ε→0

2kγ

∫
Hε

ω(||ξ||)
||ξ||2

( ∂T
∂xi

ξi +
1

2

∂2T

∂xi∂xj
ξiξj + O(|ξ3|))dξ,

= lim
ε→0

2kγ

∫
Hε

ω(||ξ||)
||ξ||2

(1

2

∂2T

∂xi∂xj
ξiξj + O(|ξ3|))dξ,

= lim
ε→0

2kγ

∫
Hε

ω(||ξ||)
||ξ||2

(1

2

∂2T

∂xi∂xj
ξiξj)dξ + O(ε),

= lim
ε→0

2kγ
1

2

∂2T

∂xi∂xj

∫
H

ω(||ξ||)
||ξ||2

(
ξiξj)dξ + O(ε),

= lim
ε→0

k
∂2T

∂xi∂xj
δij + O(ε),

= lim
ε→0

k
∂2T

∂xi∂xi
+ O(ε),

= k∇2T.

Therefore taking the limit on all the terms in equation (4.1) results in

0 = ρc
∂T

∂t
− k∇2T. (4.3)

Here ω = ω(||ξ||) = ωs(||ξ||) is assumed to be spherically symmetrical, which

implies that

∫
H

ωs(||ξ||)
ξkξj
||ξ||2

dVξ =δkj

∫
H

ωs(||ξ||)
ξ2

1

||ξ||2
dξ,

=δkj

∫ 2π

0

∫ π

0

∫ ε

0

ωs(||ξ||)
ξ2

1

ξ2ξ
2sinθdξdθdφ,

=δkj
m1

3
,
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with

m1 =

∫
H

ω(||ξ||)
||ξ||2

ξkξjdξ,

with the spherical coordinates, ξ1 = |ξ|sinθcosφ, ξ2 = |ξ|sinθsinφ, and ξ3 =

|ξ|cosθ and

γ =
3

m1

.

4.3 Proposed Method for Kernel Extraction

The kernel of a nonlocal model is widely understood as the represen-

tation of the average interaction between material points or particles inside

the domain. For the current investigation, of interest are the interactions

that take part in the diffusion heat transfer processes. Interatomic forces are

the bridges used for the transfer of kinetic energy between the particles. A

physically meaningful choice for the nonlocal kernel in heat transfer problems,

must be calculated based on the van der Waals forces between the constituent

atoms. In this study, an MD model has been used to calculate the average

force exerted on a randomly chosen particle in the domain. More specifically,

one area of investigation is how this force changes with radius. The depen-

dence of force as a function of radius is what will be used to calculate the

appropriate kernel for the chosen domain.

The MD model used in this analysis is run using LAMMPS [98] and

is setup to use a 6-12 Lennard-Jones (LJ) potential for argon and copper.

79



Lennard-Jones potential is an empirical model that was original proposed by

Jones in 1925 to model the cohesive energy of crystals of noble gases [108].

The 6-12 LJ potential is one of the most widely used intermolecular potential

where

νLJ(r) = 4ε
(

[
σ

r
]6 − [

σ

r
]12
)
.

Here ε stands for the depth of the attractive well, r is the interatomic separation

and σ is the interparticle distance where the potential changes sign. σ is also

often understood as the radius of one of the atoms. The LJ parameters used for

Ar and Cu are σCu = 2.3377e− 10 m, εCu = 65.625e− 21 J, σAr = 3.405e− 10

m and εAr = 1.67e−21 J. The domain used for the simulations is a box region

with ∆L and ∆H = 5.2e − 7 m. Depending on the problem, a heat source

is added to a chosen section of this domain, and the response of the system

is monitored. Using this domain, the MD simulations are run on both pure

argon and 0.9-7.5% Cu-Ar nanofluid with time step of 1 femtosecond and for

2 million time steps. The proposed method for kernel calculation requires the

position file output of the LAMMPS simulation. The position of individual

particles is recorded in this file at every 1000 time steps. Using the position

output files, the following steps are taken to calculate the force vs radius values.

First, the domain is split into spherical shells around a chosen particle.

Iterating over neighboring particles, the LJ potential exerted on the central

particle from every shell is calculated. Figure 4.2 shows how the domain is split

into shells around a randomly selected particle. This calculation is repeated
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Figure 4.2: Domain was split into spherical shells to calculate the average
forces experienced from each discretized ring. Here, larger blue dots represent
the nanoparticles and small black dots are argon atoms.

for every single particle inside the domain and the results of all LJ potential

calculations are averaged to give the final plot of the averaged LJ potential for

every recorded time step. Apart from averaging the results on all particles, the

LJ-potential over time for the 2 million time steps taken during this simulation

has been averaged. To ensure the accuracy of this method, the thickness of

the shells is reduced in increments and the calculation is repeated on thinner

shells. By doing so, the calculated potential is shown to converge to a curve

that closely follows the analytical LJ potential for pure argon. The results of

this convergence study are shown on figure 4.3.

The analytical LJ-potential curve is based a continuum idealization.

However, in reality, the atoms are most likely to arrange into an ordered lattice

structure. In this lattice, the probability of finding atoms in a shell signifi-

cantly drops the further away the shells are from the equilibrium distance for

constitutive atoms. Figure 4.4 clearly demonstrates the drop in atomic dis-
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pure argon is converging to the analytical LJ potential shown by the dashed
line
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tribution density before and after the equilibrium distance. This non-uniform

atomic distribution density is the main reason for the deviation between the

analytical and the calculated LJ potentials. The analytical LJ potential curve

also predicts that the potential must grow large as the particles pack closer

together than the equilibrium distance, r. In reality however, the inner shells

always stay empty as this large force stops any atoms from entering the most

central shells. This fact is captured by the calculated LJ potential and the

force from the nearest shells are calculated to be zero.

Using the above procedure, the Leonard-Jones potentials were calcu-

lated for pure liquid argon and Cu-Ar nanofluids with nanoparticle loading
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Figure 4.4: The plots show the radial distribution of atoms about a central
particle in both pure argon and 3.8% Cu-Ar nanofluid. Blue dashed lines rep-
resent the equilibrium distance for liquid argon. As expected, the introduction
of nanoparticles has forced the argon atoms to rearrange into a new structure
with larger spacings between atoms
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between 0.9 and 7.5%. The calculated potentials were then differentiated over

distance to get the force as a function of radius. This force, whether attractive

or repulsive, transfers kinetic energy between particles. Thus, the shape of

the nonlocal kernel should directly match the absolute of the calculated force

vs radius curve. The extracted shape of the nonlocal kernel for both pure

argon and a Cu-Ar nanofluid with 3.8% Cu loading is shown in figure 4.5. If

we assume that the time averaged velocity of every particle in the domain is

equal, then the proposed method can be closely linked to the infamous Green-

Kubo method [46] which has been widely used in previous heat conductivity

calculations of nanofluids.

Currently, the theory proposed by Keblinski et al. [46] is known to offer

the best summary about the known aspects of the nature of heat transfer in

nano-fluids. The authors proposed, the ballistic nature of heat transfer in

nanoparticles , ordered layering of fluid atoms around nano particles, thermal

energy transfer due to Brownian motion of nanoparticles, and the clustering of

highly conductive nanoparticles as the potential mechanisms responsible for

the increased heat conductivity of nanofluids. The last three points of the

proposed theory are related to the motion of particles. These mechanisms

are automatically captured in the proposed method for kernel calculation.

The first point regarding the ballistic nature of heat transfer through nano

particles cannot be understood based on the position of particles alone. What

this mechanism essentially means is that the bottleneck of the heat transfer

mechanism in nanofluids is the rate of heat transfer through the base fluid
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Figure 4.5: Computationally up-scaled kernels for pure liquid argon and 3.8
% Cu-Ar nanofluid

and rate of heat transfer from the base fluid to the nanoparticles and their

surrounding solid-like structure. Figure 4.6 shows the calculated components

of LJ potential for Ar-Ar, Cu-Ar and Cu-Cu interactions.

In order to stay consistent will Keblinski’s viewpoint, argon atoms must

be 100% involved in the heat transfer process and the contributions from

the copper atoms can be completely ignored (0% weight) without any loss of

information. By applying this weight, any resistance to heat transfer from

copper particles will be eliminated as the heat is assumed to instantaneously
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Figure 4.6: Components of LJ potential from interactions between Cu and Ar
particles

travel through the copper nanoparticles. Following the same logic, the Cu-Ar

interactions should be given a 50% weight. As will be discussed in the following

chapters, the above weights have been found to be sufficiently accurate as the

calculated conductivities are shown to closely match the literature. However,

future work must take a closer look at the Cu-Ar interactions in order to

confirm the validity of the chosen weight.

86



4.4 Discretization

To solve this nonlocal model, the domain has been split into equally

spaced nodes with spacing of ∆x. The discretized version of this model is

presented here.

0 = ρc
T n+1(xi)− T n(xi)

∆t
− 2k

∑
j

γ
ω(||ξ||)
||ξ||2

(
T n+1(xj)− T n+1(xi)

)
Aj (4.4)

Above Aj can be thought of as ∆x2 for 2-dimensional case. Here xj := xi + ξ

where j stands for a neighboring node and xi is the spatial position of the

node of interest. In this discretized model, the local limit, which recovers

the solution for classical equations of diffusive heat transfer, is achieved by

increasing the number of neighbors while increasing the total number of nodes

at a faster rate. This ensures that the overall horizon size approaches zero.

Another point of convergence of a nonlocal model is the nonlocal limit. This

limit is achieved by holding the horizon size constant while increasing the

number of nodes in steps. Given the correct choice of kernel, the nonlocal

model is expected to more accurately simulate the domains that have features

ignored by the assumptions made in the classical continuum models.

4.5 Results and Discussion

To confirm the validity of the method, the thermal conductivity cal-

culation for nanofluids was carried out with volumetric nanoparticle loading

between 0.9 and 7.5%. Regardless of the choice of the nonlocal kernel, the

integral of the kernel must be equal to the average thermal conductivity of
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the fluid. The proposed method for kernel extraction will compute the correct

shape of the kernel, which affects dynamic problems. It can also find the ratio

between the thermal conductivity of two fluids based on the two calculated

kernels. However, to find the absolute value of the thermal conductivity of the

system, we have to first calibrate the extracted kernel for the base fluid and

one nanofluid suspension in isolation. Therefore, before using the upscaled

kernel to calculate thermal conductivities of nanofluid mixtures, the kernel

was calibrated using an established solution [76]. For this calibration, the in-

tegral of the kernel for pure argon was constrained to 0.127 Wm-1K-1 and the

integral of the kernel for 1.8% nanoparticle to 0.163 Wm-1K-1. This nonlocal

model was then used to predict the conductivity of all other nanofluids up

to a copper loading of 7.5%. These predictions are presented in figure 4.7.

The predictions of the nonlocal model are in close agreement with those of

an MD model using the Green-Kubo method [76]. The gray line shows the

prediction of Hamilton-Crosser model. This continuum model significantly

under-predicts all nanofluid thermal conductivities compared to both the MD

and the NL model using the computationally up-scaled kernel

Thus far, we have shown that the proposed method for kernel extraction

can be used to predict the average conductivity of nanofluids, and the predic-

tions closely match that of an equilibrium MD model using the Green-Kubo

method. In the following sections, the upscaled kernel in the nonlocal model

will be used to solve problems with much larger domains than are tractable

with MD methods. Here, we will use a highly refined solution of (4.4) as the
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Figure 4.7: Comparison of thermal conductivity calculations between MD, NL
and HC models. The results of the predictions from the proposed nonlocal
model and the MD model are in close agreement. The continuum HC model
under-predicts the thermal conductivity for all nanofluids

reference nonlocal solution. The solution of a finite difference discretization

will also be used as the reference local solution and a comparison between

the local and nonlocal models will be provided. For the following nonlocal

models, the horizon is truncated at a distance where the extracted values for

the upscaled kernel are zero. This will ensure unnecessary calculations are not

conducted over neighboring particles that donnot influence the heat transfer

and therefore results in the fastest simulation time.
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4.5.1 Steady-State Heat Transfer

The steady-state condition can be modeled both using the steady-state

equations (4.5) or by allowing the transient solution (4.1) to reach equilibrium

at long times. Following the derivation presented for (4.1), the discretized

form of the proposed NL steady state diffusion can be written as

q = −k
∑
j

γω(||ξ||)(T (xj)− T (xi))
ξj
||ξ||2

Aj. (4.5)

4.5.1.1 Parameterization

The following simulations are run on a box region, with ∆L = ∆H =

5.2e − 7 m where L and H are the length and the height of the domain

respectively. The nanoparticle loading is 3.8%, and the thermal conductivity,

k = 0.180 Wm-1K-1. The time step chosen for these simulations is ∆t =

1e− 12s.

4.5.1.2 Boundary Conditions

Periodic boundary conditions are used for all four edges of the domain.

A constant heat flux source and a sink are added 1/3 of the way from the

left and right boundaries respectively. In an NL model, the constant heat flux

boundary condition can be applied by enforcing the equivalent temperature

gradient on all nodes through the boundary layer thickness of one horizon.

The periodic boundary condition is enforced using the technique explained in

3.4. In a periodic boundary the flow exiting the top or the bottom edge must

90



0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

x(m)

y
(m

)

Figure 4.8: Illustration of how horizon of a point can be split at the edges of
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re-enter the domain through the opposite edge. To allow for this to happen,

the nodes that are placed within a distance ε from the upper or lower edge

must at least share a neighbor on the opposite edge of the domain.Figure 4.8

demonstrates this concept by showing the horizon for 3 randomly chosen nodes

in the domain. In this setup, a node placed at the bottom edge (here shown

in blue) has half of its neighbors on the top boundary of the domain and half

at the bottom edge.

4.5.1.3 Choice of the Nonlocal Kernel

There is an analytical solution for the aforementioned domain with a

constant flux boundary condition. For this problem, the temperature profile
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will take a linear shape with maximum temperature occurring at the heat

source and the minimum temperatures at the sink. This is a simple solution

that allows the effect of kernel’s shape on the final result to be investigated.

Two different kernels have been chosen to run the NL simulations. The first

kernel is the computationally upscaled kernel for 3.8% Cu-Ar nanofluid given

by fig.4.5. The other kernel used is a constant, y = k3.8

ε
. Here, k3.8 is the

thermal conductivity of the 3.8% Cu-Ar suspension and ε is the problem’s

characteristic length scale and the size chosen for the horizon.

4.5.1.4 Nonlocal Simulation Results

The result of the nonlocal simulations are presented in figure 4.9. It is

shown that as the nonlocal limit is approached, NL models using both kernels,

approach the same result. This is an important finding that indicates that

for steady-state heat conduction problems, the shape and size of the nonlocal

kernel do not affect the result of the simulation. In such cases, simple kernel

shapes such as triangular kernels are recommended as they typically reduce

the convergence time [11] due to reduced numerical integration inaccuracies.

4.5.2 Transient Heat transfer

Next, the effect of kernel selection on the outcome of a transient heat

transfer simulation will be explored. For this case, the domain is initially at

a constant temperature of 90C. The temperature of a vertical strip in the

middle of the domain is set to 120C at time, t = 0 and the temperature profile

92



0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

·10−7

60

70

80

90

100

110

120

x(m)

T
em

p
er

at
u

re
(K

)

Analytical Solution

Transient, Upscaled Kernel

Transient, Constant Kernel

Steady State, Upscaled Kernel

Steady State, Constant Kernel

Figure 4.9: Results of simulations for a steady state problem using constant
heat flux boundary conditions. Here, it is shown that the results of local and
nonlocal models closely match. It is also shown that the choice of nonlocal
kernel does not affect the result of the steady state problems

is calculated using both a finite differenced local model and the nonlocal model

presented by (4.4).

4.5.2.1 Parameterization

The following simulations are run on two box regions, the first with ∆L

and ∆H = 1.5e− 8m, and the second with ∆L and ∆H = 2.86e− 6m. The

nanoparticle loading is 3.8% and the thermal conductivity, k = 0.180 Wm-1K-

1. The time step chosen for this part is ∆t = 1e − 12s, and the simulations
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are run for 10,000 time steps.

4.5.2.2 Boundary conditions

Periodic boundary condition is used for all edges. The initial temper-

ature condition chosen for the entire domain is 90C. The temperature for all

the nodes in a vertical strip in the middle of the domain and with thickness,

2ε is set to 120C at t = 0.

4.5.2.3 Choice of the Nonlocal Kernel

For this section, three different kernels have been chosen for the NL

simulations. As before, the first kernel is the computationally up-scaled kernel

for 3.8% Cu-Ar nanofluid given by fig.4.5. The other two kernels used have the

shape of a horizontal line, y = k3.8

ε
. Here, k3.8 is the thermal conductivity of

the 3.8% Cu-Ar suspension, and ε is the horizon size. For the second kernel,

also referred to as the small kernel, the horizon size ε = 6.5e − 10m and for

the final or the large kernel, ε = 2e− 9m.

4.5.2.4 Nonlocal Simulation Results

Looking at the results of the simulation for the larger domain, the length

of the domain is chosen such that the characteristic length scale, ε << ∆L.

The result of the simulations run on this large domain is shown in figure 4.10.

Similar to the steady state problem, all simulations converge to the same

nonlocal limit, which closely matches the result from the finite differenced
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Figure 4.10: Results of the local and nonlocal transient simulations on a do-
main with constant temperature boundary conditions. The results are shown
to converge for the case where ε << ∆L

local simulation. This is an expected result. ε represents the average size

of heterogeneities of the domain and therefore a domain with ε << ∆L can

be modeled as a homogenous one. For a homogenous domain, the nonlocal

and local solutions should agree. Next, the second domain size chosen for the

transient heat diffusion problem above will be investigated. Here, the domain

size is much closer to the size of ε, and as a result, the homogeneous assumption
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for the domain is no longer valid. The result of simulations run on this domain

are given by figure 4.11. Contrary to the results from the previous sections,

in this case the horizon’s size is shown to have a measurable effect on the

calculated temperature profile. Here, the size of the kernel is shown to have

a more significant effect on the calculated profile compared to its shape. The

results also show a deviation between the prediction of the nonlocal solution

and the result from the finite differencing model.
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Figure 4.11: Results of simulations for a transient problem. Here the size of
the characteristic length scale, ε, is chosen to be close to the domain’s length
L. For this case, the choice of nonlocal kernel is shown to have a significant
effect on the calculated temperature profile.
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4.6 Conclusion

Nanofluids are suspensions of nano-sized particles in a base fluid. The

potential advantages of nanofluids in heat transfer applications have been

known for most of the past century. The attempts to model nano-fluids using

continuum formulations often fail as a continuous idealization cannot capture

the inter-atomic interactions that result in the anomalously high conductivity

in nanofluids. Experimental work on nanofluids have also faced challenges due

to the complex manufacturing and testing techniques used. More recently, MD

models have proven to be the more appropriate tool for modeling nanofluids.

However, MD models are computationally expensive to run. Typical domains

used in MD models include a single nanoparticle and its surrounding liquid

atoms. In this chapter, we proposed a nonlocal model as an upscaled MD

formulation. We provided a systematic method for extracting the appropriate

nonlocal kernel and investigated the effect of kernel’s size and shape on the

solution of nonlocal model.
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Chapter 5

A Multi-scale Nonlocal Approach for

Turbulence Modeling

5.1 Introduction

Turbulence is widely known as one of the oldest unsolved problems in

physics. It is characterized by the chaotic behavior of the fluid pressure and

velocity fields at high Reynolds numbers. It is also one the most studied macro-

scopic features of fluid flows across multiple scientific and engineering disci-

plines. Blood flow inside arteries, flow through pumps, turbines and around

commercial aircraft wing tips are only a few examples of turbulent flows. The

widespread presence of such flows in our everyday lives has been fueling the

need for the comprehensive understanding of turbulence for most of the past

century. Although the effects of turbulence can be experienced through the

macroscopic features of a flow, its source lies in the interactions of the fluid

particles at the microscopic scale. Small perturbations in the flow, whether

formed within the boundary layer or introduced at the inlet, can typically

be dampened and completely eliminated by viscous forces. However, if the

excess momentum is large enough to overwhelm the viscous forces, a laminar

flow will quickly start its transition to an unsteady and disorganized turbulent

flow. The chaotic nature of turbulence means that a small change in the ini-
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tial conditions can result in a significantly different pressure and velocity fields.

Traditionally, automotive and aerospace industries have used experi-

mental methods such as wind tunnels and scaled down prototypes to visually

study the flow behavior as it passes over an object of interest. However, wind

tunnels that are large enough to fit real size prototypes are rare to find and

hard to maintain. Furthermore, reproducing the exact test conditions inside

a tunnel is often hard to achieve. This is especially true if scaled down proto-

types are used or a careful study of the interactions with the environment such

as the surface of the road is needed. Given the challenges involved with the ex-

perimental methods and the rapidly increasing computational power available

to researchers, the computational methods have over the years turned into the

main tool for the studying turbulence.

Computational methods based on the classical continuum approach

such as direct numerical simulation (DNS) can be used to accurately calcu-

lated shear stresses and pressure field in all parts of the flow. These fields can

in turn be used to calculate force and momentum everywhere. That is given

that a fine enough spatial and temporal grid can be employed. An appropriate

spatial grid must be fine enough to capture the dissipative and viscous effects

that occur at microscopic levels while covering a domain size which is typically

many orders of magnitude larger. This simple fact means that even with the

wide spread availability of super computers, the computational time required
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is still the bottle neck of DNS.

Alternative computational methods such as Reynolds Average Navier-

Stokes (RANS) modeling and Large Eddy Simulations (LES) offer their own

advantages. In the RANS method, Reynolds decomposition procedure is used

to split the flow variables into the mean and the fluctuating parts. The com-

putational requirements for solving RANS equations are typically an order of

magnitude less than what is needed to solve the original Navier-Stokes (NS)

equations. LES approach also attempts to reduce the computational time

needed to solve the original set of NS equations. Here, this task is achieved by

ignoring the smallest and yet computationally expensive length scales. But as

it is often the case, the more accurate approach for transient modeling, LES,

requires significantly higher computational power while still lacking the ability

to model small scale phenomena.

More recently, nonlocal models based on fractional calculus have proven

to be powerful tools for the study of turbulence [32,72]. Pioneers of the study of

turbulence such as Prandtl [68] and Richardson [72] built their work based on

the assumption of locality in turbulence interactions. This assumption limits

the generalization of the proposed correlations. The underlying assumptions

here would only be true if the scale of heterogeneities in the mean flow field

is much larger than the mixing length. Fractional models offer a tool to sim-

ulate problems with nonlocalities and non-Gaussian statistics. By replacing
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the Maxwell-Boltzmann distribution with a general Levy α-stable distribution

Epps et al. [32] rigorously derived their fractional Navier-Stokes equations.

While the aforementioned model is only valid for open domains, the more re-

cent work by Song and Karniadakis [94] proposed a variable-order fractional

differential equation for modeling the Reynolds stresses in wall-bounded do-

mains. The variable fractional differential used in the fractional models offers

a solution for modeling nonlocality of the domain. However, it also comes

at the cost of significant added computational time. As it was discussed in

section 2, a nonlocal model based on the peridynamic formulation can recover

the equivalent fractional model with the appropriate choice of kernel. Thus,

fractional models can be thought of as a special case for peridynamic based

nonlocal models [26]. Such nonlocal models can also recover the local solution.

Recent work by [33] have used peridynamic differential operator (PDDO) to

simulate fluid flow problems. In this method, the field variables and their

spatial derivatives are represented in a nonlocal form. Nguyen et al. [60] used

PDDO to simulate flow over a cylindrical object. Their results closely match

the results of local simulations run on Ansys Fluent [2]. In this work, a peridy-

namic based nonlocal model will be introduced which will recover the penalty

formulation of the Navier-Stokes equations for an incompressible flow at its

local limit. The two-dimensional penalty formulation of Navier-Stokes is given
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by the following equations:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= − 1

ρ0

∂P

∂x
+ ν

[
∂2u

∂x2
+
∂2u

∂y2

]
+Bx

∂u

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= − 1

ρ0

∂P

∂y
+ ν

[
∂2v

∂x2
+
∂2v

∂y2

]
+By

(5.1)

Here, incompressibility is enforced through the penalty parameter, λ by the

pseudo-constitutive relation

p = −λ
[
∂u

∂x
+
∂v

∂y

]
. (5.2)

Equations 5.1 and 5.2 can be combined to give the following set of equations

for the two-dimentional, penalty formulation of Navier Stokes Equations.

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=

λ

ρ0

[
∂2u

∂x2
+

∂2v

∂x∂y

]
+ v

[
∂2u

∂x2
+
∂2u

∂y2

]
(5.3)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
=

λ

ρ0

[
∂2u

∂x∂y
+
∂2v

∂y2

]
+ v

[
∂2v

∂x2
+
∂2v

∂y2

]
(5.4)

In the following sections, the nonlocal model will be presented in its continuous

and discretize form alongside a mathematical proof for its convergence to the

local solution. This chapter will also present a comparison between the results

of the simulations run using the proposed nonlocal model and other available

solutions such as the aforementioned PDDO model.

5.2 Nonlocal Model

Let us start by presenting the nonlocal Navier-Stokes model for two-

dimensional flow. As in the previous chapters, the notations and terminologies
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employed here have been adapted from peridynamic mechanics. Namely, it is

assumed that a point x interacts with all points x + ξ within a finite distance

parameterized by ε called the horizon. The set of all points x + ξ is called

the neighborhood of x, and is labeled Hε(x). The shape of the horizon is

assumed to be spherical in three dimensions and circular in two-dimensions

(therefore ε is a radius), but other choices are available. Equation 5.5 presents

the proposed nonlocal model.

∂ui(x)

∂t
+ uj(x)

∫
Hε

γω(||ξ||) (ui(x + ξ)− ui(x))
ξj
||ξ||2

dξ

−
∫
Hε

βω(||ξ||)ξi(ν(x,x′) + ν(x′,x))ξj
||ξ||2

(uj(x + ξ)− uj(x))dξ

− λ

ρ0

∫
Hε

γω(||ξ||)(ui(x+ ξ)− ui(x))
ξi
||ξ||2

dξ = 0

(5.5)

Here, i and j are vector components of ξ in two dimensions and as in equation

5.2, the incompressibility is enforced through the use of a penalty parameter

such that

p = −λ
∫
Hε

γω(||ξ||) (ui(x + ξ)− ui(x))
ξi
||ξ||2

dξ. (5.6)

Here, u stand for velocity, t is time, ν is kinematic viscosity, p is pressure and

λ is the penalty parameter. ω is called the influence function and controls

the strength of interactions among the points in the neighborhood. Finally, γ

and β are scaling functions whose choice is discussed in the following sections.

In 3.2.1, it was assumed that the pressure field is continuous such that the

Taylor expansion about ξ = 0 exists. This fact was used to demonstrate the
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convergence of second term of 3.2 to the local gradient operator as ε shrinks to

0. Continuing with the idea of term-wise convergence, this section will present

the convergence of every term of equation 5.5 to its local counterpart at the

local limit. The Taylor expansion of velocity is given as

ui(x + ξ) = ui(x) +
∂ui
∂xj

(x)ξj + O(||ξ||2).

Using this expansion, we have

uj(x) lim
ε→0

∫
Hε

γω(||ξ||) (ui(x + ξ)− ui(x))
ξj
||ξ||2

dξ

= uj(x) lim
ε→0

γ

∫
Hε

ω(||ξ||)
||ξ||2

(ui(x)ξj +
∂ui
∂xk

ξkξj − ui(x)ξj) + O
(
||ξ||2

)
dξ,

= uj(x) lim
ε→0

∂u

∂xj
(x)γ

∫
Hε

ω(||ξ||) ξjξi
||ξ||2

+ O
(
||ξ||2

)
dξ,

= uj(x) lim
ε→0

∂u

∂xj
(x)δji + O(ε),

= uj(x) lim
ε→0

∂u

∂xi
(x) + O(ε),

= u · ∇u.

(5.7)

Note, as shown below, there is an ε2 term in the denominator of γ which

explains the O(ε) after integration. Here ω(|ξ|) = ωs(|ξ|) is assumed to be

spherically symmetric which implies that

∫
Hε

ωs(||ξ||)
ξkξj
||ξ||2

dξ =δkj

∫
Hε

ωs(||ξ||)
ξ2

1

||ξ||2
dξ,

=δkj

∫ 2π

0

∫ π

0

∫ ε

0

ωs(||ξ||)
ξ2

1

||ξ||2
||ξ||2 sin θdξdθdφ,

=δkj
m1

3
,
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where

m1 =

∫
Hε

ωs(||ξ||)dξ,

and the spherical coordinates, ξ1 = |ξ| sin θ cosφ, ξ2 = |ξ| sin θ sinφ, and ξ3 =

|ξ| cos θ have been used to evaluate the integral. Therefore, in order for the

first integral in 5.7 to converge to u · ∇u in the limit of vanishing horizon, we

require

γ =
3

m1

.

The same technique can be used to show the convergence of the Laplacian

term. Here, Taylor expansions about ξ = 0 are given as:

ui(x + ξ) = ui(x) +
∂ui
∂xj

ξj +
1

2

∂2ui
∂xj∂xk

ξjξk + O(||ξ||3),

ν(x, ξ) = ν(x,0) +
∂ν(x,0)

∂ξn
ξn + O(||ξ||2),

ν(x + ξ,−ξ) = ν(x,0) +
∂ν(x,0)

∂xn
ξn −

∂ν(x,0)

∂ξn
ξn + O(||ξ||2).

Substituting these back into the third term of 5.5 and simplifying, gives
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∫
H

βω(||ξ||)ξi (ν(x,x′) + ν(x′,x)) ξj
||ξ||2

(uj(x
′)− uj(x))dξ

=

∫
H

βω(||ξ||)
ξi

(
2ν(x,0) + ∂ν(x,0)

∂xn
+ O(||ξ||2)

)
ξj

||ξ||2

×
(
∂uj
∂xm

ξm +
1

2

∂2uj
∂xm∂xn

ξmξn + O(||ξ||3)

)
dξ.

Using the symmetry of the integrand, any odd power of ξi can be set to zero.

Now, collecting the terms will give

= β

∫
H

ω(||ξ||)
||ξ||2

(
ξnξiνξjξm

∂2uj
∂xm∂xn

+
∂uj
∂xm

ξnξi
∂ν

∂xn
ξjξm

)
dξ + O(ε2),

= (δijδmnν)
∂

∂xn

(
∂uj
∂xm

)
+

(
∂uj
∂xm

)
∂(δijδmnν)

∂xn
+ O(ε2),

=
∂

∂xn

(
(δijδnmν)

∂uj
∂xm

)
+ O(ε2),

= ν
∂2ui

∂xn∂xn
,

= ν∇2u,

(5.8)

Where

δijδmnν = βν

∫
H

ω(||ξ||)ξnξiξjξm
||ξ||2

dξ. (5.9)
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Above, the symmetry of the integrand has once more been explored. Using

polar coordinates, the integral can be evaluated as∫
H

ωs(||ξ||)
ξnξiξjξm
||ξ||2

dξ = (δniδjm(1− δnm) + δnjδim(1− δij)δnmδij(1− δnj))

+

∫
H

ξ2
1ξ

2
2

||ξ||2
dξ + δnmδijδnj

∫
H

ξ4
1

||ξ||2
dξ,

= (δniδjm(1− δnm) + δnjδim(1− δij) + δnmδij(1− δnj))
m2

15
+ 3δnmδijδnj

m2

15
,

= (δniδjm + δnjδim + δnmδij)
m2

15
.

Now, the result of the substitution is equated with the two-point and classical

dynamic viscosity,

δnmδijν = νβ(δniδjm + δnjδim + δnmδij)
m2

15

3δijν = νβδij
m2

3

ν = νβ
m2

9

which reveals that the nonlocal two-point dynamic viscosity is equivalent to

its local counterpart, ν = ν if β = 9
m2

with

m2 =

∫
Hε

ωs(||ξ||)ξiξidξ.
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For a two-dimensional domain and with a choice of triangular influence func-

tion, ω = (1− ξ
ε
),

m2 =

∫ 2π

0

∫ ε

0

(1− ξ

ε
)ξiξidξ

=

∫ 2π

0

∫ ε

0

(1− ξ

ε
)ξiξidξ(|ξ|dθ)

=

∫ 2π

0

∫ ε

0

(1− ξ

ε
)ξ3dξdθ

=

∫ 2π

0

∫ ε

0

(ξ3 − ξ4

ε
)dξdθ

= [2π − 0][
ε4

4
− ε5

5ε
]

=
πε4

10

which gives

β =
90

πε4

Using the Taylor expansions once more, the convergence of the gradient

term can be shown as below.

u(x + ξ) = u(x) +
∂u

∂xj
(x)ξj + O(|ξ|2). (5.10)

Substituting (5.10) back into 5.6 gives:
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lim
ε→0

∫
Hε

γω(||ξ||) (u(x + ξ)− u(x))
ξi
||ξ||2

dξ

= lim
ε→0

γ

∫
Hε

ω(||ξ||)
||ξ||2

(u(x)ξi +
∂u

∂xj
(x)ξiξj − u(x)ξi) + O

(
||ξ||2

)
dξ,

= lim
ε→0

∂u

∂xj
(x)γ

∫
Hε

ω(||ξ||) ξjξi
||ξ||2

+ O
(
||ξ||2

)
dξ,

= lim
ε→0

∂u

∂xj
(x)δji + O(ε),

= lim
ε→0

∂u

∂xi
(x) + O(ε),

= ∇u.

5.3 Discretization

The nonlocal model has been solved in parallel using equally spaced

nodes on a two-dimensional grid. In order to solve these equations using the

finite number of nodes chosen here, it is reuired to first present the discretized

version of the proposed model in which the integral equations are presented

as finite sums. NOX [5], the nonlinear solver from Trilinos [1] was chosen

as the nonlinear solver, AztecOO [83] was used as the linear solver and the

Zoltan package was used to perform the load balancing. The discretized form
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of equation 5.5 can be written as:

uN+1
m (xI)− uNm(xI)

∆t
+ uN+1

n (xI)
∑
J

γω(||ξ||)
(
uN+1
m (xJ)− uN+1

m (xI)
) ξn
||ξ||2

AJ

−
∑
J

βω(||ξ||)ξm(ν(x,x′) + ν(x′,x))ξn
||ξ||2

(uN+1
n (xJ)− uN+1

n (xI))AJ

− λ

ρ0

∑
J

γω(||ξ||)(uN+1
m (xJ)− uN+1

m (xI))
ξm
||ξ||2

AJ = 0

(5.11)

Above, Aj can be thought of as ∆x2 for 2-D case and as ∆x for the 1-D case

for all grid cells that are completely interior to the horizon. Subscripts m and

n represents components of ξ in the x and y directions and superscript N is

used to represent the current time step. Here xj := xi + ξ where j stands for

a neighboring node and xi is the spatial position of the node of interest.

5.4 Results and Discussion

Above, the nonlocal Navier-Stokes model is formally introduced as the

set of equations 5.5. The mathematical prove of the convergence of this model

to the local penalty formulation of the Navier-Stokes equations was also pro-

vided. In what follows, the capabilities of the proposed model will be explored

by simulating channel flows that have established numerical solutions. This

section will begin by simulating flow inside a channel with a restriction. The

incompressibility condition dictates an increase in the average velocity as the

flow enters the restricted part of the channel. This problem will be used to
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tune in the model and find the appropriate penalty parameter in order to en-

force the divergence-free condition. This parameter will then be used in the

following simulations to model more complex problems such the von Karman

(VK) vortex street simulation.

5.4.1 Case 1: Flow with Restriction

In an incompressible flow, a reduction in area will result in an increase

in the velocity. This balance will ensure a constant volumetric flow rate. How-

ever, the penalty formulation of the Navier-Stokes equations and the nonlo-

cal formulation of this penalty formulation can only enforce incompressibility

through the use of a large penalty parameter. This penalty parameter is a

function of other flow and simulation parameters such as the average velocity,

viscosity and the time step. Therefore, it is essential that λ is calculated prior

to each simulation.

5.4.1.1 Parametrization

The height restriction flow has been simulated with domain length,

L = 6 m, and domain height, H = 2 m. The plates are assumed to be

infinitely large in the out of plane direction. Time step, t = 0.003 s, density,

ρ = 1.225 kg/m3, viscosity, µ = 1.8e − 5 Pa.s and the chosen grid spacing,

∆x = H/100 m. Here, horizon size is chosen in a way that each node can only

interact with its 4 closest neighbors.
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5.4.1.2 Boundary Conditions

For this simulation, the no-slip boundary condition is chosen for the

upper and lower walls and constant inflow and outflow velocity, ux = 0.025

m/s for the left and right edges. For ease of simulation and without any loss

of information, the no slip boundary condition is not enforced on the outer

surfaces of the rectangular restriction.

5.4.1.3 Convergence Study

As the penalty parameter gets larger, increasingly smaller time steps

are required to ensure the convergence of the non-linear solver. As a result, it’s

important to find out the smallest penalty parameter that is still large enough

to enforce incompressibility. For the specified parameters, the simulation was

run using an increasing penalty parameter until convergence to the analytical

solution was observed. Figure 5.1 shows the result of this convergence study.

Here, the nonlocal solution and the analytical solution are in good agreement

for penalty parameters larger than 100.

5.4.1.4 Simulation Results

The flow profile calculated by the nonlocal model is presented by figure

5.2. Here λ = 100 and the simulation results presented are for t = 2550 s. In

addition to correctly calculating the mean velocity increase over the object,

the nonlocal model is also shown to be capable of capturing more complex

features of this domain. The flow is shown to separate from the object at the
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leading and trailing edges of the object due to the momentum effects. At the

trailing edge and as the flow expands back to the full width of the channel,

the viscous forces have caused the formation of a vortex.

5.4.2 Case 2: Laminar Flow Between Two Infinitely Large Plates

In addition to λ, it’s important to understand the convergence rate of

the results of the nonlocal model to the exact local solution as the number of

nodes is increased. In the second case presented here, the formation and de-

velopment of the boundary layer as a flow enters the gap between two parallel

plates is explored. This is another bench mark problem for which an analyt-

ical solution exists. In this case, as the flow continues its path through the

channel, the viscosity effects slow down fluid particles near the walls. As in-

compressibility would require, the particles towards the center of the flow have

Figure 5.1: The convergence study done on the penalty parameter indicates
that a λ larger than 100 would sufficiently enforce incompressibility.
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Figure 5.2: A reduction of available cross-sectional area has resulted in a in-
crease in the mean flow velocity over the rectangular restriction. The nonlocal
model is also shown to have captured more complex features of this flow such
as the formation of a vortex at the trailing edge of the rectangular object

to speed up in order to maintain a constant flow rate. figure 5.4 demonstrates

the formation and development of the boundary layer until a fully developed

flow inside the channel is achieved. The profile stays constant after this point

with maximum velocity at the central line of the channel reaching 3/2 umean.

5.4.2.1 Parametrization

For this simulation, L = 15 m, H = 3 m, and horizon size is again set

to closest neighbors only. Here, penalty parameter λ = 100 as this number is

shown to be sufficiently large enough to enforce incompressibility. The plates

are assumed to be infinitely large in the out of plane direction. Time step,

t = 0.0002 s, density, ρ = 1.225 kg/m3 and viscosity, µ = 1.8e− 5 Pa.s.
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5.4.2.2 Boundary Conditions

In the channel flow simulation, no slip boundary condition is set at the

inner surfaces of the upper and lower walls such that ux = 0 and uy = 0. The

x-component of the velocity, ux = 0.015 m/s has been specified on the left edge

of the domain and “do nothing” boundary condition has been employed for

the right edge of the domain.

5.4.2.3 Convergence Study

The mathematical proof presented at the beginning of this chapter re-

quires an infinitely decreasing grid spacing ∆x in order to achieve convergence

to the local limit. More specifically, getting to the local solution is only pos-

sible through δ-convergence. This is when the discretization is refined at a

higher rate as the rate at which m, the number of neighbors in the horizon,

is increased [12, 14]. Figure 5.3 shows the result of this convergence study by

plotting the calculated flow profile of a vertical cross-section in the channel

where a fully developed flow is achieved. Here, the local limit of the nonlocal

model is shown to be in close agreement to the analytical solution.

5.4.2.4 Simulation Results

The result of this simulation with ∆x = 0.05 m and t = 600 s is

presented in figure 5.4. Here, the boundary layer thickness is shown to increase

for the first 7 meters of the channel and until the fully developed flow is

achieved. As shown by fig. 5.3, the centerline velocity of the fully developed
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Figure 5.3: As the number of nodes are increased, the profile calculated by
the nonlocal model is shown to converge to the analytical solution. The anti-
symmetry of the lines are due to the automatic placement of the nodes for the
cases where the domain height in not divisible by the number of nodes. The
anti-symmetry fades away as the number of nodes is increased

region for this simulation is in close agreement with the analytical solution.

5.4.3 Case 3: Flow Over a Cylinder

The problem of flow past bluff bodies, also known as the von Karman

vortex street problem, is one of the classical problems of fluid mechanics. This

problem was first studied experimentally by Strouhal [96]. In 1911, von Kar-

man [104] offered the first fundamental theoretical insights for this phenomena.

This surprisingly common event is the reason why flags continuously
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Figure 5.4: Formation and development of the boundary layer for flow between
two parallel plates as simulated by the nonlocal model

flap and why electrical wires hum on a windy day. It also has applications

in complex engineering problems such as in aircraft and missile design [34]

and chemical mixing [74]. In the 2D flow past a cylindrical body and above a

critical Reynolds number (typically 50), shedding of counter-rotating vortices

is observed. These non-linear oscillations can be associated with undesirable

effects such as increased drag [20].

The von Karman vortex street is a well understood phenomena with

available numerical results. In this section, the proposed nonlocal model will be

used to simulate the flow past a cylindrical object for varying flow velocities and

the results will be compared to other available local and nonlocal simulations.

A regular von Karman street is only expected in the wake of the cylindrical

object for Reynolds numbers above the critical value of 50. At Reynolds
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numbers below this critical value, the wake is expected to be laminar. In

this section, the problem of flow past a cylinder with low Re number will be

studied first. The calculated velocity profile from the nonlocal model will be

compared to both local and nonlocal reference results [60]. In this work, the

authors introduced a nonlocal model based on the PDDO method which is

shown to accurately model the VK street pattern and the results are shown to

be in good agreement with the local solution calculated by ANSYS Fluent [2].

5.4.3.1 Parametrization

For this simulation, L = 15 m and H = 6 m. Here, the penalty

parameter, λ is set to 1000. The plates are assumed to be infinitely large in

the out of plane direction. Time step, t = 1e− 5 s, density, ρ = 1.0 kg/m3 and

viscosity, µ = 1 Pa.s. The radius of the cylindrical object, r is chosen to be 1

m and the incoming velocity is set to 10 m/s. For these inputs, the Reynolds

number will be qual to 10.

5.4.3.2 Boundary Conditions

No slip boundary condition is applied to the inner surfaces of the upper

and lower walls as well as to the surface of the cylindrical object such that

ux = 0 and uy = 0. The components of the velocity, ux = 10 m/s and uy = 0 m/s

are only specified at the left edge of the domain and a “do nothing” boundary

condition has been employed for the right edge of the domain.
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5.4.3.3 Convergence Study

Figures 5.5 and 5.6 present the results of the δ-convergence study per-

formed on the proposed nonlocal model. Here, the velocity fields are compared

along the vertical and the horizontal line going through the center of the cylin-

drical object. The solution of the proposed nonlocal model is shown to be in

good agreement with the reference local and nonlocal solutions. Furthermore,

the result of the proposed nonlocal model is shown to converge to the reference

solutions as the mesh in refined based on the δ-convergence rules. That is, the

mesh is refined faster than the rate at which m, the number of neighbors, is

increased. here, n is the number of nodes used in the x-direction.
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Figure 5.5: Illustration of the velocity variation along a vertical line passing
through the center of the cylindrical object shows the convergence of the results
of the proposed nonlocal model to the local solution calculated by ANSYS
Fluent and local limit of the PDDO simulation presented by Nguyen et al. [60]
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Figure 5.6: Illustration of the velocity variation along a horizontal line passing
through the center of the cylindrical object shows the convergence of the results
of the proposed nonlocal model to the local solution calculated by ANSYS
Fluent and local limit of the PDDO simulation presented by Nguyen et al. [60]

5.4.3.4 Simulation Results

Figures 5.7 and 5.8 illustrate the variation of the x and y components

of the velocity as simulated by the nonlocal model at t = 2 s. Here, ∆x = 0.1

m and m = 2. As the flow reaches the cylindrical object, the pressure increase

at the leading edge of the cylinder is shown to split the flow into two separate

streams above and below the cylinder. This separation is more clearly seen on

the fig.5.8 as the vertical component of the velocity is shown to change sign

ahead of the cylinder and at the centerline of the channel. At this Re number,
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the two streams are shown to smoothly re-attach behind the cylinder, forming

a laminar wake.

Having shown that the proposed nonlocal model will recover the local

classical solution at its local limit, the rest of this section will be used to

study the capabilities of the proposed model in simulating the vortex shedding

phenomena in the wake of the cylinder as the Re number is increased.

Next, let us explore the case where the inlet velocity is increased such

that the Re number would rise above the critical value of 50. For this case,

counter-rotating vortices are expected to form as the flow passes over the body.

The interaction of these vortices would result in non-linear oscillations behind

the body which over time form a regular von Karman street.

5.4.3.5 Parametrization

In this simulation, The domain length, L = 15 m, the height, H = 6 m,

and horizon includes the closest neighbors only. Here, the penalty parameter

λ = 1000. The plates are assumed to be infinitely large in the out of plane

direction. Time step, t = 1e− 5 s, density, ρ = 1.0 kg/m3 and viscosity, µ = 1

Pa.s. The radius of the cylindrical object, r is chosen to be 1 m and the

incoming velocity is set to 100 m/s. For these inputs, the Reynolds number

will be equal to 100.
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Figure 5.7: Variation of x-component of velocity, u (m/s) as simulation by the
proposed nonlocal model

Figure 5.8: Variation of y-component of velocity, v (m/s) as simulation by the
proposed nonlocal model
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Figure 5.9: As the Re is increased, the combination of counter-rotating vor-
tices behind the cylindrical object result in the formation of the nonlinear
oscillations known as the von Karman street

5.4.3.6 Simulation Results

By increasing the inlet velocity, and without any further changes to the

setup of the problem, the nonlocal model is shown to predict the formation

of the VK vortices behind the cylindrical body. Figure 5.9 illustrates the

variations of the velocity magnitude for the case of vortex tail down. vortices

at t = 2 s. As shown by figure 5.10b, in the case of vortex tail down the the

value of the velocity magnitude is expected to be slightly larger for the nodes

with 0 < y < 3. Figure 5.11 illustrates the development of the counter-rotating

vortices as they detach from the trailing edge of the cylinder.

5.5 Conclusion

This chapter was built based on the other chapters of the project and

presented a nonlocal model as an alternative for the penalty formulation of
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Figure 5.10: Variation of velocity magnitude on a vertical and a horizontal
line passing through the center of the cylinder

Figure 5.11: Variation of the y component of the velocity clearly showing the
separation of the counter-rotating vortecis

the Navier-Stokes equations for a two-dimensional incompressible flow. The

model was used to simulate bench mark problems in fluid dynamics and the

convergence of the simulations to the available local and nonlocal solutions
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were presented. The predictions of the proposed model at its local limit were

shown to be in great agreement with the analytical solutions. Fluid mechanics

is an under-explored section of peridynamic theory. The proposed model in

this chapter was shown to be a strong peridynamic-based approach for multi-

scale modeling in fluid mechanics.
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Chapter 6

Summary

Over the past 20 years, peridynamic theory has become a well-established

nonlocal method for simulation of solid bodies. The concepts introduced by

the peridynamic theory are proven to be especially helpful for problems in solid

mechanics, which include spatial discontinuities. The capabilities of PD as a

multi-scale modeling tool also make it an ideal candidate for modeling prob-

lems of heat and mass transport in fluid mechanics. However, fluid mechanics

has so far been an under-explored section of peridynamic theory. The goal of

this dissertation is to lay the foundation for the use of peridynamic theory in

fluid mechanics by presenting viable numerical techniques for modeling heat

and mass transport problems using peridynamic-based nonlocal models.

This investigation starts with proposing a nonlocal advection-diffusion

model for two-phase flow in porous media. The proposed nonlocal formula-

tion is shown to be naturally capable of handling the sharp changes in the

concentration at the interphase of the fluids. As a result, the proposed model

captures the formation and development of instabilities at the fluid interface.

These instabilities were shown to develop into channels of the less viscous fluid

that penetrated deep into the second phase. This is a phenomenon commonly
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known as viscous fingers. The proposed nonlocal model was shown to capture

the effects of dispersion on fluid mixing. As far as we know, this nonlocal

advection-diffusion model is the first numerical attempt to include the direct

effect of dispersion in a viscous fingering simulation.

Chapter 4 of this dissertation focused on the derivation of the peridy-

namic kernel. As discussed in length, deriving the correct peridynamic kernel

is a prerequisite to the calculation of the nonlocal limit. This dissertation pro-

vides a systematic method for the calculation of the nonlocal kernel for small

domains, were running an MD simulation of the domain is possible. More

specifically, this chapter focuses on the transfer of heat in nanofluids. This is

a scenario in which macro-scale changes in the conductivity of the fluid can

only be understood through the accurate modeling of the interactions at the

atomic layer. An MD model is used to introduce a systematic approach for

the calculation of the nonlocal kernel and the kernel is used to estimate the

thermal conductivity of a wide range of Ar-Cu nanofluids with different cop-

per loading. The estimates are shown to be in great agreement with the MD

results.

Finally, Chapter 5 was builds on the other chapters of this project

and presents a nonlocal model as an alternative to the penalty formulation of

the Navier-Stokes equations for a two-dimensional incompressible flow. This

model is used to solve some of the most common benchmark problems of

fluid dynamics. In each case, the convergence of the nonlocal model to the

analytical solution is shown. The nonlocal model is also used to model more
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complex flow problems such as the von Karman Street problem. This chapter

demonstrates the capabilities of the proposed nonlocal model for modeling

multi-scale phenomena such as vortex shedding.
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