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Abstract 

 

Using Greedy Algorithm to Learn Graphical Model for Digit 

Recognition 

 

Jisong Yang, M.S.Stat 

The University of Texas at Austin, 2014 

 

Supervisor:  Pradeep Ravikumar 

 

Graphical model, the marriage between graph theory and probability theory, has 

been drawing increasing attention because of its many attractive features. In this paper, we 

consider the problem of learning the structure of graphical model based on observed data 

through a greedy forward-backward algorithm and with the use of learned model to classify 

the data into different categories. We establish the graphical model associated with a binary 

Ising Markov random field. And model selection is implemented by adding and deleting 

edges between nodes. Our experiments show that: compared with previous methods, the 

proposed algorithm has better performance in terms of correctness rate and model 

selection. 
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Chapter 1: Introduction 
 
       Graphical model is the marriage between graph theory and probability 
theory. Graphical model has many attractive features such as: inference and 
learning are allowed to be treated together, supervised and unsupervised 
learning are merged seamlessly, tolerance to the missing data, explicitly 
displaying conditional independence and clear interpretation of the graph. 
There are two kinds of graphical model: those based on directed graph, and 
those based on undirected graph. 
 
      One of the most important research of graphical model is learning the 
structure of the model based on observed data through the use of computer 
algorithms and with the use of learned model to take actions such as 
classifying the data into different categories. Taking the example of 
recognizing handwritten digits, illustrated in Figure 1.1. Each digit 
corresponds to a 28×28 pixel image and each pixel is gray range from [0, 255], 
so can be represented by a vector x comprising 784 real numbers. The goal is 
to build a machine that will take such a vector x as input and that will produce 
the identity of the digit 0, . . .,  9 as the output. This is a difficulty problem due 
to the wide variability of handwriting. It could be tackled using handcrafted 
rules or heuristics for distinguishing the digits based on the shapes of the 
strokes, but in practice such an approach leads to a proliferation of rules and 
of exceptions to the rules and so on, and invariably gives poor results[1]. 
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Figure 1.1 Handwritten digits 

 
  In order to get better results, the original input variables are typically 
preprocessed to transform them into some new space of variables. There are 
many methods to do this, such as principal component analysis (PCA) ([2]).  
The images of the digits are typically translated and scaled so that each digit 
is contained within a box of a fixed size. This greatly reduces the variability 
within each digit class, because the location and scale of all the digits are now 
the same, which makes it much easier for a subsequent pattern recognition 
algorithm to distinguish between the different classes. This preprocessing 
stage is called feature extraction. However, if the data is sparse, PCA does not 
appear to be applicable directly. 
 
      Based on Markov Random Field (MRF) modeling theory, Geman and 
Geman [3] made an analogy between images and statistical physical system 
and proposed to process pixel gray levels and image properties like molecules 
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or atoms in physical systems applying ideas and techniques used for the study 
of equilibrium states of chemicals processes at different temperatures. By the 
analogy, the posterior distribution defines another physical system which 
yielded the maximum a posterior (MAP) estimate of the image given the 
observation.  However, Geman did not present a good way to extract the 
feature and the potential functions are very limited and specified forms, 
wheres in practice it is often desirable that the forms of the distributions 
should be determined or learner from the observed  images. 
 
 Zhu and Mumford[4] proposed a new theory for building statistical 
models for images in a variety of applications. In their work, filtering theory, 
information feature functions and MRF come together in a general purpose 
learning approach. They suggested to obtain model balancing between model 
generality and model simplicity by two seemingly contrary criteria: (1) the 
maximum entropy principle, among all models, choosing the simplest model 
which maximizing the entropy over all distribution that reproduces the 
particular feature statistics. (2) the minimum entropy principle, among  all sets 
of feature statistics, selecting the set has the minimum Kullback-Leibler 
divergence between feature sets and models given the image. The proposed 
feature selection scheme does not appear to be globe optimal by only using 
forward greed algorithm. 
  
 The main contribution of this paper may be described as following: we 
propose a forward and backward greed algorithm to learn the structure of 
graphical model and applied it to digits recognition, especially in binary 
scenario. Our experiments show that: compared with previous methods, the 
proposed algorithm has better performance in terms of correctness rate and 
model selection.  
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 The remainder of this paper is organized as follow. We begin in chapter 
2 by introducing previous methods and models, and then stating our model 
and algorithm. Simulation results and comparisons are shown in chapter 3. 
Finally, conclusion and discussion are made in chapter 4. 
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Chapter 2: Methodology 
 

 In a variety of disciplines such as computational vision, pattern 

recognition, image coding, a main goal is to establish a probability model 

characterizing a set of images. This is often posed as a statistical inference 

problem: suppose there is a joint distribution f(I) over the image space I, f(I) 

should concentrate on a subspace which corresponds to ensemble of images 

in the application and the objective is to estimate f(I) given  a set of samples. 

 

 However, making inference about f(I) is more difficult than many of 

the learning problems in graphical model for the following reasons. 

 

 Firstly, the dimension of the image space is extremely large compared 

with the number of available training data. For instance, suppose the size of 

images is about 200*200 pixels, and each pixels is gray color for simplicity, 

the value is between [0, 255], thus the probability distribution is a function of 

40,000 variables and each variable has 256 possible values, while the number 

of training data set is usually not sufficient to allow us to make direct 

inference. 

 Secondly, for the sparse graphical model, how to search nodes and find 

the edges between them is a big challenge in recent research. Figure 2.1 

displays the picture of number “1”, the size is 28* 28 pixels. The background 

is black for the most of part, only the central of the picture is bright. Figure 

2.2 shows the number “1” under matrix form that explains the concept more 

explicitly.  Many elements of the matrix are zero corresponding to the dark 

background. 
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Figure 2.1 Image of number “1” 

Figure 2.2 Matrix form of number “1” 
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2.1 Previous Methods 

       Principle component analysis (PCA) is commonly used for identifying 

the images. First, eigenvectors with larger eigenvalues are extracted from the 

sample training data to retain the principal components of the images. Second, 

projecting both test data and train data onto the eigenspace, which is reduced 

dimension. Finally, using the features captured by projection to identify test 

data by comparing the distance. Figure2.3 shows the position of a ball attached 

to an oscillating spring is recorded using three cameras A, B and C. The 

position of the ball tracked by each camera is depicted in each panel below[2]. 

                                           

Figure 2.3 A toy example 
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  In order to capture the principal components of the images, the 

eigenvectors derived from the samples of train data are sorted from the largest 

to the smallest according to their eigenvalues. A set of eigenvectors which 

corresponding to the larger eigenvalue are selected because they represent in 

which directions the data span dramatically. With those principal 

eigenvectors, less information is needed to reconstruct the test data and 

identification. Figure 2.4 show the largest 64 eigenvectors derived from 

training data. 

                 

Figure 2.4 Top 64 Eigenvectors derived from training data 
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  Technically speaking, PCA applies eigenvectors as features for pattern 

recognition and selects the eigenvectors by the descending order of 

eigenvalue. However, PCA is not suitable for processing the sparse images, 

for instance, binary images. First of all, since the matrix form of the sparse 

images has many zeros, the eigenvectors have little information to be good 

features, which is illustrated in table 2.1. Second, since the eigenvectors are 

sparse, it degrade the quality of the recovered pictures, the first row of figure 

2.5 displays the original images from the raw images, the second row shows 

the reconstructed images. The recovered images have much noise since the 

image is binary. 
 

 
 

Table 2.1 Part of eigenvector calculated from handwritten digits 
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Figure 2.5 Original images and reconstructed images by PCA 

 

 A better solution to image process is thinking image as undirected 

graphical model also unknown as Markov random field (MRF). MRF is 

specified by an undirected graph G = (V, E) with vertex set V = {1, 2, . . , p} 

and edge set E belongs to  V × V. The structure of this graph encodes certain 

conditional independence assumptions among subsets of the p-dimensional 

discrete random variable X = (𝑋𝑋1, 𝑋𝑋2 ,  . . . , 𝑋𝑋𝑝𝑝) where variable 𝑋𝑋𝑖𝑖is associated 

with vertex i V . One important problem for such models is to estimate the 

underlying graph from n independent and identically distributed samples 

{𝑥𝑥(1), 𝑥𝑥(2), . . . , 𝑥𝑥(𝑛𝑛)} drawn from the distribution specified by the Undirected 

graphical model.  X is a MRF if P(𝑋𝑋𝑠𝑠=𝑥𝑥𝑠𝑠|𝑋𝑋𝑟𝑟=𝑥𝑥𝑟𝑟, r s)  = P (𝑋𝑋𝑠𝑠=𝑥𝑥𝑠𝑠|𝑋𝑋𝑟𝑟=𝑥𝑥𝑟𝑟, 𝑟𝑟 ∈

𝑁𝑁(𝑠𝑠)). Roughly speaking, in MRF is possible to evaluate the probability to 
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have a specific value in a state of the system having only knowledge of the 

relative neighbors set. 

 

Based on Markov random field theory, Geman suggested to view pixel 

levels and presence and orientation of edges as states of atoms or molecules 

in grid physical system. The model can be described as following: 

 

Given a set of sites S and a neighborhood system Geman modeling the 

image as Gibbs distribution such that: 

    
(2.1)                              P(𝜔𝜔)= 1

𝑍𝑍
𝑒𝑒𝑒𝑒𝑒𝑒(−𝑈𝑈(𝜔𝜔)

𝑇𝑇
)                                                  

where Z is the normalizing or partition constant defined as 

                                     

(2.2)                                   Z = ∑ 𝑒𝑒𝑒𝑒𝑒𝑒 (−𝑈𝑈(𝜔𝜔)
𝑇𝑇

)𝜔𝜔∈Ω                                                                

T is the constant relative to the temperature and U is the energy function of 

the firm 

(2.3)                                  𝑈𝑈(𝜔𝜔) = ∑ 𝑉𝑉𝑐𝑐(𝜔𝜔)𝐶𝐶                 

                                                 

where the 𝑉𝑉𝑐𝑐functions are called potentials or potential functions and referred 

to specific cliques C.  The potential functions are clique dependent, which 

means their value depends only on the values assumed by the states presents 

in the given clique C. The globe parameter T, is used to smoothly simulate an 

annealing process that converges to an equilibrium stages of the system.  The 

general computational problem are: 

I .  sample from the distribution P(𝜔𝜔); 

II.  minimize U over Ω; 
11 

 



III. compute the expectation 

 

One of the biggest problems working with the Gibbs distribution is the 

constant Z; it is often difficulty to calculate its value directly because it needs 

a great number of possible configurations. To obtain the quantitative 

information, Monte Carlo Markov Chain (MCMC) methods are good 

candidates to extract samples from complicated distribution.   

 

Zhu and Mumford derived similar model based on entropy theory. The method 

is called minimax entropy principle which is composed by two key 

components: 

I. The maximum entropy principle 

The problem is formulated as the following constrained 

optimization problem, 

 

(2.4)         P(I) = arg max{-∫ 𝑃𝑃(𝐼𝐼)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐼𝐼)𝑑𝑑𝑑𝑑}, 

 
                Subject to 𝐸𝐸𝑝𝑝 �∅(𝜕𝜕)(𝐼𝐼)� = ∫ ∅(𝜕𝜕)𝑃𝑃(𝐼𝐼)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐼𝐼)𝑑𝑑𝑑𝑑         𝜕𝜕 = 1, … 𝐾𝐾, 

                   

                and ∫ 𝑃𝑃(𝐼𝐼)𝑑𝑑𝑑𝑑 = 1. 

where P(I) is the probability distribution with respect to image I. p(I) has the 

following Gibbs distribution form: 

 
 (2.5)   P (I) =  1

𝑍𝑍
exp {− ∑ < 𝜔𝜔(𝛼𝛼) ∙ ∅(𝛼𝛼)(𝐼𝐼) >𝐾𝐾

𝜕𝜕=1 } 
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where 𝜔𝜔(𝛼𝛼)is a parameter vector has the same dimension as ∅(𝛼𝛼)(𝐼𝐼),  <∙> 

denotes inner product and Z is the partition function for normalization. 

 

II. The minimum entropy principle 

Let B be the set of all possible features, and S ∁B an arbitrary set of  K features, 

entropy minimization provides a criterion for choosing the optimal set of 

features, 

 

(2.6)                   𝑆𝑆* = arg min entropy(𝑃𝑃𝑆𝑆(I;ω)) 

 

where PS(I;ω) denotes the fitted model using features in S. 

 

 Zhu and Mumford derived a forward greedy algorithm to find the set of 

features, which is not guaranteed to learn the graphical model with high 

probability. 

 

          Geman and zhu’s work share the same model, Gibbs distribution, more 

generally, it belongs exponential family.  Here is the question: can we do better 

with a more general model to learn the structure of model with less samples 

and still has the performance guarantee? 

 

2.2 Proposed method 

  We derived a new algorithm based on the work [5] [6], we focus on the 

pairwise Markov random fields and Ising model. First, let’s begin by introduce 

some background about them.   
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2.2.1 Pairwise Markov random fields 

Let X = (𝑋𝑋1, 𝑋𝑋2 ,  . . . , 𝑋𝑋𝑝𝑝) denote a random vector with each variable (𝑋𝑋𝑠𝑠 

taking values in a corresponding set Xs. Suppose G = (V, E) is an undierectd 

graph consist of a set of vertices  V = {1, . . . , p} and a set of unordered pairs 

E representing edges between the vertices, so that each random variable Xs is 

associated with a vertex s ∈ V . The pairwise Markov random field associated 

with the graph G over the random vector X is the family of distributions of X 
which factorize as P(x) ∝ exp{∑ ∅𝑠𝑠𝑠𝑠(𝑋𝑋𝑠𝑠, 𝑋𝑋𝑡𝑡𝜕𝜕(𝑠𝑠,𝑡𝑡)∈𝐸𝐸=1 )} where for each edge (s, t) 

∈ E, ∅𝑠𝑠𝑠𝑠is a mapping from pairs (xs, xt ) ∈ Xs × Xt to the real line. The pairwise 

assumption providers no loss of generality for discrete random variables. With 

purely pairwise interactions, any Markov random field with higher order 

interactions can be converted (by introducing additional variables) to an 

equivalent pairwise Markov random field.   

 

2.2.2 Ising model 

The Ising model is a simple system originally created to study magnetism but 

is now used to examine a number of natural phenomena outside of physics. 

Figure 2.6 shows the atoms explained by Ising model. In this paper we assume 

random variable 𝑋𝑋𝑠𝑠∈ {-1, 1} for each vertex s ∈V, and ∅𝑠𝑠𝑠𝑠(𝑋𝑋𝑠𝑠, 𝑋𝑋𝑡𝑡)= 

𝜃𝜃* ∗ (𝑋𝑋𝑠𝑠𝑋𝑋𝑡𝑡) for some parameter 𝜃𝜃*∈ R. And the distribution can be written as: 

 
(2.7)                 P(x)  = 1

𝑍𝑍
exp {∑ 𝜃𝜃*(𝑋𝑋𝑠𝑠𝑋𝑋𝑡𝑡) +   ∑ 𝜃𝜃*(𝑋𝑋𝑟𝑟)}  (𝑟𝑟)∈𝑉𝑉(𝑠𝑠,𝑡𝑡)∈𝐸𝐸                 

 

where Z is the partition function as mentioned before. 
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Figure 2.6 Lattice of each atom’s magnetic moment 

 

 
𝑃𝑃𝜃𝜃

*(𝑋𝑋𝑟𝑟|  𝑋𝑋𝑣𝑣\𝑟𝑟)  = P(𝑋𝑋𝑟𝑟 ,   𝑋𝑋𝑣𝑣\𝑟𝑟)
P(𝑋𝑋𝑣𝑣\𝑟𝑟)

 

 
                  = 𝑒𝑒𝑒𝑒𝑒𝑒(∑𝜃𝜃𝑟𝑟𝑟𝑟𝜑𝜑(𝑋𝑋𝑟𝑟,𝑋𝑋𝑡𝑡)

� 𝑒𝑒𝑒𝑒𝑒𝑒(∑𝜃𝜃𝑟𝑟𝑟𝑟𝜑𝜑(𝑋𝑋𝑟𝑟,𝑋𝑋𝑡𝑡)𝑋𝑋𝑟𝑟

               

                         

  Since the 𝑋𝑋𝑠𝑠∈ {-1, 1} , 𝜑𝜑(𝑋𝑋𝑟𝑟 , 𝑋𝑋𝑡𝑡) = 𝑋𝑋𝑟𝑟*𝑋𝑋𝑡𝑡 

 

This conditional distribution can be written as: 

                                                                                                                                                  

(2.8) 
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Hence the variable 𝑋𝑋𝑟𝑟can be viewed as the response variable in a logistic 
regression in which all of the other variables𝑋𝑋𝑣𝑣\𝑟𝑟play the role of the covariates. 

 

With formula (2.8), based on computing a logistic regression of 𝑋𝑋𝑟𝑟on 
its neighbors𝑋𝑋𝑣𝑣\𝑟𝑟, we may estimate the parameter vector 𝜃𝜃*and the 

neighborhood structure. Suppose that we are given a collection of n samples 

(𝑋𝑋1, 𝑋𝑋2 ,  . . . , 𝑋𝑋𝑛𝑛) where each one is p-dimensional vector and every element 

of the vector is 𝑥𝑥𝑖𝑖∈ {−1, +1}𝑝𝑝that is i.i.d. drawn from a distribution of the form 

(2.7) for parameter vector 𝜃𝜃*and graph G = (V , E) over the p variables. The 
parameter vector 𝜃𝜃*may be viewed as a �𝑃𝑃

2�dimensional vector, indexed by 

pairs of distinct vertices but nonzero if and only if the vertex pair (s, t) belongs 

to the unknown edge set E of the underlying graph G. The value of each 

element of 𝜃𝜃*is fixed to a certain value𝑣𝑣𝜃𝜃. The task of graphical model 

selection is to infer the edge set E. more specifically, according the logistical 

regression of formula (2.8), 𝜃𝜃∗can be estimated by minimization of loss 

function: 

 

 (2.9) 

 

 

There are many classes of graphical model. Figure 2.7 shows four that are 

commonly used.   
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                               (a)                                                                       (b) 

 

 

                               (c)                                                                         (d) 

Figure 2.7 Four kinds of graph classes. (a) Chain graph.  (b) Four-nearest 

neighbor grid.  (c) Eight-nearest neighbor grid. (d) Star shaped graph. 
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 In this paper, we choose four-nearest neighbor grid for graphical model 

learning. Based on the general loss function (2.9), we proposed the forward-

backward greedy algorithm that rewrites the algorithm in [6]. First forward 

subroutine is executed to find the preliminary structure of the model, then 

backward subroutine is executed to delete some edges in the preliminary 

graph. Ultimately, the algorithm is end up with the true structure of the model. 

  

Forward-backward greedy algorithm for finding a sparse graph model: 

Input: Data D = {𝑋𝑋1, 𝑋𝑋2 ,  . . . , 𝑋𝑋𝑛𝑛} n samples, forward stopping threshold 𝐸𝐸𝐹𝐹, 

backforward stopping threshold 𝐸𝐸𝐵𝐵. 

Output: estimated parameter 𝜃𝜃 

Initialization: 𝜃𝜃0 = 0,   𝐾𝐾 = 1 

for each node in V 

    while true do {Forward step: adding edges} 
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           while true do {backward step: deleting edges} 

                   end while 

            end while 

end for 

 

Here K is the cardinality of edges, will be discussed in the experiment.  Since 

the loss function satisfy the restricted strong convexity and restricted strong 

smoothness (Negahban et al [7]), such that sparsistency is guaranteed. The 

optimal structure of graph will be found with high probability. 
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Chapter 3: Experiment 

 
 The data used in this paper is from Kaggle: www.kaggle.com. Totally, 

there are 70000 images. 42,000 training images and 28,000 images. Each 

image is 28 pixels in height and 28 pixels in width, for a total of 784 pixels in 

total. Each pixel has a single pixel-value associated with it, indicating the 

lightness or darkness of that pixel, with higher numbers meaning darker. This 

pixel-value is an integer between 0 and 255, inclusively. 

 

 In order to apply Ising model, the raw data is convert to binary data 

first, then the training data is categorized into 10 group according to their 

labels which are “0” ,“1”, “2”, “3”.... “9”. For each group, structure of model 

is learned by the forward-backward greedy algorithm. 

 

 Another issue is about the cardinality of edges should be select in the 

model. To get the optimal number K of edge, a ten-fold cross validation is                                   

carried out. Figure 3.1 shows how error changes with number of K edges. The 

error goes down when number of edges increase, and then error goes up. The   

optimal K is between 30 and 40. 
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Figure 3.1 Error vs Number of edges K 

 

In [5], it is proved that the consistent neighborhood selection can be obtained 

for sample size n = Ω(d2logp), where d is the maximal degree of the node, p  

                                    

                                    

Figure 3.2 Error vs Number of sample N 
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is the number of node . In this paper, we use four-nearest neighbor grid, d is 

fixed to 4.  Figure 3.2 shows that error is decreasing as number of size 

increase, and then the error stay parallel with the horizontal axis, which is 

consistent to the [5]. 

                                   

Figure3.3 Gibbs sampling from the learned model 

 

 Figure 3.3 shows ten samples of number “0” generated by the learned 

model. Samples are taken after 1000 iterations to make sure the distribution 

is convergent. The learned probability distribution fit the date quite well.  
22 

 



Finally, we compare our scheme with PCA by submitting the predicting result 

to Kaggle. Figure 3.4 shows PCA reached score 0.94029, which means around 

94% of prediction is correct, while proposed scheme is 0.978, better than 

PCA. 

 

 

(a) 

 

(b) 

 
Figure 3.4 Kaggle’s score (a) PCA.  (b) forward-backward greedy. 
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Chapter 4 Discussion 

 
 This report presents an algorithm to learn the structure of undirected 

model in sparse scenario. In order to perform consistent model selection in 

binary Ising graphical model, a forward- backward greedy selection scheme 

is applied to find the edges between the random variables.  Our results show 

the learned probability distribution matches the data quiet well and can be 

used as pattern recognition with decent accuracy.  

   

 It would be interesting to extend current work from binary Markov 

random fields to general discrete graphical models with more than two 

number states, for instance, the RGB graph. Moreover, how to learn the 

underlying graph with mixed class grid and make selections adaptively should 

be also interesting.  
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