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The choice of discretizations in Decision Analysis impacts the accuracy of

the probabilistic analysis of the potential strategies. This dissertation intro-

duces a novel method for creating discretizations for specific problems. Next,

we introduce the distance metric, which is borrowed from stochastic optimiza-

tion. This metric indicates how well two cumulative distribution functions

match each other in terms of shape. Discretizations that better match the

shape are more accurate in estimating the value of a cumulative distribution

function at any given percentile. We determine under which conditions the

distance is higher or lower, and which discretizations to choose. Finally, we

show what happens to the accuracy of discretizations when there is assessment

error and how this impacts the choice of discretizations.
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Chapter 1

Introduction

1.1 A Brief Review of Discretization

Decision analysis seeks to help people and companies make infrequent,

high-value decisions and to refine the strategy of executing those decisions.

One example of such a decision is whether to launch a product. Parts of

the launch strategy might be whether to launch the product immediately or

research the market more and whether to have local or international branding.

In such a decision, there are uncertainties that will affect the outcome for the

company. Some examples of the uncertainties are the potential market size,

the potential market share, the arrival of the next competitor, and the costs

of different marketing campaigns. Decision analysts use the distributions of

these uncertainties to determine the highest value strategy. All the potential

strategies and all the potential uncertainties could be simulated to provide

a distribution of the potential results for each strategy. A challenge for the

decision analyst is that it is impossible to know the functional form of an

uncertainty when there is little to no data about the uncertainties from which

to form an estimate of the parameters of the distributions.

If the decision analyst has the functional form of each uncertainty, then he

or she could draw random samples from each uncertainty and simulate poten-

tial values for the different strategies. The process of drawing random project

values from a strategy and random realizations of the uncertainties is called

1



the value lottery. From the value lottery the decision analyst can calculate the

mean, standard deviation, and performance at different percentiles and deter-

mine other relevant statistics that will help in the decision of which strategy to

use. Using these statistics, the decision analyst helps the client determine the

best strategy, or whether to continue researching the uncertainties or create a

new strategy. But in making decisions about infrequent, potentially unique,

strategic decisions, the functional form of the distributions of the uncertainties

is unlikely to be available. This is the nature of making strategic decisions that

will take a company into new territory.

In order to execute a probabilistic analysis of the strategies, the decision

analyst needs a distribution for each uncertainty. These distributions come

in the form of discretizations when the functional form is not available. A

discretization reduces a larger, possibly continuous, distribution into a proba-

bility mass function of usually three points [19]. A discretization is a mapping

of a continuous distribution to a smaller probability mass function. Each point

is referred to by its percentile. For example, the 10th percentile is the P10.

In decision analysis, where there may be many uncertainties all with differ-

ent functional forms, it is common to refer to the values by their percentile,

such as the P10 of the market share and the P50 of the demand. More for-

mally, if xp is a value from the distribution X, where p is a percentile, then

p = CDFX(xp). The P10 of the standard normal distribution is −1.28. The

number of points in a discretization is usually small because estimating more

points may be expensive. Three points is enough to replicate the first five

moments of an uncertainty [40], and is often used in practice.

In using a discretization decision analysts may lose many details of the

original problem, and the accuracy of various metrics suffers. While computa-
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Table 1.1: Commonly used discretization shortcuts

Shortcut Percentile points Probability weights
EPT P5, P50, P95 0.185, 0.630, 0.185
ESM P10, P50, P90 0.300, 0.400, 0.300
MCS P10, P50, P90 0.250, 0.500, 0.250

Each shortcut has its proponents in industry and there
are trade-offs to selecting one over another.

tional ease is no longer a concern, discretizations reduced the computational

cost of calculating statistics, and also serve to simplify communication. When

displaying large jumps in the value of a strategy, the decision analyst is able

to point out which jump in the value of an uncertainty was responsible for

the change in value. Discretizations significantly improve a decision analyst’s

ability to communicate with clients [25]. Even with an increase in computing

power, discretizations allow for human-understandable assessment and evalu-

ation of decisions.

In choosing a discretization a decision analyst seeks to preserve the mean,

variance, or other metrics. There are several common shortcuts that are used

in industry. The two most common methods are the McNamee-Celona Short-

cut (MCS) and the Extended Swanson-Megill (ESM) method. These methods

use the P10, P50, and P90. ESM is commonly used in the oil and gas in-

dustry [3]. These discretizations are described in [15]. Most discretizations

use the P50, and in this dissertation we refer to the low and high values as

the extreme percentiles. ESM places more weight on the extreme points than

MCS. Keefer and Bodily [19] proposed the Extended Pearson-Tukey method

which uses percentiles at the 5th, 50th, and 95th percentiles. The percentiles

and probabilities for these shortcut discretizations are given in Table 1.1.

The benefit of shortcut discretizations is that they require no knowledge
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of the functional forms of the underlying discretizations. In order to use the

values at each percentile, decision analysts rely on assessments. These assess-

ments are educated guesses as to the true value at the required percentiles.

The percentiles that are closer to the 50th percentile are usually easier to assess

accurately than those that are at more extreme. Thus, it is easier to accu-

rately assess the 10th and 90th percentiles than the 5th and 95th percentiles.

A person with less experience is not as likely to have seen as many extreme

events as a more experienced expert. In decision analysis practice, 10−50−90

discretizations are used more commonly.

Figure 1.1: These are two examples of the same three-point discretization
applied to a standard normal and a log-normal distribution. The placement
of the points on the independent axis are determined by the percentiles of the
discretization, and the height is based on the probabilities assigned.

The shortcut discretizations are based on calculating the optimal per-
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centiles and probabilities for a few specific distributions, and they are applied

to a larger set of distributions. When using a shortcut, the decision analyst

and the experts he or she relies upon do not need to know the functional form,

they just need to be able to assess a few specific percentiles. Another popular

method for calculating discretizations is to use Gaussian quadrature (GQ).

In GQ, the functional form of the discretization does not need to be known,

but the first 2N − 1 moments do need to be known. In this problem, N is

the number of points in the discretization. Smith showed how this technique

creates accurate discretizations [40] that when combined in a sample problem

estimate the certain equivalent better than shortcuts such as EPT and MCS.

To determine the GQ discretizations requires the use of linear algebra software

to compute the values of the percentiles and probabilities.

There are a few considerations when considering GQ. The first is that

the discretization is specific to the distribution that it is discretizing. This

discretization matches the first 2N − 1 moments and the more these values

change from one uncertainty to another, the less reliable they will be for a

different uncertainty. A second consideration is that the percentiles that come

from GQ are neither intuitive nor easily assessable. For example, in [40],

some sample values for the percentiles are 0.0416 and 0.9975. The assessment

error on such specific and sometimes extreme values makes discretizations

developed from GQ less practical, and may even require full knowledge of the

underlying uncertainty. If the value of the underlying uncertainty is already

known, various simulation methods may result in more accurate metrics and

are not overly expensive to calculate. This is especially true as the number

of uncertainties grows and the Cartesian combination of percentiles from each

uncertainty grows exponentially.
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In recent years, research by Hammond and Bickel produced a new class of

discretizations [12]. These discretizations are shortcuts. They do not require

any knowledge of the moments or the functional form of the uncertainty, but

these discretizations do allow decision analysts to leverage additional infor-

mation that is available about the uncertainty in selecting a discretization.

This additional information yields more accurate discretizations. The Ham-

mond and Bickel shortcuts (HB) require knowledge of the shape (bell, U,

or J), the boundedness (unbounded, bounded on one side, or bounded), and

the skewness (positive or negative). Based on the combination of the shape,

boundedness, and skewness, the potential distribution falls into a region of the

Pearson distribution system.

1.2 The Pearson Distribution System

The Pearson distribution system was first described by Karl Pearson in

[30] and further expanded in [31] and [32]. A distribution in the Pearson

system is the solution to the following differential equation:

1

f
· df
dx

=
b− x

c0 + c1 · x+ c2 · x2
(1.1)

The parameters, b, c0, c1, c2, determine the first four moments and consequently

the shape of a distribution. A distribution may be described by the skewness,

γ1, and kurtosis, β2. The distributions are symmetrical with respect to γ1 and

squared skewness, β1 = γ21 , is used.

For any combination of β1 and β2 such that β2 ≥ β1 + 1 the resulting dis-

tribution will fall into only one sub-family of distributions within the Pearson

system. For this reason, it is possible to choose a distribution and consequently

a discretization based on skewness and kurtosis. The result is that it is possi-
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ble to use the Pearson system to approximate many of the uncertainties in a

decision analysis problem.

Figure 1.2 shows a common representation of the Pearson distribution sys-

tem. The type of distribution is dependent on the square of the skewness and

the kurtosis of the uncertainty. Each of the regions also has a distinct shape

and boundedness. Many common distributions can be modeled using the for-

mulas from the Pearson system. One of the few commonly used distributions

in decision analysis that cannot be explicitly modeled using the Pearson system

is the log-normal distribution. The log-normal’s squared skewness and kur-

tosis values can be plotted on the Pearson system, but the exact distribution

cannot be plotted with the Pearson system formulas. While this information

is not likely to be known, a decision analyst and an expert on the uncertainty

are likely to know whether or not the uncertainty is positively or negatively

skewed, and whether or not it is bounded on both sides, or one side. In decision

analysis uncertainties are rarely unbounded. Experts are also likely to know

whether the uncertainty is bell-shaped, J-shaped, or U-shaped. Knowing this

information is enough to also determine the region of the Pearson distribution

system into which an uncertainty may be placed.

When using the Pearson system, there are a few tests that determine the

underlying distribution and the most appropriate discretization. If the distri-

bution is bounded on both sides, then the distribution is a beta distribution.

The type of beta distribution may be further refined by the knowledge that the

distribution is bell-shaped, U-shaped, or J-shaped. Two examples of bounded

uncertainties are market share and the oil extraction percentage. Both are per-

centage numbers that cannot go higher than 100% or lower than 0%. The other

meaningful area for decision analysts is the beta prime area (Pearson VI). This
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Figure 1.2: The distributions of the Pearson system are defined by the skew
and kurtosis values. Given some properties of an uncertainty, it is possible to
determine the region or regions where the distribution might lie.
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area represents uncertainties that are bounded on one side, but unbounded on

the other. For example, project development time or reservoir size are ex-

amples of uncertainties that are likely to be bounded from below but whose

upper bounds may be extremely large and may be modeled as unbounded on

one side. A case could be made that all uncertainties are bounded on both

sides and that decision analysts should only consider uncertainties from the

beta distribution, but the semi-bounded nature helps incorporate values that

might be outside the expected bounds of a person making an assessment.

The benefit of being able to determine the zone in the Pearson systems

where an uncertainty lies is that it is possible to find a discretization tailored

to that part of the Pearson system. Table 1.2 shows a selection of the non-

symmetric discretizations described in [12]. These discretization were created

with the objective of minimizing the error of the discretization to that of the

true mean and variance of a sampling of the distributions that make up the

given Pearson region. This provides a more-specialized discretization with-

out having to know the moments of functional form of the uncertainty. For

discretizations with negative skewness, the decision analyst selects the 1 − P

values and uses the probabilities in reverse order.

1.3 Problem-specific Discretizations

Most work on discretizations has focused on discretizing individual distri-

butions. Researchers have sought to match one or more moments of potential

distributions. When value lottery is transformed by a utility function, which

often involves exponential values or log value, some accuracy may be lost. In

addition to requiring more knowledge regarding the uncertainty, [4] found that

moment matching did not accurately match the certain equivalent (CE). The

9



Table 1.2: A Selection of Discretization from [12]

Distribution type Percentile points Probability weights
I-∪ Beta P1, P50, P85 0.216, 0.491, 0.293
I-J Beta P2, P50, P94 0.184, 0.615, 0.201
I-∩ Beta P5, P50, P95 0.184, 0.632, 0.184
Pearson IV P7, P50, P94 0.231, 0.551, 0.218
VI Beta Prime P4, P50, P96 0.164, 0.672, 0.164

This sampling of the [12] discretizations show the asymmetric,
positively skewed discretizations for the most common areas of
the Pearson systems that are of interest to decision anaylsis. The
discretizations for the negatively skewed distributions use 1−P for
the percentile points and reverse the order for the probabilities.

certain equivalent is a risk adjusted mean. For example, most people would

value a bet with equal chances of a $0 payout or a $2 payout at the expected

value of $1. But as the value of the payoff rises, fewer people would be willing

to wager the expected value. If the payout were $2, 000, 000, few people would

be willing to put all their life savings into a single bet that could wipe out their

life savings and keep them in debt for life. Both individuals and companies

may feel this risk aversion as the required investment increases. As a result,

a decision analyst may need to apply a utility function to the results. Utility

functions weigh negative results more heavily than positive results. In general

three-point approximations produce “substantial” errors in the CE values they

produce [18] (P. 763).

In industry, there are often problems that repeat themselves while still

remaining unique. Oil and gas companies are constantly developing oil fields,

and consumer and packaged goods (CPG) and pharmaceutical companies are

constantly developing and launching new products or drugs. Each oil field,

product or drug is different. When the quantity and type of uncertainties is
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the same from decision to decision, it is possible to use problem-specific dis-

cretizations. These discretizations are similar to other N-point discretizations

in that they determine a N percentiles and corresponding probabilities for each

uncertainty. They differ in that the discretizations act in unison to minimize

the error of the problem’s CE.

The benefit of problem-specific discretizations and that they are more ac-

curate in determining the CE of a decision and use easy-to-assess percentiles.

The drawback is that each problem-specific discretization must be calculated

based on a the results of a large Cartesian combination of potential uncer-

tainties. Once this up-front calculation is complete, the problem-specific dis-

cretization functions like a shortcut designed for the repeated decision.

1.4 Shape-matching Discretizations

When using shortcuts such as EPT and HB [12], academic analysis focuses

on the accuracy of the mean of the results. In a decision problem where

the decision maker is risk neutral, a positive mean for the net present value

indicates that the decision maker should undertake the project. Even though

though a company might be close to risk-neutral when making a decision,

the individual making the decision is likely to be more concerned with the

downside risks of a decision.

The individual will want to know the investment risk, the probability the

net present value (NPV) is negative, or want to know the NPV at a certain P

value. Investment risk is the probability the net present value of a decision is

less than or equal to a safe alternative. We call these types of metrics shape-

matching metrics. These metrics benefit when the CDF of the discretized value

lottery is the same as the CDF of the true value lottery. When they are not
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equal, the absolute difference between the true and the discretized CDF is the

distance. The distance is the average absolute difference (horizontal distance)

in the value of the CDF between the true and discretized CDFs integrated in

the probability range from 0 to 1,

d = E
∣∣∣X − X̃∣∣∣ , (1.2)

where X is the true value lottery and X̃ is the discretization of X. Distance

tells a decision maker what is the mean difference in present values between

a discretized value and the true value across all P values. An example of the

distance can be seen in Figure 1.3. The true CDF is derived from a version of

the Eagle Airlines problem described by [6] and later [36].

1.5 The Effect of Assessment Error on Discretizations

Most analysis of discretizations have assumed assessments are perfectly

accurate. With these perfectly accurate assessments, certain discretizations

outperform others. But there is little research on which discretization to use

when assessment error is considered. The previously mentioned analysis in-

cludes errors of the mean, the variance, and the distance. Another type of

error is assessment error. In assessments an expert is asked to give the values

of different p values for each uncertainty. But the expert’s assessment may

have an error, ep, that is dependent upon the percentile, p, being assessed.

Instead of assessing p, the assessed percentile is actually qp, and the relation

between p and q is p = qp − ep. This form of assessment error is described in

[13].

In this analysis the value of ep can depend on p. This distinction allows for

the difficulty that experts have in assessing extreme events. An expert with
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20 years of experience is more likely to have seen events in the 5th and 95th

percentiles than someone who only has 10 years of experience. So we can say

that the assessed percentile, qp, is a random distribution dependent on p:

p+ ep = qp, (1.3)

and the distribution of ep is given as a random variable.

Given different assumptions regarding the distributions and correlations of

each ep in a discretization, it is possible to determine when to apply different

discretizations depending on the assessment error. We propose to determine

the effects of bias, and skewness in the assessment errors and to test the effects

of different variances in the assessment errors.

1.6 Organization of the Dissertation

In this chapter, there is a brief introduction to the problems considered in

the dissertation. In the following chapters a more-detailed review of the prob-

lems, the literature, and the approach taken to solve these problems. We begin

with a detailed review of discretization approaches from the literature in Chap-

ter 2. In Chapter 3 we describe a methodology for generating problem-specific

discretizations. In Chapter 4 we present new shape-matching discretizations

and the methodology for generating them. In chapter 5 we discuss the role of

assessment error on the accuracy of the mean and variance of the discretiza-

tions. Finally, in Chapter 6 we propose new research and conclude.

The contributions of this dissertation are:

• A novel method for creating problem-specific discretizations.
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• The introduction of the distance metric to determine how well discretiza-

tions match the shape of a distribution.

• A novel method for modeling assessment error and the effects of different

assumptions on discretization accuracy.
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Chapter 2

Literature Review

2.1 Discretization Methods

The fields of decision analysis and stochastic optimization have created

several approaches to discretization. Both have the end goal of making the

correct decision, the decision that would have been made if all the information

of the uncertainties had been known.

In decision analysis, discretizations are typically broken up into a few

types. The first is a distribution-specific method, the user has knowledge of

the functional form of the distribution. In distribution-specific discretizations,

the decision analyst must calculate the discretization for each uncertainty.

The resulting discretization matches some of the qualities of the original dis-

tribution. The second is a shortcut, where the same discretization is applied

regardless of what the true functional form might be. A third and more recent

type of distribution is a hybrid approach. This approach uses some limited

knowledge about the uncertainty’s distribution to select the most appropriate

discretization.

A common distribution-specific method for formulating discretizations is

the bracket-mean method. It was first described by MacNamee and Celona in

[23]. In this method, the regions are similarly partitioned by probability, but

bracket-mean use the mean value of each region instead of the partition. In

addition, [23] go on to recommend that instead of using equal weights for each
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region, the three-point regions should have probabilities of 0.25, 0.50, and 0.25.

The same probabilities are applied in the MacNamee-Celona Shortcut (MCS).

Along with EPT and ESM, these are the three commonly used shortcuts in

industry, with most companies either choosing ESM or MCS ([3]).

A second method for generating distribution-specific shortcuts is the Gaus-

sian Quadrature (GQ). GQ chooses the percentiles and probabilities for an

n-point discretization so that the first 2n − 1 moments are matched. This

method was first described by [25] and expanded by [40]. The logic, as ex-

plained by [40], is that if the present value, pv, of a project is dependent on an

uncertainty, x, then its value can be approximated by a polynomial expansion,

P . This gives the approximation,

pv(x) ≈ P (x) =
n∑
i=0

ai · xi. (2.1)

In decision analysis, accurately determining the mean value of a decision

strategy is important. With the approximation of (2.1), we can approximate

the expected value with

E [pv(x)] ≈ E [P (x)] =
n∑
i=0

ai · E
[
xi
]
. (2.2)

If pv(x) is well-approximated by P , then E [pv(x)] will be accurately cal-

culated when the moments of xi are accurately represented. The calculations

of the probabilities and their percentiles requires heavy computation, and this

method leveraged the advances in computing power available at the time. To-

day, scientific computing packages in R, Python, and many others can easily
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solve the discretization to match the moments. The shortfall of this method is

that it requires the knowledge of the moments and the values at the specified

percentiles. In his paper, [40] created estimates for the first ten moments of the

value lottery that are more accurate than EPT and MCS. This increased accu-

racy also creates better estimates for the CE with various risk tolerances. The

drawback is the percentiles required are quite extreme (e.g. P95.84, P98.34,

and P99.50), and are unlikely to be assessed accurately, even if the first five

moments of each uncertainty is known.

A common method in decision analysis for determining the relative merit

of one strategy over another is to compare the mean net present value of all the

potential strategies. As a result, ensuring that the mean and variance of an

uncertainty are key goals. In order to graduate empirical data and to generate

potential distributions for use with statistical procedures, Pearson and Tukey,

[29], created a method to approximate means and standard deviations. They

experimented with various percentiles, which they then converted to values

for 29 “common” (P. 535) distributions to determine the true value and the

error of the approximation. Their primary focus was on the Pearson system

of distributions, which provided the benefits of flexibility, the inclusion of

several families of distributions including beta, normal, uniform, and student-

t distributions, and that distributions may be classified based on their values

of β1 and β2, which are their skewness and kurtosis values respectively. A

key result is that they were able to determine the mean of an uncertainty to

within a small tolerance of the standard deviation of the uncertainty based its

classification within the Pearson system.

The methods of [29] and [24] multiply specific percentiles of the distribu-

tions with a probability. Later, [19] coined these two as the Extended Pearson
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Tukey (EPT) method and the Extended Swanson Megill (ESM) method. Both

of these shortcuts are commonly used today. In order to test the accuracy of

EPT and ESM, [19] tested the discretizations against a set of 78 different beta

distributions where the parameter for β was given each of the values of 2, 3,

4, 5, 6, 8, 10, 12, 15, 20, 30, and 60. The value for α was also any one of

these values, as long as α ≤ β. In their comparison, [19] compared the mean,

variance, and CDF approximation. In all these tests, EPT and ESM outper-

formed such discretizations as the five point bracket median and the three and

five point Brown-Kahr-Peterson discretizations as described in [5].

The bracket median discretization, as described in [6] is another shortcut

method that does not require knowledge of the underlying distribution to

select the percentiles and their probabilities. In the bracket median approach,

a distribution is to be discretized by n probability masses. Each p value has

the same probability of 1
n
. The percentile for each point, i, is (i−1)

n
+ 1

2n
. For

example, a three-point bracket median discretization will have three points,

each with probability of 0.333, and the percentiles will be 0.166, 0.5, and 0.833.

Both [40] and [19] found bracket median to under-perform other more advanced

methods.

A more recent approach to discretization is a hybrid approach that com-

bines the convenience and generality of shortcuts with the the additional in-

formation that an expert may lend to the process, but that does not require

knowledge of the moments or the functional form. Using the ability to clas-

sify distributions within the Pearson system that were leveraged by [19], [12]

to create symmetrical and asymmetrical discretizations for each region of the

Pearson system. They created a grid with approximately 2800 points. For

all the points within each region of the Pearson system, they calculate a dis-
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cretization that minimizes the error in the mean and variance across the entire

set of points of the region.

The benefit to this method is that the decision analyst can leverage more

information regarding each uncertainty. The different regions have bell (∩),

∪, or J shapes. The uncertainties may also be unbounded, bounded from one

side, or bounded from both sides. For example, the market share of a product

is going to be a value between 0% and 100%. The size of the market for a new

product is going to be bounded from below at $0, while the upper bound may

unbounded.

2.2 Discretization in Stochastic Optimization

In the field of stochastic optimization the purpose of discretization is to

solve a deterministic equivalent of the problem in a format that is tractable

where the objective value and the decisions remain the same. To this end,

[33] and later [34] created the following definitions: P and Q and scenarios Ω

where P and Q belonging to P (Ω), and f ∈ F where F is a class of measurable

functions from Ω to R, where the objective value, v(P ) and solution values,

S(P ) defined as:

v(P ) = inf {EPf(ω, x) : x ∈ X} , (2.3)

Sε = {x ∈ X : EPf(ω, x) ≤ v(P ) + ε} . (2.4)

They proposed the following theorem:

Theorem 2.1. Let P ∈ Pf and S(P ) be bounded and nonempty. Then there
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exist constants ρ > 0 and ε > 0 such that

|v(P )− v(Q)| ≤ df,ρ(P,Q), (2.5)

∅ 6= S(Q) ⊂ S(P ) + Ψ(df,ρ(P,Q))B (2.6)

whenever Q ∈ Pf with df,ρ(P,Q) < ε, and that it holds for any ε ∈ (0, ε).

The interpretation of this theorem is that for any distribution P and a

discretized distribution Q, the difference in objective values is bounded by

a function of P and Q and the solution is within a ball, B of the original.

In their article on scenario reduction [9] create a formulation and its dual to

minimize the value of df,ρ(P,Q). By minimizing df,ρ(P,Q), [9] is able to find

the discretization that minimizes the change in objective and decisions from

the original to the discretized problem. This new formulation is the same as

solving a mass transportation problem as in [35].

In order to find the optimal distribution for Q, which only has n points, we

must solve a mass transportation problem of a warehouse location problem.

The points from the true distribution are the “customers” and the potential

points in the discretized distribution are the warehouses. There is a limit

of n warehouses, and we must minimize the distance from the customers to

the warehouses. From a decision analysis perspective, this is equivalent to

placing the CDFs of the true distribution and the CDF of the discretized

distribution on the same chart. The distance is the absolute value of the

horizontal difference between the two CDF curves. When this distance is

zero, it means that the decisions from the discretized model are the same as

those coming from the full distribution. For decision analysis, this means that

discretizations that match the shape of the true value distribution will result

in the same decisions.
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2.3 Risk Aversion and Utility Theory

Though calculations may be made using a risk-neutral perspective, in prac-

tice, decision makers are likely to be risk averse. With a risk-neutral outlook,

to determine the best strategy, a decision maker will need to calculate the mean

to choose the best strategy. In a risk neutral environment, discretizations that

best match the mean perform the best.

In reality, decision makers are less likely to be risk neutral. An informal

study by Ron Howard, a pioneer in decision analysis, found that corporations

also have a risk tolerance [14]. In his practice, he used exponential utility

functions. To apply the utility functions, he asked his corporate customers

what sum of money they were indifferent to investing if there was a 50 − 50

probability of winning x or losing x
2
. These numbers are available in more detail

in Table 2 on page 690 of [14]. To summarize, managers are willing to risk

6.4% of sales, 124% of net income, and 15.7% of equity. These numbers serve

as a general guideline for the risk tolerance parameter when using exponential

utility functions.

The exponential utility function defines utility and the certain equivalent

(CE) as:

u(x) = − exp

(
−x
ρ

)
CE = −ρ · ln (−E [u(x)]) (2.7)

where x is potential outcome from the strategy’s value lottery and ρ is the

risk tolerance parameter. The higher this parameter, the closer the decision

maker is to being risk neutral. Any investment requiring substantially less

than investment than ρ, may also be treated as risk neutral.

The fact that even large corporations are risk averse also follows the find-

ings of the Gambler’s Ruin problem first proposed by Huygens [16] and ex-
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panded by Coolidge in [8]. If the decision maker is thought of as the gambler,

and the rest of the market is thought of as the banker, then it follows that in

order to avoid ruin, even when the expected value of any bet is positive, then

the best strategy is to reduce the bet size after suffering a loss. In business,

this can be seen by the pullback in investment during a major downturn. The

application to decision analysis is that decision makers are risk averse, and

this will cause them to want to know more about potential outcomes than just

the mean.

2.4 Assessment Error and Calibration

When deriving percentiles and probabilities for a discretization, there is

usually the assumption of perfectly calibrated assessments. This means that

when asking for the 10th percentile, there is only a 10 percent chance that

the resulting value will be lower. An assessor is said to be calibrated if when

asking for the PX from an assessor, the true value falls at or below that value

X percent of the time [42]. Additional measures of calibration come in terms

the interquartile index (II) and the surprise index (SI) [21]. The II is the

percentage of true values that fall between the P25 and P75. This percentage

should be 50 percent. The SI is the proportion of true observations that fall

outside the PX and the P100−X . A well-calibrated assessor will have a surprise

index of 2X.

An assessor is said to be overconfident if the proportion of results that

are true is greater than the assessed probability. An assessor is said to be

under-confident if the proportion of results that are true is lower than the

assessed probability. Through various studies, summarized by [21] and [10]

and replicated in Table 2.1, we see the observed SI is almost higher in ten of
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the twelve sets of data. The data from Murphy and Winkler ([27],[28]) comes

from meteorologists, and the data from Tomassini et al. The data in ([41])

comes from auditors.

There are a few explanations for why the results from [27], [28], and [41]

show relatively accurate surprise index values. In the case of the meteorol-

ogists, they have the benefit of regular feedback on their performance, a re-

peated problem, and training on making assessments. The improvement from

training is also visible in [2]. Though the surprise index is still larger, than

expected, it is lowered. A second item to consider in the values for the surprise

index are the extremes of the percentiles. For those experiments where the

tails represent 20 or 25 percent of the area, the value of the surprise index is

much closer to the expected value. This is also a recommendation from [41].

This follows the observation from [2] that more extreme percentiles are harder

to assess, and will result in larger values for the surprise index relative to the

theoretical surprise index.

Lichtenstein provides further evidence of the difficulties in assessing prob-

abilities in [20]. In this article, she shows the calibration from various exper-

iments where the higher the probability assessed, the greater the overconfi-

dence. In this experiment students were given a set of two-answer questions.

For each question they had to provide the probability they would get the

question correct. These students were divided into three groups, according

to their total number of correct responses: best, middling, and worst. As

the respondents’ confidence in a correct response increased, their probability

of being correct increases. But the probability of being correct increases less

than the assessed probability of being correct. This suggests the following

relationship between the assessed probability, the probability of being correct,
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Table 2.1: Assessment Error Summary

Study N Interquartile Surprise Index
Index Observed Expected

Albert and Raiffa
(1982) [2] 2270

Before Training 34 34 2
After Training 44 19 2

Schaefer and Borcherding
(1972) [37] 396

First Day 23 39 2
Fourth Day 38 12 2

Selvidge (1975) [39]
Five Percentiles 400 56 10 2
Seven Percentiles 520 50 7 2

Murphy and Winkler
(1974) [27] 132 45 27 25

Murphy and Winkler
(1977) [28] 432 54 21 25

Tomassini et al.
(1982) [41]

First Group 341 71.4 4.2 2
7.8 20

Second Group 341 54.4 10.8 2
22.1 20
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and overconfidence or under-confidence:

PC + UC −OC = PR (2.8)

(2.9)

In Equation (2.9) PC is the proportion of correct answers, UC is the

under-confidence, OC is overconfidence, and PR is the probability response,

which is the assessed probability of being correct. The plot of PR versus

PC is replicated in 2.1. What is surprising is that the worst students were

the most overconfident in their probability responses. The worst students are

never under-confident, while the middling and best students start off under-

confident and then become overconfident as their PR increases.

In the case of assessing the percentiles of a distribution, as described by

[2], the assessed value and the true value are different. In [43] they model

assessment error as a random variable,

x = t+ e. (2.10)

In Equation (2.10) x is a random variable composed of two elements. The first

is t, which is the value that is supposed to be assessed, and the second is e, a

random variable for the error in the assessment. This makes the supposition

that there is a random variable and that the assessed value is a function of the

true value. In their formulation of assessment error [43] assume the following:

1. The expected assessment error is 0, E(e) = 0.

2. The error is uncorrelated to the true value.
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Figure 2.1: Calibration according to knowledge level.
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3. Assessment errors are uncorrelated.

We can map the assessed value, t to a percentile , p by using the inverse

CDF. This gives F (t) = p. To allow for error in the assessment [13] specify

the assessed value, x as

F (x) = p+ δ, (2.11)

where δ is error. They specify a range on the error,

|δ| ≤ ∆. (2.12)

Equation (2.12) is scale invariant which allowed [13] to create a set of distri-

butions such that

F (xhi ) ≥ qi −∆, i = 1, . . . , n, F (xhi ) ≤ qi + ∆, i = 1, . . . , n. (2.13)

The implication is that the assessor may not be assessing the true distribution,

but one of many distributions where the assessed value, xi has a corresponding

percentile that is within ∆ of the desired percentile, qi. This allowed them to

compare the performance of ESM, MCS, and EPT under different assumptions

for ∆. This analysis also allowed [13] to translate the II and SI found in the

literature and provide a value for ∆ which matches those II and SI.

In Chapter 5 we revisit the concept of assessment error. We address how

assessment error increases with more extreme percentiles. We create a new

method to model assessment error. Finally, we address how changes in assess-

ment error affect the accuracy of discretizations.
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Chapter 3

Problem-specific Discretizations

3.1 Introduction

In decision analysis there are often problems that come up for the same

company repeatedly. These are problems such as how to exploit an oil field or

when and how to launch a new drug or consumer product. In these problems

the names and types of uncertainties remain the same from problem to prob-

lem. What changes are the functional forms of each uncertainty. This chapter

introduces problem-specific discretizations. These discretizations define per-

centiles and probabilities for each uncertainty that minimize the error across

a broad range of potential uncertainty combinations.1

3.2 General Formulation for Discretization

Problem-specific discretization finds a discretization for the uncertainties

of a problem that is going to be revisited frequently. In the problem there are

uncertainties whose distributions will change over time. For example, each oil

field will have different potential reservoir and recovery ratio. In the consumer

1This chapter is based on previously published work in Woodruff, Joshua, and Nedialko
B. Dimitrov. ”Optimal discretization for decision analysis.” Operations Research Perspec-
tives 5 (2018): 288-305. The author’s contribution was the conception of the discretization
technique, the coding of algorithms to generate the mathematical models, interaction with
the publishers, and most revisions. The author did not conceive of the linearization methods
and played a smaller role in the organization of this article.
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packaged goods industry every new product will have a different potential

market share and market size. The realizations of the uncertainties are fed

into a value function. Each combination of uncertainty values combines in the

decision model to compute the certain equivalent or the net present value.

The general discretization problem assumes independence among the per-

centile values of the uncertainties. The individual uncertainties may be cor-

related. The assignment of probabilities is independent. In the independent

discretization, the percentiles chosen from one uncertainty are independent

from one another. We still allow for dependence between the values of un-

certainties. In the examples we use in this dissertation several uncertainties

are correlated. We use various methods to determine those correlated values.

In an assessment framework, the decision analyst would still elicit dependent

(correlated) assessments from the independent percentiles.

To derive our discretizations when the functional forms are unknown, we

assume that the true functional form for each uncertainty could come from

one of several candidate distributions. The combination of all the potential

uncertainty distributions when applied to a value and utility function come

to define our set of decision problems, D. We determine the each instance

of D by means of Monte Carlo sampling. This gives us our estimate for the

true CE for each instance of D, CEd. When faced with a client problem, the

decision analyst does not know which d ∈ D they are addressing. We seek

a discretization that works over all cases of D. When the decision analyst

believes some potential decision problems are more likely, the decision analyst

defines D as Bayesian prior of the probability distribution over the potential

decision problems D. This is a probability assignment on each problem d ∈ D.

The decision analyst may also wish to only work with specific percentiles,
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or combinations of percentiles for use with each uncertainty. We define this

set as P. We then define CEd(p) for p ∈ P as the equivalent of decision prob-

lem d when the distribution p is used for the uncertainties instead of the true

distribution. In other words, CEd(p) is the certain equivalent when we use

the discretized distribution instead of the true distribution of the uncertain-

ties. The goal of problem-specific discretizations is to find a p ∈ P such that

CEd(p) ≈ CEd for all decision problems d ∈ D. A discretization with a perfect

fit will have CEd = CEd(p) for all d ∈ D.

In order to find p ∈ P we formulate the discretization as an optimization

problem. This is a novel contribution to the area of discretization, and leads

us to the results in the rest of the paper. We formulate the optimization as

follows:

arg min
p∈P

(
λ

[
max
d∈D

Err(d, p)

]
+ (1− λ) [Ed∈DErr(d, p)]

)
, (3.1)

where

Err(d, p) =

∣∣∣∣CEd − CEd(p)CEd

∣∣∣∣ or (3.2)

Err(d, p) = |CEd − CEd(p)| or (3.3)

Err(d, p) = CEd(p)− CEd. (3.4)

Given a parameter λ ∈ [0, 1], optimization (3.1) defines the discretization

problem. The result of this optimization is a discretization p ∈ P, that yields

the minimum convex combination of worst case (absolute) error and expected

(absolute) error, Ed∈DErr(d, p), with respect to the distribution D. We use

D as the distribution of decision problems to indicate there is a probability

associated with each decision problem. Equation (3.2) defines the absolute
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percentage error in the CE when using the discretized distribution of uncer-

tainties instead of the true distribution. We include (3.3) as an alternative

formulation to the error function when CEd has values that are orders of

magnitude different, such as when CEd may be positive or negative. When

the potential values for CEd are close to 0, their importance will take on an

out-sized weight, skewing the results. When λ is one, we seek a discretized

distribution that yields the minimum worst case error. When λ is zero, we

seek a discretized distribution that yields the minimum average error over the

distribution of decision problems D. In the case of λ = 0, we also include the

(3.4). This minimizes the mean error and removes bias from the discretization.

3.3 A Tractable Discretization Instance

Optimal discretization requires a tractable model that the decision ana-

lyst can solve during an engagement. This is a model that provides the correct

answer and solves quickly (overnight is fast-enough in practice). This section

provides a tractable instance of the discretization problem for (3.1). We do

this by defining a specific set of discretized probability distributions P, a spe-

cific set of problems D, and a probability distribution D over the problems.

The optimal choice of a discretization p ∈ P defines the optimal discretiza-

tion. These definitions allow us to formulate the discretization problem as a

tractable non-linear integer program (NLIP).

In our process we have a challenge that prevents us from formulating

the model as we envision in 3.2. We discuss how we solve this challenge.

Finally, relax some assumptions and provide a second tractable formulation.

Solving a tractable discretization instance requires defining the objective value,

decisions, and constraints with data such that the computers and engines that
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solve the model are able to solve it within a few hours to a few days.

3.3.1 NLIP Formulation of Discretization Problem

In order to implement any form of (3.1), we first calculate each value of

decision problem. The decision problem is a specific combination of a func-

tional form for each uncertainty in the decision, d ∈ D. We use a stratified

sampling to generate our “true” CEd for each d ∈ D. The simulation yields

the uncertainty values, a project value distribution, expected utility, and the

certain equivalent.

To formulate optimization (3.1) as a tractable NLIP, the key obstacle to

overcome is that the objective Err(d, p) is a non-linear function in p as shown

in (3.2). In this formula, CEd is already a constant we obtained from our

formulation, but CEd(p) is our calculated CE. The formula for CEd(p) is

given by

Certain Equivalent: CEd(p) =− ρd · ln

(
−
∑
p∈P

probp · ud(p)

)
,

(3.5)

with exponential utility: ud (x) =− exp (−x/ρd) , (3.6)

and P (X ≤ x) =p (3.7)

where ρd is the risk tolerance, probp is the probability assigned to percentile

combination p and ud(p) is calculated expected utility for decision problem

d with percentile combination p. We use the exponential utility function in

this example. Different utility functions will change the formulations for both

ud(p) and CEd. Normally utility is expressed in terms of the value of the

project/decision, x. We are searching for the optimal percentiles, so we used

(3.7), the definition of the CDF, to relate p to x.
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When we apply this non-linear formulation of the CE given by (3.5) to our

non-linear solver, Bonmin 1.8.4, it is intractable. To create a tractable formu-

lation we linearize the objective function. We choose to create a Taylor series

expansion Err(d, p) around the expected utility, E[ud(x)]. We first substitute

the equation for certain equivalent, (3.5), into the definition of Err(d, p) to

get

Err(d, p) =

∣∣∣∣1− −ρd ln (−Ep[ud(x)])

CEd

∣∣∣∣ , (3.8)

where Ep[ud(x)] is the expected utility of the decision problem under the new

discretized distribution p ∈ P. Given a d ∈ D, the only variable in the above

formula is Ep[ud(x)], and everything else is a constant. Though it is possible

to expand the Taylor series to an infinite number of terms, we the linear term

is sufficient with the test problems we solved. In Figure 3.1 the linearization is

close enough for a small range around the mean utility. An quadratic Taylor

expansion term can be added to improve the accuracy of the approximation

at a cost of additional solve time. For brevity let Td = E[ud(x)] be our target

utility.

To compute a linearization, we first drop the absolute value sign, assuming

the second term of (3.8) is less than one. This gives

f(w) = 1− −ρd ln (−w)

CEd
,

which is now a continuous function of w, where w is shorthand for the variable

Ep[ud(x)]. We can now do a first order Taylor expansion of this function

around Td to obtain

f(w) ≈ 0 + f ′(Td) (w − Td)

=
−ρd

CEd · Td
(w − Td) .
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Figure 3.1: This is a sample of a linearization of the absolute percentage error
and the true absolute percentage error as a function of the expected utility. If
the optimization is not able to find discretizations that closely match Td, then
a quadratic term can be added to improve accuracy.
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This approximation is valid when the second term of (3.8) is smaller than one.

This happens when w is greater than or equal to Td. A similar argument,

assuming that the second term is greater than one, yields the approximation

ρd
CEd·Td

(w − Td), which is valid when w is smaller than or equal to Td. Together,

these two linearizations are summarized as

δd =
−ρd

CEd · Td
(3.9)

Err(d, p) ≈ δd · |Ep[ud(x)]− Td| , (3.10)

which linearizes Equation (3.8). Figure 3.1 plots an example of the true error

function and corresponding linearization. In the case where the decision maker

is risk neutral, we can skip the calculation of δd (3.9) and just use δd = 1
CEd

.

With this linearized objective function, we can now write an integer pro-

gram for computing an optimal discretization as follows.
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Indices and sets

i ∈ I :the set of uncertainties
vi ∈ V i :the set of percentile discretization of uncertainty i. These are candidate percentiles for the uncertainty, such as {5, 10, 15, 45, 50, 55, 90, 95}.
v ∈ ⊗Vi :a percentile combination for all uncertainties. v is a vector of length |I|.
d ∈ D :a finite, discrete set of decision problems
j ∈ J :the indexes for each of the |J | incompatible sets discretizations

Parameters

λ :used to compute a convex combination of average and maximum error
Td :the true expected utility for decision problem d

δd :a shorthand for −ρd
CEd·Td

, a constant used in linearization

Ni :the maximum number of percentiles per uncertainty for the output discretization
Ud(v) :the utility of the project value for decision problem d and at percentile combination v
δj :the incompatible discretizations, v, in set j
Pd :the probability assigned to decision problem, d

Decision variables

pv :the probability assigned to a combination of percentiles v.
od :the over-estimation in approximating Td with a discretized probability distribution
ud :the under-estimation in approximating Td with a discretized probability distribution
z :the estimated maxd∈DErr(d, p)
xvi :the probability assigned to candidate percentile vi for uncertainty i
yvi :1 if percentile vi is used for uncertainty i and 0 otherwise
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Formulation

min λ · z + (1− λ)Pd
∑
d∈D

Pd · δd · (ud + od) (3.11a)

s.t.
∑

v∈⊗Vi

Ud(v)pv − od + ud = Td ∀d ∈ D (3.11b)

z ≥ δd · (od + ud) ∀d ∈ D (3.11c)∑
vi∈V i

xvi = 1.0 ∀i ∈ I (3.11d)∑
vi∈V i

yvi ≤ Ni ∀i ∈ I (3.11e)∑
vi∈δj

yvi ≤ 1 ∀i ∈ I,∀j ∈ J (3.11f)

xvi ≤ yvi ∀i ∈ I; vi ∈ V i (3.11g)

pv =
∏
vi∈v

xvi v ∈ ⊗Vi (3.11h)

0 ≤ xvi ≤ 1 ∀i ∈ I; vi ∈ V i (3.11i)

yvi ∈ {0, 1} ∀i ∈ I; vi ∈ V i (3.11j)

od, ud ≥ 0 ∀d ∈ D (3.11k)

The objective (3.11a) of the optimization model is to minimize a convex combi-

nation of the largest error z and the average error. In this formulation we show

the generalized distribution on D. The second term of the objective function

is the average error. This promotes reducing the error In order to compute the

linearized error (3.10), we should compute the absolute value of the difference

between Td and Ep[ud(x)]. The formula for Td is given for formula (3.11b)

in Appendix .1. Constraint (3.11b) computes the difference between the tar-

get and expected utility. Constraint (3.11c) computes the maximum error, z.

Constraint (3.11d) forces the sum of the probabilities for each uncertainty to
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sum to one. Constraint (3.11e) limits the number of percentiles allowed for

each uncertainty. Constraint (3.11f) forces only a single low, a single medium,

and a single high percentile in our discretizations. This helps the optimization

engine find a solution faster. For example, our low-percentile candidates are

P5 and P10. Only one may be selected for the deiscretization. Constraint

(3.11g) forces the assigned probability to zero if the percentile is not used in

the discretization. Constraint (3.11h) computes the probability assigned to

a percentile combination as a function of the probabilities of each of the un-

certainties. This is the only non-linear constraint in the formulation and it

enforces that the output distribution p ∈ P is independent over the uncertain-

ties. The remaining constraints bound the probability values between 0 and

1, make the indicator variables binary, and make the underage and overage

non-negative.

3.3.2 Joint Discretization Problem

Math programming solvers such as CPLEX, or even open source solvers

such as CBC tend to solve similarly sized problems much faster than their

non-linear engine counterparts. We alter the formulation to create a joint

discretization version of the problem and apply CPLEX to solve this problem.

An outcome from the value lottery in a decision problem, d ∈ mathbbD is a

combination of drawing an individual value from each uncertainty and applying

each of those values to a formula which determines the net present value. We

can call this value v and is made by applying each vi ∈ v to obtain Ud(v).

In joint discretization, have the engine directly apply a probability to each

outcome v and to determine which outcomes are considered by choosing the

percentiles of each uncertainty. This relaxation increases the flexibility of the
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probabilities assigned to a percentile combination and it linearizes the model

formulation. Previous discretization techniques only considered uncertainty

discretizations independently. Because we consider a set of decision problems

and compute the best discretization for that set of problems, it is possible to

compute this joint discretization.

The feasible values are pv ∈ [0, 1] in both formulations. But in the non-

linear formulation, we use Equation (3.11h) to constrain the potential values.

The relaxation allows us to find discretizations with less error faster. In this

section, we define the formulation for optimal joint discretizations.

We alter Model (3.11) as follows to compute optimal joint discretizations

The formulation drops variables xiv and any constraints where they appear.

These are Constraint (3.11d) and Constraint (3.11h). We also add the follow-

ing constraints: ∑
v∈⊗Vi

pv = 1 (3.12a)

pv ≤ yvi ∀v ∈ ⊗Vi, vi ∈ v (3.12b)

pv ≥ 0. (3.12c)

Constraints (3.12a) and (3.12c) ensure the variables pv compute a joint prob-

ability. Constraint (3.12b) ensures the support of that joint probability is

limited to the Ni percentiles for each uncertainty i. The result of Constraint

(3.12b) is that experts make the same number of assessments as before.
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The full final formulation is as follows:

Indices and sets

i ∈ I :the set of uncertainties
vi ∈ V i :the set of percentile discretization of uncertainty i. These are candidate percentiles for the uncertainty, such as {5, 10, 15, 45, 50, 55, 90, 95}.
v ∈ ⊗Vi :a percentile combination for all uncertainties. v is a vector of length |I|.
d ∈ D :a finite, discrete set of decision problems
j ∈ J :the indexes for each of the |J | incompatible sets discretizations

Parameters

λ :used to compute a convex combination of average and maximum error
Td :the true expected utility for decision problem d

δd :a shorthand for −ρd
CEd·Td

, a constant used in linearization

Ni :the maximum number of percentiles per uncertainty for the output discretization
Ud(v) :the utility of the project value for decision problem d and at percentile combination v
δj :the incompatible discretizations, v, in set j
Pd :the probability assigned to decision problem, d

Decision variables

pv :the probability assigned to a combination of percentiles v.
od :the over-estimation in approximating Td with a discretized probability distribution
ud :the under-estimation in approximating Td with a discretized probability distribution
z :the estimated maxd∈DErr(d, p)
yvi :1 if percentile vi is used for uncertainty i and 0 otherwise
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Formulation

min λ · z + (1− λ)Pd
∑
d∈D

Pd · δd · (ud + od) (3.13a)

s.t.
∑

v∈⊗Vi

Ud(v)pv − od + ud = Td ∀d ∈ D (3.13b)

z ≥ δd · (od + ud) ∀d ∈ D (3.13c)∑
vi∈V i

yvi ≤ Ni ∀i ∈ I (3.13d)∑
vi∈δj

yvi ≤ 1 ∀i ∈ I,∀j ∈ J (3.13e)

xvi ≤ yvi ∀i ∈ I; vi ∈ V i (3.13f)

0 ≤ xvi ≤ 1 ∀i ∈ I; vi ∈ V i (3.13g)

yvi ∈ {0, 1} ∀i ∈ I; vi ∈ V i (3.13h)

od, ud ≥ 0 ∀d ∈ D
∑

v∈⊗Vi

pv = 1

(3.13i)

pv ≤ yvi ∀v ∈ ⊗Vi, vi ∈ v (3.13j)

pv ≥ 0. (3.13k)

3.4 Analysis

In this section we solve Model (3.11) and also Model (3.13) for a sample

problem given by [40]. We briefly describe the example here and more in depth

in Appendix .1. We also apply the methodology to a second problem originally

given by [6] and expanded by [7] and further described in Appendix .2. We

begin with the [40] wildcatter problem.

A wildcatter is a person who drills for oil in an undeveloped field. The
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amount of oil, the price of oil, the extractable percentage, and the cost are

among the uncertainties the wildcatter will face. The functional form of each

uncertainty is unknown. Rather than solving the problem with the functional

forms used by [40], we use several candidate distributions as shown in Figure

3.2. They are similar in shape and breadth to those in [40], but are not

the same. For this analysis, we created nine different “true” distributions

per uncertainty. Any one of the candidate distributions could be the true

distribution. There are a total of 94 = 6, 561 potential decision problems, any

of which is equally likely to be the true problem. In this formulation we assume

the risk tolerance, ρ, is known at the time of the problem definition by applying

estimates from [14]. The optimal discretization will find the discretization for

each uncertainty that when combined with the others yields the minimum

error.

For each of the 6, 651 decision problems we use Latin hypercube sam-

pling as originally described by [22]. We generate 4, 000, 000 values for each

uncertainty to generate a set of present values, X. For each x ∈ (X) we

generate a utility and determine CEd using (3.5) with a risk tolerance value,

ρ = $16, 000, 000. The distribution of the CEd is found in Figure 3.3. From

each CEd we are also able to obtain a target utility,Td, using (3.13b). For each

decision problem we also calculate δd using (3.9).

The percentile combinations are drawn from a Cartesian product of the

candidate percentiles for each uncertainty. We define ⊗Vi as the set of poten-

tial percentile combinations. We allow each of the four uncertainty percentiles

to be in the set {5, 10, 45, 50, 55, 90, 95}. These seven percentiles encompass

common percentiles of 0.05, 0.10, 0.5, 0.9, and 0.95 which are found in common

discretizations such as ESM, MCS, and EPT. The additions of 0.45 and 0.55
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Figure 3.2: Each uncertainty has nine candidate distributions. The decision
analyst may include more distributions, perhaps pulled from the Pearson sys-
tem for ease. The reservoir, price, and cost distributions are bounded from
below at zero. The recovery distribution is bounded by 0 and 100 percent.
Though most distributions are similar in shape, we also included a uniform
distribution in as potential distribution for the fraction of the reserves that
may be recovered.
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are not commonly assessed percentiles and only serve to illustrate the flexibil-

ity of the methodology. The percentile set for each uncertainty represents the

set of potential assessment values we might ask an expert to give. A decision

analyst may add or remove percentiles. An increase in candidate percentiles

may improve accuracy. The down side of increasing the number of candidate

percentiles is that it increases the computational complexity and solve time.

For each decision problem we have 74 = 2, 401 potential percentile combina-

tions. We choose three percentiles for each uncertainty which yields 34 = 81 of

those percentile combinations. The result of the optimization assigns each of

the 81 outcomes a probability. For this discretization instance, we are defining

the distributions in ⊗Vi as independent over the uncertainties. For each of

the 2, 401p ∈ P we calculate the utility for each decision problem d ∈ D using

(2) to calculate Ud(v) for each v ∈ ⊗Vi. This provides the data we need to

populate our optimization models.

We begin our comparison of optimal discretization to four incumbent dis-

cretizations of MCS, ESM, EPT, and HB. With four uncertainties in the prob-

lems, this yields 81 potential outcomes for each decision problem. We use the

percentile from each discretization to get a value from the decision problem’s

uncertainty distributions inverse CDF. We compute the project value and util-

ity based on the samples. Finally, we compute the CE using the probabilities

assigned to each percentile. This gives us an estimated CE for each decision

problem. We compare the estimated CE using the discretization to the CE we

obtained by using the simulation for the same problem using the equation

100 ∗ CEd − CEd(p)
CEd

.. (3.14)

This is equivalent to forcing specific values into Model (3.11). We create

a distribution of errors for each discretization method and present them in
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Figure 3.3: The distribution of CE values for the 6, 651 decision problems.
Though most of the uncertainties seems to have fairly similar distributions,
their combinations can have markedly different results.
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Figure 3.4. The HB and EPT methods use more extreme percentiles like the

5th and 95th percentiles. The MCS and EPT discretizations use the 10th and

90th percentiles. The accuracy of the discretizations with more extreme values

is visible in Figure 3.4. We use two measures of accuracy. The first is the worst-

case error. This is the largest absolute value of a percent error from the true

CE across all decision problems. The other error metric is the average of the

absolute errors. HB has a worst-case of 1.75 percent and EPT has a worst case

of 1.47 percent. ESM has an absolute worst case error of 2.02 percent and MCS

has a worst case of 6.34 percent. The mean absolute errors of HB and EPT are

both 0.25 percent. HB has a slightly better performance in terms of absolute

error, but when rounded to the nearest hundredth of a percent, they are the

same. MCS and ESM have average absolute errors of 1.30 and 0.41 percent,

respectively. In the wildcatter example, the standard deviation of Err(d, p) is

larger and the mean CE is further away from 0 when the discretizations using

the extreme (5th and 95th) percentiles is used. It is clear that MCS is the

worst performer in this group, but only upon examination of the numbers, do

we see that HB is the best performer. Another important observation is that

the discretizations with the more extreme percentiles of 0.05 and 0.95 tend to

perform better than the P10, P50, P90 discretizations of ESM and MCS.

In this section, we solve Model (3.11) twice. We use the two extreme

values for λ. When λ = 1 we minimize the worst case error. When λ = 0,

we minimize the average error. We compare the results from the Model (3.11)

and Model (3.13) to each other and to the shortcuts.
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Figure 3.4: The distribution of percent errors for four shortcut methods.

3.4.1 Independent Discretization

In creating optimal discretizations we have two goals in mind. The first

goal is to find discretizations that minimize (3.11a). The second goal is to find

this solution quickly. We define quickly rather loosely. If this is being done for

an ongoing project, we want to be able to generate an optimal discretization

for the client before we need to assess percentiles and provide a cumulative

distribution function of the value lottery to the client. Otherwise, we want to

have the discretizations computed for the next time a decision problem comes

up.

We solved the complete model, with all the candidate percentiles for each

decision problem. We also solved different versions of problem (3.1) using sub-

sets of the candidate discretizations such as p5, P50, P95 and P10, P50, P90 ,

or using a sampling of the 6, 561 decision problems. By limiting the candidate

discretizations, we are able to reduce the number of variables. Specifically,

when we reduce the number of candidate percentiles to three, we are able to

solve the model as a continuous problem instead of as a non-linear mixed-
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integer problem. We try these two sets of three plus the full set. Our second

way of reducing the computational time is to reduce the number of decision

problems by sampling a percentage of them. We test how the results differ

when we chose to minimize the worst-case discretization error and when we

try to minimize the average discretization error.

3.4.2 How much benefit do we get from optimizing an independent
discretization?

The calculation of the certain equivalent is given by multiplying the prob-

ability of each percentile of each uncertainty to determine the probability of

an outcome. There may be a covariance among the resulting values, but the

percentiles are treated as independent. In the case of the four uncertainties in

our sample problem, the probability of any one outcome is the product of the

probability of each of the individual uncertainties. The drawback of the non-

linear approach is the that there are few available solvers, and large problems

generally take too long to solve. For example, in our test problem, solving the

full problem with λ = 0.0 using Bonmin 1.8.4 using an Intel 6-core I7 proces-

sor running at 2.6GHz, the average time to generate the model and solve the

problem was 129, 937.72 seconds (1.5 days). This problem has 6, 651 decision

problems and over 15, 000, 000 non-zeros. A larger problem may prove to be

intractable without advanced decomposition methods.

The results from of the optimization are shown in Figure 3.5. When com-

paring to HB, which has the best results in Figure 3.4, independent discretiza-

tion improves the worst case mean error and the standard deviation of error.

As one would expect, the worst case error is lower when optimizing for the

worst case error, and the average error is best when optimizing for the average

49



error. The variance of the error larger when optimizing for the worst case

error. Either optimization improves upon the results from HB.

Figure 3.5: The histogram of results compares HB, which has the best average
error of the incumbent methods with the optimized discretizations using both
the optimal average and optimal worst-case preferences. Below each histogram
is a bar chart for the discretization method which shows the worst case error,
the mean absolute error, and the standard deviation of error. The optimized
results show a reduction in average absolute error of 56 percent and a reduction
of worst-case error of 74 percent.

We present the results of all discretizations in 3.5.1 at the end of this

chapter. Both discretizations use more extreme percentiles of P5 and P95,

and also use some of the P45 or P55 percentiles.

3.4.3 How much do we lose by solving a smaller sample of decision
problems?

Given the 1.5 day time frame for solving for 6, 651 decision problems with

2, 401 possible combinations of percentiles, we tested the effects of sampling

the decision problems to reduce the problem size. In sampling the decision

problems, we select a uniformly random subset of the decision problems and
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then applied the optimal discretization for that subset to the entire set of

problems. We display the results in Figure 3.6. We test the sampling with

1, 10, and 20 percent of the 6, 651 decision problems using both worst case and

best average objectives. The solve time is linear with the number of decision

problems that we sample. Sampling with 1 percent took 24 minutes, sampling

with 10 percent took just under 3 hours, and sampling with 20 percent took

just under 6 hours. Solution quality, as measured as the increase in objective

value from the optimal value with 100 percent sampling improves with the

number of samples. A 1 percent sample results in a 34 percent increase in

the average error. A 10 percent sample results in an increase of 1 percent

in the average error. Sampling with 20 percent results in and increase of 1.4

percent in the average error. The increase in average error in the sampling is

likely due to the randomness of the sampling. When we looked at the solution

quality, there is a noticeable difference between choosing λ = 1 and λ = 0.

For the smaller samples (< 20 percent), minimizing the worst case led to

varying degrees of over fitting, with increases in worst case error of 25, 15.7,

and 6 percent for the 1, 10, and 20 percent samples respectively. Sampling

the decision problems results in roughly linear speedups in performance with

a small loss of accuracy.

3.4.4 How much do we lose by restricting the candidate percentiles?

Some of the most common discretizations use either P10, P50, P90, like

MCS or ESM, or P5, P50, P95, like EPT. In comparing both the shortcut

methods and the discretization results, it seems the most accurate discretiza-

tions come from using the more extreme percentiles. If P5, P50, P95 dis-

cretizations are more accurate, it can save processing time to restrict the per-
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Figure 3.6: As the number of samples increases in percentage, the overall
accuracy of the discretization improves. After 10 percent of the samples, the
average error is 1 percent worse than the optimum using the entire set of
decision problems.

centiles. Given the P10, P50, P90 discretizations are also popular, we also

want to know what improvement in accuracy we can expect when considering

the more extreme percentiles. We solve the problem using either the maxi-

mum error or the average error objectives. The first improvement is the rapid

speedup in solution time. The range of reduction is from 99.5 percent to 99.9

percent reduction in the time required to generate a discretization. The so-

lution times were in the 100 to 300 second range, reducing the solve time by

more than 99 percent. When limiting the candidate discretizations to P10,

P50, P90, the mean absolute error is 4.8 percent lower than the mean absolute

error using the HB shortcut. It should be pointed out this slight improvement

comes using less-extreme values than those required by HB. In comparison to

using all the candidate percentiles from a full optimization, the mean absolute

error is still 117 percent worse when using the P10, P50, P90 percentiles of

ESM or MCS. These results are shown in Figure 3.7. Using the P5, P50, P95
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percentiles improves the accuracy of the optimal discretization while solving

quickly. The optimized discretization increases worst case error by just 0.25

percent over the optimal results obtained from considering all the percentiles.

This result is shown in Figure 3.8.
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Figure 3.7: Using only the 10− 50− 90 percentiles reduces the error in com-
parison to the shortcut methods. This subset has about twice the error of the
full set of candidate percentiles.

3.4.5 What benefit do we derive when we remove the independence
of uncertainties?

Solving with a non-linear solver has mixed results. The improvement in

accuracy is substantial, but some instances take days to solve. In a large

business problem with 12 to 15 uncertainties, the size of the problem becomes

intractable. Previous discretization methods focused on individual uncertain-

ties, which were combined to create a distribution of the decision problem

values. We propose a new approach which relaxes the independence of uncer-

tainty percentiles and creates a joint distribution.

Joint discretization improves both performance time and the accuracy
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Figure 3.8: Limiting the candidate percentiles to 5− 50− 95 reduces the error
in comparison to the shortcut methods, and is only slightly worse that when
considering a larger assortment of candidate percentiles.

of the discretizations. The solution time using CPLEX 12.5 is just under 2

hours for the mean absolute error, and about 1 hour and 40 minutes for the

worst case error. This compares favorably to the 1.5 and 1.2 day solution

times for the independent discretizations. The joint discretization reduces the

mean absolute error by 34 percent over the independent discretization. In

comparison to the shortcut methods, this is a 71 percent reduction in mean

absolute error of the best-performing shortcut (HB). For the worst case error,

the joint discretization reduces the error by 41 percent when compared to the

independent discretization, and it reduces the worst case error by 86 percent

when compared to the best shortcut method (EPT). These results are visible

in Figures 3.9 and 3.10.

Joint discretization has another benefit over independent discretization.

As seen in Section 3.5.1 a joint discretization does not use every possible

percentile combination. While there could typically be 81 values when using

a three-point discretization for four uncertainties, the number of outcomes is
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reduced to 31 for λ = 0, which requires more scenarios than the best worst

case. For both a practitioner and a client, this means there may be fewer

assessments required if certain percentiles are omitted.
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Figure 3.9: A comparison of the independent and joint discretization method
results.

3.4.6 What is the value provided by optimal discretization?

In order to determine the effectiveness of optimal discretization, we de-

termine how much of a boost in CE do we expect to get from using optimal
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Figure 3.10: A comparison of the independent and joint discretization method
results.
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discretization instead of shortcut discretizations. We define our value based on

whether the decision changes based on the results of the discretization. If the

results of two discretizations both indicate that the company should initiate

a project, there is no change in value because the value is the same. If the

decision is to correctly initiate the project when originally the discretization

would not have recommended the project, then the present value of the project

is accrued to the new discretization. In the different conditions where either

discretization correctly or incorrectly accepts or rejects a project and the other

one does the opposite, we accrue or decrement that value of the change in de-

cision accordingly. In this section, we modify the problem in order to induce

an increase in different decisions and compare the results.

We begin by adjusting the initial capital required in Equation (1) so that

the median CE is now zero. In half the decision problems, the best decision is

now to pass on the project, and in half, the decision is to accept the project.

The histogram of the project values is the same as in Figure 3.3 but shifted

lower by a total of $3.50MM . With several decision problems having CEs

near zero, we modify the equation for Err(d, p) to be Equation (3.3). This

changes the formula for the error approximation equation, Equation (3.10), to

Err(d, p) ≈ −ρd
Td
|Ep[ud(x)]− Td| . (3.15)

Using a new values for δd in Model (3.11), we solve the same set of models

again to obtain new optimal discretizations. These discretizations are different

due to the increased importance of negative results. For each discretization we

determine the additional value derived from knowing the true distributions of

the uncertainties as opposed to using the discretizations of the uncertainties.
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From our initial Monte Carlo integration, we determine the CEd of each de-

cision problem. We compare CEd to the CEd(p) given by the discretization.

In our sample problem the two strategic options are to initiate the project,

or to not initiate the project. The outcomes from the discretizations are to

correctly initiate or pass on the project, or to incorrectly initiate or pass on the

project. We define relative cost (RC) as the expected additional cost of using

a discretization instead of knowing the functional form of the uncertainties.

For each decision problem d ∈ D, RCd is the mean absolute value of the CEd

when the wrong decision is made due to the discretization and zero otherwise.

For example, when the true CE is 100, and the discretized CE is negative,

the value of having the true CE is 100. When the true CE is 10, 000, and the

discretized CE is 1, both CE values will recommend initiating the project. In

this case, the value of knowing the true CE is 0 because the decision is the

same, even if the accuracy was off by almost 10, 000. The relative cost of the

discretization for a decision problem, d is as follows:

RCd =


CEd if CEd > 0 and CEd(p) < 0

−CEd if CEd < 0 and CEd(p) > 0

0 otherwise.

(3.16)

over all the decision problems. The discretization with the lowest relative cost

is the discretization where the decision from using the discretization matches

the decision that would come from knowing the functional forms of the uncer-

tainties and the true CE the most. The higher the RC, the worse a discretiza-

tion is in terms of value. We can compare the average RC for the different

discretizations to determine how much additional value one method has over

another.

We begin by comparing the RC for the shortcuts. Figure 3.11 shows the

results of the relative cost calculations. The histograms show how often each
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discretization has a an added cost in the 6, 561 decision problems. Those

cases where the additional cost is zero are omitted, as their frequency is much

greater than the others. Figure 3.11 indicates the MCS shortcut tends to have

the most instances of RC and the largest RC values. Among the shortcuts,

this produces the largest mean RC. EPT and HB perform better than MCS

and ESM. The average RC for ESM is only 35.28 percent worse than EPT.

This compares to the average error being about 67.08 percent worse than HB.

In absolute terms, the additional value provided by EPT over ESM is $35.48,

which for a project with an average CE of $52, 642.89 is only 0.07 percent.

Problems with a more strategic options and a larger range of project values

will likely result in larger RC differences.
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Figure 3.11: The distribution of the relative cost (of not knowing the true
distributions of the uncertainties) for four shortcut methods. The value of
knowing the true distribution for most of the decision problems is $0. This
means most of the time, the discretization is on the right side of 0. In some
cases, as with MCS, the relative cost can be as high as $100, 000. Note: there
were a large number of observations at zero, which were removed to better
visualize the remaining observations.

Next we calculate RC for the optimized discretizations. We compare the
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joint discretizations best average, the independent best average, the indepen-

dent worst case, and the EPT discretization. The optimized discretizations

had a wide range of RC as seen in Figure 3.12. At one extreme, the opti-

mizations using average error had RC values of $1.62 and $4.04 for the joint

discretization and independent discretization respectively. This means know-

ing the functional forms of the uncertainty distributions provides almost no

value above using a discretization (as long as the assessments are accurate).

At the other extreme, the optimizations using worst case error performed sub-

stantially worse than any of the shortcuts. The RC for worst case errors

were $695.30 and $201.09 for the joint discretization (not shown) and inde-

pendent discretization respectively. The reason behind this complete flip in

performance is that minimizing worst case error tends to focus on the most

extreme-valued decision problems. None of the other results influence the dis-

cretization. For the joint discretization, the true CEs of the decision problems

where the optimal discretization leads to the wrong decision, has a range be-

tween −$72, 903 and $79, 812. The independent discretization has a range

between −$72, 903 and $5, 884.

Sampling the decision problems and limiting the percentiles yields simi-

lar results as compared to the original decision problems and error function.

That is that they had a lower RC in comparison to the shortcuts. The gen-

eral exception is that worst-case optimization underperformed its best average

counterpart. In only six out of 30 runs minimizing the worst case had a lower

RC than minimizing the average error. The best-performing methods used

the more extreme percentiles. Using more samples typically results in bet-

ter alower RC, but not always. For instance, the best RC came from solving

the joint discretization optimization using 20 percent of the decision problems
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and the best average. It yields a RC of only $0.52. This is likely a result of

serendipitous sampling. The worst result comes from optimizing for the worst

case, maintaining independence of uncertainties, and using 10th, 50th, and 90th

percentiles. This discretization had a RC of $840.59.
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Figure 3.12: The distribution of the relative cost comparing EPT with the
results from optimal average error for joint and independent discretizations and
optimal worst-case independent discretization using only the 10th, 50th, and
90th percentiles. The worst case optimization has the most decision problems
and highest RC of any discretization we test. For this discretization, the RC
of one of the decision problems is over $140, 000. Note: Each distribution has
a large frequency of values at zero that we have removed to better show the
scale of the non-zeros.

3.4.7 How well do the discretizations work with new uncertainty
distributions when applied to the original problem?

So far this method has performed extremely well when optimized against

a training set of distributions. We use the term “training set” in the same

way it is used in machine learning and forecasting. In predictive analytics

we use a set of data to generate model parameters; in our case these are

the discretizations. The results of the first model are tested against another
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sample set of data in order to determine if the model works for the entire set

of data. It can also be noted that if the problem to be solved is from one of

a potential set of distributions, the decision analyst can estimate the CE of

every uncertainty distribution combination and come up with a distribution

of the CE. In a situation like this, the process of optimization does not help

the decision-making process. In practice, all potential distributions for every

uncertainty should be used in the optimization model, as it is important to

include as much information as possible into the results.

To test the performance of optimal discretization we change the functional

form of all the uncertainties in the Wildcatter model from [40]. We begin by

using the historical pricing of the West Texas Intermediate benchmark. We

downloaded the prices from the United States Energy Information Adminis-

tration for the front month Cushing, OK Crude Oil Future Contract on their

web site [1]. We used the reservoir and cost data distributions from the orig-

inal [40] paper, and we used a beta(3,27) distribution for the recoverable oil

percentage. We chose this number to have a mean of 10 percent and would

range between 1.5 percent and 26 percent. When comparing to the distribu-

tions in Figure 3.2, this tends to be on the low side, but within the realm of

the feasible.

Examining the price distribution in the original [40] paper and in Figure

3.2, we determined the oil price was somewhere between $10 and $50. The

WTI price data begins on April 4, 1983, with a price of 29.44 and remains

below $50 until October 5, 2004. We use he daily closing price to populate

our price distribution in our first example.

In a second test, we wanted to see if the methodology might also be ap-

plicable to shale drillers. In this test case, we used recent prices. We used
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the two years of price history, from September 14, 2015 until September 12,

2017. We also doubled the capital cost of drilling a well, and we doubled the

production rate. Because we used historical data, our distributions as seen

in Figure 3.13 have their own shapes. The data pulled from a 20 year span

between 1984 and 2004 is multi-modal positively skewed. The two year span

between 2015 and 2017 is negatively skewed.
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Figure 3.13: The oil price distributions, when drawn from historical data, do
not resemble any of the distributions we have used to train the model.

In both examples, we estimate the CE using the Latin hypercube tech-

nique. We applied the discretization percentiles and probabilities that we

generated previously. These are available for reference in Sppendix 3.5.1. We

chose the best average and worst case discretizations for all candidate per-

centiles and the 5, 50, 95, and 10,50, 90 optimized discretizations. It should

be noted none of the uncertainty distributions in our new problem (the test

set) were any of the distributions used to calculate the optimal discretizations

(the training set). We find that without having the new distributions in the

training set, some of the very best performing optimal discretizations from

subsection 3.4.2 and subsection 3.4.5 underperformed the shortcuts. We also
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find that the consistently best-performing discretization is still an optimized

discretization.

The results from this example indicate that simplicity is may be the most

robust. The results are shown in Figure 3.14. The best-performing discretiza-

tion is the independent discretization that discretizes using the 10 − 50 − 90

percentiles. In general, the optimized 10− 50− 90 shortcuts performed better

using the new distributions in the example problems, while in the training

sets, the optimized 5 − 50 − 95 discretizations performed better. In the first

example, the mean is much further away from zero, so differences in percent

error tend to be closer. In the second example, the mean is much closer to

zero, and differences are greater. It should be noted that just as with the

optimal discretizations, the shortcuts also vary in their performance between

the two examples. In the first example, ESM has the best performance of all

the shortcuts we test. MCS, which is also a 10 − 50 − 90 shortcut performs

better than HB and EPT, which use more extreme values.
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Figure 3.14: West Texas Intermediate oil prices representing a twenty year
history and oil prices representative of the oil prices during the fracking boom
in the united states.
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3.4.8 How well do the discretizations work with other problems?

So far the numerical analysis has focused on the Wildcatter problem in-

troduced by [40]. We now present a shorter analysis of Eagle Airlines, first

introduced by [6] and further refined by [7]. A short description of Eagle

Airlines is given in Appendix .2. For this problem we also have four impor-

tant correlated uncertainties, price, hours, capacity, and operational cost that

affect the value of purchasing an airplane by a company for the purpose of

providing charter flights. For each of these uncertainties we created a set of

potential uncertainties. These are shown in Figure 3.15. With the Cartesian

combination of each of these uncertainties we determined the expected value

(risk neutral) of the purchase decision. The distribution of the expected value

of the purchase is given by Figure 3.16.

We solve for the independent discretizations using P10− P50− P90 and

P5−P50−P95 percentiles across all the Cartesian of decision problems. We

apply the resulting discretizations to the correlated uncertainties of the true

distributions to determine the error of the optimized discretizations and the

shortcut methods. These results are shown in Figure 3.17, and we present the

discretizations in Section 3.5.1.

In this example, the best discretization for the training set that uses some

potential distributions to generate the discretization uses P5−P50−P95 for

each uncertainty, with values similar to EPT. When we determine the error

using various discretizations and using the true distributions given by [26]. The

discretization using the P10 − P50 − P90 percentiles has the least absolute

error from the true expected value. Though this example does not provide

absolute proof, the Eagle Airlines example shows that a less extreme set of

percentiles is robust for determining the CE and expected value of a project
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Figure 3.15: The potential distributions for the four uncertainties of Eagle
Airlines. None of these distributions is the true distribution of the given prob-
lem.
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Figure 3.16: The histogram of the expected value of the various uncertainty
distribution combinations.
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Figure 3.17: A summary of selected discretizations using the example of Eagle
Airlines given by [7]. All errors are less than 0.14% with the P10−P50−P90
turning out the best.
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when the true distributions are unknown and not part of the training set.

These examples should not be taken as conclusive. They illustrate that

the improved performance of an optimized discretization or a shortcut is de-

pendent on the distributions of the uncertainties. The results show optimal

discretizations can have robust results for a specific type of decision problem

that is repeatable. A result we do not show in Figure 3.14 is that worst-case

optimization consistently under-performs the average-case optimization. We

also found independent discretizations outperform joint discretizations. Fi-

nally, we find that discretizations that only use a sample of the data still

perform within a few percentage points of the best one. A ten percent sample

performs the best over the examples we test. We believe the degradation in

performance in both the shortcut and optimized discretizations in comparison

to the 10−50−90 discretizations is due to over-fitting and the use of extreme

results to provide an initially better fit.

3.5 Discussion and Recommendations

In the computational experiments we perform, optimized discretization of

Model (3.1) improves on existing discretization methods. This improvement

can be over worst-case Err(d, p), average Err(d, p), or a convex combination.

The methodology provides a large amount of flexibility. While we use the

absolute percentage error for much of our analysis, we also switched to the ab-

solute CE error when we calculated the relative cost of using discretizations in

Subsection 3.4.6. Additionally, our error functions are linear, and may be ex-

panded to quadratic when the discretizations stray too far from the minimum

to provide a good estimate. The methodology is able to compute both inde-

pendent and joint discretizations – a novel approach over past discretization
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methods that focus solely on independent discretizations.

Based on our findings, we make recommendations to the practitioner who

would like to improve the accuracy of their discretizations and value of their

recommendations. We believe more testing is necessary before choosing be-

tween joint and independent discretization methods. While a joint discretiza-

tion generally provides more accurate discretizations over the training prob-

lems, joint discretizations seem to over-fit. When using a joint discretization,

it is important to have a large number of training problems.

In our tests, the 10 percent sample size results offer significant error re-

duction over shortcuts (70 percent) and reduce the time for the non-linear

optimization by 90%. We do not know if this improvement in performance

while maintaining and edge in accuracy will hold with other problems. The

time required for non-linear optimization solvers to generate solutions can take

days, and it is worth experimenting with sampling to generate results that are

better than shortcuts in a reasonable amount of time.

We recommend using the average error method over using the worst-case

error method. The analysis of the relative cost of the worst-case analysis

tends to show that optimizing to the worst case provides the least value of any

discretization method. Optimizing over the average error provided the highest

value discretizations. The results when using the recommended problem size

and discretization method are shown in Figure 3.18.

Practically, the decision problem set over which the optimized discretiza-

tion is computed can make a significant difference in the output. If a prac-

titioner knows relatively little about the client and problem, the practitioner

should select a decision problem set D that includes large ranges of uncer-

tainty distributions and value functions. This would result in an optimized
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discretization that works reasonably well across this large range of problems.

However, if the practitioner knows more about the client or industry, the prac-

titioner should select a decision problem set D that still has many instances

in it, but focuses on the ranges of parameters present in the industry. This

would result in optimized discretizations that yield small errors on that small

parameter range. The practitioner can include optimized discretization in the

decision analysis process and determine how much reducing the variability

of an uncertainty will go towards reducing the distribution of errors of the

discretization.

From our observations, the computation time required for finding an op-

timized discretization increases linearly in |D| due to increases in the number

of constraints. Computing optimized joint discretizations depends on solv-

ing a mixed integer linear program which is generally faster than computing

optimized independent discretizations. In both independent and joint dis-

cretization the computation time increases exponentially with the number of

uncertainties, and the number of candidate percentiles. A reduction in the

number of candidate percentiles will reduce computation time.

We found optimized discretizations make a greater use of the 5th and 95th

percentiles relative to the use of the 10th and 90th percentiles. In their research,

[2] noted that assessing more extreme values is also more prone to error, and

the results from [11] and [12] also make use of more extreme percentiles. An

expert that has twice the experience is likely to have seen twice the number

of extreme events, and is likely to be able to better assess the value of those

extreme events. The result is that someone who is assessing the 95th percentile,

may only be assessing a value at the 90th percentile. In addition to being

more robust, P10 − P50 − P90 discretizations may also be less susceptible
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Figure 3.18: A joint discretization that samples 10 percent of the decision
problems yields results that are better than shortcuts, solve quickly, and are
close in terms of resulting error to the use of 100 percent sampling.
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to assessment error than are P5 − P50 − P95 discretizations. This adds an

uncertainty to the set of decision problems.

In our analysis we used a linearization of absolute percentage error. Opti-

mal discretization is flexible in its ability to use multiple objective functions.

Other objectives we have considered are measuring deviation from expected

value or adding additional terms to the Taylor expansion of the error function.

It is our recommendation that the Taylor expansion of the objective function

be linear if possible so as to keep solution times as short as possible. In con-

clusion, optimized discretization can help decision analysis practitioners create

discretizations that are specific to their current projects that are likely to be

more accurate than shortcut methods. Intuitively, the key difference between

optimized discretizations and other discretization methods is that optimized

discretizations take as input an entire decision problem set D and a valuation

function like (1). This allows optimized discretizations to focus on producing

lower CE errors than using traditional discretization. Figure 3.18 shows how

the errors change when switching between different sampling percentages and

between Model (3.11) and Model (3.13). The difference is less than 0.04 per-

cent between the 10 percent sample using Model (3.11) and the 100 percent

sample using Model (3.13). The gain in robustness favors the independent

discretization with a 10 percent sampling of the decision problems.

3.5.1 Discretization Values

We present selected joint and independent discretization values for the

Wildcatter problem and then Eagle Airlines. The shortcut names are the

same as used in the article. The optimized discretization names are coded. The

first code is either “NLP” or “MIP”. Independent discretizations are solved
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with a non-linear programming solver and hence have the code “NLP”. Joint

discretizations are solved with a mixed-integer programming solver and hence

have the code “MIP”. The next code is either a zero or a one. Zero indicates

the discretization is solved to minimize the average error. A one indicates

the discretization is solved to minimize the worst case error. The next three

numbers are optional. These numbers indicate whether specific percentiles are

used. For example, “5 50 95” indicates the 5th, 50th, and 95th were the only

percentiles allowed in the discretization. The final code indicates how many

sample decision problems are used to create the discretization.

This table shows the percentiles and probabilities of the shortcuts plus the

results of Model (3.11) with λ = 1 and the percentiles forced to P5, P50, P95.
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Table 3.1: Wildcatter Independent Discretizations

Percentiles Probabilities
Discretization Uncertainty Q1 Q2 Q3 P1 P2 P3
MCS Reservoir 0.10 0.50 0.90 0.25 0.50 0.25
MCS Recovery 0.10 0.50 0.90 0.25 0.50 0.25
MCS Price 0.10 0.50 0.90 0.25 0.50 0.25
MCS Cost 0.10 0.50 0.90 0.25 0.50 0.25
ESM Reservoir 0.10 0.50 0.90 0.30 0.40 0.30
ESM Recovery 0.10 0.50 0.90 0.30 0.40 0.30
ESM Price 0.10 0.50 0.90 0.30 0.40 0.30
ESM Cost 0.10 0.50 0.90 0.30 0.40 0.30
HB Reservoir 0.04 0.50 0.96 0.16 0.67 0.16
HB Recovery 0.05 0.50 0.95 0.18 0.63 0.18
HB Price 0.04 0.50 0.96 0.16 0.67 0.16
HB Cost 0.04 0.50 0.96 0.16 0.67 0.16
EPT Reservoir 0.05 0.50 0.95 0.18 0.63 0.18
EPT Recovery 0.05 0.50 0.95 0.18 0.63 0.18
EPT Price 0.05 0.50 0.95 0.18 0.63 0.18
EPT Cost 0.05 0.50 0.95 0.18 0.63 0.18
NLP 1.0 5 50 95 all Reservoir 0.05 0.50 0.95 0.25 0.61 0.14
NLP 1.0 5 50 95 all Recovery 0.05 0.50 0.95 0.27 0.50 0.23
NLP 1.0 5 50 95 all Price 0.05 0.50 0.95 0.03 0.86 0.11
NLP 1.0 5 50 95 all Cost 0.05 0.50 0.95 0.21 0.63 0.16
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Table 3.2: Wildcatter Independent Discretizations, cont.

Percentiles Probabilities
Discretization Uncertainty Q1 Q2 Q3 P1 P2 P3
NLP 0.0 5 50 95 all Reservoir 0.05 0.50 0.95 0.15 0.66 0.18
NLP 0.0 5 50 95 all Recovery 0.05 0.50 0.95 0.20 0.60 0.20
NLP 0.0 5 50 95 all Price 0.05 0.50 0.95 0.19 0.63 0.18
NLP 0.0 5 50 95 all Cost 0.05 0.50 0.95 0.19 0.62 0.19
NLP 0.0 10 50 90 all Reservoir 0.10 0.50 0.90 0.35 0.34 0.31
NLP 0.0 10 50 90 all Recovery 0.10 0.50 0.90 0.27 0.46 0.27
NLP 0.0 10 50 90 all Price 0.10 0.50 0.90 0.16 0.62 0.22
NLP 0.0 10 50 90 all Cost 0.10 0.50 0.90 0.35 0.41 0.24
NLP 0.0 all Reservoir 0.05 0.50 0.95 0.20 0.61 0.19
NLP 0.0 all Recovery 0.10 0.55 0.95 0.26 0.57 0.17
NLP 0.0 all Price 0.05 0.50 0.95 0.19 0.63 0.18
NLP 0.0 all Cost 0.10 0.55 0.95 0.29 0.53 0.18
NLP 1.0 all Reservoir 0.05 0.55 0.90 0.22 0.52 0.27
NLP 1.0 all Recovery 0.05 0.55 0.90 0.32 0.33 0.36
NLP 1.0 all Price 0.05 0.50 0.90 0.25 0.44 0.31
NLP 1.0 all Cost 0.10 0.55 0.95 0.28 0.52 0.19

This table shows the percentiles and probabilities for various runs of Model

(3.11). The first three sets of discretizations, are for λ = 0. The last set has

λ = 1. The first set forces the percentiles to be P5, P50, P95. The second set

forces the percentiles to be P10, P50, P90. The third and fourth set allow all

seven percentiles.
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Table 3.3: Wildcatter Independent Discretizations, cont. (2)

Percentiles Probabilities
Discretization Uncertainty Q1 Q2 Q3 P1 P2 P3
NLP 0.0 66 Reservoir 0.05 0.45 0.95 0.13 0.67 0.20
NLP 0.0 66 Recovery 0.05 0.50 0.95 0.20 0.61 0.19
NLP 0.0 66 Price 0.05 0.50 0.95 0.18 0.64 0.18
NLP 0.0 66 Cost 0.05 0.50 0.95 0.19 0.62 0.19
NLP 0.0 328 Reservoir 0.10 0.50 0.95 0.18 0.64 0.19
NLP 0.0 328 Recovery 0.05 0.50 0.95 0.20 0.60 0.20
NLP 0.0 328 Price 0.05 0.50 0.95 0.18 0.64 0.18
NLP 0.0 328 Cost 0.05 0.45 0.95 0.15 0.64 0.20
NLP 0.0 656 Reservoir 0.10 0.50 0.95 0.20 0.61 0.19
NLP 0.0 656 Recovery 0.05 0.50 0.95 0.20 0.61 0.19
NLP 0.0 656 Price 0.05 0.50 0.95 0.18 0.64 0.18
NLP 0.0 656 Cost 0.10 0.55 0.95 0.29 0.52 0.19
NLP 0.0 1312 Reservoir 0.10 0.55 0.95 0.24 0.59 0.18
NLP 0.0 1312 Recovery 0.05 0.50 0.95 0.20 0.60 0.20
NLP 0.0 1312 Price 0.05 0.50 0.95 0.19 0.63 0.18
NLP 0.0 1312 Cost 0.10 0.55 0.95 0.29 0.53 0.18
NLP 0.0 all Reservoir 0.05 0.50 0.95 0.20 0.61 0.19
NLP 0.0 all Recovery 0.10 0.55 0.95 0.26 0.57 0.17
NLP 0.0 all Price 0.05 0.50 0.95 0.19 0.63 0.18
NLP 0.0 all Cost 0.10 0.55 0.95 0.29 0.53 0.18

The discretizations for λ = 0 for Model (3.11) with 66, 328, 1312, and all

decision problems. The
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The next joint discretization is for the average error minimization. The

number of non-zero percentile combinations is much larger here, which gives

a more robust answer when computing out-of-sample percent errors.
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Table 3.4: Wildcatter Joint Discretizations

R
es

er
vo

ir
Q

u
an

ti
le

R
ec

ov
er

y
Q

u
an

ti
le

P
ri

ce
Q

u
an

ti
le

C
os

t
Q

u
an

ti
le

M
IP

1.
0

10
50

90
al

l

M
IP

0.
0

10
50

90
al

l

0.10 0.10 0.90 0.90 0.088
0.10 0.50 0.10 0.10 0.086
0.10 0.50 0.50 0.10 0.133 0.026
0.10 0.50 0.50 0.90 0.047
0.10 0.50 0.90 0.10 0.156
0.10 0.90 0.50 0.50 0.065
0.10 0.90 0.90 0.10 0.049
0.10 0.90 0.90 0.50 0.023
0.50 0.10 0.10 0.90 0.135
0.50 0.10 0.50 0.90 0.254 0.109
0.50 0.50 0.50 0.10 0.048
0.50 0.50 0.50 0.50 0.052
0.50 0.50 0.90 0.50 0.051
0.50 0.90 0.50 0.90 0.030
0.50 0.90 0.90 0.50 0.045 0.022
0.90 0.10 0.10 0.50 0.031
0.90 0.10 0.10 0.90 0.001
0.90 0.10 0.50 0.50 0.057
0.90 0.50 0.10 0.10 0.057 0.102
0.90 0.90 0.10 0.50 0.061
0.90 0.90 0.50 0.50 0.172
0.90 0.90 0.90 0.50 0.100
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Table 3.5: Wildcatter Joint Dis-
cretizations, cont.
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0.10 0.05 0.55 0.90 0.033
0.10 0.50 0.55 0.45 0.064
0.10 0.50 0.55 0.90 0.176
0.10 0.95 0.55 0.45 0.060
0.45 0.05 0.55 0.45 0.040
0.45 0.05 0.55 0.90 0.100
0.45 0.50 0.05 0.10 0.147
0.45 0.50 0.55 0.10 0.035
0.45 0.50 0.55 0.45 0.158
0.45 0.95 0.55 0.45 0.006
0.90 0.05 0.55 0.10 0.008
0.90 0.05 0.55 0.45 0.047
0.90 0.95 0.95 0.10 0.111
0.90 0.95 0.95 0.45 0.016
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Table 3.6: Wildcatter Joint Dis-
cretizations, cont. (2)
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0.05 0.10 0.05 0.10 0.045
0.05 0.10 0.50 0.10 0.010
0.05 0.10 0.50 0.55 0.018
0.05 0.55 0.05 0.10 0.001
0.05 0.55 0.05 0.95 0.013
0.05 0.55 0.50 0.10 0.049
0.05 0.55 0.50 0.95 0.035
0.05 0.55 0.95 0.10 0.004
0.05 0.90 0.05 0.55 0.013
0.05 0.90 0.05 0.95 0.001
0.05 0.90 0.95 0.10 0.026
0.50 0.10 0.05 0.95 0.020
0.50 0.10 0.50 0.55 0.111
0.50 0.55 0.50 0.10 0.046
0.50 0.55 0.50 0.55 0.210
0.50 0.55 0.50 0.95 0.060
0.50 0.55 0.95 0.55 0.007
0.50 0.90 0.50 0.10 0.060
0.50 0.90 0.95 0.55 0.047
0.50 0.90 0.95 0.95 0.028
0.95 0.10 0.05 0.95 0.007
0.95 0.10 0.50 0.55 0.028
0.95 0.10 0.95 0.10 0.060
0.95 0.55 0.50 0.55 0.002
0.95 0.55 0.50 0.95 0.015
0.95 0.55 0.95 0.95 0.003
0.95 0.90 0.05 0.55 0.074
0.95 0.90 0.50 0.10 0.000
0.95 0.90 0.50 0.55 0.001
0.95 0.90 0.50 0.95 0.004
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Chapter 4

Shape-matching Discretizations

4.1 Introduction

In decision analysis, the objective is to gain clarity of action for strategic,

high-value decisions. When comparing different strategies, the risk-neutral

decision maker should choose the strategy that has the best mean value. All

decisions have risk and if the answer were known there would be no need for

analysis. Part of this risk is that the decision will not lead to a good outcome.

We define “good”, as being better than the next alternative, which could be

to do nothing, or to undertake a safe strategy. Interpreting the meaning of

CE, where the value lottery is transformed by a utility function, may not be

intuitive for a decision maker. Instead the decision maker might prefer a more

intuitive approach and make a decision based on the value lottery at various

percentiles. Figure 4.1 shows the CDF of the value of the aircraft purchase

from the Eagle Airlines problem described briefly in the Appendix in Section

.2. The true mean of the project is $11847. The mean value given by the

EPT discretization is $11865, which is gives an error of 17, or an error of 0.14

percent.

A positive mean value may be enough to approve the purchase. If the

decision maker is concerned about the performance at different percentiles,

then the decision maker can look up the desired percentile on the cumulative

probability axis and move horizontally to the right to determine what the
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Figure 4.1: EPT distance comparison.

value for the discretization at that percentile. The blue area between the

true distribution and the discretization in Figure 4.1 is the error obtained by

looking up the value of the decision at each percentile and comparing it to the

true value. Discretizations that have no error between their CDF and the true

CDF match the shape. To track how well a discretization matches the shape

of the true CDF, we introduce the distance metric, D. The distance metric

differs from the Kolmogorov-Smirnov (KS) test in that it measures a mean

absolute horizontal distance rather than a maximum vertical distance.

A mean horizontal distance tells a decision maker on average how far off is

the discretized CDF from the true CDF. The KS distance tells the user what

the difference in percentile is for any specific value. In the example in Figure

4.1 at the 10th percentile, the true value is −$27, 333. The discretization gives
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a value of −$22, 625. The true value at the 10th percentile is $4, 708 worse

than the value given by the discretization. If a decision maker is going to use

values at different percentiles to inform his/her decision, it is important to

match the shape when choosing a discretization. When matching the shape,

the error between the discretized value lottery and the true value lottery at

each p is minimized, allowing for a more accurate assessment of risk.

The rest of this chapter is organized as follows. We begin by defining

the distance metric and specify the conditions and define a closed form to

calculate distance in Section 4.2. In Section 4.3 we test various combinations

of distributions, correlations, and operations (sum,the sum of products) and

how often they meet the conditions to apply our closed-form estimate for

distance. In Section 4.4 we compare the closed form estimation of distance to

the actual. We do this for conditions that do and do not meet the necessary

criteria for the closed form. Finally, in Section 4.5 we analyze how different

metrics affect the distance, and we analyze the errors at specific percentiles.

4.2 The Distance Metric

In this section we define the formula, create a closed form calculation for

distance, and determine the necessary conditions required to match the shape.

We define distance as the absolute value of the difference of two cumulative

distribution functions when integrated from zero to one:

Definition 4.1. Given two distributions, 1 and 2, where F−1i (p) is the inverse

of the CDF of distribution i, Distance, D is defined as:

Dist =

∫ 1

p=0

∣∣F−11 (p)− F−12 (p)
∣∣ dp (4.1)
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Definition 4.2. Given two distributions, 1 and 2, where F−1i (p) is the inverse

of the CDF of distribution i, the percentile, p0 is the value of p such that:

F−11 (p0) = F−12 (p0) (4.2)

Theorem 4.1 (Distance is only zero when mean and variance match). Given

two normal distributions N (µ1, σ
2
1) and N (µ2, σ

2
2) with µ1, µ2 ∈ R and σ1, σ2 >

0, and σ2 ≥ σ1, the distance between two normal distributions is only zero when

µ1 = µ2 and σ1 = σ2

Proof. F−12 (0) ≤ F−11 (0) because σ2 ≥ σ1. Therefore distance can be re-

written as Dist =
∫ p0
p=0

(
F−11 (p)− F−12 (p)

)
dp +

∫ 1

p=p0

(
F−12 (p)− F−11 (p)

)
dp.

Because distributions 1 and 2 are normal distributions, their inverse CDF

functions may also be re-written as F−1i (p) = µi + σi · Φ−1(p), where Φ−1 is

the inverse of the CDF of the standard normal distribution. Substituting,

Dist =

∫ p0

p=0

(
µ1 + σ1 · Φ−1(p)− µ2 − σ2 · Φ−1(p)

)
dp

+

∫ 1

p=p0

(
µ2 + σ2 · Φ−1(p)− µ1 − σ1 · Φ−1(p)

)
.

= (µ1 − µ2) · p0 + (σ1 − σ2) ·
∫ p0

p=0

Φ−1(p)dp

+(µ2 − µ1) ∗ (1− p0) + (σ2 − σ1)
∫ 1

p=p0

Φ−1(p)dp.

(4.3)

Additionally,
∫ 1

p=0
Φ(p)dp = 0. And,

∫ p0
p=0

Φ−1(p)dp+
∫ 1

p=p0
Φ−1(p)dp = 0 there-

fore,
∫ p0
p=0

Φ−1(p)dp = −
∫ 1

p=p0
Φ−1(p)dp.

Dist = (µ1 − µ2) · (2p0 − 1) + 2(σ1 − σ2)
∫ p0

p=0

Φ−1(p)dp

(4.4)
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The closed form for
∫ p0
p=0

Φ−1(p)dp is −ϕ (Φ−1(p0)).

Dist = (µ1 − µ2) · (2p0 − 1)− 2(σ1 − σ2)ϕ
(
Φ−1(p0)

)
(4.5)

(4.6)

ϕ ≥ 0 because it is the probability density function of the standard normal.

σ1 − σ2 ≤ 0. 2(σ1 − σ2) − ϕ (Φ−1(p0)) >= 0 and is only = 0 when σ1 = σ2.

Additionally, p0 ≥ 0.5 only when µ1 ≥ µ2, and p0 ≤ 0.5 only when µ1 ≤ µ2.

(µ1 − µ2) · (2p0 − 1) >= 0 and (µ1 − µ2) · (2p0 − 1) = 0 only when µ1 = µ2.

Therefore, Dist = 0 if and only if µ1 = µ2 and σ1 = σ2. This completes the

proof.

Theorem 4.1 establishes the conditions that for two normal distributions

to match shapes, they must also have the same mean and standard deviation.

Equation (4.6) provides a closed form estimate of the distance when we have

the mean and standard deviation of two distributions. From a discretization

standpoint, the discretizations that best match the mean and the standard

deviation will also match the shape.

4.3 Under What Conditions May We Expect Normal-
ity?

The Central Limit Theorem (CLT) states that the mean of independent

identically distributed random variables will converge to a normal distribution.

There are several variants of the CLT, such as the Lyapunov CLT, which allows

for the sum of independent, but not identically distributed random variables

to converge to a normal. There is also a variant where the sum of weakly

correlated random variables may converge to a normal. In all versions of the
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CLT, the number of random variables approaches infinity. In decision analysis,

there is never the assumption that there are an infinite number of random

variables. There are a finite number of correlated, non-identically distributed

random variables that are either summed, multiplied, or both. In this section

we determine under which conditions, are the sums, and sums of products of

random variables “close enough”.

We begin by choosing anywhere between 4 and 20 distributions randomly

from the Pearson system shown in Section 1.2. We test with samples drawn

from various regions and sub-regions of the Pearson system. The regions are

• The entire region shown in Figure 1.2,

• The sub-region of the Pearson system shown that except the Pearson IV

distributions,

• The sub-region of the Pearson system that defines the bell-shaped beta

distributions,

• The sub-region of the Pearson system that defines the j-shaped beta

distributions,

• The sub-region of the Pearson system that defines the u-shaped beta

distributions.

For each distribution we randomly determine whether is has a positive or

negative skewness. For each set of randomly selected distributions, we test

with covariance values of {0, 0.25, 0.50, 0.75, 1}. From each distribution we

draw 10, 000 uniform random variables. We correlate those percentiles and

apply them to the inverse CDF of each distribution. We sum the values of the
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10, 000 samples of each variable. In addition to aggregating the variables by

summing them, we also multiply pairs of random variables and then sum the

resulting values. Each pairwise multiplication creates a new random variable.

This sum is now represents a sum of half the number of uncertainties we

started with. For example, if there are four uncertainties, X1 · · ·X4, we create

new random variables Y1 = X1 · X2 and Y2 = X3 · X4. Finally, our value

lottery is the sum of Y1 and Y2. We call this version of the aggregation as

“combined”. From the value lotteries we compute the mean and variance.

We generate these values with random variables that have a variable mean

and variance, and also with uncertainties that have a mean and variance of

1.0. We generate 10, 000 point distribution for each combination of number

of uncertainties, correlation, aggregation type and fixed or variable values for

mean and variance 1, 000 times. The 1, 000 tests allows us to test the frequency

that a certain set of conditions results in a normal distribution.

To determine if the samples create a normal distribution, we turn to the

Kolmogrov-Smirnov goodness of fit test (KS test) for the normal distribution

with estimated parameters. We begin by estimating the parameters from the

10, 000 points from the distribution for the mean of the value lottery, X as X̄

and the variance as S2. We sort the 10, 000 points to obtain X1, X2 · · ·X10,000.

If F̂ is the CDF of the N(X̄, S2) and F (x) =
∑10,000

i=1 (Xi≤x)
10,000

, we define

D = sup
x

{∣∣∣F (x)− F̂ (x)
∣∣∣} . (4.7)

If (√
n− 0.01 +

0.85√
n

)
Dn > c

′

1−α (4.8)

then we can rejectH0 and say that the 10, 000 samples come from a distribution

that is not normal. For our calculations, we use α = 0.05 and c1−α = 0.895.
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Since we always use n = 10, 000 samples our test for each of the 1, 000 iterations

is 99.9985D > 0.895 to test whether the 10, 000 points do not come from a

normal distribution.
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Figure 4.2: Each histogram shows the value of the CDF function for the KS1
distribution with a shape parameter of 10, 000 using the results from Equation
(4.7).

As the number of uncertainties increases, the probability of accepting the

null hypothesis increases. This happens earlier when the shapes of the source

distributions are already closer to normal, such as the bell-shaped beta dis-

tributions. When the shape of the source distributions is something like the

j-shaped betas, the probability is lower. As the correlation increases, the prob-
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ability of accepting the null hypothesis decreases. Within conditions where we

use the same correlation, but vary the number of uncertainties, the probability

of accepting the null hypothesis increases with the number of uncertainties,

just not as quickly. We also found that even if the source uncertainties were not

independent and identically distributed (IID), but did share the same mean

and variance, they tended to have a higher probability of null acceptance. The

combined aggregation reduces the probability of null acceptance.

Figure 4.2 shows the histogram of the CDF values for the KS1 distribution.

This figure is for the bell-shaped beta region with 5, 10, 15, and 20 summed

uncertainties that each have a mean and variance of 1. Values at the 95th

percentile or lower correspond to D = 0.00895 which is the largest value of

D in Equation (4.8) for which we do not reject normality. The uncorrelated

bell-shaped beta distributions that share the same mean and variance are the

random variables most likely whose sum is a normal distribution. They have a

66.5 percent chance of summing to a normal when there are 20 uncertainties.

In Figure 4.3 we sum 20 bell-shaped betas with a mean and variance of 1.

When uncorrelated, these uncertainties have the largest probability of all our

parameter combinations of having their sums be a normal distribution. As

the correlation increases, the probability of the sum having the null hypoth-

esis accepted decreases from 0.665 to 0.359, 0.272, and 0.202 for correlations

of 0, 0.25, 0.50, and 0.75. These values are presented in Section .3 in the Ap-

pendix. At ρ = 1.0 the probability drops to 0.155.

Not all source distributions are created alike. The skew and kurtosis com-

binations differ by region. The Pearson IV region is unbounded and has a

higher kurtosis than all Pearson distributions with the same skewness. The

Gamma (Pearson III), Beta Prime (Pearson VI), and Inverse Gamma (Pearson
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(4.7) as the correlation increases.

91



V) distributions are semi-bounded distributions. They have less kurtosis that

Pearson IV distributions, but more kurtosis than Pearson I (Beta) distribu-

tions. The Beta distributions are bounded on both sides. They are divided

into the U-shaped, which have a high probability density near the extreme

values. The J-shaped region has a high probability at only one of the extreme

values. The bell-shaped betas have the highest probability as some point be-

tween the extremes. Each of these types of distributions contributes to the

normality of the sum.
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Figure 4.4: Each histogram shows the value of the CDF function for the KS1
distribution with a shape parameter of 10, 000 for the different regions.

Figure 4.4 sums 20 uncertainties the are drawn from the different regions

given in each sub-plot. The combination least likely to yield a normal sum

is the Pearson I − J region with a probability of 42.5 percent. The entire
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Pearson region is next with a probability of 49.4 percent. When the distri-

bution sampling excludes the Pearson IV distributions, the probability jumps

to 55.8 percent. This is the effect of removing the heavy tails from the Lep-

tokurtic distributions found in the Pearson IV region. Surprisingly, the I −∪

region has the second highest probability of accepting the null hypothesis at

62.3 percent. At its extreme, a distribution drawn from the I − ∪ region can

be thought of as having two values, one at each bound. This is similar to a

Bernoulli distribution. When combined, these form a binomial distribution

which can be approximated by a normal distribution when the number of un-

certainties is large enough and the skew is small enough. The I − ∩ region is

the most likely to produce a sum of uncertainties whose distribution is nor-

mal. Though this region has some level of skew and kurtosis, 50 percent of

distributions randomly drawn from this region have a skewness less than 1.08

and 50 percent of sampled distributions will have an excess kurtosis of 1.34

or less. A normal distribution has a skewness of 0 and an excess kurtosis of

0. It is likely this relative similarity in terms of shape and skew and kurtosis

measures contributes to the greater likelihood that sums of bell-shaped betas

will be normal distributions.

Figure 4.5 presents the case where the conditions on the mean and variance

of the uncertainties change. In the top row, we present the base case, where

µ = σ2 = 1. We choose the I − ∩ region for the first two columns, and the

Pearson region without the Pearson IV region for the third column. The first

row uses fixed µ and σ2, and the second row uses variable µ and σ2. The

difference between the first and second columns is that in the first column,

there is no correlation, and in the second column ρ = 0.25. The third column

has no correlation. These combinations provide a cross-section of regions that
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have relatively high probabilities of normality with a fixed µ and σ2 and shows

what happens under various perturbations.

When we allow the uncertainties to vary in the third column, the prob-

ability of accepting the null hypothesis decreases. For the I − ∩ region with

20 uncertainties and ρ = 20, the probability decreases from 66.5 percent to

45.3 percent. For the I −∩ region with 20 uncertainties and ρ = 0.25 (second

column), the fixed µ and σ2 probability is lower than with no correlation at

35.9 percent. This probability only drops slightly to 34.8 percent when using

a variable µ and σ2. The probability of accepting the null hypothesis for 20

uncertainties and ρ = 0 for the sum of uncertainties drawn from the Pearson

region without the Pearson IV with µ = σ2 = 1 is 55.8 percent. The proba-

bility drops to 23.6 percent when µ and σ2 are allowed to vary. The tables in

the Appendix in Section .3 only show the probability increasing in 25
165

cases

when switching between fixed and variable µ and σ2. These increases are usu-

ally only less than 1%. The largest increase in the probability of accepting

the null hypothesis is 1.3 percent. This uses the combined aggregation for 20

uncertainties drawn from the I − ∪ region with ρ = 0.25.

Figure 4.6 shows the effects the combined aggregation. We compare the

CDF values from the I −∪ region with 20 base uncertainties. This has one of

the best probabilities of normality, which is only 1.3 percent. For the top row,

we set ρ = 0 and we set µ = σ2 = 1. In the second row, we set ρ = 0.25 and we

let µ and σ2 vary. Across the columns we switch from a sum of 20 uncertainties,

to a sum of 10 uncertainties. The combined uncertainties will be the sum of

10 values. The third column is a combined aggregation of 20 uncertainties. In

all cases, the highest probability of accepting the null hypothesis comes from

summing 20 uncertainties, with probabilities of 62.3 percent for ρ = 0 and 12.0
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percent for ρ = 0.25. The respective probabilities decrease to 17.2 percent and

2.7 when reducing the uncertainties to 10. Combining uncertainties reduces

the probability of accepting the null hypothesis further. This is likely due to

the odd distributions resulting from taking the product of two uncertainties

many of whose domain of values cross zero. In general, [38] noted the product

of two normal variables is not a normal variable. If Figure 4.4 we see that the

original shape and properties of the uncertainties help determine the number

of uncertainties required to create a normal distribution through summation.

The PDF of these distributions, especially when the distribution straddles 0,

is a spike, like placing two exponential distributions back to back. This lack

of normality affects the probability of accepting the null hypothesis of the

resulting sum.

4.4 Accuracy of the Closed Form Solution

In Section 4.3 we find that it is possible to have a normal distribution under

conditions seen in a decision analysis problem. In a decision analysis problem

we may have 20 uncertainties which have a correlation of ρ = 0.25 whos values

we multiply and then sum. We view this is something typical in a practical

problem, and this only has a 0.2% probability of accepting the null hypothesis

per Table 6. Given the probabilities seen in the tables in the Appendix in

Section .3, it is also likely that almost all decision analysis problems will have

a distribution of the value lottery that is not normal due to a finite number of

uncertainties, the use of products of uncertainties, and correlations, and non

independent and identical distribution of the uncertainties.

In this section we analyze the distance metric and its relationship to the

accuracy of the mean and variance of discretizations. First we compare the
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theoretical distance from Equation (4.6) to the computational distance derived

from simulating the discretizations. For each discretization in HB, EPT, MCS,

and ESM, we use the same percentile sampled for the complete distribution

and determine the corresponding percentile from using the discretization. For

example, MCS assigns a probability of 30 percent to the P10. If in the simu-

lation using the true distribution the percentile value we sample a percentile

value less than 30, we use the P10 for the value from the MCS discretiza-

tion. This has the effect of reducing the variability between the discretization

results and the “true” results. For each discretization and “true” simulation

combination, we determine the mean and variance of each along with whether

or not the “true” distribution is normal. With these sets of points and the

statistics of those points, we are able to determine both the theoretical and

the actual distance.

A first observation is that as the theoretical distance increases, the actual

distance increases as well. This is the case for both normal and non-normal

distributions. In both cases, there is a line that emanates from the origin.

On the independent axis is the theoretical distance. On the dependent axis

is the actual distance. There is a clustering of error around a zero theoretical

distance. This indicates that even when the mean and variance derived from

the discretization are zero and closely match the simulated distribution, there

are still some discrepancies in the shape. In Figure 4.1 the discretization

crosses the “true” distribution several times, but the mean and variance are

close to the original. In this case, the distance is still be off by a few orders

of magnitude. In Figure 4.1 the mean is off by $17 or 0.1 percent, and the

variance is off by 1.3 percent. This yields a theoretical distance of $192. The

actual distance is $3, 779. This discrepancy can be attributed to the large
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jumps in the probabilities of events. In Figure 4.1 the value where all four

discretizations assume the median value is 15.75 percent.

The theoretical provides an estimate for the lower bound of Dist. For the

distributions where the sum or sum of products is a statistically normal, that

lower bound takes the equation of:

bDistc = 1.015 ∗Dist(µ1, σ1, µ2, σ2)− 1.096. (4.9)

We determine the slope and intercept by clustering the theoretical values

using the Python K-means algorithm in the Python sklearn clustering package.

We first generate the clusters from the theoretical distance values. We use

the predictions of the algorithm to assign the value of the closest center to

each theoretical distance. For each cluster center for the theoretical distance

we determine the minimum value of the actual distance. We apply linear

regression to get the estimate for the lower bound of the error. We apply

this same methodology to the non-normal distributions as well. For those

distributions, the lower bound of the error is estimated to be:

bDistc = 0.513 ∗Dist(µ1, σ1, µ2, σ2)− 3.129. (4.10)

We present the scatter plots of the actual distance versus the theoretical

distance in Figure 4.7. The left plot shows the scatter plot when the source

distribution is statistically normal. The right plot shows when the source

distribution is not normal. One observation is that within the scatter plot for

the normal source distributions there are distinct lines. We label the source
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Figure 4.7: The scatter plot of the theoretical distance to the actual distance.

values from each discretization and find that the discretizations have their

own relationships between the bounds of the true error and the theoretical

distance. In general the HB and EPT have many of the smallest theoretical

distance values. This is due to their ability to match the mean an variance

as shown in [12]. ESM performs better than MCS when estimating µ and σ2,

but it too has a steeper slope for its lines, meaning its distance is higher while

MCS may not be as accurate for µ and σ2, but has a lower actual distance.

When evaluating the theoretical and actual distances for the discretiza-

tions for both normal and non-normal “true” distributions, we see that is in

Figure 4.7 HB and EPT have the lowest theoretical distances for normal and

non-normal distributions. While the actual distance increases from the theo-

retical, MCS remains the same, as seen in Table 4.4. In general, HB has the

best actual distance, followed by EPT. MCS and ESM reverse their order when

moving from theoretical to actual. The general stability of the discretization
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Table 4.1: Theoretical vs. Actual Distances

Is Normal? Theoretical or Actual? HB EPT ESM MCS
Normal Theoretical 3.046 3.043 3.824 5.447

Actual 4.320 4.538 4.875 5.159
Non-Normal Theoretical 4.917 4.316 6.253 7.532

Actual 6.679 6.979 8.081 7.544

could be attributed to the fact that its extreme values are not as extreme as

HB and EPT, and its weighting of the P50 is higher than that of ESM.

In order to explore this further, we plot the scatter for individual dis-

cretizations. We add a legend for the number of uncertainties and create a

different axes for each sub-region. We limit the discretizations to the distribu-

tions that are non-normal, as they represent 93.38 percent of the distributions

that use five or more uncertainties and have uncertainties with variable µ and

σ2 and ρ = 0.25. Each combination of Pearson region, discretization, number

of uncertainties, variable versus fixed µ and σ2, ρ, and aggregation type leads

to a different clustering of data points.

In Figure 4.8 and Figure 4.9 we see the scatter plots for HB and MCS.

Each axis within the plot represents a region and we plot the values by the

number of uncertainties and the type of aggregation. In general, the fewer

the number of uncertainties, the lower the theoretical and actual distance

metrics. We also see that in all the plots, the combined uncertainties have

the most theoretical and actual distance, and all follow a linear pattern, with

the combined uncertainties showing the largest variability. We also see that

for the HB discretization, the maximum actual value is at or below the actual

maximum value for MCS. In all plots, including the ones not shown, we find

that the theoretical distance forms a lower bound. For distributions that are
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Figure 4.8: The scatter plot of the theoretical distance to the actual distance
for HB.
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normal, the upper bound is not well-defined.

Figure 4.9: The scatter plot of the theoretical distance to the actual distance
for MCS.

For each combination of discretization, region, uncertainties, normality,

etc., we determine how well the theoretical distance approximates the true

distances. We do this by solving linear regressions for both the floor and the

ceiling of the distance.

bDistc = Mfloor ·Dist(µ1, σ1, µ2, σ2) +Bfloor (4.11)

dDiste = Mceiling ·Dist(µ1, σ1, µ2, σ2) +Bceiling (4.12)

If the theoretical distance is exact, we have slopefloor = slopeceiling = 1 and

both intercepts as zero. This is the base for estimation. In the case of MCS in

103



the Pearson region with 20 uncorrelated uncertainties whose sum is a normal

distribution. Here, the lower bound is 1.009 ∗Dist(µ1, σ1, µ2, σ2)− 0.278 and

the upper bound on error is 1.009 ∗ Dist(µ1, σ1, µ2, σ2) + 0.054. Figure 4.10

shows a comparison of several scatter plots for different discretizations. In

general, it shows the theoretical distance provides a good bound for the MCS

discretization. It also provides a good bound for most cases of ESM as shown

in the tables in the Appendix in Section .4. EPT and HB have better accuracy

for the mean and variance as shown in [12]. This improved accuracy translates

to the aggregated sums, which result in lower theoretical error shown below.

With a low theoretical error, we often see EPT and HB distance values with

little relation to their theoretical distance values. This is shown when the slope

and intercept of the upper bound for the true distance is much higher than

the lower bound for the true distance and is an indicator of the difference from

being a normal distribution and how well the theoretical distance formula will

work. An example is provided in Appendix .4

The bounding functions represent the lower bound and upper bound be-

tween the theoretical distance and the maximum distance. When the slopes

are equal, there is a constant deviation. In other times, the slopes have op-

posite signs, which indicate that the resulting distribution is not normal and

that the Equation (4.6) will not give a good estimate. This means that it is

possible for discretization that have low errors for µ and σ2 to do a worse job

in matching the shape than discretizations with larger errors in µ and σ

To better illustrate how this is possible, we return to the Eagle Airlines

problem and show the results from Figure 4.11 when we apply the ESM dis-

cretization. This discretization is less accurate for determining the mean and

the variance and will theoretically have a larger distance error. The ESM dis-
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cretization applies a probability of 0.40 to the P50, resulting in that scenario

only accounting for 2.56 percent of all values, which is decidedly smaller than

the jump of 15.75 percent from EPT. Using ESM, the theoretical distance

increases to $1, 532, but its actual distance is $2, 839. This means on average,

the ESM discretization will have $940 less in error when looking at a random

percentile. The mean error is 0.22 percent and the variance error is 10.57 per-

cent. The variance error for EPT was only −1.28 percent. At first glance, it

seems that ESM matches the shape better than EPT. In analyzing the shape

between the P15 and P75, the jumps for ESM are smaller, and the amount

in blue is significantly lower. EPT uses the P5 and P95 values while ESM

uses the P10 and P90 values. In Chapter 3 the discretizations that use the

more extreme percentiles were more accurate in calculating the CE. This is

that case with this problem as well.

When looking at values outside the p15 to p75 range in Figure 4.11 and

comparing it to Figure 4.1, there are some important pieces of data to consider.

The more extreme percentiles of EPT yield a wider range of values. For

ESM the range is between −$72, 957 and $139, 110. For EPT the range is

between −$95, 773 and $171, 682. The simulation of 1, 000, 000 values based

on the functional form of the uncertainties has a range between −$128, 261 and

$238, 656. The use of the extreme values for EPT also yields better estimates

at the P10 and P90 for EPT over ESM. ESM under-estimates the P10 and

P90 by$5, 417 and $6, 749 respectively. These errors are smaller for EPT

where the errors are an over-estimate of $4, 708 at the P10 and an under-

estimate of $2, 804 at the P90. The case with Eagle Airlines and the results

of discretizing using EPT and ESM show there are many factors in play when

selecting a discretization. In Section 4.5 we further analyze the distance error
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for the discretization in comparison to their errors for µ and σ2.

4.5 Distance, µ, and σ2 Accuracy

To analyze the effect of the error of the discretized mean to the distance,

we plot error of the mean against the distance. We assign a different color

to each discretization. An overview of these plots is in Figure 4.12. Overall

there is a direct link between the minimum distance and the absolute value of

the mean error. Each discretization has a different distribution of distances

conditioned on the absolute value of the mean error. If we apply Equation

(4.6), if σ1 == σ2, and if µ1 > µ2, then p0 = 1 and Dist = µ1 − µ2. Following

the same methodology, if µ2 > µ1, Dist = µ2 − µ1. This explains the lower

bound visible in Figure 4.12.

The next step is to determine which discretization yields the lowest dis-

tance. Due to the volume of data it is difficult to determine if MCS has the

lowest error per mean error, or if it shows as the lowest due to its order in

plotting. To determine the relationship between distance and the mean error,

we filter the data by region, the values of µ and σ2, and ρ. We also superim-

pose the least squares regression of the absolute mean error to the distance.

We plot from 0 to the maximum mean error. This provides a scale of the error

along with a visual representation of the fit. Figure 4.13 shows the Pearson re-

gion without the Pearson IV uncertainties, a variable µ and σ2, and ρ = 0.25.

We choose these filters as they draw from uncertainties that decision analysts

are likely to see (few decision analysis problems have uncertainties that are

completely unbounded), there will be some correlation, and each uncertainty

has a distinct µ and σ2.

We find that the best performing discretization varies from setting to set-
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Figure 4.12: The mean error versus the distance.
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ting, even controlling for the region, and independence. The best performer in

Figure 4.13 is hard to ascertain based only of the distribution of the error in µ

and the distance. A pattern that does present itself is the relationship between

the error in µ and the minimum distance error increases linearly with the dif-

ference in the µ values. With 20 uncertainties combined into pairs of products

and summed, all the discretizations perform well. In order to better visualize

the distribution, we apply a least squares regression for each discretization.

These are shown in the dashed lines of Figure 4.13. A discretization with only

an error in µ and no error in σ and where the source distribution is a normal

would have an intercept at zero. The discretizations with the lowest intercept

values will have the least error in σ. For the 20 multiplied and summed (com-

bined) distributions in Figure 4.13 the intercepts are 6.21 (HB), 6.53 (MCS),

8.98 (EPT), and 13.32 (ESM). This order switches with the when viewing the

20 summed uncertainties, we see almost the opposite. In this case, the inter-

cepts are at 1.77 (EPT), 1.84 (ESM), 3.39 (HB), and 3.79 (MCS). In this case,

the difference in error is not as large as with the combined scenario.

The differences in performance are more easy to see when the source dis-

tributions are more likely to combine to create normal distributions. This is

the case where there is no correlation and all the source distributions come

from the bell-shaped beta region. This is visible in Figure 4.14. Though not

shown, the results are similar when µ and σ are variable versus fixed at 1.

In this figure, we can see that HB and EPT have some of the lowest error.

Their least squares fit lines only extend a short distance because due to a low

deviation from the true µ. ESM, which is slightly worse, has a greater range

for the µ and the larger range of σ errors shows in the larger values of distance

metrics. Finally, MCS has the largest breadth in µ errors and the most error
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in σ. The intercepts for these discretizations are 0.27 (HB), 0.28 (EPT), 0.48

(ESM), and 1.84 (MCS). The analytical formula for the distance in equation

(4.6) explains why there is a lower bound on the distance for each value of µ.

When we set σ1 = σ2, this means the two cumulative distribution functions

never intersect. When µ1 > µ2, then p0 = 1 and the distance increases with

a slope of 1 as µ1 increases. When µ2 > µ1, p0 = 0 and as µ1 decreases by 1,

the distance increases by 1.
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Figure 4.14: The mean error versus the distance.

When we compare the error of σ to the distance, the pattern changes. For

continuity we present the distance versus σ scatter plots using the same con-

ditions of Pearson region, variability in µ and σ, and correlation as described

for Figures 4.13 and 4.14. One difference is that most of the errors in σ tend
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to be below the true σ.

We obtain similar results when we plot the distance against the error for

σ2. In Figure 4.15 the minimum distance error also increases with the absolute

increase in σ2. This follows the Equation (4.6) which shows a linear increase

of the theoretical distance with the increasing difference in the values of σ and

which are also affected by p0. This figure is different in that most of the error

for σ2 is negative. The notable different is that when we use the combined

aggregation, the error in σ2 is more balanced between positive and negative.
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Figure 4.15: The variance error versus the distance.

The analysis shows that as the error for µ and σ2 increases, so does the

distance. Additionally, we find that as the theoretical distance increases, so

does the actual distance, though it usually serves as a lower bound. The plots
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in Figure 4.7 show that different discretizations have theoretical and actual

distances that are clustered in different regions. The various other figures in

this chapter also show that errors are clustered and vary depending on the fac-

tors used in the simulations such as the number of uncertainties, the Pearson

sub-region, the discretization, the rank correlation, and the method of aggrega-

tion. In order to determine more clearly the situations when one discretization

may yield better results than another, we look at the discretizations by region

and aggregation method and compare the mean absolute errors at different

percentiles.

To compare percentiles, we compare the value of the CDF of the aggre-

gated values when using the “true” values and when we compare them to the

discretized values. We determine the error for the following percentiles: P5,

P10, P50, P90, and P95. The distance metric would include these values and

combines them in one single metric. This analysis shows where the different

discretization methods perform at different percentiles of the CDF.

For this analysis we show the percentile errors for a specific region and

number of uncertainties in a single figure. We show the correlations of 0.0, 0.25, 0.5,

and 0.75 in each chart. Each chart shows the errors for each discretization

method and method of aggregation.

We begin with a figure where the aggregated values are most likely to be

normally distributed. This is in the ∩-beta region of the Pearson distribution

with 20 uncertainties that all have µ = σ = 1.0. This is seen in Figure 4.16. It

shows some items that are common in our analysis. The first is that the least

amount of error is at the P50 and increases as the percentiles become more

extreme. They show the ESM discretization generally having the least error,

EPT and HB, which have similar discretization percentiles and probabilities
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in the region are almost exactly the same, and MCS tends to have the highest

error.

In Figure 4.17 we expand the region, allow µ and σ to vary, and reduce

the number of uncertainties to 12. Under these conditions, the average errors

reverse themselves. We find that MCS typically has the lowest error at each

of the percentiles and ESM usually has the most. We also find that HB

now differentiates itself from EPT because HB uses different discretizations

for different regions of the Pearson system. If it is possible to assess more

extreme percentiles, the HB discretization is recommended. If not, the MCS

discretization is the next best alternative.

4.6 Conclusions

In this chapter we discuss the shape-matching ability of different discretiza-

tions and the conditions that improve shape matching for all discretizations.

To measure how well the discretized distribution and the true distribution

match, we use the distance metric which sums the absolute difference between

the two cumulative distribution functions. We derive an analytical formula for

the distance when the two distributions are normal. From this, we show an

estimated frequency of a normal distribution when the following were consid-

ered:

• The Pearson sub-region

• The number of uncertainties

• The variability in the mean and variance of the uncertainties

• The aggregation method of the uncertainties
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• The correlation of the uncertainties

Though the conditions for normality are unlikely in a decision analysis problem

(a large number of uncorrelated uncertainties with a fixed mean and variance

from a single sub-region of the Pearson system), the formula for distance (4.6)

provides a lower bound on the true distance. The scatter plots in Figures 4.8

and 4.8 show this.

An initial path we explored was to see if we are able to create individual

discretizations that can match the shape using the techniques described by

[9]. We found these techniques created discretizations that matched the shape

better than all the other discretizations at the single uncertainty level. These

discretizations have a lower variance than the other discretizations, so the

discretized uncertainties were aggregated, their lower variance was projected

either proportionally for the sums, or geometrically for the combined uncer-

tainties. This lead to discretizations that have more error with the increase in

the number of uncertainties and were therefore not presented.

We further found that when comparing the error in µ or the error in σ,

the distance formula accurately predicted the lower bound for the distance

as seen in Figures 4.12, 4.13 , 4.14, and 4.15. We also saw that the HB and

ESM discretizations had the least error for µ and σ2, but their actual distance

metrics were higher than predicted. The recommendations from this analysis

are to use HB as overall, its error for µ and σ2 are the best, and so it its

distance calculation. When using the P10 and P90 as the assessed extreme

values, the MCS discretization is worse than ESM for µ and σ2, but not by

much. MCS’s actual distance is lower on average than from ESM. If more

information is available, we refer the reader to the bounding tables in the

Appendix in Section .4.
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Chapter 5

The Role of Assessment Error in

Discretization Accuracy

5.1 Introduction

In Chapters 3 and 4 we see the use of more extreme percentiles in dis-

cretizations improve the accuracy of those discretizations. In Chapter 3 the

discretizations with more extreme percentiles better matched the true CE of

the training distributions. In Chapter 4 the HB and EPT discretizations match

the mean and variance of the underlying uncertainties better, and they have a

lower average distance from the true CDF of the value lottery. These compar-

isons make the assumption that the assessment is accurate. In this chapter we

analyze the effects of assessment error on the accuracy of discretizations and

determine the robustness of the accuracy under different assumptions for the

assessment error.

From the literature we know the following and are summarized in [21]:

• Assessors that are trained are better calibrated than those who are not.

• Assessors that receive regular feedback regarding their results are better

calibrated. Training seems to provide a one-time boost, but reinforce-

ment leads to long-term calibration.

• Most assessors suffer from overconfidence.
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• More extreme percentiles are more difficult to assess correctly and have

relatively larger surprise index scores.

In this chapter we propose a novel methodology for expressing assessment

error. This new methodology allows us to express the following:

• bias

• correlation among assessment errors

• dependence on the percentile being assessed

Each of these items is consistent with the observations of [21]. Based on

the existence of bias, correlation, and percentile dependence, the accuracy of

various discretizations when assumptions of perfect calibration are relaxed. In

the rest of this chapter we measure the effects of assessment error on various

accuracy metrics in order to determine how the HB, EPT, ESM, and MCS

perform with respect to µ and σ2 absolute error, and determine under different

conditions which discretization provides the best accuracy.

5.2 Assessment Error Definition

In discretization, we assess the percentile, p. But if the assessment is

not exact, then the expert is assessing a different percentile which we call qp

because it is different than p, but also dependent on p. The difference between

p and qp is the assessment error, e. We have seen from [2] that more extreme

percentiles are more difficult to assess. We can expand our definition of e so

that it is parameterized by the percentile for which the assessor is trying to
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assess, ep. This creates the relationship

qp = p+ ep (5.1)

In order to measure the accuracy of a discretization under the assumption

there will be assessment errors, we can compare the statistics defined in chapter

4 with and without assessment error. For example, if measuring the accuracy

of the MCS distribution for a β(2, 5) distribution, we can assess the P10, P50,

and P90 to obtain values of 0.0926, 0.2644, and 0.5103 respectively. Applying

the probabilities of 0.25, 0.50, and 0.25, this gives a mean value of 0.2829. The

true mean of a β(2, 5) distribution is 0.2857, 2
7
, and the mean percent error is

−0.97 percent. If instead of providing the P10, P50, and P90, the expert

instead provides the P12, P49, and P85, whose respective values are 0.1029,

0.2602 and 0.4613, then the mean obtained with this specific assessment error

is 0.2711, yielding a mean percent error of −5.12 percent. By introducing

assessment error, the accuracy of the discretization changes.

The drawback of the methodology in equation (5.1) when compared to

that proposed by [13] is that all assessed values still must be possible within

the true distribution. The methodology proposed by [13] transforms the as-

sessment error from assessing the incorrect percentiles for the true distribution

to making the correct assessments for the incorrect distribution. This allows

for more flexibility, but does not allow for the effects of bias, correlation, and

the dependence of errors on the assessed percentile.

In order to model the differing assessments of experts we model ep as a

distribution. In order to determine the effect of assessment error, we sample

across each ep to obtain a distribution of the assessed values which we can
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compare to the true value of the original distribution. In order to do this, we

need a distribution for each ep such that qp ∈ {0, 1}.

The assumptions we make about ep differ from those in [43]. In Wallsten’s

article he makes the following assumptions

1. The expected assessment error is 0, E(e) = 0.

2. The error is uncorrelated to the true value.

3. Assessment errors are uncorrelated.

We make some changes to those assumptions based on findings in the lit-

erature. From the summarized findings in [21] and Table 2.1 in Chapter 2 we

see the surprise index is usually much larger than the expected value. This in-

dicates that most of the error should be skewed towards the P50. For assessed

percentiles below 50 percent, the true percentile assessment will be higher.

For assessed percentiles above 50 percent, the true percentile assessment will

be lower. We also see in Table 2.1 that the surprise index is lower when the

percentiles are further from the extremes, however, it is unclear if the better

calibration is due to the use of less-extreme percentiles or if they are due to

regular feedback on assessments. We also allow for correlation. In our analysis

we use a rank correlation between CDF (Qp) and CDF (q100−p).

5.3 Methodology

We assume that the assessed percentile qp takes the form of a beta dis-

tribution. We can create a wide range of shapes, variances, and biases by

changing the α and β parameters, the location parameter, and the scale. For
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assessments at the 50th percentile, we use α = β = 4. When the percentile

is less than 50 we use β = 5, and when the percentile is greater than 50, we

use α = 5. To calculate the other parameter, we specify that the mode, m, is

at the cumulative probability of 0.25 for percentiles less than 50, and a mode

at a cumulative probability of 0.75 when the percentile is greater than 50 and

given by the following formulas:

α =
1 +m · (β − 2)

1−m
= 2.33 (5.2)

β =
α− 1 + (2− α) ·m

m
= 2.33 (5.3)

The result is a bell-shaped beta with a skew towards the middle for the ex-

treme percentiles. The beta distribution has a range from 0 to 1. If its prob-

ability density function is f(x, α, β), then we can reduce the domain by us-

ing the scale parameter and we can change the minimum value by using the

location parameter. This transforms the variable so that y = x−location
scale

and

f(x, α, β, location, scale) = f(y,α,β)
scale

. For our analysis, we use scale values of 0

(no assessment error), 0.05, 0.1, and 0.2. We also set the mode to be exactly

at the desired percentile as long as it does not force the location to start at a

percentile of less than 0. In the case of the lower percentiles with an assess-

ment error, the probability that the assessor is under-confident is always 25

percent, and the probability of being overconfident is 75 percent. The change

in scale does not change the ratio of under-confidence to overconfidence, but

changes the probability of selecting values. When the scale increases, it is pos-

sible to assess percentiles that are further away from the desired percentile.

An example with a Bernoulli distribution for assessing the P95 could be that

0.25 of the time the assessed value is the P96 and 0.75 of the time the assessed

value is the P94. The accuracy would be different than if 0.25 of the time,
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the assessed value is the P98 and 0.75 of the time the assessed value is the

P92. In both cases, the surprise index is the same, but the scale of the errors

is larger in the second, which we show yields different accuracy values than

the first Bernoulli distribution.

In order to represent correlation between assessments of the extreme val-

ues, we rank correlate the two extreme assessments. We maintain the middle

assessment as independent. The rank correlations we use are −1.0, −0.75,

−0.50, −0.25, 0.0, 0.25, 0.5, 0.75, and 1.0. This allows us to test when the

assessments are independent, when the surprise index values are symmetrical,

and when the assessments are biased upwards or downwards.

5.4 Analysis

In Chapter 4 and in [12] we see the HB and EPT are discretizations that

create the least error for both the µ and σ2. The ESM and MCS discretizations

have higher error metrics. We begin by comparing the the errors of the mean

and variance for the discretizations over the Pearson region. These are the

similar to the results presented by [12]. Figure 5.1 shows the absolute error

for µ for all the discretizations as being fairly accurate, but with HB and EPT

outperforming. The errors for each region and are presented in the Appendix

in Section .5. In every region HB had the lowest mean absolute µ error except

in the Beta Prime region. This is due to the objective function chosen by

Hammond and Bickel in [12] that minimizes the error of both µ and σ2 in

combination. We see this in Figure 5.2 where in the Beta Prime region, the

mean absolute error for σ2 is higher for EPT than for HB. In combination HB

is lower. The data also shows that MCS usually performs the worst in most

areas for both µ and σ2. The only exception is the Pearson I −∪ area, where
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MCS has the lowest µ error and the second smallest σ2 error.

The results in the Pearson system show that overall, the discretizations

with the more extreme percentiles (HB and EPT) perform better than the

ones with less extreme percentiles (ESM and MCS). The observations from

[21], [2], [37], [41], and [27], summarized in Table 2.1 show that more extreme

percentiles result in more of a surprise index. We examine the effect of a scale

of 5%, 10%, and 20% error in the assessment error ep. That is to say, when the

scale is 20%, then max(ep) −min(ep) = 0.2. We simulate values for ep where

we permute both the scale and the rank correlation PX and P (100 − X),

where p 6= 50 and measure the average absolute errors for µ and σ2 at each

point used by [12]. For each discretization, scale, correlation we generate 5000

points for each position in the Pearson system for each discretization.

We use the PearsonDS library in R in order to determine the values for

a given percentile. In order to minimize variability we determine the three

correlated percentiles we will use in each sample. We then use these percentiles

to get the appropriate assessed percentile based on the desired percentile, p,

and the scale from the Beta distribution we are applying. We use these three

percentiles to determine the assessed values from the true distribution. This

is similar to what might happen in a project. The experts give three values

based on their assessments, and the decision analysts determine the valuation

of the strategy based on the probabilities they apply to these assessed values.

When comparing the results for each discretization as the scale increases,

we see that the absolute error in both µ and σ2 also increases. This is irre-

spective of the rank correlation between the extreme assessments. Figure 5.3

shows the increase in error as the scale of the assessment error increases. MCS

without assessment error has a mean absolute error for µ of 3.48%. When the
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Figure 5.1: The baseline absolute µ error by discretization
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Figure 5.2: The baseline absolute σ2 error by discretization
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scale increases to 0.05, 0.10, and 0.20, the error increases to 4.02%, 4.98%, and

7.56% respectively.

For the HB discretization we can visually see the increase in error is more

dramatic. Figure 5.4 shows the majority of the Pearson zone for no assessment

error as being the lightest color. As the scale increases to 0.20, the darker colors

predominate, signaling that under most conditions, the increase in assessment

error is more pronounced. In comparison, the Pearson zone for MCS with

a scale of 0.20 has more lighter colors. When taking the mean error of the

absolute value of the µ errors, the results confirm the conclusions from the

visual inspection. The mean absolute µ error increases from 0.96% for the HB

discretization with no assessment error to 2.78% for scale = 0.05 and finally

to 4.72% and 8.72% for scales 0.10 and 0.20 respectively. With scale = 0.10

the HB discretization still outperforms the MCS discretization, but the roles

reverse as the scale increases to 0.20. This pattern is similar for ESM where

the mean absolute µ error is lower than MCS’s error for the zero assessment

error and for 0.05, but the ESM error is larger for scale = 0.10 and scale= 0.20.

ESM also outperforms HB with scale = 0.20. To compare all discretizations

with all the correlations and all the scale errors, we refer the reader to the

summary tables in the Appendix in Section .4.

The same pattern repeats with the mean absolute σ2 error. In Figure 5.5

the error for σ2 increases with the scale of the assessment error. For ESM

the mean absolute σ2 error increases from 16.48% for the true discretization

to 26.62% for the assessment error with scale = 0.20. In the case of variance,

ESM outperforms MCS for all assessment error scales. And HB outperforms

ESM for scale ≤ 0.10. The data show that as the scale of the assessment error

increases, so does the error of µ and σ2. The data also shows that the EPT and
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Figure 5.3: The absolute error in µ for the MCS discretization as the scale of
the assessment error increases.
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Figure 5.4: The absolute error in µ for the HB discretization as the scale of
the assessment error increases.
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HB discretizations perform best when the scale of the assessment error ≤ 0.10

for both µ and σ2. When there is high assessment error, such as when scale =

20, the choice between MCS and ESM depends on the region from which the

uncertainties come from, and whether it is more important to estimate the µ

or σ2.
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Figure 5.5: The absolute error in σ2 for the HB discretization as the scale of
the assessment error increases.

The effect of the correlation of the two extreme values also plays a role in

the accuracy. For each of the discretizations, we found that for any non-zero

assessment error scale, the µ errors increase as the rank correlation changes

from −1.0 to 1.0. The µ errors did not decrease as ρ went from −1 to 0 and

then reverse course as ρ continued to increase from 0 to 1. This property held

for the each of the discretizations we tested and for each of the assessment

error scales we tested. The results for the mean absolute σ2 error followed

the opposite pattern; the error decreased as the correlation changed from −1.0

to 1.0. The exception to this pattern is the MCS discretization, which has a

consistent mean absolute σ2 error across all rank correlations. We present the

progression for absolute σ2 error for HB using scale = 0.20 in Figure 5.6. This
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provides the largest difference in growth.

5.5 Conclusion

In this chapter we propose a new methodology for determining the effect

of assessment error on discretization accuracy. This method can account for

bias, the scale of variability in the assessments, and the correlation of assessed

values. As one would expect, the accuracy of µ and σ2 of the discretizations

decreases with increases in the scale of the assessment error. We also find

that for the HB and EPT discretizations which use more extreme discretiza-

tions, their accuracy deteriorates more rapidly than that of MCS and ESM.

If the scale of the assessment error is going to be greater than 0.10, then it is

recommended to switch to ESM or MCS.

A surprising outcome from the simulation and analysis is the effect of

correlation on the accuracy of µ and σ2. Prior to conducting the analysis,

it was expected that an increase in the absolute value of the rank correlation

would also increase the µ and σ2 errors. Instead, we found the µ error decreased

as correlation increased and σ2 error decreased as correlation increased. The

tables in the Appendix in Section .5 also show that for most correlations, once

the scale of assessment error is at least 0.10, the ESM discretization has the

lowest µ and lowest σ2 error for the I −∩ beta area, which is commonly used.
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Figure 5.6: The absolute error in σ2 for the HB discretization with assessment
error scale of 0.20 as the rank correlation of the extreme values assessments
changes from −1.0 to 1.0.
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Chapter 6

Conclusions and Future Work

This dissertation describes three novel techniques that can be applied to

furthering the practice of Decision Analysis. In Chapter 3, we introduce a

method for improving discretizations for repeated decisions. We find that using

less-extreme values for the percentiles results in more accurate estimates of the

CE even when all the uncertainties are taken from out of sample distributions.

This shows that while discretizations based on the sample distributions are

more accurate when more extreme percentiles such as the 5th and 95th are

in the discretization, the in-sample errors are minimized. But in order to

maintain a discretization that is more effective over a larger set of potential

uncertainties, we recommend less-extreme values such at the P10 and the P90.

In Chapter 4 we borrow from stochastic optimization and introduce the

distance. The HB and EPT follow from the previous research of [12] and

[19] in finding that these two discretizations have the lowest µ and σ2 errors.

Following the formula for distance in Equation (4.6), HB and EPT have the

smallest theoretical distance. But due to the large jumps in probabilities

between the extreme percentiles and the P50, the theoretical distance does not

make as effective a lower bound as it does for ESM and MCS, but most of the

time, HB and EPT also have the lowest actual distance. In Figure 6.1 we show

a heat map for 12 combined uncertainties using the Pearson region without

the Pearson IV distributions. This is just an estimate, but could be indicative
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of a large decision analysis problem encountered by practitioners. If assessors

are assumed to be perfectly calibrated, and there is no correlation between

uncertainties, the clear choice is the HB discretization. The HB discretization

was created to match the mean and variance, and that accuracy translates to

the minimum distance metrics over all regions. The addition of correlation

erodes the dominance of the HB discretization. If the I − ∪beta distribution

and the Pearson V I distributions are the primary sources of uncertainty, then

ESM and EPT are going to be two choices of discretizations.
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Figure 6.1: For selected correlations and sub-regions of the Pearson system we
show the best discretization to use that minimized the total distance in the
simulations.

When comparing some specific P values in the value lottery, we find that

HB and MCS have the lowest errors at each percentile, as seen in Figures

4.16 and 4.17. What these figures also reveal is that the errors increase as the

percentiles increase for ESM and MCS, and that they are more sensitive to

increase in rank correlation than are HB and EPT. But if the main concerns are
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in determining the downside risk of a project, the MCS discretization performs

well until the P50.

Finally, we provide a novel approach to modeling assessment error. This

methodology takes into consideration correlation, bias, and different scales

of assessment error. We show that as the scale of the assessment error in-

creases, so do the discretization’s errors for µ and σ2. We also find that, as

with problem-specific discretizations, the discretizations with less extreme per-

centiles are more robust to errors in the assessment. In the literature, [21] and

[14] found that assessment error, as defined by the surprise index, increases

with more extreme percentiles. So in addition to likely having a larger as-

sessment error scale when using HB or EPT instead than ESM or MCS, the

effect the assessment error scale is larger. Figures 6.2 and 6.3 show the best

discretizations when applying the discretizations in the different regions of the

Pearson system under different assumptions of the scale of the assessment er-

ror and the correlation of the errors of the extreme percentiles. For the mean,

ESM is the most predominant discretization and could be recommended as

long as other metrics are less important. For variance, HB and EPT provide

better estimates, even when including assessment error. When shape-matching

is included in the decision criteria, then Figure 6.1 provides an estimate for

distance when combining multiple uncertainties.

When selecting the proper discretization for a decision analysis problem,

we have recommendations. The first is to determine the model which deter-

mines which items are uncertainties, parameters, and calculations. It is likely

that most calculations will involve both sums and products. This would lead

to a using the discretizations that do better for combined areas. The functional

form of each uncertainty is unknown. But the benefit of the methodology fol-
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lowed by [12] is that just a few pieces of information are required in order to

determine the region of the Pearson system of the uncertainty. For example

yes-no outcomes could be though of as I−∪ beta distributions and results that

are percentage numbers can be modeled as I − ∩ beta distributions. Though

lognormal distributions, which are often used to model oil reservoirs, are not

part of the Pearson system, their skewness and kurtosis fall in the Pearson V I

region. Use the region of the uncertainties that most closely matches a region

in Figure 6.1. When estimating calibration, we recommend a test and training

similar to that of [14]. Instead of general knowledge questions, we recommend

questions about the company and the problem drawn from corporate reports

or historical price data. For every question, the subjects should answer for

the P05, P10, P50, P90, and P95. The P01 and P99 are not necessary as all

the examples in the Table 2.1 are badly calibrated at these levels, and are

much better calibrated at P10 and P90. The surprise index for the extreme

percentile can be used as a proxy for the scale of the error and the correla-

tion between the high and low percentiles can be used to estimate the rank

correlation.

The research presented in this dissertation finds that it is better to err

on the side of robustness than to chase accuracy. In general, MCS and ESM

each have their regions where they perform better in terms of µ, σ2, and

distance. The region of the uncertainties, the number of uncertainties, and

the correlation uncertainties all play a role in the selection of discretizations

for a Decision Analysis problem.

While we explored many techniques on their own, we leave it to future

research to combine these techniques. For example, instead of finding a

problem-specific discretization that minimizes the error of the CE, we can
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find discretizations that minimize the error of the distance. It is also possible

to increase the number of simulations to determine the effect of assessment

error on the distance. Another research topic is to develop a methodology to

estimate the calibration and the rank correlation of the assessors. If a distri-

bution is fit to the estimated percentiles, then the estimates of qp yield both a

rank correlation and a scale of the error. A final avenue of research is to ex-

periment with the use of assessment error when solving for a problem-specific

discretization.
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Appendices

.1 Wildcatter Problem Description

This section of the appendix provides the details of the Wildcatter problem
described by [40]. We cover the uncertainties and their PDFs, the valuation
model, the utility and CE functions, and the sources of risk. We take variants
of this basic problem to construct our decision problem sets in the article.

The problem described by [40] is a wildcatting decision problem. A wild-
catter is an individual or small group of people who drill for oil. There are
four uncertainties that determine the project value. These are the oil price,
reservoir volume, recovery rate, and production cost. We refer readers to the
source in [40] for a visualization of the influence diagram. The present value
of the project given realizations for the four variables is

V alue =

{
1
δ
· (p− c) · k · (1− exp(−δ · T )− C if p > c

−C if p ≤ c,
(1)

where v is the reservoir volume; r is the recovery rate; p is the oil price; c is
the production cost k is a fixed production rate of 100,000 barrels per year;
T = r · v/k is the years of production; δ is a fixed discount rate of 5% per
year; and C are the initial capital expenditures of $2.5 million. In the project
valuation using Formula (1) the wildcatter will lose money for each barrel
pumped if p ≤ c. Even if the wildatter has already made the decision to
expend capital costs C, he or she may choose to not drill when each additional
unit of production is not profitable.

The PDFs of the uncertainties defined by [40] are:
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Reservoir Volume: f( x
106

) = 1√
2π(x−3.5) · exp(− (ln(x−3.5)−0.5)2

0.2
) x

106
≥ 3.5

Recovery: f(x · 102) = 1
15!
· x15 · exp(−x) x ≥ 0

Oil Price: f(x) = 1
40
· 6!
1!4!
· (x−8

40
)1 · (48−x

40
)4 8 ≤ x ≤ 48

Production Cost | Oil Price: f(x, p) =
√
8√
pπ
· exp(−8·(x−p/3−3)2

p
)

The PDFs of the uncertainties and are shown in Figure 4. [40] has additional
visualizations of the cumulative distribution functions for the uncertainties and
the project value. The Wildcatter Problem makes for an interesting problem
in Decision Analysis because the distributions may take on many shapes, may
be non-symmetrical, and the cost is dependent on the oil price. The reservoir
uncertainty follows a lognormal distribution and is bounded from below at
3.5M barrels. The recovery uncertainty is a gamma distributions bounded from
below at 0 percent. It is not bounded from above, though in practical terms
it should be 100 percent. The oil price uncertainty follows a beta distribution
with bounds at 8 and 48 dollars per barrel. Finally, the cost follows a normal
distribution with a mean and standard deviation that are functions on the
price.

From the project values given by equation (1), we are able to generate the
project utility using the equation for utility, (2). From the expected utility
we are able to generate a CE. [40] uses an exponential utility function to
convert the random project value, x, to a utility, u(x), with a risk tolerance
parameter ρ. The expected utilities are converted to a CE. The combination of
the uncertainty PDFs, the valuation model, the utility function, and the risk
tolerance value ρ combine to make one problem instance d ∈ D. The functions
for the utility and CE are defined as:

Utility: ud (x) =− exp (−x/ρd) (2)

Certain Equivalent: CEd =− ρd · ln (−E [ud (x)]) (3)

Target: Td =− exp (−CEd/ρd) . (4)

With the exponential utility function, utility values are between −∞ and
0, and projects with a CE of zero have a utility of -1. Lower risk tolerances
penalize losses more. An infinite risk tolerance makes the CE to be equal to the
expected value of the project. Given a decision problem d ∈ D, we can compute
a CE by sampling project values based on the uncertainty distributions ofd,
converting values to expected utility, and expected utility to a CE.

.2 Eagle Airlines
Eagle Airlines is a problem described by [6] and further refined by [7]

and [?] in the area of fleet expansion. Here we used the information from
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Figure 4: The original distributions are similar to the candidate distributions
given in Figure 3.2. As a point of reference, when using the optimal discretiza-
tions, the independent worst-case had an error of −0.0369 percent, the best
average discretization had an error of −0.0613 percent. The joint best average
discretization yields an error of 0.0199 percent and joint worst case discretiza-
tion yields an error of 0.0823 percent. HB, EPT, ESM, MCS had errors of
0.0357, 0.0411, 0.0337, and −0.6197 percent respectively.
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Table 1: Eagle Airlines parameters

Parameter Value Description
CR 0.5 Charter ratio
PF 40% Percentage financed
I 11.5% Risk-free interest rate
PU $87, 500 Purchase price
IN 20, 000 Insurance cost
CP 3.25 · P Charter price
N 5 Number of seats

Table 2: Eagle Airlines True Distributions

Uncertainty Distribution Parameters Range
P Beta α = 9, β = 15 [$81.94, $133.96]
H Beta α = 9, β = 15 [66.91, 1, 136.26]
C Beta α = 9, β = 15 [0, 1]
O Normal µ = 245, σ = 11.72 (−∞,∞)

[?] and the functional forms and rank correlations for the uncertainties given
by [26]. In this problem the owner of Eagle Airlines must decide whether or
not to expand his fleet with the purchase of one plane. The alternative is to
invest the money in a money market earning a certain return. The problem
has several uncertainties has determined the uncertainties whose outcomes can
affect the decision to go forward with the purchase or not. These uncertainties
are are price (P ), hours flown (H), capacity (C), and operational cost (O).
The owner is risk neutral and will make the decision based on comparing the
expected profit to the risk-free return of the money market.

In addition to the uncertainties, the owner uses the following parameters
in the profit calculation:

The true distributions for the uncertainties are:

The formulas for revenue, costs and profits are:

Cost = H ·O + IN + PU · PF · I (5)

Revenue = CR ·H · CP + (1− CR) ·H · C ·N · P (6)

Profit = Revenue− Cost (7)

Furthermore, the uncertainties are have a Spearman rank correlation with
each other:
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Table 3: Eagle Airlines Uncertainty
Correlations

Spearman correlation
Uncertainty P H C O
P 1
H -0.5 1
C -0.25 0.5 1
O 0 0 0.25 1

In order to calculate the expected mean for this problem we sample us-
ing the methods described in [17]. For the discretizations, we generate the
correlated uniform values from the percentile discretizations which we then
use to generate the Pearson rank correlated uncertainty values. When using
rank correlation, the correlation is similar to using a Cholesky decomposition
to generate correlated variables, but first, the matrix is adjusted using the
following formula:

CorrMatrix = 2 · sin
(
RankCorrMatrix · π

6

)
. (8)

.3 Probability of Normal Tables

This section provides the tables with the probabilities of a sum, or a sum
of products of being a normal distribution. As the number of uncertainties
increases, so does he probability of normality. Using a fixed mean and variance
increases the probability of normality. Taking the product of two uncertainties
before summing the products reduces the probability of normality. Increasing
the correlation decreases the probability of normality.
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Table 4: Probability of Normal in the Pearson Region

Uncertainties

Sum Combined

ρ µ, σ2 1 2 5 10 15 20 10

0.00 variable 0.000 0.000 0.000 0.018 0.103 0.200 0.002
0.00 fixed 0.000 0.000 0.004 0.093 0.306 0.494 0.000
0.25 variable 0.000 0.000 0.000 0.015 0.041 0.087 0.000
0.25 fixed 0.000 0.001 0.005 0.032 0.068 0.125 0.000
0.50 variable 0.000 0.000 0.004 0.009 0.024 0.032 0.000
0.50 fixed 0.000 0.000 0.003 0.013 0.022 0.028 0.000
0.75 variable 0.000 0.000 0.002 0.003 0.005 0.007 0.000
0.75 fixed 0.000 0.001 0.002 0.007 0.004 0.009 0.000
1.00 variable 0.000 0.001 0.002 0.000 0.002 0.000 0.000
1.00 fixed 0.001 0.002 0.002 0.003 0.002 0.001 0.000

.4 Bounding Functions

An example of a a bad bounding function, and an indication the theoret-
ical distance formula will not apply very well is visible for the case of EPT as
seen in Table 13. In Figure 4.10 we see the pattern for EPT when summing
20 uncertainties with a fixed µ and σ2. In this case the slope for the lower
bound is negative, indicating the error in the distance decreases as the theoret-
ical distance increases. The high initial intercept also indicates the bounding
function is inaccurate. Here the lower bound is lb = 11.315−0.1Dtheo. The up-
per bound also indicates the true distance decreases relative to the theoretical
distance, ub = 11.635− 0.482Dtheo.
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Table 5: Probability of being normal for the I-∩ region

Uncertainties

Sum Combined

ρ µ, σ2 1 2 5 10 15 20 10

0.00 variable 0.001 0.006 0.037 0.144 0.286 0.453 0.004
0.00 fixed 0.000 0.009 0.056 0.309 0.525 0.665 0.001
0.25 variable 0.001 0.004 0.046 0.162 0.291 0.348 0.000
0.25 fixed 0.002 0.015 0.075 0.230 0.280 0.359 0.000
0.50 variable 0.000 0.012 0.055 0.142 0.199 0.260 0.000
0.50 fixed 0.000 0.014 0.079 0.161 0.221 0.272 0.000
0.75 variable 0.000 0.018 0.073 0.125 0.160 0.203 0.000
0.75 fixed 0.000 0.028 0.070 0.145 0.179 0.202 0.000
1.00 variable 0.002 0.023 0.035 0.074 0.102 0.129 0.000
1.00 fixed 0.000 0.033 0.063 0.083 0.124 0.155 0.000

Table 6: Probability of being normal for the Pearson region, excluding Pear-
son IV

Uncertainties

Sum Combined

ρ µ, σ2 1 2 5 10 15 20 10

0.00 variable 0.000 0.001 0.004 0.039 0.125 0.236 0.006
0.00 fixed 0.000 0.001 0.007 0.150 0.397 0.558 0.001
0.25 variable 0.000 0.000 0.000 0.030 0.107 0.189 0.002
0.25 fixed 0.000 0.002 0.011 0.087 0.164 0.232 0.000
0.50 variable 0.000 0.002 0.004 0.018 0.065 0.095 0.000
0.50 fixed 0.000 0.002 0.005 0.050 0.088 0.114 0.000
0.75 variable 0.000 0.003 0.002 0.010 0.008 0.022 0.000
0.75 fixed 0.000 0.003 0.004 0.009 0.013 0.019 0.000
1.00 variable 0.002 0.001 0.005 0.002 0.003 0.000 0.000
1.00 fixed 0.000 0.003 0.001 0.002 0.002 0.003 0.000
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Table 7: Probability of being normal for the I-J region

Uncertainties

Sum Combined

ρ µ, σ2 1 2 5 10 15 20 10

0.00 variable 0.000 0.000 0.000 0.007 0.046 0.134 0.004
0.00 fixed 0.000 0.000 0.000 0.037 0.250 0.425 0.000
0.25 variable 0.000 0.000 0.001 0.009 0.044 0.088 0.000
0.25 fixed 0.000 0.000 0.003 0.024 0.093 0.159 0.000
0.50 variable 0.000 0.000 0.002 0.011 0.044 0.068 0.000
0.50 fixed 0.000 0.000 0.001 0.026 0.039 0.068 0.000
0.75 variable 0.000 0.000 0.000 0.009 0.023 0.033 0.000
0.75 fixed 0.000 0.000 0.003 0.026 0.019 0.023 0.000
1.00 variable 0.000 0.001 0.004 0.005 0.008 0.016 0.000
1.00 fixed 0.000 0.004 0.002 0.010 0.004 0.004 0.000

Table 8: Probability of being normal for the I- ∪ region

Uncertainties

Sum Combined

ρ µ, σ2 1 2 5 10 15 20 10

0.00 variable 0.000 0.000 0.000 0.053 0.226 0.350 0.010
0.00 fixed 0.000 0.000 0.002 0.172 0.488 0.623 0.011
0.25 variable 0.000 0.000 0.000 0.027 0.075 0.120 0.013
0.25 fixed 0.000 0.000 0.000 0.043 0.129 0.160 0.000
0.50 variable 0.000 0.000 0.000 0.000 0.002 0.010 0.001
0.50 fixed 0.000 0.000 0.000 0.000 0.004 0.010 0.000
0.75 variable 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.75 fixed 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.00 variable 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.00 fixed 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Table 9: Bounding for EPT in I-∩ Beta Region with ρ = 0.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.793 0.138 -0.848 0.320
5 sum fixed True 0.182 0.147 -1.638 0.285
5 sum variable False 2.069 0.261 -0.288 1.095
5 sum variable True 1.479 0.343 -0.189 0.847

10 sum fixed False 0.629 0.044 -0.735 0.216
10 sum fixed True 0.606 0.044 -0.548 0.198
10 sum variable False 0.610 0.115 0.004 0.492
10 sum variable True 0.721 0.113 0.585 0.280
15 sum fixed False 0.358 0.047 0.227 0.126
15 sum fixed True 0.599 0.036 -0.307 0.149
15 sum variable False 0.574 0.128 0.090 0.457
15 sum variable True 0.694 0.102 0.071 0.395
20 combined fixed False 0.467 0.077 -0.092 0.272
20 combined variable False 0.746 1.001 -1.006 10.869
20 sum fixed False 0.512 0.043 0.327 0.101
20 sum fixed True 0.631 0.036 0.152 0.106
20 sum variable False 0.751 0.110 0.162 0.459
20 sum variable True 0.538 0.142 0.412 0.383
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Table 10: Bounding for EPT in I-∩ Beta Region with ρ = 0.25

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.463 0.175 0.391 0.303
5 sum fixed True 0.475 0.173 0.863 0.164
5 sum variable False 1.061 0.137 0.626 1.012
5 sum variable True 1.304 0.037 1.041 0.517

10 sum fixed False 0.598 0.141 0.831 0.101
10 sum fixed True 0.663 0.126 0.730 0.152
10 sum variable False 0.809 0.048 0.994 0.102
10 sum variable True 0.943 -0.075 1.017 0.017
15 sum fixed False 0.797 0.076 0.801 0.157
15 sum fixed True 0.847 0.054 1.014 -0.017
15 sum variable False 0.963 -0.263 0.944 0.156
15 sum variable True 0.933 -0.098 0.922 0.239
20 combined fixed False 0.235 0.655 0.261 0.805
20 combined variable False 0.555 2.531 0.395 12.475
20 sum fixed False 0.821 0.098 0.808 0.209
20 sum fixed True 0.736 0.214 0.942 0.062
20 sum variable False 0.904 -0.051 1.034 -0.155
20 sum variable True 0.959 -0.198 0.916 0.311
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Table 11: Bounding for EPT in I-∩ Beta Region with ρ = 0.5

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.583 0.237 1.186 0.161
5 sum fixed True 0.653 0.228 0.959 0.180
5 sum variable False 1.270 0.018 0.878 1.240
5 sum variable True 1.396 0.004 0.897 0.934

10 sum fixed False 0.462 0.396 0.703 0.346
10 sum fixed True 0.748 0.206 1.236 -0.076
10 sum variable False 1.041 -0.235 1.081 0.287
10 sum variable True 0.992 0.134 1.051 0.294
15 sum fixed False 0.611 0.425 0.339 0.937
15 sum fixed True 1.031 -0.045 0.895 0.241
15 sum variable False 0.916 0.138 1.031 0.354
15 sum variable True 1.007 -0.052 1.020 0.345
20 combined fixed False 0.146 1.662 0.064 2.333
20 combined variable False 0.492 4.182 0.531 14.194
20 sum fixed False 0.411 0.942 0.480 1.025
20 sum fixed True 1.045 -0.111 1.051 0.043
20 sum variable False 0.973 -0.056 1.014 0.455
20 sum variable True 0.998 -0.058 1.031 0.310
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Table 12: Bounding for EPT in I-∩ Beta Region with ρ = 0.75

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.540 0.681 0.606 0.753
5 sum fixed True 0.437 0.737 0.603 0.714
5 sum variable False 2.092 0.149 1.864 1.497
5 sum variable True 2.314 0.083 1.920 1.215

10 sum fixed False 0.656 0.831 0.400 1.238
10 sum fixed True 0.614 0.889 0.376 1.222
10 sum variable False 1.532 0.107 1.608 0.817
10 sum variable True 1.518 0.246 1.468 1.053
15 sum fixed False 0.391 1.518 0.261 1.912
15 sum fixed True 0.578 1.264 1.015 0.772
15 sum variable False 1.492 -0.297 1.504 0.692
15 sum variable True 1.279 0.909 1.390 1.098
20 combined fixed False 0.096 3.384 -0.009 4.651
20 combined variable False 0.454 8.205 0.578 24.103
20 sum fixed False 0.542 1.670 0.412 2.180
20 sum fixed True 0.393 1.988 0.940 1.073
20 sum variable False 1.340 0.250 1.501 0.392
20 sum variable True 1.392 0.049 1.345 1.249
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Table 13: Bounding for EPT in I-∩ Beta Region with ρ = 1.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.204 2.784 -0.805 2.971
5 sum fixed True 0.764 2.797 -0.758 2.937
5 sum variable False 13.854 4.883 -0.743 14.490
5 sum variable True 22.642 4.051 -3.939 13.323

10 sum fixed False 0.324 5.600 -0.375 5.881
10 sum fixed True 0.625 5.623 0.067 5.796
10 sum variable False 8.978 12.943 0.710 26.088
10 sum variable True 8.274 15.055 2.910 23.149
15 sum fixed False 0.201 8.432 -0.323 8.793
15 sum fixed True 0.025 8.505 -0.531 8.737
15 sum variable False 7.828 21.554 -1.145 38.016
15 sum variable True 14.422 20.309 -1.190 35.224
20 combined fixed False 0.312 12.498 0.120 15.972
20 combined variable False 1.088 56.215 -0.085 206.595
20 sum fixed False 0.257 11.257 -0.221 11.691
20 sum fixed True -0.010 11.315 -0.482 11.635
20 sum variable False 5.816 30.912 0.269 48.595
20 sum variable True 5.129 32.345 -2.809 48.243
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Table 14: Bounding for EPT in I-J Beta Region with ρ = 0.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 1.583 0.152 0.999 0.446
5 sum variable False 1.273 0.299 0.798 1.537

10 sum fixed False 1.133 0.047 1.300 0.175
10 sum fixed True 1.215 0.025 1.365 0.088
10 sum variable False 1.034 0.077 0.868 0.617
15 sum fixed False 1.008 0.027 1.093 0.090
15 sum fixed True 1.041 0.009 1.010 0.091
15 sum variable False 0.948 0.103 0.871 0.515
15 sum variable True 0.949 0.062 0.799 0.440
20 combined fixed False 0.773 0.189 0.763 0.382
20 combined variable False 0.826 1.276 0.717 12.873
20 sum fixed False 0.958 0.022 0.974 0.075
20 sum fixed True 1.001 0.005 0.978 0.069
20 sum variable False 0.952 0.083 0.902 0.424
20 sum variable True 0.918 0.132 0.977 0.268

Table 15: Bounding for EPT in I-J Beta Region with ρ = 0.25

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False -0.250 0.380 -0.178 0.680
5 sum variable False 0.833 0.635 0.094 2.394

10 sum fixed False 0.255 0.240 -0.293 0.529
10 sum variable False 0.624 0.256 0.276 1.066
15 sum fixed False 0.694 0.083 0.704 0.161
15 sum fixed True 0.845 0.018 0.884 0.061
15 sum variable False 0.750 0.001 0.820 0.353
15 sum variable True 0.828 -0.012 1.051 -0.057
20 combined fixed False 0.276 0.412 0.322 0.630
20 combined variable False 0.807 1.095 0.376 19.719
20 sum fixed False 0.858 -0.022 0.920 0.030
20 sum fixed True 1.053 -0.140 0.964 0.000
20 sum variable False 0.897 -0.279 0.932 0.084
20 sum variable True 1.093 -0.603 0.945 0.082
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Table 16: Bounding for EPT in I-J Beta Region with ρ = 0.5

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False -0.165 0.539 -0.532 0.802
5 sum variable False 0.740 0.904 -0.259 3.250

10 sum fixed False 0.294 0.386 0.404 0.474
10 sum variable False 0.745 0.395 0.558 1.524
15 sum fixed False 0.748 0.117 0.870 0.183
15 sum fixed True 0.923 0.054 1.076 0.020
15 sum variable False 0.968 -0.295 0.995 0.458
15 sum variable True 1.016 -0.011 1.137 0.074
20 combined fixed False 0.240 0.832 0.177 1.645
20 combined variable False 0.514 4.946 0.182 31.954
20 sum fixed False 0.955 -0.087 1.137 -0.084
20 sum fixed True 0.993 -0.035 1.005 0.051
20 sum variable False 0.897 -0.177 1.081 0.043
20 sum variable True 0.979 -0.122 1.116 -0.075

Table 17: Bounding for EPT in I-J Beta Region with ρ = 0.75

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.115 0.884 -0.026 1.018
5 sum variable False 1.389 1.597 0.168 4.758

10 sum fixed False 0.353 1.053 0.521 1.113
10 sum variable False 1.169 1.809 0.684 4.560
15 sum fixed False 0.567 1.152 0.744 1.206
15 sum variable False 1.109 2.068 0.899 4.438
20 combined fixed False 0.401 1.624 0.195 3.443
20 combined variable False 0.601 5.435 0.286 50.664
20 sum fixed False 0.597 1.398 0.736 1.460
20 sum variable False 1.088 2.451 1.067 4.244
20 sum variable True 1.314 1.507 1.055 3.944
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Table 18: Bounding for EPT in I-J Beta Region with ρ = 1.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False -0.386 2.622 -0.486 2.821
5 sum variable False 1.900 4.852 -0.672 13.735

10 sum fixed False -0.426 5.276 -0.531 5.577
10 sum variable False 2.311 11.575 -0.282 24.367
15 sum fixed False -0.535 7.969 -0.481 8.301
15 sum variable False 2.152 19.171 -0.400 35.234
20 combined fixed False -0.090 11.246 -0.678 17.207
20 combined variable False 0.914 38.447 -0.308 220.186
20 sum fixed False -0.503 10.641 -0.500 11.042
20 sum variable False 1.912 26.952 -0.104 45.007

Table 19: Bounding for EPT in Pearson Region with ρ = 0.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.833 0.090 0.548 0.323
5 sum variable False 0.915 0.231 0.569 1.258

10 sum fixed False 0.979 0.004 0.857 0.109
10 sum fixed True 0.994 -0.003 0.922 0.079
10 sum variable False 0.977 -0.007 0.833 0.551
15 sum fixed False 0.994 -0.010 0.914 0.083
15 sum fixed True 0.995 -0.006 0.911 0.074
15 sum variable False 1.002 -0.047 0.871 0.488
15 sum variable True 1.009 -0.054 0.882 0.388
20 combined fixed False 0.942 0.022 0.656 0.377
20 combined variable False 1.031 -0.902 0.728 10.305
20 sum fixed False 0.989 -0.008 0.919 0.085
20 sum fixed True 0.975 -0.000 0.935 0.070
20 sum variable False 1.002 -0.054 0.890 0.444
20 sum variable True 1.002 -0.070 0.928 0.389
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Table 20: Bounding for EPT in Pearson Region with ρ = 0.25

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.807 0.112 0.377 0.440
5 sum variable False 0.968 0.163 0.629 1.501

10 sum fixed False 0.919 -0.059 0.938 0.089
10 sum fixed True 1.226 -0.206 0.906 0.083
10 sum variable False 0.974 -0.323 0.958 0.356
15 sum fixed False 0.883 -0.069 1.015 -0.002
15 sum fixed True 1.157 -0.254 1.045 -0.021
15 sum variable False 1.034 -0.675 1.030 0.054
15 sum variable True 1.297 -1.326 1.019 0.009
20 combined fixed False 0.389 0.209 0.591 0.409
20 combined variable False 0.822 -2.712 0.704 12.243
20 sum fixed False 0.904 -0.099 1.051 -0.079
20 sum fixed True 1.059 -0.202 1.007 -0.024
20 sum variable False 0.929 -0.492 1.006 -0.055
20 sum variable True 1.130 -1.009 1.060 -0.248

Table 21: Bounding for EPT in Pearson Region with ρ = 0.5

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.682 0.215 0.486 0.488
5 sum variable False 0.891 0.345 0.301 2.540

10 sum fixed False 0.733 0.062 0.840 0.210
10 sum variable False 0.753 0.159 0.853 0.891
15 sum fixed False 0.875 -0.102 1.048 -0.027
15 sum variable False 0.830 -0.234 0.983 0.326
20 combined fixed False 0.289 0.662 0.313 1.399
20 combined variable False 0.333 5.426 0.391 24.663
20 sum fixed False 0.883 -0.130 1.055 -0.074
20 sum variable False 0.809 -0.129 1.036 -0.053
20 sum variable True 0.979 -0.217 0.906 0.694
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Table 22: Bounding for EPT in Pearson Region with ρ = 0.75

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.649 0.574 0.652 0.775
5 sum variable False 1.250 0.866 0.596 3.765

10 sum fixed False 0.673 0.657 0.726 0.876
10 sum variable False 0.832 1.682 0.735 3.826
15 sum fixed False 0.600 0.941 0.850 0.927
15 sum variable False 0.732 2.625 0.848 3.764
20 combined fixed False 0.218 2.340 0.188 3.459
20 combined variable False 0.307 8.984 0.238 46.645
20 sum fixed False 0.604 1.179 0.879 1.036
20 sum variable False 0.802 2.731 0.967 3.599

Table 23: Bounding for EPT in Pearson Region with ρ = 1.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False -0.388 2.260 -0.332 2.995
5 sum variable False 1.291 4.516 -0.796 14.301

10 sum fixed False -0.113 4.803 -0.338 5.875
10 sum variable False 0.891 12.667 -1.597 26.448
15 sum fixed False -0.070 7.323 -0.220 8.689
15 sum variable False 1.642 19.430 -1.068 37.356
20 combined fixed False 0.184 11.459 -0.041 16.638
20 combined variable False 0.351 56.178 -0.098 212.717
20 sum fixed False -0.054 9.932 -0.551 11.626
20 sum variable False 0.161 30.078 -1.377 48.466
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Table 24: Bounding for EPT in Pearson Region without Pearson IV with
ρ = 0.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.883 0.098 0.578 0.463
5 sum variable False 0.898 0.276 0.578 1.606

10 sum fixed False 0.973 0.008 0.833 0.182
10 sum fixed True 1.000 -0.008 0.883 0.115
10 sum variable False 0.980 -0.005 0.870 0.551
10 sum variable True 0.914 -0.011 0.992 0.354
15 sum fixed False 1.007 -0.019 0.943 0.081
15 sum fixed True 0.990 -0.011 0.951 0.082
15 sum variable False 0.983 -0.031 0.924 0.397
15 sum variable True 0.997 -0.101 0.943 0.360
20 combined fixed False 0.943 0.023 0.807 0.324
20 combined variable False 0.956 -1.301 0.739 11.949
20 sum fixed False 0.981 -0.008 0.964 0.067
20 sum fixed True 1.002 -0.026 0.969 0.064
20 sum variable False 0.987 -0.043 0.951 0.355
20 sum variable True 0.963 -0.045 1.004 0.232
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Table 25: Bounding for EPT in Pearson Region without Pearson IV with
ρ = 0.25

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.852 0.147 0.370 0.604
5 sum variable False 0.940 0.342 0.506 2.108

10 sum fixed False 0.998 -0.014 0.762 0.271
10 sum fixed True 0.946 0.012 0.831 0.193
10 sum variable False 1.007 -0.113 0.878 0.696
15 sum fixed False 1.048 -0.094 0.939 0.121
15 sum fixed True 1.020 -0.058 0.865 0.146
15 sum variable False 0.870 -0.011 0.755 0.853
15 sum variable True 0.925 -0.042 1.012 0.195
20 combined fixed False 0.713 0.007 0.599 0.628
20 combined variable False 0.954 -1.017 0.609 17.087
20 sum fixed False 1.038 -0.106 1.003 0.079
20 sum fixed True 1.113 -0.162 1.035 0.020
20 sum variable False 0.900 -0.115 0.816 0.772
20 sum variable True 1.065 -0.457 1.033 0.186
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Table 26: Bounding for EPT in Pearson Region without Pearson IV with
ρ = 0.5

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.763 0.278 0.375 0.692
5 sum variable False 0.968 0.570 0.427 2.757

10 sum fixed False 0.895 0.074 0.705 0.420
10 sum fixed True 0.914 0.093 0.757 0.291
10 sum variable False 0.900 0.255 0.809 1.428
15 sum fixed False 0.972 -0.033 1.005 0.187
15 sum fixed True 1.110 -0.101 0.910 0.242
15 sum variable False 1.016 -0.224 0.961 0.917
15 sum variable True 1.123 -0.360 0.983 0.698
20 combined fixed False 0.389 0.476 0.495 1.118
20 combined variable False 0.819 -1.863 0.544 25.712
20 sum fixed False 1.014 -0.105 1.131 0.057
20 sum fixed True 1.026 -0.041 0.970 0.192
20 sum variable False 0.972 -0.121 1.058 0.621
20 sum variable True 0.952 0.070 1.073 0.399

Table 27: Bounding for EPT in Pearson Region without Pearson IV with
ρ = 0.75

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.777 0.588 0.550 0.912
5 sum variable False 1.025 1.271 0.352 4.485

10 sum fixed False 0.760 0.724 0.805 0.984
10 sum variable False 1.006 1.797 0.769 4.453
15 sum fixed False 0.828 0.841 0.875 1.123
15 sum variable False 1.035 2.159 0.751 5.237
20 combined fixed False 0.388 1.694 0.300 3.051
20 combined variable False 0.507 7.556 0.445 44.104
20 sum fixed False 0.924 0.909 0.938 1.239
20 sum variable False 1.088 2.335 0.959 4.991

160



Table 28: Bounding for EPT in Pearson Region without Pearson IV with
ρ = 1.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False -0.519 2.026 -0.134 2.871
5 sum variable False 1.259 3.637 -0.741 13.990

10 sum fixed False -0.722 4.508 -0.734 5.745
10 sum variable False 0.392 11.752 -0.500 23.486
15 sum fixed False -0.782 6.987 -0.808 8.504
15 sum variable False 0.242 19.157 -1.171 35.468
20 combined fixed False 0.052 9.803 -0.523 16.294
20 combined variable False 1.110 27.821 -0.080 194.576
20 sum fixed False -0.786 9.446 -1.038 11.368
20 sum variable False -0.361 29.270 -0.883 44.840

Table 29: Bounding for EPT in I-∪ Beta Region with ρ = 0.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.848 0.165 0.578 0.561
5 sum variable False 0.882 0.381 0.609 1.962

10 sum fixed False 0.965 0.028 0.740 0.445
10 sum fixed True 0.973 0.013 0.803 0.337
10 sum variable False 0.974 -0.005 0.917 0.594
10 sum variable True 0.858 0.179 0.995 0.421
15 sum fixed False 0.990 -0.006 0.830 0.334
15 sum fixed True 0.956 0.016 0.868 0.265
15 sum variable False 1.008 -0.198 0.972 0.317
15 sum variable True 0.992 -0.142 0.983 0.246
20 combined fixed False 0.961 -0.067 0.994 0.188
20 combined variable False 0.972 -4.993 0.945 7.582
20 sum fixed False 0.997 -0.019 0.896 0.220
20 sum fixed True 1.002 -0.032 0.914 0.202
20 sum variable False 1.003 -0.176 0.997 0.232
20 sum variable True 1.005 -0.177 1.012 0.170

161



Table 30: Bounding for EPT in I-∪ Beta Region with ρ = 0.25

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.771 0.239 0.369 0.705
5 sum variable False 0.881 0.482 0.641 2.297

10 sum fixed False 0.924 0.078 0.611 0.594
10 sum fixed True 0.882 0.100 0.663 0.453
10 sum variable False 0.949 0.162 0.823 1.110
15 sum fixed False 0.964 0.032 0.750 0.481
15 sum fixed True 0.925 0.057 0.729 0.472
15 sum variable False 0.974 0.013 0.903 0.765
15 sum variable True 0.975 -0.058 0.920 0.503
20 combined fixed False 0.896 0.131 0.789 0.668
20 combined variable False 0.941 -3.236 0.893 10.706
20 sum fixed False 0.967 0.024 0.822 0.380
20 sum fixed True 0.947 0.033 0.755 0.419
20 sum variable False 0.996 -0.104 0.928 0.729
20 sum variable True 0.936 -0.026 0.997 0.475

Table 31: Bounding for EPT in I-∪ Beta Region with ρ = 0.5

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.739 0.301 0.486 0.736
5 sum variable False 0.946 0.499 0.512 3.018

10 sum fixed False 0.817 0.253 0.602 0.703
10 sum variable False 0.867 0.604 0.795 2.163
15 sum fixed False 0.863 0.196 0.734 0.647
15 sum variable False 0.928 0.335 0.849 2.000
20 combined fixed False 0.879 0.281 0.618 1.270
20 combined variable False 1.025 -3.493 0.843 15.832
20 sum fixed False 0.909 0.146 0.814 0.619
20 sum variable False 0.945 0.222 0.866 2.181
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Table 32: Bounding for EPT in I-∪ Beta Region with ρ = 0.75

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.756 0.367 0.652 0.914
5 sum variable False 0.955 0.768 0.488 4.391

10 sum fixed False 0.858 0.530 0.733 1.161
10 sum variable False 0.858 1.455 0.642 4.947
15 sum fixed False 0.698 0.711 0.897 1.324
15 sum variable False 0.766 1.994 0.672 6.005
20 combined fixed False 0.825 0.908 0.461 2.723
20 combined variable False 0.985 0.857 0.763 30.114
20 sum fixed False 0.813 0.737 0.796 1.646
20 sum variable False 0.764 2.473 0.740 6.665

Table 33: Bounding for EPT in I-∪ Beta Region with ρ = 1.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.265 1.022 -0.292 2.560
5 sum variable False 1.308 0.766 -0.046 10.498

10 sum fixed False -0.178 2.905 -0.592 4.952
10 sum variable False 0.662 6.307 -0.281 19.126
15 sum fixed False -0.006 4.367 -0.481 7.002
15 sum variable False 0.281 12.940 -0.147 26.296
20 combined fixed False 0.491 4.786 0.234 9.780
20 combined variable False 1.065 -0.126 1.046 67.446
20 sum fixed False -0.440 6.618 -0.573 9.246
20 sum variable False 0.137 18.643 -0.348 34.597
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Table 34: Bounding for ESM in I-∩ Beta Region with ρ = 0.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.754 0.069 0.400 0.217
5 sum fixed True 0.089 0.117 0.868 0.162
5 sum variable False 0.791 0.164 0.504 0.789
5 sum variable True 0.901 0.227 0.606 0.534

10 sum fixed False 0.712 0.021 0.570 0.114
10 sum fixed True 0.523 0.033 0.668 0.088
10 sum variable False 0.581 0.113 0.528 0.574
10 sum variable True 0.515 0.125 0.161 0.468
15 sum fixed False 0.667 0.023 0.665 0.087
15 sum fixed True 0.679 0.017 0.609 0.076
15 sum variable False 0.567 0.120 0.562 0.515
15 sum variable True 0.658 0.079 0.461 0.349
20 combined fixed False 0.287 0.161 0.125 0.393
20 combined variable False 0.620 0.998 0.251 11.133
20 sum fixed False 0.764 0.013 0.612 0.098
20 sum fixed True 0.692 0.021 0.647 0.076
20 sum variable False 0.612 0.111 0.558 0.523
20 sum variable True 0.620 0.106 0.527 0.367
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Table 35: Bounding for ESM in I-∩ Beta Region with ρ = 0.25

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.570 0.132 0.696 0.222
5 sum fixed True 0.186 0.188 0.221 0.239
5 sum variable False 0.825 0.224 0.698 0.835
5 sum variable True 0.655 0.372 0.484 0.816

10 sum fixed False 0.672 0.036 0.677 0.183
10 sum fixed True 0.599 0.059 0.551 0.140
10 sum variable False 0.577 0.284 0.826 0.436
10 sum variable True 0.650 0.131 0.564 0.545
15 sum fixed False 0.744 -0.025 0.582 0.277
15 sum fixed True 0.627 0.047 0.697 0.055
15 sum variable False 0.667 0.096 0.727 0.641
15 sum variable True 0.628 0.169 0.699 0.226
20 combined fixed False 0.360 0.399 0.272 0.811
20 combined variable False 0.502 1.746 0.385 14.438
20 sum fixed False 0.764 -0.059 0.506 0.411
20 sum fixed True 0.680 0.011 0.625 0.139
20 sum variable False 0.685 0.055 0.855 0.240
20 sum variable True 0.679 0.016 0.717 0.173
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Table 36: Bounding for ESM in I-∩ Beta Region with ρ = 0.5

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.536 0.323 0.704 0.362
5 sum fixed True 0.312 0.387 0.347 0.416
5 sum variable False 1.093 0.396 0.818 1.469
5 sum variable True 1.378 0.333 0.889 1.249

10 sum fixed False 0.531 0.443 0.651 0.460
10 sum fixed True 0.483 0.473 0.469 0.550
10 sum variable False 0.958 0.490 0.891 1.372
10 sum variable True 1.102 0.288 0.964 1.100
15 sum fixed False 0.612 0.515 0.646 0.596
15 sum fixed True 0.511 0.608 0.572 0.629
15 sum variable False 0.842 0.901 0.821 1.760
15 sum variable True 0.997 0.439 0.961 1.120
20 combined fixed False 0.344 0.955 0.370 1.116
20 combined variable False 0.486 2.323 0.512 19.925
20 sum fixed False 0.523 0.755 0.585 0.803
20 sum fixed True 0.528 0.745 0.493 0.896
20 sum variable False 0.868 0.903 0.864 1.772
20 sum variable True 0.919 0.751 0.882 1.509
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Table 37: Bounding for ESM in I-∩ Beta Region with ρ = 0.75

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.490 0.702 0.472 0.803
5 sum fixed True 0.466 0.754 0.553 0.779
5 sum variable False 1.327 1.006 0.986 3.050
5 sum variable True 2.359 0.495 1.708 1.966

10 sum fixed False 0.627 1.089 0.537 1.248
10 sum fixed True 0.601 1.131 0.589 1.200
10 sum variable False 1.221 1.795 1.093 3.925
10 sum variable True 1.786 0.817 1.530 2.522
15 sum fixed False 0.479 1.734 0.369 1.970
15 sum fixed True 0.719 1.486 0.489 1.843
15 sum variable False 1.317 2.289 1.234 4.634
15 sum variable True 1.612 1.712 1.070 5.088
20 combined fixed False 0.277 2.470 0.245 3.152
20 combined variable False 0.547 -0.108 0.575 30.486
20 sum fixed False 0.574 2.139 0.464 2.439
20 sum fixed True 0.564 2.184 0.620 2.206
20 sum variable False 1.326 2.962 1.293 5.428
20 sum variable True 1.546 2.317 1.259 5.297
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Table 38: Bounding for ESM in I-∩ Beta Region with ρ = 1.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.156 2.396 -0.100 2.537
5 sum fixed True 0.037 2.442 0.055 2.513
5 sum variable False 3.131 4.675 -1.170 12.930
5 sum variable True 15.569 3.355 1.813 10.457

10 sum fixed False 0.192 4.813 -0.091 5.042
10 sum fixed True 0.306 4.860 0.022 5.011
10 sum variable False 5.018 10.620 1.352 21.662
10 sum variable True 2.952 13.603 0.285 20.852
15 sum fixed False 0.263 7.232 0.043 7.516
15 sum fixed True 0.661 7.248 0.067 7.508
15 sum variable False 1.871 19.933 -1.016 33.059
15 sum variable True 4.737 19.753 1.409 28.936
20 combined fixed False 0.592 9.156 0.460 12.006
20 combined variable False 0.726 26.089 0.504 142.662
20 sum fixed False 0.288 9.657 0.034 10.016
20 sum fixed True 0.527 9.643 -0.023 10.017
20 sum variable False 2.783 26.802 0.274 41.889
20 sum variable True 4.526 27.607 0.271 40.277

168



Table 39: Bounding for ESM in I-J Beta Region with ρ = 0.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.886 0.093 0.298 0.397
5 sum variable False 1.084 0.090 0.641 1.164

10 sum fixed False 1.063 -0.028 0.882 0.125
10 sum fixed True 0.825 0.023 0.700 0.082
10 sum variable False 1.004 -0.087 0.908 0.590
15 sum fixed False 1.074 -0.038 0.977 0.075
15 sum fixed True 1.003 -0.031 0.978 0.044
15 sum variable False 1.088 -0.206 0.942 0.447
15 sum variable True 0.675 0.119 0.885 0.233
20 combined fixed False 0.530 0.143 0.807 0.370
20 combined variable False 1.012 -1.111 0.435 16.132
20 sum fixed False 1.101 -0.062 0.952 0.081
20 sum fixed True 1.094 -0.052 1.010 0.036
20 sum variable False 1.058 -0.181 0.972 0.401
20 sum variable True 0.941 -0.104 1.014 0.145

Table 40: Bounding for ESM in I-J Beta Region with ρ = 0.25

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.724 0.165 0.546 0.436
5 sum variable False 0.826 0.395 0.954 1.299

10 sum fixed False 0.462 0.171 1.425 0.008
10 sum variable False 0.560 0.508 1.182 0.547
15 sum fixed False 0.526 0.155 1.523 -0.158
15 sum fixed True 0.579 0.105 0.441 0.267
15 sum variable False 0.653 0.264 1.286 0.158
15 sum variable True 0.535 0.544 0.491 0.900
20 combined fixed False 0.493 0.226 0.399 0.936
20 combined variable False 0.517 2.414 0.481 18.499
20 sum fixed False 0.595 0.133 1.504 -0.280
20 sum fixed True 0.599 0.097 0.583 0.217
20 sum variable False 0.659 0.257 1.254 -0.108
20 sum variable True 0.624 0.366 0.576 0.920
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Table 41: Bounding for ESM in I-J Beta Region with ρ = 0.25

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.677 0.350 0.516 0.629
5 sum variable False 1.129 0.547 0.693 2.534

10 sum fixed False 0.715 0.426 0.874 0.575
10 sum variable False 1.024 0.679 0.797 2.512
15 sum fixed False 0.445 0.782 0.783 0.751
15 sum fixed True 0.255 0.921 0.132 1.136
15 sum variable False 0.918 1.073 0.827 2.835
15 sum variable True 0.847 1.306 0.366 3.751
20 combined fixed False 0.380 0.930 0.427 1.295
20 combined variable False 0.519 3.078 0.421 30.643
20 sum fixed False 0.410 1.023 0.815 0.838
20 sum fixed True 0.246 1.203 0.280 1.295
20 sum variable False 0.814 1.750 0.870 3.038
20 sum variable True 0.786 1.888 0.785 2.859

Table 42: Bounding for ESM in I-J Beta Region with ρ = 0.75

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.384 0.796 0.086 1.182
5 sum variable False 0.977 1.560 0.473 4.759

10 sum fixed False 0.568 1.232 0.305 1.726
10 sum variable False 0.964 2.782 0.621 6.435
15 sum fixed False 0.591 1.735 0.263 2.419
15 sum variable False 1.063 3.946 0.524 8.825
20 combined fixed False 0.457 1.600 0.453 2.635
20 combined variable False 0.454 10.168 0.611 40.880
20 sum fixed False 0.466 2.459 0.326 3.041
20 sum variable False 0.979 5.790 0.767 9.825
20 sum variable True 0.335 8.906 0.830 9.181
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Table 43: Bounding for ESM in I-J Beta Region with ρ = 1.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.046 2.303 0.078 2.405
5 sum variable False 3.153 3.761 0.193 11.678

10 sum fixed False 0.144 4.612 0.016 4.818
10 sum variable False 2.475 10.681 -0.224 21.881
15 sum fixed False 0.053 6.964 -0.010 7.224
15 sum variable False 2.378 17.813 -0.392 31.245
20 combined fixed False 0.803 6.261 0.573 11.043
20 combined variable False 0.655 12.530 0.662 134.446
20 sum fixed False 0.069 9.287 -0.032 9.639
20 sum variable False 2.516 24.451 -0.739 41.544

Table 44: Bounding for ESM in Pearson Region with ρ = 0.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 1.001 -0.014 0.774 0.192
5 sum variable False 1.049 -0.197 0.751 0.916

10 sum fixed False 1.030 -0.054 0.944 0.086
10 sum fixed True 1.041 -0.043 0.920 0.064
10 sum variable False 1.034 -0.248 0.894 0.537
15 sum fixed False 1.027 -0.046 0.954 0.081
15 sum fixed True 1.011 -0.048 0.975 0.062
15 sum variable False 1.039 -0.258 0.928 0.480
15 sum variable True 1.023 -0.211 0.964 0.261
20 combined fixed False 0.966 -0.111 0.767 0.377
20 combined variable False 1.020 -4.316 0.747 10.833
20 sum fixed False 1.027 -0.059 0.971 0.075
20 sum fixed True 1.027 -0.052 0.979 0.055
20 sum variable False 1.035 -0.282 0.954 0.388
20 sum variable True 1.027 -0.256 0.963 0.314

171



Table 45: Bounding for ESM in Pearson Region with ρ = 0.25

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 1.022 -0.028 0.691 0.352
5 sum variable False 1.056 -0.212 0.785 1.305

10 sum fixed False 0.642 0.100 0.792 0.334
10 sum fixed True 0.071 0.345 0.454 0.316
10 sum variable False 0.852 -0.141 0.794 1.375
15 sum fixed False 0.698 0.065 0.738 0.420
15 sum fixed True 0.517 0.179 0.397 0.497
15 sum variable False 0.911 -0.430 0.908 1.261
15 sum variable True 0.242 1.402 0.803 0.637
20 combined fixed False 0.282 0.574 0.177 1.453
20 combined variable False 0.565 -0.357 0.556 21.265
20 sum fixed False 0.698 0.039 0.792 0.441
20 sum fixed True 0.511 0.211 0.580 0.442
20 sum variable False 0.784 -0.073 0.874 1.524
20 sum variable True 0.380 1.414 0.615 1.547

Table 46: Bounding for ESM in Pearson Region with ρ = 0.5

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.346 0.390 0.392 0.740
5 sum variable False 0.910 0.400 0.487 2.976

10 sum fixed False 0.237 0.704 0.379 1.025
10 sum variable False 0.509 1.539 0.400 3.982
15 sum fixed False 0.105 1.121 0.276 1.465
15 sum variable False 0.399 2.620 0.152 6.121
20 combined fixed False 0.211 1.500 0.185 2.488
20 combined variable False 0.318 9.065 0.281 40.629
20 sum fixed False 0.190 1.336 0.188 1.900
20 sum variable False 0.308 3.962 0.210 7.120
20 sum variable True -0.138 5.548 -0.099 6.844
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Table 47: Bounding for ESM in Pearson Region with ρ = 0.75

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.929 0.458 0.379 1.215
5 sum variable False 1.199 0.845 0.498 4.989

10 sum fixed False 0.164 1.430 -0.169 2.355
10 sum variable False 0.552 3.811 0.255 8.365
15 sum fixed False 0.058 2.277 -0.042 3.150
15 sum variable False 0.452 5.935 0.155 11.760
20 combined fixed False 0.305 2.073 0.171 4.906
20 combined variable False 0.358 10.769 0.282 67.771
20 sum fixed False 0.083 3.012 -0.063 4.130
20 sum variable False 0.332 8.675 0.161 14.987

Table 48: Bounding for ESM in Pearson Region with ρ = 1.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.305 2.051 0.046 2.565
5 sum variable False 1.057 4.259 -0.202 12.460

10 sum fixed False 0.302 4.364 -0.021 5.156
10 sum variable False 1.343 10.810 0.194 21.760
15 sum fixed False 0.221 6.787 -0.145 7.780
15 sum variable False 1.119 18.607 -0.139 32.310
20 combined fixed False 0.194 9.863 0.060 14.810
20 combined variable False 0.380 37.937 0.194 178.545
20 sum fixed False 0.464 8.992 0.128 10.124
20 sum variable False 0.868 26.272 -0.281 42.813
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Table 49: Bounding for ESM in Pearson Region without Pearson IV with
ρ = 0.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.979 0.020 0.755 0.294
5 sum variable False 0.993 0.032 0.817 1.027

10 sum fixed False 0.996 -0.019 0.913 0.114
10 sum fixed True 0.960 -0.004 0.938 0.073
10 sum variable False 1.001 -0.091 0.879 0.686
10 sum variable True 0.966 -0.040 0.902 0.433
15 sum fixed False 1.006 -0.029 0.945 0.100
15 sum fixed True 0.995 -0.026 0.972 0.067
15 sum variable False 0.978 -0.033 0.926 0.550
15 sum variable True 1.004 -0.179 0.957 0.365
20 combined fixed False 0.940 0.062 0.774 0.529
20 combined variable False 0.953 -0.690 0.699 16.462
20 sum fixed False 0.991 -0.025 0.970 0.090
20 sum fixed True 0.968 -0.008 0.977 0.063
20 sum variable False 0.992 -0.095 0.954 0.449
20 sum variable True 0.985 -0.107 0.975 0.320
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Table 50: Bounding for ESM in Pearson Region without Pearson IV with
ρ = 0.25

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.980 0.064 0.673 0.450
5 sum variable False 1.003 0.148 0.691 1.917

10 sum fixed False 0.947 0.036 0.678 0.478
10 sum fixed True 0.899 0.041 0.590 0.371
10 sum variable False 1.007 -0.074 0.744 1.862
15 sum fixed False 0.968 0.012 0.771 0.519
15 sum fixed True 0.928 0.053 0.687 0.450
15 sum variable False 0.824 0.297 0.739 2.185
15 sum variable True 0.834 0.416 0.679 1.620
20 combined fixed False 0.291 0.584 0.244 1.610
20 combined variable False 0.864 -1.276 0.593 24.442
20 sum fixed False 0.948 0.031 0.801 0.568
20 sum fixed True 0.859 0.095 0.702 0.503
20 sum variable False 0.895 0.180 0.736 2.544
20 sum variable True 0.975 -0.003 0.640 2.249

Table 51: Bounding for ESM in Pearson Region without Pearson IV with
ρ = 0.75

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.914 0.482 0.446 1.272
5 sum variable False 0.936 1.393 0.289 5.829

10 sum fixed False 0.732 1.045 0.222 2.199
10 sum variable False 0.921 3.078 0.324 9.089
15 sum fixed False 0.713 1.638 0.255 3.048
15 sum variable False 1.066 4.095 0.257 12.467
20 combined fixed False 0.416 1.887 0.326 4.702
20 combined variable False 0.519 10.183 0.344 76.307
20 sum fixed False 0.617 2.363 0.142 3.962
20 sum variable False 0.821 6.756 0.206 15.619
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Table 52: Bounding for ESM in Pearson Region without Pearson IV with
ρ = 1.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.043 1.948 0.055 2.476
5 sum variable False 0.876 3.906 -0.067 12.117

10 sum fixed False 0.043 4.161 0.037 4.936
10 sum variable False 0.613 10.609 -0.206 21.861
15 sum fixed False 0.004 6.378 -0.030 7.396
15 sum variable False 0.515 17.428 -0.195 31.452
20 combined fixed False 0.865 6.543 0.580 12.035
20 combined variable False 0.692 19.719 0.496 156.212
20 sum fixed False -0.072 8.692 0.011 9.747
20 sum variable False 0.365 25.434 -0.140 40.735

Table 53: Bounding for ESM in I-∪ Beta Region with ρ = 0.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.957 0.050 0.708 0.461
5 sum variable False 0.984 0.049 0.821 1.376

10 sum fixed False 0.980 0.009 0.892 0.272
10 sum fixed True 0.960 0.018 0.803 0.309
10 sum variable False 0.983 -0.057 0.955 0.557
10 sum variable True 0.984 -0.123 0.914 0.483
15 sum fixed False 0.979 -0.007 0.972 0.148
15 sum fixed True 0.993 -0.004 0.861 0.261
15 sum variable False 0.991 -0.118 0.974 0.452
15 sum variable True 0.993 -0.162 0.981 0.367
20 combined fixed False 0.955 0.035 0.930 0.363
20 combined variable False 0.894 -0.595 0.834 13.973
20 sum fixed False 0.988 -0.032 0.979 0.139
20 sum fixed True 0.991 -0.018 0.943 0.158
20 sum variable False 0.988 -0.123 0.982 0.442
20 sum variable True 0.965 -0.014 1.024 0.180
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Table 54: Bounding for ESM in I-∪ Beta Region with ρ = 0.25

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.923 0.110 0.703 0.574
5 sum variable False 0.987 0.150 0.815 1.944

10 sum fixed False 0.953 0.082 0.859 0.440
10 sum fixed True 0.787 0.254 0.713 0.478
10 sum variable False 0.979 0.093 0.867 1.719
15 sum fixed False 0.951 0.088 0.882 0.454
15 sum fixed True 0.894 0.239 0.840 0.480
15 sum variable False 0.963 0.211 0.895 1.730
15 sum variable True 0.896 0.683 0.945 1.475
20 combined fixed False 0.899 0.189 0.844 1.004
20 combined variable False 0.916 -2.571 0.802 20.921
20 sum fixed False 0.948 0.116 0.875 0.546
20 sum fixed True 0.837 0.334 0.906 0.501
20 sum variable False 0.959 0.321 0.887 2.071
20 sum variable True 0.893 0.951 0.841 2.072

Table 55: Bounding for ESM in I-∪ Beta Region with ρ = 0.5

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.905 0.182 0.661 0.828
5 sum variable False 0.975 0.299 0.662 3.422

10 sum fixed False 0.929 0.269 0.703 1.055
10 sum variable False 0.970 0.542 0.781 3.930
15 sum fixed False 0.883 0.445 0.751 1.244
15 sum variable False 0.928 1.130 0.780 4.685
20 combined fixed False 0.895 0.478 0.722 2.183
20 combined variable False 1.049 -4.965 0.733 41.565
20 sum fixed False 0.902 0.544 0.749 1.537
20 sum variable False 0.916 1.666 0.758 5.962
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Table 56: Bounding for ESM in I-∪ Beta Region with ρ = 0.75

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.846 0.316 0.552 1.301
5 sum variable False 0.974 0.584 0.637 5.132

10 sum fixed False 0.970 0.491 0.663 1.900
10 sum variable False 0.995 1.391 0.817 6.736
15 sum fixed False 0.852 1.037 0.737 2.378
15 sum variable False 0.904 2.798 0.898 8.758
20 combined fixed False 0.966 0.751 0.856 3.527
20 combined variable False 1.126 -1.689 0.684 73.092
20 sum fixed False 0.858 1.440 0.861 2.829
20 sum variable False 0.997 3.399 0.806 11.635

Table 57: Bounding for ESM in I-∪ Beta Region with ρ = 1.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.450 1.213 0.285 2.162
5 sum variable False 0.892 1.779 0.531 8.219

10 sum fixed False 0.551 2.494 0.259 4.256
10 sum variable False 0.877 5.386 0.560 14.935
15 sum fixed False 0.759 3.345 0.497 5.464
15 sum variable False 1.025 7.518 0.769 19.492
20 combined fixed False 1.056 2.233 0.957 7.606
20 combined variable False 1.156 -1.955 1.208 73.565
20 sum fixed False 0.549 5.459 0.357 7.815
20 sum variable False 1.009 11.441 0.973 22.328

178



Table 58: Bounding for HB in I-∩ Beta Region with ρ = 0.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.625 0.142 -0.828 0.327
5 sum fixed True 0.026 0.153 -1.398 0.286
5 sum variable False 1.713 0.283 -0.188 1.097
5 sum variable True 1.206 0.359 -0.522 0.869

10 sum fixed False 0.582 0.044 -0.684 0.213
10 sum fixed True 0.427 0.047 -0.843 0.200
10 sum variable False 0.494 0.127 -0.103 0.495
10 sum variable True 0.659 0.114 0.305 0.310
15 sum fixed False 0.357 0.044 -0.074 0.136
15 sum fixed True 0.690 0.032 -0.278 0.145
15 sum variable False 0.614 0.109 -0.077 0.470
15 sum variable True 0.709 0.096 0.110 0.380
20 combined fixed False 0.429 0.070 -0.151 0.264
20 combined variable False 0.671 0.868 -1.045 11.362
20 sum fixed False 0.415 0.045 0.369 0.097
20 sum fixed True 0.590 0.036 0.189 0.107
20 sum variable False 0.573 0.126 0.043 0.459
20 sum variable True 0.503 0.137 0.230 0.407
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Table 59: Bounding for HB in I-∩ Beta Region with ρ = 0.25

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.371 0.198 0.500 0.280
5 sum fixed True 0.666 0.135 0.681 0.205
5 sum variable False 1.121 0.077 0.500 1.129
5 sum variable True 1.308 0.016 1.023 0.525

10 sum fixed False 0.612 0.141 0.862 0.089
10 sum fixed True 0.661 0.137 0.873 0.085
10 sum variable False 0.821 0.039 1.004 0.087
10 sum variable True 0.932 -0.034 1.019 0.026
15 sum fixed False 0.740 0.134 0.873 0.104
15 sum fixed True 0.942 -0.020 0.965 0.029
15 sum variable False 0.915 -0.112 1.008 -0.015
15 sum variable True 0.937 -0.089 0.934 0.220
20 combined fixed False 0.254 0.645 0.263 0.817
20 combined variable False 0.558 2.626 0.458 11.097
20 sum fixed False 0.775 0.162 0.759 0.274
20 sum fixed True 0.787 0.167 0.868 0.155
20 sum variable False 0.897 -0.004 1.035 -0.140
20 sum variable True 0.982 -0.275 0.914 0.335

180



Table 60: Bounding for HB in I-∩ Beta Region with ρ = 0.5

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.622 0.229 1.121 0.175
5 sum fixed True 0.648 0.234 1.096 0.134
5 sum variable False 1.238 0.042 1.015 1.043
5 sum variable True 1.407 -0.023 0.845 1.014

10 sum fixed False 0.524 0.362 0.699 0.366
10 sum fixed True 0.831 0.157 1.173 -0.025
10 sum variable False 1.021 -0.172 1.105 0.237
10 sum variable True 0.983 0.175 1.075 0.265
15 sum fixed False 0.621 0.437 0.329 0.985
15 sum fixed True 1.172 -0.220 0.970 0.152
15 sum variable False 0.934 0.107 1.036 0.366
15 sum variable True 0.988 0.051 1.047 0.251
20 combined fixed False 0.131 1.759 0.064 2.384
20 combined variable False 0.520 3.596 0.538 14.154
20 sum fixed False 0.517 0.793 0.427 1.152
20 sum fixed True 1.043 -0.097 1.109 -0.056
20 sum variable False 0.980 -0.058 1.007 0.531
20 sum variable True 1.009 -0.118 1.031 0.340
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Table 61: Bounding for HB in I-∩ Beta Region with ρ = 0.75

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.584 0.665 0.591 0.765
5 sum fixed True 0.459 0.733 0.637 0.704
5 sum variable False 2.049 0.145 1.877 1.413
5 sum variable True 2.293 0.030 1.879 1.235

10 sum fixed False 0.543 0.948 0.526 1.134
10 sum fixed True 0.600 0.910 0.377 1.240
10 sum variable False 1.511 0.125 1.619 0.696
10 sum variable True 1.467 0.341 1.526 0.794
15 sum fixed False 0.410 1.513 0.234 1.989
15 sum fixed True 0.606 1.243 1.096 0.658
15 sum variable False 1.487 -0.339 1.503 0.636
15 sum variable True 1.232 1.146 1.432 0.815
20 combined fixed False 0.094 3.434 -0.014 4.753
20 combined variable False 0.462 7.846 0.585 23.443
20 sum fixed False 0.608 1.564 0.357 2.339
20 sum fixed True 0.407 2.002 0.955 1.058
20 sum variable False 1.359 0.092 1.471 0.528
20 sum variable True 1.372 0.138 1.360 1.107
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Table 62: Bounding for HB in I-∩ Beta Region with ρ = 1.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.187 2.786 -0.617 2.970
5 sum fixed True 0.567 2.808 -0.558 2.934
5 sum variable False 9.027 5.589 1.538 14.020
5 sum variable True 20.769 4.371 0.507 12.557

10 sum fixed False 0.298 5.605 -0.294 5.873
10 sum fixed True 0.666 5.615 0.017 5.804
10 sum variable False 8.766 12.710 1.624 25.453
10 sum variable True 7.261 15.405 1.180 24.342
15 sum fixed False 0.240 8.429 -0.110 8.782
15 sum fixed True 0.188 8.484 -0.359 8.739
15 sum variable False 7.534 21.647 0.026 37.622
15 sum variable True 14.151 20.016 1.348 33.833
20 combined fixed False 0.267 12.572 0.128 15.924
20 combined variable False 1.009 57.117 -0.045 204.014
20 sum fixed False 0.229 11.255 -0.096 11.682
20 sum fixed True 0.243 11.290 -0.318 11.634
20 sum variable False 5.729 30.834 -0.430 49.171
20 sum variable True 6.630 30.785 -2.773 49.319
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Table 63: Bounding for HB in I-J Beta Region with ρ = 0.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 1.648 0.171 0.728 0.497
5 sum variable False 1.339 0.345 0.543 1.625

10 sum fixed False 1.298 0.048 0.937 0.279
10 sum fixed True 1.159 0.067 1.287 0.168
10 sum variable False 1.133 0.080 0.683 0.724
15 sum fixed False 0.997 0.031 0.881 0.151
15 sum fixed True 0.846 0.047 0.958 0.123
15 sum variable False 1.055 0.064 0.665 0.618
15 sum variable True 0.986 0.117 0.491 0.524
20 combined fixed False 0.802 0.177 0.473 0.492
20 combined variable False 1.117 1.106 0.435 14.136
20 sum fixed False 0.937 0.032 0.691 0.124
20 sum fixed True 0.866 0.035 0.718 0.112
20 sum variable False 1.017 0.073 0.667 0.591
20 sum variable True 0.914 0.126 0.814 0.390

Table 64: Bounding for HB in I-J Beta Region with ρ = 0.25

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False -0.122 0.357 -0.813 0.702
5 sum variable False 0.513 0.610 -0.297 2.313

10 sum fixed False 0.383 0.203 -0.075 0.502
10 sum variable False 0.585 0.236 0.407 0.875
15 sum fixed False 0.736 0.043 0.802 0.080
15 sum fixed True 0.867 -0.026 0.798 0.080
15 sum variable False 0.726 0.017 0.816 0.207
15 sum variable True 0.830 -0.047 0.902 0.081
20 combined fixed False 0.244 0.424 0.218 0.724
20 combined variable False 0.495 3.160 -0.003 21.858
20 sum fixed False 0.834 -0.028 0.938 -0.021
20 sum fixed True 0.957 -0.118 1.014 -0.085
20 sum variable False 0.933 -0.536 0.918 -0.046
20 sum variable True 0.895 -0.243 0.948 -0.107
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Table 65: Bounding for HB in I-J Beta Region with ρ = 0.5

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False -0.056 0.485 -0.405 0.783
5 sum variable False 0.583 0.786 -0.043 2.904

10 sum fixed False 0.453 0.267 0.408 0.423
10 sum variable False 0.722 0.166 0.591 1.125
15 sum fixed False 0.729 0.055 0.760 0.194
15 sum fixed True 0.833 0.035 1.075 -0.100
15 sum variable False 0.760 -0.077 0.935 0.162
15 sum variable True 1.066 -0.691 0.848 0.569
20 combined fixed False 0.236 0.751 0.160 1.614
20 combined variable False 0.405 5.439 0.209 29.208
20 sum fixed False 0.848 -0.086 0.984 -0.058
20 sum fixed True 1.021 -0.226 0.796 0.190
20 sum variable False 0.807 -0.263 0.897 0.289
20 sum variable True 0.758 0.471 1.055 -0.390

Table 66: Bounding for HB in I-J Beta Region with ρ = 0.75

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.067 0.816 -0.004 0.952
5 sum variable False 1.112 1.267 0.134 4.347

10 sum fixed False 0.403 0.810 0.561 0.859
10 sum variable False 0.998 1.196 0.722 3.313
15 sum fixed False 0.563 0.854 0.735 0.868
15 sum variable False 0.958 1.313 0.877 2.975
20 combined fixed False 0.345 1.349 0.151 3.416
20 combined variable False 0.398 9.435 0.412 38.552
20 sum fixed False 0.605 0.993 0.852 0.852
20 sum variable False 0.918 1.694 1.081 2.139
20 sum variable True 1.139 0.688 0.981 2.457
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Table 67: Bounding for HB in I-J Beta Region with ρ = 1.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False -0.154 2.398 -0.544 2.669
5 sum variable False 2.715 4.803 -1.352 12.993

10 sum fixed False -0.171 4.822 -0.607 5.194
10 sum variable False 3.197 11.532 -1.151 23.279
15 sum fixed False -0.251 7.277 -0.370 7.670
15 sum variable False 3.498 18.801 -0.660 32.973
20 combined fixed False 0.162 10.609 0.076 15.384
20 combined variable False 0.707 31.593 -0.010 199.925
20 sum fixed False -0.260 9.709 -0.179 10.165
20 sum variable False 3.764 25.807 -0.052 42.523

Table 68: Bounding for HB in Pearson Region with ρ = 0.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.840 0.062 0.542 0.252
5 sum variable False 0.860 0.133 0.551 1.018

10 sum fixed False 0.986 -0.027 0.886 0.078
10 sum fixed True 1.007 -0.017 0.928 0.059
10 sum variable False 0.970 -0.140 0.836 0.482
15 sum fixed False 0.995 -0.028 0.919 0.064
15 sum fixed True 1.006 -0.027 0.953 0.048
15 sum variable False 0.984 -0.165 0.899 0.385
15 sum variable True 0.898 -0.028 0.947 0.208
20 combined fixed False 0.502 0.087 0.665 0.321
20 combined variable False 0.924 -2.009 0.591 10.214
20 sum fixed False 1.001 -0.026 0.929 0.068
20 sum fixed True 1.013 -0.029 0.946 0.059
20 sum variable False 0.998 -0.157 0.908 0.362
20 sum variable True 1.012 -0.129 0.925 0.269
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Table 69: Bounding for HB in Pearson Region with ρ = 0.25

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.710 0.085 0.580 0.302
5 sum variable False 0.756 0.148 0.645 1.243

10 sum fixed False 0.771 -0.042 0.525 0.295
10 sum fixed True 0.571 0.103 0.643 0.144
10 sum variable False 0.685 -0.006 0.674 0.845
15 sum fixed False 0.787 -0.053 0.648 0.260
15 sum fixed True 0.714 0.050 0.856 0.032
15 sum variable False 0.776 -0.216 0.672 1.108
15 sum variable True 0.740 -0.031 0.793 0.354
20 combined fixed False 0.345 0.203 0.374 0.658
20 combined variable False 0.444 1.984 0.385 15.060
20 sum fixed False 0.856 -0.138 0.645 0.319
20 sum fixed True 0.888 -0.126 0.940 -0.054
20 sum variable False 0.837 -0.451 0.694 1.139
20 sum variable True 0.940 -0.738 0.790 0.506

Table 70: Bounding for HB in Pearson Region with ρ = 0.5

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.704 0.105 0.542 0.407
5 sum variable False 0.713 0.296 0.380 2.166

10 sum fixed False 0.450 0.162 0.342 0.538
10 sum variable False 0.567 0.264 0.359 2.005
15 sum fixed False 0.723 -0.079 0.418 0.627
15 sum variable False 0.643 -0.064 0.472 2.174
20 combined fixed False 0.259 0.536 0.250 1.344
20 combined variable False 0.325 5.453 0.287 26.142
20 sum fixed False 0.676 -0.029 0.570 0.499
20 sum variable False 0.616 0.152 0.421 2.890
20 sum variable True 0.822 -0.487 0.755 0.449
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Table 71: Bounding for HB in Pearson Region with ρ = 0.75

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.266 0.516 0.182 0.833
5 sum variable False 0.487 1.321 0.368 3.421

10 sum fixed False 0.368 0.525 0.235 0.978
10 sum variable False 0.419 1.647 0.370 3.704
15 sum fixed False 0.319 0.771 0.338 1.145
15 sum variable False 0.532 1.545 0.433 4.253
20 combined fixed False 0.253 1.402 0.163 2.937
20 combined variable False 0.283 9.940 0.276 41.059
20 sum fixed False 0.394 0.865 0.426 1.257
20 sum variable False 0.522 2.010 0.532 4.234

Table 72: Bounding for HB in Pearson Region with ρ = 1.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False -0.408 1.761 -0.982 2.825
5 sum variable False 0.867 3.645 -1.097 12.953

10 sum fixed False 0.166 3.237 -1.267 5.590
10 sum variable False 0.891 8.880 -0.639 21.966
15 sum fixed False -0.133 5.392 -1.128 8.099
15 sum variable False 0.531 14.968 -1.157 33.099
20 combined fixed False 0.234 8.673 0.037 14.471
20 combined variable False 0.435 26.607 0.056 175.686
20 sum fixed False -0.539 7.753 -0.662 10.241
20 sum variable False 0.287 21.498 -0.990 42.376
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Table 73: Bounding for HB in Pearson Region without Pearson IV with
ρ = 0.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.824 0.086 0.403 0.411
5 sum variable False 0.901 0.151 0.642 1.362

10 sum fixed False 0.981 -0.019 0.864 0.117
10 sum fixed True 0.898 0.007 0.884 0.083
10 sum variable False 0.950 -0.126 0.858 0.488
10 sum variable True 1.002 -0.097 0.908 0.308
15 sum fixed False 1.000 -0.028 0.946 0.065
15 sum fixed True 1.011 -0.029 0.950 0.058
15 sum variable False 1.010 -0.198 0.919 0.361
15 sum variable True 0.952 -0.036 0.985 0.226
20 combined fixed False 0.843 -0.037 0.720 0.307
20 combined variable False 0.801 -0.908 0.564 12.806
20 sum fixed False 0.981 -0.020 0.984 0.050
20 sum fixed True 0.996 -0.022 0.979 0.042
20 sum variable False 1.009 -0.172 0.950 0.300
20 sum variable True 0.999 -0.124 0.958 0.233
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Table 74: Bounding for HB in Pearson Region without Pearson IV with
ρ = 0.25

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.579 0.174 0.289 0.508
5 sum variable False 0.764 0.349 0.447 1.888

10 sum fixed False 0.694 0.065 0.765 0.203
10 sum fixed True 0.943 -0.042 0.748 0.160
10 sum variable False 0.779 -0.035 0.932 0.550
15 sum fixed False 0.820 -0.020 0.932 0.097
15 sum fixed True 0.930 -0.075 0.947 0.028
15 sum variable False 0.550 0.632 0.516 1.540
15 sum variable True 0.977 -0.390 0.852 0.427
20 combined fixed False 0.449 0.099 0.537 0.519
20 combined variable False 0.519 1.607 0.393 15.523
20 sum fixed False 0.953 -0.143 0.862 0.157
20 sum fixed True 0.988 -0.145 0.868 0.125
20 sum variable False 0.680 0.454 0.611 1.619
20 sum variable True 0.895 -0.188 0.816 0.692
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Table 75: Bounding for HB in Pearson Region without Pearson IV with
ρ = 0.5

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.380 0.318 0.338 0.604
5 sum variable False 0.578 0.608 0.481 2.293

10 sum fixed False 0.594 0.155 0.648 0.377
10 sum fixed True 0.776 0.085 0.698 0.270
10 sum variable False 0.664 0.288 0.717 1.295
15 sum fixed False 0.762 -0.011 0.680 0.427
15 sum fixed True 1.016 -0.203 0.802 0.227
15 sum variable False 0.775 -0.180 0.704 1.666
15 sum variable True 0.851 0.006 0.946 0.269
20 combined fixed False 0.393 0.226 0.355 1.205
20 combined variable False 0.516 1.157 0.360 24.579
20 sum fixed False 0.857 -0.119 0.822 0.279
20 sum fixed True 0.906 -0.150 1.012 -0.040
20 sum variable False 0.775 -0.017 0.767 1.556
20 sum variable True 0.978 -0.865 0.917 0.617

Table 76: Bounding for HB in Pearson Region without Pearson IV with
ρ = 0.75

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.177 0.596 0.204 0.892
5 sum variable False 0.587 1.100 0.170 4.044

10 sum fixed False 0.419 0.498 0.563 0.833
10 sum variable False 0.535 1.347 0.467 3.906
15 sum fixed False 0.635 0.301 0.589 0.956
15 sum variable False 0.642 0.961 0.533 4.201
20 combined fixed False 0.296 0.998 0.317 2.512
20 combined variable False 0.427 5.846 0.289 41.892
20 sum fixed False 0.660 0.375 0.684 1.025
20 sum variable False 0.666 1.071 0.700 3.892
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Table 77: Bounding for HB in Pearson Region without Pearson IV with
ρ = 1.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.242 1.253 -1.079 2.766
5 sum variable False 0.863 2.788 -0.956 12.194

10 sum fixed False 0.144 2.606 -1.420 5.424
10 sum variable False 0.251 8.155 -1.239 21.466
15 sum fixed False -0.005 4.053 -1.445 7.913
15 sum variable False 0.175 12.881 -1.251 30.943
20 combined fixed False 0.375 5.557 -0.114 13.426
20 combined variable False 0.584 22.179 0.062 158.151
20 sum fixed False -0.291 5.936 -1.451 10.349
20 sum variable False 0.232 17.422 -1.140 39.006

Table 78: Bounding for HB in I-∪ Beta Region with ρ = 0.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.867 0.066 0.547 0.423
5 sum variable False 0.817 0.089 0.759 1.148

10 sum fixed False 0.950 -0.022 0.847 0.178
10 sum fixed True 0.998 -0.033 0.891 0.132
10 sum variable False 0.975 -0.291 0.927 0.468
10 sum variable True 1.094 -0.426 0.980 0.185
15 sum fixed False 0.996 -0.059 0.982 0.061
15 sum fixed True 1.005 -0.046 0.986 0.054
15 sum variable False 0.987 -0.317 0.948 0.460
15 sum variable True 0.987 -0.213 1.006 0.171
20 combined fixed False 0.782 -0.026 0.930 0.173
20 combined variable False 0.875 -4.788 0.784 9.223
20 sum fixed False 1.006 -0.068 0.985 0.064
20 sum fixed True 1.008 -0.057 0.995 0.047
20 sum variable False 1.008 -0.328 0.980 0.308
20 sum variable True 0.983 -0.186 0.998 0.196
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Table 79: Bounding for HB in I-∪ Beta Region with ρ = 0.25

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.717 0.158 0.558 0.473
5 sum variable False 0.700 0.312 0.608 1.710

10 sum fixed False 0.801 0.026 0.802 0.300
10 sum fixed True 0.886 -0.022 0.807 0.198
10 sum variable False 0.850 -0.232 0.889 0.902
15 sum fixed False 0.818 -0.030 0.834 0.306
15 sum fixed True 0.770 0.093 0.912 0.121
15 sum variable False 0.829 -0.215 0.840 1.183
15 sum variable True 0.984 -0.806 0.827 0.786
20 combined fixed False 0.531 0.117 0.477 0.980
20 combined variable False 0.498 2.283 0.512 17.603
20 sum fixed False 0.951 -0.187 0.899 0.270
20 sum fixed True 0.843 0.005 0.945 0.091
20 sum variable False 0.814 -0.123 0.926 0.880
20 sum variable True 0.839 -0.017 0.896 0.722

Table 80: Bounding for HB in I-∪ Beta Region with ρ = 0.5

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.580 0.245 0.461 0.674
5 sum variable False 0.615 0.536 0.466 2.742

10 sum fixed False 0.656 0.168 0.541 0.714
10 sum variable False 0.654 0.434 0.544 2.933
15 sum fixed False 0.535 0.336 0.589 0.811
15 sum variable False 0.688 0.411 0.568 3.286
20 combined fixed False 0.413 0.496 0.324 1.785
20 combined variable False 0.489 2.896 0.428 27.896
20 sum fixed False 0.664 0.211 0.583 0.970
20 sum variable False 0.465 1.980 0.637 3.555
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Table 81: Bounding for HB in I-∪ Beta Region with ρ = 0.75

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.481 0.397 0.115 1.215
5 sum variable False 0.629 0.802 0.135 5.083

10 sum fixed False 0.309 0.699 0.250 1.610
10 sum variable False 0.663 0.868 0.181 6.720
15 sum fixed False 0.480 0.676 0.137 2.219
15 sum variable False 0.560 1.909 0.146 9.138
20 combined fixed False 0.445 0.814 0.295 3.219
20 combined variable False 0.484 6.540 0.386 47.838
20 sum fixed False 0.379 1.087 0.221 2.622
20 sum variable False 0.564 2.207 0.165 10.864

Table 82: Bounding for HB in I-∪ Beta Region with ρ = 1.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.646 1.144 0.267 1.998
5 sum variable False 1.040 2.342 0.483 8.319

10 sum fixed False 0.529 2.737 0.217 3.976
10 sum variable False 0.788 7.645 0.311 16.250
15 sum fixed False 0.700 4.035 0.221 5.816
15 sum variable False 1.089 10.600 0.522 22.343
20 combined fixed False 0.811 3.256 0.534 8.971
20 combined variable False 0.789 -3.883 0.638 109.102
20 sum fixed False 0.563 5.802 0.217 7.696
20 sum variable False 0.859 16.792 0.314 30.527
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Table 83: Bounding for MCS in I-∩ Beta Region with ρ = 0.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.594 0.078 0.678 0.135
5 sum fixed True 0.431 0.129 0.149 0.243
5 sum variable False 0.646 0.086 0.722 0.235
5 sum variable True 0.959 -0.109 0.745 0.236

10 sum fixed False 0.842 0.004 0.804 0.064
10 sum fixed True 0.883 0.000 0.966 0.006
10 sum variable False 0.811 -0.064 0.805 0.182
10 sum variable True 0.931 -0.103 0.867 0.116
15 sum fixed False 0.912 -0.013 0.900 0.035
15 sum fixed True 0.967 -0.028 0.886 0.047
15 sum variable False 0.852 -0.038 0.817 0.251
15 sum variable True 0.931 -0.092 0.836 0.251
20 combined fixed False 0.647 0.137 0.664 0.232
20 combined variable False 0.639 0.175 0.763 2.330
20 sum fixed False 0.894 0.000 0.957 0.013
20 sum fixed True 0.970 -0.033 0.922 0.044
20 sum variable False 0.913 -0.111 0.874 0.200
20 sum variable True 0.941 -0.102 0.956 0.072
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Table 84: Bounding for MCS in I-∩ Beta Region with ρ = 0.25

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.571 0.116 0.471 0.238
5 sum fixed True 0.731 0.060 0.454 0.215
5 sum variable False 0.700 0.011 0.736 0.265
5 sum variable True 0.846 -0.066 0.900 0.026

10 sum fixed False 0.523 0.285 0.586 0.278
10 sum fixed True 0.714 0.120 0.718 0.156
10 sum variable False 0.751 0.089 0.808 0.228
10 sum variable True 0.870 -0.188 0.837 0.154
15 sum fixed False 0.629 0.307 0.637 0.361
15 sum fixed True 0.807 0.074 0.725 0.242
15 sum variable False 0.792 0.096 0.875 0.058
15 sum variable True 0.870 -0.151 0.848 0.227
20 combined fixed False 0.350 0.697 0.321 0.980
20 combined variable False 0.492 2.138 0.573 6.981
20 sum fixed False 0.632 0.430 0.676 0.424
20 sum fixed True 0.770 0.189 0.717 0.349
20 sum variable False 0.810 0.166 0.857 0.258
20 sum variable True 0.889 -0.256 0.845 0.392
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Table 85: Bounding for MCS in I-∩ Beta Region with ρ = 0.5

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.502 0.190 0.510 0.237
5 sum fixed True 0.619 0.125 0.500 0.232
5 sum variable False 0.628 0.181 0.721 0.349
5 sum variable True 0.819 -0.085 0.741 0.307

10 sum fixed False 0.408 0.464 0.496 0.414
10 sum fixed True 0.535 0.327 0.564 0.329
10 sum variable False 0.697 0.094 0.739 0.408
10 sum variable True 0.790 -0.097 0.746 0.362
15 sum fixed False 0.456 0.640 0.470 0.689
15 sum fixed True 0.475 0.629 0.530 0.572
15 sum variable False 0.739 0.109 0.704 0.871
15 sum variable True 0.762 0.120 0.811 0.130
20 combined fixed False 0.233 1.604 0.236 1.909
20 combined variable False 0.423 5.713 0.505 12.415
20 sum fixed False 0.472 0.839 0.485 0.898
20 sum fixed True 0.610 0.500 0.586 0.632
20 sum variable False 0.734 0.343 0.760 0.665
20 sum variable True 0.776 0.126 0.785 0.395
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Table 86: Bounding for MCS in I-∩ Beta Region with ρ = 0.75

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.464 0.324 0.455 0.398
5 sum fixed True 0.378 0.380 0.492 0.336
5 sum variable False 0.727 0.219 0.656 1.078
5 sum variable True 0.845 0.105 0.719 0.863

10 sum fixed False 0.311 0.726 0.288 0.842
10 sum fixed True 0.299 0.767 0.467 0.563
10 sum variable False 0.682 0.280 0.729 0.811
10 sum variable True 0.773 0.079 0.795 0.310
15 sum fixed False 0.263 1.207 0.200 1.461
15 sum fixed True 0.330 1.088 0.340 1.140
15 sum variable False 0.734 0.147 0.755 0.834
15 sum variable True 0.790 -0.043 0.719 1.012
20 combined fixed False 0.145 2.959 0.105 3.856
20 combined variable False 0.422 4.363 0.393 26.936
20 sum fixed False 0.288 1.554 0.291 1.680
20 sum fixed True 0.384 1.296 0.493 1.043
20 sum variable False 0.708 0.566 0.801 0.574
20 sum variable True 0.760 0.299 0.785 0.628
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Table 87: Bounding for MCS in I-∩ Beta Region with ρ = 1.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.026 2.355 -0.057 2.499
5 sum fixed True 0.001 2.386 0.055 2.432
5 sum variable False 2.408 2.064 2.242 6.698
5 sum variable True 4.140 0.110 4.245 1.838

10 sum fixed False 0.025 4.725 0.051 4.862
10 sum fixed True 0.024 4.768 0.254 4.654
10 sum variable False 3.209 2.884 2.054 12.922
10 sum variable True 3.273 4.124 3.924 4.880
15 sum fixed False 0.066 7.042 0.111 7.194
15 sum fixed True 0.516 6.405 0.284 6.900
15 sum variable False 2.881 6.750 2.154 18.075
15 sum variable True 3.120 6.797 3.650 7.715
20 combined fixed False 0.447 8.975 0.354 11.101
20 combined variable False 0.754 2.243 0.389 131.149
20 sum fixed False 0.123 9.293 0.090 9.627
20 sum fixed True 0.323 8.907 0.193 9.399
20 sum variable False 2.684 11.537 2.255 22.947
20 sum variable True 3.087 9.406 3.123 15.250
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Table 88: Bounding for MCS in I-J Beta Region with ρ = 0.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.716 0.059 0.162 0.412
5 sum variable False 0.670 0.059 0.611 0.752

10 sum fixed False 0.831 0.000 0.727 0.106
10 sum fixed True 0.934 -0.020 0.836 0.040
10 sum variable False 0.759 -0.068 0.775 0.193
15 sum fixed False 0.907 -0.025 0.860 0.047
15 sum fixed True 0.930 -0.021 0.879 0.044
15 sum variable False 0.850 -0.122 0.875 0.097
15 sum variable True 0.983 -0.232 0.867 0.149
20 combined fixed False 0.604 0.073 0.699 0.136
20 combined variable False 0.588 0.016 0.597 5.748
20 sum fixed False 0.944 -0.036 0.875 0.057
20 sum fixed True 0.920 -0.011 0.936 0.026
20 sum variable False 0.869 -0.075 0.855 0.198
20 sum variable True 0.947 -0.161 0.970 -0.002

Table 89: Bounding for MCS in I-J Beta Region with ρ = 0.25

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.519 0.137 0.127 0.500
5 sum variable False 0.678 0.018 0.609 0.793

10 sum fixed False 0.542 0.184 0.624 0.188
10 sum variable False 0.726 -0.087 0.747 0.255
15 sum fixed False 0.553 0.300 0.790 0.090
15 sum fixed True 0.769 0.072 0.833 0.042
15 sum variable False 0.754 0.011 0.783 0.326
15 sum variable True 0.822 -0.032 0.780 0.404
20 combined fixed False 0.319 0.650 0.311 0.934
20 combined variable False 0.454 1.607 0.479 10.062
20 sum fixed False 0.579 0.400 0.667 0.359
20 sum fixed True 0.806 0.057 0.814 0.104
20 sum variable False 0.743 0.267 0.844 0.123
20 sum variable True 0.851 -0.143 0.811 0.398
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Table 90: Bounding for MCS in I-J Beta Region with ρ = 0.5

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.472 0.197 -0.048 0.702
5 sum variable False 0.597 0.198 0.618 1.073

10 sum fixed False 0.428 0.325 0.483 0.343
10 sum variable False 0.595 0.217 0.624 0.637
15 sum fixed False 0.550 0.292 0.516 0.483
15 sum fixed True 0.900 -0.258 0.821 -0.041
15 sum variable False 0.665 0.111 0.691 0.611
15 sum variable True 0.803 -0.373 0.682 0.743
20 combined fixed False 0.272 1.033 0.220 1.862
20 combined variable False 0.386 4.989 0.411 16.140
20 sum fixed False 0.548 0.431 0.574 0.527
20 sum fixed True 0.786 -0.061 0.785 0.020
20 sum variable False 0.656 0.429 0.717 0.632
20 sum variable True 0.724 0.239 0.701 0.867

Table 91: Bounding for MCS in I-J Beta Region with ρ = 0.75

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.388 0.402 -0.018 0.874
5 sum variable False 0.651 0.460 0.431 2.523

10 sum fixed False 0.448 0.415 0.387 0.599
10 sum variable False 0.562 0.775 0.622 1.160
15 sum fixed False 0.532 0.381 0.370 0.895
15 sum variable False 0.616 0.656 0.602 1.507
20 combined fixed False 0.291 1.127 0.206 2.867
20 combined variable False 0.368 7.507 0.431 25.097
20 sum fixed False 0.534 0.493 0.416 1.047
20 sum variable False 0.628 0.761 0.627 1.654
20 sum variable True 0.831 -0.785 0.884 -0.729
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Table 92: Bounding for MCS in I-J Beta Region with ρ = 1.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.172 2.114 0.104 2.282
5 sum variable False 1.791 2.783 1.597 7.875

10 sum fixed False 0.192 4.241 0.047 4.583
10 sum variable False 2.174 5.695 1.368 15.116
15 sum fixed False 0.215 6.365 0.139 6.722
15 sum variable False 1.660 12.527 1.392 21.527
20 combined fixed False 0.578 6.504 0.451 9.659
20 combined variable False 0.615 6.554 0.536 116.051
20 sum fixed False 0.236 8.468 0.098 9.040
20 sum variable False 1.946 15.402 1.214 29.079

Table 93: Bounding for MCS in Pearson Region with ρ = 0.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.839 0.007 0.630 0.212
5 sum variable False 0.689 0.067 0.676 0.742

10 sum fixed False 0.994 -0.073 0.981 0.026
10 sum fixed True 0.920 -0.022 1.072 -0.007
10 sum variable False 0.971 -0.349 0.903 0.308
15 sum fixed False 0.975 -0.055 1.013 0.005
15 sum fixed True 1.029 -0.072 1.017 -0.008
15 sum variable False 1.010 -0.379 0.966 0.183
15 sum variable True 1.010 -0.288 0.973 0.105
20 combined fixed False 0.702 0.006 0.729 0.218
20 combined variable False 0.578 0.923 0.708 7.306
20 sum fixed False 1.027 -0.092 0.973 0.028
20 sum fixed True 1.056 -0.091 0.996 0.013
20 sum variable False 1.013 -0.361 0.971 0.169
20 sum variable True 1.009 -0.278 1.009 0.054
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Table 94: Bounding for MCS in Pearson Region with ρ = 0.25

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.423 0.171 0.574 0.284
5 sum variable False 0.715 0.020 0.646 1.040

10 sum fixed False 0.724 0.036 0.648 0.268
10 sum fixed True 0.904 -0.095 0.985 -0.053
10 sum variable False 0.802 -0.224 0.667 1.082
15 sum fixed False 0.853 -0.095 0.761 0.193
15 sum fixed True 0.952 -0.199 0.788 0.185
15 sum variable False 0.845 -0.361 0.743 0.991
15 sum variable True 0.863 -0.252 0.973 -0.330
20 combined fixed False 0.468 0.084 0.454 0.713
20 combined variable False 0.493 0.529 0.564 12.161
20 sum fixed False 0.852 -0.086 0.849 0.073
20 sum fixed True 0.960 -0.252 0.849 0.096
20 sum variable False 0.809 -0.008 0.702 1.525
20 sum variable True 0.892 -0.494 0.927 -0.236

Table 95: Bounding for MCS in Pearson Region with ρ = 0.5

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.217 0.356 0.215 0.554
5 sum variable False 0.554 0.366 0.194 2.371

10 sum fixed False 0.618 0.095 0.589 0.379
10 sum variable False 0.659 0.119 0.491 1.973
15 sum fixed False 0.631 0.138 0.569 0.567
15 sum variable False 0.695 0.008 0.631 1.671
20 combined fixed False 0.323 0.578 0.279 1.774
20 combined variable False 0.391 3.119 0.438 19.719
20 sum fixed False 0.654 0.150 0.629 0.530
20 sum variable False 0.754 -0.536 0.600 2.324
20 sum variable True 0.833 -0.719 0.751 0.573

203



Table 96: Bounding for MCS in Pearson Region with ρ = 0.75

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.143 0.563 0.034 0.890
5 sum variable False 0.522 0.738 0.104 3.676

10 sum fixed False 0.415 0.457 0.235 1.036
10 sum variable False 0.562 0.753 0.203 4.413
15 sum fixed False 0.514 0.404 0.409 1.030
15 sum variable False 0.503 1.631 0.415 4.071
20 combined fixed False 0.258 1.465 0.208 3.068
20 combined variable False 0.326 7.711 0.292 38.264
20 sum fixed False 0.555 0.411 0.426 1.236
20 sum variable False 0.580 1.138 0.471 4.275

Table 97: Bounding for MCS in Pearson Region with ρ = 1.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.765 1.679 0.379 2.208
5 sum variable False 1.874 2.319 0.890 9.082

10 sum fixed False 0.605 3.684 0.364 4.429
10 sum variable False 1.171 9.043 0.857 17.349
15 sum fixed False 0.472 5.891 0.425 6.520
15 sum variable False 1.377 13.127 0.925 24.391
20 combined fixed False 0.163 9.750 0.107 12.662
20 combined variable False 0.341 31.713 0.175 151.773
20 sum fixed False 0.470 7.943 0.431 8.683
20 sum variable False 1.102 20.431 1.045 30.441

204



Table 98: Bounding for MCS in Pearson Region without Pearson IV with
ρ = 0.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.927 0.006 0.577 0.317
5 sum variable False 1.025 -0.201 0.667 1.063

10 sum fixed False 1.005 -0.053 0.920 0.080
10 sum fixed True 1.018 -0.035 0.956 0.052
10 sum variable False 1.019 -0.325 0.880 0.437
10 sum variable True 0.971 -0.134 0.981 0.196
15 sum fixed False 1.019 -0.052 0.963 0.056
15 sum fixed True 1.025 -0.053 0.978 0.043
15 sum variable False 1.033 -0.308 0.930 0.334
15 sum variable True 1.026 -0.211 0.966 0.236
20 combined fixed False 0.740 -0.029 0.819 0.242
20 combined variable False 0.841 -2.969 0.727 9.224
20 sum fixed False 1.029 -0.065 0.975 0.055
20 sum fixed True 1.002 -0.039 0.997 0.037
20 sum variable False 1.030 -0.317 0.955 0.310
20 sum variable True 1.012 -0.205 0.996 0.176
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Table 99: Bounding for MCS in Pearson Region without Pearson IV with
ρ = 0.25

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.672 0.104 0.500 0.408
5 sum variable False 0.831 -0.032 0.656 1.340

10 sum fixed False 0.610 0.077 0.861 0.176
10 sum fixed True 0.778 0.011 0.895 0.093
10 sum variable False 0.650 0.186 0.787 0.960
15 sum fixed False 0.758 -0.005 0.900 0.147
15 sum fixed True 0.852 -0.058 0.847 0.141
15 sum variable False 0.497 0.788 0.497 2.003
15 sum variable True 0.818 -0.119 0.920 0.202
20 combined fixed False 0.425 0.171 0.444 0.756
20 combined variable False 0.435 1.658 0.517 14.639
20 sum fixed False 0.806 -0.037 0.888 0.159
20 sum fixed True 0.906 -0.120 0.805 0.228
20 sum variable False 0.661 0.360 0.612 1.894
20 sum variable True 0.925 -0.598 0.994 0.005
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Table 100: Bounding for MCS in Pearson Region without Pearson IV with
ρ = 0.5

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.231 0.311 0.132 0.682
5 sum variable False 0.409 0.658 0.295 2.467

10 sum fixed False 0.386 0.295 0.397 0.656
10 sum fixed True 0.670 0.070 0.631 0.267
10 sum variable False 0.503 0.560 0.558 2.003
15 sum fixed False 0.583 0.155 0.448 0.753
15 sum fixed True 0.692 0.063 0.755 0.210
15 sum variable False 0.610 0.414 0.667 1.914
15 sum variable True 0.745 -0.074 0.799 0.590
20 combined fixed False 0.373 0.356 0.279 1.531
20 combined variable False 0.420 3.474 0.363 26.514
20 sum fixed False 0.526 0.349 0.463 0.937
20 sum fixed True 0.701 0.083 0.781 0.239
20 sum variable False 0.585 0.743 0.580 2.790
20 sum variable True 0.732 -0.007 0.888 0.119

Table 101: Bounding for MCS in Pearson Region without Pearson IV with
ρ = 0.75

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.249 0.494 0.026 0.967
5 sum variable False 0.534 0.896 -0.032 4.260

10 sum fixed False 0.082 0.821 0.011 1.286
10 sum variable False 0.448 1.421 0.064 5.317
15 sum fixed False 0.230 0.889 0.172 1.487
15 sum variable False 0.367 2.416 0.095 6.533
20 combined fixed False 0.326 0.884 0.248 2.395
20 combined variable False 0.365 8.210 0.240 48.616
20 sum fixed False 0.277 1.044 0.265 1.653
20 sum variable False 0.509 1.878 0.177 7.355
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Table 102: Bounding for MCS in Pearson Region without Pearson IV with
ρ = 1.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.498 1.536 0.265 2.238
5 sum variable False 1.037 3.674 -0.191 11.257

10 sum fixed False 0.725 3.423 0.299 4.413
10 sum variable False 1.115 9.075 0.835 17.495
15 sum fixed False 0.549 5.487 0.300 6.590
15 sum variable False 0.958 15.484 0.594 26.641
20 combined fixed False 0.572 7.110 0.352 11.379
20 combined variable False 0.524 20.892 0.362 142.230
20 sum fixed False 0.660 7.372 0.386 8.683
20 sum variable False 1.256 21.046 0.467 35.028

Table 103: Bounding for MCS in I-∪ Beta Region with ρ = 0.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.896 0.091 0.455 0.578
5 sum variable False 0.961 0.153 0.697 1.552

10 sum fixed False 0.973 0.016 0.705 0.439
10 sum fixed True 0.928 0.033 0.686 0.393
10 sum variable False 0.981 -0.020 0.931 0.468
10 sum variable True 1.022 -0.139 0.920 0.365
15 sum fixed False 0.969 0.003 0.859 0.280
15 sum fixed True 0.982 -0.003 0.785 0.318
15 sum variable False 0.991 -0.097 0.984 0.292
15 sum variable True 0.996 -0.159 0.976 0.275
20 combined fixed False 0.940 0.024 0.865 0.364
20 combined variable False 0.900 -1.134 0.812 10.619
20 sum fixed False 0.976 -0.009 0.924 0.190
20 sum fixed True 0.977 -0.008 0.891 0.214
20 sum variable False 0.996 -0.119 0.975 0.328
20 sum variable True 1.005 -0.171 0.974 0.287
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Table 104: Bounding for MCS in I-∪ Beta Region with ρ = 0.25

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.916 0.109 0.479 0.635
5 sum variable False 0.897 0.330 0.648 1.951

10 sum fixed False 0.980 0.022 0.678 0.549
10 sum fixed True 0.882 0.121 0.523 0.503
10 sum variable False 0.985 -0.007 0.807 1.329
15 sum fixed False 0.962 0.031 0.735 0.483
15 sum fixed True 0.856 0.125 0.713 0.461
15 sum variable False 0.999 -0.054 0.826 1.354
15 sum variable True 0.929 0.115 0.685 1.435
20 combined fixed False 0.918 0.071 0.666 0.972
20 combined variable False 0.881 -0.636 0.749 15.945
20 sum fixed False 0.978 0.000 0.804 0.440
20 sum fixed True 0.905 0.090 0.758 0.441
20 sum variable False 0.994 -0.090 0.841 1.479
20 sum variable True 0.962 0.064 0.822 1.343

.5 Errors of µ and σ2 with Assessment Error
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Table 105: Bounding for MCS in I-∪ Beta Region with ρ = 0.5

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.853 0.197 0.480 0.766
5 sum variable False 0.914 0.485 0.476 2.996

10 sum fixed False 0.966 0.091 0.561 0.839
10 sum variable False 1.014 0.100 0.642 2.954
15 sum fixed False 0.977 0.076 0.585 0.969
15 sum variable False 0.996 0.088 0.654 3.344
20 combined fixed False 0.869 0.118 0.555 1.680
20 combined variable False 0.989 -1.362 0.615 31.600
20 sum fixed False 0.966 0.086 0.561 1.136
20 sum variable False 1.041 -0.043 0.617 4.162

Table 106: Bounding for MCS in I-∪ Beta Region with ρ = 0.75

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.678 0.391 0.296 1.074
5 sum variable False 0.945 0.702 0.373 4.350

10 sum fixed False 0.941 0.297 0.475 1.416
10 sum variable False 0.964 0.933 0.527 5.386
15 sum fixed False 0.899 0.370 0.391 1.827
15 sum variable False 0.939 1.045 0.576 6.753
20 combined fixed False 0.719 0.620 0.706 2.662
20 combined variable False 0.942 2.733 0.621 49.912
20 sum fixed False 0.948 0.426 0.454 2.128
20 sum variable False 0.975 1.255 0.488 8.163

210



Table 107: Bounding for MCS in I-∪ Beta Region with ρ = 1.0

Unc. Agg. µ and σ2 Normal? Ml bl Mu bu
5 sum fixed False 0.050 1.336 -0.168 2.142
5 sum variable False 0.700 2.461 -0.034 9.306

10 sum fixed False 0.167 2.769 -0.254 4.216
10 sum variable False 0.445 7.410 -0.107 17.171
15 sum fixed False 0.125 4.268 -0.219 6.145
15 sum variable False 0.644 11.161 0.088 23.448
20 combined fixed False 0.576 4.996 0.600 9.851
20 combined variable False 1.183 3.136 0.648 127.876
20 sum fixed False -0.084 6.303 -0.300 8.212
20 sum variable False 0.591 15.930 0.191 29.600

Table 108: Assessment Error: Absolute µ error, ρ = −1.0

Zone Scale HB EPT ESM MCS
I-∪ Beta Region 0.05 0.074 0.079 0.150 0.073

0.10 0.087 0.084 0.143 0.079
0.20 0.121 0.097 0.145 0.101

I-J Beta Region 0.05 0.022 0.024 0.033 0.043
0.10 0.042 0.045 0.044 0.053
0.20 0.080 0.086 0.076 0.080

I-∩ Beta Region 0.05 0.017 0.017 0.013 0.035
0.10 0.034 0.034 0.025 0.041
0.20 0.068 0.068 0.049 0.059

Pearson VI 0.05 0.021 0.019 0.015 0.046
0.10 0.041 0.037 0.028 0.051
0.20 0.077 0.075 0.054 0.066

Pearson IV 0.05 0.012 0.014 0.012 0.029
0.10 0.024 0.026 0.020 0.033
0.20 0.048 0.053 0.036 0.046
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Table 109: Assessment Error: Absolute µ error, ρ =
−0.75

Zone Scale HB EPT ESM MCS
I-∪ Beta Region 0.05 0.074 0.079 0.150 0.073

0.10 0.087 0.084 0.143 0.079
0.20 0.122 0.097 0.145 0.101

I-J Beta Region 0.05 0.022 0.025 0.033 0.043
0.10 0.042 0.045 0.044 0.053
0.20 0.081 0.086 0.077 0.080

I-∩ Beta Region 0.05 0.018 0.018 0.015 0.035
0.10 0.036 0.035 0.028 0.042
0.20 0.071 0.071 0.054 0.062

Pearson VI 0.05 0.022 0.020 0.016 0.046
0.10 0.042 0.039 0.031 0.051
0.20 0.079 0.078 0.058 0.068

Pearson IV 0.05 0.015 0.016 0.014 0.030
0.10 0.029 0.031 0.025 0.035
0.20 0.058 0.063 0.046 0.051

Table 110: Assessment Error: Absolute µ error, ρ = −0.5

Zone Scale HB EPT ESM MCS
I-∪ Beta Region 0.05 0.074 0.079 0.150 0.073

0.10 0.087 0.084 0.142 0.079
0.20 0.122 0.098 0.145 0.101

I-J Beta Region 0.05 0.022 0.025 0.033 0.043
0.10 0.042 0.046 0.045 0.054
0.20 0.082 0.088 0.078 0.082

I-∩ Beta Region 0.05 0.019 0.019 0.016 0.036
0.10 0.037 0.037 0.031 0.044
0.20 0.075 0.075 0.060 0.065

Pearson VI 0.05 0.023 0.021 0.017 0.046
0.10 0.044 0.041 0.033 0.052
0.20 0.083 0.082 0.064 0.072

Pearson IV 0.05 0.017 0.018 0.016 0.030
0.10 0.033 0.035 0.029 0.037
0.20 0.066 0.073 0.054 0.057
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Table 111: Assessment Error: Absolute µ error, ρ =
−0.25

Zone Scale HB EPT ESM MCS
I-∪ Beta Region 0.05 0.074 0.079 0.149 0.073

0.10 0.088 0.084 0.142 0.079
0.20 0.123 0.098 0.145 0.102

I-J Beta Region 0.05 0.022 0.025 0.033 0.044
0.10 0.043 0.046 0.046 0.055
0.20 0.083 0.090 0.080 0.083

I-∩ Beta Region 0.05 0.020 0.020 0.017 0.036
0.10 0.039 0.039 0.033 0.045
0.20 0.079 0.079 0.065 0.069

Pearson VI 0.05 0.024 0.022 0.019 0.047
0.10 0.046 0.043 0.036 0.053
0.20 0.086 0.087 0.068 0.075

Pearson IV 0.05 0.019 0.020 0.018 0.031
0.10 0.037 0.039 0.033 0.039
0.20 0.074 0.081 0.062 0.062

Table 112: Assessment Error: Absolute µ error, ρ = 0.0

Zone Scale HB EPT ESM MCS
I-∪ Beta Region 0.05 0.074 0.080 0.149 0.073

0.10 0.088 0.084 0.142 0.080
0.20 0.124 0.098 0.145 0.102

I-J Beta Region 0.05 0.023 0.026 0.033 0.044
0.10 0.044 0.047 0.046 0.055
0.20 0.085 0.091 0.082 0.085

I-∩ Beta Region 0.05 0.021 0.021 0.018 0.037
0.10 0.041 0.041 0.036 0.046
0.20 0.083 0.083 0.069 0.072

Pearson VI 0.05 0.025 0.023 0.020 0.047
0.10 0.048 0.045 0.038 0.054
0.20 0.089 0.090 0.073 0.078

Pearson IV 0.05 0.021 0.022 0.020 0.032
0.10 0.040 0.042 0.036 0.041
0.20 0.080 0.088 0.068 0.067
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Table 113: Assessment Error: Absolute µ error, ρ = 0.25

Zone Scale HB EPT ESM MCS
I-∪ Beta Region 0.05 0.074 0.080 0.149 0.074

0.10 0.089 0.085 0.142 0.080
0.20 0.127 0.100 0.147 0.104

I-J Beta Region 0.05 0.025 0.028 0.034 0.044
0.10 0.048 0.051 0.050 0.058
0.20 0.093 0.100 0.089 0.092

I-∩ Beta Region 0.05 0.024 0.024 0.021 0.038
0.10 0.047 0.047 0.041 0.050
0.20 0.095 0.095 0.081 0.082

Pearson VI 0.05 0.028 0.026 0.022 0.047
0.10 0.055 0.051 0.043 0.057
0.20 0.101 0.103 0.083 0.087

Pearson IV 0.05 0.025 0.026 0.023 0.033
0.10 0.048 0.050 0.042 0.046
0.20 0.095 0.103 0.081 0.078

Table 114: Assessment Error: Absolute µ error, ρ = 0.5

Zone Scale HB EPT ESM MCS
I-∪ Beta Region 0.05 0.075 0.080 0.149 0.074

0.10 0.090 0.085 0.142 0.081
0.20 0.129 0.102 0.148 0.107

I-J Beta Region 0.05 0.027 0.030 0.035 0.045
0.10 0.052 0.055 0.052 0.060
0.20 0.101 0.108 0.095 0.098

I-∩ Beta Region 0.05 0.027 0.027 0.024 0.039
0.10 0.053 0.053 0.046 0.054
0.20 0.106 0.106 0.090 0.092

Pearson VI 0.05 0.031 0.029 0.025 0.048
0.10 0.060 0.056 0.047 0.060
0.20 0.111 0.113 0.092 0.095

Pearson IV 0.05 0.028 0.030 0.025 0.035
0.10 0.054 0.057 0.048 0.051
0.20 0.107 0.117 0.092 0.088
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Table 115: Assessment Error: Absolute µ error, ρ = 0.75

Zone Scale HB EPT ESM MCS
I-∪ Beta Region 0.05 0.075 0.080 0.149 0.074

0.10 0.091 0.086 0.143 0.082
0.20 0.131 0.103 0.149 0.108

I-J Beta Region 0.05 0.028 0.031 0.036 0.045
0.10 0.055 0.059 0.055 0.062
0.20 0.108 0.114 0.100 0.104

I-∩ Beta Region 0.05 0.030 0.030 0.026 0.040
0.10 0.058 0.058 0.050 0.057
0.20 0.115 0.115 0.099 0.099

Pearson VI 0.05 0.033 0.031 0.026 0.048
0.10 0.065 0.061 0.051 0.063
0.20 0.120 0.122 0.100 0.102

Pearson IV 0.05 0.031 0.032 0.027 0.036
0.10 0.060 0.063 0.052 0.055
0.20 0.118 0.127 0.101 0.097

Table 116: Assessment Error: Absolute µ error, ρ = 1.0

Zone Scale HB EPT ESM MCS
I-∪ Beta Region 0.05 0.075 0.080 0.149 0.075

0.10 0.091 0.086 0.143 0.082
0.20 0.131 0.103 0.150 0.109

I-J Beta Region 0.05 0.029 0.032 0.037 0.046
0.10 0.057 0.061 0.056 0.063
0.20 0.112 0.118 0.103 0.107

I-∩ Beta Region 0.05 0.031 0.031 0.027 0.040
0.10 0.061 0.061 0.053 0.060
0.20 0.122 0.122 0.104 0.105

Pearson VI 0.05 0.035 0.033 0.028 0.049
0.10 0.069 0.064 0.054 0.065
0.20 0.125 0.128 0.105 0.107

Pearson IV 0.05 0.033 0.035 0.029 0.037
0.10 0.064 0.067 0.056 0.058
0.20 0.125 0.135 0.107 0.103
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Table 117: Assessment Error: Absolute σ2 error, ρ =
−1.0

Zone Scale HB EPT ESM MCS
I-∪ Beta Region 0.05 0.302 0.264 0.286 0.179

0.10 0.325 0.252 0.287 0.199
0.20 0.375 0.262 0.335 0.267

I-J Beta Region 0.05 0.103 0.122 0.128 0.222
0.10 0.163 0.183 0.166 0.244
0.20 0.300 0.340 0.257 0.298

I-∩ Beta Region 0.05 0.080 0.079 0.106 0.227
0.10 0.150 0.149 0.142 0.243
0.20 0.300 0.301 0.227 0.282

Pearson VI 0.05 0.100 0.096 0.170 0.300
0.10 0.194 0.173 0.194 0.314
0.20 0.352 0.348 0.263 0.338

Pearson IV 0.05 0.104 0.115 0.196 0.328
0.10 0.167 0.185 0.215 0.341
0.20 0.306 0.362 0.276 0.359
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Table 118: Assessment Error: Absolute σ2 error, ρ =
−0.75

Zone Scale HB EPT ESM MCS
I-∪ Beta Region 0.05 0.302 0.264 0.286 0.179

0.10 0.326 0.252 0.287 0.199
0.20 0.375 0.262 0.334 0.267

I-J Beta Region 0.05 0.103 0.122 0.128 0.222
0.10 0.163 0.182 0.165 0.244
0.20 0.299 0.339 0.256 0.298

I-∩ Beta Region 0.05 0.078 0.077 0.106 0.227
0.10 0.146 0.146 0.140 0.243
0.20 0.294 0.294 0.221 0.279

Pearson VI 0.05 0.098 0.095 0.170 0.301
0.10 0.190 0.170 0.193 0.315
0.20 0.347 0.343 0.259 0.337

Pearson IV 0.05 0.103 0.113 0.196 0.328
0.10 0.161 0.179 0.215 0.341
0.20 0.292 0.346 0.269 0.359
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Table 119: Assessment Error: Absolute σ2 error, ρ =
−0.5

Zone Scale HB EPT ESM MCS
I-∪ Beta Region 0.05 0.302 0.264 0.285 0.179

0.10 0.327 0.251 0.286 0.199
0.20 0.377 0.262 0.334 0.268

I-J Beta Region 0.05 0.103 0.122 0.128 0.222
0.10 0.164 0.183 0.166 0.245
0.20 0.301 0.342 0.257 0.299

I-∩ Beta Region 0.05 0.077 0.076 0.105 0.228
0.10 0.144 0.144 0.138 0.244
0.20 0.290 0.290 0.216 0.278

Pearson VI 0.05 0.098 0.094 0.171 0.301
0.10 0.189 0.169 0.193 0.316
0.20 0.347 0.341 0.256 0.337

Pearson IV 0.05 0.102 0.111 0.197 0.328
0.10 0.157 0.173 0.215 0.342
0.20 0.281 0.334 0.264 0.358
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Table 120: Assessment Error: Absolute σ2 error, ρ =
−0.25

Zone Scale HB EPT ESM MCS
I-∪ Beta Region 0.05 0.303 0.264 0.285 0.179

0.10 0.327 0.250 0.286 0.199
0.20 0.379 0.262 0.335 0.269

I-J Beta Region 0.05 0.103 0.122 0.129 0.223
0.10 0.164 0.183 0.167 0.246
0.20 0.303 0.344 0.258 0.301

I-∩ Beta Region 0.05 0.076 0.075 0.104 0.228
0.10 0.142 0.141 0.136 0.244
0.20 0.286 0.286 0.210 0.277

Pearson VI 0.05 0.097 0.094 0.171 0.301
0.10 0.187 0.167 0.193 0.316
0.20 0.346 0.339 0.253 0.337

Pearson IV 0.05 0.100 0.110 0.197 0.328
0.10 0.152 0.168 0.215 0.343
0.20 0.270 0.320 0.259 0.359

Table 121: Assessment Error: Absolute σ2 error, ρ = 0.0

Zone Scale HB EPT ESM MCS
I-∪ Beta Region 0.05 0.303 0.263 0.285 0.179

0.10 0.328 0.250 0.285 0.200
0.20 0.380 0.261 0.335 0.270

I-J Beta Region 0.05 0.103 0.122 0.129 0.223
0.10 0.165 0.184 0.167 0.246
0.20 0.304 0.346 0.258 0.302

I-∩ Beta Region 0.05 0.075 0.074 0.104 0.228
0.10 0.139 0.138 0.133 0.245
0.20 0.281 0.280 0.204 0.276

Pearson VI 0.05 0.096 0.093 0.171 0.302
0.10 0.185 0.166 0.193 0.317
0.20 0.345 0.335 0.250 0.337

Pearson IV 0.05 0.099 0.108 0.197 0.329
0.10 0.148 0.162 0.216 0.343
0.20 0.257 0.305 0.255 0.359
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Table 122: Assessment Error: Absolute σ2 error, ρ =
0.25

Zone Scale HB EPT ESM MCS
I-∪ Beta Region 0.05 0.303 0.263 0.284 0.179

0.10 0.328 0.249 0.284 0.199
0.20 0.380 0.259 0.333 0.268

I-J Beta Region 0.05 0.102 0.120 0.129 0.223
0.10 0.162 0.181 0.166 0.247
0.20 0.298 0.339 0.254 0.300

I-∩ Beta Region 0.05 0.073 0.071 0.103 0.229
0.10 0.134 0.133 0.130 0.246
0.20 0.270 0.270 0.195 0.274

Pearson VI 0.05 0.093 0.091 0.172 0.302
0.10 0.181 0.162 0.192 0.318
0.20 0.337 0.326 0.245 0.338

Pearson IV 0.05 0.098 0.107 0.198 0.329
0.10 0.142 0.155 0.216 0.344
0.20 0.242 0.285 0.251 0.361

Table 123: Assessment Error: Absolute σ2 error, ρ = 0.5

Zone Scale HB EPT ESM MCS
I-∪ Beta Region 0.05 0.304 0.263 0.284 0.178

0.10 0.329 0.248 0.284 0.197
0.20 0.380 0.257 0.330 0.266

I-J Beta Region 0.05 0.101 0.119 0.128 0.224
0.10 0.159 0.177 0.164 0.247
0.20 0.291 0.331 0.249 0.298

I-∩ Beta Region 0.05 0.070 0.068 0.102 0.229
0.10 0.129 0.128 0.126 0.246
0.20 0.257 0.257 0.186 0.273

Pearson VI 0.05 0.090 0.089 0.172 0.302
0.10 0.175 0.156 0.192 0.319
0.20 0.328 0.313 0.240 0.339

Pearson IV 0.05 0.097 0.105 0.198 0.329
0.10 0.137 0.148 0.217 0.345
0.20 0.226 0.264 0.248 0.363
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Table 124: Assessment Error: Absolute σ2 error, ρ =
0.75

Zone Scale HB EPT ESM MCS
I-∪ Beta Region 0.05 0.304 0.262 0.284 0.178

0.10 0.329 0.247 0.283 0.196
0.20 0.379 0.254 0.328 0.263

I-J Beta Region 0.05 0.099 0.117 0.128 0.224
0.10 0.156 0.173 0.162 0.247
0.20 0.283 0.321 0.244 0.295

I-∩ Beta Region 0.05 0.067 0.065 0.101 0.229
0.10 0.123 0.121 0.123 0.247
0.20 0.242 0.242 0.175 0.273

Pearson VI 0.05 0.087 0.086 0.172 0.303
0.10 0.169 0.151 0.192 0.319
0.20 0.317 0.298 0.234 0.340

Pearson IV 0.05 0.095 0.104 0.198 0.330
0.10 0.131 0.141 0.218 0.346
0.20 0.209 0.240 0.246 0.366

Table 125: Assessment Error: Absolute σ2 error, ρ = 1.0

Zone Scale HB EPT ESM MCS
I-∪ Beta Region 0.05 0.303 0.262 0.283 0.177

0.10 0.328 0.247 0.281 0.194
0.20 0.377 0.251 0.322 0.257

I-J Beta Region 0.05 0.097 0.114 0.127 0.224
0.10 0.149 0.166 0.160 0.247
0.20 0.269 0.305 0.235 0.292

I-∩ Beta Region 0.05 0.063 0.061 0.099 0.230
0.10 0.114 0.112 0.119 0.248
0.20 0.223 0.222 0.162 0.274

Pearson VI 0.05 0.082 0.083 0.172 0.303
0.10 0.159 0.143 0.193 0.320
0.20 0.302 0.279 0.228 0.343

Pearson IV 0.05 0.094 0.103 0.199 0.330
0.10 0.125 0.136 0.219 0.347
0.20 0.191 0.217 0.247 0.369
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