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Since the theoretical work of Einstein [1905] and Von Smoluchowski [1906], and

the experiments of Perrin [1909], Brownian motion at long time-scales has been ex-

tensively studied for over a century. Short time-scale aspects of Brownian motion are

however becoming increasingly relevant, as technology attempts to make smaller and

faster devices. The subject matter of this dissertation is the study of short time-scale

(typically ∼ µs) aspects of Brownian motion of microscopic particles in liquids, where

the dynamics of the fluid medium are significant.

We detail two recent experiments probing this regime: an experiment [Kheifets

et al., 2014] that measured the hydrodynamic instantaneous velocity of a dielectric

particle in liquid medium and confirmed theories of Brownian motion based on hy-

drodynamics up to sub-microsecond time-scales, and a subsequent experiment [Mo

et al., 2015a] that verified the Maxwell-Boltzmann distribution of velocities well into

the tails.

In a liquid medium, the presence of a boundary near a particle has a significant

impact on the characteristics of its Brownian motion, owing to the hydrodynamic

coupling between the bounding walls and the particle. However, exact solutions to

the hydrodynamic equations are not known even for the common situation of a flat

wall. An approximate theory was developed by Felderhof [2005], using a point-particle

approximation. Despite agreement with previous experiments, that work results in a

drag coefficient with a spurious dependence on the particle’s density. In this work, we

describe a modification [Simha et al., 2017] to the point-particle approximation that

ix



resolves this inconsistency. Moreover, Felderhof’s approximation scheme neglects the

size of the particle not only in comparison to the distance of the bounding wall, but

also to the skin-depth of rotational flow it generates in the fluid. Since this skin-depth

depends on the time-scale of the motion, it is not obvious that such an approximation

scheme works at all time-scales. We use the formalism of boundary integral equations

to set up a perturbative framework, and obtain the point-particle framework through

a series of systematic approximations. This derivation explains why the theory works

so well at all time-scales. An alternative calculation for a simple case of a no-slip

sphere near a full-slip wall is presented, with results indicating that the point-particle

approximation may not capture all non-perturbative terms.

We then discuss an experiment [Mo et al., 2015b] that probed the effects of a

boundary on Brownian motion at short time-scales. The experiment agrees very well

with the point-particle theory, demonstrating that the boundary significantly impacts

Brownian motion down to a certain time-scale, and that the effects are diminished at

shorter time-scales. Such effects allude to the possibility of using Brownian motion

as a probe of the local environment.
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Chapter One: Introduction

1.1 What does “Brownian motion” mean in this

dissertation?

Brownian motion means different things to different people. The word “Standard

Brownian Motion” usually refers to the Wiener process Wt, which may be loosely

thought of as the integral of white noise.

However, in this dissertation, the primary subject of interest will be physical

Brownian motion – the motion of a colloidal particle (a particle of the order of a few

hundred nanometers to a few microns in size) suspended in a fluid. Specifically, the

fluid will be a Newtonian liquid for the most part, and the particle will be a non-porous

solid. Since physical particles have mass, their velocities cannot undergo sudden

changes unless an infinite force is applied. The Wiener process is not differentiable,

and therefore only models physical Brownian motion well at long time-scales. This

dissertation will particularly explore theory that models, and experiments that probe

short time-scale aspects of Brownian motion. In particular, hydrodynamic theories

of Brownian motion, i.e. theories that correctly account for the behavior of the fluid

environment, will form the central theme of this dissertation.

1.2 Brief history of Brownian motion

This section will only briefly explore the history of Brownian motion. There are

several articles [see e.g. Bian et al., 2016; Hänggi & Marchesoni, 2005] that go into

more detail. A collection of historic articles, and articles on the history of Brownian

motion may be found as of this writing on Prof. Peter Hänggi’s website [Hänggi].

Although Brownian motion is named for Robert Brown, it was probably first de-

scribed by Jan Ingenhousz [Van der Pas, 1971], a Dutch scientist, in 1785. Ingenhousz

was observing the evaporation of liquids under a microscope, and noted that for ex-

ample, finely ground charcoal introduced into a droplet of alcohol would be observed
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to execute a “confused, continuous and violent motion”.1 Robert Brown’s indepen-

dent discovery appears in a 1828 article [Brown, 1828], wherein they observe pollen

particles of about 1/4000 to 1/5000 inch in length immersed in water “very evidently

in motion”, which they claimed neither originated from currents in the fluid or from

gradual evaporation. Brown also reports repeating the experiment after killing the

plants, and observing the motion nevertheless.

Einstein [1905] gave a theoretical explanation of Brownian motion, based on ther-

modynamics and the Stokes law. Einstein explained the motion using statistical

mechanics and the result of Stokes [1851] for the friction on a spherical particle in

steady flow. Einstein’s theory ignores the effects of the mass of the particle. Soon

after, Von Smoluchowski [1906] gave an alternate explanation in terms of a random

walk. Langevin [1908] used Smoluchowski’s random walk to recover Einstein’s result

through the use of the now famous Langevin equation.2 Incidentally, Langevin does

note that the use of the Stokes drag formula does not account for the inertia of the

fluid. Perrin [1909] performed experiments verifying Einstein’s theory, which led to

the measurement of Avagadro’s number and thus proved the existence of molecules.

This work won Perrin the Nobel Prize in Physics in 1926.

Uhlenbeck & Ornstein [1930] improved the model of Langevin by including the ef-

fects of the mass of the particle. The resulting random process (which describes the ve-

locity of the Brownian particle) has come to be known as the Ornstein-Uhlenbeck pro-

cess. However, computer simulations of liquid argon by Rahman [1964, 1966] showed

a power law behavior for the velocity auto-correlation function at long time-scales,

as opposed to the exponential decay expected from the Ornstein-Uhlenbeck model.

Motivated by the fluid dynamic behavior seen in the computer simulations, Zwanzig

& Bixon [1970], and Widom [1971] developed improved models of Brownian motion in

liquids, which account for fluid dynamic “memory” effects that may be explained us-

ing the unsteady Stokes equations. Such models, often referred to as “Hydrodynamic

theories” of Brownian motion, will form the primary theme of this dissertation. Stokes

[1851] had already derived the result for the hydrodynamic friction on an oscillating

spherical particle. The same result in the time-domain was analyzed by Boussinesq

[1885] and Basset [1888], and the resulting force, which appears as a convolution

integral over the past velocities of the particle, is known as the Boussinesq-Basset

1A translation of the description of Jan Ingenhousz is available in the cited reference.
2A translation of the work of Langevin has been presented by Lemons & Gythiel [1997]
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force, or sometimes simply as the Basset force. These results form the fluid dynamic

aspects of the hydrodynamic theory of Brownian motion.

1.3 Brownian motion at short time-scales

Microscopic and nanoscopic systems are gaining relevance as we continue to improve

access to these scales through advanced microscopy and push the boundaries of tech-

nology to make devices smaller and faster. At these scales, the impact of thermal fluc-

tuations is significant, and thus Brownian motion becomes ubiquitous. For example,

micro-organisms and cell organelles suffer the incessant effect of thermal fluctuations,

as do components of Micro-electro-mechanical systems (MEMS) and tips of atomic

force microscopes [Clarke et al., 2006]. Optical tweezers, which are gaining popu-

larity as instrumentation to study microscopic objects especially in the context of

biophysics, may be used to hold particles, but these particles are subject to incessant

Brownian motion within the confines of the optical trap.

As we push the boundaries of technology further, the study of Brownian motion

at short time-scales becomes increasingly important. The exploration of short time-

scale Brownian motion has opened a window into the experimental study of statistical

mechanics [see e.g. Mo et al., 2015a; Kheifets et al., 2014; Franosch et al., 2011],

and aids in better calibrating optical tweezers [Berg-Sørensen & Flyvbjerg, 2004;

Grimm et al., 2012]. It may provide a tool to measure the viscoelastic properties

of complex fluids [Felderhof, 2009a] and to probe the nature of boundary conditions

on surfaces [Lauga & Squires, 2005; Mo et al., 2017]. One of the key advantages

of measurements in short time-scales, is that mechanical noise usually drops with

frequency, whereby artifacts induced by such noise may be circumvented, and the

measurements may be shot-noise limited [see e.g. Kheifets et al., 2014].

The long time-scale regime of Brownian motion is characterized by diffusive be-

havior – the Root Mean Square (RMS) displacement of the particle over a time period

t grows like
√
t. This may be explained by a random walk model – the variance of

the sum of independent and identically distributed Gaussian random variables grows

linearly with the number of variables added, so the standard deviation grows like the

square root of the number of steps taken. However, any physical particle has inertia,

and therefore at short time-scales, the particle must have a well-defined velocity and
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a displacement that grows linearly with t. This short time-scale regime of Brownian

motion is called the ballistic regime.

For over a century, the ballistic regime of Brownian motion has eluded observation

until recent experiments by Blum et al. [2006] and Huang et al. [2011]. The theory

of Uhlenbeck & Ornstein [1930] models well the transition from diffusive to ballistic

Brownian motion in a rare fluid like a gas. In the Einstein-Ornstein-Uhlenbeck (EOU)

model of Brownian motion, the velocity decorrelates exponentially over a certain time-

scale τp, known as the momentum relaxation time or the Smoluchowski time. This

time-scale roughly marks the transition from the ballistic regime into the diffusive

regime.

In denser fluids like liquids, the transition is much more complicated, since hy-

drodynamics plays a key role. Hydrodynamic theories of Brownian motion, which

model the relaxation of the fluid environment after perturbation by the motion of the

particle, become important when the timescale of relaxation of the fluid, τf , is com-

parable to or larger than the timescale of decorrelation of the velocity of the particle3

τp. One can show that for a spherical particle in a Newtonian fluid, the ratio of these

timescales is given by
τp
τf

=
2

9

ρp
ρf
, (1.1)

where ρp denotes the density of the particle and ρf denotes the density of the fluid

environment. For glass particles (ρp ≈ 2.0 g/cm3) in air at STP (ρf ≈ 0.001 g/cm3),

there is a very large separation between these two timescales, τp ≈ 400τf , whereby

the EOU theory works well. However, for glass particles in water (ρf ≈ 1.0 g/cm3),

there is very little separation between time-scales, τp ≈ 2τf , and the hydrodynamic

effects become very significant.

The hydrodynamic theories of Zwanzig & Bixon [1970] and Widom [1971] model

the fluid environment using the regime of unsteady Stokes flow (see Chapter 3). This

regime accounts for the non-instantaneous diffusion of shear stress in the fluid envi-

ronment, as the particle moves about. The predictions of these theories for Brownian

motion have been successfully verified by experiments [Franosch et al., 2011; Huang

et al., 2011; Kheifets et al., 2014] over a large range of time-scales.

In most of these theories, the fluid is assumed to be incompressible, which is a

good approximation for liquids. The effects of compressibility become relevant on a

3These time-scales will be defined precisely at a later stage.
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time-scale τc := L/c where L denotes some measure of the size of the particle, and c

is the speed of sound in the fluid. For micron-sized particles in water, this time-scale

is of the order of a nano-second, which is much smaller than the time-scales τf or τp

for the same system. The regime of compressible Brownian motion is as yet out of

reach of experiment, although there are some proposals [Mo, 2015, Chap. 9].

The hydrodynamic theories show that the Brownian particle is sensitive to its

fluid environment. For example, the presence of walls in the vicinity of the particle

alters its Brownian motion in a significant manner [Mo et al., 2015b], as do the

boundary conditions on these walls [Mo et al., 2017]. Non-Newtonian behavior of the

fluid environment would also alter the nature of Brownian motion [Felderhof, 2009a].

This brings up the possibility of using Brownian motion as a probe of the local fluid

environment.

1.4 Organizational summary of this dissertation

This dissertation is organized as follows: In Chapter 2, we review well-known results

pertaining to the statistical description of Brownian motion. We provide an overview

of the various theories mentioned in this Introduction, and define various quantities

that we use to characterize Brownian motion. In Chapter 3, we review well-known

material pertaining to low Reynolds number hydrodynamics. We develop the basic

framework used to calculate drag coefficients that enter the hydrodynamic theories

of Brownian motion, and review various formulations of solutions to the unsteady

Stokes equations that are relevant to this work. Chapter 4 discusses the well-known

hydrodynamic theory of a spherical Brownian particle in an unbounded fluid medium.

In Chapter 5 we describe the ingredients of an experimental setup that may be

used to probe Brownian motion in liquids at short time-scales. The experimental

setup uses optical tweezers to confine spherical dielectric particles in liquid media,

and back-focal-plane detection, using a novel split-beam detector, to track the dis-

placement of the particle along one dimension. We describe in detail the methods of

trapping a Brownian particle, detecting and recording its motion, and data analysis,

based on the experimental setup developed in the Raizen Lab at the University of

Texas at Austin.

In Chapter 6, we detail aspects of published experimental results pertaining to
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Brownian motion in bulk liquid. We describe the measurement of hydrodynamic

instantaneous velocity in liquid [Kheifets et al., 2014], and the subsequent verification

of Maxwell-Boltzmann statistics [Mo et al., 2015a]. We begin with a description of the

experimental challenges involved in these measurements, and then detail the results.

The experiments achieve a shot-noise limited position resolution under 3 fm/
√

Hz,

over a large bandwidth. The hydrodynamic instantaneous velocity is observed to

follow a modified equipartition theorem, which accounts for the kinetic energy of

the fluid displaced by the moving particle. Statistics of the thermal force acting on

the particle, recovered from the experimental data using the theoretical results for

the admittance, are seen to agree with the predictions of the fluctuation-dissipation

theorem. This result may be interpreted as a verification of the fluctuation-dissipation

theorem under the assumption that the hydrodynamic theory (Chapter 4) is correct.

In Chapter 7, we describe a theoretical approximation framework that may be

used to calculate the drag force on a particle oscillating in a viscous fluid medium

in the presence of other boundaries [Simha et al., 2017]. The presence of boundaries

near a spherical particle, except in special cases, produces a problem of reduced sym-

metry, which typically renders impossible the exact solution of the unsteady Stokes

equations. Using a novel point-particle approximation, Felderhof [2005, 2006a, 2012]

has developed theoretical predictions for the Brownian motion of a particle in the

presence of boundaries. Some of the results have shown excellent agreement with

experiments [Jeney et al., 2008]. However, Felderhof’s framework results in drag

coefficients that depend on the particle’s density, whereas the problem of calculat-

ing the drag force can be formulated without any reference to the particle’s density.

Moreover, the results for the effective mass of the particle inferred from the RMS

velocity predicted by Felderhof [2005] do not agree with well-known results obtained

through potential flow calculations. We present a modification of Felderhof’s frame-

work that resolves these inconsistencies. The difference produced by this resolution

is not significant enough to be detected by previous experiments. A second concern

with the point-particle framework is that it is not obvious that such an approxima-

tion works at short time-scales. This is because the approximation appears to neglect

the particle’s size in comparison to the skin-depth of rotational flow it generates, the

latter depending on the time-scale of motion. To address this issue, the modified

point-particle framework is derived through a series of systematic approximations

performed in a general formalism of boundary integral equations. The formalization
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of the point-particle approximation provides an explanation for why it works so well

over a large range of time-scales.

In Chapter 8, an alternate calculation using the method of reflections is pre-

sented for the special case of a full-slip flat wall, and the results of the modified

point-particle approximation are compared against the method of reflections. The

comparison shows that although there are differences in the actual expressions, they

agree in all asymptotic limits. The differences in the expressions indicate that the

modified point-particle approximation may not capture all non-perturbative terms.

In investigating the asymptotic limits, we also observe that the modifications to the

point-particle approximation result in the expected effective mass. We also present a

numerical comparison of drag coefficients, which shows that the effects of our mod-

ification to the point-particle approximation become significant when the relative

density between the particle and the fluid is large.

In Chapter 9, we apply the theoretical ideas developed in the previous chapters

to the problem of Brownian motion. We show that while there are no experimen-

tally discernible differences between the predictions from the method of reflections

and from the modified point-particle approximation, the differences produced by the

modification themselves are of great significance to systems of metallic micro-/nano-

particles in liquids. The low-frequency expansion of the power spectral density of

the thermal force shows that the force in the perpendicular direction, and also in the

parallel direction in case of a no-slip wall, becomes less colored at low frequencies in

the presence of a wall. We also provide well-known expressions for hindered diffusion

that are relevant to the work presented in the next chapter.

In Chapter 10, we detail aspects of published experimental results [Mo et al.,

2015b] pertaining to Brownian motion in a liquid in the vicinity of boundaries. The

experimental results show that the (no-slip) boundary has a significant effect on

Brownian motion, and the differences are especially discern-able in the VACF. The

differences become insignificant only when the distance between the particle and the

wall is about an order of magnitude larger the diameter of the particle. We show

that fitting the VACF provides a reliable method to measure the distance to the wall.

The experimental measurements also demonstrate that the thermal force loses color

at low frequencies in the presence of the wall.

Excepting the first three introductory chapters, the author contributed in either an

experimental or theoretical capacity to the work described in the remaining chapters.
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Chapter Two: Preliminaries: Statistical mechanics

of Brownian Motion

This chapter reviews well-known results that form prerequisites for the description

and analysis of Brownian motion.

2.1 Describing Brownian Motion through a

Langevin equation

Langevin [1908] introduced a description of the long time-scale aspects of Brownian

motion through what has now come to be known as the Langevin equation. Many a

time, the phrase “a Langevin equation” is used to describe any stochastic differential

equation, not just the specific one that Langevin wrote down.

A Stochastic Differential Equation (SDE) relates a random process to other ran-

dom processes. A simple example is the equation

ẋ(t) = −γx(t) + ση(t), (2.1)

where x(t) is the stochastic process that the equation is to be solved for, η(t) repre-

sents Gaussian White Noise (GWN), and γ and σ are some constants. For each time

instant t, Gaussian white noise η(t) is a Gaussian random variable that is indepen-

dent from the realization of η at any other time instant, with zero mean and with an

indefinite variance such that integrating it over a short interval δt produces a finite

variance1 of δt. For each realization of the white noise process η(t), the equation

describes a corresponding realization of the desired process x(t).

Gaussian white noise is a mathematically bizarre object, and therefore, care is

required in analyzing SDEs. Formal mathematical frameworks to handle SDEs were

introduced by Itô and Stratonovich2. In this work, we shall be content with the

use of an informal framework using Fourier / Laplace transforms to solve the SDEs.

1This loose statement is better described by dWt dWt = dt.
2The author finds a useful reference on this subject in the lecture notes from the Woods Hole

Geophysical Fluid Dynamics school, 2015.
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This informal framework is somewhat similar to Stratonovich calculus, since we take

Fourier transforms without trepidation, pretending that the transforms exists; we

may be able to formalize this procedure by using a low-pass filtered white noise to

compute the power spectra, and then take the limit as the bandwidth goes to infinity.

The auto-correlation function of a random process ξ(t) may be defined through

Cξ(t, t
′) := 〈ξ(t)ξ(t′)〉, (2.2)

where 〈 〉 denotes averaging over the ensemble of realizations of ξ. If the process

ξ(t) is stationary, i.e. the statistics are invariant under translations of the origin of

time, the auto-correlation function only depends on the difference in arguments, i.e.

Cξ(t, t
′) = Cξ(t − t′) for stationary processes. GWN is stationary, and uncorrelated

(sometimes also called δ-correlated), i.e.

〈η(t)η(t′)〉 = δ(t− t′) (2.3)

Specifically in the context of equilibrium Brownian motion, consider a particle

of mass m suspended in a viscous fluid (at low Reynolds number). Phenomenolog-

ically, the random collisions of fluid molecules with the particle may be thought of

as producing two effects: a deterministic effective drag force F drag = −γv that may

be obtained through macroscopic models of fluid dynamics, and a random force F th

that models the random effects of the collisions. The latter force is usually referred

to as the “thermal force” or the “Langevin force.” In this context, we shall assume

it to be a Gaussian white noise process and write F th = ση(t), an assumption that

will be justified later. We may apply Newton’s second law and write

m
du

dt
= −γu(t) + ση(t), (2.4)

for the velocity u(t) of the particle. The above is an example of a Langevin equation

that describes Brownian motion. In particular, the above equation produces the

Einstein-Ornstein-Uhlenbeck theory of Brownian motion, and describes Brownian

motion in a rare fluid such as a gas. The stochastic process u(t) is an example of an

Ornstein-Uhlenbeck (OU) process3 [Uhlenbeck & Ornstein, 1930]. The OU process

may be thought of as low-pass-filtered white noise (figure 2.3).

3In the spirit of football rivalries, the author wishes to point out that we would rather call this
the “ut process”.
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Figure 2.1: (a) A (discrete) realization of Gaussian White Noise with unit vari-
ance at each time-step. (b) The realization of an OU process described by (2.4) (in
one dimension) with γ/m = 0.03 and σ/m = 0.005 that corresponds to the GWN
realization shown in (a). The SDE was solved by numerical integration using the
Euler-Maruyama scheme.

Figure 2.1 (b) shows an example realization of the Ornstein-Uhlenbeck process

described by (2.4) (in one dimension) for γ/m = 0.03 and σ/m = 0.005 obtained

by integration of the SDE using the Euler-Maruyama scheme. The realization of

(discretized) Gaussian white noise that was integrated is shown in sub-figure (a).

Figure 2.2 compares the displacement obtained by integrating an Ornstein-Uhlenbeck

process against the Wiener process computed from the same realization of Gaussian

White Noise. The integral of the OU process does not have cusps, unlike the Wiener

process. As stated in the Introduction, the Wiener process does not model physical

Brownian motion well at short time-scales, since its derivative is not well-defined.

2.2 The Einstein-Ornstein-Uhlenbeck theory

We shall now proceed to solve the equation (2.4). Completing the description by

determining σ, we will obtain the EOU theory of Brownian motion. For simplicity,

we shall hereafter consider one dimension instead of all three until we encounter an

anisotropic geometry.
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Figure 2.2: The plot compares the integral of a realization of an OU process described
by described by (2.4) (in one dimension) with γ/m = 0.1 and σ/m = 0.1 against the
Wiener process computed from the same realization of Gaussian White Noise. The
plot shows that the displacement calculated from the OU process has no cusps, unlike
the Wiener process.

To find the statistics of u(t), we use Fourier transforms.4 We will denote the

Fourier transform of u(t) by ǔ(ω) (or simply u(ω) or uω wherever the ambiguity does

not hinder understanding), and use the convention

ǔ(ω) :=

∫
dt eiωt u(t), u(t) =

∫
dω

2π
e−iωt ǔ(ω). (2.5)

We may therefore readily write5

[−iωm+ γ] ǔ(ω) = ση̌(ω), (2.6)
4Since we are describing thermal equilibrium, we do not have an origin in time or initial con-

ditions. Thus, Fourier transforms are naturally suited over Laplace transforms. If one wanted to
model the relaxation from a known initial state (possibly the result of a thermal fluctuation in equi-
librium, or a specially prepared non-equilibrium state) to thermal equilibrium, Laplace transforms
would be more suitable [see e.g. Balakrishnan, 2008].

5We have ignored issues of the existence and convergence of the Fourier transforms.
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Figure 2.3: A comparison of the flat PSD of Gaussian White Noise with the PSD of
the OU process u. The latter has a pole at γ/m which causes a fall off ∼ 1/ω2. The
power spectral densities have been normalized to 1. The x-axis represents frequency
in units of γ/m.

and consequently determine the Power Spectral Density (PSD) Su of u to be

Su(ω) =
σ2

ω2m2 + γ2
Sη(ω), (2.7)

where we have used the fact that power spectra6 Sξ ∝ |ξ̌2(ω)| and assumed that γ is

real. The power spectrum Su(ω) is compared to the flat power spectrum of GWN in

figure 2.3.

The Wiener-Khinchin theorem7 states that for a stationary8 process, auto-correlation

functions and power spectra form a Fourier transform pair, i.e.

Sξ(ω) =

∫ ∞
−∞

dt Cξ(t) e−iωt. (2.8)

We may use this to find the velocity auto-correlation function (VACF) from (2.7).

Noting that Sη = 1 (given that it is Gaussian white noise) and using the convolution
6The random processes considered here are typically not in L2(R), whereby the precise definition

of the power spectrum is through the limit Sξ(ω) := limT→∞
1
T

∣∣∣∫ T/2−T/2 dt eiωtξ(t)
∣∣∣2. However, any

experimentally relevant signal is recorded only for finite time, whereby in practice it is sufficient to
note that Sξ ∝ |ξ̌2(ω)| for many purposes.

7It must be noted that this is a non-trivial theorem, as it involves convergence issues etc.
8The general result applies not only to stationary, but wide-sense stationary stochastic processes.
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theorem, we find that

Cu(t) =
σ2

m2

∫ ∞
−∞

dt′ e−γ|t−t
′|/m Cη(t

′). (2.9)

From the assumption that η(t) is Gaussian White Noise, we have Cη(t
′) = δ(t′),

whereby we may write

Cu(t) =
σ2

2mγ
e−γ|t|/m. (2.10)

The above result may also be obtained by multiplying (2.4) by u(t′) where t′ is some

instant of time, and then making a causality argument about 〈u(t)η(t′)〉, but we will

prefer the method using Fourier transforms for future purposes.

Defining the mean-squared displacement (MSD) through

MSD(τ) :=
〈
[x(t+ τ)− x(t)]2

〉
, (2.11)

wherein the non-dependence on t arises from the assumption of stationarity, we find

that it may also be written as

MSD(τ) = 2
[〈
x2
〉
− Cx(τ)

]
= 2 [Cx(0)− Cx(τ)] .

(2.12)

As can be seen by noting the linearity of ensemble averages (so that we can pull

derivatives out of averages) and using stationarity (which tells us that Cx and Cu are

functions of t− t′), the position auto-correlation function satisfies

− d2

dt2
Cx(t) = Cu(t), (2.13)

whereby we have

Cx(t) =
σ2

2mγ

[
At+B −

(
m

γ

)2

e−γt/m

]
(t > 0). (2.14)

To determine coefficient A, we need to make a few observations. For any stationary

random process ξ(t), Cξ(t) := 〈ξ(t + t0)ξ(t0)〉 (where t0 may be any instant of time

by time-translation symmetry) is necessarily an even function of t, for Cξ(−t) =

〈ξ(−t+t0)ξ(t0)〉 = 〈ξ(t′0)ξ(t′0+t)〉 = Cξ(t), where we chose t′0 = t0−t. This is mirrored

by the explicit form of Cu(t), and also by the fact that the power spectrum is a

purely real quantity. Therefore, the derivative of an auto-correlation function dCξ/dt
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is necessarily an odd function of time. Therefore, we must either have Ċx(0) = 0 or

Ċx(0) undefined (as is the case with Ċu(0)). However, since Cu(t) is a continuous

function, Ċx(t) has continuous derivative, and therefore we must have Ċx(0) = 0. We

may now use this to determine A. The result is

A = −m
γ
. (2.15)

From the fact that Cx(t) must be even, we have

Cx(t) =
σ2

2mγ

[
−m
γ
|t|+B −

(
m

γ

)2

e−γ|t|/m

]
. (2.16)

Using (2.12), we now have

MSD(t) =
σ2

mγ

[
m

γ
t+

(
m

γ

)2 (
e−γt/m − 1

)]
(t > 0). (2.17)

The long-time behavior of the MSD for a Brownian particle typically scales like

MSD(t) ∼ 2Dt where D is called the diffusion constant. We mentioned this earlier

in the Introduction as a characteristic feature of the diffusive regime. From this we

may identify the diffusion constant to be σ2/(2γ2).

So far, we have solved the SDE for the OU process and computed various statis-

tical quantities such as correlation functions and power spectra without any further

physical input. We now task ourselves with determining the strength of the Langevin

force σ, which requires a physical input. In thermal equilibrium, the average en-

ergy of the Brownian particle must remain constant. This means that the energy

input into the particle by the thermal fluctuations through the Langevin force must

match the energy removed from it by the viscous dissipation. Thus, the condition of

thermal equilibrium must provide a way to connect σ to γ, a fact expressed by the

fluctuation-dissipation theorem. The connection is particularly easy to obtain in this

case: we may use the equipartition theorem 〈v2〉 = kBT/m to fix Cu(0) = kBT/m

and therefore obtain σ2 = 2kBTγ.

With this value for σ, we may write

Cu(t) =
kBT

m
e−|t|/τp ,

MSD(t) =
2kBTτ

2
p

m

[
t

τp
+
(
e−t/τp − 1

)]
(t > 0),

D =
kBT

γ
,

(2.18)
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where we have defined the momentum relaxation time,

τp =
m

γ
. (2.19)

From the form of the MSD, it is clear that the momentum relaxation time τp is the

timescale associated with the transition from ballistic to diffusive Brownian motion.

For t � τp, we expand the exponential term to second order in a Taylor expansion,

and we see that the term of order t cancels, leaving the term of order t2 behind. The

resulting asymptotic form,

MSD(t) ∼ kBT

m
t2 t→ 0, (2.20)

is equivalent to ballistic motion with velocity veq =
√
kBT/m. For large time-scales

t � τp, the exponential transients have decayed, and what remains is the diffusive

behavior MSD(t) ∼ 2Dt.

2.3 The Hydrodynamic Theory

A hydrodynamic explanation of Brownian motion in a dense fluid was inspired by

the computer simulations of Rahman [1964, 1966], and was provided first (to the best

of the author’s knowledge) by Alder & Wainwright [1970]. A more comprehensive

theory was then derived by Zwanzig & Bixon [1970].

Notably, it was observed first in the computer simulations that the VACF showed

a power-law decay, specifically Cu(t) ∼ t−3/2 in the long time limit, instead of the

exponential behavior predicted by the EOU theory. This long-time power-law tail

is explained well if one includes the effects due to the finite time that the fluid

environment takes to relax to a change in the particle’s velocity.

Generally speaking, if the finite time taken by the fluid to relax is to be accounted

for, the drag force must take the form of a memory kernel integrated against the past

velocities of the particle. As a specific example, the force exerted by a viscous fluid

on an accelerating spherical particle is given by [Basset, 1888; Franosch et al., 2011]

Fdrag(t) = −
[
mf

2
u̇(t) + 6πηa

(
u(t) +

√
τf
π

∫ t

−∞

u̇(t′)√
t− t′

dt′
)]

, (2.21)
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where η is the coefficient of viscosity of the fluid, a is the radius of the spherical

particle, τf := a2ρf/η is the time-scale over which the fluid relaxes (see Chapter 3 for

details), and mf := 4
3
πρfa

3 is the mass of fluid displaced by the particle.9

The most general form of the viscous dissipation under the conditions that the fluid

have a linear, time-translation invariant and causal response is given by convolution

with a memory kernel ζ(t) (which could in general be a tensor), whereby we may

write the equation of motion as

m
du(t)

dt
= −

∫ t

−∞
ζ(t− t′) · u(t′) dt′ + F th(t). (2.22)

Such an equation is typically called a Generalized Langevin Equation (GLE), and

it turns out that in this case, the Langevin force F th can no longer be assumed to

be white-noise. We will say more about this in Section 2.4. While we have written

the above equation in a causal form, when working in frequency domain to describe

equilibrium (which has time reversal symmetry), it is usually convenient to ignore

causality. In frequency domain, we may write the GLE as

[−iωm1 + γ(ω)] · ǔ(ω) = F̌ th(ω), (2.23)

which is much easier to deal with than the time-domain form owing to the replace-

ment of the convolution by multiplication. γ(ω) is a tensor of drag coefficients for

oscillations at frequency ω, i.e. the drag force experienced by a particle oscillating

in the fluid with velocity u e−iωt is γ(ω) · u(ω) e−iωt. ζ(t) would correspond to the

inverse Fourier-Laplace transform of γ(ω) computed with an appropriate Bromwich

contour to impose causality.

In linear response theory, it is assumed that the system responds to thermal

fluctuations as it would to an external force F ext [Balakrishnan, 2008]. Introducing

the mechanical admittance Y (ω) (also called mobility),

ǔ(ω) = Y (ω) · F̌ ext(ω), (2.24)

which could in general be a tensor as indicated above, we may write the GLE of (2.23)

as

ǔ(ω) = Y (ω) · F̌ th(ω), (2.25)
9On a side note, the author wishes to point out that the Basset force has a structure similar

to a fractal derivative with half-integer order. See Saichev & Woyczynski [2013] for more. The
fractal relaxation is probably one way to understand the origin of Faddeeva functions in the solution
of Clercx & Schram [1992].
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with the form of the admittance given by

Y (ω) = [−imω1 + γ(ω)]−1 . (2.26)

The admittance provides a convenient way to connect up the “macroscopic” de-

scription of dynamics of a particle in a liquid under an external force, with the

thermal fluctuations represented through the Langevin force, to obtain a description

of Brownian motion. The fluctuation-dissipation theorem, or alternately a Green-

Kubo relation, may be used to determine equilibrium Brownian dynamics once the

admittance is known.

The connection between the VACF and admittance may be made through the

Green-Kubo relation

Y (ω) =
1

kBT

∫ ∞
0

eiωtCu(t) dt, (2.27)

from which, we may deduce (using the even and real nature of the auto-correlation

and the Wiener-Khinchin theorem) that

<[Y (ω)] =
1

2kBT
Su(ω). (2.28)

Thus, we have the following computationally useful expressions for the various

statistical properties of Brownian motion [Franosch & Jeney, 2009]:

Su(ω) = 2kBT <[Y (ω)],

Sx(ω) = Su(ω)/ω2,

Cu(t) =
2kBT

π

∫ ∞
0

dω cos(ωt)<[Y (ω)],

Cx(t) =
2kBT

π

∫ ∞
0

dω cos(ωt)
<[Y (ω)]

ω2
.

(2.29)

The expressions for the auto-correlation functions are obtained by noting that the

admittance must be conjugate-even,10 whereby the power-spectra are even functions

of frequency. Therefore, one may replace the inverse Fourier transform in the Wiener-

Khinchin theorem by an cosine transform.

For the case of a sphere in bulk fluid, γ(ω) takes the form [Stokes, 1851; Landau

& Lifshitz, 1987]

γ(ω) = 6πηa
[
1 +

√
−iωτf + (−iωτf )/9

]
. (2.30)

10i.e. that Y ∗(−ω) = Y (ω), as can be deduced from (2.27) upon noting that Cu is real
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For this case, the inverse cosine transforms in (2.29) may be computed in closed-

form and the results expressed in terms of Faddeeva functions. See Clercx & Schram

[1992] for details. In most other cases, the cosine transforms need to be evaluated nu-

merically. Special quadrature algorithms for oscillatory functions, such as the Filon-

Trapezoid rule [Tuck, 1967] used by [Franosch & Jeney, 2009], are recommended.

2.4 Fluctuation-Dissipation Theorem from the

Green-Kubo relation

It is evident that it is not possible to determine the statistics of the Langevin force

F th in the GLE, in the same way that we did for the EOU theory. This is because

the equipartition theorem only gives us (assuming decoupled dimensions, so we may

consider only one dimension),

〈v2〉 =
kBT

m
=

∫ ∞
−∞

dω

2π
|Y (ω)|2SF (ω). (2.31)

If SF (ω) did not have a dependence on ω, one could determine the magnitude of its

constant value from the above condition alone, as we did earlier. However, for the

GLE, no assumptions of this nature can be made on the Langevin force, whereby we

must find another way of computing its statistics.

Using the Green-Kubo relation (which may be derived from the GLE; see Balakr-

ishnan [1979]) provides a way. Combining the first of (2.29) with (2.25),11

Su(ω) = |Y (ω)|2SF (ω) = 2kBT <[Y (ω)], (2.32)

we see that

SF (ω) = 2kBT <[1/Y (ω)]. (2.33)

If the only resistive force acting on the particle is the viscous dissipation of the fluid,

we note that <[1/Y (ω)] = <[γ(ω)] since the other terms are pure imaginary. Thus,

we obtain the power spectral density of the Langevin force as,

SF (ω) = 2kBT <[γ(ω)]. (2.34)

11Once again, we assume that Y is diagonal, and we may consider one dimension. Otherwise, we
transform to that basis.
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This is the result of the fluctuation-dissipation theorem for the GLE. Since <[γ(ω)]

is generally not constant, the thermal fluctuations are necessarily modeled by colored

noise. Specifically in the context of a sphere in unbounded Newtonian fluid, we have

<[γ(ω)] = 6πηa(1 +
√
ωτf/2), so the thermal force has a higher strength at high

frequencies. This unphysical result, we believe, is resolved by including the effects of

fluid compressibility.

2.5 Inclusion of a Harmonic Restoring Force

In many practical applications, the Brownian particle is constrained in motion by

some sort of mechanism. For example, in optical tweezers, the radiation pressure

produces a potential well that traps the particle. In general, most sorts of confinement

could be approximated by a harmonic restoring force. Therefore, it becomes useful

to include the effects of a harmonic restoring force.

The force being given by F trap(t) = −K · x(t), where K is a tensor of stiffness

constants for the trap, we may write it in frequency domain as F̌ trap(ω) = K ·
ǔ(ω)/(iω) and add this to the GLE in equation (2.23) to obtain

[−iωm1 + γ(ω)−K/(iω)] · ǔ(ω) = F̌ th(ω), (2.35)

which implies that we may introduce the effects of the harmonic trap into the admit-

tance as

Y K(ω) = [−imω1 + γ(ω)−K/(iω)]−1 . (2.36)
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Chapter Three: Preliminaries: Unsteady Stokes

Flow

In Chapter 2, we defined and described how to compute various statistical properties

characterizing Brownian motion of a particle in a medium. The medium’s effect

on the particle was broken into two parts, the fluctuating Langevin force F th, and

the viscous dissipation γ(ω). The fluctuation-dissipation theorem provides a way

to connect the statistics of the thermal force to the drag coefficient γ. Alternately,

everything can be computed once the admittance is known, which again hinges on

knowing the drag coefficient γ.

In this chapter, we will develop the fluid mechanical preliminaries necessary to

calculate the drag coefficients. The assumption throughout shall be that the medium

is an incompressible Newtonian fluid at low Reynolds numbers in local thermal equi-

librium. The unsteady Stokes equations are used to describe this regime of fluid

mechanics. We will describe the calculation for the simple case of a sphere, as well

as describe various tools to handle problems of unsteady Stokes flow.

The material in sections 3.4, 3.6, 3.7 is largely lifted from the introductory sections

of a draft of an article [Simha et al., 2017] that the author of this dissertation has

co-authored with Dr. Jianyong Mo and Prof. Philip J. Morrison.1

3.1 Steady and Unsteady Stokes Flows

We begin by considering the Navier-Stokes equations

ρf (r, t)

[
∂

∂t
v(r, t) + v(r, t) · ∇v(r, t)

]
= −∇P (r, t) + η∆v(r, t)

+

(
ηb +

1

3
η

)
∇(∇ · v(r, t)),

∂

∂t
ρf (r, t) +∇ · [ρf (r, t)v(r, t)] = 0,

(3.1)

1A. Simha, J. Mo, and P. J. Morrison, “Unsteady Stokes flow near boundaries: the point-
particle approximation and the method of reflections.” Submitted for review to the Journal of Fluid
Mechanics in July 2017. Much of the text of this work was authored and typeset by A. Simha, with
many helpful suggestions from P. J. Morrison and J. Mo.
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where ρf (r, t) represents the density of the fluid, P (r, t) is the pressure, v(r, t) is the

velocity field, η is the dynamic shear viscosity of the fluid, and ηb is the bulk viscosity

of the fluid. These equations would need to be supplemented with an equation of

state of the specific fluid under consideration in order to relate the pressure and

the density. The Navier-Stokes equations have been known to describe a viscous

compressible fluid very well.

If we assume that the fluid is incompressible,2 the Navier-Stokes equations are

simplified to

ρf

[
∂

∂t
v(r, t) + v(r, t) · ∇v(r, t)

]
= −∇P (r, t) + η∆v(r, t),

∇ · v(r, t) = 0.

(3.2)

A fluid may be regarded as incompressible when (i) the typical velocity scale of flow

u is negligible compared to the speed of sound c in the fluid, i.e. u � c, and when

(ii) the length scale L in the problem and time scale τ are such that the time-scale

τc := L/c is much smaller than τ , i.e. L/c � τ [see e.g. Landau & Lifshitz, 1987,

§10]. We shall comment further on this at a later stage.

We may non-dimensionalize the equation and estimate the size of various terms, by

introducing a length scale L, a velocity scale u, and a time-scale τ . For the problems

we wish to consider, it is necessary to allow τ to be different from L/u. For example,

the length-scale could model the dimensions of the container of the fluid, or the size

of a particle under consideration; the velocity scale could be the typical size of the

velocity on the boundaries; the time-scale could correspond to the time of variation

of these boundary conditions. There are multiple choices for non-dimensionalization

of the pressure, for example ρfu
2 and ρfuL/τ . We proceed with the latter choice.

The equations then take the form

ρf

[
u

τ

∂v̄

∂t̄
+
u2

L
v̄ · ∇̄v̄

]
= −ρfu

τ
∇̄P̄ + η

u

L2
∆̄v̄,

∇̄ · v̄ = 0,

(3.3)

where the bars on top of various quantities represent their appropriately non-dimensionalized

versions.

To make further approximations, we wish to compare the ratios of sizes of various

terms. Dividing all terms by the size of the viscous term, we may rewrite the first of
2and that there are no other reasons (e.g. salinity variations) for the density of the fluid to vary
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the above as
ρfL

2

ητ

∂v̄

∂t̄
+
ρfuL

η
v̄ · ∇̄v̄ = −ρfL

2

ητ
∇̄P̄ + ∆̄v̄, (3.4)

where we may identify the Reynolds number Re := ρfLu/η as the ratio of the advec-

tive term to the viscous term. We shall later show that the time-scale τf := ρfL
2/η

plays an important role, and we shall refer to this in this work as the vorticity-diffusion

timescale. We hence see that the non-dimensional equation depends on the Reynolds

number and the ratio of time-scales τ/τf as

τf
τ

∂v̄

∂t̄
+ Re v̄ · ∇̄v̄ = −τf

τ
∇̄P̄ + ∆̄v̄. (3.5)

As is well known, a tremendous simplification results when the Reynolds number

is small – we may drop the non-linear advective term3 and the system reduces to the

unsteady Stokes equations, which may also be called the transient Stokes equations or

the linearized incompressible Navier-Stokes equations. Evidently, in the dimensionful

form, these equations are

ρf
∂

∂t
v(r, t) = −∇P (r, t) + η∆v(r, t),

∇ · v(r, t) = 0.
(3.6)

These equations shall form the central theme of this work.

A further approximation may be made if τ/τf is large, so that the time-scale τf

over which the fluid relaxes is much shorter than the time-scale τ over which boundary

conditions change. Despite τ/τf being small, the pressure term cannot be neglected

as it enforces the ∇ · v = 0 constraint. This leads to the equations,

−∇P (r, t) + η∆v(r, t) = 0,

∇ · v(r, t) = 0,
(3.7)

which are the celebrated Stokes equations.

For over 150 years, Stokes flow has been used very effectively to explain the motion

of particles in low Reynolds number situations, because in these situations, the fluid

may be imagined to be very syrupy whence the particle motion is generally not

very fast. However, with recent technological progress, such fast motion can become

relevant in the context of micro- and nano- scale particles in typical liquids. As a

3Although, however, in some situations, it must be retained to the Oseen approximation.
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result, the regime of unsteady Stokes flow has become important. Some examples of

this were mentioned in the Introduction (Chapter 1).

Whereas both the steady and the unsteady Stokes equations are linear, render-

ing them significantly easier to solve than the full Navier-Stokes equations, unsteady

Stokes problems are in general harder to solve in situations with reduced symme-

try. Loosely speaking, while the steady Stokes equations may be reduced to the

Laplace equation, where Fourier analysis (in time) works, the unsteady Stokes equa-

tions transform into the Helmholtz equation. There are many coordinate systems

where the Laplace equation may be separated, but the Helmholtz equation cannot

be. Similarly, in 2-dimensional problems, the Laplace equation4 may yield to tech-

niques of complex analysis and conformal mapping whereas the Helmholtz equation

generally does not. A few analytically tractable cases include a sphere moving in an

infinite fluid, an infinitely long cylinder moving in an infinite fluid, and the oscillations

of an infinite plane wall.

3.2 The anatomy of unsteady Stokes flow

Taking the divergence of the first of (3.6) and using the second equation gives us an

equation for the pressure,

∆P (r, ω) = 0, (3.8)

and taking the curl of the first equation gives us an equation for the vorticity Ω :=

∇× v,
∂Ω

∂t
=

η

ρf
Ω. (3.9)

The latter equation is simply the diffusion equation for the vorticity, with diffusion

coefficient ν := η/ρf . This quantity ν is often called the kinematic viscosity, and

is useful in the analysis of incompressible fluids. This provides the interpretation of

τf = L2/ν as the time-scale over which vorticity diffuses over a region of size L.

The unsteady Stokes equations may be simplified by Fourier transformation5 in

4In 2-D problems, the steady Stokes equations may be specifically reduced to the biharmonic
equation by the use of a stream-function. A similar situation occurs in axi-symmetric situations
which admit a Stokes stream-function.

5Our convention was specified in equation (2.5).
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time,

−iωρf v̌(r, ω) = −∇P̌ (r, ω) + η∆v̌(r, ω),

∇ · v̌(r, ω) = 0,
(3.10)

so that the equations for pressure and vorticity become

∆P̌ (r, ω) = 0,

α2Ω̌−∆Ω̌ = 0,
(3.11)

where we have defined α :=
√
−iωρf/η. Since this quantity is important for the

most part of this work, we shall establish a consistent convention for the branch of

the complex square-root by choosing <[α] > 0. The former is a Laplace equation,

and the latter is a Helmholtz equation with complex wavenumber.

If we consider a Helmholtz decomposition of the velocity field and think of the

pressure as related to a scalar potential and the vorticity as related to a vector po-

tential6, the above two equations are reminiscent of Coulomb-gauge electrodynamics.

There is one important difference, which is that the vector equation is really a diffu-

sion equation, whereby the wavenumber is complex with real and imaginary parts of

equal magnitude.

Thus, we may form the following interpretation – if we have a disturbance pro-

duced in the fluid at some point, there are two kinds of phenomena that propagate:

the longitudinal pressure wave, and the transverse “vorticity wave”7. In our approxi-

mation, the pressure satisfies a Laplace equation, whereby the disturbances propagate

instantaneously. Of course, this is unphysical, and the issue is resolved by accounting

for the compressibility of the fluid – the waves are then simply longitudinal sound

waves. As we mentioned earlier, this suggests that the fluid may be considered incom-

pressible as long as the time-scale of interest τ is sufficiently long compared to the time

taken by sound to travel the length scales in the problem, i.e. when τ � τc := L/c

where c denotes the speed of sound in the fluid. As may be intuited, the linearized

compressible Navier-Stokes may be separated into two wave equations in a similar

manner – one for the sound and one for the vorticity – both of which in general have

6As is evident, this correspondence is not exact – the pressure and vorticity are related to the
scalar and vector potentials for the velocity field through integral / differential operators. But these
operators are scalar operators and the solenoidal and irrotational parts are not coupled, whereby
there is a rough analogy between the two pairs of objects.

7To the best of the author’s knowledge, there is no standard term for this wave in the literature.
“Shear wave” might be an alternative term.
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complex wavenumber (the former due to the damping of sound by bulk viscosity). We

shall focus on incompressible fluids in this work; a detailed analysis of compressible

Brownian motion may be found in the work of Chow & Hermans [1973].

We now return to our previous note on the complex nature of α = |α|(1− i)/
√

2.

As is typical for the Helmholtz equation, this implies that (in one dimension) the

vorticity has solutions that behave as eαx and e−αx. The former solution grows at

infinity, so if we were seeking a fundamental solution, one may imagine a behavior of

the form e−α|x| in one dimension and e−αr/r in three dimensions. Thus, the equality

of magnitudes of real and imaginary parts of α implies that the vorticity has a skin

depth that equals the wavelength [see e.g. Landau & Lifshitz, 1987, §24]. So one can

hardly call them waves given how rapidly they decay. In this work, we sometimes

refer to α as the complex skin-depth, or as a complex-wavenumber, since neither

phenomenon is stronger than the other.

3.3 Solving the unsteady Stokes equations

In this section, we outline the typical procedure for solving the unsteady Stokes

equations.

The boundary conditions for the unsteady Stokes equations are typically speci-

fied in terms of the velocity and its derivatives. For example, the no-slip boundary

condition entails that the fluid velocity match the interface velocity, so there is no

penetration or slippage of the fluid on the interface. The full-slip or free-slip boundary

condition demands that the component of fluid velocity normal to the interface match

the interface’s velocity, but the shear stress transferred tangential to the boundary

vanish, i.e. the normal derivatives of the tangential components of fluid velocity van-

ish. There is also the more general partial slip boundary condition which is specified

as a mixture of the above cases, but we shall not concern ourselves with this case in

this work.

The pressure is therefore unspecified and may be thought of as a degree of freedom

that allows us to impose∇·v = 0. The typical procedure to solve the unsteady Stokes

equations involves first the determination of the pressure by solving the Laplace

equation (3.8), leaving the coefficients undetermined, as we are not given boundary

conditions for the pressure. The result then is plugged into the first of (3.10), which
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may be re-written as [
α2 −∆

]
v̌ = −1

η
∇P̌ . (3.12)

The known pressure (up to undetermined coefficients) is treated as a source for the

Helmholtz equation (with complex wavenumber α). Solving the Helmholtz equation

results in additional undetermined coefficients in the complementary function. The

undetermined coefficients are then determined by applying boundary conditions. In

an unbounded fluid medium, the velocity is typically either assumed to become zero,

or attain a constant value at infinity, depending on whether there is a quiescent

background flow or not.8

If there are body forces applied to the fluid, the divergence of the body force

fields appears as a source in the equation for the pressure (so that we have a Poisson

equation), and the body forces also appear as an additional source in the equation

for the velocity.

3.4 Calculating unsteady drag coefficients

The drag coefficients calculated using steady Stokes flows, including for example the

Stokes law F s = −6πηau for a spherical particle of radius a, assume that the velocity

u of the particle remains constant in time, i.e. the particle is not accelerating. If the

particle has a changing velocity, but the timescale of change in velocity τ is much

larger than the timescale of vorticity diffusion τf (as defined in Section 3.1), steady

Stokes flow still provides a good approximation. However, if one wishes to study the

motion of a particle on time-scales comparable to, or shorter than τf , unsteady Stokes

flow must be used to calculate the drag force.

Throughout this work, we will use the term “drag” to colloquially refer to the

net force exerted by the fluid on the particle. This includes both reactive (e.g. added

mass) and resistive (e.g. viscous dissipation) effects.

Consider a small rigid body S (the “particle”) of arbitrary shape immersed in a

fluid bounded (partially or completely) by surface(s) W . In the regime of usefulness

of unsteady Stokes flow in determining particle dynamics, the particle has a changing

velocity u(t). To avoid having the problem of a moving boundary on which we need

to impose boundary conditions, we assume that the excursions of the particle from

8Of course, these are not the only two cases.
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a central location r0 are much smaller than the size of the particle itself, and that

the Fourier components of the displacement decay as quick as or faster than 1/ω. A

detailed argument may be found in Landau & Lifshitz [1987, §24]. See also Zwanzig

& Bixon [1970]; Mazur & Bedeaux [1974] and appendix A. Then, we may pretend

that the boundary of the particle itself does not change position, but the velocity

boundary condition on that boundary changes. Physically, this is indeed the case

in the applications we consider here such as optical tweezers, since the particle is

confined by the trap. This assumption simplifies the problem tremendously as it

results in a purely linear problem.

Given that the problem is linear, we may Fourier decompose the velocity u(t) into

Fourier components uω, and consider the problem of finding the drag on the body

S performing small translational oscillations in an arbitrary direction at arbitrary9

frequency ω in an incompressible fluid of dynamic shear viscosity η and density ρf .

To find the drag force, we must solve the unsteady incompressible Stokes equa-

tions (3.10), subject to some combination of no-slip or full-slip boundary conditions10

on ∂S and W . For simplicity, we shall use abbreviated notation, vω for v̌(r, ω) etc.

Once the solutions for vω and Pω have been computed, one may compute the drag

force on the body as

F drag
ω =

∮
∂S

d2x σ · n̂, (3.13)

where σ is the stress tensor having components σij(r;ω) = Pωδij + η(∂ivωj + ∂jvωi)

and n̂ is the outward unit normal to the surface ∂S. Since the system is linear in the

low Reynolds number regime, the drag force F drag
ω is a linear response to the velocity

uω of the body, whereby it should be possible to write

F drag
ω = −γ(r0;ω) · uω, (3.14)

where γ(r0;ω) is a tensor of drag coefficients. Here, we have explicitly indicated that

the drag coefficients may depend on the mean position r0 of the body, although we

will drop this in the future to simplify notation.

We remark that the setup of this problem to compute the drag coefficient made

no reference to the density of the body itself, and the effects of the body on the fluid

were captured through the boundary conditions at ∂S.

9It is assumed however that the frequency is not high enough that the compressibility of the
fluid becomes important

10We shall restrict ourselves to these special cases in this work.
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In general, analytically solving these equations in situations where the configu-

ration of S and W does not possess sufficient symmetry poses difficulties as noted

before, as separable eigenfunction expansions may not exist. Even for the simple

case of a sphere for S and a single plane wall W , the Helmholtz equation (with com-

plex wavenumber) in (3.10) is not separable in a coordinate system that is suitable

for the symmetry of the boundaries. Thus, it is natural to consider approximation

techniques. The point-particle approximation [Felderhof, 2005], matched asymptotic

expansions [O’Neill & Stewartson, 1967], and the method of reflections [see e.g. Hap-

pel & Brenner, 1965]11 are some approximation techniques to resort to.

3.5 Singularity solutions of the unsteady Stokes

equations

In electrostatics, the fundamental singularity solution of the Laplace operator, i.e.

the solution to

∆Φ(r) = δ(r), (3.15)

given by

Φ(r) = − 1

4π|r|
, (3.16)

plays an important role in solving more general problems, for one may therefore write

the solution to the Poisson equation

∆φ(r) = ρ(r), (3.17)

as a convolution of the source with the singularity solution

φ(r) =

∫
d3r′

−1

4π|r − r′|
ρ(r′). (3.18)

This is of course well-known.

In the above, Φ represents the solution to a point-charge or monopole singularity.

One may also consider solutions to higher-order singularities such as the dipole∇δ(r),

the quadrupole ∇∇δ(r) etc. These solutions are simply given by ∇Φ, ∇∇Φ etc.

These singularity solutions allow the use of the multipole expansion – we may formally

11Happel & Brenner [1965] only describe the case of steady Stokes flows.

28



expand the kernel Φ(r − r′) in (3.18) in a Taylor-like series about an origin r0 and

write

Φ(r − r′) = Φ(r − r0) + (r′ − r0) · ∇Φ(r − r0) + . . . , (3.19)

and therefore obtain

φ(r) = Φ(r − r0)

∫
d3r′ ρ(r′) +∇Φ(r − r0) ·

∫
d3r′ ρ(r′) (r′ − r0) + . . . , (3.20)

which is the multipole expansion, the term
∫

d3r′ ρ(r′) (r′ − r0) being the dipole

moment, etc.

The unsteady Stokes equations are linear and elliptic,12 so singularity solutions

provide similarly powerful techniques to construct solutions. Singularity solutions of,

and their applications to the solution of unsteady Stokes equations are well-known

and discussed, for example, in textbooks by Pozrikidis [1992]; Guazzelli & Morris

[2011]; Kim & Karrila [2013]. In this section, we shall provide a brief introduction

to make this work self-contained and establish some conventions. For simplicity, we

shall work in frequency domain.

The first difference between the Poisson equation of electrostatics, and the un-

steady Stokes equations, is that the latter are vector equations. Therefore, the sim-

plest singularity is a vector-valued one, representing a unit point force (oscillating

at frequency ω) applied to the fluid. The resulting fundamental singularity solution

for the velocity field forms a rank-2 tensor G0(r; ω) with components G0
ij, and the

corresponding solution for the pressure forms a vector P 0(r; ω) with components P 0
j .

G0 and P 0 are solutions to

∆G0
ij(r − r′;ω)− α2G0

ij(r − r′;ω)− 1

η
∂iP

0
j (r − r′;ω) = δijδ(r − r′), (3.21)

∂iG
0
ij(r − r′;ω) = 0, (3.22)

with the condition that both G0 and P 0 decay to zero13 at infinity. The tensor G0

is often called the unsteady Oseen tensor. The corresponding term this generates in

a multipole expansion is referred to as the unsteady Stokeslet.14

12Or so we have made them appear by allowing for complex wavenumbers.
13Of course, the pressure could in general decay to a constant, but we will choose this constant

to be zero.
14We have assumed here that the singularity is used to model the flow external to a boundary

inside which it resides. For internal flows, there is an alternate set of singularity solutions, beginning
with the Stokeson [see e.g. Kim & Karrila, 2013]. We shall not concern ourselves with internal flows
in this work.
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The above equations may be solved in the same manner outlined in Section 3.3.

The result for G0 is given by [Mazur & Bedeaux, 1974; Felderhof, 2012; Kim &

Karrila, 2013]

G0(q;ω) = −1

η

(
G(q;ω)1 + α−2∇∇ [G(q; 0)−G(q;ω)]

)
, (3.23)

where G(q;ω) = −e−α|q|

4π|q|
is the fundamental solution of the Helmholtz equation (with

complex α), and G(q; 0) is that of the Laplace equation.

The second difference from electrostatics is that anti-symmetric moments appear

in the multipole expansion. The next singularity that may be considered would have

the nature δij∂kδ(r − r′), whereby the corresponding solutions are ∂kG
0
ij and ∂kP

0
j .

We may split the rank-3 tensor ∂kG
0
ij into symmetric and anti-symmetric parts (Gij

is already symmetric) along indices k and j. The trace part, ∂kG
0
kj, is zero by virtue

of the incompressibility condition ∇ · v = 0. Of the remaining, the anti-symmetric

component may be written as ∇ × G0, which corresponds to the solution due to

a point torque. The corresponding term in the multipole expansion is called the

unsteady rotlet or unsteady couplet. The symmetric component corresponds to the

solution due to a infinitesimally separated pair of forces that produces a point stress.

The corresponding term is called the unsteady stresslet. Thus, a similar multipole

expansion may be written in terms of these singularity solutions.

3.6 Unsteady Stokes flow around an Oscillating

Sphere

We briefly review here the well-known problem of a sphere oscillating in an unbounded

fluid. The problem was first solved by Stokes [1851]. However, we shall follow the

presentation of Landau & Lifshitz [1987, §24, Prob. 5] as it is more convenient for

our purposes15. A more expansive discussion of this problem may be found in the

appendix A.

Using the ansatz vω(r) = ∇ ×∇ × (f(r)uω) for the velocity field vω(r) gener-

ated by the sphere oscillating with velocity uω, the unsteady incompressible Stokes

15However, we shall use notation that is consistent with the rest of this work. This involves
the changes R → a, a → A, b → B, −ikR → δ from the notation used in Landau-Lifshitz to our
notation.
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equations (3.10) reduce to

∆2f = α2∆f, (3.24)

whose solution subject to the no-slip boundary conditions vω|∂S = uω on the surface

of the sphere and decay condition at infinity is f(r) such that,

f ′(r)

r
=

1

r3

[
Ae−αr

(
r +

1

α

)
+B

]
, (3.25)

with the constants,

A =
3a2

2δ
eδ,

B = −3a3

2δ2

(
1 + δ +

δ2

3

)
,

(3.26)

where δ := αa =
√
−iωτf , <[δ] > 0. Here, the origin of the spherical coordinate

system (r, θ, ϕ) is at the center of the sphere, and the polar axis is along uω. It must

be noted that the combination f ′(r)/r is dimensionless.

From the above, the components of the velocity in the same coordinate system

may be calculated as,

êr · vω = −2uω
f ′(r)

r
cos θ,

êθ · vω = uω sin θ

[
−Aα

r
e−αr − f ′(r)

r

]
.

(3.27)

It must be noted that the problem possesses axial symmetry, by which êϕ · vω = 0

and there is no ϕ dependence for most quantities.

The drag force on the sphere may be calculated using (3.13). The resulting drag

force on the sphere, as mentioned earlier, is given by F drag
ω = −γ0(ω)uω where

γ0(ω) = γs(1 + δ + δ2/9), (3.28)

and γs := 6πηa is the well-known steady Stokes drag coefficient (for a sphere trans-

lating with constant velocity).

3.7 Faxén’s Law, and its generalizations

In the drag calculation of Section 3.6, we assumed that the fluid was otherwise qui-

escent, and the only flow in the fluid was produced by the sphere. However, a more
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general problem would be to find the drag on a spherical particle in the presence of

a background flow caused by some other agent in the fluid.

The formula for the drag on a stationary rigid sphere suspended in a pre-existing

steady background flow v0(r) was first derived by Faxén [1921]. The drag force

is given by a very simple formula – for no-slip boundary conditions on the sphere,

F drag = γsv̄
S
0 , where v̄S0 is the average of the background flow field over the surface

of the sphere. This result is often referred to as Faxén’s law, or as Faxén’s theorem.

Faxén’s theorem has been generalized to obtain the drag force on a sphere with a

no-slip boundary in incompressible [Mazur & Bedeaux, 1974] and compressible [Be-

deaux & Mazur, 1974] unsteady Stokes flow. Albano et al. [1975] have generalized

the incompressible version to the case of partial slip boundary conditions on the

sphere, and generalization to the force density induced on the sphere has been ef-

fected by Felderhof [1976]. As it is the most relevant to this work, we shall review the

incompressible case for translational oscillations of a no-slip sphere derived by Mazur

& Bedeaux [1974].

Consider an arbitrary background fluid flow described by {v0(r;ω), P0(r;ω)}
extant in R3, which solves the unsteady incompressible Stokes equations with a body

force distribution S0(r;ω) consistent with the background flow, i.e.

∆v0 − α2v0 =
∇P0 − S0

η
,

∇ · v0 = 0.

(3.29)

Suppose that we now place a no-slip sphere of radius a, which executes small trans-

lational oscillations with velocity uω in the fluid under the influence of some external

force. The fluid flow is altered by the boundary conditions imposed by the sphere.

Since the system is linear, we could think of this as being due to an additional flow

{v′(r;ω), P ′(r;ω)}. Once again due to linearity, we expect that this flow depends

linearly on both the boundary condition uω and the background flow v0, P0.

This relationship is expressed readily if we convert the boundary condition into

a source, as is often done in electrodynamics and fluid mechanics. Introducing an

induced force16 density Sind(r;ω) that has support only in the region occupied by the

16The notion of induced forces, as described by Mazur & Bedeaux [1974], is analogous to the
notion of bound charges in electrostatics.
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sphere (which we shall assume in this section to be |r| ≤ a), we obtain the equations

∆v′ − α2v′ =
∇P ′ − Sind

η
,

∇ · v′ = 0.

(3.30)

In the above, we assume that there is no longer a boundary, but fluid filling the region

|r| ≤ a. A key requirement is that Sind be chosen so the momentum flux through the

boundary in this problem matches that through the sphere oscillating with velocity

uω. We shall additionally require that the total flow v = v0 + v′ be equal to uω in

the entire |r| ≤ a region.

We may write the formal solution of (3.30) as17

v(r;ω) = v0(r;ω) +

∫
|r′|≤a

d3r′ G0(r − r′;ω) · Sind(r′;ω) (3.31)

To find Sind, it appears that one would need to solve the above integral equation,

where the left hand side is known to be uω inside the spherical region. However, it

turns out its explicit value is not required for our purposes – to compute the drag

force F drag
ω on the sphere, it suffices to compute the integrated value of Sind over the

volume of the sphere, for

F drag
ω =

∮
|r|=a

d2r σ · n̂ =

∫
|r|≤a

d3r ∇ · σ

= −
[
iωmfuω +

∫
|r|≤a

d3r Sind(r;ω)

] (3.32)

as required for the induced force to mimic the presence of the sphere, with mf =
4
3
πa3ρf being the mass of fluid displaced by the sphere. The last step was effected by

writing

∇ · σ = −∇P + η∆v = ηα2v − Sind − S0, (3.33)

and noting that S0 may be set without loss of generality to 0 in the region r ≤ a (by

lumping whatever value it had into Sind), as well as that v has the constant value uω

in the region r ≤ a whereby the integral of v over that region is simply uω times the

volume of the sphere.

17Equation (3.31) can be seen to be identical to equation (3.15) of Mazur & Bedeaux [1974] upon
employing (3.23).
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By various manipulations, it can be shown that averages of the equation (3.31)

suffice to determine
∫
|r|≤a d3r Sind, whereby setting v(r;ω) = uω for |r| ≤ a and

averaging (3.31) over the surface and the volume of the sphere, the desired result for

the drag force is obtained to be

F drag
ω = −γ0(ω)uω + γs

[
(1 + αa)v̄S0 (ω) +

1

3
α2a2v̄V0 (ω)

]
, (3.34)

where

γ0(ω) := γs

(
1 + αa+

1

9
α2a2

)
(3.35)

is the unsteady Stokes-Boussinesq drag coefficient for a sphere, and v̄S0 and v̄V0 denote

the averages of v0 over the surface and volume of the sphere respectively. The above

result is the generalization of Faxén’s theorem by Mazur & Bedeaux [1974].

3.8 Boundary integral equations for the unsteady

Stokes equations

3.8.1 The reciprocal identity and boundary integral

equations for electrostatics

In the spirit of starting with something familiar, we shall begin with the reciprocal

identity in electrostatics and its usefulness in obtaining an integral representation for

the electrostatic potential. The reciprocal identity in electrostatics, also known as

Green’s second identity,∫
D

(φ∆ψ − ψ∆φ) d3x′ =

∮
∂D

[
φ
∂ψ

∂n′
− ψ ∂φ

∂n′

]
d2x′, (3.36)

may be derived by considering

∇ · (φ∇ψ) = φ∆ψ +∇φ · ∇ψ,

integrating both sides, using the divergence theorem to convert the volume integral

on the left hand side into a surface integral, and then subtracting the similar identity

obtained by interchanging φ and ψ. The details may be found for example in Jackson

[1999, §1.8].
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In order to obtain an integral equation for the electrostatic potential φ that sat-

isfies the Poisson equation,

−∆φ(x) = ρ(x), (3.37)

we choose ψ(x′|x) to be the fundamental solution of the differential operator under

consideration, which is the Laplacian ∆. Then, we have ψ(x′|x) =
−1

4π|x− x′|
and

∆ψ = δ(x−x′), where x ∈ D is interpreted as the source point and x′ is interpreted

as the field point. Upon integration over x′, the φ∆ψ term simplifies to φ(x). Let D

be a sufficiently nice domain.18 Then we have, for any point x ∈ D,

φ(x) =

∫
D

d3x′
ρ(x′)

4π|x− x′|

+
1

4π

∮
∂D

d2x′
[

1

|x− x′|
∂φ

∂n′
− φ(x′)

∂

∂n′
1

|x− x′|

]
.

(3.38)

The two surface terms in the right hand side of the above equation may be interpreted

as arising from a surface charge layer (with charge density σ = ∂φ
∂n′

, the single-layer

potential) and a surface dipole layer (with dipole moment densityD = −φ, the double-

layer potential). The volume term corresponds to a volume charge density. This

equation is not a solution to the boundary value problem, since arbitrary specification

of both φ and ∂φ
∂n

on the boundary is an over-specification of the problem.

To solve the Dirichlet boundary value problem, we instead set ψ(x′) = GD(x′|x),

a Green’s function that satisfies the homogeneous Dirichlet boundary conditions on

∂D . Then, ∆ψ(x′) = δ(x− x′), and GD(x|x′) = 0 ∀x′ ∈ ∂D.

This results in the undesired surface term vanishing, and we have for x ∈ D

φ(x) =

∫
D

d3x′ GD(x|x′)ρ(x′)−
∮
∂D

d2x′
∂GD

∂n′
(x|x′)φ(x′). (3.39)

Neumann boundary conditions may be treated similarly, but is more involved.

See Jackson [1999, §1.10] for more details.

Another method to solve a boundary value problem is to develop (3.38) for points

x ∈ ∂D, wherein the double-layer integral is singular and must be treated with care.

This can then be interpreted as an integral equation for the unknown (in the case of

the Dirichlet problem, it would be the value of ∂φ/∂n′ on ∂D). Once the solution to

the integral equation is found, both surface terms are known.

18By D, we shall mean the open domain not including the boundary ∂D. The closed domain will
be denoted by D̄.
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Figure 3.1: A cartoon visualizing the induced charge on the surface of a grounded
conducting plane. The induced surface charge density σ contributes a single-layer
term to the integral representation of the electrostatic potential. The normal deriva-
tive of the potential at the surface is permitted to be discontinuous, and the jump is
proportional to the induced surface charge density. One way to determine the dis-
tribution σ would be to evaluate the integral representation for the potential on the
plane, impose the boundary condition, and solve the integral equation for σ.
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When using the above method, it may be helpful to eliminate one of the potentials

by assuming some sort of extension for φ(x) outside the domain D. For example,

to eliminate the double-layer, we choose to extend φ in a continuous manner outside

the domain. Writing (3.36) for the outside of D, which we will denote by Dc, but

while keeping the singularity source for ψ still at x ∈ D. Then, the right hand side

vanishes, since the region of integration Dc doesn’t include the singularity and we

assume that ρ has no support in Dc. The latter is a choice that determines how

φ extends outside our domain, which is anyway immaterial to our purposes. The

resulting equation reads

1

4π

∮
∂D

d2x′
[

1

|x− x′|

(
∂φ

∂n′

)
outside

− φ(x′)
∂

∂n′
1

|x− x′|

]
= 0, (3.40)

where we have allowed the normal derivative of the potential (the normal component

of electric field) to jump across the boundary. This is the price we pay for keeping

the potential continuous. It is then easy to see that

φ(x) =

∫
D

d3x′
ρ(x′)

4π|x− x′|

+
1

4π

∮
∂D

d2x′
1

|x− x′|

[(
∂φ

∂n′

)
inside

−
(
∂φ

∂n′

)
outside

]
,

(3.41)

which is the familiar idea that the jump in the normal component of the electric field

at a conducting plane (for example) may be thought of as arising from an induced

surface charge density proportional to the size of the jump,

σind =

[(
∂φ

∂n′

)
inside

−
(
∂φ

∂n′

)
outside

]
. (3.42)

If the boundary condition is given in terms of the potential, this surface charge density

may be obtained by solving the integral equation (3.41) for σind.

What we have demonstrated, is that the reciprocal identity leads to an integral

representation for the solution in terms of single-layer and double-layer potentials.

However, in boundary value problems, only one of the two potentials is specified.

Either one must eliminate the unknown potential by the use of a proper Green’s

function, or solve the boundary integral equation for the unknown potential in terms

of the known potential. The latter task may be simplified by eliminating one of the

two potentials depending on the problem.

We shall now proceed to explore analogous ideas for the unsteady Stokes equa-

tions.
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3.8.2 The Lorentz reciprocal identity for the unsteady

Stokes equations

Consider the unsteady Stokes equations,

∇ · σ = b+ iωρfv,

∇ · v = 0,
(3.43)

where b(x) is a body force density that the fluid is subject to, and σ with components

σij = −pδij+η(∂ivj+∂jvi) is the stress tensor for the incompressible Stokes equations,

as mentioned earlier. We have dropped the subscripts ω since we will exclusively work

in frequency domain in this section. We have written the unsteady Stokes equations in

this specific form to draw a connection with the previous procedure for electrostatics.

Our aim is to develop an integral representation for v(x). To effect this, we recall

that in the electrostatic case, we wanted to solve the equation∇·∇φ = −ρ, whereby

we considered the total derivative∇·(φ∇ψ) so that one of the terms in the expansion

would have the form φ∇ ·∇ψ. Then, by letting ψ be the fundamental solution, we

recovered a term of the form φ δ(x − x′) that would, when integrated, give us φ(x).

In a similar spirit, consider two (possibly unrelated) velocity fields v and v′ and their

corresponding stress tensors σ and σ′ that satisfy the Stokes equations (3.43). Now

consider the identity,

∇ · (v · σ′) = ∂j(viσ
′
ij) = (∂jvi)σ

′
ij + vi(∂jσ

′
ij). (3.44)

The latter term in the right hand side of the above equation, v ·(∇ · σ′) looks like the

term that we want. We now swap the primed and unprimed fields to obtain another

similar identity,

∂j(v
′
iσij) = (∂jv

′
i)σij + v′i(∂jσij). (3.45)

Now, as we did before, we subtract (3.45) from (3.44) to obtain

∂j(viσ
′
ij)− ∂j(v′iσij) =

[
(∂jvi)σ

′
ij − (∂jv

′
i)σij

]
+
[
vi(∂jσ

′
ij)− v′i(∂jσij)

]
.

Considering the first bracket on the right hand side, and substituting the expression

for the stress tensor in terms of the pressure and velocity fields, we obtain[
(∂jvi)σ

′
ij − (∂jv

′
i)σij

]
= η

[
(∂jvi)(∂jv

′
i + ∂iv

′
j)− (∂jv

′
i)(∂jvi + ∂ivj)

]
= 0
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wherein the terms containing pressure vanish because of the continuity equations

∇ · v = 0, ∇ · v′ = 0 and the remaining terms cancel.

Thus, we are left with

∂j(viσ
′
ij)− ∂j(v′iσij) =

[
vi(∂jσ

′
ij)− v′i(∂jσij)

]
, (3.46)

which we may now integrate as before to obtain,∮
∂D

d2x
[
viσ
′
ijnj − v′iσijnj

]
=

∫
D

d3x
[
vi(∂jσ

′
ij)− v′i(∂jσij)

]
, (3.47)

where nj represents the components of the outward unit vector n̂ normal to the

surface ∂D. This is a form of the reciprocal identity for the unsteady Stokes equations,

derived by Lorentz [1907, §2, Eq. (I’)].

If both the flows v and v′ have no singularities, the flows are steady (ω = 0) and

there are no body forces b and b′, then we may set ∇ · σ = 0, ∇ · σ′ = 0, to obtain∮
∂D

d2x
[
viσ
′
ijnj − v′iσijnj

]
= 0, (3.48)

which is another form of Lorentz’s reciprocal identity [Pozrikidis, 1992, §1.4].

3.8.3 From the reciprocal identity to an integral

representation for the unsteady Stokes equations

One way to obtain an integral representation for the unsteady Stokes equations anal-

ogous to equation (3.38) for electrostatics would be to use the reciprocal identity just

as we did earlier.

For (σ,v), we choose the actual flow and for (σ′ = T 0
k,v

′ = G0
k), we choose the

fundamental solution produced by a singularity at x0 ∈ D. The fundamental solution

satisfies
∇ · T 0

k(x− x0) = δ(x− x0)êk + iωρfG
0
k,

∇ ·G0
k(x− x0) = 0,

(3.49)

and decays to zero at infinity. The Green’s function G0
k with components G0

ik is the

unsteady Oseen tensor (3.23), and represents the ith component of the velocity field

produced by a point force in the êk direction. The object T 0
k with components T 0

ijk

is the corresponding stress tensor.
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Henceforth, to avoid the confusion caused by the dangling k-index, we will work

purely in index notation. The equations (3.49) may then be rewritten as

∂jT
0
ijk(x− x0) = δ(x− x0)δik + iωρfG

0
ik,

∂iG
0
ik(x− x0) = 0.

(3.50)

We now proceed to adapt the reciprocal identity to produce an integral representa-

tion for the velocity field in a manner analogous to that done for electrostatics. Setting

v′i = G0
ik(x− x0) and σ′ij = T 0

ijk(x− x0) in (3.47) and using the equations (3.50), we

obtain ∮
∂D

[
viT

0
ijknj −G0

ikσijnj
]

d2x =

∫
D

[
viδikδ(x− x0)−G0

ikbi
]

d3x, (3.51)

where bi is the body force contributing the actual flow v. To obtain the above, we

have used ∂jσij = bi + iωρfvi and canceled the viG
0
ik terms. Noting that σijnj = fi is

the surface traction, we may write

vk(x0) =

∫
D

G0
ik(x− x0) bi d3x

+

∮
∂D

[
vi T

0
ijk(x− x0)nj − fiG0

ik(x− x0)
]

d2x,

(3.52)

where x0 ∈ D. We have thus obtained an integral representation for the flow, where

the second term on the right hand side represents a double-layer potential, and the

third term represents a single-layer potential. It must be noted that if x0 lies on

the boundary ∂D instead of being inside the domain, the term with T 0
ijk becomes a

singular integral and appropriate care must be taken. See Pozrikidis [1992] for details.

3.8.4 Eliminating the double-layer potential

It is usually convenient to eliminate either the single-layer or double-layer potential to

obtain a simpler expression. One way to do this is to use a Green’s function tailored to

the boundary, as done in the electrostatic case, which gives us a direct representation

for the flow in terms of the boundary conditions. However, having such a Green’s

function in the unsteady Stokes context is already a luxury. If the Green’s functions

specific to the boundary are not known, it is still possible to eliminate one of the

potentials as we did in the electrostatic case, at the cost of solving integral equations

to determine the densities of forces / stresses [Pozrikidis, 1992, §2.3, Ch. 4].
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In this work, we will choose to eliminate the double-layer potential and work with

the single-layer potential. The up-side of this is that we do not need to deal with

the complications of computing T 0
ijk and taking care with the singularities involved.

The down-side would be that representation by a single-layer potential leads to a

Fredholm integral equation of the first kind, which is generally harder to solve as one

cannot use iterative procedures.

Following Pozrikidis [1992], we introduce a complementary flow ṽ that has support

outside the domain D (including on ∂D). On the boundary ∂D, ṽ has the same

value as the original flow v. The value of ṽ is not really of concern, whereby we may

assume that there are no body forces contributing to this flow within Dc. Choosing

σ′ij = T 0
ijk(x−x0), v′i = G0

ik(x−x0) (x0 ∈ D) as before in (3.47), but choosing vi = ṽi

on ∂D, and the domain of integration to be the outside Dc of ∂D instead, we see

that the the volume integrals on the right hand side of (3.47) vanish (the singularity

source of the Green’s function at x0 lies outside Dc) and we have∮
∂D

[
ṽi T

0
ijk(x− x0)nj − f̃iG0

ik(x− x0)
]

d2x = 0. (3.53)

But on ∂D, ṽi = vi, whereby we obtain∮
∂D

vi T
0
ijk(x− x0)nj d2x =

∮
∂D

f̃iG
0
ik(x− x0) d2x, (3.54)

which we substitute into (3.55) to obtain

vk(x0) =

∫
D

G0
ik(x− x0) bi d3x+

∮
∂D

qiG
0
ik(x− x0) d2x (x0 ∈ D), (3.55)

where q := f̃ − f is an unknown force distribution that must be determined by im-

posing boundary conditions. Intuitively, this shows that a boundary can be replaced

by a sheet of forces that have the same effect as imposing the boundary conditions,

analogous to the replacement of the electrostatic boundary conditions by a sheet of

charges.

The validity of this procedure rests on the existence of the complementary flow

ũ. As shown by Pozrikidis [1992, §4.1, 4.2], the condition for existence of such a flow

is that ∮
∂D

v(x) · n̂(x) d2x = 0, (3.56)
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i.e. that there is no flux of fluid through the boundary of the domain. This is trivially

satisfied for closed boundaries ∂D which impose the no-penetration boundary condi-

tion19 by virtue of incompressibility. However, care must be taken when applying the

above to non-compact boundaries.

In this work, we will concern ourselves with a half-space domain D = R2 × R+,

where we do have a non-compact boundary given by a plane. So we must see if

the integral constraint (3.56) holds for a non-compact boundary. To investigate, we

assume that the flow can be thought of as being generated by a compact distribution

of sources. We consider the flux through a closed hemispherical surface of radius

R that completely encompasses the distribution. The net flux through this closed

surface must be zero, and we may break it up into two parts – the flux through

the hemispherical surface, and the flux through the disk of radius R that closes the

surface. Looking at the asymptotics of the unsteady Oseen tensor (3.23), we see

that for any finite |α| > 0, the largest term as q → ∞ decays like20 1/q3 – the

other terms are suppressed by exponential decays. The result is therefore that the

velocity field generated from a finite distribution drops like 1/R3, whereas the area

of the hemispherical section grows only like R2. Therefore, the net flux through the

hemispherical section is zero, whereby we may conclude from incompressibility that

the flux through the disk of radius R is also zero. As R tends to infinity, the disk

becomes a plane, therefore showing that the integral constraint (3.56) is satisfied

even for non-compact surfaces provided that the field v may be generated by a finite

source distribution and the frequency of oscillation ω > 0. It should be possible to

analytically continue results to the ω = 0 case. Thus, we may use a single-layer

potential to represent flow in a half-space.

3.9 Added mass and the high-frequency limit

Any agency that attempts to accelerate a rigid body S in a fluid must also accelerate

the fluid in front of the particle. Therefore, the effective inertia felt by the agency is

larger than just the inertia of the particle. To calculate how much larger, we may find

the drag coefficient using the machinery developed in Section 3.4 and then rewrite

19In this work, the no-penetration boundary condition will always hold. We do not treat porous
boundaries.

20This term comes from the ∇∇G(q; 0) term.
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the drag coefficient thus obtained by extracting the term proportional to iω as

γ(ω) = ζ(ω)− iωma, (3.57)

where ma is a constant. Then the drag force F drag
ω = −ζ(ω)uω + iωmauω and the

latter term may be added to the inertial term. ma is generally called the added mass

or induced mass. Thus the effective mass or virtual mass of the particle in the fluid

is given by m∗ := mp +ma. In the case of a sphere in unbounded fluid (3.35), it can

be seen that the term γsα
2a2 = −iωmf/2 where mf = 4

3
πa3ρf is the mass of the fluid

displaced by the sphere, whereby the effective mass is m∗ = mp +mf/2.

An alternate way to compute the added mass at low Reynolds numbers is using

potential flow [Landau & Lifshitz, 1987, §12]. Going back to (3.5), if we assume

Re � 1 and τ � τf , i.e. extremely short time-scales of motion of the particle,

we could conceive a dominant balance between the time-derivative term and the

pressure term, dropping both the advective term and the viscosity term. This is

technically incorrect because the term η∆vω is the highest-order derivative in the

equation, whereby this should be handled appropriately as a singular perturbation.

The author does not know of a thorough boundary layer analysis of this regime. If

we nevertheless simply drop the viscosity term, we are left with

−iωρfvω = −∇pω,

∇ · vω = 0.
(3.58)

As before, the latter equation results in a Laplace equation for pressure, ∆pω = 0,

and the velocity is simply given by the gradient of a scalar potential,

vω =∇
(

p

iωρf

)
. (3.59)

This is the regime of potential flow, which is significantly simpler to handle. It is

expected (although the author has not been able to find a proof) that calculating the

drag force

F drag
ω =

∮
∂S

d2r pω n̂ (3.60)

would reproduce the added mass, i.e. F drag
ω = iωmauω where ma is the added mass.

The added mass for a number of geometries has been calculated using potential flow

and the results are well-known [Brennen, 1982].
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Thus, we may postulate that at high frequencies, the drag force from the full

unsteady Stokes calculations must tend to the added mass contribution from potential

flow calculations. Although we have not proven this statement rigorously, it seems

plausible and the author does not know of counterexamples.
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Chapter Four: Theory of Brownian motion in bulk

fluid

In this chapter, we will put together the theory of Brownian motion developed in

Chapter 2 and the fluid dynamics developed in Chapter 3, particularly Section 3.6,

to develop the theory for Brownian motion in an unbounded fluid medium. This

theory is well-known and may be found, for example, in Zwanzig & Bixon [1970];

Clercx & Schram [1992]. We analyze various aspects of the theory here, mostly to

make the work self-contained. Such analyses may also be found in the supplementary

material of Franosch et al. [2011]; Kheifets et al. [2014].

4.1 Theory of Brownian motion of a sphere in

bulk incompressible Newtonian fluid

We consider a spherical particle (density ρp, radius a, mass mp = 4πa3ρf/3) in

thermal equilibrium at temperature T with an otherwise unbounded incompressible

Newtonian fluid medium (density ρf , dynamic shear viscosity η, kinematic viscosity

ν = η/ρf ). No-slip boundary conditions are assumed on the sphere, which is real-

istic for most solid particles that are not intentionally designed to be hydrophobic.

The drag coefficient for this system was discussed in Section 3.6, and is given by

equation (3.28),

γ0(ω) = γs(1 +
√
−iωτf − iωτf/9), (4.1)

where as we had earlier, γs = 6πηa is the steady Stokes drag coefficient, and τf =

a2ρf/η is the time-scale for vorticity diffusion over the size of the sphere. The branch

of the square-root is chosen so that
√
−i = (1− i)/

√
2.

Splitting the above into real and imaginary parts, we may write

<[γ0] = γs

(
1 +

√
ωτf
2

)
,

i =[γ0] = −iγs

√
ωτf
2
− iω

mf

2
,

(4.2)
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where mf := 4πρfa
3/3 is the mass of fluid displaced by the particle. The term

−iωmf/2 represents an additional inertia of mf/2; thus the particle in the fluid may

be thought of as having an effective mass of m∗ := mp +mf/2.

Through the machinery developed in Chapter 2, we have seen that once the drag

coefficient is known, the statistical properties characterizing the Brownian motion

may be determined. Given that the system is isotropic, the admittance may be

reduced to the scalar

Y (ω) =
1

−iωm∗ + γs
(
1 +

√
−iωτf

) . (4.3)

If a harmonic trap is present, the trap may induce anisotropy. In this case, we will

simplify our description by considering a single dimension, x, with trap strength K.

The admittance for that coordinate is then given by

YK(ω) =
1

−iωm∗ + γs
(
1 +

√
−iωτf

)
−K/(iω)

. (4.4)

The (two-sided1) power spectral density of the Langevin force is given by

SF (ω) = 2kBT

(
1 +

√
ωτf
2

)
. (4.5)

The (two-sided) power spectral density of velocity fluctuations is given by

Su(ω) = 2kBT
1 +

√
ωτf/2∣∣−iωm∗ + γs

(
1 +

√
−iωτf

)
−K/(iω)

∣∣2 , (4.6)

and the (two-sided) power spectral density of position fluctuations is given by

Sx(ω) = 2kBT
1 +

√
ωτf/2

ω2
∣∣−iωm∗ + γs

(
1 +

√
−iωτf

)
−K/(iω)

∣∣2 . (4.7)

The velocity auto-correlation function can be obtained by Fourier-transforming

Su(ω). The results have been given by Clercx & Schram [1992]. In the absence of a

trap,

Cu(t) =
kBT

m∗(B − A)

[
B w(iB

√
t)− Aw(iA

√
t)
]
, (4.8)

1The one-sided PSD is given by twice the two-sided PSD, at all values except the DC value.
When dealing with continuous frequency, as opposed to windowed signals, it is convenient to just
define it to be exactly twice the two-sided PSD for all values of frequency. While the experimental
measurements will frequently feature one-sided PSDs, we will stick to two-sided PSDs in most of
the theory.
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where

A :=
1

2m∗

[
z +

√
z2 − 4γsm∗

]
,

B :=
1

2m∗

[
z −

√
z2 − 4γsm∗

]
,

z := 6πa2√ρfη,

(4.9)

and w is the Faddeeva function2 w(q) := e−q
2
erfc(−iq) [DLMF, Eq. 7.2.3]. In the

presence of a harmonic trap, there are more roots, and the expression is rather com-

plicated. It may be found in Eqs. (2.11) to (2.14) of Clercx & Schram [1992].

The mean-squared displacement may also be calculated in closed-form, and has

been given by Clercx & Schram [1992, Eqs. (1.11), (2.25)–(2.26)].

4.2 Analysis of the hydrodynamic VACF

Using the power series expansion of w(q) [DLMF, Eq. 7.6.3] in equation (4.8), we

find that [Kheifets et al., 2014, Suppl. Material]

Cu(t) ∼
kBT

m∗

[
1−

√
t

τv

]
, (4.10)

where

τv :=
π

4

τ 2
p

τf
, (4.11)

and here τp := m∗/γs, i.e. using the effective mass.

Two observations are in order:

1. The value of 〈u2〉 is kBT/m
∗, and not kBT/mp as may be expected from the

equipartition theorem. This paradox is resolved by including the effects of

compressibility [Zwanzig & Bixon, 1975], whereby the VACF shows a rapid

decay from the actual value of kBT/mp to the effective value of kBT/m
∗ over

time-scales of the order of τc := a/c. We shall refer to the result 〈u2〉 = kBT/m
∗

as the “modified” equipartition theorem in this work, and the corresponding

velocity u(t) on these time-scales as the “hydrodynamic” instantaneous velocity

of the particle.

2The Faddeeva function arises in the context of decay with a fractional derivative of half-integer
order, which is possibly the case for this system [Saichev & Woyczynski, 2013, Ch. 6].
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2. The VACF has an initial decay that is faster than that predicted by the EOU

theory. Whereas in the EOU theory, we had an exponential decay CEOU
u (t) ∼

〈u2〉 (1− t/τp), the hydrodynamic VACF decays like 1 −
√
t/τv, and for small

t,
√
t is larger than t.

The long-time asymptotic of Cu(t) is given by Clercx & Schram [1992] as

Cu(t) ∼ kBT
z

2γ2
s

√
π

1

t
√
t

t→∞, (4.12)

which is the famous t−3/2 long-time tail of the hydrodynamic VACF. Thus, at long

time-scales the hydrodynamic VACF retains more correlation than the exponential

decay of the EOU theory.

These two aspects of the hydrodynamic VACF – the faster decay at short time-

scales, and the slower decay at long time-scales – may be seen in figure 4.2, where it

is compared against the VACF from the EOU theory.

Intuitively speaking, these effects may be explained as follows [Kheifets et al.,

2014]: At short time-scales, there is more drag than in the EOU theory, because

of the additional γs
√
ωτf/2 term in the real part of γ0(ω). Therefore, the VACF

decorrelates faster at short time-scales. However, at long time-scales, there is more

inertia than in the EOU theory, because if we interpret the iγs
√
ωτf/2 as a frequency-

dependent contribution to the added mass, we find that =[γ0] = −iωmadded(ω) =

−(iωmf/2)(1 + 9/
√

2ωτf ). Thus, at small frequencies, there is a significant added

inertia. The extra inertia bolsters the memory of velocity and prevents the VACF

from decaying.

These ideas are further illustrated by the comparison in figure 4.2. In the figure,

the blue coloring is proportional to the magnitude of flow velocity. The green coloring

is proportional to σrθ, the component of the shear stress tensor primarily responsible

for the drag. Sub-figure (a) shows pure potential flow around a sphere, which con-

tributes an added mass of mf/2. Compare this with sub-figure (c), which shows the

solution to the unsteady Stokes equations (Section 3.6) for ω = 0.7/τf (long time-

scales). The larger amount of fluid being entrained by the particle is indicative of a

higher effective inertia. Sub-figure (b) shows the steady Stokes flow around a sphere,

which produces a drag force of γsu on the sphere. Compare this with sub-figure (d),

which shows the solution to the unsteady Stokes equations (Section 3.6) for ω = 25/τf
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Figure 4.1: Semi-logarithmic plots of the velocity auto-correlation functions pre-
dicted by the Einstein-Ornstein-Uhlenbeck (EOU) theory, and by the hydrodynamic
theory of Zwanzig & Bixon [1970]. The hydrodynamic VACF was obtained by nu-
merical computation of the Fourier transform of the position PSD using the GNU
Scientific Library’s qawo routine. Non-dimensionalized time is measured in units of
τp = τf . The VACF has been normalized to its initial value of 〈u2〉. The hydrody-
namic VACF shows a faster initial decay compared to the EOU theory, followed by
a slower decay at long time-scales.

(short time-scales). The larger amount of shear stress in the fluid close to the sphere

is indicative of a larger drag force.
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Figure 4.2: An illustration of the hydrodynamic effects on Brownian motion in a
dense liquid. The x-y plane represents a section of the full 3D problem through the
origin, where the center of the spherical particle is located. The red circle represents
the section of a rigid, no-slip sphere performing small translational oscillations in
sub-figures (a), (c) and (d), and moving with a constant velocity in sub-figure (b).
The plots (a), (c), (d) represent a snapshot in time when the sphere has just passed
the equilibrium point and is moving along the negative x-direction. The black lines
with arrows show the streamlines of the velocity field around the particle, with the
thickness indicating the magnitude of the velocity field. In sub-figures (a) and (c),
the strength of blue color represents the magnitude of the flow velocity normalized
to the velocity of the particle. In sub-figures (b) and (d), the strength of the green
color represents the magnitude of the shear stress tensor component σrθ. Sub-figure
(a) shows the results from pure potential flow. Sub-figure (b) shows the results from
the unsteady Stokes equations (Section 3.6) for ω = 0.7/τf . Sub-figure (c) shows the
results from steady Stokes flow. Sub-figure (d) shows the results from the unsteady
Stokes equations (Section 3.6) for ω = 25/τf . The plots suggest an explanation for the
rapid decorrelation of the velocity at short time-scales, but the slower decorrelation at
long time-scales, as compared with the EOU theory. At short time-scales, the shear
stress is much higher than that in steady Stokes flow, leading to rapid decorrelation.
At long time-scales, there is more fluid entrained by the sphere than in potential flow,
leading to slow decorrelation.
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Chapter Five: Experimental Setup to study

Brownian Motion

In this chapter, we describe the general experimental setup used in the Raizen

Lab to study Brownian motion of micron-sized particles in liquids at short time-

scales. The experimental setup described here is common to the following published

work: Kheifets et al. [2014]; Mo et al. [2015a,b].

This experimental setup is described in detail in Ph.D. dissertations by Mo [2015]

and Kheifets [2014]. The author will briefly review the various aspects of the exper-

imental setup in general, while emphasizing and detailing those parts to which he

contributed the most. These include the construction and maintenance of the flow

cell (Section 5.2), the LabVIEW software for control of the experiment and data ac-

quisition, and the binary file format for data storage (Section 5.4), the software for the

alignment system for the cut-mirror (Section 5.7), and the system for measurement

of detector response (Section 5.8).

5.1 Optical Tweezers

Optical tweezers form one of the de facto tools to control and manipulate objects of

microscopic or nanoscopic sizes. The trapping of particles by laser beams was first

demonstrated by Ashkin [1970]. Ashkin showed that a TEM00 laser beam with a few

milliwatts of power was able to produce a stable trapping force on dielectric micro-

spheres in water when focused down to a reasonably tight spot. Since then, optical

tweezers have become an indispensable tool in physics and biology. For a survey of

applications, see e.g. Berg-Sørensen & Flyvbjerg [2004].

A laser beam of intensity I exerts a radiation pressure of the order of I/c, where

c denotes the speed of light, and the exact factor depends on the reflectivity of the

surface. For a 1 mW laser beam completely incident on a particle (i.e. the waist of

the laser beam is of the order of the size of the particle), we expect a force of the

order of 10−11 N. While this force appears to be extremely small, if we consider the

weight of a micron-sized particle made of glass (ρp ≈ 2.0 g/cm3), we find it to be of
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the order of 10−13 N. Thus, the force exerted by optical tweezers can be almost 100

∼ 104 times the weight. The key requirement of concentrating the beam over the size

of the particle may be achieved using coherent light from a laser.

A focused laser beam, hitting a partially reflecting and partially transmitting di-

electric particle that has a higher refractive index than its surrounding medium, exerts

two types of forces – the reflection causes momentum of photons to be transferred to

the particle, pushing it in the direction of propagation of the laser beam by exerting

the scattering force; and the non-uniform intensity profile of a focused Gaussian laser

beam produces a force that tends to pull the particle to the center of the beam, a

force referred to as the gradient force.

5.1.1 Mechanism of optical tweezers in the regime of ray

optics

In the approximate regime of ray optics, which describes optical tweezers well when

the particle size is much larger than the wavelength of the laser used, the gradient

force may be understood by studying figure 5.1.

The equilibrium position of the particle is along the axis of the beam, but ahead of

the beam focus along the direction of propagation. This is because of the scattering

force pushing the particle forward along the beam direction. This scattering force is

balanced by an axial gradient force, which can be understood as follows: if the particle

moves forward along the beam direction from the equilibrium position, the beam is

re-focused by the particle more tightly, whereby the beam has a larger net momentum

along the forward axial direction. By momentum conservation, the particle feels a kick

in the opposite direction. The amount of focusing increases with the forward excursion

of the particle, and therefore, the restoring force on the particle increases in strength

with displacement. Similarly, if the particle moves against the beam direction, the

transmitted beam becomes more defocused, and the net axial momentum of the beam

is decreased. Therefore, the particle feels a restoring force in the beam direction.

If the particle moves away from equilibrium in a lateral direction, the beam is

refracted in the same direction. Thus, the beam gains a net momentum in the direc-

tion of displacement of the particle. By momentum conservation, the particle must

suffer a net momentum in the direction in the opposite direction of displacement.
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(a) Equilibrium (b) Lateral restoring force

∆psphere

∆pphoton

∆psphere

∆pphoton

(c) Axial restoring force

Figure 5.1: Mechanism of optical tweezers explained in the regime of ray optics.
The spherical particle is of higher refractive index than the surrounding medium.
The laser is shown propagating upwards from below. (a) In the equilibrium position,
the particle sits slightly ahead of the laser focus, where the scattering and axial
restoring forces balance. (b) If the particle is laterally displaced, the laser beam is
refracted in the direction of the displacement. Momentum conservation demands that
the particle feel a force in the direction opposite to the displacement, which pushes
it back towards the axis of the beam. (c) If the particle is displaced along the axis,
the beam becomes more tightly / loosely focused depending on the displacement.
In the figure, an upward displacement is shown, which causes the transmitted beam
to become more focused. This indicates a larger beam momentum in the forward
direction, resulting in a force on the particle in the downward direction, which pushes
it back towards the equilibrium position.

The deviation of the beam, and therefore the restoring force on the particle, increases

with the displacement of the particle.

Thus, the focused laser beam produces a restoring force on the particle in all three

spatial directions, that is, at least over a small regime, a monotonic function of the

displacement of the particle. For small displacements, we may assume that this force

is linear and therefore model the gradient force as a harmonic restoring force.

5.1.2 Theory of optical tweezers in the Rayleigh regime

Where the Rayleigh approximation can be made (i.e. particle size a much smaller than

wavelength of light λ), closed-form expressions may be obtained for the scattering and

gradient forces on a particle.

The magnitude of scattering force is given by [Harada & Asakura, 1996; Ashkin
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et al., 1986]

Fscat(r) =
128π5n5

f

3cλ4
0

a6

[
µ2 − 1

µ2 + 2

]2

I(r), (5.1)

and its direction is along the propagation of the laser beam. The gradient force is

given by [Harada & Asakura, 1996; Ashkin et al., 1986]

Fgrad(r) =
2πnfa

3

c

[
µ2 − 1

µ2 + 2

]
∇I(r). (5.2)

In the above expressions, λ0 denotes the wavelength of the light in vacuum, nf is

the refractive index of the fluid (medium), c is the speed of light in vacuum, and

µ := np/nf is the ratio of the refractive index of the particle np to that of the

medium nf . I(r) is the intensity distribution of the laser beam. It is clear from the

expressions why the gradient force is called as such.

For a free-space TEM00 Gaussian beam, the intensity profile I(r) is given by [Paschotta]

I(x, y, z) =
2P

πw2(z)
e−2(x2+y2)/w2(z), (5.3)

where w(z), the waist of the laser beam at distance z from the focus, is given by

w(z) = w0

√
1 + (z/zR)2, (5.4)

where the Rayleigh length zR := πw2
0/λ, λ being the wavelength of the fluid in the

medium, i.e. λ0/nf . The waist at the focus w0 is determined by the focusing optics

and the initial size of the beam.

5.1.3 The Lorentz-Mie regime

In the cases of experiments described in this work, the particle sizes (1.5 ∼ 4 µm) are

sufficiently close to the wavelength of light (1.0 µm in vacuum), whereby neither of

the above approximations work. In that case, the forces must be calculated from the

sophisticated Lorentz-Mie theory. Computational toolboxes are available to predict

the forces on particles in this regime. See Mo [2015] for details.

Nevertheless, the expressions from the Rayleigh regime may be used to get a rough

intuitive sense of the dependence of optical trapping on various parameters.
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5.1.4 Considerations for optical trapping

For a stable optical trap, firstly, the refractive index of the particle must be larger

than that of the medium. Another key condition is that the gradient force must

be capable of balancing the scattering force in the beam-propagation direction. High

numerical aperture produces a stronger gradient force without affecting the scattering

force significantly. If this is insufficient, counter-propagating beams may be used so

as to cancel the scattering force and enhance the gradient force.

5.1.4.1 Numerical Aperture

The laser beam is typically focused using microscope objectives, since a very tight

spot is needed. An important parameter of the focusing optics combined with the

medium in which the light is being focused is the Numerical Aperture (NA), defined

through NA := nf sin θ where nf is the medium in which the light is being focused,

and θ is the half-angle of the cone of converging light formed. The maximum possible

NA of the lens is obtained when the full aperture is filled.

The trap is stronger if the NA is higher, since a high NA produces a small waist

for the laser beam at the focus, resulting in sharper gradients of intensity.

5.1.4.2 Choice of wavelength

The laser wavelength must be chosen so as to prevent heating of the fluid medium

or the particles, and also be available easily. The 1064 nm infrared light from an

Nd:YAG laser is a suitable choice, although it produces a very small amount of

heating in water. If even this heating is a problem, heavy water can be substituted

instead. 532 nm from a frequency-doubled Nd:YAG laser is a second possible choice.

5.1.4.3 Counter-propagating beams

In some cases, especially for large particles or particles with high refractive index

(relative to the medium), the scattering force becomes stronger than the gradient force

in the axial direction. Typically, the axial direction possesses the slowest variation

of intensity and therefore the weakest gradient force. In such cases, the particle may

still be trapped by introducing another laser beam traveling in the opposite direction,

so that the scattering force is diminished and the gradient force is bolstered. The
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Figure 5.2: Picture of the optical setup used for the measurement of Brownian motion
in liquids in the Raizen Lab at the University of Texas at Austin. The paths of a
1064nm laser beam, a 532nm laser beam, and visible light illumination are depicted
in red, green and white respectively.

path of the counter-propagating beam will need to be different, and hence it must be

separated from the main beam in either wavelength or polarization, so that the optics

can direct them differently. Some care must be taken to align the axes and foci of

the two beams so that they overlap – if not, there would be multiple stable trapping

positions, but this does not pose a significant problem since the local potential is still

approximately harmonic.

If back-focal-plane detection is to be done, generally, one of the trapping locations

will provide better signal than the others. The power of the laser beams can be slowly

altered to shuffle the particle between the traps till it is in the location that is desired.

5.1.5 The setup used in our experiments

The optical tweezers setup used in the Raizen lab to measure Brownian motion pri-

marily used a 1064 nm Nd:YAG laser system (Innolight, Mephisto) with a maximum

power output of 1.2 W. The laser was coupled into a single-mode optical fiber, and

after passing through some beam-resizing optics, introduced into a water-immersion
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microscope objective (LOMO, OM-25) (henceforth referred to as OBJ1) with an NA

of 1.23, focal length of 2.5mm and working distance of 140 µm. The objectives focus

the light into the flow cell chamber filled with liquid (usually water or acetone), where

the particle is trapped. The transmitted laser beam is collected by an identical mi-

croscope objective (LOMO, OM-25) (henceforth referred to as OBJ2), re-collimated,

and then used as the detection beam (see Section 5.3).

When trapping particles with higher refractive index (especially particles made of

Barium Titanate glass), a counter-propagating 532nm laser beam (Coherent, Verdi V-

10) was used. This laser was coupled into a single-mode optical fiber, and after passing

through some beam-resizing optics, introduced into OBJ2, where it was focused down

into the flow cell chamber. The transmitted 532nm light was collected by OBJ1 and

the majority of it was sent to a beam dump, a small amount optionally sent to the

imaging camera for alignment purposes.

These beam paths are shown, along with the remainder of the optical setup, in

the schematic of figure 5.3. The red, green and blue lines indicate the paths taken

by 1064nm, 532nm lasers, and visible light illumination respectively. The following

abbreviations are used – DM: Dichroic Mirror, CCD: Charge-Coupled Device, HWP:

Half-Wave Plate, OBJ: Objective, PBS: Polarizing Beam Splitter, PD: Photo-Diode,

CM: Cut Mirror, BS: Beam Splitter, LED: Light-Emitting Diode.

5.2 Flow cell

The primary constraint on the experimental chamber comes from the working distance

of the objectives. Our objectives had a working distance of about 140 µm (in practice,

it was slightly different because of the use of an infrared laser as opposed to visible

light), meaning that the chamber was constrained to be less than about 280 µm thick.

Producing a chamber this thin has its obvious difficulties. In addition, one must be

able to flow in liquid and micro-spheres into the chamber.

The methods of building optical tweezers for biophysics have been developed in

detail and outlined by the Bustamante group and are available on a website called

TweezersLAB [Steve Smith et al.]. We closely followed their procedures for the con-

struction of our experimental chambers, which we also refer to as “flow cells” in this

work, but with some differences. We primarily focus on the differences here. The
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Figure 5.3: Schematic of optical setup used. See §5.1.5 for details.
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Figure 5.4: A finished flow cell used for trapping Barium Titanate glass particles in
liquids. The Z-shape of the channel is required to trap the dense Barium Titanate
glass spheres (§6.3).

remaining details are largely identical to the description on TweezersLAB, under the

headers “Fluidics Set” and “Micro-chamber”. Specifically, our flow cell is made of #0

cover-slips, does not have a micro-pipette, and has a single channel with a single inlet

and a single outlet. Commercially available syringe pumps were used to drive the

syringe, instead of a pinch valve. The holes in the #0 cover-slips were drilled using a

CNC mill as opposed to being laser etched, and a single layer of nescofilm hand-cut

on a template was used. The details are described in the subsequent paragraphs.

The flow cells are primarily constructed by sandwiching a film of sealing plastic in

between thin, flat pieces of glass. Channels are cut in the sealing plastic to provide a

way to introduce the particles and liquid and perform the experiment. Holes drilled

in one of the glass pieces allows for introducing liquid and particles into the chamber.

Figure 5.4 shows a finished flow cell.

For the glass, we used cover glass slips with a thickness of 80 ∼ 130 µm (Ted Pella,

Gold Seal #0) and a size of 24× 60 mm. Typically, #1 cover-glasses are used, which

are easier to work with because they have a higher thickness. However, the objectives
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Figure 5.5: Schematic showing the flow cell and the mounting setup. The setup is
largely based on TweezersLAB [Steve Smith et al.]. The acrylic pieces that hold
down the flow cell are transparent in order to check the seal made by the silicone
(or rubber) tubing on the glass. The “Z”-shape of the chamber cut out in the flow
cell is designed to trap the dense Barium Titanate glass micro-spheres (§6.3). Figure
courtesy of Dr. Simon Kheifets.

we used have a much shorter working distance, and therefore using #0 cover-glasses

was necessary.

Two of the heat-sealing plastic films suitable for the purpose of making the cham-

ber are Parafilm M (Bemis) which has a mean thickness of about 125 µm, and

Nescofilm1 (Bando Chemical Ind. Ltd.) which has a mean thickness of about 80

µm. Both films are resistant to water. Parafilm has poor resistance to acetone, but

generally produces a stronger seal. Nescofilm has reasonable resistance to acetone,

but the seal is generally weaker. Nescofilm was however generally preferred since it

produced a thinner cell.

1Nescofilm seems to be unavailable from distributors in the United States as of this writing.
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5.2.1 Drilling the cover-slips

#0 cover-slips are very thin, and this makes drilling holes in them for the plumbing

extremely challenging. It was observed that attempting to hand-drill them would

often cause it to shatter in spokes around the point of drill contact, and these were

sufficient to cause leakage.

A novel method was found by the machinists in our department machine shop. A

jig was constructed to hold stacks of cover-slips that were held flat and together by

wax, and a diamond burr bit was run through them using a CNC mill. The drilled

cover-slips were stuck together in stacks, which were separated by ultrasonication

in a solution of distilled water and Micro-90 Cleaning Solution (Cole-Parmer). The

cover-slips were then carefully pulled apart and placed in a clean slide file.

5.2.2 Making the flow cells

When a new flow cell is to be constructed, drilled and plain cover-slips are cleaned by

ultrasonication in a solution of HPLC-grade water and Micro-90 (Cole-Parmer), and

then rinsed several times with HPLC-grade water. They are further cleaned using

acetone and lens-cleaning tissue just before use. A sharp, clean razor blade is used

to cut the sealing film (Nescofilm / Parafilm) on a clean template slide into shape to

make the channels for fluid flow. The sealing film cut out is carefully placed over a

clean drilled cover-slip with the channels aligned up with the holes. A clean cover-slip

without holes is placed on top. The sandwich is placed between clean optical tissue

and gently pressed with a slide to help form a temporary seal. The temporary seal

is made permanent by baking on a hot plate. Nescofilm generally requires a longer

duration of heat than Parafilm. After cool down, the excess Nescofilm is carefully

trimmed off using a razor blade. The flow cell thus created is still extremely fragile

and must be handled with care.

The finished flow cell is placed in the flow cell holder, clamped down gently using

acrylic clamps, and the plumbing connections are made. When using acetone, cut-

outs of a glass slide were used to protect the acrylic from any acetone that may have

leaked.
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Figure 5.6: A flow cell mounted in a flow cell mount, with plumbing connections.
The liquid on the center of the cell is synthetic microscope immersion oil with the
same refractive index as water.

5.2.3 Flow system

We followed TweezersLAB very closely for the flow system connections, except that

we had only one inlet and one outlet. A syringe pump was used to pump the liquid

(with our without particles) into the chamber at a uniform rate. This prevented

accidental breakage of the flow cell by application of excess pressure. While using

acetone, the Cole Parmer C-Flex silicone tubing, which is not acetone resistant, was

replaced by EPDM rubber tubing (McMaster Carr, 9776T14). The nylon set screws

were drilled with a correspondingly smaller drill bit on the lathe.

A mounted flow cell with the plumbing connections is shown in 5.6.

5.3 Detection system

Typically with optical tweezers, the trapping beam that has passed through the par-

ticle under study is re-collimated and used as a detection beam. It is well-known that

very small changes in the position of the particle (smaller than nanometers) may

be measured by back-focal-plane detection, where the beam is incident on a quadrant
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I1 − I2

A

Figure 5.7: Simplified schematic of split-beam detection system used to measure
the position of the Brownian particle by tracking the transmitted laser beam. The
transmitted beam is incident on a D-shaped mirror, where 50% is reflected and 50%
transmitted. The two halves of the beam are focused on two photo-diodes and the
difference of the current is amplified by a trans-impedance amplifier.

photo-diode, and the difference in intensities between the left quadrants and the right

quadrants is used as a measure of the horizontal deflection of the beam and therefore

of the particle.

The problem with detection using quadrant photo-diodes is that they have large

surface area and therefore high capacitance. This implies that they will not provide

a sufficiently large bandwidth for the detection of short time-scale motion of the

particle. A novel detection scheme using a optic fiber bundle2 has been proposed

and used successfully by Chavez et al. [2008]. A simpler alternative, first used by Li

et al. [2010] and subsequently used in our setup, involves a D-shaped cut mirror

(Thorlabs, BBD05-E03) that is aligned so as to split the detection beam in half, such

that the intensity that is reflected and the intensity that is transmitted are equal at

the equilibrium position of the particle. The cut mirror is shown in figure 5.8. The

reflected and the transmitted beams are incident on a balanced detector, consisting

of two identical photo-diodes which are wired to a trans-impedance amplifier in a

differential configuration. Any displacement of the particle produces imbalances the

reflected and transmitted power, and this change is detected by the balanced detector.

The amplified differential signal is digitized by a data acquisition card and recorded

in digital form on a computer.

A schematic illustrating the split-beam detection system is shown in figure 5.7.

For details pertaining to alignment of the mirror, see Section 5.7.

2Not to be confused with the similar term in differential geometry!
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Figure 5.8: A D-shaped cut mirror (Thorlabs, BBD05-E03) is used to split the beam
into equal halves at the equilibrium position of the particle. The mirror is mounted
on a translation stage as it needs to be frequently aligned (§5.7).

As we shall describe in Section 5.5, the Signal to Noise Ratio (SNR) of detection

at high frequencies is proportional to the square root of the detected power. As

a result, the balanced detector must be able to handle a high power. Commercial

balanced detectors such as Thorlabs models PDB-120C and PDB-110C have a very

low rating of ∼ 5 mW per photo-diode. These were used in contexts where the

noise floor was not of prime concern (such as low-frequencies, where the signal is

many orders of magnitude larger than the noise with 10 mW detected power). To

provide better SNR, especially for short-time measurements, a balanced detector was

designed and built in-house (figure 5.9) by Kheifets [2014]. The detector was built

using InGaAs photo-diodes with thermal dissipation capability of 100 mW (Excelitas,

C30641). The differential current from the two photo-diodes was amplified using an

op-amp (Texas Instruments, OPA 847) in a trans-impedance configuration with high-

pass and low-pass filters with 3 dB points at about 600 Hz and about 60 MHz. The

low-pass filtration, achieved by a small feedback capacitance, is necessary to stabilize
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Figure 5.9: Picture of a high-bandwidth balanced detector, capable of accepting
100 mW of laser power per photo-diode, built in-house by Kheifets [2014]. InGaAs
photo-diodes are wired in series and the differential current is AC-coupled into a
trans-impedance amplifier. Picture courtesy of Dr. Simon Kheifets.

the amplifier with a capacitive load at the input. The op-amp OPA 847 is designed

for a high gain-bandwidth product at the cost of other features, whereby the high-

pass filter is necessary to prevent saturation of the op-amp from the strong signal at

low-frequencies. The detector’s response was measured as described in Section 5.8

and accounted for in data analysis. A DC-coupled detector, Thorlabs PDB-110C,

was also setup in parallel to “fill in” the low-frequency data (not shown in figure 5.3,

but seen in figure 5.2). The output of the detectors was fed into two channels of a

high-quality data acquisition card, which we shall discuss in Section 5.4.

5.4 Data acquisition system and Experiment

control

5.4.1 Acquisition of Brownian motion data

The primary requirements on a digitizer (analog to digital converter) to measure short

time-scale aspects of Brownian motion are high channel bandwidth, high sample-rate,

and low quantization noise. The channel bandwidth and sample rate of the digitizer

must not be a limiting factor in the ability to measure short time-scale fluctuations.

The bandwidth must be larger than the usable bandwidth of the detection system
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Figure 5.10: Main LabVIEW interface for data acquisition, alignment of cut mirror,
and remote control of experimental parameters. The wave-form and power spectrum
of a small segment of each acquisition is visualized at the bottom of the interface,
and forms a very helpful tool to detect anomalies.

(see §5.5 and Chapter 6) including the bandwidth of the balanced detector, and

the sample rate must be larger than twice this bandwidth (by the Nyquist-Shannon

criterion), preferably even higher to prevent noise from being aliased back into the

pass-band. The quantization noise must not limit measurement (see § 5.5).

These requirements were met by the digitizer used in our setup (GaGe, Razor

1622 Express CompuScope), which has a 16-bit quantizer, a 200 MSa/s sample rate,

a channel bandwidth of 125 MHz, and an on-board memory for 128 MSa (64 MSa in

2-channel operation).

A full dump of data from our digitizer would amount to about 0.25 GB of data

(128 MSa × 2 bytes per sample), and even more if the data is written as floating-

point scaled voltage values. Given the large size of the data, a binary data file

format was designed specifically for the experimental data, so as to facilitate fast

writing and reading without the overhead of conversion into ASCII strings. The

binary file format also contains metadata about the experiment, the nature of the

acquisition (bead present vs. absent), the values of various experimental parameters,

the readouts from various sensors (such as photo-diodes measuring the laser power)
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Figure 5.11: Example detection beam profile image recorded by the CCD camera
monitoring the beam, digitized through the USB video capture card and saved by
the LabVIEW program.

and the configuration of the digitizer. The binary file format also contains checks to

identify data corruption.

The digitizer provided a LabVIEW VI interface, which was integrated in a larger

LabVIEW application to allow configuration of the acquisition, and transfer of the

data from digitizer memory to binary file. Given the large number of samples to be

transferred, the transfer was done by copying the memory one ‘page’ at a time.

Speeding up of the data acquisition, transfer, and writing to disk was important,

as it was sometimes difficult to trap a particle without contamination for a long

time. This process was profiled using LabVIEW’s profiling features and optimized to

bring down the time taken. Speeds of writing to the disk were improved by using a

solid-state drive.

5.4.2 Experiment control and acquisition of other

experimental parameters

To isolate any problems, the control of parts of the apparatus, as well as the acqui-

sition of experimental parameters and optical images of the chamber was done by a

different computer (referred to as the auxiliary computer). The main computer that

ran the acquisition software communicated changes and read values from the auxil-

iary computer over the network. LabVIEW’s Network Shared Variable was used to
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achieve this communication. A spin-lock was implemented to make the asynchronous

operations that are typical of LabVIEW synchronous.

Experimental parameters such as laser intensities were controlled from constant

voltage signals generated from an analog output board (National Instruments, PXI-

6713), controlled by LabVIEW. The power of the main trapping and detection laser

was controlled using a half-wave plate mounted on a rotary mount (Newport, Pico-

motor) followed by a Polarizing Beam Splitter (PBS) cube. This laser was left in

open-loop as the laser itself was sufficiently stable, and any closed-loop system would

increase the noise floor (see §5.5). The power of the counter-propagating laser beam

(whenever applicable) was maintained by a closed-loop PID system with the beam

power monitored by a photo-diode, and feedback applied through an acousto-optic

deflector.

Auxiliary measurements from various sensors, such as estimated power at the

balanced detector and estimated powers of the lasers at fiber outputs were acquired

using a data acquisition card (National Instruments, PCI-6133) and read in through

LabVIEW software.

A USB CCD camera (Mightex Systems) was used to record an optical image of the

chamber (see §5.6). An analog-output video camera was used to monitor the detection

laser beam profile, and the signal was then digitized using a USB video capture

card (EasyCap). Both of these images were acquired by the auxiliary computer, and

transferred asynchronously to the main computer with a delay of the order of seconds.

The images were time-stamped for clarity. The asynchronous capture of chamber and

beam profile images ensured that the main acquisition process was not slowed down

by waiting for images.

5.5 Sources of noise

There are several sources of noise that hinder the measurement of Brownian motion

of the particle:

1. Mechanical noise: This originates from the mechanical vibrations of the

building3 and the ground on which the experiment is being performed. It could

3We found that a 240 Hz power-line harmonic hum was audible upon putting ones ears to any
wall in the building, presumably from pump machinery. Our musical training proved useful in
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couple to the measurement through the vibration of optics, or the vibration of

the particle itself. To mitigate this, the optical table on which the experiment

is setup is floated over a blanket of air.

2. Power line harmonics: The power-line noise at 60 Hz and its harmonics can

couple easily into electronics, despite filtering. To suppress this noise, the power

lines in the balanced detector had bypass capacitors placed at all recommended

locations.

3. Acoustic noise: It was observed that the sound, even from the experimenters

talking, was picked up by the experimental setup. Our hypothesis is that this

sound coupled to the measurement through changes in the refractive index of

the air through which the laser beams were traveling (akin to synthetic Schlieren

imaging of fluids). It was mitigated by attempting to keep a quiet environment

while acquiring data, and keeping the laser curtains closed.

4. Electronic noise in the balanced detector and digitizer: The electronic

noise of the detector and digitizer was sufficiently low so as to be unimportant.

The detector was designed with low-noise as a goal.

5. Quantization noise: This arises from the round-off error in converting the

analog signal to digital. The high resolution (16-bits) of the digitizer made this

irrelevant.

6. Laser intensity noise (classical): Classical noise in the laser may arise from

the internal electronics of the laser. Most lasers feature a closed-loop system

to suppress this noise. However, any such system converts some of the shot

noise from the part of the beam used for sensing (which is relatively higher

corresponding to the low detected power) into classical noise which it feeds back

into the laser system. Thus, while such a closed-loop system might suppress

any noise peaks, it will raise the noise-floor, at least over the bandwidth of

the detector. This has been observed with the “noise eater” that came on

the Innolight Mephisto laser, and is theoretically impossible to beat unless the

sensed power is high enough. To mitigate classical laser noise, we upgraded

determining the frequency of the hum!
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from a noisy laser to a laser that was sufficiently free from classical noise even

when any closed-loop noise suppressors were turned off.

7. Laser pointing noise: Laser pointing noise can cause the beam to move

around mimicking a signal. Fiber coupling reduces the pointing noise by con-

verting it into intensity noise. If the laser intensity were maintained in closed-

loop, this could be servo-ed out, but for the reasons mentioned earlier, this

may not be a good idea. This is probably one of the smaller contributors to

low-frequency noise in our system.

8. Laser shot noise: This is the most important kind of noise in the system, and

was the limiting factor in our measurement. Shot noise is inherent quantum

noise present in the laser beam, and grows proportional to the square root of the

power of the laser beam. Therefore, relative to the signal, which is proportional

to the power of the beam, we have SNR ∼
√

Power. Almost all the other types

of noise mentioned above (except possibly for classical intensity noise in the

laser) are dominant only at low frequencies. At high-frequencies, shot noise is

usually the limiting factor as it is white noise.

The measured power spectrum of noise in our system is depicted (along with signal

from two micro-sphere-in-liquid systems) in figure 5.12. The red triangles represent

the noise.

Looking at the position power spectrum of Brownian motion, it is easy to see that

it is roughly flat at low frequencies, and decays like 1/ω4 in the EOU theory and

like 1/ω3.5 in the hydrodynamic theory. So the low-frequency components are strong,

whereas the high-frequency components are weak. With appropriate measures to

suppress low-frequency noise, the SNR at low and intermediate frequencies can be

improved. However, eventually, either the detection system bandwidth or the laser

shot noise floor will determine the SNR at short time-scales. In our system, the

detection bandwidth was not the limiting factor – shot noise was.

5.6 Imaging system

In order to trap particles and study their motion, being able to see the particle and

the chamber is extremely important. To this effect, optical imaging needs to be set
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Figure 5.12: Measured power spectral density of Brownian motion of particles, and
of noise in the detection system. The noise measurements, represented by red trian-
gles, were obtained by the same system but without a particle present in the optical
trap. Classical sources of noise are dominant at low frequencies, whereas shot noise
dominates the high frequencies. The weak peak seen in the noise in the lower plot at
about 1 MHz corresponds to noise from the Nd:YAG laser pump. The blue circles
and green circles represent the PSD of position of a BTG micro-sphere in acetone,
and of a silica micro-sphere in water respectively. Figure from Kheifets et al. [2014,
Supplementary Material], annotated to show the types of noise.
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Figure 5.13: Image of a Barium Titanate glass micro-sphere trapped in the experi-
mental chamber. The red color of the image is a result of using red illumination. The
green light is leakage of the 532nm counter-propagating beam through the dichroic
mirror reaching the camera in the absence of a strong 532nm filter.

up in the tweezers system. It is possible to use the same objectives to set up Köhler

illumination, where the rays from a light source are collimated by a condenser lens

to uniformly illuminate the object under study, while simultaneously avoiding the

structure of the light source (i.e. filament of an incandescent lamp, or patterning of

an LED) from being imaged on the camera. The idea is that the illumination beam

be collimated at the conjugate focal planes of the object under study.

In our setup, light from a red LED source of adjustable brightness was focused

by a lens roughly at the back-focal plane of OBJ2. Red light was chosen because

the LED was easily available, and because the dichroic mirrors designed to reflect

the 532nm laser would transmit it. OBJ2 played the role of the condenser lens. The

image of the chamber, formed through OBJ1, was focused using an appropriate lens

on a CCD camera (Mightex Systems). Figure 5.13 shows an image of a trapped

micro-sphere in the chamber.

72



5.7 Methods of alignment

The D-shaped mirror is mounted on a translation stage so as to be able to adjust it to

balance the mean power incident on the two photo-diodes in the balanced detector.

If the detector is DC-coupled, one could simply null the difference between the mean

read-out of the two photo-diodes. However, with the AC-coupled detector, one cannot

do this.

To align the D-shaped mirror in the case of an AC-coupled detector, we introduce

a common-mode signal at a sufficiently high-frequency into the laser and minimize the

strength of the signal. When the balanced detector is balanced, it should be sensitive

only to the differential-mode. This method of alignment can be performed even when

a particle is present in the trap. The common-mode signal should preferably be a

pure sinusoid so that the amplitude at that frequency can be selectively read out to

determine the strength of the signal.

We introduced a sinusoidal signal of about 1 ∼ 2 MHz frequency into the laser

using an electro-optic modulator. The electro-optic modulator was directly connected

to a function generator without an amplifier, as the electronic noise of the amplifier

was observed to couple into the laser beam. The frequency was chosen so that it lay

in a region where the signal due to Brownian motion itself was sufficiently small, and

the modulator’s response was sufficiently strong (the modulator had a bandwidth of

the order of a few hundred kilohertz). This way, the signal would tower over the

Brownian motion of the particle allowing the alignment to be done when a particle

was in the trap. The function generator that produced the output was automatically

gated from the LabVIEW program to turn the signal on/off whenever the alignment

tab in the software was opened/closed, in order to prevent accidentally acquiring data

with the signal turned on. The measured signal from the digitizer was then processed

to extract the strength of the specific frequency component. The operator of the

experiment could then move the cut mirror to minimize this signal and easily balance

the detector. The signal was never completely eliminated because vibrational noise

could move the optics involved and let some of the common-mode noise through.

However the signal could be suppressed by many orders of magnitude when properly

balanced.
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5.8 Measurement of detector response

The detection system’s response significantly colors the measurement. Assuming that

the detection system is Linear and Time-Invariant (LTI),4 we may characterize it by

its response h(t) to a unit impulse, or more conveniently by the Fourier transform

H(ω) of h(t). H(ω), called the transfer function in engineering terminology, charac-

terizes the complex (amplitude and phase) response of the system to a pure sinusoid

of a given frequency5 ω.

If the transfer function of an LTI system is known, then the Fourier transform

of its input, which we will denote by X(ω), and the Fourier transform of its output

Y (ω) are related by

Y (ω) = X(ω)H(ω). (5.5)

We may treat Y (ω) as the output of the detection system with transfer function

H(ω), when it is tasked with measuring the actual signal X(ω). Therefore, we may

recover an estimate of the actual signal incident on the detection system by simply

dividing the measured signal in frequency domain by the transfer function.

The transfer function of a system (or more generally, the s-parameters of a two-

port network) may be measured effectively using a network analyzer. However, net-

work analyzers are expensive, and the input to our detection system came in the form

of light. Therefore, we deemed it best to build our own system for measurement of

the photo-detectors’ transfer functions.

We used a fast transmitter (Avago Technologies, HFBR-1119TZ) designed for fiber

optic communications, with a rise / fall time of ∼ 2.2 ns (leading to a bandwidth

of > 150 MHz) to produce a rapidly flashing infrared light. The transmitter is an

integrated package with a driver designed to accept a differential digital logic signal,

so that we may be assured that the intensity of the flashes is uniform over frequencies

< 150 MHz owing to the digital nature. The transmitter was driven ultimately

from the output of a function generator, which was scanned over frequencies. The

function generator we used at low frequencies had a floating ground, whereby we

did not need special means to convert its single-ended output to differential. For

4By time-invariant, we mean that the response of the pattern of response of the detection system
is unchanged under translations in time. The detector’s response to a sudden impulse may however
involve a rise time and a decay time.

5More comprehensive discussions of LTI systems may be found in standard references such
as Oppenheim et al. [1983].
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Figure 5.14: LabVIEW interface for measuring the transfer function of an electrical
system. The stimulus is applied from a function generator, and the response is digi-
tized through the data-acquisition card and processed in LabVIEW. A fast fiber-optic
transmitter can be used to convert the stimulus into light for measurement of transfer
functions of photo-detectors.

the high-frequency case, a 1:2 balun was used to convert the single-ended output to

differential input for the transmitter (figure 5.15). The output of the transmitter

was fiber-coupled using a communications patch cable and pointed in the general

direction of the photo-detector whose response we wished to measure.

The output of the photo-detector was fed into the digitizer and analyzed in Lab-

VIEW (figure 5.14). The flashing of the LED being on/off, the response of the de-

tector is closer to a band-passed square wave with many harmonics. The LabVIEW

program identified the peak signal, and locked-in on it to measure amplitude and

phase. The frequencies chosen to step through were sufficiently incommensurate with

the sample rate so as to prevent any aliased harmonics from overlapping with the

fundamental and affecting the measurement. Only points that passed certain con-

fidence thresholds were recorded. The data was saved into a text file and analyzed

in MATLAB. Measuring the phase response correctly requires proper triggering of

the digitizer, and accounting correctly for cable delays. However, because we only

need to calculate power spectra of Brownian motion, the magnitude response suf-

fices. We ignored measurement of the phase response. A pole-zero model is fit to the
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Figure 5.15: A picture of the home-built circuit used to drive the fiber-optic trans-
mitter, in order to measure the transfer functions of photo-detectors.

transfer function magnitude data to produce an analytic interpolation. The analytic

interpolation is used in data analysis.

The transfer function of the digitizer channel itself could be measured using the

same program by applying the function generator’s output to the digitizer directly.

When the photo-detector’s response alone is desired, the transfer function of the

digitizer may be divided out from the measurement. However, this is not necessary in

practice, since we typically want to know the entire detection + digitization system’s

response.

5.9 Methods of data analysis

The voltage samples read by the digitizer are assumed to be proportional to the

displacement of the particle, by a proportionality constant C with the units of V/m.

We shall denote the raw digital signal, after appropriate scaling to convert into a

voltage, as V [t]. The brackets, as opposed to parentheses, reminds us that the time is

discrete from the sampling, as is standard notation. Then we may write x[t] = CV [t].

We may differentiate the signal V [t] using a discrete differentiation operator so as to

get a signal proportional to the velocity.

However, high-frequency noise becomes significantly amplified upon differentia-

tion. One way to look at this is to see that a stochastic process with a flat spectrum

becomes develops a spectrum that grows like | − iω|2 = ω2 upon differentiation.
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Figure 5.16: Plot of the transfer function of the detection system, consisting of the
high power balanced detector built in-house as well as the data acquisition system.
The measurements are indicated by green circles and the solid black line is a fit to a
ratio of polynomials. Figure from Kheifets et al. [2014, Supplementary Material].

Therefore, heavy binning is necessary. The samples may be either binned by convo-

lution with a sinc function (which results in a brick-wall filter in frequency domain),

or a rectangular window (which results in a sinc filter in frequency domain). The

difference may be combined with the sinc in frequency domain by multiplication by

−iω. (In fact, the forward difference operator translates in frequency domain to

multiplication by a sinc multiplied by −iω.)

The power spectra of position x[t] and velocity v[t] may be calculated up to the

calibration constant by taking the absolute square of their Fast Fourier Transform

(FFT) and dividing by the appropriate numerical factor. It is at this stage that

division by the squared magnitude of the transfer function is incorporated. A window

function such as Hamming or Hann window may be used before performing the FFT.

This may be written explicitly as

X[k] := fft( x[t]w[t] ),

PSD[k] =
∆t

N
|X[k] |2 ,

(5.6)

where w[t] is a L2-normalized window function, fft( ) denotes the FFT operation, ∆t

is the time-step between subsequent samples, and N is the number of samples. The
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above calculates the two-sided PSD. To calculate the one-sided version, we simply

multiply all components but for the DC component by 2.

Similar measurements of the background noise in the system are made in the ab-

sence of a bead, with just the laser passing through an empty chamber and hitting

the detector. The transmitted power in the presence and absence of the bead can be

different, so the power is adjusted so that the shot-noise floor in the data acquisition

matches that in the noise acquisition. The noise acquired in this manner is analyzed

similarly to the signal, and subtracted from the corresponding measurements of spec-

tra and correlation functions. This procedure is valid under the assumption that the

noise is not correlated to the particle’s motion, and is stationary. Of course, this

is not entirely true in practice, but the procedure nevertheless removes a significant

amount of noise.

The VACF may be computed (up to the calibration constant) by FFT of the

velocity power spectral density. The Position Auto-correlation Function (PACF) is

computed by FFT of the position PSD, and the MSD (up to calibration constant) is

obtained from the PACF. In computing the PACF, data points at frequencies much

lower than the trap frequency Fk = 1/(2πτk), τk := γ/K are discarded, as they are

plagued by the low-frequency noise in the system, and the PSD is assumed to be flat

in this region.

Least-squares fitting of the MSD or the VACF is then used to determine various fit

parameters, including the calibration constant C, the radius of the particle a, and the

trap stiffness K. Additional fit parameters exist in other variants of the experiment.

Once the calibration constant is known, all the remaining measurements can be

correctly re-scaled to physical units of the motion of the particle.

We may also calculate the PSD of the Langevin force by using the admittance.

Since we have u(ω) = YK(ω)Fth(ω), we deduce for the position x(ω) = (−iω)−1u(ω)

a power spectral density given by

Sx(ω) = ω−2 |YK(ω)|2 SF (ω), (5.7)

whereby we may numerically compute the PSD of the Langevin force from the posi-

tion PSD using ω2 |YK(ω)|−2 Sx(ω). This computation does not make any reference

to the fluctuation-dissipation theorem. It is valid so long as the theoretical expres-

sion for the admittance is correct, and the ideas of linear response theory are valid.

In our experiments, the agreement of the experimental PSD computed in this man-
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ner with the expression 2kBT <[γ] may be therefore treated as a verification of the

fluctuation-dissipation theorem subject to the assumption that the hydrodynamic

theory is correct. This is also an indication that the laser heating in the system is

negligible.
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Chapter Six: Experimental investigations on short

time-scale Brownian motion in bulk fluid

In this chapter, we primarily describe two experiments measuring short time-scale

aspects of Brownian motion in liquids. The work described here has been published

in Kheifets et al. [2014] and Mo et al. [2015a]. The author contributed to the in-

strumentation of both experiments as outlined in Chapter 5, and contributed to the

conduct of the experiments. Specifically, the author acquired the final experimental

measurements for Kheifets et al. [2014], did an independent check of the data analysis,

and contributed to making the plots that went into the paper. The author assisted

the data acquisition and analysis for Mo et al. [2015a].

6.1 Previous experiments

The ballistic regime of Brownian motion was probed by Blum et al. [2006] in a rarefied

gas. Subsequently, the instantaneous velocity of a Brownian particle was measured

in air by Li et al. [2010]. They were able to trap silica micro-spheres in air at two

different pressures, and record the trajectory with sufficient resolution so as to make

a histogram of velocities and show that the statistics followed Boltzmann statistics

with the RMS velocity given by the equipartition theorem.

In liquids, the first observation of the ballistic regime was reported by Huang

et al. [2011], based on the detector design of Chavez et al. [2008]. They observed

the transition of the mean-squared displacement from slope 2 (ballistic) to slope 1

(diffusive) on a log-log plot, and also verified the hydrodynamic theory of Clercx &

Schram [1992]. Franosch et al. [2011] observed the long time-scale aspects of Brownian

motion in liquids, notably a resonance in the position power spectrum arising from

the colored nature of the thermal force, and verified the hydrodynamic theory at

these time-scales.
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6.2 Considerations for the measurement of

instantaneous velocity in liquids

Measuring the true instantaneous velocity of a Brownian particle in a liquid is still

elusive, for the time-scale τc associated with the effects of compressibility is generally

of the order of a few nanoseconds. Therefore, to measure the true instantaneous

velocity, a time resolution of shorter than τc/10 is required. It is already a formidable

challenge to measure the hydrodynamic instantaneous velocity (defined in §4.2), and

this forms the primary subject of the work of Kheifets et al. [2014].

To measure the hydrodynamic instantaneous velocity, one must measure the veloc-

ity before it significantly decorrelates. This is much more challenging than observing

the ballistic regime in the MSD or VACF, since the MSD and VACF are averaged

measurements – obtaining sufficient statistics will bring error bars due to noise down,

since shot-noise, which is the dominant noise limiting the measurement, is uncorre-

lated and averages out to zero. As we have seen in Chapter 4, the velocity decorrelates

on a time-scale of the order of τv, defined in (4.11). Not only is it necessary to have a

bandwidth larger than 1/τv, but also necessary to have a good signal-to-noise ratio at

this bandwidth, a consideration that is not required for VACF or MSD measurements.

If we integrate the velocity power spectrum of Brownian motion (in an incom-

pressible fluid), we obtain the (hydrodynamic) RMS velocity,

〈v2〉 =

∫ ∞
−∞

Sv(ω)
dω

2π
. (6.1)

Basically, the integral of the power spectral density is the zero-time value of the VACF.

However, suppose we had a hypothetical brick-wall low-pass filter with frequency cut-

off Ω, so that we measured only

〈v2
Ω〉 :=

∫ Ω

−Ω

Sv(ω)
dω

2π
, (6.2)

we would expect to find a velocity distribution that had a smaller RMS value than

kBT/m
∗, simply because we are not measuring all the power in the velocity spectrum.

However, the noise in the system adds to the signal, and given that the exper-

iment is shot-noise limited, the power in the noise in the position measurement is

constant over frequency. When we differentiate the measured signal (which is pro-

portional to the position) to get the velocity, the noise in the velocity measurement
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now has a power spectrum that grows like ∼ ω2. When we ask what amount of

power in the noise is admitted into our measurement of velocity with bandwidth Ω,

we must integrate this spectrum, and therefore obtain a result that grows like ∼ ω3.

This cumulative noise spectrum that grows extremely rapidly as ω3 limits the signal-

dominated bandwidth of the system, as long as the actual bandwidth of the detection

system is larger than this bandwidth.

Figure 6.1 shows the integral of the velocity PSD (6.1), normalized by kBT/m
∗, as

a function of bandwidth Ω in units of 1/τp for various values of τf/τp. A representative

cumulative spectrum of noise in the velocity measurement (Ωτp/100)3 is also plotted.

The figure illustrates how the rapidly growing noise spectrum determines the noise-

free bandwidth. For silica particles in a rare fluid like air, τf � τp, and the normalized

cumulative VPSD hits 1 at a lower value of Ω, so that the same shot-noise level would

affect the measurement in air less than in water, where τf ∼ τp.

If we had a larger detection bandwidth beyond the point where shot-noise becomes

dominant, the noise would contribute an increasing amount to the measurement.

One must therefore dial down the bandwidth Ω (which can be done digitally using

binning) to reduce the noise contribution, but this comes at the loss of some of the

signal power. Therefore one needs some sort of criterion to set the amount of binning,

with a reasonable signal-to-noise trade-off. In our experiments, we chose the binning

number that would give us a SNR of 14 dB. This corresponds to 4% of the net power in

the measurement coming from noise. Thus, conceptually speaking, the bandwidth we

impose by low-pass filtering lies slightly to the left of the point where the cumulative

shot-noise curve meets the cumulative velocity power spectrum in figure 6.1.

Therefore, for successful measurement of the (hydrodynamic) instantaneous ve-

locity,

1. the bandwidth of the detection system must be sufficiently larger than 1/τv,

2. the shot-noise must be low-enough so that the shot-noise limited bandwidth

must be larger than 1/τv.

Therefore, there are two general ways to improve the ability to measure (hydro-

dynamic) instantaneous velocity:

1. Choose a particle/fluid combination that slows down the dynamics so that τv ∝
τpρp/ρf ∝ (ρ2

pa
2)/(ρfη) is smaller,
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Figure 6.1: Semi-logarithmic plots showing the integral of the velocity PSD (6.1),
normalized by kBT/m

∗, for various values of τf/τp. The horizontal axis is the band-
width Ω non-dimensionalized by 1/τp. A representative cumulative spectrum of noise
in the velocity measurement (Ωτp/100)3 is also plotted.

2. Improve the signal to noise ratio.

To address the first consideration, we used Barium Titanate Glass (BTG) particles

suspended in acetone. The higher density of BTG (ρp ≈ 4.1 g/cm3), the lower density

of acetone (ρf ≈ 0.79 g/cm3), and the lower viscosity of acetone1 (η ≈ 3× 10−4 Pa·s)
helped slow down the decorrelation of the VACF. The higher refractive index of BTG

(np ≈ 1.9) also addressed the second criterion, by increasing the optical gain of the

detection system. Another factor was the increased detection power of > 100mW .

As described in §5.3, the SNR grows like the square-root of detected power. These

improvements enabled the measurement of instantaneous velocity.

6.3 Experimental challenges

The experimental challenges posed by detection of high power were already discussed

in Chapter 5. A detector was built in-house [Kheifets, 2014] using photo-diodes

capable of handling a much higher power.

1While hexane has an even lower density and viscosity than acetone, it was not used because
the experimenters valued their lives more than the improvement that it would provide over acetone.
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Figure 6.2: Scanning electron micrograph of (A) widely-dispersed (0.1 – 10 µm)
Barium Titanate Glass micro-spheres, (B) mono-disperse (2a ≈ 3µm) silica micro-
spheres. The particles were sputtered with about 10nm Au/Pd in 60/40 ratio for
imaging. Both samples of particles show high-sphericity. Figure from Mo et al.
[2015a], courtesy of Dr. Jianyong Mo.

The use of acetone required us to make sure that all components of the fluidics

system were acetone-resistant. This required us to make changes to the tubing and

use Nescofilm, as described in Chapter 5.

The use of BTG particles posed another set of experimental challenges. No-

tably, the available sample of BTG particles (Mo-Sci Specialty Products, GL-0176)

had a wide spread in size, unlike the more traditionally used silica particles (eg:

SS05N/5411, Bangs Laboratories). A scanning electron micrograph of the samples is

shown in figure 6.2.

The large dispersion of sizes, especially with very small particles (0.1µm) made the

control of purity of the trap extremely difficult, as a small stray particle could easily

get into the trap given enough time. The stray particles could, however be detected

even by visually looking at the tail of the position power spectral density in the

LabVIEW program, as the time-scale of their dynamics is much shorter. Therefore,

the signal from the tiny particles dominates the spectrum at high frequencies despite

the lower scattering volume. This made it possible to tell when the trap was pure.

Another complication of using BTG particles was that counter-propagating dual-

beam tweezers were required owing to the high refractive index. The ratio of the two

beams’ powers was adjusted by trial-and-error until a strong trap was achieved.

The third complication associated with BTG particles was that their terminal

velocity in the fluid under gravity was substantially high that they would roll close

to the bottom of the channel and fall with a fairly high speed in the vertical part of

the channel. For this purpose, the channel in our flow cells were cut in a Z-shape
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(figure 5.5), creating a “cliff” and allowing the laser beam to be positioned below the

cliff without blockage by the sealing film. Upon introduction into the flow chamber,

the particles would fall vertically down from the cliff and the trap positioned below

the cliff would catch a particle, which then had to be moved quickly away from the

vertical line of falling of the BTG particles to prevent another particle from knocking

the trapped particle out.

Additionally, for the work presented in Mo et al. [2015a], the BTG particles

needed to be trapped for extended durations of time in order to amass sufficient

statistics. For this, the sample of BTG particles was further purified using velocity

sedimentation [Cheng et al., 2010], and the chamber was gently flushed with pure

HPLC-grade acetone after the particle was trapped. This enabled retention of the

particle without contamination for a few minutes.

6.4 Hydrodynamic instantaneous velocity, and

short-time statistics of Brownian motion

We shall present a selection of the experimental results from Kheifets et al. [2014]

in this section. The experiment achieved a shot-noise floor below 3 fm/
√

Hz with a

band-width of more than 50 MHz. Brownian dynamics in two systems were reported

– a 2.9 µm silica particle in water, and a 3.7 µm BTG particle in acetone. In the BTG

/ acetone system, particle dynamics was resolved to time-scales as short as τf/300.

Figure 6.3 shows the results for the MSD and the VACF of the two systems.

The blue circles and green squares represent the experimental data for the BTG /

acetone and silica / water systems respectively. In sub-figure (A), the red dashed-

lines represent the ballistic regime of the MSD. The MSD saturates to a value given

by kBT/K owing to the existence of the optical trap. In sub-figure (B), the red

dashed-lines represent the short-time behavior of the VACF (4.10). The blue and

green solid lines represent the EOU theory. The zero-crossings are a consequence of

the optical trap.

Figure 6.4 shows statistical properties of the Langevin force inferred from the ex-

perimental data. The blue circles, green squares, and solid black lines have the same

meaning as before. Sub-figure (A) shows the colored component of the Langevin force

(theoretically expected to be
√
ωτf/2). The power law of ω1/2 is evident from the
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Figure 6.3: Experimental and theoretical results for the MSD and VACF of two
particle-fluid systems. (A) Logarithmic plots of the MSD, and (B) semi-logarithmic
plots of the VACF normalized by kBT/m

∗. The blue circles correspond to the system
of the 3.7µm diameter BTG particle in acetone (τp = 11.0µs, τf = 8.5µs, τv = 11.2µs).
The green squares correspond to the system of the 2.9µm diameter silica particle in
water (τp = 1.2µs, τf = 2.01µs, τv = 0.57µs). The solid black lines correspond to
the hydrodynamic theory, Chapter 4. In sub-figure (A), the red dashed lines indicate
ballistic motion, whereas in sub-figure (B), they correspond to the small t expansion
of the VACF, 1−

√
t/τv. In sub-figure (B), the green and blue solid lines correspond

to the EOU theory, which neglects hydrodynamic interactions. The zero-crossings
of the VACF, as well as the saturation of the MSD, are a result of the optical trap.
Figure from Kheifets et al. [2014].

slope 1/2 on the logarithmic plot. Sub-figure (B) shows the auto-correlation function

of the Langevin force, which shows that the force is anti-correlated. The inset is a log-

log plot, which shows the power-law dependence of the auto-correlation function. The

paradox of instantaneous anti-correlation seems to be an artifact of incompressibility.

Sub-figure (C) shows the cross-correlation between velocity and the Langevin force.

This cross-correlation is asymmetric in time. The observation that the past velocity

is correlated with the future force is not a violation of causality [Balakrishnan, 1979].

The experimental data in this figure was calculated by inverting the mechanical sus-

ceptibility on the position, and therefore does not assume the fluctuation-dissipation

theorem. The fact that the data in this figure agrees with the theory can be inter-

preted as a verification of the fluctuation-dissipation theorem subject to the validity

of the hydrodynamic theory.
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Figure 6.4: Statistical properties of the thermal force inferred from experimental data.
Sub-figure (A) shows a log-log plot of the colored component of the thermal force.
Sub-figure (B) shows a semi-logarithmic plot of the auto-correlation function of the
thermal force, the negative values indicating an anti-correlation. The inset shows
the absolute value of the same on a log-log scale to evince its power-law dependence.
Sub-figure (C) shows a semi-logarithmic plot of the velocity-force cross-correlation
function. Figure from Kheifets et al. [2014].
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6.5 Testing the Maxwell-Boltzmann distribution

While Kheifets et al. [2014] does report a verification of Boltzmann statistics e−m
∗v2/kBT

of (hydrodynamic) instantaneous velocities, the counts, especially in the tails, are

very low. There was a need to perform an experiment amassing much more statistics

to better verify the Maxwell-Boltzmann distribution. We reported the results of a

follow-up experiment achieving this [Mo et al., 2015a], which is the subject of this

section.

The most challenging part of this experiment, as described, was retaining the

particle in the chamber without contamination for the long durations required to ac-

quire the particle trajectories. The small particles in the BTG sample were partially

eliminated by velocity sedimentation as stated earlier. However, efforts were made to

speed-up the acquisition process in LabVIEW. In addition to profiling the LabVIEW

program and improving the processing time, the primary data storage was upgraded

to a solid-state drive for faster write throughput. The data acquisition was done in

a team with one operator at the experiment monitoring the data acquisition pro-

cess, and another at a computer analyzing a sampling of the data-sets in real time.

This allowed us to monitor contamination or other problems very quickly, avoiding

continued acquisition of bad data.

The digitizer we used, as mentioned earlier, has a 227-sample memory. At the

maximum sample rate of 200 MSa/s, this translates to about 0.7s of time per acqui-

sition of a trajectory. We studied three systems – silica in water, silica in acetone and

BTG in acetone – acquiring 677, 143, and 43 such trajectories respectively! After

appropriate binning (bin sizes of 25, 85, and 40 respectively), this gave us 3.6 billion,

200 million and 144 million velocity data points for the three systems respectively.

The bin size was chosen to have the same SNR ≈ 14 dB for all three systems. The

resulting histogram of velocities from this data is shown in 6.5. In the silica / water

and silica / acetone systems, the full hydrodynamic instantaneous velocity could not

be measured, owing to which the measured histogram has a lower variance than the

kBT/m
∗ expected from the modified equipartition theorem. A Gaussian fit with the

measured lower variance is plotted to show the Gaussianity of the distribution. In the

BTG / acetone system, the hydrodynamic instantaneous velocity is fully measured

resulting in agreement with Boltzmann statistics well into the tails. The agreement is

seen over a large dynamic range of 5 orders of magnitude in count-rate and 5 standard
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Figure 6.5: Normalized velocity distributions of Brownian particles along one-
dimension. Sub-figure (A) shows the results for the system of silica particles in water,
(B) for the system of silica particles in acetone, and (C) for the system of BTG parti-
cles in acetone. The histograms are calculated using 3.6 billion, 200 million, and 144
million velocity data points respectively. The red circles represent the experimental
measurements with trapped particles, and the green diamonds represent the noise
acquisitions, i.e. without any particle present, but with power adjusted to match
the shot-noise level. Black lines represent the theoretical predictions from Maxwell-
Boltzmann statistics e−m

∗v2/kBT for the distribution of hydrodynamic instantaneous
velocities. Blue lines (overlapping with the black line in sub-figure C) are Gaussian
fits of the measured histograms. From the Gaussian fits, it was determined that 78%.
83% and 100% of the total kinetic energy of the particle was measured in the three
systems respectively. Figure from Mo et al. [2015a].

deviations in velocity. In all three systems, the noise contributes about 4% to the

variance.
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Chapter Seven: Unsteady Stokes Flows near

Boundaries: The Point-Particle Approximation

So far, we have described theories of, and experiments probing Brownian motion

in liquids, sufficiently far away from any boundaries so that the fluid medium may

be treated as infinite. However, Brownian motion near boundaries has significant

practical relevance. We mentioned in the Introduction (Chapter 1) that the presence

of boundaries makes problems of unsteady Stokes flow harder to solve. We therefore

turn to investigate approximation methods to solve problems of unsteady Stokes flow.

In this chapter, we will study in particular the application of a Point-Particle Ap-

proximation (PPA) to such problems, in general terms. The intention is to eventually

specialize to the geometry of a spherical particle near a plane wall (Chapter 8).

The material of this chapter is largely lifted from a draft of an article [Simha

et al., 2017] that the author of this dissertation has co-authored with Dr. Jianyong

Mo and Prof. Philip J. Morrison.1

7.1 Introduction

In Chapter 3, we described the regime of unsteady Stokes flow and outlined the gen-

eral procedure for obtaining unsteady drag coefficients. We also pointed out that

these problems may not be analytically tractable in closed-form without approxi-

mation, despite the linearity, particularly in situations with reduced symmetry. To

take a specific example, while the problem of a sphere translating near a plane wall

may be solved by means of separable eigenfunction expansions in the case of steady

Stokes flow [O’Neill, 1964], this is not true with unsteady Stokes flow: the choice of

1A. Simha, J. Mo, and P. J. Morrison, “Unsteady Stokes flow near boundaries: the point-
particle approximation and the method of reflections.” Submitted for review to the Journal of Fluid
Mechanics in July 2017. A. Simha, with the help of J. Mo, discovered the problem with Felderhof’s
calculation. Discussions between A. Simha and P. J. Morrison led to the modification required to
fix the asymptotic behavior in the stimulating environment of the “GFD trailer” next to Walsh
Cottage, Woods Hole, MA. A. Simha also implemented the details of the perturbative analysis in
the boundary integral equation formalism, based on the ideas and guidance of P. J. Morrison. Much
of the text of this work was authored and typeset by A. Simha, with many helpful suggestions from
P. J. Morrison and J. Mo.

90



coordinates that is apt for the symmetry of the problem is the bi-spherical coordinate

system, and the Helmholtz equation obtained by considering harmonic oscillations is

not separable in this coordinate system, although the Laplace equation is [Morse &

Feshbach, 1953].

However, such problems of complicated geometries have been long studied in

the context of steady Stokes flow, where several approximation techniques are well-

developed. Lorentz [1896] studied the effect of a plane boundary on the motion of a

particle and developed a formula for the flow reflected from a plane wall, which they

later [Lorentz, 1907] employed to calculate the first order correction to the drag on

a spherical particle due to the presence of the wall. In the same paper, Lorentz also

introduced the notion of a point force solution (also known as the stokeslet) for steady

Stokes flow, showing that the flow produced by a point force of strength F s = 6πηav,

where η is the dynamic viscosity of the fluid, is equivalent to the flow produced by a

small sphere moving with velocity v at the same location.

These two themes of Lorentz’s work have led to approximate methods to deter-

mine the effects of boundaries on the slow motion of particles in viscous fluids. Firstly,

the method of reflections, which is described in detail in e.g. Happel & Brenner [1965],

has been used extensively for this purpose. Secondly, although Lorentz did not use

it as such, the notion of a point force solution leads to another approximation to

calculate the drag on a particle in a complicated geometry – the particles under con-

sideration may be approximated by modeling them by a combination of singularities,

i.e. by a multipole expansion. This is particularly useful when the particles under

consideration are sufficiently distant from the confining walls so that they may be

well approximated by just a point force. [see e.g. Kim & Karrila, 2013]. Another ap-

proximation method, that of matched asymptotic expansions [O’Neill & Stewartson,

1967], has also been used successfully to describe steady Stokes flows in complicated

geometries.

The key subject of this chapter and the next is to address the issue of extending

two of these methods – the point-particle approximation, and the method of reflec-

tions – to unsteady Stokes flows. In particular, Felderhof [2005, 2006a, 2009b, 2012]

has applied a point-particle approximation to determine the dynamics of a sufficiently

small spherical particle performing small oscillations in a number of confined geome-

tries2. In essence, their method involves approximating the spherical particle by a

2Although Felderhof’s work includes generalizations to compressible fluids, we shall restrict
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point force for purposes of calculating the correction to the flow induced by the con-

fining boundary. This results in a significant simplification of the original problem

to what is, in essence, a Green’s function problem. However, it appears that the

effective mass inferred from Felderhof’s result for the RMS velocity of a sphere near a

plane wall does not agree with the effective mass obtained from potential flow calcula-

tions [Lamb, 1932; Milne-Thomson, 1968]. The results also lead to a drag coefficient

that depends on the density of the particle, which is inconsistent with the fact that

one may calculate the drag coefficient without any reference to the particle’s density

(§3.4).

Moreover, it is not obvious that the point-particle approximation generalizes to

the case of unsteady Stokes flow. This is because it neglects the size of the particle

with respect to two length-scales, viz. the distance of the particle to the boundaries

and the skin-depth of vorticity. As we have seen in Chapter 3, the skin-depth of

vorticity ∼ |α|−1 is a frequency-dependent quantity and because Brownian motion

contains velocity fluctuations of all frequencies, no assumptions can be made about

the size of |α|. Loosely speaking, the conditions for the validity that we may näıvely

expect here are analogous to the conditions for the Rayleigh approximation to hold

in scattering theory – not only does the field point have to be in the far field, but the

wavelength of the scattered radiation also needs to be much larger than the particle

size.

The first issue is related to determining the strength of the point force that repro-

duces the flow field of the sphere in the far field. In the case of steady Stokes flow, as

we stated earlier, this is simply equal to 6πηvs, where vs is the velocity with which

the sphere translates [Lorentz, 1907, §7]. In the unsteady case, Felderhof uses the ex-

ternal force F ext
ω acting on the sphere as the point-force acting on the fluid. However,

this produces a result that does not agree in the far field, and as we stated earlier,

results in a spurious dependence of the drag coefficient on the density of the particle.

In this paper, we show that the point force that reproduces the flow from a sphere in

the far field is the induced force F ind
ω described by Mazur & Bedeaux [1974]. Making

this change in Felderhof’s theory results in correct values for the effective mass, and

removes the spurious dependence of the drag coefficient on particle density.

As for the second issue of the existence of two length scales, we develop a formu-

ourselves to incompressible fluids in this analysis
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lation of the problem in terms of boundary integral equations. We then introduce

a perturbative parameter given by the ratio of the particle size to the distance to

the walls, and develop an ordering of integral equations in increasing powers of the

parameter. We show that a series of systematic approximations results in a geometric

series which can be summed to obtain the point-particle approximation. In doing so,

we note important differences between the unsteady Stokes problem and the Rayleigh

scattering problem that arise from the structure of the Oseen tensor. We thereby dis-

cover the non-trivial reasons why the approximation works in practice, as has been

seen through its agreement with experiments [Jeney et al., 2008; Mo et al., 2015b].

7.2 The point-particle approximation

Throughout this chapter, we consider the problem of determining the drag force F drag
ω

on a small rigid body S of generic shape performing small translational oscillations3 in

an arbitrary direction at arbitrary4 frequency ω in an incompressible fluid of dynamic

viscosity η and density ρf . The fluid is bounded by various additional stationary

surfaces (walls) Wi (which could have arbitrary shapes). The intention at a later

stage will be to specialize S to a sphere, and then consider a single plane wall W .

7.2.1 An overview of the point-particle framework of

Felderhof

In this subsection, we shall review Felderhof’s framework for computing particle dy-

namics using the point-particle approximation in general terms. Felderhof has applied

the point-particle approximation to a number of situations [see e.g. Felderhof, 2005,

2006a, 2009b, 2012], especially in the context of the hydrodynamic theory of Brow-

nian motion. In this approximation, the body S is replaced by a point force. This

is in the spirit of a multipole expansion (Kim & Karrila [see e.g. 2013], Chapter 3),

3As stated before in Chapter 3, it is assumed for simplicity that the boundary of the particle
itself does not change position, but the velocity boundary condition on that boundary changes.
This results in a linear problem, and one would expect it to be good so long as the amplitude of
oscillations is small and gets smaller as the frequency grows [see e.g. Zwanzig & Bixon, 1970; Mazur
& Bedeaux, 1974]

4It is assumed however that the frequency is not high enough that the compressibility of the
fluid becomes important
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the idea being that in the far-field, the stokeslet part of the expansion dominates.

Thus, for purposes of calculating the effects of the walls Wi, it suffices to truncate

the multipole expansion at the stokeslet level. Linearity allows us to superpose the

effects of the wall and the effects local to the body, a step that will later be effected

using a generalized Faxén theorem.

We begin by computing the vector-valued Green’s function5 for the pressure field

P (with components Pj) and tensor-valued Green’s function for the velocity field G

(with components Gij), arising from a general point force of unit strength at a generic

location r′. The Green’s functions satisfy the equations

∆Gij(r|r′;ω)− α2Gij(r|r′;ω)− 1

η
∂iPj(r|r′;ω) = δijδ(r − r′), (7.1)

∂iGij(r|r′;ω) = 0, (7.2)

and also obey the required boundary conditions on the walls Wi. As discussed before,

they may be computed in principle by using the incompressibility condition in the

first equation to get the Poisson equation for the pressure Pj,

− 1

η
∆Pj(r|r′;ω) = ∂jδ(r − r′), (7.3)

and then substituting the solution of the above as a source into equation (7.1). The

resulting Helmholtz equations with complex wavenumber are then solved to determine

Gij. In practice, the equations are generally solved using eigenfunction expansions

and then applying boundary conditions to determine the coefficients [Jones, 2004;

Felderhof, 2005].

The effect of the boundary conditions on the surface of the body ∂S could in

general be modeled by a force distribution (see Section 3.7), which could then be

integrated against the above Green’s function to obtain the velocity field. However,

this is a non-trivial task in the complicated geometries of interest. In the point-

particle approximation, the effect of the body S is instead modeled by a single point

force F ind
ω at the location of the body6 r0, which reproduces the flow from the actual

5While this is similar to the problem we addressed in §3.5, it is important to note that we are
now talking about the Green’s function that satisfies boundary conditions on the walls, and not
the fundamental solution that satisfies decay conditions at infinity. As a reminder, the free-space
Green’s function (fundamental solution / unsteady Oseen tensor) will be denoted by G0 in this
work.

6The problem of choosing this location is akin to finding a good choice for the origin in any
multipole expansion
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body at sufficiently large distances from the body. The change in the flow caused by

the presence of the walls, may then be written as

vW (r|r0;ω) =
[
G(r|r0;ω)−G0(r − r0;ω)

]
· F ind

ω , (7.4)

where G0 is the free-space velocity Green’s function (3.23). As described earlier

(§3.5), one may obtain G0 by the same method described to compute Gij except

with the boundary condition being that the flow decay at infinity.

We are yet to specify what F ind
ω must be to reproduce the flow generated by the

body sufficiently far from it, and we shall do so in Section 7.2.2. Once the effect of

the wall vW is known, a generalized Faxén theorem (Section 3.7) may be used to

compute the drag coefficient.

When using the generalized Faxén theorem in the point-particle approximation, it

suffices to evaluate vW at the location of the particle. This suggests that it is useful

to define the quantity [Felderhof, 2005],

R(r0;ω) := lim
r→r0

[
G(r|r0;ω)−G0(r − r0;ω)

]
, (7.5)

which Felderhof aptly calls the reaction field tensor.

7.2.2 The appropriate choice of the point force F ind
ω

We now wish to address the following question: what must the point force F ind
ω of

Section 7.2.1 be, to capture the effects on the fluid due to the presence of the body

S? Felderhof [2005, eq. (2.8)] uses the external force F ext
ω that acts on the body by

means of some external agent to keep it oscillating with velocity uω. However, as

some of the momentum delivered by the force F ext
ω goes into accelerating the body S,

it is unlikely that this is equal to the force applied on the fluid. It seems reasonable

that the force must reproduce the momentum transport through the boundary ∂S of

the small body, when the body’s volume is replaced by fluid. This is the notion of

induced force of Mazur & Bedeaux [1974], which as we described in Section 3.7, can

be used to replace boundary conditions by sources.

Also in Section 3.7, we had stated in equation (3.32) an expression for the total

induced force that replaces a spherical boundary oscillating at uω. Based on that,

we propose that the value of the point force must be given by the same net force

concentrated at a point,

F ind
ω = −F drag

ω − iωmfuω, (7.6)
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possibly also for bodies of generic shape. In this equation, we note that no reference

has been made to the properties of the body or the external force acting on it. These

aspects, however, do affect the velocity uω through the equation of motion of the

body,

F ext
ω = −F drag

ω − iωmpuω, (7.7)

which leads to the alternate expression for the net induced force F ind
ω ,

F ind
ω = F ext

ω + iω(mp −mf )uω. (7.8)

as used by Felderhof [2005]. We would recover Felderhof’s proposal of using F ext
ω as

the force that represents the body if the body had the same density as the fluid.

To establish our proposal for F ind
ω , we observe that we may write the velocity field

v produced by the oscillating body at an arbitrary point r using the Green’s function

of equation (7.1) as

v(r;ω) =

∫
S

d3r′ G(r|r′;ω) · Sind(r′;ω), (7.9)

where we have replaced the body S by an appropriate induced force density. As is

typical of multipole expansions, we may expand G in the source point in the far-field

limit (i.e. |r| � 1/|α|, L where L denotes the size of the body) to obtain

v(r;ω) =

∫
S

d3r′ [G(r|r0;ω) + (r − r0) · ∇G(r|r0;ω) + . . .] · Sind(r′;ω), (7.10)

where r0 is some notion of the center of the body. Truncating the expansion to

the first term gives the expression for the velocity due to a point force at r0, whose

strength is indeed given by

F ind
ω =

∫
S

d3r′ Sind(r′;ω). (7.11)

We shall further ratify our result for F ind
ω by checking it for the case of unbounded

spherical bodies in the following manner: we shall take the far-field limit (i.e. |r| �
1/|α|, a) of the solution for the flow vS

ω(r, θ) produced by a sphere of radius a at

the origin oscillating with velocity uω [see e.g. Landau & Lifshitz, 1987, §24], and

compare it against the flow vPF
ω generated by a point force F ω at the origin [see

e.g. Kim & Karrila, 2013, §6.2]. For conciseness, we shall compare only the radial

component.
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We have already discussed the solution of the unsteady Stokes equations for a

spherical body oscillating in unbounded fluid in §3.6. In re-stating some of the same

results here, we have adapted a notation that is more natural to the problem at hand.

Using spherical polar coordinates with the polar axis along uω, and introducing

the notation ε := a/r, we find that the radial component of the velocity field for a

sphere is given by

êr · vS
ω(r, θ) = −uω

2f ′(r)

r
cos θ, (7.12)

where [as given by Landau & Lifshitz, 1987, §24, Prob. 5]

f ′(r)

r
=

3ε3

2δ2

[
eδ(1−1/ε)

(
1 +

δ

ε

)
−
(

1 + δ +
δ2

3

)]
. (7.13)

On the other hand, for an unsteady stokeslet of strength F ω = Fωêz, where êz is the

unit vector along the polar axis, we have

êr · vPF
ω =

2αε3

δ3

[
1−

(
1 +

δ

ε

)
e−δ/ε

]
Fω
4πη

cos θ. (7.14)

In the far-field limit (ε→ 0+ with δ fixed and finite), we may drop the subdominant

exponential terms of the form e−δ/ε and obtain

f ′(r)

r
∼ −3ε3

2δ2

(
1 + δ +

δ2

3

)
,

êr · vS
ω ∼ uω cos θ

3ε3

δ2

(
1 + δ +

δ2

3

)
,

êr · vPF
ω ∼

4αε3

δ3

Fω
8πη

cos θ.

(7.15)

By setting the latter two expressions equal to each other, we find that,

Fω = γsuω

(
1 + δ +

δ2

3

)
= γsuω

(
1 + δ +

δ2

9

)
− iωmfuω.

(7.16)

We now identify the first term to be −F drag
ω = γ0(ω)uω, whereby we find that F ω is

indeed equal to the induced force F ind
ω . We are hence led to conclude that an unsteady

stokeslet of strength F ind
ω as defined by equation (7.6) reproduces the far-field behavior

of a sphere, which would not be the case for Felderhof’s choice of the external force

F ext
ω . It is not unreasonable to expect from the physical and mathematical arguments

presented earlier, that (7.6) also holds for bodies of generic shape.
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7.2.3 From the reaction field tensor to the dynamics of a

sphere

We will now follow Felderhof’s approach, except with the modified point force F ind
ω

given by (7.6), to arrive at expressions for the drag coefficient and other relevant

quantities characterizing the dynamics of a sphere oscillating in a fluid, in terms of

the reaction field tensor R.

In the point-particle framework of Felderhof, the flow vW calculated using (7.4) is

considered to be the background flow v0 in Faxén’s theorem (3.34). In addition, the

surface and volume averages of v0 are approximated by evaluating vW at the center

of the sphere. Thus, using the definition (7.5) of the reaction field tensor, we may

write in the point-particle limit,

F drag
ω = −γ0(ω)uω + γs

(
1 + δ +

δ2

3

)
R · F ind

ω , (7.17)

where as before, δ := αa, γs := 6πηa, and γ0(ω) = γs(1 + δ + δ2/9). We must note

that in the adaptation of the generalized Faxén theorem to Felderhof’s framework,

the net flow v = vW + v′ does not necessarily satisfy boundary conditions on the

walls, and this is part of the approximation.

Using equations (7.17) and (7.6), we obtain

F ind
ω = γs

(
1 + δ +

δ2

3

)[
uω −R · F ind

ω

]
, (7.18)

where we have used −iωmf = (2/9)γsδ
2 to simplify the expression. The difference

between this expression and that of Felderhof [2005, eq. 2.11] is the use of F ind
ω

instead of F ext
ω . We may use this to solve for F ind

ω as,

F ind
ω = γ̃0(ω) [1 + γ̃0(ω)R]−1 · uω, (7.19)

where we have defined for convenience,

γ̃0(ω) := γs

(
1 + δ +

δ2

3

)
= γ0(ω)− iωmf (7.20)

Thereafter, using the definition (3.14) and plugging (7.19) into (7.6), we obtain

the drag coefficient tensor,

γ(ω) = iωmf1 + γ̃0(ω) [1 + γ̃0(ω)R]−1 . (7.21)
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We observe that if we define γ̃(ω) := γ(ω) − iωmf1 as before (so that F ind
ω =

γ̃(ω) · uω), the correction of γ̃0 to γ̃ through R has the natural form of a Padé

approximant.

Recall that the mechanical admittance tensor Y ω, characterizing the linear re-

sponse of the velocity uω of the sphere to the external force F ext
ω acting on it, is

defined through

uω = Y ω · F ext
ω ,

and that it can be related to the drag coefficient through the equation of motion of

the sphere (7.7), to obtain (2.26). We may now use (7.21) to write the admittance

(without the effects of a harmonic trap) as

Y ω = [−iωmp1 + γ(ω)]−1

=
[
γ̃0 (1 + γ̃0R)−1 − iω(mp −mf )1

]−1
.

(7.22)

It is worth noting that we may use (7.21) in (2.36) instead whenever we wish to

include the effects of a harmonic restoring force (see §2.5).

7.3 The validity of the point-particle

approximation

7.3.1 Is the point-particle approximation valid?

Like we have stated earlier, there are two length scales in the problem in addition to

the particle size – the scale of the dimensions of the confining geometry h, and the

scale of the skin-depth of vorticity 1/|α| (see §3.2). The point-particle approximation

neglects the size of the particle a in comparison to both these length scales insofar as

the computation of the effect of the wall is concerned, and when computing the surface

and volume averages of the flow that enter the generalized Faxén theorem. It must be

noted that no approximations7 are made in the generalized Faxén theorem (3.34) itself

when the body is a sphere. However, for sufficiently large frequency ω of oscillations,

1/|α| can become comparable to a. This brings up the question of whether the

point-particle approximation works at high frequencies.

7excepting for the previously stated assumption that the boundary conditions may be applied
on the equilibrium boundary of the sphere [Mazur & Bedeaux, 1974]
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However, the agreement with experiment [Mo et al., 2015b] at frequencies ω ∼
η/(ρfa

2) is very good. We explain this intuitively as follows: at these frequencies,

the vorticity shed by the boundaries has a very small skin-depth 1/|α| � h and

hence the vorticity from the wall is suppressed exponentially, and the reflected flow

field is well approximated by potential flow. Since the potential satisfies Laplace’s

equation, the multipole expansion and therefore the point-particle approximation

works well. At low frequencies ω � η/(ρfa
2), 1/|α| is indeed large compared to a

and the approximation works as expected.

In order to harden the above argument, we shall set up a general formalism (Sec-

tion 7.3.2) for analyzing the problem in terms of boundary integral equations, and

then systematically delineate the approximations made in order to recover Felder-

hof’s framework in Section 7.3.3. The question then boils down to the validity of

a far-field expansion of the unsteady Oseen tensor over a wide-range of frequencies,

which we provide an argument for in Section 7.3.4. In Section 7.3.5 we shall extend

the perturbative calculation to higher orders and recover the Padé-like form for the

drag coefficient (7.21).

7.3.2 General formalism of boundary integral equations

In this sub-section, we will cast our problem in the general formalism of boundary

integral equations [see e.g. Pozrikidis, 1992], which we discussed in §3.8. In this and

the following sub-sections, we shall drop explicit reference to ω, the frequency, for

notational simplicity. As before, the linearity and time-translation invariance ensure

that the individual frequency components may be treated separately. The walls will

also be assumed to be larger in size than the distance from the particle to any of them.

We shall also assume no-slip boundary conditions on all interfaces for the purposes

of this discussion.

The problem at hand may be restated as follows: Find the drag force

F drag = −
[
iωmfu+

∫
S

d3r′S SS(r′S)

]
(7.23)

exerted on the surface of the particle S oscillating with velocity u, by the velocity

field

v(r) =

∫
S

d3r′S G
0(r − r′S) · SS(r′S) +

∫
W

d2r′W G0(r − r′W ) · SW (r′W ) (7.24)
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W

S

h

a

SW

SS

v(r) ≡
∫
S

d3r′S G
0(r − r′S) · SS(r′S)

+

∫
W

d2r′W G0(r − r′W ) · SW (r′W )

 Integral
representation

u =

∫
S

d3r′S G
0(rS − r′S) · SS(r′S)

+

∫
W

d2r′W G0(rS − r′W ) · SW (r′W ) ∀rS ∈ S

0 =

∫
S

d3r′S G
0(rW − r′S) · SS(r′S)

+

∫
W

d2r′W G0(rW − r′W ) · SW (r′W ) ∀rW ∈ W

Figure 7.1: A cartoon visualization of the induced force distribution SW on the
wall(s) and SS on the sphere, along with the boundary integral equations to be
solved to determine them. The specific example shown here assumes no-slip boundary
conditions on the wall. The integral representation of the velocity field in terms of
these distributions is also shown.

which is assumed to be generated from two induced force distributions8 – a volume

force density SS supported in the volume (inclusive of the surface) of the body S,

and a surface force density9 SW supported on the surfaces of the walls W =
⋃
iWi –

which are to be determined from the no-slip boundary conditions. Thus SS and SW

satisfy the Fredholm integral equations of the first kind,

u =

∫
S

d3r′S G
0(rS − r′S) · SS(r′S) +

∫
W

d2r′W G0(rS − r′W ) · SW (r′W ) ∀rS ∈ S,

(7.25)

8We assume that the surfaces involved satisfy the requirements outlined by Pozrikidis [1992,
§4.1, 4.2] for representation of the flow by a single-layer potential, i.e. the surfaces are Lyapunov
surfaces. While the integral condition

∫
D
v(r′)·n̂(r′) d2r′ = 0 is satisfied for compact D by virtue of

non-penetration, we have shown (§3.8.4) that we would expect it to hold for each non-zero frequency
component of the unsteady Stokes flow for an infinite wall too. In particular, one may explicitly
solve for the Green’s function satisfying no-slip conditions on a plane wall by means of a single-layer
potential in the place of the wall. This explicit calculation is presented in appendix B.

9While it would be possible to use a volume force density instead here as well, it does not make
a difference for our purposes.
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0 =

∫
S

d3r′S G
0(rW − r′S) · SS(r′S)

+

∫
W

d2r′W G0(rW − r′W ) · SW (r′W ) ∀rW ∈ W.

(7.26)

We remark that if the Green’s function G that satisfies the boundary conditions on

the walls were known, it would be possible to rewrite the problem purely in terms of

SS as

v(r) =

∫
S

d3r′S G(r|r′S) · SS(r′S),

u =

∫
S

d3r′S G(rS|r′S) · SS(r′S) ∀rS ∈ S.
(7.27)

We shall now proceed to introduce a formal perturbative expansion in a parameter

λ, which represents the ratio of the body size (∼ a) to the distance to the walls (∼ h).

We begin by introducing expansions for the force distributions,

SS = S
(0)
S + λS

(1)
S + λ2S

(2)
S + . . . ,

SW = S
(0)
W + λS

(1)
W + λ2S

(2)
W + . . . .

(7.28)

These expansions induce expansions for the other quantities in the problem,

v = v(0) + λv(1) + λ2v(2) + . . . ,

F drag = F
(0)
drag + λF

(1)
drag + λ2F

(2)
drag + . . . .

(7.29)

In analogy with examples from electrostatics, we expect that the effect of the

induced force SW on the walls is diminished in the region occupied by the body. We

shall further investigate this assumption, restated formally in (7.34), at the end of

this section. To emphasize this, we rewrite (7.25) as

u =

∫
S

d3r′S G
0(rS − r′S) · SS(r′S)

+ λ

∫
W

d2r′W
G0(rS − r′W ) · SW (r′W )

λ
∀rS ∈ S. (7.30)

We would like a scheme where the velocity field from any O(λk) truncation of the

problem is faithful both near the walls and the body. The above convention makes

this manifest.

We may now plug in the expansions and rewrite the problem {(7.24), (7.26), (7.30)}
order-by-order as

v(n)(r) =

∫
S

d3r′S G
0(r − r′S) · S(n)

S (r′S) +

∫
W

d2r′W G0(r − r′W ) · S(n)
W (r′W ), (7.31)
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with the boundary condition on the body S

u =

∫
S

d3r′S G
0(rS − r′S) · S(0)

S (r′S) ∀rS ∈ S,

0 =

∫
S

d3r′S G
0(rS − r′S) · S(n+1)

S (r′S)

+
1

λ

∫
W

d2r′W G0(rS − r′W ) · S(n)
W (r′W ) ∀n ≥ 0, ∀rS ∈ S,

(7.32)

and the boundary condition on the walls

0 =

∫
S

d3r′S G
0(rW − r′S) · S(n)

S (r′S)

+

∫
W

d2r′W G0(rW − r′W ) · S(n)
W (r′W ) ∀n ≥ 0, ∀rW ∈ W.

(7.33)

We shall now proceed to investigate the assumption that

1

u

∫
W

d2r′W G0(rS − r′W ) ·
[
λkS

(k)
W (r′W )

]
∈ O(λk+1). (7.34)

First, we note that S
(k)
W is obtained by solving (7.33) with the knowledge of S

(k)
S . In

the spirit of multipole expansions, since the free-space Green’s function G0(rW −r′S)

in the first integral of (7.33) is evaluated at a far separation, we may expand it in the

vicinity of the location of the body r0,

G0(rW − r′S) = G0(rW − r0) + (r′S − r0) · ∇G0(rW − r0) + . . .

= G0(rW − r0) + o(λ), r′S ∈ S.
(7.35)

The issue of the validity of such an expansion is subtle and will be addressed in detail

in Section 7.3.4. Using this expansion in (7.33), we have∫
W

d2r′W G0(rW −r′W ) ·S(k)
W (r′W ) = −G0(rW −r0) ·

∫
S

d3r′S S
(k)
S (r′S)+o(λ). (7.36)

We now state a useful result: if S̃W satisfies the integral equation∫
W

d2r′W G0(rW − r′W ) · S̃W (r′W ) = −G0(rW − r0) · F̃ ∀rW ∈ W (7.37)

for arbitrary point r0 and force F̃ , then for general r in the domain,∫
W

d2r′WG
0(r − r′W ) · S̃W (r′W ) =

[
G(r|r0)−G0(r − r0)

]
· F̃ , (7.38)
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where G(r|r0) is the Green’s function that satisfies no-slip boundary conditions on

the walls. This is easily seen if we set up the problem for the no-slip Green’s function

for the walls by imposing the boundary condition through a surface force distribution

S̃W on the walls.

If we choose for F̃ the force ∫
S

d3r′S S
(k)
S (r′S), (7.39)

we find by comparing (7.36) and (7.37) that we may write∫
W

d2r′W G0(r − r′W ) · S(k)
W (r′W )

=
[
G(r|r0)−G0(r − r0)

]
·
∫
S

d3r′S S
(k)
S (r′S) + o(λ)

(7.40)

for any point r in the domain.

Finally, we observe that we may approximate the expression in question as

λk

u

∫
W

d2r′W G0(rS − r′W ) · S(k)
W (r′W )

=
λk

u

∫
W

d2r′W G0(r0 − r′W ) · S(k)
W (r′W ) + o(λk+1)

=
λk

u
lim

rS→r0

[
G(rS|r0)−G0(rS − r0)

]
·
∫
S

d3r′S S
(k)
S (r′S) + o(λk+1)

=
λk

u
R(r0) ·

∫
S

d3r′S S
(k)
S (r′S) + o(λk+1).

(7.41)

Thus, if
1

u
R(r0) ·

∫
S

d3r′S S
(k)
S (r′S) ∈ O(λ), (7.42)

then the assumption (7.34) holds. Intuitively, one may expect the above condition

to hold on the grounds that the reaction field tensor is the reflected flow evaluated

at the location of the particle, and this reflected flow must be suppressed at least as

1/h, h being the distance to the wall, whereas one would expect the remaining terms

to produce a factor of a.

7.3.3 Formalization of the point-particle approximation

In this sub-section and the next, we seek to formalize the point-particle framework by

explicitly performing all the approximations involved in a systematic manner, using
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the formalism developed in the previous sub-section. We shall eventually specialize

S to be a sphere while still keeping W arbitrary.

To solve the problem at order n = 0, we begin by noting that the solution to

the first of (7.32) is the induced force on the body oscillating with velocity u in

unbounded fluid, whereby

vS(r) ≡
∫
S

d3r′S G
0(r − r′S) · S(0)

S (r′S) (7.43)

where we have used vS(r) to denote the velocity field generated by the body S oscillat-

ing in unbounded fluid. We must now find S
(0)
W using (7.33), which is not analytically

tractable without approximation. Therefore, we make the same approximations that

lead to (7.36). As we will see shortly, to compute the drag force to first order, we

do not need to know S
(0)
W , but only need to be able to compute the effect of this

distribution in the vicinity of the body. Proceeding as we did in Section 7.3.2, we

may therefore write (7.40) for k = 0 as∫
W

d2r′W G0(r − r′W ) · S(0)
W (r′W ) =

[
G(r|r0)−G0(r − r0)

]
· F (0) + o(λ), (7.44)

where we have defined

F (k) :=

∫
S

d3r′S S
(k)
S (r′S). (7.45)

We may now write (7.32) for n = 1 as

0 =

∫
S

d3r′S G
0(rS − r′S) · S(1)

S (r′S)

+
1

λ

[
G(rS|r0)−G0(rS − r0)

]
· F (0) ∀rS ∈ S.

(7.46)

Our aim is to determine the correction to the drag F
(1)
drag resulting from the field

v(1). To determine the drag force, we only need the velocity in the near field of the

body, whereby in (7.31) at any order n, we may discard the contribution from S
(n)
W , as

the unsteady Oseen tensor multiplying it contributes an extra O(λ) when compared

to the contribution from the first term when the point of evaluation r is close to the

body. As a result, we obtain

v(n)(rS) =

∫
S

d3r′S G
0(rS − r′S) · S(n)

S (r′S) +O(λ) ∀rS ∈ S. (7.47)
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Thus, we observe that at order 0, we may use vS of (7.43) to compute F
(0)
drag, which

is simply equal to the drag force on the body oscillating in unbounded fluid; and at

order 1, knowledge of S
(1)
W is not required for the computation of F

(1)
drag.

We now specialize to S being a sphere of radius a and proceed to determine F
(1)
drag

for this case. If we set v0(r) :=
[
G(r|r0)−G0(r − r0)

]
· F (0) and v(|r| ≤ a) = 0 in

equation (3.31), we see that (7.46) is identical to (3.31). Therefore, F
(1)
drag is given by

the generalized Faxén theorem of equation (3.34), whereby we may write

λF
(1)
drag = γs

[
(1 + αa)

〈
v

(1)
W

〉
S

+
1

3
α2a2

〈
v

(1)
W

〉
V

]
(7.48)

with

λv
(1)
W :=

[
G(r|r0)−G0(r − r0)

]
· F (0), (7.49)

and 〈 〉S and 〈 〉V denoting surface and volume averages over the sphere respectively.

We wish to note that the analysis shows that the reaction field tensor is already

O(λ), which may be verified with Felderhof’s expressions for the case of a flat wall.

So the total drag force may be written by adding F
(0)
drag = −γ0(ω)u and λF

(1)
drag

recovering (3.34) for the drag up to first order, with v0 = λv
(1)
W .

We now make the approximation of truncating the infinite series to first order,

excluding o(λ) terms. As a side effect, we observe that

λv
(1)
W =

[
G(r|r0)−G0(r − r0)

]
·
(
F (0) + λF (1)

)
+ o(λ). (7.50)

Identifying the parentheses in the above equation with the total induced force to first

order,

F ind
ω = F (0) + λF (1) (7.51)

we have shown that λv
(1)
W is identical with vW of equation (7.4) to lowest order.

We shall now investigate the possibility of replacing the surface and volume av-

erages of λv
(1)
W by evaluation of (7.49) at r → r0. Applying the expansion of (7.35)

to (7.44) evaluated for r ∈ S (as done in (7.41)), we see that λv
(1)
W may indeed be

assumed to have o(λ) variation over the region occupied by the sphere. This justi-

fies replacing the averages in (7.48) with λv
(1)
W evaluated as r → r0, subject to the

validity of the expansion of (7.35).

Finally, we remark that it can be verified by plotting the explicit formulas given

by Felderhof [2005] (also see erratum Felderhof [2006b]) over a wide range of frequen-

cies, that the components of the reaction field tensor for the no-slip sphere-plane-wall
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configuration, non-dimensionalized by multiplication with γs, do not significantly

exceed 1(a/h) (see §9.3). Thus, the reaction field tensor for this particular case sat-

isfies (7.42) and therefore validates the assumption of (7.34) by the arguments made

in Section 7.3.2.

7.3.4 Far-field expansion of the unsteady Oseen tensor

In this section, we will address the validity of an expansion of the unsteady10 Oseen

tensor, of the kind described in (7.35).

It is natural to our original problem to non-dimensionalize the Oseen tensor by

γs = 6πηa, given that our notion of forces is best normalized by γsu – this results in

F
(0)
drag being O(1) in our book-keeping. However, the Oseen tensor G0(q) is naturally

a function of αq, whereby for this analysis, it will be convenient to normalize it by

1/α and write

4πḠ
0
(αq) := 4πηG0(q)/α = êqêq

2

(αq)3

[
1− (1 + αq)e−αq

]
+ (1− êqêq)

1

(αq)3

[
(1 + αq + α2q2)e−αq − 1

]
,

(7.52)

where êq denotes the unit vector along q. In expansions of the form of (7.35), we

write q = qL + qS where qL denotes a large displacement of O(h) and qS denotes a

small displacement of O(a). Typically, qL is r0 − r′W where r′W is some point on the

wall and qS is rS − r0 where rS is some point in the body S. We write

Ḡ
0
(αq) = Ḡ

0
(αqL) + αqS · ∇αqS

Ḡ
0
(αqL) + o(αqS), (7.53)

where ∇αqS
denotes a gradient with respect to the quantity αqS. Such an expansion

may be expected to be valid whenever the function is sufficiently slowly varying for

small changes in qS (i.e. changes over the scale of the size of the body). However,

for sufficiently high wavenumbers α, it appears that oscillating terms of the nature

ei =(α) qS would vary very rapidly – whereby care must be taken to analyze such an

expansion. Specifically, for the Helmholtz Green’s function −eikq/(4πikq), such an

expansion is strictly valid only if |qS| � 1/k and |qS| � |qL|, as is often noted

10In this work, we will frequently drop the adjective unsteady to simplify our language. Since our
work primarily concerns unsteady flow, this should not cause confusion. We will explicitly specify
so when we refer to the steady Oseen tensor.
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when considering multipole expansions for electromagnetic radiation [see e.g. Jackson,

1999, §9.1]. However, in the Oseen tensor, the complex wavenumber α = ik has a

positive real part which causes significant suppression of the exponentials at large

values of α, in comparison to the terms originating from the fundamental solution of

the Laplace equation G(q; 0). Essentially, for large α, the contribution from G(q;ω)

becomes subdominant, which results in the expansion once again being valid for large

α. However, it must be noted that the expansion may not work if the subdominant

behavior is of primary interest, as could be the case.

We may verify the above intuitive remarks about the expansion by considering

the ratio of the first order term in the Taylor expansion to the zeroth order term.

To get an order of magnitude estimate, we will treat the longitudinal and transverse

components of Ḡ
0

separately, and specifically set qL = h and qS = a. Then, the

desired ratios have the form

a

h

e−v(3 + 3v + v2)− 3

e−v(1 + v)− 1
, (7.54)

and
a

h

e−v(3 + 3v + 2v2 + v3)− 3

e−v(1 + v + v2)− 1
, (7.55)

respectively, where we have used the shorthand11 v := αh. While a/h is assumed

to be small from the geometry of the problem, no assumptions can be made about

α. So we must check that the parts of the ratios that contain only v remain . 1.

Noting that v has the form 1−i√
2
|v| and plotting these parts against a large range of

values of |v| (or alternately, by analysis), we find that the real and imaginary parts of

the above ratios are bounded and do not significantly exceed 1 throughout the range.

This indicates that the approximation can be expected to work well for all values of

α so long as a/h is small.

Intuitively speaking, this seems to suggest that at high frequencies, the primary

contribution to the correction of the drag on the particle due to the presence of walls

comes from the pressure, rather than from vorticity diffusion. The skin-depth of

the vorticity is then too small for the effects of vorticity diffusion from the wall to

be significant at the location of the particle and vice versa. The effects of vorticity

11The same quantity we denote by v in this work has been denoted by v in Felderhof’s articles,
and by ν in Simha et al. [2017]. We wish to avoid any ambiguity with ν being used for kinematic
viscosity and v being used for fluid velocities.
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local to the particle and the wall themselves are however, important, and they are

accounted for correctly in the framework.

Thus, we have shown that Felderhof’s point-particle framework, with our modified

point force F ind
ω , may be expected to work well at all frequencies12 so long as a/h� 1.

7.3.5 Computing the perturbative expansion to all orders

Before we begin, we shall rewrite the result of the generalized Faxén theorem (Sec-

tion 3.7) in a form that is readily usable in this section. In equation (3.31), we set

v = 0 within the region of the sphere, and we correspondingly set uω = 0 in (3.34)

and use (3.32) to obtain the following result: If the force distribution S̃ on a sphere

of radius a obeys the integral equation∫
|r′S|≤a

G0(rS − r′S) · S̃(r′S) d3r′S = −v0(rS), ∀|rS| ≤ a, (7.56)

for some vector field v0(rS) having support in the region of the sphere, then we may

write the net induced force in the region of the sphere as∫
|r′S|≤a

S̃(r′S) d3r′S = −γs
[
(1 + αa)v̄S0 (ω) +

1

3
α2a2v̄V0 (ω)

]
. (7.57)

We now consider the extension of the calculation performed in Section 7.3.3 to

higher orders for the case where S is a sphere of radius a. By using the result (7.41)

in the boundary condition on the body (7.32), we may write

0 =

∫
S

d3r′S G
0(rS − r′S) · S(n+1)

S (r′S)

+
1

λ
R(r0) ·

∫
S

d3r′S S
(n)
S (r′S) ∀n ≥ 0, ∀rS ∈ S.

(7.58)

We note that the second term is independent of rS to the lowest order.

By comparing the above equation with equation (7.56), we see that (7.57) gives

us ∫
S

d3r′S S
(n+1)
S (r′S) =

[
−γ̃0R(r0)

λ

]n+1

·
∫
S

d3r′S S
(0)
S (r′S), (7.59)

12It must still be the case however, as stated earlier, that the frequencies be small enough that
the fluid may be considered to be incompressible. For micron-sized particles in water, the regime
where compressibility matters is usually of the order of GHz.
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which yields a geometric series. This indicates that we may write the net induced

force on the sphere as

F ind
ω =

∫
S

d3r′S SS(r′S) =
∞∑
k=0

∫
S

d3r′S λ
kS

(k)
S (r′S)

=

(
∞∑
k=0

[−γ̃0R(r0)]k
)
·
∫
S

d3r′S S
(0)
S (r′S)

= [1 + γ̃0R(r0)]−1 ·
∫
S

d3r′S S
(0)
S (r′S),

(7.60)

provided the geometric series converges.

By comparing the first of (7.32) with (7.56), we find from (7.57) that∫
S

d3r′S S
(0)
S (r′S) = γ̃0u.

Thereafter, using (3.32) we find that the drag force to all orders in a/h is given by

F drag
ω = −iωmf − γ̃0 [1 + γ̃0R(r0)]−1 · u, (7.61)

whereby we recover the result (7.21). Thus, it appears that in the region of conver-

gence of the geometric series, the results of the point-particle framework are correct

to all orders of perturbation theory.

However, this does not mean that it is exact irrespective of how large a/h is, since

the perturbative process does not necessarily capture the corrections that lie beyond

all orders faithfully, which become significant as a/h→ 1. In fact, in the next section,

we will compare the first order results from the point-particle approximation against

the method of reflections for the simpler case of full-slip boundary conditions on the

wall, and discover that the subdominant terms do differ.
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Chapter Eight: The Point-Particle Approximation

and Method of Reflections – a comparative study

In this chapter, we will present a calculation of the unsteady drag coefficient of a

no-slip sphere near a full-slip plane wall using the method of reflections, and also

present results for the drag coefficient of a no-slip sphere near a full-slip plane wall

obtained using the unmodified [Felderhof, 2012] and modified (Chapter 7) point-

particle approximation. We shall compare the results from the three methods, viz.

the method of reflections, the unmodified PPA (also referred to as Felderhof’s PPA

in this work), and our modified PPA, both by asymptotic analysis and by numerical

evaluation.

The purpose of these comparisons is to investigate the claims of Chapter 7 in

a simple, specific case-study, where the alternative calculation using the method of

reflections may be performed without any approximations that involve assumptions

on the skin-depth of vorticity. The key results of this comparative study are (i) the

modification to the point-particle approximation results in a drag coefficient that

asymptotes to the added mass obtained through potential flow calculations, (ii) the

point-particle approximation does not faithfully capture all non-perturbative (as ε→
0+) terms, but where these non-perturbative terms are important, the assumptions

of the point-particle approximation are indeed valid, whereby it works in practice.

The material of this chapter is largely lifted from a draft of an article [Simha

et al., 2017] that the author of this dissertation has co-authored with Dr. Jianyong

Mo and Prof. Philip J. Morrison.1

1A. Simha, J. Mo, and P. J. Morrison, “Unsteady Stokes flow near boundaries: the point-
particle approximation and the method of reflections.” Submitted for review to the Journal of Fluid
Mechanics in July 2017. This method of reflections problem was envisioned by P. J. Morrison and
A. Simha. A. Simha, J. Mo and Wolfram Mathematica were responsible for performing and cross-
checking the calculations presented here. A. Simha made the graphics and plots that appear here.
Much of the text of this work was authored and typeset by A. Simha, with many helpful suggestions
from P. J. Morrison and J. Mo.
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8.1 Method of Reflections – a no-slip sphere near

a full-slip plane wall

The method of reflections has been heavily used as an approximation method in

the context of steady Stokes flow [see e.g. Happel & Brenner, 1965; Kim & Karrila,

2013]. A proof of the convergence of the iterative process for steady Stokes flows

under certain restrictions exists [Luke, 1989], although this has not been extended

to unsteady Stokes flows (to the best of our knowledge).2 The method of reflections

has been used in the context of unsteady Stokes flows for the case of two spheres

with no-slip boundary conditions by Ardekani & Rangel [2006], but their procedure

involves evaluation of the reflected field at the center of the sphere at each iteration.

Although the procedure converges and produces consistent results, for our compara-

tive study, we would prefer to investigate a procedure that would avoid any further

approximation beyond truncation of the iterative process, so that we can be confident

that the approximation works at all frequencies of oscillation. We remark however,

that the analysis of Ardekani & Rangel [2006] seems to be similar in content to that

of Section 7.3.5, whereby we may expect their result to differ only in corrections that

lie beyond all orders.

Here, we shall consider the same geometry of a small sphere performing small os-

cillations near a flat wall, but with the simpler case of free-slip boundary conditions

on the wall. As before, we shall assume no-slip boundary conditions on the sphere.

We shall truncate the iterative procedure after one reflection from the wall, but with-

out further approximation, yielding results that are expected to be correct to lowest

order in a/h for arbitrary frequency of oscillation ω. The choice of full-slip boundary

conditions on the wall,3 as opposed to the more common no-slip / partial-slip bound-

ary conditions, makes the problem particularly simple as we may employ the method

of images, and place an image sphere behind the wall in order to satisfy boundary

conditions on the wall. This simplicity enables exact evaluation of the surface and

volume average integrals that enter the generalized Faxén theorem (Section 3.7) in

closed form.

2A formalism of the sort developed in 7.3.2 could serve as a starting point for a proof.
3Full-slip boundary conditions are physically realizable at gas-liquid interfaces [Wang et al.,

2009], and can be approximately realized at some solid-liquid interfaces by means of nano-fabricated
structures [Choi & Kim, 2006]
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We shall break up the problem into two sub-problems: one with the sphere oscil-

lating perpendicular to the wall, and the other with the sphere oscillating parallel to

the wall along any particular direction. In each case, we shall compute the drag force

along the direction of oscillation.

In anisotropic geometries, in addition to the drag, the sphere may also experience

a force in the directions normal to its motion, which would correspond to off-diagonal

terms in γ(ω). We show that within the approximations used in this work, these forces

are zero. In the steady case, such effects have been shown to exist when the advective

term of the Navier-Stokes equations is retained in the Oseen approximation [see e.g.

Faxén, 1921; Shinohara & Hashimoto, 1979]

We shall use the results for the flow around a sphere oscillating in an unbounded

fluid, discussed in §3.6, in the calculations that follow.

8.1.1 Image system for a full-slip plane wall: Perpendicular

oscillations

Let the fluid fill the half-space R+×R2 indexed by cylindrical coordinates ρ > 0, z >

−h, 0 ≤ ϕ < 2π (h > 0). Let the sphere S of radius a lie at the point ρ = 0, z = 0.

The plane wall W is located at the plane z = −h. For convenience, we introduce

additional coordinate systems: a spherical coordinate system (r, θ, ϕ) with origin at

z = 0 and polar axis along the positive z-axis; and a spherical coordinate system

(r′, θ′, ϕ) with origin at z = −2h and polar axis along the positive z-axis. Let the

sphere oscillate with velocity uω = +1êz, where êz is the unit vector along the positive

z-direction. The situation is visualized in figure 8.1.1.

The velocity field (3.27) of the sphere does not satisfy the full-slip boundary

conditions on the wall W ,

êz · vω|W = 0,

êz · ∇vω,⊥|W = 0,

where vω,⊥ = vω − (êz · vω)êz, although it satisfies the no-slip boundary conditions

on the sphere S. Thus, we introduce an additional field4 v
(1)
ω such that vω + v

(1)
ω

satisfies full-slip boundary conditions at wall W . The field v
(1)
ω could be regarded as

the flow reflected from the wall. We could consider v
(1)
ω to be produced by an image

4While there are indeed pressure fields associated with each of these velocity fields, it turns out
that they are not directly relevant to our calculations.
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Figure 8.1: Image system for oscillations perpendicular to the wall, and coordinate
systems adapted to the geometry.

sphere S ′ centered at z = −2h and having velocity u′
ω = −1êz. By symmetry, the

boundary conditions at W are then satisfied. However, the combined field vω + v
(1)
ω

will not satisfy the no-slip boundary conditions on ∂S. Instead of computing the next

reflected field v
(2)
ω that corrects for the boundary conditions on the sphere, we shall

simply employ v
(1)
ω as the background field in the generalized Faxén theorem (3.34) to

calculate the drag coefficient. The iterative procedure of reflections shall be truncated

at this point. Thus, it suffices to calculate the image field v
(1)
ω . The image field

is simply given by using (3.27) with the replacements uω → −1, θ → θ′, r → r′.

However, in order to employ the generalized Faxén theorem, we would need to average

this field over ∂S and S. To do so, the following co-ordinate conversion formulas are
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handy,

ρ = r′ sin θ′ = r sin θ,

z = r cos θ = r′ cos θ′ − 2h,

r′2 = 4h2 + r2 + 4rh cos θ,

r2 = ρ2 + z2,

r′2 = ρ2 + (2h+ z)2.

(8.1)

It is also convenient to introduce the non-dimensionalized variables, ξ := r′/(2h),

δ = αa, ε = a/h. Then we may write the dimensionless function F0(ξ) := f ′(r′)/r′ ,

i.e. the function of equation (3.25) evaluated instead at r′, as

F0(ξ) =
1

ξ3

[
p e−2δξ/ε

(
1 +

2δξ

ε

)
− q
]
, (8.2)

where the constants p := 3ε3eδ/(16δ2) and q := 3ε3(1 + δ + δ2/3)/(16δ2).

8.1.2 Drag coefficient for perpendicular oscillations

With these preparations, we are ready to calculate the drag force on the sphere for

oscillations perpendicular to the wall. To do so, we need to compute the averages of

the first reflected field v
(1)
ω = −∇×∇ [f(r′)êz] on ∂S and S. For this purpose, it is

convenient to leave v
(1)
ω in this form rather than expand it out as in equation (3.27).

By symmetry, we observe that the only non-vanishing contribution comes from the

z-component

V := êz · v(1)
ω = −êz · ∇ (êz · ∇f(r′)) + ∆f(r′). (8.3)

We begin by computing the average over the surface of a sphere of radius r = aζ

centered about z = 0, given by,

V̄ S(ζ) =
1

4π

∫ π

0

2π sin θ dθ V, (8.4)

where we have already performed the trivial dϕ integral.

Writing ∇ in the cylindrical coordinate system5 as

∇ = êz

(
∂

∂z

)
ρ

+ êρ

(
∂

∂ρ

)
z

,

5We will frequently ignore the ϕ derivatives in these expressions as they are zero due to axial
symmetry.
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we find from (8.1) that (∂r′/∂z)ρ = (z + 2h)/r′, and use this in the expression for V

to obtain,

V = −êz · ∇
[
z + 2h

r′
f ′(r′)

]
+ f ′′(r′) + 2

f ′(r′)

r′

= −(z + 2h)2

r′
d

dr′

[
f ′(r′)

r′

]
+ f ′′(r′) +

f ′(r′)

r′

= −(z + 2h)2

r′
d

dr′

[
f ′(r′)

r′

]
+

1

r′
d

dr′
[r′f ′(r′)] .

(8.5)

We now observe from (8.1) that since we are integrating on a surface of constant

r, 1
2

sin θ dθ = −(2r)−1 dz = −(εζ)−1ξ dξ, whereby the integral may be rewritten in

terms of the non-dimensionalized variables as,

V̄ S(ζ) =
1

εζ

∫ 1+ 1
2
εζ

1− 1
2
εζ

ξ dξ V

=
1

εζ

∫ 1+ 1
2
εζ

1− 1
2
εζ

dξ

{
−1

4

(
ξ2 − ε2ζ2

4
+ 1

)2
d

dξ
[F0(ξ)] +

d

dξ

[
ξ2F0(ξ)

]}
.

(8.6)

The advantage of this form is that the integral may be conveniently evaluated using

integration by parts, and with the definitions,

F1(ξ) :=

∫
ξF0(ξ) dξ = −1

ξ

[
p e−2δξ/ε − q

]
,

F2(ξ) :=

∫
ξF1(ξ) dξ =

[
p
ε

2δ
e−2δξ/ε + qξ

]
,

(8.7)

we have,

V̄ S(ζ) = − 2

εζ
[F2(ξ)− ξF1(ξ)]

1+ 1
2
εζ

1− 1
2
εζ

=
2

εζ

[
2p e−2δ/ε sinh(δζ)

(
1 +

ε

2δ

)
− qεζ

]
.

(8.8)

The average V̄ S on the surface of the sphere ∂S is just obtained by evaluating the

above at ζ = 1.

We define the volume average of V,

V̄ V :=
1

4
3
πa3

∫ a

0

4πr2 dr V̄ S(r/a)

=

∫ 1

0

3ζ2 dζ V̄ S(ζ),

(8.9)
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which may be evaluated to obtain,

V̄ V =
12p

εδ2

(
1 +

ε

2δ

)
e−2δ/ε (δ cosh δ − sinh δ)− 2q. (8.10)

We now rewrite the generalized Faxén theorem (3.34) as,

γR⊥
γs

=
γ0

γs
−
[
(1 + δ)V̄ S +

δ2

3
V̄ V

]
, (8.11)

where we have introduced the superscriptR to distinguish the results from the method

of reflections from the other methods considered in this work. We then use the above

to obtain the drag coefficient γR⊥ as,

γR⊥
γs

=

(
1 + δ +

δ2

9

)
+

3ε

8δ2

[
ε2
(

1 + δ +
δ2

3

)2

− e2δ(1−1/ε)(2εδ + ε2)

]
. (8.12)

8.1.3 Image system for a full-slip plane wall: Parallel

oscillations

As before, we consider the fluid to fill the half-space R+ × R2. We will instead

prefer to use a Cartesian coordinate system (x, y, z) where the half-space occupied

by the fluid corresponds to z > −h (h > 0). Let the sphere S of radius a lie at the

origin of the Cartesian coordinate system. The plane wall W is located at z = −h.

For convenience, as before, we introduce additional coordinate systems: a spherical

coordinate system (r, θ, ϕ) with origin at z = 0 and polar axis along the positive

z-axis; a spherical coordinate system (r′, θ′, ϕ) with origin at z = −2h and polar axis

along the positive z-axis; and another spherical coordinate system (R, Θ, Φ) with

origin at z = −2h and polar axis along the positive x-axis. Let the sphere oscillate

with velocity uω = +1êx, where êx is the unit vector along the x-direction. The

situation is visualized in figure 8.1.3.

As before, we introduce an image sphere S ′ centered at z = −2h, but to satisfy

the boundary conditions on z = −h, the image sphere must have the same velocity

as the actual sphere, i.e. u′
ω = +1êx. We list the relevant coordinate conversion

formulas involving the (x, y, z) and the (R, Θ, Φ) systems below:

R = r′

x = r′ sin θ′ sinϕ.
(8.13)
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Figure 8.2: Image system for oscillations parallel to the wall, and coordinate systems
adapted to the geometry.

8.1.4 Drag coefficient for parallel oscillations

We now proceed to calculate the drag force on the sphere for oscillations parallel to

the wall. The first reflected field is now given by,

v(1)
ω = +∇×∇ [f(R)êx] . (8.14)

The relevant component is the x-component,

V := êx · v(1)
ω = +êx · ∇ (êx · ∇f(R))−∆f(R). (8.15)

While there is no immediate reason to preclude the drag force from having a z-

component, we will later show that there is none in the first-reflection approximation

that we compute here.

The average over the surface of a sphere of radius r = aζ centered about z = 0 is

given by,

V̄ S(ζ) =
1

4π

∫ π

θ=0

∫ 2π

ϕ=0

sin θ dθ dϕ V, (8.16)
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as we do not have azimuthal symmetry in this case.

Writing ∇ in the Cartesian coordinate system as

∇ = êx

(
∂

∂x

)
y, z

+ êx

(
∂

∂y

)
x, z

+ êz

(
∂

∂z

)
x, y

,

we find from the coordinate conversion formulas (8.1) that (∂r′/∂x)y,z = x/r′, and

use this in the expression for V to obtain,

V = êx · ∇
[ x
r′
f ′(r′)

]
− f ′′(r′)− 2f ′(r′)

r′

=
x2

r′
d

dr′

[
f ′(r′)

r′

]
− f ′′(r′)− f ′(r′)

r′

=
x2

r′
d

dr′

[
f ′(r′)

r′

]
− 1

r′
d

dr′
[r′f ′(r′)] .

(8.17)

We now write x = r sin θ cosϕ in the expression for V and observe that
∫ 2π

0
dϕ cos2 ϕ =

π, whereby we may reduce (8.16) to,

V̄ S(ζ) =
r2

4

∫ π

0

dθ sin3 θ
1

r′
d

dr′

[
f ′(r′)

r′

]
− 1

εζ

∫ 1+εζ/2

1−εζ/2
dξ

d

dξ

[
ξ2F0(ξ)

]
, (8.18)

where we have treated the second term in equation (8.17) as we did in the case of

perpendicular oscillations. For the first integral in the above equation, we note that

since r is constant, we may write r2 sin3 θ dθ = (r sin θ dθ)r(1 − cos2 θ) = −dz (r2 −
z2)/r and substitute for z in terms of r′ to obtain,

r2

4

∫ π

0

dθ sin3 θ
1

r′
d

dr′

[
f ′(r′)

r′

]
=

1

4r

∫ 1+εζ/2

1−εζ/2

dr′

2h
r′2

d

dr′

[
f ′(r′)

r′

]
+

1

2

[
− 1

2r

∫ r

−r

dz

r′
(2h+ z)2 d

dr′

[
f ′(r′)

r′

]]
.

(8.19)

The second integral in the above expression was previously evaluated for the perpen-

dicular case, so we may simply use the result. In non-dimensionalized variables, the

first integral has the form

1

2εζ

∫ 1+εζ/2

1−εζ/2
dξ ξ2 d

dξ
F0(ξ), (8.20)

which may be easily integrated by parts and expressed in terms of F1(ξ). Thus, we

have

V̄ S(ζ) =
1

εζ

[
(ξ − 1)F1(ξ)− F2(ξ)− ξ2F0(ξ)

]1+εζ/2

1−εζ/2 , (8.21)
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which simplifies to,

V̄ S(ζ) = 2p e−2δ/ε sinh(δζ)

εζ

(
1 +

2δ

ε
+

ε

2δ

)
− q. (8.22)

The average V̄ S on the surface of the sphere ∂S is just obtained by evaluating the

above at ζ = 1.

As before, the volume average of V may be obtained

V̄ V =
6p

εδ2

(
1 +

2δ

ε
+

ε

2δ

)
e−2δ/ε [δ cosh δ − sinh δ]− q. (8.23)

We now adapt the generalized Faxén theorem (3.34) as we did in equation (8.11)

to obtain the drag coefficient γR‖ as,

γR‖
γs

=

(
1 + δ +

δ2

9

)
+

3ε

16δ2

[
ε2
(

1 + δ +
δ2

3

)2

− e2δ(1−1/ε)(4δ2 + 2εδ + ε2)

]
. (8.24)

We will now show that there is no force along the z-direction to first order. The

z-component of the first reflected field due to parallel oscillations of the sphere is

given by,

v(1)
xz, ω = êz · ∇ (êx · ∇f(r′))− êx · êz∆f(r′)

= êz · ∇
( x
r′
f ′(r′)

)
− 0

=
(z + 2h)x

r′
d

dr′

[
f ′(r′)

r′

]
.w

(8.25)

Substituting x = r sin θ cosϕ as before, we see that the surface average V̄ S contains

the integral
∫ 2π

0
dϕ cosϕ = 0. Thus, the surface average vanishes on any spherical

surface centered about z = 0, and consequently, the volume integral over the sphere

S also vanishes.

The results from equations (8.12) and (8.24) are plotted in figure 8.3 as a function

of the non-dimensionalized frequency ωτf = iδ2, where τf := a2ρf/η is the time-scale

over which vorticity diffuses over the size of the sphere [Franosch et al., 2011].

8.2 Comparison of the point-particle

approximation and the method of reflections

In this section, we compare results for the drag coefficient for a sphere near a full-slip

plane wall obtained by the two methods considered earlier, viz. the point-particle
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Figure 8.3: Logarithmic plots of the normalized drag coefficient for a no-slip sphere
(radius a) in a viscous fluid near a full-slip plane wall (distance h), for various values
of ε = a/h, obtained using the method of reflections (§8.1) in the perpendicular
direction (8.12) (a) real part and (b) negative imaginary part, and in the parallel
direction (8.24) (c) real part and (d) negative imaginary part. The drag coefficient is
normalized to the steady free-space Stokes drag coefficient γs. The horizontal axis is
the non-dimensionalized frequency of oscillation of the sphere ωτf , where τf = a2ρf/η
is the timescale for vorticity diffusion over the size of the sphere.
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approximation (§7.2) and the method of reflections (§8.1). Where relevant, we will

also compare our modified point-particle approximation with the point-particle ap-

proximation as used by Felderhof [2012].

While we may directly use the expressions for the reaction field tensor from Felder-

hof [2012] in equation (7.21) to compute the drag coefficients in the parallel and

perpendicular directions, it is however useful for purposes of comparison to first put

the expression for the drag coefficient in a form similar to those obtained using the

method of reflections in equations (8.12) and (8.24). To effect this, we first assume

that γsR is small (which we would expect to be true on physical grounds in the regime

of validity of the point-particle approximation), whereby we may expand (7.21) to

first order in γsR to obtain6,

γ = γ0(ω)
[
1− (1 + δ + δ2/3)γsR

]
− 2

9
γsδ

2(1 + δ + δ2/3)γsR+ o[γsR]

= γ0(ω)1− γs(1 + δ + δ2/3)2(γsR) + o[γsR].
(8.26)

Plugging in the expressions from Felderhof [2012, eq. (3.5) and (3.16)],

γsRzz =
3ε

2

{
− 1

4v2

[
1− (1 + 2v)e−2v

]}
,

γsRxx =
3ε

2

{
− 1

8v2

[
1− (1 + 2v + 4v2)e−2v

]}
,

(8.27)

for the components Rzz := êz ·R· êz and Rxx := êx ·R· êx of R, where v := αh = δ/ε,

into the above expression, we obtain the expressions

γP⊥
γs
≈
(

1 + δ +
δ2

9

)
+

3ε

8δ2

(
1 + δ +

δ2

3

)2 [
ε2 − e−2δ/ε

(
2εδ + ε2

)]
γP‖
γs
≈
(

1 + δ +
δ2

9

)
+

3ε

16δ2

(
1 + δ +

δ2

3

)2 [
ε2 − e−2δ/ε

(
4δ2 + 2εδ + ε2

)]
.

(8.28)

We now compare these against equations (8.12) and (8.24) to find that the expres-

sions from the two methods indeed differ, but in the factor in front of the subdominant

(as ε → 0+, δ fixed) exponential term e−2δ/ε. We shall show in the following sub-

sections that in the regimes where the exponential terms actually matter, the two

6We remark that this form is likely inferior for numerical computations, since the original ex-
pression was in the form of a Padé approximant, which has been observed in many cases to perform
better (see Section 8.2.2).
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results agree to first order in ε. Thus, unless the physics under investigation ex-

pressly relies on the subdominant terms, the results from the two methods agree to

first order.

8.2.1 Asymptotic comparison

Since there are two length scales, there are four asymptotic regimes that we may

consider, depending on how α compares with a and h. Of particular interest here

are two regimes – the regime of low frequencies where αh ∼ 1, and that of high

frequencies where αa � 1. The former regime is of interest owing to our discussion

about the subdominant exponential terms (sections 7.3.5 and 8.2). The latter regime

is of interest owing to the discrepancy in effective mass mentioned in the Introduction.

It can be easily verified that the results from the method of reflections as well as the

modified point-particle approximation agree in the regime of intermediate frequencies

αa ∼ 1.

8.2.1.1 Steady drag coefficient

We now take the ω → 0 limit of the drag coefficients computed through either method,

and check that they agree with results from previous calculations in the regime of

steady Stokes flow. This also corresponds to the regime where α−1 � h� a, i.e. the

skin-depth of the vorticity is larger than the other length scales in the problem.

In the point-particle calculation, this is achieved by taking the ω → 0 limit

of (7.21) and using the zero-frequency asymptotics of Rxx and Rzz as given by Felder-

hof [2012, equations (4.7) and (3.5)]. We obtain,

γP

γs
∼ (1 + γsR)−1 (ω → 0), (8.29)

whereby,
γP⊥
γs
∼ 1

1− 3
4
a
h

= 1 +
3

4

(a
h

)
+ o(a/h),

γP‖
γs
∼ 1

1 + 3
8
a
h

= 1− 3

8

(a
h

)
+ o(a/h).

(ω → 0) (8.30)
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In the results from the method of reflections, this is achieved by taking δ → 0

with ε fixed in equations (8.12) and (8.24). We thus obtain,

γR⊥
γs
∼ 1 +

5

8
ε3 − 3ε3

8

(
− 2

ε2
+ 2

)
= 1 +

3

4
ε+ o(ε),

γR‖
γs
∼ 1− 3

8
ε− 1

16
ε3 = 1− 3

8
ε+ o(ε).

(ω → 0) (8.31)

Thus, the two methods agree with results obtained through image systems for

steady Stokes flows [Frydel & Rice, 2006]. The steady-state drag coefficient for motion

parallel to a full-slip flat wall is indeed smaller than the bulk drag coefficient, which

has been verified by experiment [Wang et al., 2009].

8.2.1.2 Low frequencies

We now consider non-zero, but low frequencies, where v := αh ∼ 1 but δ = αa� 1,

i.e. the skin-depth of vorticity is comparable to the sphere-wall separation, and is

much larger than the size of the sphere.

In the point-particle calculation, no approximation can be made in the expressions

for the reaction field tensor [Felderhof, 2012, equations (3.5) and (3.16)] in this regime.

However, we substitute δ = εv in (7.21) and keep terms to first order in ε while noting

that γsR is first order in ε to obtain,

γ ∼ γs [1(1 + εv)− γsR] , (8.32)

which, upon substitution for the components of R yields

γP⊥
γs
∼ 1 + εv +

3ε

8v2

[
1− (1 + 2v) e−2v

]
+ o(ε),

γP‖
γs
∼ 1 + εv +

3ε

16v2

[
1−

(
1 + 2v + 4v2

)
e−2v

]
+ o(ε).

(8.33)

For the results from the method of reflections, we once again substitute δ = εv in

equations (8.12) and (8.24) and keep terms to first order in ε, and obtain the same

results as above for γR⊥ and γR‖ .

Thus, even where the subdominant exponential terms are important, the two

results agree to lowest order in ε.

We may also take the α → 0 limit in the above and as expected, we recover

expressions that agree with results obtained through image systems for steady Stokes

flows [Frydel & Rice, 2006].
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8.2.1.3 Intermediate frequencies

We now consider the range of frequencies where v = αh � 1, but δ = αa ∼ 1,

i.e. the skin-depth of vorticity is much smaller than the sphere-wall distance, but is

comparable to the size of the sphere.

In the point-particle calculation, we substitute v = δ/ε in the asymptotic forms

as v→ +∞ of the expressions for the reaction field tensor [Felderhof, 2012, equations

(3.5) and (3.16)] to obtain,

γsRzz ∼ −
3ε3

8δ2
,

γsRxx ∼ −
3ε3

16δ2
.

(v→ +∞, δ ∼ 1) (8.34)

Given that the components of R are of order ε3, we may use (8.26) to obtain

γP⊥
γs
∼
(

1 + δ +
δ2

9

)
+

3ε3

8δ2

(
1 + δ +

δ2

3

)2

+ o(ε3),

γP‖
γs
∼
(

1 + δ +
δ2

9

)
+

3ε3

16δ2

(
1 + δ +

δ2

3

)2

+ o(ε3).

(δ/ε→ +∞) (8.35)

For the results from the method of reflections, we simply drop the terms containing

subdominant exponential factors of the form e−δ/ε in equations (8.12) and (8.24), and

it is seen by inspection that we obtain the same results as above for γR⊥ and γR‖ .

8.2.1.4 High frequencies

We finally consider the range of frequencies ω � η/(ρfa
2), where 1/|α| � a � h.

In this regime, we expect that the viscous contributions to the drag coefficient are

negligible compared to the inertial contributions, i.e. the added mass term. For

instance, in the case of a spherical particle in an unbounded fluid medium, the drag

coefficient in this regime γ0(ω) ∼ γsδ
2/9 = −iωmf/2, which is the added mass

contribution from the fluid.

The added mass of a particle executing small oscillations in a fluid is usually

obtained by means of potential flow [see e.g. Landau & Lifshitz, 1987; Brennen, 1982].

In particular, the added mass of a spherical particle near a plane wall is a well-studied

problem [Lamb, 1932; Milne-Thomson, 1968; Yang, 2010], and the expressions for the
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effective masses in this case,

m∗⊥ = mp +
mf

2

[
1 +

3

8

(a
h

)3
]
,

m∗‖ = mp +
mf

2

[
1 +

3

16

(a
h

)3
]
,

(8.36)

are well-known. It must be noted that owing to the absence of ∆vω, the differential

equation is of lower order, whereby fewer boundary conditions are needed for the

potential flow calculation, and thus the added mass obtained from potential flow

does not distinguish between full-slip and no-slip boundary conditions.

It has been pointed out [Mo et al., 2015b] that Felderhof’s expressions do not agree

with these results. As pointed out by Zwanzig & Bixon [1975], the velocity auto-

correlation function for a Brownian particle in an incompressible fluid asymptotes to

kBT/m
∗ as t → 0, where m∗ is the effective mass of the particle in the fluid.7 This

has been verified in unbounded fluid by experiments [Kheifets et al., 2014; Mo et al.,

2015a]. However, the results from Felderhof [2005, eq. (4.5)] (see also erratum Felder-

hof [2006b]) suggest values for the added masses as (mf/2)(1 + a3/(8h3) + o(a3/h3))

and (mf/2)(1 + a3/(16h3) + o(a3/h3)). As we will presently demonstrate, this dis-

crepancy is resolved by our modification of the point-particle framework described in

sections 7.2.2 and 7.2.3.

In our modified point-particle framework, we take the asymptotics of the compo-

nents of the reaction field tensor as v→∞ to obtain

γsRzz ∼ −
3ε

8v2
,

γsRxx ∼ −
3ε

16v2
.

(v→ +∞) (8.37)

We then replace δ = εv in (7.21), substitute the above asymptotic forms for the

components of R, and expand to lowest order in ε to obtain,

γP⊥
γs
∼ 1

9
ε2v2

(
1 +

3

8
ε3
)

+ o(ε5),

γP‖
γs
∼ 1

9
ε2v2

(
1 +

3

16
ε3
)

+ o(ε5).

(v→ +∞) (8.38)

7The apparent contradiction with the energy equipartition theorem, which reports a kBT/m
asymptote, is resolved by including the effects of compressibility.
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Thereafter, identifying ε2v2/9 = −iωmf/2, we obtain added masses consistent with

the effective masses given in (8.36).

For the results from the method of reflections, we take the asymptotic as δ →∞
with fixed ε in equations (8.12) and (8.24). The subdominant exponential terms drop

and we are left with

γR⊥
γs
∼ 1

9
δ2

(
1 +

3

8
ε3
)
,

γR‖
γs
∼ 1

9
δ2

(
1 +

3

16
ε3
)
,

(δ → +∞) (8.39)

which are once again consistent with the results from the modified point-particle ap-

proximation and with calculations from potential flow [Lamb, 1932; Milne-Thomson,

1968; Brennen, 1982].

8.2.2 Numerical comparison

In this section, we present numerical comparisons of predictions for the drag coeffi-

cients from three methods – the point-particle approximation proposed by Felderhof

[2012], the modified point-particle approximation presented in this work (§7.2), and

the method of reflections (§8.1).

Generally speaking, for purposes of numerical evaluation, it is likely that keeping

the expression for γ(ω) in the form of a Padé approximant as in equation (7.21)

gives better results. In the context of the method of reflections for the steady Stokes

equations, Happel & Brenner [1965, chap. 7] suggest the use of a geometric series

extrapolation to account for higher order reflections in the absence of any further

information, which essentially amounts to turning the result from the method of

reflections into a Padé approximant. We also noted this when we computed the

perturbative result to all orders in Section 7.3.5. Several experiments have employed

the Padé form of the steady drag [Schäffer et al., 2007; Mo et al., 2015b, Fig. 2] with

good results.

However, in order to appropriately compare and highlight the differences between

the theories, it is necessary that we compare results expressed in similar forms. In

the plots that follow, when comparing the method of reflections against the modified

point-particle approximation (figure 8.4 and figure 8.5), we use the form of (8.28)

for the point-particle approximation. When comparing the modified point-particle
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approximation against that of Felderhof [2012] (figures 8.6 and 8.7), we shall use the

original forms from equations (8.40) and (7.21).

We obtain the drag coefficients from Felderhof’s point-particle framework by set-

ting the expression for the admittance from Felderhof [2012, equation (2.9)] equal

to (7.22):

γF (ω) = iωmp1 + (−iωmp + γ0)

[
1 +

(
1 + δ +

δ2

3

)
γsR

]−1

. (8.40)

We observe that unlike with the other results, the drag coefficient depends on the

mass of the particle mp, which does not cancel out even if we expand to first order in

γsR. The drag coefficients from the modified point-particle framework are calculated

from (7.21) using the expressions for the reaction field tensor from Felderhof [2012,

equations (3.5) and (3.16)], which we have reproduced in equation (8.27).

Figure 8.4 compares the real and imaginary parts of drag coefficients for a no-slip

sphere near a full-slip wall obtained from the method of reflections, and from the

modified point-particle approximation for the case of ε = a/h = 0.5. The free-space

drag coefficient γ0(ω) has been subtracted in order to clearly show the difference

between the methods. The inset in sub-figure (c) shows a log-log plot of <(γ‖/γs),

i.e. without subtraction of the free-space drag coefficient, exemplifying the excellent

agreement between the two methods even for the large value of ε. The relative

discrepancy between these two methods, calculated as |γR − γP |/|γP | and expressed

as a percentage, is plotted in figure 8.5 for different values of ε. As expected, the

discrepancy becomes larger as the value of the small parameter ε increases, i.e. as the

particle is moved closer to the wall, but is still quite small even for ε = 0.5 when the

particle’s center is one diameter away from the wall.

Figure 8.6 compares the real and imaginary parts of drag coefficients for a no-slip

sphere near a full-slip wall obtained from Felderhof’s point-particle approximation,

and from the modified point-particle framework, for the case of ε = 0.5 and ρp = 19ρf .

If the liquid is water, this density corresponds roughly to that of gold particles. As

before, the free-space drag coefficient γ0(ω) has been subtracted in order to clearly

highlight the disagreement between the methods at high frequencies. The inset in

sub-figure (c) shows a log-log plot of <(γ‖/γs), i.e. without subtraction of the free-

space drag coefficient, showing that there is still visible disagreement between the

two methods for large ρp/ρf . The relative error between these two approximations,
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calculated as |γF −γP |/|γP | and expressed as a percentage, is plotted in figure 8.7 for

different values8 of ρp. The error is zero when ρp = ρf , and the errors become larger

as ρp deviates from ρf .

Figure 8.8 shows the high-frequency behavior of the imaginary components of the

drag coefficients from Felderhof’s version, and from the modified version of the point-

particle approximation on a log-log scale. A line corresponding to the added mass

contribution predicted from potential flow [Milne-Thomson, 1968] is shown. The plots

show the agreement of the modified point-particle approximation with the potential

flow results at high frequencies.

8If the liquid is water, the values 2, 4 and 19 for ρp/ρf roughly correspond to particles made
of silica glass, Barium Titanate glass, and gold respectively. These are common choices in optical
tweezers experiments.

129



Method of Reflections Modified PPA ϵ = 0.5

10-3 10-2 0.1 1 10 102 103

0.2
0.3
0.4
0.5
0.6
0.7
0.8

ωτf

R
e(
γ
⊥
-
γ

0)
/γ

s (a)

10-3 10-2 0.1 1 10 102 103

-1.5

-1.0

-0.5

0.0

ωτf
Im

(γ
⊥
-
γ

0)
/γ

s (b)

10-3 10-2 0.1 1 10 102 103
-0.2
-0.1

0.0
0.1
0.2
0.3
0.4

ωτf

R
e(
γ
∥-
γ

0)
/γ

s (c)

10-3 1 103

1

5
10

10-3 10-2 0.1 1 10 102 103
-0.8

-0.6

-0.4

-0.2

0.0

ωτf

Im
(γ

∥-
γ

0)
/γ

s (d)

Figure 8.4: Semi-logarithmic plots comparing the results for the drag coefficient of
a no-slip sphere near a full-slip plane wall (ε = 0.5) from the method of reflections
(§8.1) and the modified point-particle approximation (“Modified PPA”) (§7.2) in the
perpendicular direction (a) real part and (b) imaginary part, and in the parallel
direction (c) real part and (d) imaginary part. In each case, the free-space drag
coefficient γ0(ω) has been subtracted in order to clearly highlight the small differences,
and the coefficients have been normalized by γs. The inset in (c) shows a log-log plot
of the real parts of the normalized drag coefficients in the parallel direction without
subtraction of γ0.
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Figure 8.5: Semi-logarithmic plots of the percentage discrepancy between the drag
coefficients obtained through the two approximation methods plotted in figure 8.4,
calculated using 100%

∣∣γR − γP ∣∣ / ∣∣γP ∣∣ for various values of ε (a) in the perpendicular
direction, (b) in the parallel direction to the wall. As expected, the discrepancy
becomes very small at small ε, i.e. when the particle is further from the wall.
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Figure 8.6: Semi-logarithmic plots comparing the results for the drag coefficient of
a no-slip sphere near a full-slip plane wall (ε = 0.5) from the point-particle ap-
proximation of Felderhof [2012] (“Felderhof’s PPA”) and the modified version of the
point-particle approximation described in §7.2 (“Modified PPA”) in the perpendicu-
lar direction (a) real part and (b) imaginary part, and in the parallel direction (c) real
part and (d) imaginary part. In each case, the free-space drag coefficient γ0(ω) has
been subtracted in order to clearly highlight the differences, and the coefficients have
been normalized by γs. Since the drag coefficient (8.40) from Felderhof’s PPA de-
pends on the density of the particle ρp, we set ρp = 19ρf (which is approximately the
case for gold particles in water) to highlight the differences. The inset in (c) shows
a log-log plot of the real parts of the normalized drag coefficients in the parallel
direction without subtraction of γ0.
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Figure 8.7: Semi-logarithmic plots of the percentage error between the drag coeffi-
cients for a no-slip sphere near a full-slip plane wall obtained from Felderhof’s PPA
and the Modified PPA and calculated as 100%

∣∣γF − γP ∣∣ / ∣∣γP ∣∣, for various values of
particle density ρp (ε = 0.5) (a) in the perpendicular direction, (b) in the parallel
direction to the wall.
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Figure 8.8: Logarithmic plots of −=(γ − γ0)/γs for a no-slip sphere near a full-slip
plane wall obtained from the modified (solid orange) and from Felderhof’s origi-
nal (dashed blue line) point-particle approximation against non-dimensionalized fre-
quency ωτf . The region of slope 1 of these lines represents the regime where the term
corresponding to the increase in added mass due to the boundary is dominant. The
dotted orange line plots the added mass correction from potential flow calculations.
Values ε = 0.5 and ρp = 19ρf are chosen to highlight the difference. It is observed
that the modified point-particle approximation reproduces the results from potential
flow at high frequencies.
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Chapter Nine: Theory of Brownian motion near a

boundary

In this chapter, we shall adapt the results of Felderhof [2005, 2012] and the material of

chapters 7 and 8 to provide expressions useful to compute statistics of the Brownian

motion of a no-slip sphere near a plane wall, with either no-slip or full-slip conditions1

on the wall. Some of these results were used in the analysis of experimental work [Mo

et al., 2015b] and appear in that work, as well as in Simha et al. [2017].

We also discuss results for the hindered diffusion coefficient near a flat [Happel

& Brenner, 1965] as well as a cylindrical [Alam et al., 1980] boundary owing to its

relevance to Chapter 10.

9.1 General remarks

First, we make some general remarks that are common to the analysis that follows.

It must be noted that, to the approximations we have worked with in chapters 7

and 8, the tensor of drag coefficients γ(ω) for a spherical particle near a flat wall

is diagonal. If we assume that the tensor of trap stiffness coefficients K is also

diagonal in the same coordinate system, our analysis becomes simplified, as all the

other tensors involved (the admittance, the power spectral densities, the correlation

functions etc. in Chapter 2) become diagonal. This allows us to break the analysis

into the analysis of motion perpendicular to the wall, and of motion parallel to the

wall.

Experimentally speaking, the assumption of K being diagonal in the same basis

as γ(ω) requires that the natural coordinate axes of the laser beam(s) creating the

optical trap, the axes of the wall, and the axes of the measurement be square with

one-another. In other words, it is sufficient for the laser(s) creating the trap to have

an axi-symmetric profile (so it could be TEM00, the donut mode, etc.) with the axis of

propagation either parallel or perpendicular to the wall, and the axis of measurement

1Whereas Felderhof [2012] has obtained results for the case of partial slip, the spatial Fourier
transform along the dimensions tangential to the plane needs to be inverted numerically, which
complicates the analysis.
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to be either parallel or perpendicular to the wall. Given that this was largely the case

(up to misalignment) in the experiment [Mo et al., 2015b] discussed in this work,

we shall proceed to analyze the parallel and perpendicular components separately.

Of course, there is no significant complication if the tensors are not simultaneously

diagonalizable – all the computations can be done, only with the extra overhead of

having to work with 3× 3 matrices.

As we discussed in Chapter 3, vorticity in the fluid takes a time of ∼ L2/ν to

diffuse over a region of size L, where ν is the kinematic viscosity of the fluid. In

the problem of Brownian motion of a spherical particle (radius a) near a boundary,

distance between the particle’s center and the boundary being h, there are two choices

for the length-scale L. This allows us to construct two time-scales, τf := a2/ν as

before, and an additional time-scale,

τw := h2/ν. (9.1)

Since vorticity shed by the oscillating sphere takes order of τw to reach the walls,

the effects of the boundary become significant only on time-scales & τw. Since the

pressure transmission (in an incompressible fluid) is instantaneous, there is an effect

of the boundary on time-scales shorter than τw – but it is expected to be of the order

of (a/h)3, since fundamental solution for the pressure P 0(r) decays like 1/r2 [Kim

& Karrila, 2013, §6.2], whereby its contribution to the velocity of the reflected flow,

which is used in Faxén’s theorem to calculate the drag, drops like ∼ 1/h3. While

this argument is a heuristic, this can be generally observed in the nature of the drag

coefficient – the lowest order terms without exponentials are generally speaking of the

order of ε3, and the corrections to the added mass are indeed of order ε3. Therefore,

the more significant effects take order of τw to set in, and this can be seen in both

the theoretical predictions and experimental measurements of statistical properties

of Brownian motion.

In the spirit of being experiment-friendly, in this chapter, we will try to keep the

expressions in dimensionful, physical quantities.
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9.2 Brownian motion near a full-slip flat wall

In the modified PPA, we may compute the components of γ(ω) using (7.21),

γ⊥,‖(ω) = iωmf + γs
1 +

√
−iωτf − iωτf/3

1 +
[
1 +

√
−iωτf − iωτf/3

]
(γsR⊥,‖)

, (9.2)

and subsequently compute the admittances using (2.36),

Y K
⊥,‖(ω) =

1+(1+
√
−iωτf−iωτf/3)(γsR⊥,‖)[

iω(mf−mp)−
K⊥,‖
iω

]
[1+(1+

√
−iωτf−iωτf/3)(γsR⊥,‖)]+[γ0(ω)−iωmf ]

, (9.3)

where γ0(ω) = γs(1 +
√
−iωτf − iωτf/9) and γs = 6πηa. As a reminder, the branch

of the square roots in all these expressions is to be taken so that
√
−i = (1− i)/

√
2.

We already noted the expressions provided by Felderhof [2012] for the reaction

field tensors near a full-slip wall,

γsR⊥ =
3a

2h

{
− 1

4v2

[
1− (1 + 2v)e−2v

]}
,

γsR‖ =
3a

2h

{
− 1

8v2

[
1− (1 + 2v + 4v2)e−2v

]}
,

(8.27)

where2 v =
√
−iωτw, which may be plugged into the above equations to compute

various statistical properties of Brownian motion.

The various quantities such as PSD, VACF etc. are best calculated numerically

using (2.29) and the methods described in that context. However, we wish to high-

light the behavior of the thermal force at low frequencies. The (two-sided) thermal

force PSD may be computed as SF (ω) = 2kBT <[γ⊥,‖] and expanded (Wolfram Math-

ematica was used to do the expansion). The results are given by [Mo et al., 2015b]

Sslip
F,‖ (ω) ∼ 2kBTγs

[
1

1 + 3a
8h

+
64
√

2h2

(3a+ 8h)2 (ωτf )
1
2

]
,

Sslip
F,⊥(ω) ∼ 2kBTγs

[
1

1− 3a
4h

+
8
√

2 (6h4 − 5a2h2)

15a2 (4h− 3a)2 (ωτf )
3
2

]
,

(9.4)

as ω → 0 (i.e. ω � 1/τf , 1/τw). The thermal force in the perpendicular direction

therefore becomes less colored at low frequencies in the presence of a boundary, as is

seen by the absence of the
√
ωτf term.

2As a reminder, the branch of the square root should be chosen so that
√
−iωτf and

√
−iωτw

have positive real part.
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We may also adapt the results from the method of reflections to the computation

of admittance. The point-particle approximation, using expression (7.21), has been

experimentally seen [Mo et al., 2015b] to perform surprisingly well for large values of

ε ≈ 0.5, i.e. when the particle is one diameter away from the wall. Motivated by this,

and by the discussion of §7.3.5, we cast the expressions from the method of reflections

in the (Padé-like) form suggested by equation (7.21). This is akin to using a geometric

series for higher-order reflections in the absence of any other information [Happel &

Brenner, 1965]. We therefore write,

γR⊥,‖(ω) = iωmf + γs
1 +

√
−iωτf − iωτf/3

1 +
[
1 +

√
−iωτf − iωτf/3

]
(γsχ⊥,‖)

, (9.5)

where the correction terms for the full-slip wall are given by,

χ⊥ =
3a

2h

{
− 1

4v2

[
1− (1 + 2v)e−2v e2δ

(1 + δ + δ2/3)2

]}
,

χ‖ =
3a

2h

{
− 1

8v2

[
1− (1 + 2v + 4v2)e−2v e2δ

(1 + δ + δ2/3)2

]}
,

(9.6)

where v =
√
−iωτw and δ =

√
−iωτf .

The numerically calculated statistical properties of Brownian motion (at temper-

ature T = 295 K) for a representative system of a harmonically confined (stiffness

K = 100 pN/µm) silica sphere (density ρp = 2.0 g/cm3, diameter 2a = 3µm) at a

distance of h = 3µm (ε = 0.5) from a full-slip flat wall in water (density ρf = 1.0

g/cm3, viscosity η = 10−3 Pa·s) using the above two results, as well as using the

unmodified results of Felderhof [2012], are presented in figures 9.1 (perpendicular di-

rection) and 9.2 (parallel direction). Also shown for comparison, are the predictions

using the free-space drag coefficient γ0(ω) (Chapter 4). In both figures, sub-figure (a)

shows the MSD, (b) shows the (one-sided) PSD of velocity, (c) shows the VACF, and

(d) shows the (one-sided) PSD of the thermal force.

As one can see, in this system, the difference between the unmodified PPA

of Felderhof [2012] and our modified PPA is not easily discernible without very high-

precision experiments. However, our modifications would be of significance when ρp

is substantially different from ρf , as is the case for systems of metallic particles in

liquids. Systems of gold and other nano-particles in liquids are extremely common in

experiments, not only in those involving optical tweezers [see e.g. Svoboda & Block,
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Figure 9.1: Theoretical predictions from various methods, for the statistical prop-
erties of the Brownian motion of a no-slip, spherical silica particle (density ρp = 2.0
g/cm3, diameter 2a = 3µm) in the perpendicular direction to a full-slip plane wall
(sphere-wall distance h = 3µm) in water (density ρf = 1.0 g/cm3, viscosity η = 10−3

Pa·s) at a temperature of 295 K. The particle is assumed to be confined by a harmonic
trap (stiffness K = 100 pN/µm). The long-dashed green line shows the prediction
from our modified point-particle framework (9.2), (8.27) and (9.3). The solid red
line shows the prediction from the point-particle approximation as used by Felderhof
[2012], without modification. The short-dashed blue line shows the prediction of the
method of reflections (9.6) and (9.5). The black line with varying dash length shows
the predictions for a similar particle in an unbounded fluid medium (Chapter 4).
Sub-figure (a) shows a log-log plot of the MSD, (b) shows the one-sided PSD of ve-
locity 2S⊥v , (c) shows the absolute value of the VACF C⊥v , normalized by kBT/m

∗
⊥,

and (d) shows the one-sided spectral density of the thermal force 2S⊥F . The cusps in
sub-figure (c) correspond to zero-crossings that are a result of the harmonic confine-
ment. Despite the large value of ε = 0.5, the method of reflections and point-particle
approximation agree very well. The difference between the modified and unmodified
point-particle approximation is not discernible in the plots due to the small density
difference (ρp/ρf = 2). Figure from Simha et al. [2017], courtesy of Dr. Jianyong Mo.
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Figure 9.2: Theoretical predictions from various methods, for the statistical proper-
ties of the Brownian motion of a no-slip, spherical silica particle (density ρp = 2.0
g/cm3, diameter 2a = 3µm) in the parallel direction to a full-slip plane wall (sphere-
wall distance h = 3µm) in water (density ρf = 1.0 g/cm3, viscosity η = 10−3 Pa·s)
at a temperature of 295 K. The particle is assumed to be confined by a harmonic
trap (stiffness K = 100 pN/µm). The long-dashed green line shows the prediction
from our modified point-particle framework (9.2), (8.27) and (9.3). The solid red
line shows the prediction from the point-particle approximation as used by Felderhof
[2012], without modification. The short-dashed blue line shows the prediction of the
method of reflections (9.6) and (9.5). The black line with varying dash length shows
the predictions for a similar particle in an unbounded fluid medium (Chapter 4).
Sub-figure (a) shows a log-log plot of the MSD, (b) shows the one-sided PSD of ve-

locity 2S
‖
v , (c) shows the absolute value of the VACF C

‖
v , normalized by kBT/m

∗
‖,

and (d) shows the one-sided spectral density of the thermal force 2S
‖
F . The cusps in

sub-figure (c) correspond to zero-crossings that are a result of the harmonic confine-
ment. Despite the large value of ε = 0.5, the method of reflections and point-particle
approximation agree very well. The difference between the modified and unmodified
point-particle approximation is not discernible in the plots due to the small density
difference (ρp/ρf = 2). Figure from Simha et al. [2017], courtesy of Dr. Jianyong Mo.
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1994; Hajizadeh & Reihani, 2010], but also given the wide array of applications of

gold nano-particles [Sardar et al., 2009], and we believe that our modifications to

the PPA would be relevant to such systems. To illustrate the differences due to our

modifications, figure 9.3 (a) and (b) show predictions for the VACF from the three

methods, viz. the modified PPA, the unmodified PPA and the method of reflections,

in the perpendicular and parallel directions respectively, for a system of a gold par-

ticle (ρp ≈ 19.3 × 103 kg/m3) in acetone (ρf ≈ 790 kg/m3) with the same geometry

and temperature, harmonically confined in a trap of stiffness K = 200 pN/µm. The

difference here is quite discernible, especially given that the VACF is an averaged

measurement, whereby the experimental error from uncorrelated noise can be made

smaller by accumulating more statistics. The PSD of thermal force in the same

systems is shown in figure 9.4.

It must be noted that a traditional tweezers experiment to discern these differ-

ences may not be feasible, owing to the heating associated with absorption of the

trapping laser by gold nano-particles [Seol et al., 2006]. Novel methods of trapping

and detection would need to be developed to study equilibrium Brownian motion of

metallic particles. However, it is very plausible that the unsteady drag coefficients

calculated here will find other applications in the context of metallic nano-particles,

including possibly in the analysis of hot Brownian motion in scenarios where the fluid

parameters are not significantly altered by heating.

9.3 Brownian motion near a no-slip flat wall

Felderhof [2005] (see also erratum Felderhof [2006b]) has calculated the parallel and

perpendicular components of the reaction field tensor for a no-slip wall3. We re-write

3With much suffering, partially alleviated by significant consultation of EMOT, the author,
along with Dr. Jianyong Mo, has independently verified these calculations by hand.
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Figure 9.3: Predictions for the VACF of a spherical gold particle (diameter 2a = 3µm,
density ρp ≈ 19.3 × 103 kg/m3) harmonically confined (stiffness K = 200 pN/µm)
near a flat wall (sphere-wall distance h = 3µm) in acetone (density ρf ≈ 790 kg/m3,
viscosity η ≈ 3 × 10−4 Pa·s) at a temperature of 295 K, obtained from the three
methods, viz. our modified point-particle framework (green line with long dashes),
the point-particle approximation as used by Felderhof [2005, 2012], and in sub-figures
(a) and (b), the method of reflections (blue line with short dashes). Sub-figures (a)
and (b) show the perpendicular and parallel VACF for a full-slip wall, and (c) and
(d) show the perpendicular and parallel VACF for a no-slip wall, respectively. The
VACF is shown in absolute value and has been normalized by the velocity variance,
using the added mass from potential flow calculations. The significant differences
between the modified and unmodified PPA indicates that our modifications are indeed
significant in this system (ρp/ρf ≈ 24.4), which is experimentally quite common.
Figure from Simha et al. [2017], courtesy of Dr. Jianyong Mo.
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Figure 9.4: Predictions for the one-sided PSD of the thermal force acting on a spher-
ical gold particle (diameter 2a = 3µm, density ρp ≈ 19.3 × 103 kg/m3) near a flat
wall (sphere-wall distance h = 3µm) in acetone (density ρf ≈ 790 kg/m3, viscosity
η ≈ 3× 10−4 Pa·s) at a temperature of 295 K, obtained from the three methods, viz.
our modified point-particle framework (green line with long dashes), the point-particle
approximation as used by Felderhof [2005, 2012], and in sub-figures (a) and (b), the
method of reflections (blue line with short dashes). Sub-figures (a) and (b) show the
perpendicular and parallel (one-sided) thermal force PSD for a full-slip wall, and (c)
and (d) show the perpendicular and parallel thermal force PSD for a no-slip wall,
respectively. The significant differences between the modified and unmodified PPA
indicates that our modifications are indeed significant in this system (ρp/ρf ≈ 24.4).
Figure courtesy of Dr. Jianyong Mo.
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their results in a manner convenient to our conventions as,

γsR⊥ = − 1

16v4

a

h

{
6(6 + v2 + 8v3) + 6(6 + 12v + 9v2 + 2v3)e−2v

− (144 + 144v + 48v2 − 6v4 + 10v5 + v6 − v7)e−v

+ v6(12− v2)E1(v) + 72v2K0(2v) + 36v(2 + v2)K1(2v)

+ 6πv
[
2v(3− v2)(Y0(2v)−H0(2v))

− (6− 5v2)(Y1(2v)−H1(2v))
]}

,

(9.7)

and

γsR‖ = − 1

32v4

a

h

{
36+27v + 6v2 + 6(6 + 12v + 11v2 + 6v3 + 4v4)e−2v

− (144 + 144v + 72v2 + 24v3

− 6v4 + 2v5 − v6 + v7)e−v

+ v8E1(v) + 12v3(2vK2(2v) + 3K3(2v))

+ 6πv3
[
2v(Y2(2v)−H−2(2v))

− 3(Y3(2v) +H−3(2v))
]}

.

(9.8)

In the above E1 denotes the exponential integral, Yn and Kn denote the Bessel and

modified Bessel functions of the second kind of order n, and Hn denotes the Struve

function of order n.

For the convenience of the reader, we provide Wolfram Mathematica code for the

above:
E1[z_] := -ExpIntegralEi[-z] + I \[Pi]
Rzz[v_] := -1/(

16 vˆ4) (6 (6 + vˆ2 + 8 vˆ3) +
6 (6 + 12 v + 9 vˆ2 + 2 vˆ3) Eˆ(-2 v) - (144 + 144 v + 48 vˆ2 -

6 vˆ4 + 10 vˆ5 + vˆ6 - vˆ7) Eˆ-v + vˆ6 (12 - vˆ2) E1[v] +
72 vˆ2 BesselK[0, 2 v] + 36 v (2 + vˆ2) BesselK[1, 2 v] +
6 \[Pi] v (2 v (3 - vˆ2) (BesselY[0, 2 v] -

StruveH[0, 2 v]) - (6 - 5 vˆ2) (BesselY[1, 2 v] -
StruveH[1, 2 v])))

Rxx[v_] := -1/(
32 vˆ4) (36 + 27 v + 6 vˆ2 +

6 (6 + 12 v + 11 vˆ2 + 6 vˆ3 + 4 vˆ4) Eˆ(-2 v) - (144 + 144 v +
72 vˆ2 + 24 vˆ3 - 6 vˆ4 + 2 vˆ5 - vˆ6 + vˆ7) Eˆ-v +

vˆ8 E1[v] + 12 vˆ3 (2 v BesselK[2, 2 v] + 3 BesselK[3, 2 v]) +
6 \[Pi] vˆ3 (2 v BesselY[2, 2 v] - 3 BesselY[3, 2 v] -

3 StruveH[-3, 2 v] - 2 v StruveH[-2, 2 v]))
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Figure 9.5: Log-log plots of the absolute values of components of the reaction field
tensor given by Felderhof [2005] for a no-slip flat wall (9.7), (9.8), multiplied by
γs and divided by ε = a/h. The resulting quantity |γsR⊥,‖/ε| is a function of v
alone, and since arg(v) = −π/4, we can make a plot against |v|. The plot on the
left shows the perpendicular component, whereas the plot on the right shows the
parallel component. The orange solid curve corresponds to the evaluation of the full
expressions 9.7 and 9.8, whereas the blue dashed line corresponds to the asymptotic
expressions of (9.9). From the plots, it appears that both components are bounded
by their DC absolute values of 9a/8h (which is only slightly larger than 1(a/h)) and
9a/16h

In numerical evaluation, it is possible that the accuracy of the Bessel and Struve

functions for large |v| is poor, which can result in spurious values for the reaction

field tensor components. For example in Wolfram Mathematica 11.0, the numerics

are no longer reliable for |v| & 20, and the expression appears to diverge. However,

at this point, the asymptotic expressions given by Felderhof [2005],

γsR⊥ ∼ −
3

8v2

a

h
,

γsR‖ ∼ −
3

16v2

a

h
,

(9.9)

as v→∞ with argument −π/4 are already sufficiently accurate. This is seen in the

log-log plots shown in figure 9.5, where the orange solid curve shows the absolute

value of expressions of 9.7 and 9.8 divided by ε = a/h, and the blue dashed line

represents the corresponding asymptotic expressions.

As before, the various statistical properties of Brownian motion are best calculated

numerically using (2.29) and the methods described in that context. The numerical

predictions of the modified PPA for a no-slip wall are shown in Mo et al. [2017].

However, once again, we wish to comment on the nature of the thermal force. The
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low-frequency expansions ω � τ−1
f , τ−1

w of the (two-sided) PSDs of the thermal force

are given by [Mo et al., 2015b]

SF,‖(ω) ∼ 2kBTγs

[
1

1− 9a
16h

+
128
√

2(3h4 − a2h2)

3a2 (16h− 9a)2 (ωτf )
3
2

]
,

SF,⊥(ω) ∼ 2kBTγs

[
1

1− 9a
8h

− 32
√

2h2

3 (9a− 8h)2 (ωτf )
3
2

]
.

(9.10)

In this case, the lack of the
√
ωτf term and the resulting enhanced flatness at low

frequencies is observed in both parallel and perpendicular directions. This has also

been verified by experiment [Mo et al., 2015b] (Chapter 10).

A loose intuitive explanation is based on the analogy with hard and soft reflec-

tion. In the case of a no-slip wall, the boundary conditions for both parallel and

perpendicular directions are “hard”, i.e. the velocity goes to zero. However, in the

case of a full-slip wall, the boundary conditions in the parallel directions are “soft”,

i.e. the normal derivatives of velocity go to zero. The hard reflection is expected to

produce some sort of destructive interference to which, we may guess, the lack of the
√
ωτf term could be attributed [Mo et al., 2015b].

An analogous calculation using the method of reflections is rendered difficult by

the lack of a simple image system.4

In figure 9.3, sub-figures (c) and (d) show the differences between the VACF of

a 3µm-diameter gold particle near a no-slip flat wall in acetone as predicted by our

modified point-particle framework, and by the point-particle approximation as used

by Felderhof [2005]. The difference in the no-slip case in the perpendicular direction

is very significant, and should be easily detected by measurements. However, as

mentioned earlier, measurements of Brownian motion in such systems are rendered

difficult due to the heating of the nano-particles by absorption of the trapping /

detection laser beams, and novel trapping and detection techniques would need to be

developed in order to make these measurements without heating.

4The image system for a point singularity near a no-slip wall is known in the context of steady
Stokes flow, but is more complicated [Blake, 1971].
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9.4 Diffusion near a no-slip flat wall

If the steady drag coefficient γ(ω = 0) obtained by solving the steady Stokes equations

is known, the diffusion coefficient may be calculated using the Sutherland-Einstein

relation D = kBT/γ(ω = 0). To avoid any ambiguity, we shall use γsteady to denote

the steady drag coefficient.

Lorentz [1907] derived the first-order correction to the Stokes drag force on a

sphere (−6πηau) due to the presence of a no-slip flat wall. Their results in our

notation are

γsteady
⊥ = γs

(
1 +

9

8

a

h

)
,

γsteady
‖ = γs

(
1 +

9

16

a

h

)
.

(9.11)

As a reminder, a denotes the radius of the spherical particle, h denotes the distance

from its center to the wall, and γs = 6πηa is the steady Stokes drag coefficient for a

sphere.

Faxén [1921] derived more correction terms for the drag force in the direction

parallel to the wall,5 retaining the advection term to the Oseen approximation6. At

very low Reynolds number, we may set σa and σζ in their formula to zero [Sharma

et al., 2010] and obtain (in our notation)

γsteady
‖ =

γs

1− 9
8
a
2h

+
(
a
2h

)3 − 45
16

(
a
2h

)4 − 2
(
a
2h

)5 . (9.12)

Note that the correction terms are in the denominator, in the fashion of a Padé

approximant. It appears that these results were obtained through a boundary integral

method.

Brenner [1961] provided a series for the drag coefficient in the perpendicular di-

rection using eigenfunction expansions in bipolar coordinates. Their result, verified

against many experiments [Liu et al., 2014; Carbajal-Tinoco et al., 2007; Ishii et al.,

5Faxén analyzes the problem in greater detail than we wish to explore here, including results for
the transverse force and the rotational torque exerted on a sphere moving parallel to a plane wall.

6Faxén’s thesis has been digitized by Google Inc. and is available at
https://catalog.hathitrust.org/Record/010265690 as of July 2017.
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2010], is

γsteady
⊥ = γs

[
4

3
sinh β

∞∑
n=1

n(n+ 1)

(2n− 1)(2n+ 3)

×
(

2 sinh(2n+ 1)β + (2n+ 1) sinh 2β

4 sinh2(n+ 1/2)β − (2n+ 1)2 sinh2 β
− 1

)]
,

(9.13)

where7 β = cosh−1(h/a). The infinite sum can be truncated to about 80 terms and

numerically evaluated.

9.5 Diffusion near a no-slip cylindrical wall

The steady drag on a spherical particle inside a cylindrical pipe may be obtained

using the method of reflections, and is well-known [Happel & Brenner, 1965]. The

steady drag coefficient for a spherical particle outside of a no-slip cylindrical wall has

been obtained by Alam et al. [1980] (see also erratum, Alam et al. [1983]). The drag

coefficients for motion in the axial, radial and tangential directions to the cylinder

are provided. Initially, a literature search did not find this paper, so the author

independently performed a calculation using the method of reflections, closely follow-

ing Happel & Brenner [1965, Chap. 7] to obtain a result for the drag in the radial

direction that agreed with Alam et al. [1980].

Owing to its relevance to Mo et al. [2015b], we present the result of Alam et al.

[1980] for the radial drag coefficient,8

γsteady
radial = γs

(
1 +

a

R
kr

)
, (9.14)

where the radial drag correction kr is given by

kr =
3

2π

{
H − 1

4

∫ ∞
0

dλ
∞∑

n=−∞

[
(Ln−1 + Ln+1 − 2r0Ln)

×
[
Ln−1 + Ln+1 − r0(L′n−1 + L′n+1) + 2L′n

]
/En

]}
,

(9.15)

7We have used β instead of Brenner’s notation α.
8The work of Alam et al. [1980] works in non-dimensionalized units where the radius of the

cylinder is 1. We present them here again in fully dimensional units for the convenience of a user of
the final expression.
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with

H =

∫ ∞
0

dλ
∞∑

n=−∞

In(λ)
K2
n(λr0)

Kn(λ)
,

Ln = L−n =
Kn(λr0)

Kn(λ)
,

L′n =
λK ′n(λr0)

Kn(λ)
,

En = 1 +
λK ′n(λ)

Kn(λ)
− 1

2

(
λK ′n−1(λ)

Kn−1(λ)
+
λK ′n+1(λ)

Kn+1(λ)

)
,

r0 = (R + h)/R,

(9.16)

and R denotes the radius of the cylinder, and h is the radial distance from the center

of the spherical particle to the outer edge of the cylinder (so that the distance to the

axis would be R + h). As before γs is the steady Stokes drag coefficient 6πηa and a

denotes the radius of the spherical particle.

The above (despite the infinite eigenfunction expansion) is a first order correction.

We may write the correction in Padé form as

γsteady
radial =

γs
1− a

R
kr
. (9.17)

As noted by Happel & Brenner [1965], this is equivalent to assuming a geometric

series for higher order corrections, and this generally improves the accuracy of the

result.

As before, the hindered diffusion coefficient may be calculated from the above

drag coefficient as D = kBT/γ
steady.

The numerical evaluation of the above result has some challenges owing to the

poor accuracy of Bessel functions and large number cancelations. The expressions

for L′n, λK′n(λ)
Kn(λ)

and the integrand of H are re-written as,

H =

∫ ∞
0

dλ
∞∑

n=−∞

[In(λ)Kn(λ)]L2
n,

L′n =

[
−λKn−1(λr0)

Kn(λr0)
− n

r0

]
Ln

λK ′n(λ)

Kn(λ)
= −λKn−1(λr0)

Kn(λr0)
− n,

(9.18)

and the product In(x)Kn(x) as well as the ratio Kn(x)/Kn−1(x) are implemented

separately.
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To implement the product In(x)Kn(x), we use a Taylor series expansion for small

x < 0.05n, and an asymptotic series expansion for large x > 50n. When x ∼ n,

we attempt to call the built-in (in this case on MATLAB) functions and compute

the product. If this fails, we use the integral representation using J0 [DLMF, Eq.

10.32.16], where the upper bound may be truncated to a finite value owing to the

quick decay of the integrand, and the integral may be evaluated using Gauss-Kronrod

quadrature.

To implement the ratio Kn(x)/Kn−1(x), we implement the ratio In(x)/In−1(x) in

the manner described by Gautschi & Slavik [1978] (recursion is used to compute the

continued fraction, and the Perron algorithm is used to about 900 terms) and use the

Wronskian In−1(x)Kn(x) + In(x)Kn−1(x) = 1/x to turn the computation into that of

In(x)/In−1(x) and In(x)Kn(x).
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Chapter Ten: Experimental investigations on the

hydrodynamic effects of boundaries on Brownian

motion

In this chapter, we will describe an experiment studying short-time aspects of Brown-

ian motion near a boundary, published by Mo et al. [2015b]. The author contributed

to the design, implementation and conduct of the experiment, and wrote some of the

sections of the manuscript.

10.1 Experimental methods

10.1.1 Experimental setup

The setup used for the experiments in bulk fluid (chapters 5, 6) required several

modifications to allow the measurement of Brownian motion near a boundary.

Firstly, the flow-cell design had to be modified to include boundaries. We re-

purposed a single-mode optic fiber (Thorlabs, SM980G80) with a 80µm-diameter

cladding to create cylindrical boundaries. The fiber’s acrylate coating was stripped

with a fiber stripping tool and the residue was cleaned with HPLC-grade acetone and

Figure 10.1: Template used to cut sealing film to create channels in the flow-cell for
the experiment. The fibers with coating stripped were placed along the marked lines
to create no-slip boundaries in the flow-cell. The different shape of the flow-cell with
the slope on the top wall was designed so that there was enough sealing film around
the vertical fiber to seal it well.
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lens tissue, so that the cladding was exposed. The cladding of two fibers were then

heat-sealed into the flow cell, one placed horizontally and the other placed vertically

in the chamber. The alignment of the fibers was done by eye with the use of a printed

template (shown in figure 10.1). The pressure during the melting of the sealing film is

sufficient for the nescofilm or parafilm to flow around the fiber and make a tight seal

– any attempts to cut a channel in the sealing film for the fiber leads to an incomplete

seal and a leaky flow cell. After the flow-cell has been baked, care must be taken to cut

any excess fiber protruding from the cell, as the stress may propagate and crack open

the seal. Therefore, it is advisable to leave about 2 ∼ 3mm of fiber protruding and

gently cut the excess beyond that point. The alignment of the fibers can be verified

in the CCD image of the chamber. Figure 10.2 (A) and (B) shows the configuration

of the fibers in the flow cell. Figures 10.3 (A) and (B) show trapped micro-spheres in

the vicinity of the vertical and horizontal fibers respectively. Since the cut mirror we

used (figure 5.8) cuts the beam vertically, the detector measures beam displacements

in the horizontal direction, whereby the two cases measure Brownian motion in the

perpendicular and parallel directions to the fibers respectively.

The 3-axis translation stage on which the flow-cell is mounted had two of its

micrometers – in the directions lateral to the laser beam – replaced by micrometers

with piezo-electric elements (Thorlabs, DRV517). The piezos were controlled with

a driver (Thorlabs, BPC301) which provided a read-out of relative positions using

a strain gauge mounted on the piezo. This allowed us to position the cylindrical

fibers relative to the particle with a precision of ∼ 10nm in both lateral directions,

giving us the ability to carefully control the sphere-wall separation. The piezo driver

has closed-loop and an open-loop modes of operation. Given that it takes a long

time for the piezo crystal to relax completely, the closed-loop mode varies the voltage

applied to the piezo in order to keep the separation at the desired value. However,

the feedback loop of the system was observed to introduce a noise at about a kHz

frequency into the measurement. Therefore, it was kept in open loop, and we waited

for the piezo crystal to relax naturally before acquiring data. As for the other axis

(along the beam-propagation direction), it is adjusted so that the particle lies in the

center of the chamber in that direction. This prevents the effects of the boundary

formed by the cover-slip from being significant, since the separation ∼ 40µm (half

the thickness of the chamber) is much larger than the particle size. That 40µm is

far enough for the chamber walls to be neglected in the context of a 3µm-diameter
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Figure 10.2: Experimental setup to study Brownian motion near a boundary. An ap-
proximate flat boundary is created by introducing two cylindrical glass fibers in the
flow cell. Sub-figure (A) shows a simplified top-view schematic of the experimental
setup, which is mostly similar to that used in the experiments in bulk liquid (chap-
ters 5, 6). The primary difference lies in the inclusion of the cylindrical glass fibers
into the chamber, as represented more clearly in sub-figure (B). Sub-figure (C) shows
a representation of the relative sizes of the particle and cylindrical fiber to scale. The
large diameter of the fiber compared to the size of the particle and the separation
between the particle and wall h allows us to treat the wall as approximately flat. The
distance h is defined as shown – measured from the center of the particle to the edge
of the wall. Figure from Mo et al. [2015b], courtesy of Dr. Jianyong Mo.

sphere is verified post facto by the experiment.

The experiment used ≈ 3µm-diameter silica spheres (Bangs Laboratories, SS05N)

in HPLC-grade water. The diameter of the fiber was chosen to match the typical

thickness of Nescofilm. The large diameter (80µm) of the fiber in comparison to the

particles allows us to approximate the fiber by a flat no-slip wall, as is highlighted in

figure 10.2 (C), at least for small sphere-wall separations.

10.1.2 Data analysis

The acquired data is analyzed in the same manner as described in §5.9. However, in

addition to fitting the calibration factor, the trap stiffness, and the particle’s diameter,
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Figure 10.3: A silica micro-sphere is trapped in the vicinity of (A) vertically, and
(B) horizontally, placed glass fibers. The many parallel lines seen are an artifact of
diffraction. The green marks seen in figure (B) are dead pixels on the camera1. Figure
courtesy of Dr. Jianyong Mo.

the distance to the wall h is also fit from the data. This is necessary because the

piezo strain gauge can only tell us the relative distances between different positions

of the particle, but not the absolute distance to the wall. It turns out that fitting the

VACF gives the best results for the sphere-to-wall distance h, as may be verified by

plotting the fit distance against the reading of the piezo strain gauge.

Another way to determine the absolute sphere-wall separation is by measuring

the diffusion coefficient. Data is acquired with reduced trap strength while keeping

the same particle in the trap, so that the MSD attains the diffusive regime before it

saturates. The light is redirected to a DC-coupled detector, and the diffusion coeffi-

cient is determined from the long-time behavior of the MSD [Pralle et al., 1998]. The

behavior of the diffusion coefficient near a wall has been well-studied by previous ex-

periments [Carbajal-Tinoco et al., 2007; Ishii et al., 2010; Liu et al., 2014], bolstering

confidence in this method. Specifically, the long-time behavior of the PACF is given

by ∼ 〈x2〉e−t/τk where τk = γsteady(h)/K where γsteady(h) denotes the steady Stokes

drag on a sphere in the presence of a no-slip wall as a function of the separation h.

This expression may be obtained by approximating the drag coefficient in the GLE by

γsteady(h) for time-scales t� τf , and solving the resulting Langevin equation with the

1These dead pixels may be obtained when necessary by inadvertently shooting a pico-second
pulsed laser at the CCD camera.
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harmonic trap in the usual manner. The diffusion coefficient may then be obtained

using the Stokes-Einstein relation D(h) = kBT/γ
steady(h). Therefore, by fitting the

MSD, or alternatively the PACF at long time-scales, one may extract D(h), which

can then be fit to either the theory for a flat wall [Brenner, 1961], or the theory for

a cylindrical wall [Alam et al., 1980] (discussed in Chapter 9).

10.2 Results

We shall now present a selection of results from Mo et al. [2015b].

Figure 10.4 (A) shows absolute measurements of sphere-wall separation obtained

by fitting the VACF to the theoretical predictions. The horizontal axis represents

the reading of the strain gauge on the piezo, after removing the fitted offset. The

fact that the data (green-squares) follows the red y = x line closely until about 7

µm shows that the VACF fit gives reliable results for small separations h. Sub-figure

(B) shows the determination of sphere-wall separation by measuring the hindered

diffusion coefficient. The data shows a trend towards the theory for a cylindrical

wall, although more precise measurements are needed to discern between the two

theories.

Figure 10.5 shows the experimental data and theoretical predictions for the MSD

for Brownian motion perpendicular to the wall at four different sphere-wall separa-

tions: (A) h = 30µm, (B) h = 6.1µm, (C) h = 4.9µm, (D) h = 3.1µm. The insets

zoom-in on the longer time-scales to help discern the difference between the theory

with the boundary (red dashed line) and the bulk theory (solid black line). At about

30µm, the boundary is sufficiently far that the effects are negligible. This verifies our

assumption of neglecting the effects from the boundary of the cover-slip. The bound-

ary effects become more prominent as the particle is moved closer to the boundary,

as is expected. Figure 10.6 shows the data and theory for the VACF, once again in

the direction perpendicular to the wall. As before, the wall has hardly any effect at

h = 30µm (a/h ≈ 1/20). The VACF decays faster closer to the wall. Figure 10.7 and

figure 10.8 show the velocity and thermal force power-spectral densities respectively,

at the same four locations, in the perpendicular direction.

Figure 10.9 shows the experimental results along with theoretical predictions for

statistical quantities characterizing Brownian motion in the parallel direction to the
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Figure 10.4: Absolute measurements of the distance between the 3µm-diameter
spherical particle’s center and the boundary (h), (a) obtained by fitting the VACF
measured using an AC-coupled detector, (b) obtained by measuring the hindered
diffusion coefficients using a DC-coupled detector. The green squares with error-bars
indicate the data obtained by analysis of experimental measurements of Brownian
motion in the perpendicular direction to the boundary. Sub-figure (a) plots the
distance obtained by the fit against the relative distance read by the piezo strain
gauge after subtracting the offset obtained by fitting. The red line is the y = x
line. It is observed that fitting the VACF gives reliable results when the separation
is smaller than 7µm. Sub-figure (b) plots the hindered diffusion coefficients obtained
by analysis of the PACF as described in the text. The red solid line represents the
theoretical predictions for the diffusion coefficient near a flat wall [Brenner, 1961],
whereas the blue dashed line represents those for a cylindrical wall [Alam et al.,
1980]. Figure from Mo et al. [2015b].

wall. Sub-figure (A) shows the MSD, (B) shows the velocity PSD, (C) shows the

VACF, and (D) shows the PSD of the thermal force. The separation h = 2.9µm for

all four sub-figures. The effects in the parallel direction are much weaker than the

effects in the perpendicular direction for the same separation h.
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Figure 10.5: Log-log plots of the MSD of a Brownian particle (2a = 3µm) near a
wall in the perpendicular direction. The sphere-wall separation in each case is (A)
h = 30µm, (B) h = 6.1µm, (C) h = 4.6µm, (D) h = 3.1µm. The corresponding values
of τw are 0.9 ms, 37 µs, 21 µs and 9.6 µs respectively. The blue circles represent the
experimental data. The solid black line represents the predictions of the theory of
Brownian motion in bulk fluid (Clercx & Schram [1992], Chapter 4), and the dashed
red line represents the predictions of the theory of Brownian motion perpendicular
to a flat wall (Chapter 8). The MSD becomes suppressed when the sphere is closer
to the wall, and as expected, the effects of the wall are negligible at a sufficiently
large distances (a/h = 0.05). The insets enlarge the region where there is significant
difference between the bulk and boundary theories to show it clearly. Figure from Mo
et al. [2015b].
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Figure 10.6: Log-log plots of the absolute value of the VACF of a Brownian particle
(2a = 3µm) near a wall in the perpendicular direction, normalized by its zero-time
value kBT/m

∗
⊥. The sphere-wall separation in each case is (A) h = 30µm, (B) h =

6.1µm, (C) h = 4.6µm, (D) h = 3.1µm. The corresponding values of τw are 0.9 ms,
37 µs, 21 µs and 9.6 µs respectively. The blue circles represent the experimental data.
The solid black line represents the predictions of the theory of Brownian motion in
bulk fluid (Clercx & Schram [1992], Chapter 4), and the dashed red line represents the
predictions of the theory of Brownian motion perpendicular to a flat wall (Chapter 8).
The velocity decorrelates faster when the sphere is closer to the wall, and as expected,
the effects of the wall are negligible at a sufficiently large distances (a/h = 0.05). The
cusps are a result of zero-crossings visualized on a log-log plot. These zero-crossings
are a consequence of the optical trap. Figure from Mo et al. [2015b].
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Figure 10.7: Log-log plots of the PSD of velocity of a Brownian particle (2a = 3µm)
near a wall in the perpendicular direction. The sphere-wall separation in each case is
(A) h = 30µm, (B) h = 6.1µm, (C) h = 4.6µm, (D) h = 3.1µm. The corresponding
values of τw are 0.9 ms, 37 µs, 21 µs and 9.6 µs respectively. The blue circles represent
the experimental data. The solid black line represents the predictions of the theory
of Brownian motion in bulk fluid (Franosch et al. [2011], Chapter 4), and the dashed
red line represents the predictions of the theory of Brownian motion perpendicular
to a flat wall (Chapter 8). Figure from Mo et al. [2015b].
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Figure 10.8: Log-log plots of the PSD of the Langevin force on a Brownian particle
(2a = 3µm) near a wall in the perpendicular direction. The sphere-wall separation
in each case is (A) h = 30µm, (B) h = 6.1µm, (C) h = 4.6µm, (D) h = 3.1µm. The
corresponding values of τw are 0.9 ms, 37 µs, 21 µs and 9.6 µs respectively. The blue
circles represent the experimental data. The solid black line represents the predictions
of the theory of Brownian motion in bulk fluid (Franosch et al. [2011], Chapter 4),
and the dashed red line represents the predictions of the theory of Brownian motion
perpendicular to a flat wall (Chapter 8). The enhanced flatness of the force PSD
at low frequencies is explained through the absence of the

√
ωτf term (Chapter 8).

Figure from Mo et al. [2015b].
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Figure 10.9: Statistical properties of Brownian motion of a sphere (2a = 3µm) in the
direction parallel to a wall. The sphere-wall distance is h = 2.9µm. Sub-figure (A)
shows the MSD, with the inset zooming in on the differences, (B) shows the velocity
PSD, (C) shows the absolute value of the VACF, normalized by kBT/m

∗
‖, and (D)

shows the PSD of the thermal force. The blue circles represent the experimental data.
The solid black line represents the predictions of the theory of Brownian motion in
bulk fluid (Clercx & Schram [1992]; Franosch et al. [2011], Chapter 4), and the dashed
red line represents the predictions of the theory of Brownian motion parallel to a flat
wall (Chapter 8). Figure from Mo et al. [2015b].
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Appendix A: Detailed results for the problem of a

no-slip sphere oscillating in bulk fluid

In this appendix, we expand on the problem of the drag force on a sphere oscillating

in a viscous fluid, which was briefly outlined in Section 3.6. The problem was first

solved by Stokes [1851] in the context of damping of pendulum bobs. As before, a

modern derivation following Landau & Lifshitz [1987, §24, Prob. 5] will be presented

here.

We shall assume that the fluid, which is otherwise quiescent, has a viscosity of

η and is sufficiently incompressible on the timescales considered (see the discussion

in 3.1) with constant density ρf . For convenience, we introduce the kinematic vis-

cosity ν := η/ρf . Let the sphere’s velocity be described by u(t) = uω<e−iωt. Let us

also suppose that the amplitude of oscillations of the sphere A = uω/ω � a, where

a is the radius of the sphere. This condition, coupled with the low Reynolds number

(Re = auω/ν � 1), allows us to neglect the advection term in the incompressible

Navier-Stokes equations, giving us the unsteady Stokes equations (3.6). We wish to

solve (3.6) subject to the boundary conditions

v(r, t)→ 0 as r →∞,

v(r, t) = u(t) when |r −Rt| = a,
(A.1)

where R(t) denotes the instantaneous position of the sphere. The latter boundary

condition makes the problem a non-linear problem. In order to make the problem

tractable, we evaluate the latter boundary condition at the equilibrium position R0

of the sphere. This assumption is equivalent to moving to the reference frame of

the sphere and neglecting the inertial body force of amplitude uωω in comparison to

other forces in the unsteady Stokes equations. Although it is prima face alarming

that this force grows with ω, for any smooth velocity profile u(t), we expect the power

spectral density to drop off at least as 1/ω2, whereby this assumption is justified in

most physical scenarios including the ones we shall apply it to.

For further simplicity, we shall choose to work in a coordinate system centered

on the sphere, whereby R0 = 0. We now have a linear problem which also has time-

161



translation symmetry, whereby we may take a Fourier transform.1 The transformed

problem may be written as,

−iωvω = −∇pω + ν∆vω,

∇ · vω = 0,

vω(r →∞)→ 0,

vω||r|=a = uω.

(A.2)

We use Landau’s ansatz vω = ∇ × ∇ × [f(r)uω], which works specifically for a

sphere. The explanation for why it works may be found in Landau & Lifshitz [1987,

§20].

Firstly, in terms of this ansatz, using the double curl identity, we have

vω = ∇ [∇ · (fuω)]− u∆f. (A.3)

Taking the spherical polar components of the above and simplifying, we obtain

vr = −2u cos θ
f ′(r)

r
,

vθ = −u sin θ

[
f ′′(r) +

f ′(r)

r

]
,

vφ = 0.

(A.4)

To find the function f(r) itself, we first convert write down the vorticity diffusion

equation

∇× (−iωvω − ν∆vω) = 0, (A.5)

and substitute the ansatz to obtain

uω ×∇(−iω∆f − ν∆2f) = 0. (A.6)

The only way this can hold for all r, given that uω is a fixed vector and the term in

the parenthesis has a gradient that will be in the radial direction is if the gradient

itself vanishes, i.e.

− iω∆f − ν∆2f = constant. (A.7)

Given that the velocity field and its derivatives must vanish at infinity, the second

derivative of f , which it depends on must also vanish at infinity. Thus, the asymptotic

1Our convention was specified in equation (2.5).
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condition on the velocity field forces the constant to be 0. Thus, f(r) satisfies the

equation

α2∆f −∆2f = 0, (A.8)

where α :=
√
−iω/ν with <[α] > 0.

Before we solve this equation, we may determine an equation for the pressure in

terms of f and its derivatives. To do so, we go back to the equation

∇pω
ρ

= iωvω + ν∆vω, (A.9)

and substitute (A.3) into it to obtain,

∇pω
ρ

= iω∇ (uω · ∇f)− ν∇ (uω · ∇∆f) . (A.10)

In obtaining the above, we have used the fact that f satisfies (A.8). We can integrate

the equation above, which amounts to removing the gradient on both sides, except

for the presence of an integration constant p0, which we shall set to zero without loss

of generality as far as these calculations are concerned. We hence obtain

p = (uω · ∇) [iωρf − η∆f ] , (A.11)

which we may further simplify to

p = −ηu cos θ

[
α2f ′(r)− d

dr
∆f

]
. (A.12)

We note that in all of the above, we do not need the actual function f(r), but

only its derivative f ′(r). We now solve the equation (A.8) for f ′(r). This is fairly

straightforward since f(r) depends only on a single variable r, so we have

∆f =
1

r2

d

dr

[
r2f ′(r)

]
= C

e−αr

r
, (A.13)

where we have only retained the solution that has the form of a decaying exponential

(recall <[α] > 0) as r →∞. We then find that f ′(r) is given by

f ′(r) =
1

r2

[
A

(
r +

1

α

)
e−αr +B

]
, (A.14)

where the constant A is related to the constant C through Aα = −C. The constants

A and B must be determined using the boundary conditions vr(r = a, θ) = u cos θ

163



and vθ(r = a, θ) = −u sin θ, whereby we find that f ′(a)/a = −1/2 and f ′′(a) = −1/2.

We thereafter find that

A =
3a

2α
eαa, and

B = −a
3

2

[
1 +

3

αa
+

3

α2a2

]
.

(A.15)

We can thereby calculate the relevant components of the viscous stress tensor,

viz.

σrθ = η

[
1

r

∂vr
∂θ

+
∂vθ
∂r
− vθ

r

]
, and

σrr = 2η
∂vr
∂θ

,

(A.16)

which we can calculate to be

σrθ = uωη sin θf ′′′(r),

σrr = −4uωη cos θ

[
f ′′

r
− f ′

r2

]
,

(A.17)

and evaluate them on the surface to obtain

σrθ(r = a, θ) =
3

2a
(1 + αa)uωη sin θ,

σrr(r = a, θ) = 0.
(A.18)

To find the net drag force on the oscillating sphere due to the fluid, we integrate

the normal component of the stress tensor over the surface of the sphere. Since we’re

interested in the drag, we only need to take the z-component (which we have chosen

as the polar axis). Thus, we obtain,

êz · F =

∮
r=a

dφ dθ a2 sin θ [−p(a, θ) cos θ + σrr(a, θ) cos θ − σrθ(a, θ) sin θ] , (A.19)

where the second term is zero, the integral over φ trivially evaluates to 2π, and we

obtain

F drag = −6πηauω

[
1 + αa+

α2a2

9

]
, (A.20)

where we once again recall that α =
√
−iωρ/η with <[α] > 0. We may define the

characteristic timescale τf := ρa2/η, whereby the combination αa =
√
−iωτf . The

time-scale τf may be interpreted as the amount of time taken by vorticity to diffuse

over a sphere’s size in the fluid. This suggests that the effects of vorticity diffusion,
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i.e. the deviations from steady Stokes drag, only come to prominence for ω & 1/τf .

Just to estimate, for a 1µm-sized particle in water, τf ∼ 1µs.

The author finds himself frequently fumbling for detailed results related to this

classical problem and therefore wishes to re-summarize some of the key intermediate

results below.

If we write vω = ∇×∇× [f(r)uω] for the fluid velocity field around a sphere

at the origin oscillating with velocity uω, we find that

f ′(r)

r
=
a3

r3

[
3

2α2a2
(1 + αa) eα(a−r) − 1

2

(
1 +

3

αa
+

3

α2a2

)]
,

∆f = −3a

2

eα(a−r)

r
,

(A.21)

and the various derivatives of f(r) have the values at r = a given by

f ′(a)

a
= −1

2
,

∆f(a) = −3

2
,

f ′′(a) = −1

2
,

d

dr
∆f(a) =

3

2a
(1 + αa),

f ′′′(a) =
3

2a
(1 + αa).

(A.22)

As r →∞, all of these derivatives vanish.

The velocity and pressure field are given by

vr = −2u cos θ
f ′(r)

r
,

vθ = −u sin θ

[
f ′

r
−∆f

]
,

vφ = 0,

p = −uη cos θ

[
α2f ′ − d

dr
∆f

]
.

(A.23)

The viscous stress tensor’s components are given by

σrr = −4uη cos θ

[
f ′′

r
− f ′

r2

]
,

σrθ = uη sin θf ′′′.

(A.24)
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Finally, for completeness, we recall that

∆f = f ′′ +
2f ′

r
. (A.25)
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Appendix B: Application of boundary integral

equations to find the Green’s function for a no-slip

wall

In this appendix, we study the problem of determining the Green’s function of the

unsteady Stokes equations that satisfies no-slip boundary conditions on a plane wall,

using boundary integral equations. The purpose of this is to illustrate the use of

boundary integral equations through an explicit calculation, and to provide an alter-

native method of calculation to that used by Jones [2004] and Felderhof [2005].

We shall first formulate a boundary integral equation that represents this Green’s

function in terms of an unknown source on the plane wall, and then solve the integral

equation. We shall however, ignore the final step of inverting a Fourier transform to

obtain the Green’s function in regular space, being satisfied with results in k-space.

It is not known to the author whether this final step can be effected in closed-form

or not. It would also be interesting to investigate if an image system akin to that

for the no-slip wall in the steady Stokes case [Blake, 1971] may be obtained for the

present case.

B.1 The problem

The problem may be formulated as follows: solve

−iωρ

η
Gij(x|x0) = −1

η
∂ipj(x|x0) + ∆Gij(x|x0) + δijδ(x− x0),

∂iGij(x|x0) = 0,

(B.1)

for Gij(x|x0) subject to the boundary condition Gij(x|x0) = 0 ∀x ∈ W , where W

represents the plane wall. Here, we have already Fourier-transformed the unsteady

Stokes equations in time.

Suppose that we already know the free-space Green’s function G0
ij(x − x0), we

may turn the boundary condition into an appropriately determined source Skj on the
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wall, and write,

Gij(x|x0) = G0
ij(x− x0) +

∫
W

d2x′ G0
ik(x− x′)Skj(x′). (B.2)

The source Skj on the wall is to be determined by imposing the no-slip boundary

condition,

G0
ij(x− x0) +

∫
W

d2x′ G0
ik(x− x′)Skj(x′) = 0 ∀x ∈ W, (B.3)

which is a Fredholm integral equation of the first kind.

We shall specifically choose Cartesian coordinates (x, y, z) and let the wall be the

plane z = 0. The half-space of interest shall be z >= 0. Owing to the translation

symmetry, we may choose x0 to be the point (0, 0, h) without loss of generality.

Then, the boundary integral equation takes the form

G0
ij(x, y, −h) +

∫
z=0

dx′ dy′ G0
ik(x− x′, y − y′, 0)Skj(x

′, y′) = 0 (B.4)

and the expression for the required half-space Green’s function takes the form

Gij(x, y, z) = G0
ij(x, y, z − h)

+

∫
z=0

dx′ dy′ G0
ik(x− x′, y − y′, z)Skj(x

′, y′)
(B.5)

B.2 Free space Green’s function

The free-space Green’s function is a well-known result, sometimes referred to as the

unsteady Oseen tensor. We shall re-derive it here to establish conventions. First, we

shall assume for simplicity that x0 lies at the origin of the coordinate system. By

Fourier transformation of the unsteady Stokes equation, we obtain

α2 G0
ij(k) = iki

p0
j(k)

η
− k2G0

ij(k) + δij,

kiG
0
ij(k) = 0.

(B.6)

By multiplying the first of the above equations by ki and using the second, we obtain

i k2
p0
j(k)

η
+ kj = 0, (B.7)
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which has the solution

p0
j(k) = iη

kj
k2
. (B.8)

Plugging this solution for p0
j back into the first of (B.6), we obtain

(k2 + α2) G0
ij(k) = −kikj

k2
+ δij. (B.9)

Thus, the Oseen tensor (in k-space) is given by

G0
ij(k) =

1

k2 + α2

(
δij −

kikj
k2

)
. (B.10)

Given the symmetry of our problem, it is natural to invert the Fourier transform

along the ê3 = ẑ direction, but keep the other two axes Fourier transformed. Defining

the inverse Fourier transform through

f(z) :=

∫ ∞
−∞

dk3

2π
e−ik3zf̌(k3), (B.11)

we may compute that Ǧij(k1, k2, z), the inverse Fourier transform of G0
ij(k) has

components

Ǧ =
1

2α2


−k21

q
Q+

k21+α2

s
S −k1 k2

(
Q
q
− S

s

)
ik1

z
|z| (Q− S)

−k1 k2

(
Q
q
− S

s

)
−k22

q
Q+

k22+α2

s
S ik2

z
|z| (Q− S)

ik1
z
|z| (Q− S) ik2

z
|z| (Q− S) q

s
(sQ− qS)

 , (B.12)

where Q := e−q|z|, S := e−s|z|, q :=
√
k2

1 + k2
2, and s :=

√
q2 + α2 <[s] > 0.

B.3 Solving the integral equation

In the (k1, k2, z)-space, the integral equation takes a simple form

Ǧij(q, −h) = −Ǧik(q, 0)Škj(q), (B.13)

where q has components k1 and k2. To solve for Š, we need to invert the matrix

Ǧ(q, 0). This is done easily, and the result is

Ǧ−1(q, 0) =
2

q

k
2
1 + sq k1k2 0

k1k2 k2
2 + sq 0

0 0 s(q + s)

 . (B.14)
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Now, we can compute Š = −Ǧ−1(q, 0) Ǧ(q, −h), and the result is

Š(q) = −1e−sh +
e−qh − e−sh

q(s− q)

 k2
1 k1k2 ik1q

k1k2 k2
2 ik2q

ik1s ik2s −qs

 . (B.15)

Next, we can compute the correction to the Green’s function because of the wall

for z > 0, given by Č(q, z|h) := Ǧ(q, z) Š(q), and the result is

Č = −Ǧ(q, z)e−sh − e−qh − e−sh

2α2q(s− q)
[
(q + s)e−qzC1 − 2e−szC2

]
, (B.16)

where the matrices C1 and C2 are given by

C1 :=

 k2
1 k1k2 ik1q

k1k2 k2
2 ik2q

ik1q ik2q q2

 ,

C2 :=

 sk2
1 sk1k2 ik1qs

sk1k2 sk2
2 ik2qs

ik1q
2 ik2q

2 q3

 .
(B.17)

Thereafter, the full Green’s function for the half-space may be written as

Ǧwall
ij (q, z|h) = Ǧij(q, z − h) + Č(q, z|h). (B.18)
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